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Abstract—The paper discusses the use of decision trees
for probability-based ranking. Emphasis is placed on ranking
problems in question answering, where the frequency of correct
candidates is very low but a single correct answer at one of
the top ranks is often sufficient. Since existing tree learners
handle this task poorly, decision tree induction is reformulated
in such a way that it directly optimizes a given measure of
ranking quality (such as mean reciprocal rank or mean average
precision). This change also makes it possible to incorporate
a priori knowledge about the positive or negative effect of an
attribute on ranking quality. Results are further improved by
applying a stratified form of bagging. In a passage reranking
task using factoid questions from the QA@CLEF evaluations,
the new method outperforms existing tree induction techniques
by a large margin.
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I. INTRODUCTION

The paper reconsiders the issue of learning models for
probability-based ranking of grouped data. The focus is on
reranking retrieved passages in question answering (QA).
This application is characterized by a low precision of
the retrieval stage (often there is only one passage with
an answer among hundreds of candidates), which can be
problematic for machine learning techniques. Moreover, a
single correct answer is usually sufficient. This is different
from typical reranking problems in information retrieval.
The ranking problem resembles answer selection [1], [2]
but its goal is determining a ranked list of best results
instead of only one answer. In order to facilitate the manual
construction of a large training set, the method is supposed
to work with a simple two-class annotation of the training
data. This simplification is possible since the few correct
candidates available for each question do not require further
differentiation.

Decision trees were chosen as the basic learning technique
since they can handle multi-dimensional data with irrelevant
and dependent/redundant attributes. It is obvious how to use
a decision tree as a probability estimation tree (PET) based
on the relative frequency of the YES class in all training
instances at a given leaf. Applying a learned PET involves
minimal computational effort, which makes the tree-based
approach particularly suited for a fast reranking of large
candidate sets.

However, it is well-known that standard tree induction
techniques (like C4.5) generate PETs that produce poor
probability estimates [3]. The paper proposes several im-
provements of decision tree induction in order to make PETs
better suited for ranking answer passages:
• The splitting criteria (like information gain) usually

employed for tree induction are not sensitive to the
grouping of the data by question. This results in poor
performance for imbalanced training sets where a small
number of high-recall questions contribute the majority
of positive examples. In order to better handle this
situation, it is proposed to directly use information
retrieval measures as the splitting criterion. This is
achieved by extending the PET learning technique.

• The paper introduces two classes of ranking measures,
kMRR and kMAP, that generalize the mean recipro-
cal rank (MRR) and mean average precision (MAP).1

While the ordinary MRR depends only on the best
rank of any correct result, and MAP depends on the
ranks of all correct results, the proposed kMRR and
kMAP measures keep track of the k correct items that
are currently ranked best. This makes these quality
measures suitable for reranking problems where only
a small number of top-ranked results are of interest.

• It is often known in advance which features have
a positive (or negative) effect on result quality. For
example, a higher degree of lexical overlap between
question and candidate passage should express in a
better ranking of the passage. However, common tech-
niques for inducing decision trees cannot utilize this
kind of a priori knowledge. In order to overcome this
deficiency, it is shown how efficient support for corre-
sponding ‘monotonicity specifications’ can be added to
the proposed tree induction technique. Enforcing these
monotonicity constraints can potentially improve the
quality and consistency of the learned ranking.

• Bagging (bootstrap aggregation) [5] is known to im-
prove the probability estimates determined by PETs [3].
Since in question answering, the number of positive
candidates is typically very low compared to the num-
ber of negative cases, the use of stratified bagging is

1See [4] for a discussion of common measures of retrieval quality.



assumed in this paper. That is, the proportion of positive
and negative examples in the test set are maintained by
a separate resampling of the positive and negative cases
in order to obtain more stable results.

Since the implementation of stratified bagging is obvious,
the paper focuses on explaining the specifics of the proposed
tree induction method. While most approaches to decision
tree induction work strictly locally, considering one leaf at
a time, the tree induction is formalized in such a way that
all leaf nodes of the tree constructed so far are considered
in parallel when determining the next split. This global
approach is needed for ensuring monotonicity constraints
and for supporting the desired rank-based splitting criteria.
Experimental data for factoid questions from the QA@CLEF
evaluations justify the proposed solution. The resulting mod-
els are already utilized in a QA system for the German
Wikipedia that can be tested on the web.2

Related work

Learning to rank has received considerable interest in
recent years, with one trend being the direct optimization of
ranking quality. Important non tree-based approaches in that
line are LambdaRank [6], ListNet [7] and AdaRank [8]. The
problem has also been tackled by support vector machines
[9]. Turning to tree-based methods, gradient boosting trees
[10], [11] have been especially successful in learning to rank
tasks. The present paper is not concerned with regression
trees, however. Its focus is on ordinary decision trees that
use the probability of the YES class at the leaves for ranking.
In this setting, Zhang and Su [12] have already considered
optimizing the AUC criterion (area under the ROC curve) in
order to improve the quality of probability estimates deter-
mined by decision trees. However, the AUC criterion ignores
the grouping of the data by questions that is characteristic
of the passage reranking problem. Drummond and Holte
[13] discuss the use of decision trees with imbalanced data,
arguing that it is not the splitting criterion but rather the
pruning method that should be made cost sensitive to handle
such data. The presence of imbalanced data is only one
aspect of the reranking problem tackled in this paper, though.
The solution presented here does not rely on reweighting,
but rather profits from the use of a rank-sensitive splitting
criterion that always focuses on those correct results for each
question that currently have the highest rank.

II. PROPOSED SOLUTION

A. Preliminaries

For simplicity, all attributes (except for the class assign-
ment) are assumed to be numeric. For n attributes, each input
datum is then given by an n-tuple x = (x1, . . . , xn) ∈ Rn.
Let X = {x(1), . . . ,x(R)} ⊂ Rn be the set of training
items. In the application, each x(r) ∈ X describes a text

2see http://www.loganswer.de/ (for questions in German)
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Figure 1. A probability estimation tree

passage p(r) that possibly answers the question q(r). To
allow supervised learning, an annotator must identify the
subset Y ⊆ X of positive cases where the text passage p(r)

actually answers question q(r). In general, Y ⊆ X is the
YES class of a two-class learning problem.

B. Probability estimation trees

Since all attributes are numeric, binary trees with branch-
ing conditions of the form xα ≥ θ are sufficient. A probabil-
ity estimation tree (PET) is thus introduced as a binary tree
τ with s ≥ 0 inner nodes Dτ = {d1, . . . , ds} (these nodes
represent decisions) and leaf nodes Eτ = {e0, . . . , es} with
Eτ ∩Dτ = ∅. Each inner node di, i ∈ {1, . . . , s}, is labeled
by an attribute ατi ∈ {1, . . . , n}, while each leaf node ej ,
j ∈ {0, . . . , s}, is labeled by a probability pτj ∈ [0, 1]. The
arcs in Aτ correspond to conditions on the inputs. Since τ is
a binary tree, every inner node di has exactly two children

c`i , c
r
i ∈ Dτ ∪Eτ connected to di by labeled arcs d1

<θτi−−−→c`i ,
di
≥θτi−−−→cri for a threshold θτi ∈ R. These arcs express the

obvious condition, selecting either the left or right branch
below di depending on the attribute value for α = ατi . Inputs
with xα < θ are passed to the left child c`i of di, while
inputs with xα ≥ θ are passed to the right child cri of di.
An example of a PET that illustrates these notions is shown
in Fig. 1.

C. Determining probability estimates

By splitting inputs at each decision node until a leaf
is reached, the PET partitions the input space into n-
dimensional cartesian blocks

Hτ
j =

n∏
α=1

h(`τj,α, u
τ
j,α) (1)

where `τj,α ∈ R ∪ {−∞}, uτj,α ∈ R ∪ {∞}, `τj,α ≤ uτj,α,
and h(`, u) is the half-open interval h(`, u) = [`, u) for



` ∈ R, while for ` = −∞, an open interval is obtained,
i.e. h(−∞, u) = (−∞, u). The partition Hτ = {Hτ

j : j =
0, . . . , s} of Rn determines a corresponding partition Xτ =
{Xτ

j : j = 0, . . . , s} of the training instances,

Xτ
j = X ∩Hτ

j (2)

for all j ∈ {0, . . . , s}. Using the Laplace correction (add-
one smoothing), the probability estimate pτj associated with
leaf ej in the tree τ is calculated in the obvious way,

pτj =
|Xτj ∩Y |+1

|Xτj |+2
(3)

where Y ⊆ X is the set of all training items annotated
as correct. This extends to a function pτ : Rn → [0, 1]
defined for arbitrary inputs x ∈ Rn, viz pτ (x) = pτj , where
j is the unique choice of j ∈ {0, . . . , s} with x ∈ Hτ

j . In
the application, pτ (x) estimates the probability that a text
passage p described by x answers the considered question.

D. Global search for the best split

This section introduces a non-local method for inducing
PETs that chooses the best split over all leaves of the tree
constructed so far.

The tree induction starts with the singleton tree τ com-
prising a single leaf e0, no inner nodes at all (i.e., s = 0)
and no arcs, Aτ = ∅. Since the initial node covers the full
input space, the associated partitioning is Hτ = {Hτ

0 } with
Hτ

0 = Rn, i.e. `τ0,j = −∞, uτ0,j =∞ for all j ∈ {1, . . . , n}.
According to (3), e0 is labeled by pτ0 = |Y |+1

|X|+2 .
Now suppose that a tree τ with s− 1 decision nodes has

already been constructed. Denote by τ ′ = τ(js, αs, θs) the
tree with s inner nodes constructed by splitting leaf ejs of
τ at attribute αs with threshold θs. Formally, τ ′ has inner
nodes Dτ ′ = Dτ ∪ {ds} for some new node ds /∈ Dτ

and leaf nodes Eτ
′

= Eτ ∪ {es} for a new node es /∈
Dτ ′ ∪Eτ (notice that ejs is kept in the set of leaf nodes, it
now represents the left child of ds, while es represents the
right child of ds). The set of arcs of τ ′ is given by Aτ

′
=

{z1
γ−→z2 : z1

γ−→z2 ∈ Aτ , z2 6= ejs} ∪ {z1
γ−→ds : z1

γ−→ejs ∈
Aτ}∪{ds

<θs−−→ejs , ds
≥θs−−→es}. The new decision node ds is

labeled by the attribute αs. The remaining decision nodes in
Dτ ′ \ {ds} = Dτ are labeled as in τ . In order to determine
the labels pτ

′

j of the leaf nodes ej of τ ′, consider the partition
{Hτ ′

j : j = 0, . . . , s}. If j 6= js and j 6= s (i.e. ej is
neither the left or right child of the node that was split), then
Hτ ′

j = Hτ
j . For the left child with index js, Hτ ′

js
is defined

by (1), letting `τ
′

js
= `τjs , uτ

′

js,αs
= θs, and uτ

′

js,α′
= uτjs,α′ for

α′ 6= αs. For the right child with index s, Hτ ′

s is defined
by (1), letting uτ

′

s = uτs , `τ
′

s,αs = θs and `τ
′

s,α′ = `τcs,α′

for α′ 6= αs. By (3), this determines the labels pτ
′

j for ej ,
j ∈ {0, . . . , s}.

In the following, a scoring function is assumed that
controls the selection of the best split. That is, each PET

τ is assigned an evaluation SC(τ) ∈ R (concrete choices
are discussed below). Given such a scoring function, the
gain in the score that results from a split can be expressed
as

∆SC(τ ; js, αs, θs) = SC(τ(js, αs, θs))− SC(τ).

In each tree induction step, that split (js, αs, θs) is chosen
for expanding the tree that maximizes ∆SC(τ ; j, α, θ). The
former tree τ with s − 1 decision nodes is then replaced
by the new tree τ ′ = τ(js, αs, θs) with s decision nodes.
Tree induction stops as soon as no admissible split with
∆SC(τ ; j, α, θ) > 0 exists anymore.

We further constrain the admissible splits (j, α, θ) used for
determining the optimal ∆SC(τ ; js, αs, θs). Firstly, splits of
pure leaf nodes are disallowed. So, if Xτ

j ∩ Y = ∅ or if
Xτ
j ⊆ Y , i.e. if Xτ

j contains only positive or only negative
cases, then further splitting of leaf ej is not possible.

Second, only a limited set of admissible thresholds
Θτ

adm(j, α) is considered. Given a possible split position
j ∈ {0, . . . , s − 1} and split attribute α ∈ {1, . . . , n}, let
V = {xα : x ∈ Xτ

j } be the set of observed values of the
instances in Xτ

j . The elements of V can be ordered such that
V = {v0, . . . , vm} with v0 < v1 < · · · < vm. In principle,
a set of possible thresholds is then given by

Θτ(j, α) = {(vb + vb−1)/2 : b = 1, . . . ,m} , (4)

using the arithmetic mean of adjacent values for separating
the instances. Additional conditions can be imposed in order
to reduce Θτ(j, α) to a final set of admissible thresholds
Θτ

adm(j, α) ⊆ Θτ(j, α). Specifically, a certain minimum
leaf size M ∈ N is required, i.e. every θ ∈ Θτ

adm(j, α)
must further satisfy that

∣∣{x ∈ Xτ
j : xα ≥ θ}

∣∣ ≥ M and∣∣{x ∈ Xτ
j : xα < θ}

∣∣ ≥ M . In the experiments, a value of
M = 2 was used.

E. Incorporating monotonicity constraints

The framework will now be extended by including sup-
port for monotonicity specifications. Hence let MON ⊆
{1, . . . , n} be a set of attributes declared as showing
a positive effect on the probability estimates.3 We say
that a PET τ respects the monotonicity requirements ex-
pressed by MON if for all α ∈ MON, (x1, . . . , xn) ∈
Rn and x′α ≥ xα, it holds that pτ (x1, . . . , xn) ≤
pτ (x1, . . . , xα−1, x

′
α, xα+1, . . . , xn).

Obviously, it is sufficient for τ to respect MON if the
condition holds for pairs of neighboring blocks Hτ

j of τ .
In order to formalize this simplified monotonicity check, let
ej , j ∈ {0, . . . , s}, be a given leaf of τ . The neighbors of
ej can be partitioned according to the contacting attribute.

3Attributes with a negative effect on probability estimates can be handled
in analogy to the positive ones by reversing all inequalities.



The lower (upper) neighbors of ej w.r.t. α ∈ {1, . . . , n} are

Lτj,α =
{
j′ ∈ {0, . . . , s} : uτj′,α = `τj,α and ∀α′ 6= α,

max(`τj,α′ , `
τ
j′,α′) < min(uτj,α′ , u

τ
j′,α′)

}
.

Uτj,α =
{
j′ ∈ {0, . . . , s} : `τj′,α = uτj,α and ∀α′ 6= α,

max(`τj,α′ , `
τ
j′,α′) < min(uτj,α′ , u

τ
j′,α′)

}
.

We abbreviate Lτj,MON =
⋃
{Lτj,α : α ∈ MON}, Uτj,MON =⋃

{Uτj,α : α ∈ MON}, and Nτ
j,MON = Lτj,MON ∪ Uτj,MON

for all MON-neighbors of j.
A PET τ with s inner nodes respects the monotonicity

requirements in MON if and only if for all j ∈ {0, . . . , s}
and j′ ∈ Uτj,MON, it holds that pτj ≤ pτj′ .

Knowing that an existing tree τ with s − 1 inner nodes
respects the monotonicity constraints in MON, the check
that τ ′ = τ(j, α, θ) also respects MON can be simplified.
It is then sufficient to consider the children c`s = ej and
crs = es of the newly added node ds in τ ′ and verify that

pτ
′

j′ ≤ pτ
′

j ∀j′ ∈ Lτ
′

j,MON, pτ
′

j ≤ pτ
′

j′′ ∀j′′ ∈ Uτ
′

j,MON.

In this form, the criterion permits an efficient monotonic-
ity check. It is used to further constrain the admissible
thresholds θ ∈ Θτ

adm(j, α) used for finding the best split.
Since PET induction starts with a singleton tree that trivially
respects MON, this ensures that all trees constructed in later
induction steps also respect the monotonicity requirements.

F. Group-sensitive learning

In the question answering context, the training data is
naturally grouped by questions. In order to balance the effect
of learning evenly among the questions from which the data
was sampled, a group-sensitive scoring criterion is needed.
The criterion should also reflect that the top-ranked results
for each question are most important, since these are the
results actually shown to the user. An appropriate criterion
should keep track of the k highest-ranked correct results for
each question, and encourage splits that improve the rank of
these results.

The SCkmrr splitting criterion

In order to introduce a splitting criterion which accounts
for these considerations, some more notation is needed.
Hence let Q = {q(r) : r = 1, . . . , R} be the set of all
questions from which the training items were sampled. For
a question q ∈ Q, the corresponding training items are given
by X(q) = {x(r) ∈ X : q(r) = q}, and the number
of correct results for the question is yesq = |X(q) ∩ Y |.
Suppose we are interested in the k best results, where
k ∈ N\{0}. If the number of correct results for the question
is smaller than k, then it only makes sense to keep track of
the correct answers that are actually available. Depending
on the question, the following SCkmrr criterion therefore
restricts attention to the k∗q = min{k, yesq} correct results

with the highest ranks:

SCkmrr(τ) =
1

|Q|
∑
q∈Q

k∗q∑
i=1

wi,k∗q
rankτq,i − i+ 1

, (5)

where rankτq,i is the rank of the ith best correct result for
question q, and wi,k∗q is the weight associated with this ith
best correct result given a total of k∗q considered positive
results for question q. In the SCkmrr-based experiments
presented below, weights with a linear decay were used:

wi,k∗q =
2(k∗q − i+ 1)

k∗q (k∗q + 1)
. (6)

The ranks are obtained by sorting the training items
x ∈ X(q) for each question in decreasing order of pτ (x). If
several items share the same probability score, a pessimistic
ordering is assumed (i.e. all incorrect results come first, fol-
lowed by the correct ones). Formally, let P τ (q) = {pτ (x) :
x ∈ X(q)} be the set of all probability scores of training
items for question q. We can write P τ (q) = {p1, . . . , pZ}
with p1 > p2 · · · > pZ . For z ∈ {1, . . . , Z}, let

yz = |{x ∈ X(q) ∩ Y : pτ (x) = pz}|
nz = |{x ∈ X(q) \ Y : pτ (x) = pz}| .

Now let i ∈ {1, . . . , k∗q}. Since there are at least k∗q correct
results for question q, there exists a unique z∗ ∈ {1, . . . , Z}
with

∑z∗−1
z=1 yz < i and

∑z∗

z=1 yz ≥ i. The rank of the ith
best correct result for q given τ is rankτq,i = i+

∑z∗

z=1 nz .

The SCkmap splitting criterion
As an alternative to the SCkmrr criterion, which general-

izes the mean reciprocal rank (MRR) of the best correct
result for each question, one can also start from mean
average precision (MAP) [4, p. 147] and develop a variant
that focuses on the k best correct results. This results in the
following criterion,

SCkmap(τ) =
1

|Q|
∑
q∈Q

k∗q∑
i=1

i · wi,k∗q
rankτq,i

. (7)

Note that SCkmap puts more weight on top ranked results
with small i, therefore uniform weights wi,k∗q = 1

k∗q
were

used for SCkmap. The original MAP score is recovered for
k ≥ max{yesq : q ∈ Q}, assuming a uniform weighting.

G. Computational considerations
A brute-force implementation of PET induction will com-

pute the best split from scratch after each induction step.
However, it is possible to avoid many redundant compu-
tations by reusing intermediate results computed in earlier
steps. Hence let τ be a PET with s − 1 inner nodes. For
j ∈ {0, . . . , s− 1}, let

∆τ
j = max{∆SC(τ ; j, α, θ) : α ∈ {1, . . . , n},

θ ∈ Θτ
adm(j, α)} .



Further let ατj ∈ {1, . . . , n} and θτj ∈ Θτ
adm(j, ατj )

denote optimal choices of these parameters with ∆τ
j =

∆SC(τ ; j, ατj , θ
τ
j ). The best split can be determined by

iterating over j ∈ {0, . . . , s − 1}, choosing js with ∆τ
js

=
max{∆τ

j : j = 0, . . . , s − 1}, and expanding the tree to
τ ′ = τ(js, αs, θs) where αs = ατjs and θs = θτjs . It is not
necessary to compute the relevant data (∆τ

j , α
τ
j , θ

τ
j ) afresh

in each induction step. Suppose the admissible thresholds
in Θτ

adm(j, α) depend on a minimum leaf size M and
MON specification as described above. Then Θτ ′

adm(j, α) =
Θτ

adm(j, α) for all j /∈ Nτ ′

js,MON ∪ Nτ ′

s,MON = Nτ
js,MON ∪

{js, s}. Depending on the scoring function, this often results
in (∆τ ′

j , α
τ ′

j , θ
τ ′

j ) = (∆τ
j , α

τ
j , θ

τ
j ), allowing reuse. For local

splitting criteria like information gain, (∆τ ′

j , α
τ ′

j , θ
τ ′

j ) needs
recomputing only if j ∈ Nτ

js,MON ∪ {js, s}. For the group-
sensitive SCkmrr or SCkmap metrics, however, the affected
groups must also be taken into account. Thus, (∆τ ′

j , α
τ ′

j , θ
τ ′

j )
must be recomputed if either

(a) j ∈ Nτ
js,MON ∪ {js, s}, or

(b) {q(r) : x(r) ∈ Xτ
js
} ∩ {q(r) : x(r) ∈ Xτ

j } 6= ∅.
On the other hand, if j is not a neighbor of js relative to the
attributes in MON, and if the items in Xτ

j result from other
questions than those in Xτ

js
, then the best split parameters

ατ
′

j , θτ
′

j for leaf ej and the corresponding gain ∆τ ′

j remain
the same in the new tree τ ′ obtained by splitting ejs in τ .

H. Controlling the tree size

The proposed method for inducing PETs by a global
search for the best split generates a sequence of trees with
increasing size such that the next tree in the sequence
achieves the maximum increase of the quality score possible
by splitting one leaf of the predecessor in the tree sequence.4

Therefore one can simply stop the tree induction after any
desired number of splits. Moreover, for small k, the method
terminates automatically at very small tree sizes so that
additional pruning is not mandatory.

III. EVALUATION

The proposed technique has already been used for learning
passage and answer ranking models: In the LogAnswer QA
system, switching from usual decision trees to the SCkmrr

method achieved a 50% increase of correct answers [14]; in
the IRSAW system [15], there was a 30% increase.

The potential of the approach to learn useful rankings is
now demonstrated by a passage reranking experiment.

A. Basic experimental setup

The retrieval subsystem of the IRSAW QA system [15] is
used for retrieving passages. The passage size of IRSAW is
currently limited to single sentences. A fixed number of 200
passages is retrieved for each question. The IRSAW retrieval
component uses a bag-of-words retrieval model with tf-idf

4Local techniques like C4.5 do not find sequences with these properties.

scoring. The ranking determined by the passage retrieval
system forms the baseline for the subsequent reranking
experiments.

B. Description of feature set

The following simple feature set was used as the basis for
passage reranking (see [14]):

failedMatch: Number of lexical concepts and numerals in
the question that do not match the candidate passage.

matchRatio: Proportion of lexical concepts and numerals in
the question that find a match in the candidate passage.

failedNames: Number of proper names that occur in the
question, but not in the passage.

containsBrackets: Presence of parentheses in the passage.
eatKnown: Signals if the system has successfully deter-

mined the expected answer type (EAT) of the question.
testableEat: Signals if an EAT test is possible for the

passage (depending on answer type and parseability).
eatFound: Reports an occurrence of the EAT in the passage.
defLevel: Indicates a defining verb or apposition in a pas-

sage (defLevel = 2), a relative clause (defLevel = 1),
or neither construction (defLevel = 0).

longSupport =(snippetLength− 100) DIV 200, with DIV
integer division, is used to penalize overlong passages.

irScore: The tf-idf based score of the retrieval component.

The matchRatio and irScore features were ascribed a posi-
tive effect on passage ranks; failedMatch, failedNames and
longSupport were ascribed a negative effect.

C. Description of the training set

The 200 questions for German of the QA@CLEF 2007
evaluation [16] formed the starting point for building the
training set. These questions contain pronouns and nominal
anaphors that were resolved manually since coreference
resolution is not of interest here. Only the 164 ‘factoids’
in the test set (i.e., questions asking for a concrete fact)
were considered since there are too few questions of other
types for applying ML techniques. Three of the factoid
questions were skipped due to parsing errors. The IRSAW
retrieval system was applied to the remaining 161 questions.
The resulting 31,091 passages were then annotated for
containment of a correct answer.5 In this annotation, 1,140
of the retrieved passages (3.67%) were judged correct. The
passages that contain an answer are not evenly distributed
across questions. For example, there is one question with
79 candidate passages that contain an answer, but a median
of only 2 correct passages per question. The low number
of correct candidates for most questions, combined with a
few high-recall questions, demonstrates the need for an ML
technique that can handle such imbalanced data.

5See http://www.loganswer.de/resources/icmla09 training.arff (training
set), icmla09 test.arff (test set).



Table I
BASELINE RESULTS (SORTED BY MRR)

model MRR ANS1 ANS2 ANS3 ANS4 ANS5

RB 0.53 52 64 76 87 92
JBU 0.49 47 63 72 76 79
JB 0.48 44 62 71 77 82
RBU 0.47 43 59 67 74 78
IR 0.45 40 52 62 76 80
RTU 0.44 42 52 58 70 76
JTU 0.43 37 54 62 70 74
JT 0.42 40 48 58 65 70
RT 0.40 32 49 59 68 76

D. Description of the test set

The 160 factoid questions in the QA@CLEF 2008 test
set for German were used as the starting point for building
the test set for the experiment. Ten so-called NIL questions
with no answer in the document collection were skipped
as they are uninteresting for a reranking test. An automatic
technique was used for resolving coreference, and 7 ques-
tions with wrong results of anaphor resolution or spelling
errors were dropped. The remaining 143 questions were
processed by IRSAW, resulting in 27,712 retrieved passages
that were then annotated for containment of correct answers.
There were 832 passages with a correct answer (3.0%) and a
median of 3 correct answers per question. 16 questions with
no correct result were omitted (in this case, every ranking is
just a list of wrong results). The final test set contains 24,594
passages for the remaining 127 questions with at least one
correct candidate.

E. Description of quality metrics

The factoid questions of the test set can be fully answered
by a single text passage containing the queried fact. There-
fore the position of the first correct answer in the result
list for a question q, i.e. rankτq,1, is of special importance,
since it corresponds to the effort of a user who searches
sequentially for a correct answer in the result list. The mean
reciprocal rank takes the values of rankτq,1 for all considered
questions into account:

MRR =
1

|Q|
∑

q∈Q,yesq>0

1

rankτq,1
. (8)

In order to obtain deterministic results when several results
share the same score, ‘pessimistic’ tie breaking (with all
wrong results shown first) is assumed. Thus the actual results
of the models are slightly better than the shown MRR scores
with worst-case tie breaking. A QA system usually lists only
a few results, so the number of questions with at least one
correct result at rank k or better is also important:

ANSk =
∣∣{q ∈ Q : yesq > 0, rankτq,1 ≤ k}

∣∣ . (9)

The test set contains 127 questions with at least one correct
candidate passage, so ANSk is bounded by 127 here.

Table II
MAIN RESULTS (SORTED BY MRR)

model MRR ANS1 ANS2 ANS3 ANS4 ANS5

MB3/50 0.63 63 80 90 95 100
MB3/40 0.62 62 78 89 94 100
PB5/50 0.62 61 79 87 98 106
MB5/50 0.62 61 78 89 100 105
MB5/30 0.62 60 76 87 102 107
MB5/40 0.62 60 78 88 100 105
MB3/30 0.61 60 77 90 94 101
PB5/40 0.61 58 79 86 98 106
PB5/30 0.60 58 77 86 96 104
MB1/30 0.60 57 76 88 98 101
MB1/40 0.60 57 76 89 98 101
MB1/50 0.60 57 76 89 98 101
PB3/40 0.60 57 74 88 96 103
PB3/50 0.60 57 76 88 95 102
PB3/30 0.59 56 75 86 94 101

F. Experimental results

The results of several baseline models are shown in
Table I. The IR run corresponds to the original ranking
of the retrieval system according to the irScore. The other
models were obtained from decision tree inducers of the
Weka toolkit [17]: JT is the result of the Weka J48 learner
(a reimplementation of Quinlan’s C4.5 revision 8) with
Laplace smoothing. JB was obtained by bagging ten J48
trees with Laplace smoothing. JTU uses J48 with Laplace
smoothing and no pruning (minimal leaf size M = 5); JBU
results from bagging ten such trees. Alternatively, the Weka
REPTree learner based on reduced error pruning was used:
RT (REPTree with Laplace correction added after learning),
RB (bag of ten such trees), RTU (REPTree with pruning
switched off, minimum leaf size M = 5), and RBU (bag of
ten such unpruned trees).

The table once again confirms that single PETs obtained
from common tree induction methods are not suited for
probability-based ranking: All trees achieve lower MRR than
the original ranking of the IR system. But all learned bags
outperform the results of the IR baseline. For example, RB
has 12 more correct passages on top-1 rank than IR.

Results for the novel models using SCkmrr and SCkmap

are shown in Table II. The following naming scheme is
used: ‘M’ (splits based on SCkmrr with linear weighting),
‘P’ (splits based on SCkmap with uniform weighting), ‘B’
(stratified bagging of ten trees). Unless stated otherwise, the
trees are trained such that the above monotonocity specifi-
cations are taken into account. The k/s notation specifies
the k value for SCkmrr or SCkmap and the split limit s, i.e.
the number of tree induction steps until training stops.6

Table II shows that each bag of PETs obtained from the
proposed approach clearly outperforms all of the models
in Table I obtained by standard tree induction techniques.

6Note that SCkmrr or SCkmap coincide for k = 1, so no PB1/x models
are shown. The tree induction auto-terminates quickly after 30..70 steps.
Split limits in the range 30..50 achieved the best performance.



Table III
ABLATION RESULTS COMPARED TO PB5/50

model MRR ANS1 ANS2 ANS3 ANS4 ANS5

PB5/50 0.62 61 79 87 98 106
PB5/50S 0.60 59 72 87 96 100
PB5/50N 0.59 58 76 83 91 98
PT5/50 0.50 45 62 75 82 87

The results obtained by using SCkmrr or SCkmap are rather
similar and apparently not very sensitive to the number of
tracked correct results k and the split limit s. Assuming that
the top five passages are presented to the user, 84% of the
test questions can be answered based on the MB5/30 model.

For ablation experiments, PB5/50 was chosen as the
reference, since it has both good MRR and ANS5 (i.e.,
many questions can be answered when showing a top five
list). The relative effect of the proposed changes to ordinary
decision tree induction on the quality of the ranking are
shown in Table III. PB5/50S was obtained from ordinary
instead of stratified bagging. This results in a clear loss of
ANS5. PB5/50N was obtained by ignoring the monotonicity
specifications. The result is again an obvious loss of ANS5

compared to PB5/50. Finally, PT5/50 is the result of a single
learned tree (instead of ten trees combined by averaging).
Although PT5/50 outperforms all of the single trees in Table
I obtained by usual tree induction, it is only slightly better
than the IR baseline. This confirms the importance of bag-
ging if one uses decision trees for estimating probabilities.

IV. CONCLUSIONS

The method for learning probability estimating trees
presented in the paper directly optimizes a criterion for
ranking quality. It can also handle a priori knowledge on
the qualitative effect of attributes on the ranking. Several
PETs are combined by stratified bagging. Experiments on
factoid questions from QA@CLEF show that the approach
outperforms usual PET learning methods by a large margin.
Since only a few top-ranked results are of interest for QA,
very small trees are sufficient to yield this quality level. In
particular, Provost and Domingos’ view that larger trees rank
better [3] does not seem to apply in this case. The compact
size of the trees found by the new method suggests that they
capture very stable abstractions.
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