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Abstract. The paper features MAVE, a knowledge-based system for answer vali-
dation through deep linguistic processing and logical inference. A relaxation loop
is used to determine a robust indicator of logical entailment. The system not only
validates answers directly, but also gathers evidence by proving the original ques-
tion and comparing results with the answer candidate. This method boosts recall
by up to 13%. Additional indicators signal false positives. The filter increases
precision by up to 14.5% without compromising recall of the system.

1 Introduction

MAVE (MultiNet-based answer verification), a system for validating results of question-
answering (QA) systems, was developed as a testbed for robust knowledge processing
in the MultiNet paradigm [1]. The goal was that of showing that deep NLP and logical
inference (plus relaxation) are robust enough to handle the validation task successfully.

2 System description

2.1 Overview of MAVE

A validation candidate p submitted to MAVE consists of a hypothesis string constructed
by substituting the answer of the QA system into the original question, the snippet with
the relevant text passage and also of the original question. Processing of input p in-
volves these steps: a) Preprocessing, i.e. application of correction rules based on reg-
ular expressions. This correction step is necessary since the mechanism for generating
hypotheses often results in syntactically ill-formed hypotheses. Typical errors like ‘in in
Lillehammer’ are easily eliminated, however. b) The preprocessed inputs are subjected
to a deep linguistic analysis by the WOCADI parser [2] which results in a MultiNet
representation [1]. This process includes disambiguation of word meanings, semantic
role labeling, a facticity labeling, and coreference resolution. c) The post-processing
involves a normalization of the generated semantic networks. A list of about 1,000 syn-
onyms from the computational lexicon HaGenLex [3] and additional 525 hand-crafted
synonyms are used for replacing lexical concepts with a canonical synset representa-
tive. Not only the query and snippet, but also the known facts and implicative rules are
automatically normalized in this way. d) Next is query construction, i.e. translation of
the generated semantic network into a conjunction of literals. Notice that two logical



queries are constructed one for the hypothesis and one for the original question. e) Ro-
bust entailment proving is then tried for the query constructed from the hypothesis and
the query constructed from the question (see next section). f) Additional non-logical
indicators are extracted, which help detect trivial answers, wrong analyses of the NLP
components and other sources of error. g) The results of the logical and non-logical in-
dicators are aggregated into a validity score from which a YES/NO decision is obtained
by applying a threshold.

2.2 Robust knowledge processing in MAVE

Apart from the logical representation of the snippet, the knowledge of MAVE comprises
2,484 basic facts most of which describe lexico-semantic relationships. 103 implica-
tive rules define key properties of the MultiNet relations and knowledge on biographic
topics like birth of a person. The MAVE prover uses iterative deepening to find an-
swers. Performance is optimized by term indexing and literal sorting under a least-effort
heuristics [4]. To achieve robust logical inference, the prover is embedded in a relax-
ation loop. The prover keeps track of the longest prefix L1, . . . ,Lk of the literal list for
which a proof was found. When a full proof fails, the literal Lk+1 will be skipped and a
new proof of the smaller fragment begins. By subsequently removing ‘critical’ literals,
this process always finds a (possibly empty) query fragment provable from the given
knowledge. The number of skipped literals serves as a numeric indicator of entailment
robust against slight errors in representations and also against gaps in the knowledge.

2.3 Indicators and scoring function

MAVE uses the following validity indicators:

– hypo-triviality – Lemma repetition ratio. This criterion measures the ratio of
lemmata which occur an even number of times in the hypothesis. Trivial hypotheses
like ‘Gianni Versace was Gianni Versace’ result in a high repetition score.

– hypo-num-sentences – Number of sentences in the hypothesis. The parser might
wrongly consider a hypothesis as consisting of two sentences, which indicates an
erroneous NL analysis.

– hypo-collapse – Query extraction control index. This indicator relates the size
of the constructed query to the number of content words in the hypothesis. A small
value indicates a failure of semantic analysis which produced an incomplete query.

– hypo-lexical-focus and question-lexical-focus – Hint at potential false
positive. This criterion indicates that the logical hypothesis representation (repre-
sentation of original question) is too permissive due to a systematic parser error.

– hypo-missing-constraints and question-missing-constraints – Control
index for numerical constraints. Apart from regular words, the hypothesis (original
question) can also contain numbers. These numbers must show up as restrictions in
the constructed logical representations (e.g. a restriction of the year to 1994), but
are occasionally dropped by the parser, as detected by these indicators.

– hypo-failed-literals and question-failed-literals – Number of non-
provable literals. The relaxation loop into which the prover is embedded determines



the number of non-provable literals in the hypothesis representation (representation
of the original question). A value of 0 means strict logical entailment.

– hypo-delta-concepts – Number of answer words in the hypothesis. The indica-
tor then counts the number of content-bearing tokens and in the hypothesis which
stem from the original answer of the QA system and not from the question.

– hypo-delta-matched – Number of matched answer words. Based on the proof of
the logical question representation over the snippet and the known origin of literals
in one of the sentences of the snippet, MAVE identifies that sentence in the snippet
which contains most literals supporting the proof. The content-bearing lexemes
and numbers in the answer part of the hypothesis are matched against the lexical
concepts and numbers in the MultiNet representation of the central sentence.

In Scheme notation, the imperfection score imp-score(p) of p is given by:

(max (* (max (>= hypo-triviality 0.8) (= hypo-num-sentences 2)) 1000)

(min (max (* (max (< hypo-collapse 0.7) hypo-lexical-focus) 1000)

(+ hypo-missing-constraints hypo-failed-literals))

(max (* question-lexical-focus (= hypo-delta-matched 0) 1000)

(+ question-failed-literals question-missing-constraints

(- hypo-delta-concepts hypo-delta-matched)))))

For details of handling undefined values, see [4]. A threshold θ is used to determine
YES/NO decisions, i.e. p is accepted if imp-score(p)≤ θ and rejected otherwise.

3 Evaluation

Two runs were submitted to AVE 2006. The recall-oriented first run allowed θ = 2 mis-
matches for YES decisions. The precision-oriented second run allowed θ = 1 mismatch.

Table 1 lists the results of MAVE in the answer validation exercise. ‘Accuracy’ is
ratio of correct decision. Although the approach does not search for a minimal set of
failed literals, but only follows a ‘longest partial proof’ strategy, the failed literal counts
are significant with respect to validity of entailment: There is a decrease in precision
if more imperfections θ (usually skipped literals) are allowed, but also a boost in re-
call. Moreover the two submitted runs represent the best compromise. Assuming perfect
provability (θ = 0) loses too much recall, while θ ≥ 3 mismatches considerably lower
precision. MAVE also resorts to question proofs for validating hypotheses. This mech-
anism is intended to increase recall when the hypothesis is syntactically ill-formed. The
hypothesis is then compared with the answer determined by the proof of the question
in a way which does not assume a parse of the hypothesis. Table 2 (left) lists the results
when no question-related indicators are used. For θ = 1, recall decreases by 10.2 per-
cent points. For θ = 2, question indicators even contribute 13.1 percent points to the
achieved recall. Precision is lowered somewhat by using the additional question data
but remains on a high level. The definition of imp-score(p) involves false-positive in-
dicators (like hypo-triviality, hypo-collapse or question-lexical-focus).
Table 2 (right) shows the results of MAVE without these indicators. Precision drops by
14.5 percent points when false positive indicators are ignored, thus proving their effec-
tiveness. Recall is not altered significantly, i.e. the criteria are also sufficiently specific.



θ (run) precision recall f-measure accuracy
0 0.8584 0.2820 0.4245 0.8132
1 (run #2) 0.7293 0.3837 0.5029 0.8146
2 (run #1) 0.5839 0.5058 0.5421 0.7912
3 0.4786 0.5843 0.5262 0.7429
4 0.4024 0.6831 0.5065 0.6747
5 0.3592 0.7413 0.4839 0.6136

Table 1. Results of MAVE for the AVE-2006 test set

θ precision recall f-measure accuracy
0 0.9452 0.2006 0.3309 0.8018
1 0.8362 0.2820 0.4217 0.8111
2 0.6898 0.3750 0.4859 0.8061
3 0.5510 0.4709 0.5078 0.7770
4 0.4450 0.5407 0.4882 0.7230
5 0.3900 0.6134 0.4768 0.6712

θ precision recall f-measure accuracy
0 0.7132 0.2820 0.4042 0.7969
1 0.6000 0.4012 0.4808 0.7884
2 0.5043 0.5116 0.5079 0.7578
3 0.4238 0.5901 0.4933 0.7038
4 0.3652 0.6890 0.4773 0.6314
5 0.3329 0.7471 0.4606 0.5724

Table 2. Results for hypothesis proofs only (left), omitting false positive tests (right)

4 Conclusion

MAVE achieved the best results for German in the AVE 2006 exercise. This success
is mainly due to the robust proving strategy which tolerates a few mismatches and
gaps in the coded knowledge. More ablation studies on the contribution of individual
system components to the achieved filtering quality can be found in [5]. A successful
application of MAVE for improving answer quality by validating and merging results
in a multi-stream QA setting is described in [6].
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