
The LogAnswer Project at ResPubliQA 2010

Ingo Glöckner1 and Björn Pelzer2

1 Intelligent Information and Communication Systems Group (IICS),
University of Hagen, 59084 Hagen, Germany

ingo.gloeckner@fernuni-hagen.de
2 Department of Computer Science, Artificial Intelligence Research Group

University of Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz
bpelzer@uni-koblenz.de

Abstract. The LogAnswer project investigates the potential of deep
linguistic processing and logical reasoning for question answering. The
paragraph selection task of ResPubliQA 2010 offered the opportunity to
validate improvements of the LogAnswer QA system that reflect our ex-
perience from ResPubliQA 2009. Another objective was to demonstrate
the benefit of QA technologies over a pure IR approach. Two runs were
produced for ResPubliQA 2010: The first run corresponds to LogAnswer
with standard configuration. The accuracy of 0.52 and c@1 score of 0.59
witness that LogAnswer has matured (in 2009, accuracy was 0.40 and
c@1 was 0.44). In the second run, a special index that only indexes
terms from the definiendum of definitions was used for answering defi-
nition questions. The resulting accuracy was 0.54 with c@1 score 0.62.
For definition questions, accuracy increased by 21%. The deep linguistic
analysis of LogAnswer and its validation techniques made a substantial
difference compared to a pure IR approach. Using the retrieval stage of
LogAnswer as the IR baseline, we found a 27% gain in accuracy and 37%
gain in c@1 due to the powerful validation techniques of LogAnswer.

1 Introduction

The LogAnswer project investigates the potential of deep linguistic processing
and logical reasoning for question answering.3 The LogAnswer QA system de-
veloped in this project was first presented in CLEF 2008 [6], where it took part
in the QA@CLEF track for German. After consolidation it participated in Res-
PubliQA 2009 where it was the third-best system under the C@1 / Best IR
baseline metric. Still, the paragraph selection of LogAnswer were only slightly
better than the very strong retrieval baseline. The paragraph selection (PS) task
of ResPubliQA 2010 has offered the opportunity to validate improvements of the
LogAnswer QA system that reflect our experience from ResPubliQA 2009:

3 Funding of this work by the DFG (Deutsche Forschungsgemeinschaft) under con-
tracts FU 263/12-2 and GL 682/1-2 (LogAnswer) is gratefully acknowledged. Thanks
to Tim vor der Brück for his n-gram recognizer, and to Sven Hartrumpf for adapting
the WOCADI parser.



– LogAnswer showed a very low accuracy for DEFINITION questions (16.8%).
One reason for the low accuracy for definition questions was the restrictive
way in which queries to the passage retrieval system were constructed; an-
other problem was that the domain-specific way in which definitions are
expressed in regulations was not recognized by LogAnswer. In ResPubliQA
2010, we have addressed these problems by improving the use of the retrieval
system for definition questions and by building a dedicated definition index
that also covers definitions in the form typically found in regulations.

– LogAnswer also showed a low accuracy for PROCEDURE questions (29.1%).
We now tackle the difficulty to recognize sentences that describe a proce-
dure by additional procedure triggers whose presence in the text marks a
sentence as expressing a procedure. Moreover the question classification for
PROCEDURE questions was incomplete (only 20.3% of these questions were
recognized as such), so recognition rules had to be added to close this gap.

– LogAnswer depends on the parsing quality of the linguistic analysis stage
since only sentences with a full parse allow a logic-based validation. The doc-
ument collections of ResPubliQA with their administrative language are very
difficult to parse, though – in the last year, the parser used by LogAnswer
only managed to find a full parse for 26.2% of all sentences. Therefore one
of our goals for ResPubliQA 2010 was to improve the parsing rate for JRC
Acquis, and to ensure acceptable results for the new Europarl collection.

– In order to achieve a general performance improvement, we decided to try
a more thorough use of compound decomposition, knowing that compound
nouns abound in administrative texts written in German.

Apart from evaluating the current state of the LogAnswer prototype, our
main objective was that of demonstrating a clear advantage of using QA tech-
nologies over a pure IR approach. We also wanted to show that LogAnswer can
cope with the novel challenges of ResPubliQA 2010, i.e. with the Europarl corpus
and with OPINION questions.

In the paper, we first explain how the LogAnswer QA system works and how
we prepared it for ResPubliQA 2010. We then present the results of LogAnswer
on the ResPubliQA question set for German. The discussion of these results and
some additional experiments will highlight the strengths and some remaining
weak points of the system. We conclude with a summary of the progress made.

2 System Description

LogAnswer rests on a deep linguistic analysis of the document collections by
the WOCADI parser [8]. The pre-analysed sentences are stored in a Lucene
index,using (synonym normalized) word senses from each sentence and occur-
rences of answer types (like PERSON) as index terms. Questions are also parsed
by WOCADI. The (synonym normalized) word senses in a question and its ex-
pected answer type are used for retrieving linguistic analyses of 200 sentences.
Various shallow features judging the question/snippet match are computed (e.g.



nabucco−abkommen.1.1

unterzeichnung.1.1

c17
SUB

nachname.1.1

barroso.0

c11

SUB

VAL

herr.1.1

sagen.1.1

c14

SUBS

OBJ

c10
ATTR

SUB

past.0

was.1.1c23

SUBS

CIRC

A
G

T

TE
M

P

MCONT

Fig. 1. MultiNet representation of the example question Was hat Herr Barroso bei der
Unterzeichnung des Nabucco-Abkommens gesagt?

lexical overlap). For sentences with a full parse, a relaxation proof of the ques-
tion from sentence and background knowledge provides additional logic-based
features [3]. The best answer sentence is selected by a validation model based
on rank-optimizing decision trees [5]. If the validation score of the best sentence
exceeds a quality threshold, then the sentence is expanded into the final answer
paragraph; otherwise ‘no answer’ is shown. The basic setup of the system is the
same as described in [7]. In the following we detail some of the processing stages
in the Q/A pipeline of LogAnswer, using a fixed question as a running example.

2.1 Linguistic Analysis of the Question

The questions are first subjected to a linguistic analysis, using the WOCADI
parser for German [8]. WOCADI generates a meaning representation of the ques-
tion in the semantic network formalism MultiNet [9]. Let us consider question
#119 from the ResPubliQA 2010 test set for German:

Was hat Herr Barroso bei der Unterzeichnung des Nabucco-Abkommens
gesagt? (What did Mr Barroso say at the time of signing the Nabucco
agreement?)

The relational structure4 of the MultiNet representation generated for the ex-
ample question is shown in Fig. 1. The indexed symbols like sagen.1.1 are word
sense identifiers. The MultiNet representation provides the basis for question
classification and for the subsequent generation of a logical query.

Note that a complete MultiNet representation is only available if WOCADI
finds a full question parse. This requirement was not problematic since WOCADI
achieved a full parse rate of 97.5% on the ResPubliQA 2010 question set.

Apart from generating a semantic representation, the parser also provides the
results of its morphological and lexical analysis stage. Note that the inclusion

4 The labeling of nodes with additional ‘layer attributes’ is not shown for simplicity.



of name lexica allows the parser to tag named entities in the text by types such
as last-name (the family name of person), etc. WOCADI further provides infor-
mation on the decomposition of compound words that occur in a sentence. In
our running example, it finds out that nabucco-abkommen.1.1 is a regular com-
pound built from abkommen.1.1 (agreement) and nabucco (an unknown word
that could represent a name nabucco.0, or a regular concept nabucco.1.1).

This kind of morpho-lexical and named-entity information is also available
for sentences with a partial or failed parse and can thus be used for implementing
fallback methods that replace a logical validation in the case of a parsing failure.

2.2 Question Classification

A rule-based question classification is used to determine the expected answer
type of the question and to identify the descriptive core of the question. The
expected answer types known to LogAnswer are a refinement of the question
categories of ResPubliQA. Apart from OPINION, PROCEDURE, PURPOSE,
REASON, and DEFINITION questions, the system distinguishes several types
of factoid questions such as city-name, mountain-name, first-name, last-name,
island-name, etc. These types correspond to the supported named entity types
that WOCADI recognizes in the text.

For ResPubliQA 2010, the existing rule base for question classification was
extended. In particular, the coverage of rules for PROCEDURE and PURPOSE
questions was improved. In order to recognize compound triggers like Arbeitsver-
fahren (working procedure) or Hauptaufgabe (main task), LogAnswer now treats
all nominal compounds that modify a known trigger word as additional trig-
ger words for the corresponding question type. Finally, 25 rules for recognizing
OPINION questions were added. The resulting rule base now comprises 240
classification rules, compared to 165 rules used for ResPubliQA 2009.

2.3 Retrieval of pre-analyzed sentences

Experiments with a paragraph-level and document-level segmentation of the
texts have shown no benefit over sentence segmentation in the ResPubliQA 2009
task [7]. Therefore we decided to work with a simple sentence-level index.

Prior to indexing, all documents in the considered JRC Acquis and Europarl
collections5 must be analyzed by WOCADI. In order to achieve an acceptable
parsing rate, some automatic regularizations of the documents were performed
(such as removal of paragraph numbers at the beginning of sentences). The pre-
processing also included the application of an n-gram recognizer for complex
references to (sections of) regulations, such as “(EWG) Nr. 1408/71 [3]” (see
[7]). In order to simplify the parsing of more sentences involving such construc-
tions, the training data of the section recognizer was considerably extended. The

5 see http://wt.jrc.it/lt/Acquis/ and http://www.europarl.europa.eu/; the
specific fragment of JRC Acquis and Europarl used by ResPubliQA is available
from http://celct.isti.cnr.it/ResPubliQA/Downloads.



Table 1. Parsing Rate of WOCADI on the ResPubliQA corpora

Corpus full parse partial parse

JRC Acquis
(2009 parse)

26.2% 54.0%

JRC Acquis
(new parse)

35.1% 61.5%

Europarl 34.2% 82.5%

achieved parsing rates in Table 1 show a positive effect of these changes, but both
JRC Acquis and Europarl are still very hard to parse.

The pre-analysed sentences are stored in a Lucene-based retrieval system.6

Note that instead of word forms or stems, the system indexes all possible word
senses for each sentence. Moreover nominalization relationships are utilized for
enriching the index. A system of 49,000 synonym classes involving 112,000 lex-
emes is used for normalizing synonyms, i.e. a canonical representative is chosen
for all terms in a given synonym class. A special treatment of compounds was
added so that all parts of the compound are indexed in addition to the com-
pound itself. Moreover, occurrences of expected answer types (like PERSON,
DATE) in each sentence are indexed. The recognition of these answer types
rests on the named entity information provided by WOCADI. The presence of
certain word senses and regular expressions defined on the morpho-lexical analy-
sis of WOCADI can also trigger the recognition of these answer types. Currently
there are 897 such triggers (including 704 newly added triggers for OPINION
questions, and some additional triggers for the PROCEDURE type).

For definition questions, a special definition index was generated. In this
index, only the definiendum of a definition recognized in a sentence is used for
indexing. For example, consider this definition:

Hopfenpulver: Das durch Mahlen des Hopfens gewonnene Erzeugnis, das
alle natürlichen Bestandteile des Hopfens enthält. (Hop powder: the
product obtained by milling the hops, containing all the natural ele-
ments thereof)

Here, only the word sense hopfenpulver.1.1 of the defined term Hopfenpulver
(Hop powder) is added to the definition index. This ensures a high retrieval
precision for definition questions. The recognition of definitions in the texts was
adjusted such as to cover the typical forms of definitions in administrative texts.

For retrieving a set of candidate sentences, the JRC Acquis index and the
Europarl index are searched in parallel (using Lucene’s MultiSearcher), and the
200 best sentences for the given query are fetched.

The retrieval query is constructed from disambiguated word senses in the
question analysis if a full parse exists. Otherwise a frequency criterion is used

6 see http://lucene.apache.org/



to select a unique word sense from the set of alternatives for each word in the
question. Synonyms are again normalized by choosing a canonical representative.
In the example, the retrieval query becomes:

herr.1.1 barroso.0 bei.1.1 unterzeichnung.1.1 nabucco-abkommen.1.1 nabucco.0
abkommen.1.1 sagen.1.1

The expansion of the compound Nabucco-Abkommen is intended to improve re-
call. The retrieval query will be extended by an additional term that expresses
the expected answer type, in this case atype:OPINION. Note that the atype:x
term is always an optional part of the retrieval query (it can be dropped at
the expense of the retrieval score). This is different from the approach in Res-
PubliQA 2009 where for definition questions, atype:DEFINITION was treated
as a required subexpression so that sentences not recognized as containing a
definition were completely dropped.

2.4 Extraction of Shallow Validation Features

As the basis for selecting the best retrieved sentence, several features that de-
scribe the quality of the question/snippet match are computed. We start by
describing some shallow features that can be computed for arbitrary sentences
regardless of the success of parsing. Apart from the obvious expected answer
type check, another important method is a lexical overlap test. To this end,
LogAnswer determines the list of all (synonym normalized) word senses for each
word in the question (except stopwords). Each list of alternative word senses is
treated as a disjunction one of whose elements must find a match in the sentence
to be validated. In our runnung example, we get:

(herr.1.1) (barroso.0) (signieren.1.1 unterzeichnung.1.1) (nabucco-abkommen.1.1

nabucco.0 nabucco.1.1) (abkommen.1.1 nabucco-abkommen.1.1) (sagen.1.1

besagen.1.1 sagen.2.1),

where the canonical synonym signieren.1.1 replaces the original unterzeichnen.1.1.
A recent change to LogAnswer is the treatment of nominal compounds: Each

compound is split in two conjuncts so that a full match is possible if the text
either contains the compound directly (Nabucco-Abkommen), or alternatively, if
it contains the components of the compound (i.e. both Nabucco and Abkommen).

In the example, this candidate sentence is found that answers the question:

Am 13. Juli bei der Unterzeichnung des Nabucco-Abkommens in Ankara
sagte Herr Barroso, die Gas-Pipelines seien aus Stahl. (On 13 July in
Ankara, at the time of signing the Nabucco agreement, Mr Barroso said
that the gas pipelines were made from steel.)

LogAnswer then extracts the following (synonym normalized) word senses and
numerals from the morpho-lexical analysis of this sentence:

abkommen.1.1, ankara.0, barroso.0, familiename.1.1, gas.1.1, gaspipeline.1.1,

herr.1.1, monat.1.1, nabucco-abkommen.1.1, name.1.1, past.0, pipeline.1.1, present.0,

sagen.1.1, sein.3.8, stadt.1.1, stahl.1.1, tag.1.1, unterzeichnung.1.1, 7, 13.



Here, every list of alternative word senses from the question representation finds a
match in the shallow sentence representation. Thus, there are 0 cases of matching
failure (100% matching rate). For details on the shallow features, see e.g. [3].

2.5 Extraction of Logic-Based Validation Features

For sentences with a full parse, a relaxation proof of the (logical representa-
tion of the) question from the logical representation of the sentence and the
available background knowledge is also tried, resulting in additional logic-based
features. The prover works on synonym-normalized representations. The back-
ground knowledge comprises more than 10,500 facts (e.g. describing nominaliza-
tions), and 114 rules for basic inferences, see e.g. [4].

Recalling our running example, the following logical query is constructed,
based on the question parse and the result of question classification:

attr(X1, X2), sub(X1, herr.1.1), val(X2, barroso.0), sub(X2, familiename.1.1),

obj(X3, X4), subs(X3, unterzeichnung.1.1), sub(X4, nabucco-abkommen.1.1),

agt(X5, X1), circ(X5, X3), subs(X5, sagen.1.1),mcont(X5, F )

All variables are assumed to be existentially quantified. Comma means conjunc-
tion. The variable F is the question focus (it expresses the queried information).

The logical representation of the correct answer sentence shown above is:

val(c10, c7), sub(c10,monat.1.1), obj(c14, c17), subs(c14, unterzeichnung.1.1),

loc(c17, c262), sub(c17, nabucco-abkommen.1.1), origm(c180, c257),

pred(c180, gaspipeline.1.1), arg1(c182, c180), arg2(c182, c257), temp(c182,present.0),

subs(c182, sein.3.8),assoc(c22, c14),mcont(c22, c182), agt(c22, c31), temp(c22, c8),

temp(c22,past.0), subs(c22, sagen.1.1), attr(c24, c25), sub(c24, stadt.1.1),

val(c25, ankara.0), sub(c25, name.1.1), sub(c257, stahl.1.1), in(c262, c24),

attr(c31, c32), sub(c31, herr.1.1), val(c32, barroso.0), sub(c32, familienname.1.1),

attr(c8, c10), attr(c8, c9), val(c9, c6), sub(c9, tag.1.1), assoc(gaspipeline.1.1, gas.1.1),

sub(gaspipeline.1.1, pipeline.1.1), sub(nabucco-abkommen.1.1, abkommen.1.1)

Due to a parsing error, the logical query shown above cannot be proved from the
representation of the sentence – the parser has used an unspecific assoc relation
instead of the circ relation in the query. Thus, the critical literal will be skipped
from the query, resulting in a proof of the remaining query fragment.

Among the logic-based features that summarize the relaxation proof, there is
one feature reporting that a single literal had to be skipped, and another feature
reporting that 10/11 ≈ 91% of the query literals have been proved. For details
on these logic-based features and the use of relaxation in LogAnswer, see [3].

2.6 Selection of the best answer candidate

The selection of the best answer candidate is based on the shallow features ob-
tained by matching the question and the sentence terms, and (for sentences with



a full parse) also on features obtained from a relaxation proof of the question
from the candidate sentence. Rank-optimizing decision trees [5] are used for as-
signing a validation score to each retrieved sentence that allows the selection of
the best candidate. For the moment, LogAnswer still uses a validation model
based on annotated training data from the QA@CLEF 2007 and 2008 evalua-
tions. Using the ResPubliQA 2009 test set for preparing training data seemed
too complicated for a non-expert of EU legislation.

The c@1 evaluation metric of ResPubliQA rewards QA systems that validate
their answers and prefer not answering over wrong answers. Thus results with a
low validation score should be dropped since their probability of being correct is
so low that showing these results would reduce the c@1 score of LogAnswer. The
threshold θ = 0.09 for accepting the best answer, or generating a ‘NO ANSWER’
response if the validation score falls below the threshold, was chosen such as to
optimize the c@1 score of LogAnswer on the ResPubliQA 2009 test set.

Finally, if the best sentence is not rejected, then it is expanded to the corre-
sponding full paragraph, as required by the ResPubliQA PS task.

2.7 Reasoning Support by the E-KRHyper Theorem Prover

E-KRHyper [11] was used as the reasoning component. E-KRHyper is an auto-
mated theorem prover (ATP) for first-order logic with equality. It is based on an
extended form of the hyper tableaux calculus [1,2]. The system is implemented in
OCaml7, and it is available under the Gnu GPL from the E-KRHyper website8.

While we developed this prover for embedding in knowledge representation
applications, it can operate as a stand-alone theorem prover which accepts input
problems in the syntax used by the TPTP logic problem library [16], a standard
in automated theorem proving. The TPTP website9 provides a periodically up-
dated performance listing of a number of ATP systems with respect to the prob-
lem library. At the time of this writing E-KRHyper solves 26% of the problems.
In comparison the Otter [10] system solves 19%; Otter serves as a benchmark
in ATP testing due to its long history and stability. While leading ATP systems
like E [15] and Vampire [14] exceed 50% in the TPTP rankings, E-KRHyper is
very suitable to the type of logic problems arising in knowledge representation
and question answering, characterized by a large number of clauses, of which
only a select few are actually necessary for the eventual proof. Regarding this
problem class our system generally outperforms other theorem provers [3]. The
QA-oriented logic problems used in our tests were derived from computations
in previous CLEF competitions. We have since submitted a selection of about
200 of these problems to the TPTP, and they have been included in the problem
library in the CSR domain (common sense reasoning) as of TPTP v4.0.1.

E-KRHyper has several features which support its role as a reasoning server
within an application like LogAnswer. Logic extensions like equational reasoning,

7 caml.inria.fr
8 http://www.uni-koblenz.de/~bpelzer/ekrhyper
9 www.tptp.org



Table 2. Results of LogAnswer in ResPubliQA 2010. #right cand. is the number of cor-
rect paragraphs at top rank before applying θ, and accuracy = #right cand./#questions

run description #right cand. accuracy c@1 score

loga101PSdede standard system 103 0.52 0.59
loga102PSdede special def index 107 0.54 0.62

negation as failure, arithmetic evaluation and list processing enable the prover to
handle aspects of knowledge representation systems which cannot be expressed
within the limits of first-order logic. Most ATP systems are designed to work
on a single problem only. They terminate once they have found a result, and
they must be started anew for each problem. This mode of operation would be
impractical for a reasoning server within LogAnswer, as it would entail reloading
the extensive logical knowledge base for each query, every time rebuilding the
indexing structures which the prover requires for fast clause access. Instead E-
KRHyper can remain in operation indefinitely, loading the knowledge base only
once during the initialization of LogAnswer. Any additional clauses required by
the queries can be loaded and retracted during the operation.

For query relaxation E-KRHyper supplies LogAnswer with information about
partially successful proof attempts. LogAnswer selects the most promising way
to relax the query, and then the prover continues with the shortened query,
keeping any previous derivation results to avoid repeating inferences.

When E-KRHyper finds a proof, it extracts the answer substitution from the
proof and transfers it to the main LogAnswer system for further processing.

3 Results on the ResPubliQA 2010 Test Set for German

Two runs were produced for ResPubliQA 2010: The first run, loga101PSdede,
represents the LogAnswer system in its standard configuration without the ex-
perimental definition index. In loga102PSdede, by contrast, the definition index
was activated. While the system was configured to retrieve 200 candidate sen-
tences for each question, the actual number of available sentences was smaller in
some cases. In the loga101PSdede run, a total of 39,200 candidate sentences was
retrieved (196 per question). About 37.0% of the retrieved candidate sentences
had a full parse, thus allowing logical validation. The remaining candidate sen-
tences with a chunk parse (41.9%) or failed parse (21.1%) were only subjected
to a shallow validation (numbers for the loga102PSdede run are similar). The
results obtained for the two submitted runs are shown in Table 2. The use of the
definition index in loga102PSdede was a clear improvement.

Table 3 shows the results of corresponding shallow-only runs (generated with
the prover switched off), and the results of two IR baseline runs in which the
top-ranked sentence of the retrieval stage was directly used for choosing the
corresponding answer paragraph. Note that a different ‘no answer’ threshold of



Table 3. Ablation Results for LogAnswer: The shallow-only runs were performed with
the prover switched off. The IR baseline runs simply return the best retrieved candidate.

run description #right cand. accuracy c@1 score

SH-101 shallow-only validation 105 0.53 0.60
SH-102 shallow-only, def index 108 0.54 0.62
IR-101 IR baseline 82 0.41 0.43
IR-102 IR baseline, def index 88 0.44 0.47

Table 4. Accuracy by question category. The runs only differ for definitions

Run REAS/PURP FACTOID PROC OPINION OTHER DEFINITION
(33) (35) (33) (33) (34) (32)

loga101PSdede 0.70 0.66 0.52 0.45 0.41 0.34
loga102PSdede 0.70 0.66 0.52 0.45 0.41 0.41

θ = 0.76 was used for the IR baseline runs. In this case the treshold was used
for cutting off results with a poor Lucene retrieval score. The value of θ = 0.76
was again chosen such as to optimize the corresponding c@1 score on the Res-
PubliQA 2009 questions. The table clearly shows that the use of logical valida-
tion techniques provided no extra benefit in the ResPubliQA task – the results of
the standard system (with logical validation) and of the configuration that only
uses shallow features for validation was about the same. Comparing the detailed
results of the runs of the full system (loga101PSdede) and the shallow only con-
figuration (SH-101), we found that the validation models resulted in a different
choice of shown answer only for 15% of the questions. For loga102PSdede vs.
SH-102, the chosen answer paragraphs were different for 14% of the questions.
Given the high accuracy achieved by the shallow validation technique, logical
validation was obviously not called for by the ResPubliQA task. An interesting
finding was that (with one exception), all questions for which deep validation
outperformed the shallow-only technique were DEFINITION questions.

On the other hand, the validation techniques of LogAnswer achieved a strong
benefit compared to using the retrieval score only. Comparing loga101PSdede
and the IR-101 run, for example, accuracy increases by 27% and the c@1 score
increases by 37% due the use of validation instead of the plain retrieval result.

A breakdown of results by question category is shown in Table 4. LogAnswer
was best for REASON/PURPOSE and FACTOID questions. DEFINITION and
OTHER questions performed worst. OPINION questions also proved difficult.
The use of a special definition index in the second LogAnswer run increased the
accuracy for definition questions from 34% to 41% compared to the first run with
a single index for all questions. This result is encouraging, though more work has
to be done here. Compared to the results of LogAnswer in ResPubliQA 2009 [7],



Table 5. Success rate of question classification

Category #questions #recognized recog-rate (last year)

REAS/PURP 33 30 90.9% 70.1%
FACTOID 35 31 88.6% 70.5%
DEFINITION 32 28 87.5% 85.3%
OTHER 34 29 85.3% –
PROCEDURE 33 26 78.8% 20.3%
OPINION 33 19 57.8% –
(total) 200 163 81.5% 65.6%

there was a strong improvement for all question types. PROCEDURE questions
(shown as PROC in the table) are no longer problematic for LogAnswer.

Results on the success rate of question classification are shown in Table 5.
Despite the high overall recognition rate (81.5%), the novel class of OPINION
questions was obviously not yet well covered by the classification rules. Moreover,
some more ways of expressing PROCEDURE questions should be supported.

The threshold θ = 0.09 on validation quality that serves for cutting of
poor answers was chosen such as to maximize the c@1 score of LogAnswer on
last year’s ResPubliQA question set. In retrospect, the optimal threshold for
loga101PSdede would have been θ = 0.11, resulting in a c@1 score of 0.60 (over-
all accuracy 0.52). For loga102PSdede, the optimal threshold would have been
θ = 0.13, yielding a c@1 score of 0.63 (overall accuracy 0.54). The closeness of
these optimal values to the results obtained using θ = 0.09 demonstrates that
the method for determining the NOA threshold was effective.

We have determined the reason of failure for a sample of questions with
wrong answers in the LogAnswer runs. This analysis has shown that the Lucene
scoring metric in the retrieval stage of LogAnswer has a strong bias to short
sentences. A short sentence that contains only one term from the IR query is
often prefered to a longer sentence that contains all query terms. We thus agree
with Pérez at al [12] that switching to a BM25 ranking function makes sense.

4 Conclusion

In ResPubliQA 2010, LogAnswer scored much better than in the last year. The
improved accuracy for all question types shows that the general improvements
of LogAnswer and the thorough utilization of compound decompositions were
effective. Specifically, PROCEDURE questions are no longer problematic for
LogAnswer. Compared to a system configuration with a single index, the ac-
curacy for definition questions was increased by 21% by adding a specialized
definition index. The large difference between the c@1 and accuracy scores of
LogAnswer indicates a good validation performance.

Due to the low parsing rate for JRC Acquis and Europarl, we were unable to
demonstrate a benefit of logical processing on the quality of results. However, as



witnessed by the results of the shallow-only matching technique, the ResPubliQA
task did not seem to call for sophisticated logic-based validation either.

The deep linguistic analysis of LogAnswer and its validation techniques made
a substantial difference compared to a pure IR approach. Using the retrieval stage
of LogAnswer as the IR baseline, we found a 27% gain in accuracy and 37% gain
in c@1 due to the powerful validation techniques of LogAnswer.

References

1. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: JELIA’96, Pro-
ceedings. pp. 1–17 (1996)

2. Baumgartner, P., Furbach, U., Pelzer, B.: Hyper Tableaux with Equality. In: Au-
tomated Deduction - CADE-21, Proceedings (2007)

3. Furbach, U., Glöckner, I., Pelzer, B.: An application of automated reasoning in
natural language question answering. AI Communications 23(2-3), 241–265 (2010),
PAAR Special Issue

4. Glöckner, I.: Filtering and fusion of question-answering streams by robust textual
inference. In: Proceedings of KRAQ’07. Hyderabad, India (2007)

5. Glöckner, I.: Finding answer passages with rank optimizing decision trees. In: Proc.
of the Eighth International Conference on Machine Learning and Applications
(ICMLA-09). pp. 208–214. IEEE Press (2009)

6. Glöckner, I., Pelzer, B.: Combining logic and machine learning for answering ques-
tions. In: Peters et al. [13], pp. 401–408

7. Glöckner, I., Pelzer, B.: The LogAnswer project at CLEF 2009. In: Results of the
CLEF 2009 Cross-Language System Evaluation Campaign, Working Notes for the
CLEF 2009 Workshop. Corfu, Greece (Sep 2009)

8. Hartrumpf, S.: Hybrid Disambiguation in Natural Language Analysis. Der Andere
Verlag, Osnabrück, Germany (2003)

9. Helbig, H.: Knowledge Representation and the Semantics of Natural Language.
Springer (2006)

10. McCune, W.: OTTER 3.3 Reference Manual. Argonne National Laboratory, Ar-
gonne, Illinois (2003)

11. Pelzer, B., Wernhard, C.: System Description: E-KRHyper. In: Automated Deduc-
tion - CADE-21, Proceedings. pp. 508–513 (2007)

12. Pérez, J., Garrido, G., Rodrigo, A., Araujo, L., Peñas, A.: Information retrieval
baselines for the respubliqa task. In: Results of the CLEF 2009 Cross-Language
System Evaluation Campaign, Working Notes for the CLEF 2009 Workshop. Corfu,
Greece (Sep 2009)

13. Peters, C., Deselaers, T., Ferro, N., Gonzalo, J., Jones, G., Kurimo, M., Mandl,
T., Peñas, A., Petras, V. (eds.): Evaluating Systems for Multilingual and Multi-
modal Information Access: 9th Workshop of the Cross-Language Evaluation Fo-
rum, CLEF 2008, Aarhus, Denmark, September 17–19, Revised Selected Papers.
LNCS, Springer, Heidelberg (2009)

14. Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Com-
munications 15(2-3), 91–110 (2002)

15. Schulz, S.: E - a brainiac theorem prover. AI Communications 15(2-3), 111–126
(2002)

16. Sutcliffe, G., Suttner, C.: The TPTP Problem Library: CNF Release v1.2.1. Journal
of Automated Reasoning 21(2), 177–203 (1998)


