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Abstract— Fuzzy quantifiers like “about sixty percent” are
useful tools for expressing linguistic summaries. But, how can
we determine the quantifier which best describes the given
data? The quality indicators proposed for quantifier selection
still make a rather heuristic impression. The paper therefore
investigates a more principled way of controlling quantifier
selection: a quantifier should be selected for summarization
only when it is used in its prototypical sense. We capture this
pragmatic issue of appropriate use by defining an associated
pragma quantifier which expresses the paradigmatic cases best
described by the considered quantifier. The quantifier selection
will be based on an appropriateness score of the summary given
by the degree of truth of the pragma quantifier. We further
show that pragma quantifiers are typically neither absolute
nor proportional, and thus demand generalized models of fuzzy
quantification and new implementation techniques.

I. INTRODUCTION

A. Basic concepts and earlier work

A framework for generating linguistic summaries from
data and for evaluating their usefulness has been developed
by Yager [2], [3], [4] and refined in the work of Kacprzyk,
Strykowski and Zadrozny [5], [6], [7].

The general setting can be described as follows. We have
a non-empty finite base set E 6= ∅ of individuals of interest,
and a description of these individuals in terms of fuzzy sets
X ∈ P̃(E). In practice, the data will likely be described by
a set A of attributes a : E −→ Va which assign an attribute
value a(e) to each individual. The above-mentioned fuzzy
sets on E, in turn, will only indirectly be given in terms of
fuzzy sets declared on the attribute values. Thus, a fuzzy
set X ′ ∈ P̃(Va) declared on the attribute range of a ∈ A
gives rise to the corresponding fuzzy set X ∈ P̃(E) defined
by µX (e) = µX ′(a(e)). The attribute-based description of the
data in a database will not be of relevance in this paper,
however, so that we will drop it for simplicity. From this
simplified viewpoint, then, a linguistic summary has the form
“Q objects are X’s” or “Q X1’s are X2’s” (with an associated
‘validity’ or ‘truthfulness’ score τ ∈ [0,1]).

Generally speaking, we may discern ‘descriptive summa-
rization’ based on complete knowledge of the data collection,
and ‘inferential’ or ‘inductive summarization’ which tries to
generalize from a representative sample to hypotheses about
the total collection. Moreover, we can discern explorative
data summarization, which is not supposed to compute a
comprehensive description of the data but rather to extract
descriptions of interesting regularities, and summarization in
a narrow sense, i.e. generation of a summary which must
cover the contents of the total collection. Most systems for
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fuzzy data summarization belong to the first category [5],
[6], [4], which has apparent junctures with data mining [8],
[9]. An example of the second kind is TabVer [10], a system
which generates natural language summaries of tables in a
domain of environmental impact assessments.

B. The assumed framework for fuzzy quantification

While existing data summarization systems are mostly
based on Zadeh’s Σ-count or FG-count approach to fuzzy
quantification [11] or on Yager’s OWA operators [12], we
will assume a broader framework here which avails us with
a uniform analysis of all kinds of linguistic quantifiers (see
also Bosc and Lietard [13], Ralescu [14], Liu and Kerre [15]
and Díaz-Hermida et al [16] for relevant work on fuzzy quan-
tification). The general framework for fuzzy quantification
assumed here (developed in [17], [18], [19]) is inspired by
the linguistic Theory of Generalized Quantifiers (TGQ) [20].
It extends the notion of a (two-valued) generalized quantifier
to the case of fuzzy arguments and gradual quantification
results in the obvious way:

Definition 1: An nary fuzzy quantifier on a base set E 6= ∅
is a mapping Q̃ : P̃(E)

n
−→ [0,1] (E needs not be finite).

For example, Q̃(X1,X2) = sup{min(µX1(e),µX2(e)) : e ∈ E}
is a fuzzy quantifier suitable for modelling at least one X1
is X2. Describing the relationship between natural language
(NL) quantifiers and matching fuzzy quantifiers is not an
easy task, though, mainly because one cannot give a simple
cardinality-based definition when the arguments are fuzzy.
We therefore introduce semi-fuzzy quantifiers which serve
as a simplified description of the target quantifier.

Definition 2: An nary semi-fuzzy quantifier on a base set
E 6= ∅ is a mapping Q : P(E)n −→ [0,1].
Semi-fuzzy quantifiers are easier to define compared to fuzzy
quantifiers because one needs not describe their interpreta-
tion for fuzzy arguments. For example, a binary quantifier
[≥80%] which models at least 80% can be defined by

[≥80%](Y1,Y2) =


1 : Y1 6= ∅∧ |Y1∩Y2|

|Y1|
≥ 0.8

0 : Y1 6= ∅∧ |Y1∩Y2|
|Y1|

< 0.8
1
2 : Y1 = ∅ .

(1)

The specification of a natural language quantifier in terms
of a semi-fuzzy quantifier will be linked to the target fuzzy
quantifier (which also accepts fuzzy arguments) by applying
a quantifier fuzzification mechanism.

Definition 3: A quantifier fuzzification mechanism (QFM)
F assigns a fuzzy quantifier F (Q) : P̃(E)

n
−→ [0,1] to each

semi-fuzzy quantifier Q : P(E)n −→ [0,1].



TABLE I
MAIN TYPES OF LINGUISTIC QUANTIFIERS

Type example definition
absolute unrestrictive There are more than 3 Y ’s Q(Y ) = q(|Y |)
absolute More than 3 Y1’s are Y2’s Q(Y1,Y2) = q(|Y1 ∩Y2|)
exception All except 3 Y1’s are Y2’s Q(Y1,Y2) = q(|Y1 \Y2|)

proportional Two of three Y1’s are Y2’s Q(Y1,Y2) =

{
f ( |Y1∩Y2 |

|Y1 |
) |Y1|> 0

v0 else
cardinal comparative More Y1’s than Y2 are Y3 Q(Y1,Y2,Y3) = q(|Y1 ∩Y3|, |Y2 ∩Y3|)

C. Types of linguistic quantifiers to be considered

Table I lists the main types of linguistic quantifiers of
interest for data summarization.1 The coefficient v0 ∈ [0,1]
that occurs in the definition of proportional quantifiers fixes
the result of Q(Y1,Y2) if there are no Y1’s at all. There are
few intuitions regarding the proper interpretation in this case,
but it is usually possible to let v0 = 1

2 (undecided).
The use of proportional quantifiers is typical of inductive

data summarization where the observed regularities in the
data are expressed as relative proportions like “most X1’s
are X2’s”. The preference for proportions is natural here and
reflects the assumption that similar relative frequencies will
be found in the total collection and in the considered sample.
The remaining kinds of quantifiers which describe absolute
numbers, numbers of exceptions or differences in absolute
numbers are more useful for descriptive data summarization
where absolute numbers are also of interest.

D. The problem of quantifier selection

From the perspective of natural language use (i.e. prag-
matics), truthfulness of Q(Y1,Y2) only indicates a possible
use of Q – which might represent a very unusual case of
applying Q, however. Therefore the semantically motivated
definition of Q (the quantifier used in the summary), and the
truth score τ = F (Q)(X1,X2) which judges the validity of
the summary “Q X1’s are X2’s”, are not restrictive enough
to guide quantifier selection to the most appropriate choice
of Q. Consider at least eighty percent, for example. Clearly
the corresponding quantifier should also be true if all X1’s
are X2’s. However, only the quantifier all is appropriate for
describing this situation, while at least eighty percent has a
very low appropriateness grade in this case.

Existing approaches to linguistic data summarization have
introduced various quality indicators for quantifier selection
to solve this problem. While Yager [3] uses only the va-
lidity score and a metric for informativeness, Kacprzyk and
Strykowski [5] use a multi-dimensional measure based on
the degree of truth, the degree of imprecision, the degree
of covering, the degree of ‘appropriateness’ and the length
of the summary. The proposed quality indicators are rather
heuristic in nature, though, while in this paper, we target
at a more principled solution. The lack of specificity of the
truthfulness score τ , which covers all possible uses of Q,
shaped the idea of introducing a separate quantifier, called the

1See also the classification of semi-fuzzy quantifiers of Díaz-Hermida et
al [21] which discerns further types of quantifiers.

pragma quantifier associated with Q, which is not concerned
with the general semantical definition of Q but only with
the most typical use of the quantifier for summarizing data.
Consequently, the validity score obtained by evaluating the
pragma quantifier, called the appropriateness score of the
summary, will give a better indication as to the suitability of
the quantifier because the summary will only be chosen if
we have a paradigmatic case of applying the quantifier.

II. MAIN RESULTS

A. The notion of a pragma quantifier

As explained above, our goal is that of replacing the
validity score τ which expresses the truthfulness of the
summary “Q X1’s are X2’s” by an improved score τ∗ which
judges the appropriateness of the quantifier to describe the
data. To achieve this, we introduce the pragma quantifier
Q∗ : P(E)n −→ [0,1] associated with a semi-fuzzy quantifier
Q : P(E)n −→ [0,1], which is defined on the same base set E
and accepts the same number of arguments. (For simplicity,
we restrict ourselves to binary quantifiers in the following.)
We take Q∗(Y1,Y2)∈ [0,1] as judging the degree to which the
summary “Q Y1’s are Y2’s” is an appropriate description of the
data. In other words, Q∗(Y1,Y2) ∈ [0,1] expresses the degree
to which the given arguments Y1,Y2 represent a prototypical
case of Q. Recall the binary quantifier [≥80%] (at least 80%)
defined by (1), for example. It would be rather unusual to
summarize a proportion of 91% as “at least 80 percent”
because there exists a more suitable description “at least 90
percent” on the same granularity level. The truth-conditional
definition in (1) does not account for this suitability aspect,
though. A pragma quantifier [≥80%]∗ which achieves this
will look roughly as follows:

[≥80%]∗(Y1,Y2) =
{

tr0.8,0.8,0.85,0.9(
|Y1∩Y2|
|Y1| ) : Y1 6= ∅

0 : Y1 = ∅
(2)

where tr0.8,0.8,0.85,0.9 is a trapezoid membership function with
full membership in the interval [0.8,0.85] and a subsequent
decline of membership until zero membership is reached for
a proportion of 0.9. By setting v0 = 0, we make explicit that
the quantifier [≥80%] should not be used if Y1 = ∅.

In principle, the pragma quantifier Q∗ can be freely chosen
such that it best models the actual use of the quantifier. The
only condition that we impose on the relationship between Q
and Q∗ is that paradigmatic use of the quantifier (as expressed
by Q∗) should be stronger than possible use of the quantifier
(as expressed by Q which only captures the truthfulness
aspect). In formal terms, we thus require that

Q∗(Y1,Y2)≤ Q(Y1,Y2) (3)

for all Y1,Y2 ∈P(E). The pragma quantifier has been intro-
duced as a semi-fuzzy quantifier in order to simplify specifi-
cation. It seems reasonable to assume that for describing the
prototypical uses of the quantifier, one only needs to specify
the protoypical uses for crisp arguments. We must use a QFM
in order to make the pragma quantifier applicable to the fuzzy
sets in the summary. Based on the assumed QFM F , we



define the appropriateness score of the summary “Q X1’s are
X2’s” as τ∗ = F (Q∗)(X1,X2).

Generally speaking, quantifier selection should choose the
quantifier which maximizes the appropriateness score τ∗

rather than the original validity score τ .2 Due to our lack of
knowledge concerning the precise way in which a reader will
interpret the summary, it is methodologically preferable to
generate a summary which describes the data in a prototyp-
ical way: A selection based on the appropriateness score τ∗

will favour those quantifiers for which the described situation
is a paradigmatic case. This means that the impression of the
reader concerning the cardinalities of the involved collections
and relative proportions will be similar to the cardinalities
and proportions actually found in the data.

B. Empirical evidence on the shape of pragma quantifiers

Newstead et al [22, p. 180] report a study on the effect
of set size (i.e. cardinality of the first argument) on the
interpretation of quantifiers which is relevant in our present
context:

“This study used a total of 11 quantifiers ‘all’,
‘most’, ‘lots’, ‘many’, ‘half’, ‘several’, ‘some’,
‘some. . . not’, ‘few’, ‘a few’ and ‘none’. Four dif-
ferent set sizes were used, 12, 60, 108, 1000. Test
items were of the kind: ‘If lots of a group of 108
people are male, then people are male.’ The
subjects task was to indicate what they thought was
the single most appropriate whole number.”

Thus the subjects specified the most typical choice of
|Y1∩Y2| for a quantifier, given the set size |Y1|. Obviously
the ‘most appropriate whole numbers’ so obtained do not
cover the full meaning range of the quantifier but rather
describe its prototypical usage. The experiment of Newstead
et al revealed, among other things, that with low-magnitude
quantifiers like a few, few and some, the proportion signified
declined as set size increased, see [22, p. 180]. In other
words, the prototypical usage of these quantifiers can not be
expressed by a proportional quantifier (this requires a fixed
proportion). The experiment also showed an incline in the
absolute numbers as set size increased, which means that is
also not possible to use an absolute quantifier.

C. Typical characteristics of pragma quantifiers

As shown in the last section, pragma quantifiers do not fit
into the picture of the absolute/proportional distinction. The
question arises which other criteria will characterize these
quantifiers. We first notice that the pragma quantifiers of in-
terest (like all quantifiers of relevance to data summarization)
are generally quantitative in the Mostowskian sense:

Definition 4: A semi-fuzzy quantifier Q : P(E)n −→ [0,1]
is quantitative if

Q(Y1, . . . ,Yn) = Q(β̂ (Y1), . . . , β̂ (Yn))

2There are certain other effects to be considered. For example, if the
data set used for summarization is only a sample of the total collection of
interest, then the granularity of the considered quantifier must be balanced
with the precision and representativeness of the sample.

for every bijection β : E −→ E and Y1, . . . ,Yn ∈P(E), where
β̂ is the powerset mapping β̂ (Y ) = {β (e) : e ∈ Y}.
Thus, a renaming (permutation) of the arguments will not
affect the quantification results, i.e. the quantifier cannot
depend on any specific properties of individual elements of
E.The relevance of quantitativity stems from the following
alternative characterization of quantitative quantifiers:

Proposition 1: A semi-fuzzy quantifier on a finite base
set is quantitative exactly if there are Boolean combina-
tions Φ1(Y1, . . . ,Yn),. . . , ΦK(Y1, . . . ,Yn) and a mapping q :
{0, . . . , |E|}K −→ [0,1] such that

Q(Y1, . . . ,Yn) = q(|Φ1(Y1, . . . ,Yn)|, . . . , |ΦK(Y1, . . . ,Yn)|)

for all Y1, . . . ,Yn ∈P(E).
Thus, every quantitative quantifier only depends on the car-
dinalities of its arguments and their Boolean combinations.
The description of pragma quantifiers is further simplified by
a regularity of these quantifiers known as conservativity.

Definition 5: A quantifier Q : P(E)2 −→ [0,1] is conser-
vative if Q(Y1,Y2) = Q(Y1,Y1∩Y2) for all Y1,Y2 ∈P(E).
It is well-known from TGQ that conservativity is shown by
most NL quantifiers. In the quantitative case, we obtain a
very simple characterization of conservative quantifiers:

Proposition 2: Let Q : P(E)2 −→ [0,1] be quantitative.
Q is conservative if and only if there exists a mapping q :
{0, . . . , |E|}2 −→ [0,1] such that Q(Y1,Y2) = q(|Y1|, |Y1∩Y2|)
for all Y1,Y2 ∈P(E).
This definition in terms of the pattern Q(Y1,Y2) =
q(|Y1|, |Y1∩Y2|) appears very natural for the pragma quan-
tifiers of interest and sufficiently expressive to catch all of
them. In this case, the observed dependency of the prototyp-
icality standard on the domain size becomes a dependency
on the first argument |Y1| which represents this domain size.
The prototypicality standard q∗(|Y1∩Y2|) = q(|Y1|, |Y1∩Y2|)
for a given domain size |Y1| can then be applied to |Y1∩Y2|
to determine the outcome of quantification. This characteri-
zation of the quantificaton result in terms of the size of the
domain |Y1| and the number of Y1’s which are Y2’s is exactly
what one would expect of a pragma quantifier.
Let us consider a prototypical model of a few to illustrate
these points, where tra,b,c,d is a trapezoid function as in (2):

r∗ = r∗(|Y1|) = 0.1+ 0.6
1+log10 max(1,|Y1|)

(4)

q∗(|Y1∩Y2|) =
{

0 : |Y1| ≤ 4
trr∗−0.2,r∗−0.1,r∗+0.1,r∗+0.2

(
|Y1∩Y2|
|Y1|

)
: else

(5)

According to this model, a few Y1’s are Y2’s is not applicable
at all if Y1 has four or less elements, because we then have
Q(Y1,Y2) = q∗(|Y1∩Y2|) = 0 according to the prototypicality
standard q∗(|Y1∩Y2| = q(|Y1|, |Y1∩Y2|) determined by |Y1|
(one should better enumerate or use other quantifiers in this
case). For |Y1| ≥ 5, we obtain a decline of the prototypical
proportion from 45% (i.e. about two elements for |Y1| = 5)
through 20% (i.e. about 20 elements for |Y1| = 100) to a
final proportion of 10% for large base sets. Thus, quantitative



conservative quantifiers can be used to describe pragma
quantifiers whose definition depends on the size of Y1.

From a semantical point of view, many linguistic quan-
tifiers can be considered monotonic in their last argument,
assuming the usual definition of monotonicity:

Definition 6: A quantifier is said to be nondecreasing in
the ith argument if Yi ⊆ Y ′

i always results in Q(Y1, . . . ,Yn)≤
Q(Y1, . . . ,Yi−1,Y ′

i ,Yi+1, . . . ,Yn) independently of the other
Yj ∈P(E); similarly for nonincreasing quantifiers where ≤
is replaced with ≥.3

For example, [≥80%] as defined by (1) is monotonically
nondecreasing in the second argument, while a quantifier like
“less than ten Y1’s are Y2’s” is monotonically nonincreasing
in both arguments. When turning from a quantifier to its
pragma form, the monotonicity type will become a bit more
complex, since we expect a unimodal or ‘sz-shaped’ area of
typical use for each quantifier. This notion is made precise by
the definition of convexity of a quantifier in a given argument.

Definition 7: A quantifier Q : P(E)n −→ [0,1] is called
convex in its ith argument if Yi ⊆ Y ′

i ⊆ Y ′′
i always results in

Q(Y1, . . . ,Yi−1,Y ′
i ,Yi+1, . . . ,Yn)≥min(Q(Y1, . . . ,Yn),

Q(Y1, . . . ,Yi−1,Y ′′
i ,Yi+1, . . . ,Yn))

independently of the chosen Yj ∈P(E).
Typical examples comprise between ten and twenty (which
is convex in both arguments) and about 60 percent (which
is convex in the second argument). The pragma quantifier
[≥80%]∗ defined by (2) which describes prototypical usage
of at least 80% is also convex in the second argument.
Apparently Q is convex in the second argument exactly if
the mapping q is also convex in its second argument, i.e.

q(a,b)≥min(q(a,b′),q(a,b′)) (6)

for all a,b,b′,b′′ ∈ {0, . . . , |E|} with b′ ≤ b≤ b′′. Keeping the
size of the domain a = |Y1| fixed, this means that q∗(b) =
q(a,b) will be a unimodal or sz-shaped function of b whose
peak area represents the paradigmatic use of the quantifier
for the given domain size.4 This characterization of pragma
quantifiers as convex quantifiers captures what we would
expect of a quantifier which models the prototypical cases.

D. Axiomatization of the models

At this point, we know how the pragma quantifiers behave
for two-valued arguments. However, we are ultimately inter-
ested in the appropriateness score τ∗ = F (Q∗)(X1,X2) for
fuzzy arguments X1,X2 ∈ P̃(E) which expresses the actual
suitability of Q for summarizing the relationship between
the X1’s and X2’s. Of course, we also need F to determine
the regular validity score τ = F (Q)(X1,X2) of the summary.

The general framework for fuzzy quantification makes
no provisions that the results of F (Q) be meaningful. We
must constrain the considered QFMs in order to identify
the plausible choices of F from a linguistic perspective.

3The analogous definition of monotonic fuzzy quantifiers is based on
arguments in P̃(E), and a comparison by the fuzzy subsethood relation.

4For [≥80%]∗ the peak of membership is reached when b/a = 0.8.

We need a construction of induced fuzzy truth-functions to
describe such a class of models. The construction assigns a
suitable choice of fuzzy connectives to the given QFM.

Definition 8: Let F be a QFM and f : {0,1}n −→ [0,1] a
(semi-fuzzy) truth function. The induced fuzzy truth function
F̃ ( f ) : [0,1]n −→ [0,1] is defined by F̃ ( f ) = F ( f ◦η−1)◦
η̃ , where η : {0,1}n −→ P({1, . . . ,n}) and η̃ : [0,1]n −→
P̃({1, . . . ,n}) are defined by η(y1, . . . ,yn) = {i : yi = 1} and
µη̃(x1,...,xn)(i) = xi, respectively.

The fuzzy set operations ∪̃ : P̃(E)
2
−→ P̃(E) (fuzzy union)

and ¬̃ : P̃(E)−→ P̃(E) (fuzzy complement) will be defined
element-wise in terms of the fuzzy disjunction ∨̃= F̃ (∨) and
the fuzzy negation ¬̃= F̃ (¬). Based on these operations, we
define the target class of well-behaved models.

Definition 9: A QFM F is called a determiner fuzzifi-
cation scheme (DFS) if it satisfies the following conditions
for all semi-fuzzy quantifiers Q : P(E)n −→ [0,1] and fuzzy
arguments X1, . . . ,Xn ∈ P̃(E):

(a) F (Q) = Q if n = 0;
(b) F (Q)(Y ) = Q(Y ) for crisp Y ∈P(E), n = 1;
(c) F (πe) = π̃e for all E 6= ∅, e ∈ E, where πe(Y ) = 1 iff

e ∈ Y and π̃e(X) = µX (e);
(d) F (Q′)(X1, . . . ,Xn) = ¬̃F (Q)(X1, . . . ,Xn−1, ¬̃Xn) if

Q′(Y1, . . . ,Yn) = ¬̃Q(Y1, . . . ,Yn−1,¬Yn) for all crisp Yi;
(e) F (Q′)(X1, . . . ,Xn+1) = F (Q)(X1, . . . ,Xn−1,Xn ∪̃ Xn+1)

if Q′(Y1, . . . ,Yn+1) = Q(Y1, . . . ,Yn−1,Yn ∪ Yn+1) for all
crisp Yi;

(f) F (Q)(X1, . . . ,Xn)≥F (Q)(X1, . . . ,Xn−1,X ′
n) if Xn ⊆ X ′

n
given that Q(Y1, . . . ,Yn) ≥ Q(Y1, . . . ,Yn−1,Y ′

n) for all
crisp Yi, Yn ⊆ Y ′

n;
(g) F (Q◦×n

i=1F̂ ( fi)) = F (Q)◦×n
i=1 f̂i for all fi : E ′ −→

E, where f̂ (Y ) = { f (e) : e ∈ Y} for all crisp Y and
µ

F̂ ( f )(X)(e) = F (πe ◦ f̂ )(X).
A DFS is called a standard DFS if it induces the standard
set of connectives min, max and 1−x. These models are the
most regular but non-standard choices are also conceivable.

Let us briefly consider the rationale for introducing the
postulates (a) through (g): Condition (a) ensures that F
preserve constants (i.e. nullary quantifiers) while (b) ensures
that F properly generalize unary quantifiers. The axiom
system then guarantees that every quantifier will be properly
generalized to the fuzzy case, i.e. F (Q) will always coindice
with Q for crisp arguments. (c) expresses the compatibility
of F with membership assessment, which can be viewed
as a special case of quantification. (d) expresses the com-
patibility of F with dualization; combined with the other
conditions, F will also be compatible negation and the
formation of antonyms of quantifiers. (e) demands that F
be compatible with unions of arguments. The condition helps
to ensure the coherence of interpretations for quantifiers of
different arities. (f) requires F to preserve (non-increasing)
monotonicity of a quantifier in the nth argument; the axiom
system then guarantees that every DFS will preserve arbitrary
monotonicity properties. (g) expresses the compositionality
of F with fuzzy images. The condition is necessary to ensure



TABLE II
KNOWN CLASSES OF STANDARD MODELS: AN OVERVIEW

Type Construction
FΩ-DFS From supervaluation results of three-valued cuts:

Xmin
γ =

X
≥ 1

2 + 1
2 γ

γ ∈ (0,1]

X
>

1
2

γ = 0

Xmax
γ =

X
>

1
2−

1
2 γ

γ ∈ (0,1]

X
≥ 1

2
γ = 0

Tγ (Xi) = {Y : Xmin
γ ⊆ Y ⊆ Xmax

γ }
SQ,X1,...,Xn(γ) = {Q(Y1, . . . ,Yn) : Yi ∈Tγ (Xi)}
FΩ(Q)(X1, . . . ,Xn) = Ω(SQ,X1,...,Xn)

Fξ -DFS From suprema and infima of supervaluations:
>Q,X1,...,Xn(γ) = supSQ,X1,...,Xn(γ)
⊥Q,X1,...,Xn(γ) = infSQ,X1,...,Xn(γ)
Fξ (Q)(X1, . . . ,Xn) = ξ (>Q,X1,...,Xn ,⊥Q,X1,...,Xn)

MB-DFS From fuzzy median of supervaluation results:
Qγ (X1, . . . ,Xn)
= med 1

2
(>Q,X1,...,Xn(γ),⊥Q,X1,...,Xn(γ))

MB(Q)(X1, . . . ,Xn) = B(Qγ (X1, . . . ,Xn)γ∈[0,1])

the coherence of interpretations for quantifiers defined on
different base sets.

The choice of postulates (a) through (g) was based on a
large catalogue of semantic desiderata from which a minimal
(independent) system of core requirements was then distilled.
The total list of desiderata validated by these models is
discussed in [19]. Among other things, inequalities between
quantifiers are preserved by a DFS. This means that for a
pragma quantifier Q∗, we generally have

F (Q∗)(X1,X2)≤F (Q)(X1,X2) for all X1,X2 ∈ P̃(E),

and thus τ∗ ≤ τ , i.e. paradigmatic use is stronger than
possible use of a fuzzy quantifier.

E. Concrete examples of models
Table II lists three general constructions of models which

result in the classes of FΩ, Fξ and MB models.5 The FΩ-
DFSes form the broadest class of standard DFSes currently
known. They can also be constructed from argument simi-
larities using the extension principle [19]. All practical FΩ

DFSes belong to the more regular Fξ class, though, which
comprises all Q-continuous FΩ models. The most prominent
example of an Fξ -DFS is the following model Fowa, which
generalizes Yager’s basic OWA approach [12]:

Fowa(Q)(X1, . . . ,Xn) = 1
2

∫ 1

0
[>Q,X1,...,Xn(γ)+⊥Q,X1,...,Xn(γ)]dγ.

The MB-DFSes comprise the most regular models. They can
be characterized as the subclass of those Fξ models which
propagate fuzziness (in the sense of being compatible with
a natural fuzziness order). An example is

M (Q)(X1, . . . ,Xn) =
∫ 1

0
Qγ(X1, . . . ,Xn)dγ.

5Here, X≥α denotes the α-cut and X>α the strict α-cut, respectively.
Moreover, med1/2(x,y) is the fuzzy median, i.e. the second-largest of the
three values x, y, 1

2 .

The most prominent example is the following DFS MCX,
however, which generalizes Zadeh’s FG-count approach [11].
The model can be succinctly described as follows:

MCX(Q)(X1, . . . ,Xn) = sup{QL
V,W : V,W ∈P(E)n,Vi ⊆Wi}

QL
V,W = min(ΞV,W , inf{Q(Y1, . . . ,Yn) : Vi ⊆ Yi ⊆Wi, all i})

ΞV,W = min
i

min(inf{µXi(e) : e ∈Vi}, inf{1−µXi(e) : e /∈Wi}) .

All of these examples are standard models, i.e. compatible
with the standard choice fuzzy connectives. An interest-
ing non-standard model, which is straightforward from a
random-sets view of fuzzy quantification, has been described
by Díaz-Hermida et al [16]. However, their model is only
defined in the finite case, and it is far from obvious how
it could be extended to arbitrary quantifiers. In fact, the
requirement that a QFM handle non-finite base sets might be
too restrictive in certain cases, and we will therefore admit
discrete QFMs (DFSes) as well which are limited to finite
base sets but otherwise defined like the general concepts.

F. Special requirements on the models

Given the context-dependence of linguistic terms and
quantifying expressions, committing to a particular choice of
numerical membership grades is an intricate problem which
can probably only be solved if there is a limited application
domain which fixes the context. In any case, the chosen
membership grades will not be perfectly dependable and we
would like the process of summary generation to be robust
against this factor. For that purpose, we consider four criteria
which will ensure a certain stability of the quality scores τ

and τ∗ against the variability observed in the assignment of
numerical membership degrees. These criteria will be used
to assess the robustness of the example models in order
to identify the most suitable choice which we will use for
computing quantification scores.

Robustness against slight unsystematic changes in the
membership grades of arguments and of the quantifier is
ensured by the following continuity criteria.

Definition 10: A QFM F is called arg-continuous if F
maps all Q : P(E)n −→ [0,1] to continuous fuzzy quantifiers
F (Q), i.e. for all X1, . . . ,Xn ∈ P̃(E) and ε > 0 there exists
δ > 0 with d(F (Q)(X1, . . . ,Xn),F (Q)(X ′

1, . . . ,X
′
n)) < ε for

all X ′
1, . . . ,X

′
n ∈ P̃(E) with d((X1, . . . ,Xn),(X ′

1, . . . ,X
′
n)) < δ ;

where

d((X1, . . . ,Xn),(X ′
1, . . . ,X

′
n)) = max

i
sup

e
[µXi(e)−µX ′i

(e)] .

Definition 11: A QFM F is called Q-continuous if for
each semi-fuzzy quantifier Q : P(E)n −→ [0,1] and all ε > 0,
there exists δ > 0 such that d(F (Q),F (Q′)) < ε whenever
Q′ : P(E)n −→ [0,1] satisfies d(Q,Q′) < δ ; where

d(Q,Q′) = sup{|Q(Y1, . . . ,Yn)−Q′(Y1, . . . ,Yn)| : Yi ∈P(E)}
d(Q̃, Q̃′) = sup{|Q̃(X1, . . . ,Xn)− Q̃′(X1, . . . ,Xn)| : Xi ∈ P̃(E)}

for Q̃ = F (Q), Q̃′ = F (Q′).
We can also demand that the models be robust against
larger systematic changes. Perhaps those models of fuzzy



quantification are more successful in this respect which do
not ascribe significance to the precise choice of membership
grades, but only to their relative order. Roughly speaking, this
means that the scale of membership assignments should be
regarded an ordinal scale. Though the standard connectives
min and max are compatible with this view, we must impose
a bit more structure on the scale because the membership
grades are also characterized by the relationship to their
associated negations. Let us now consider an operation which
changes the scaling of membership degrees.

Definition 12 (Model transformation scheme): Let F be
a QFM and σ : [0,1] −→ [0,1] a bijection. For every Q :
P(E)n −→ [0,1] and all X1, . . . ,Xn ∈ P̃(E), we define

F σ (Q)(X1, . . . ,Xn) = σ
−1(F (σ ◦Q)(σX1, . . . ,σXn))

where σXi ∈ P̃(E) is given by µσXi(e) = σ(µXi(e)).
Based on these transformations, we can define the stability of
a model against systematic changes of membership values.

Definition 13: A QFM F is called stable under symmetric
rescaling if F σ = F for every nondecreasing bijection σ :
[0,1]−→ [0,1] with σ(1− x) = 1−σ(x) for all x ∈ [0,1].
A conforming model will only depend on the ordering of
membership grades and their symmetries under negation.

The second aspect of our quasi-ordinal setting would be
the possibility to work with a finite set of membership
degrees, e.g. for mapping a Likert scale {very true, quite
true, undecided, quite false, very false} to a numeric scale
like {0, 1

4 , 1
2 , 3

4 ,1}. Let us assume that such scales will be
embedded into [0,1] in such a way that they can be negated
by the standard negation 1− x.

Definition 14: A QFM F admits discrete scaling if for
every finite set ϒ = {υ1, . . . ,υm} ⊂ [0,1] with {0,1} ⊆ ϒ

which is closed under negation (i.e. x ∈ ϒ entails 1−x ∈ ϒ),
every ϒ-valued semi-fuzzy quantifier Q : P(E)n −→ ϒ and
all ϒ-valued arguments X1, . . . ,Xn ∈ P̃(E) with µXi : E −→ϒ,
it also holds that F (Q)(X1, . . . ,Xn) ∈ ϒ.
For example, if the quantifier and arguments only use the
above five element scale, then the quantification result of a
conforming model will also be an element of {0, 1

4 , 1
2 , 3

4 ,1}
and no intermediate truth values will be introduced.

Concerning the stability criteria defined above, we can
assert that M , MCX and Fowa as well as the random-sets
based ‘discrete’ model of Díaz-Hermida et al [16] satisfy
the continuity requirements. However, only MCX admits
discrete scaling. In addition, only MCX shows stability under
symmetric rescaling. In other words, MCX only considers
relative order and negation symmetries, while the other
models depend on the exact choice of membership grades.

G. Implementation of pragma quantifiers
In [18], we have presented a methodology for implement-

ing absolute quantifiers, exception quantifiers, proportional
quantifiers and cardinal comparatives in the models M ,
MCX and Fowa. This section, which contains the main
technical contribution of the paper, explains how these
methods can be used for implementing quantitative conser-
vatitive quantifiers (and thus pragma quantifiers) in these

TABLE III
IMPLEMENTATION: COMPLEXITY OF ALGORITHMS FOR EVALUATING

Fξ (Q)(X1, . . . ,Xn) IN THE PROTOTYPICAL MODELS

Type of Q example complexity
abs. unrestrictive There isanoddnumberofX’s O(mN)
— convex There are about 50 X’s O(m)
— monotonic There are at least 20 X ′s O(m)
absolute About 50 X1’s are X2’s seeabs.unrst.
exception All except 10 X1’s are X2’s seeabs.unrst.
proportional 10%or20%ofX1’sareX2’s O(mN2)
— convex About 50% of X1’s are X2’s O(mN)
— monotonic Most X1’s are X2’s O(m)
abs. comparative |X1∩X3|−|X2∩X3| is prime O(mN2)
— convex Two times more X1’s than

X2’s are X3’s
O(mN)

— monotonic MoreX1’s thanX2’sareX3’s O(m)

models as well. In the following, we assume a finite base
set E 6= ∅ of cardinality |E| = N. For given fuzzy argu-
ments X1, . . . ,Xn ∈ P̃(E), the set of relevant cutting lev-
els is given by Γ(X1, . . . ,Xn) =

{
2µXi(e)−1 : µXi(e)≥ 1

2

}
∪{

1−2µXi(e) : µXi(e) < 1
2

}
∪ {0,1}. The computation of

quantifiers will be based on an ascending sequence of cutting
levels 0 = γ0 < γ1 · · · < γm−1 < γm = 1 with {γ1, . . . ,γm} ⊇
Γ(X1, . . . ,Xn) (usually we will have an equality here). The
proposed algorithms rest on a pre-computation of member-
ship histograms which has complexity O(N logm), see [18],
[19] As shown in table III, the complexity of the subsequent
evaluation stage then depends on the quantifier type and its
monotonicity pattern, but it is independent of the chosen
model Fowa, M or MCX. The results listed for absolute
comparatives can be improved to O(mN) (in the general
case) and O(m) (in the convex case) provided that Q depends
only on |Y1∩Y3|− |Y2∩Y3|.

Unfortunately, pragma quantifiers are not covered by this
table because pragma quantifiers are typically neither abso-
lute nor proportional, but rather more general conservative
hybrids (see sections II-B and II-C). Recalling that pragma
quantifiers are typically quantitative and conservative, we
will therefore develop a computational analysis of such quan-
tifiers which shows how to implement pragma quantifiers in
the above models Fowa, M and MCX.

Hence let 0 = γ0 < γ1 < · · ·< γm−1 < γm = 1 be an ascend-
ing sequence of γ j ∈ [0,1] (as above). For γ = 0, . . . ,m−1, we
abbreviate γ j = γ j+γ j+1

2 . We further let >j = >Q,X1,...,Xn(γ j),
⊥ j =⊥Q,X1,...,Xn(γ j) and C j = med1/2(>j,⊥ j). As a prerequi-
site for implementing pragma quantifiers, let us now express
the preferred model MCX as a function of the finite sample
Γ(X1, . . . ,Xn) of (three-valued) cut levels.

Proposition 3: Let Q : P(E)n −→ [0,1], X1, . . . ,Xn ∈
P̃(E) and 0 = γ0 < γ1 < · · · < γm−1 < γm = 1 be given,
Γ(X1, . . . ,Xn)⊆ {γ0, . . . ,γm}. For j ∈ {0, . . . ,m−1} let B j =
2⊥ j −1 if C0 ≥ 1

2 and B j = 1−2>j otherwise. Further let

Ĵ = { j ∈ {0, . . . ,m−1} : B j ≤ γ j+1} , ĵ = min Ĵ .



Then

MCX(Q)(X1, . . . ,Xn) =


1
2 + 1

2 max(γ ĵ,B ĵ) : ⊥0 > 1
2

1
2 −

1
2 max(γ ĵ,B ĵ) : >0 < 1

2
1
2 : else.

A similar reformulation is possible for Fowa and M , see
[18] and [19]. These formulas enable us to evaluate fuzzy
quantifications in Fowa, M and MCX. However, we must
still optimize the computation of >j and ⊥ j because a naive
implementation which considers each Yi ∈ Tγ j

(Xi) will not
give us acceptable performance. In the following, we utilize
the fact that typical pragma quantifiers are quantitative and
conservative in order to effect this optimization.

First of all, it is apparent from the analysis Q(Y1,Y2) =
q(|Y1|, |Y1∩Y2|) of these quantifiers given in proposition 2
that >j and ⊥ j can be rewritten as

>j = max{q(c1,c2) : (c1,c2) ∈ R j}
⊥ j = min{q(c1,c2) : (c1,c2) ∈ R j}

where R j = {(|Y1|, |Y1∩Y2|) : Yi ∈Tγ(Yi)} .

In numeric terms, R j can be described as follows.
Proposition 4: For conservative quantifiers,

R j = {(c1,c2) : `1 ≤ c1 ≤ u1,

max(`2,c1−u3)≤ c2 ≤min(u2,c1− `3)},

where `r = |Zr|min
γ

= |(Zr)
min
γ
| and ur = |Zr|max

γ
= |(Zr)

max
γ

|,
γ = γ j, depend on Z1 = X1, Z2 = X1∩X2 and Z3 = X1∩¬X2,
assuming the standard fuzzy intersection and complement.6

We conclude that

>j = max{q(c1,c2) : `1 ≤ c1 ≤ u1,

max(`2,c1−u3)≤ c2 ≤min(u2,c1− `3)}
⊥ j = min{q(c1,c2) : `1 ≤ c1 ≤ u1,

max(`2,c1−u3)≤ c2 ≤min(u2,c1− `3)} .

In order to compute a quantification result based on this
formula, one must consider every choice of j (i.e. m cutting
levels) and (at worst) N = |E| choices of c1 and c2 each. Thus,
the complexity of evaluating a quantitative conservative
quantifier is O(mN2) in the general case. However, we know
that typical pragma quantifiers are convex in their second
argument, which means that q will be convex in its second
argument as well, see (6). Keeping a∈ {0, . . . , |E|} fixed, this
means that there exists a ‘peak’ element bpk(a)∈ {0, . . . , |E|}
such that q(a,b) is nondecreasing for all b ≤ bpk(a) and
nonincreasing for all b≥ bpk(a). We therefore obtain

>j = max{q′(c1) : `1 ≤ c1 ≤ u1}
⊥ j = min{min(q(c1,max(`2,c1−u3)),

q(c1,min(u2,c1− `3))) : `1 ≤ c1 ≤ u1}
where

q′(c1) =

 q(c1,min(u2,c1− `3)) : min(u2,c1− `3) < bpk(c1)
q(c1,max(`2,c1−u3)) : max(`2,c1−u3) > bpk(c1)
q(c1,bpk(c1)) : else.

6A method for efficiently computing `r and ur from the histogram of Zr
is explained in [18], [19].

TABLE IV
QUANTIFIER SELECTION TABLE OF THE TABVER SYSTEM

|Y1| |Y1 ∩Y2|
2 3 4 5 6 7 8 9

2 both
3 — all
4 — — all
5 — — nall all
6 — — most nall all
7 — — mhalf most nall all
8 — — ahalf mhalf most nall all
9 — — ahalf mhalf mhalf most nall all

Assuming that bpk can be determined in constant time,
this means that in the convex case, we must consider m
choices of j and at most N choices of c1. The complexity of
evaluating a convex quantitative conservative quantifier (i.e.
our typical pragma quantifier) therefore reduces to O(mN),
which permits efficient computation in practice.

H. Summarization example

In the TabVer system [10] mentioned in the introduction,
quantifier selection was based on a simple lookup table for
small cardinalities (shown in Table IV) and a fixed choice of
prototypical intervals to control quantifier selection for car-
dinalities |Y1| ≥ 10, i.e. ahalf [0.45,0.55), mhalf [0.55,0.7),
most [0.7,0.9), nall [0.9,1), and all {1}. (Here, ahalf means
‘around half’, mhalf ‘more than half’, and nall ‘nearly all’).
There was no need to introduce quantifiers for the low
percentage range (marked ’—’ in the table) because TabVer
would typically enumerate such cases or summarize their
complement. The TabVer system assumed crisp arguments
throughout, i.e. |Y1| and |Y1∩Y2| were directly used for
quantifier lookup. However, the lookup table and selection
intervals can also be viewed as describing typical usage of the
considered quantifiers. The corresponding six pragma quanti-
fiers are then defined by Q∗(Y1,Y2) = q(|Y1|, |Y1∩Y2|, where
for simplicity we let q(|Y1|, |Y1∩Y2|) = 1 if (|Y1|, |Y1∩Y2|)
is marked by Q in the quantifier table, or |Y1| ≥ 10 and
|Y1∩Y2|/|Y1| is contained in the selection interval of the
quantifier; otherwise we let q(|Y1|, |Y1∩Y2|) = 0. In this
way, we obtain a system of (two-valued) pragma quanti-
fiers which can be used to control quantifier selection.7

Because of its special robustness (see section II-F), the model
MCX was used for computing appropriateness grades τ∗ =
MCX(Q)(X1,X2). The appropriateness scores τ∗ obtained for
three summarization problems are shown in Table V. In
the first case, appropriateness scores where computed for
X1 = a/1.0+b/0.9+c/0.8+d/0.7 and X2 = a/0.7+b/0.8+
c/0.7+d/0.9. The best result of τ∗ = 0.7 was observed for
the quantifier all. In the second case, τ∗ was computed for a
larger summarization problem X ′

1 = a/1.0+b/0.9+ c/0.8+
d/0.8 + e/0.7 + f /0.7 + g/0.1 + h/1.0 + i/0.9 and X ′

2 =
a/0.05 + b/0.9 + c/0.7 + d/1.0 + e/1.0 + f /0.8 + g/0.1 +
h/0.6+ i/0.9. Here, the best appropriateness score τ∗ = 0.6

7Of course, a more complicated gradual modelling, e.g. by trapezoid
functions as in (5), would also be possible and probably more appropriate.



TABLE V
APPROPRIATENESS SCORES τ∗ FOR THREE SUMMARIZATION PROBLEMS

Quantifier ahalf mhalf most nall all both
τ∗ for X1, X2 0.0 0.0 0.0 0.0 0.7 0.2
τ∗ for X ′

1, X ′
2 0.2 0.3 0.4 0.6 0.05 0.05

τ∗ for X ′
1, X ′′

2 0.3 0.4 0.5 0.5 0.5 0.1

was obtained for the quantifier nall (nearly all). In the third
example, X ′

2 was exchanged by X ′′
2 = a/0.5+b/0.5+c/0.7+

d/1.0 + e/1.0 + f /0.8 + g/0.5 + h/0.6 + i/0.9. In this case,
X ′′

2 is so fuzzy that a unique decision between most, nearly
all and all only based on τ∗ is no longer possible. In fact,
most is the best choice here because from the truthfulness
point of view, it includes nearly all and all as special cases.

III. CONCLUSIONS

This paper was concerned with the problem of quantifier
selection in fuzzy data summarization. We started from
an example demonstrating that one cannot simply choose
any quantifier which validates the summary. Although the
generated summary should of course be verified by the data,
the truthfulness score can be misleading because it covers all
possible uses of the quantifier regardless of their typicality.
By contrast, we proposed to select only those quantifiers
for which the situation described is a paradigmatic case.
This notion of prototypical usage is formalized by a pragma
quantifier which gives rise to the appropriateness score τ∗

on which the quantifier selection will be based.
The psychological literature on quantifiers used in rat-

ing scales gives some impression of the general shape of
such pragma quantifiers. Specifically, they are neither fixed
proportional nor absolute quantifiers, and their interpretation
typically shows some effects of the size of the considered
domain. However, these expressive quantifiers can be viewed
as special cases of conservative quantifiers. We investigated
the computational implications of pragma quantifiers by
developing the relevant formulas for implementing these
quantifiers in important models. While regular quantifiers are
often monotonic, pragma quantifiers appear to be typically
convex (i.e. unimodal or sz-shaped). This means that the
computational effort to compute quantification results will be
higher than for monotonic quantifiers. However, the analysis
of computational complexity revealed that the new class of
pragma quantifiers can still be handled efficiently.

The proposed method for quantifier selection is mainly in-
tended for generating summaries involving vague quantifiers
like a few, many etc. Selection should be based on a prede-
fined system of such quantifiers (as in the above example).
This makes it possible to define a balanced (non-conflicting)
system of pragma quantifiers where the prototypical cases
of using a quantifier also depend on all other quantifiers
available for summarization. As shown by the example in
section II-H, the method works well if there is a balance
between the width of the selection intervals and the amount
of fuzziness observed in the arguments. If the selection
intervals are too narrow given the fuzziness of the data (i.e.

if one gets several 0.5 values for τ∗), one should try and
utilize inclusions between the top-ranked quantifiers in order
to establish the most general choice. Alternatively, one could
fall back on the truthfulness score τ to break symmetries or
use a combined factor τ ·τ∗ for a finer ranking. It would also
be instructive to try the random-sets based model of Díaz-
Hermida et al [16] which is computationally demanding but
potentially more discriminating than a standard DFS.
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