
An Integrated Machine Learning and Case-Based
Reasoning Approach to Answer Validation

Ingo Glöckner
Faculty for Mathematics and Computer Science

FernUniversität in Hagen
58084 Hagen, Germany

ingo.gloeckner@fernuni-hagen.de

Karl-Heinz Weis
Faculty for Computer Science – Artificial Intelligence Working Group

University of Koblenz-Landau
56016 Koblenz, Germany

khweis@weis-consulting.de

Abstract—We propose a case-based reasoning (CBR) approach
to answer validation/answer scoring and reranking in question
answering (QA) systems, where annotated answer candidates
for known questions provide evidence for validating answer
candidates for new questions. The use of CBR promises a
continuous increase in answer quality, given user feedback that
extends the case base. In the paper, we present the complete
approach, emphasizing the use of CBR techniques, namely the
structural case base, built with annotated MultiNet graphs, and
corresponding graph similarity measures. We cover a priori
relations to experienced answer candidates for former questions.
We describe the adequate structuring of the case base and develop
appropriate similarity measures. Finally we integrate CBR into
an existing framework for answer validation and reranking that
also includes logical answer validation and a shallow linguistic
validation, using a learning-to-rank approach for the final answer
ranking based on CBR-related features. In our experiments on
QA@CLEF questions, the best learned models make heavy use
of CBR features. The advantage already achieved by CBR will
increase with time due to the automatic improvement with new
user annotations given by relevance feedback.

I. INTRODUCTION

Question answering (QA) systems aim at providing concise
answers to questions given a document collection.1 The QA
process is often divided into generation of answer candidates,
using information retrieval techniques, followed by a valida-
tion and selection step that determines the final ranking. The
quality of this ranking is crucial since users typically inspect
only a few top-ranked results. In this paper we start from
a working solution for answer validation and reranking [1]
based on deep linguistic analysis and logical reasoning. A
learning-to-rank approach determines a numerical estimate of
answer quality used for ranking [2]. However, for best results,
logical validation needs a comprehensive knowledge base.
This is unrealistic in an open-domain setting, and so we would
like to include other knowledge sources, such as experience
knowledge provided by user annotations. Also the learning
approach implemented in the system is not incremental. In
order to address these problems, we extend the QA system
of interest by a case-based reasoning (CBR) approach, letting
answer candidates for known questions provide evidence for

1The annual CLEF evaluation (http://www.clef-initiative.eu/) and the TREC
initiative (http://trec.nist.gov/) feature (or have featured) QA tracks, and a
wealth of papers on QA systems and evaluation are offered by these websites.

validating answer candidates for new questions. This promises
a continuous increase in answer quality, if the users of the QA
system can provide feedback which extends the case base.

The idea of using CBR technology for question answering is
not new. However, its application has typically been limited to
FAQ answering from a given list of question/answer pairs [3],
[4], [5], using techniques for textual CBR [6].2 By contrast, we
aim at utilizing user annotations for supporting a QA system in
better answering unseen questions as well. Instead of directly
retrieving answers to the considered question, we thus propose
the use of CBR as a new tool for answer validation. Moreover,
we aim at a joint framework that integrates CBR with proven
techniques for answer validation (such as logical validation)
by means of machine learning (ML).

The paper is organized as follows. Sect. II sketches the
LogAnswer QA system, our testbed for the CBR extension.
It also introduces the graph representations for linguistic
meanings on which the CBR will operate. Sect. III introduces
the CBR approach for answer validation. Sect. IV explains
how the CBR approach can be integrated into an existing
learning-to-rank framework by adding CBR-related features.
Sect. V uses data from QA@CLEF tasks for evaluating case
retrieval and the achieved reranking quality.

II. SYSTEM OVERVIEW

Since our CBR approach extends the LogAnswer QA sys-
tem [1], [8], we sketch the overall system architecture. Log-
Answer is an open-domain QA system for German available
on the web. Its knowledge base was derived from textual
sources, namely the German Wikipedia and a corpus of news-
paper articles. Answers are produced using deep linguistic
processing and automated theorem proving [1]. All in all about
12 million sentences have been parsed into semantic networks
[1], using the WOCADI parser [9] for linguistic analysis.

Given a question, the system first retrieves pre-analyzed se-
mantic representations of candidate sentences from its retrieval
backend. Through answer validation, it then tries to identify
those candidate sentences that contain a correct answer to the
question. There is a logic-based check, accepting an answer
as correct if the logical form of the parsed question can

2Fouque et al [7] also used CBR for query answering on structured data.

be proved from the logical representation of the considered
answer sentence and general background knowledge. Robust-
ness is gained by allowing query relaxation [1] and adding
shallow linguistic features. A reranking model based on rank-
optimizing decision trees [2] estimates the correctness prob-
ability of each answer candidate from the answer validation
features. The five top-ranked answers are shown to the user.

LogAnswer is also equipped with a feedback mechanism,
allowing users to annotate each displayed result as either
correct or incorrect. It is this growing experience source of
user annotations that we wish to exploit using CBR.

LogAnswer relies on multilayered extended semantic net-
works (MultiNet) [10] as a semantic representation for natural
language expressions. The concepts representations (nodes in
the network with their relationships to other nodes) are en-
riched by multi-dimensional descriptions in terms of so-called
layer attributes [10] (e.g. for capturing quantification). For our
purposes, the layer attribute data will also be treated as part of
the MultiNet graph. The choice of MultiNet as the semantic
representation for LogAnswer was a pragmatic decision since
it provides us with a proven toolchain for translating German
texts into a semantic representation suitable for knowledge
processing. The formalism has been used in applications such
as NL interfaces to databases and semantic-based readability
checking [10]. It fits well with the idea to develop a CBR
system with an optimised graph-based similarity measure to
improve our existing answer validation model.

III. CBR APPROACH FOR MULTINET GRAPH
CLASSIFICATION

We enhance answer validation by using experience knowl-
edge in the form of cases in a case base. This requires
representing the experience knowledge in appropriate data
structures. We further define a priori relations of current ques-
tions and answer candidates to already experienced answer
candidates of former questions. The resulting system module is
thus designed as a learning system and based on a Case Based
Reasoning control structure ([11], [12], which addresses this
problem solving task in particular). CBR can handle sparse,
noisy, or even absent information by retrieving the most similar
case, if a complete match is not available in the case base.

The case base is defined as in [13] with a case characteriza-
tion part and a lesson part. We use a structural approach with
a common structured vocabulary [11], [13]. The vocabulary
container consists of XML describing MultiNet graphs [10].

The explicit knowledge source of the CBR module [12] is
expert knowledge in the form of retrieved MultiNet graphs,
bulk loaded and parsed from XML input files.

A. Definition of the Case Base

Case bases are defined as in [13], using MultiNet data [10].
Definition 1: (Space of Experience Characterization De-

scriptions) The space of experience characterization descrip-
tions D = Q × A is the set of possible characterizations
for experience items, Q MultiNet graphs of questions (A: of
answer candidates).

Definition 2: (Space of Lessons) The space of possible
lessons recorded in experience items, L, is a Boolean signaling
if the answer candidate contains a correct answer passage [2].

Definition 3: (Case, General Definition) A case is a pair
c = (d, l) ∈ D × L.

Definition 4: (Vocabulary Container and Case Space, Gen-
eral Definition) We call the pair VOC = (D,L) the vocabu-
lary container. The related case space is C = D × L.

Definition 5: (Case Base) A case base is a finite set of
cases, CB = {c1, . . . , cn} ⊆ C.

B. Similarity Measure

The core of the implicit knowledge modeling of the CBR
module is the similarity measure. Adapting standard graph
similarity measures from [13] to the MultiNet methodology
[10], we developed the new ‘integrated sub graph/edit similar-
ity’ for answer validation in the MultiNet setting as follows.

1) Largest Common Sub Graph Matching Similarity: One
important component of the new integrated similarity measure
is a graph matching similarity. While isomorphic measures
focus on bijective relations, the largest common sub graph
approach allows us to define a non binary similarity measure.

Definition 6: (Largest Common Sub Graph [13]) A graph
G is the largest common sub graph G = lcsg(G1, G2) of two
graphs G1 and G2 if G ⊆ G1, G ⊆ G2, and there does not
exist a graph G′ such that G′ ⊆ G1, G′ ⊆ G2 and |G′| > |G|.
|G| = |N |+ |E| is given by the node and edge count.
A symmetric3 version of the largest common sub graph
similarity measure can be defined as follows [13]:

simlcsg(x, y) = f(1− |lcsg(x,y)|
max {|X|,|Y |})

2) Graph Edit Similarity: The other important component
of the new integrated similarity measure is a graph edit
similarity. The graph editing difference counts and weights the
number of transformations necessary to transform one graph
into the other. Its computation is NP-complete [14].4

δedit(x, y) = min {
k∑

i=1

c(ei) : e1, . . . , ek transforms x to y}

It is easy to derive the respective similarity measure:

simedit(x, y) = 1− f(δedit(x, y)) .

The cheaper and fewer the operations required to make the
two graphs identical, the smaller is the difference and hence
the higher the similarity [13].

3) Integrated Sub Graph / Edit Similarity: The similarity
measure we use, takes advantage of both the least common
sub graph matching similarity and the graph edit similarity.
Generally speaking, we measure the similarities of correspond-
ing graph components e.g. attributes, lists of attributes, nodes

3sim(x, y) = sim(y, x), the symmetric property is an optional but com-
mon property of similarity measures. f : [0, 1] → [0, 1] is a monotonically
decreasing mapping with f(0) = 1.

4Currently we use no heuristic shortcuts since the limited size of the graphs
representing questions and single sentences allows a brute-force computation.

Fig. 1. Illustration of Gem and Diff

and edges with local similarities [12]. If we find pairs with a
similarity higher than a threshold we put them into a set of
subgraphs and graph components Gem, else in Diff . Then we
sum up a certain relevance ωk for each graph component in
Gem and Diff and compute the global similarity from it.

Definition 7: (Global Similarity Measure) For cases X,Y,

Simglob(X,Y) =

m∑
n=1

ωn(simn(xn, yn)) : xn ∈ X, yn ∈ Y

Definition 8: (Graph Edit Similarity) (i) with xi, yi ⊆
Nodes(X,Y):

Simop(xi, yi) = simNodes(xio, yip): o, p = 1, ..,#Nodes inx, y

(analogously for edges);
(ii) with xi, yi ⊆ Lists(X,Y):

simlist(xi, yi) = |xi∩yi|
max(|xi|,|yi|)

(iii) for attributes,

simattribute(u, v) =

{
1 : u = v
0 : else

Let Gem,Diff ⊆ X,Y be subgraphs, MultiNet attributes, or
components, Sq relevance limits, and ωk be weights such that
∀q : simq(xq, yq) ≥ Sq → xq ∈ Gemxq , yq ∈ Gemyq

∀q : simq(xq, yq) < Sq → xq ∈ Diffxq , yq ∈ Diffyq

|Gemxq
| =

#Elements in Gemxq∑
k=0

ωk ,

analogously for Gemyq
, Diffxq

, and Diffyq
. Then

Simitems(X,Y) =

|Gemxq |
|Gemxq |+|Diffxq |

+
|Gemyq |

|Gemyq |+|Diffyq |

2
.

Fig. 1 illustrates these concepts (example taken from [10],
with added Gem and Diff information).

IV. MACHINE LEARNING APPROACH

Answer reranking aims at shifting correct answer candidates
for a question to top ranks. Our goal is to improve a solution
for answer reranking through CBR, so that the QA system
can profit from every new user annotation extending the case
base. To this end, the results of the CBR stage are turned into
numeric features. A ranking model determined by a supervised
learning-to-rank approach combines these CBR-based features
with other validation features [1].

A. CBR-Based Input to the Ranker

For each answer candidate, the CBR stage generates the
following output data based on the global similarity measure:
• bestDec = YES or NO (class of the case with the highest

similarity score). bestDec expresses that the known an-
swer candidate from the case base was annotated correct
(YES) or incorrect (NO).

• bestSim = similarity score of the best case that justifies
the choice of YES or NO according to bestDec.

• nonBestSim = similarity score of the best case that
does not justify the chosen decision, thus providing
evidence for the opposite choice. It always holds that
nonBestSim ≤ bestSim.

• nonBestRank = position of the first case in the similarity
ranking that does not justify the chosen decision (e.g.,
best rank of a NO case when the known case with the
highest similarity score is annotated YES).

B. CBR-Based Features

Given the CBR result data, several derived attributes can be
computed. By means of these CBR features, the CBR result
can be combined with the feature set already used by the
LogAnswer system for answer reranking.

1) cbrSignedSim =

{
bestSim : bestDec = YES
−bestSim : else

2) cbrYesSim =

{
bestSim : bestDec = YES
nonBestSim : else

3) cbrNoSim =

{
nonBestSim : bestDec = YES
bestSim : else

4) cbrSimDiff =

{
bnDiff : bestDec = YES
−bnDiff : else

where bnDiff = bestSim− nonBestSim.

5) cbrRelDiff =

{
nbQuot : bestDec = YES
−nbQuot : else

where nbQuot = nonBestSim/bestSim, and we assume
that bestSim 6= 0. Otherwise, the result shall be 0.

6) cbrSignedRank
{

nonBestRank : bestDec = YES
−nonBestRank : else

C. Learning-to-Rank Model

Rank-optimizing decision trees [2] are used for learning an
answer reranking model from the existing answer validation
features of LogAnswer [1] and the new CBR features. This
supervised learning method was specifically developed for
imbalanced data, such as typical sets of answer candidates that
contain only a small fraction of correct answers. The approach

can incorporate monotonicity specifications with respect to
the attributes, expressing that the ranking of an item should
improve with higher values and decrease with smaller values.
For the existing feature set, we adopt the monotonicity specifi-
cations documented in [1]. All CBR features except cbrNoSim
are treated as being positively linked to ranking position, while
cbrNoSim is declared to have a negative effect. The final ML
ranker is an ensemble of ten rank-optimizing decision trees,
obtained by stratified bagging [2], whose individual probability
estimates are combined by averaging. Each tree is pruned to a
size of 40 splits. For efficiency, the CBR features are quantized
in bins of 0.001. As was shown in [2], bagging of rank-
optimizing decision trees outperforms decision-tree learners
(and other common ML techniques) in answer selection tasks.

V. EXPERIMENTAL RESULTS

A. Data Set Used for Experiments

The data set used for the experiments was generated by
retrieving answer candidates for questions in the QA@CLEF
2007 and QA@CLEF 2008 test sets for German.5 Since the
CLEF 2008 questions involve anaphoric references which
are not of interest for our present purposes, these references
were resolved manually by filling in the proper antecedents.
Due to our focus of CBR on the semantic network level,
we only kept questions and answer candidates for which
linguistic processing managed to construct a network. Due to
the focus on learning to rank, we only kept questions with
at least one correct answer candidate (otherwise reranking is
pointless).6 Duplicate answer candidates (identical but from
different documents) were removed. This left us with 254
questions and ca. 15,000 items in the data set.

They were manually annotated for correctness as answers
to the question.

B. Case Retrieval Experiments

We measured classification accuracy with a case base con-
structed from the questions and answer candidates as described
in the previous section.7 For the optimization task we used
simple hill climbing algorithms. We rejected the optimal
A* approach only because of its calculation complexity. We
conducted several experiments, namely:

1) Retrieve the same meaning or question/answer candidate
pairs involving synonyms. As for every query, there is
a very similar correct best match in the full case base,
100% are correctly retrieved.

2) Retrieve known questions with new answer candidates.
The system finds the question and classifies correctly for
73% of the cases (56% for correct cases).

3) Retrieve new questions with new answer candidates.
Here we temporarily delete the probed question in the

5See http://www.clef-initiative.eu/ for more information about CLEF.
6Note that due to these restrictions, one cannot extend the experiment to the

full QA@CLEF 2007 and 2008 test sets. Our system has fallback techniques
to handle the 146 questions that were taken aside, but they are not of interest
here since our back-off approach does not involve CBR, yet.

7All data sets will be made publicly available upon acceptance.

case base, so that there is no very close best match. Clas-
sification rate drops to 59% (29% for correct answers).

4) Retrieve new questions with new answer candidate pairs
with a case base optimized to get optimal results for the
classification of correct answer candidates for already
known question/answer candidate pairs. A simple hill
climbing algorithm was used for deleting incorrect cases
disturbing the classification of the correct cases (ques-
tions with correct answer candidates). The classification
of correct cases increases to 100% (overall: 82%).

5) Retrieve new questions with new answer candidate pairs
with a case base optimized to get optimal overall results
for already known questions/answer candidate pairs.
Here, a simple hill climbing technique served to delete
those correct cases that disturb the overall result. The
overall result of 87% (96% for correct answers) is our
optimum with the current setup for questions not covered
by the case base. Obviously the result degrades with less
experience available in the case base.

6) Retrieve new questions with new answer candidate pairs
with a raw case base, in a 3-fold cross validation test.
The setup is like 3), with the case base reduced by one
third when testing for each fold. The 56% classification
rate on the test folds (23% for correct answers) forms a
baseline for comparison with setup 7) and 8).

7) Retrieve new questions with new answer candidate pairs
with a case base optimized to get optimal results for the
classification of correct answer candidates, in a 3-fold
cross validation test. Classification rate is 56% overall,
40% for correct answers. As expected, the effect of the
hill climbing optimization is smaller than in 4).

8) Retrieve new questions with new answer candidate pairs
with a case base optimized to get optimal overall results,
in a 3-fold cross validation. Classification rate is 55%,
29% for correct answers. As in 7), the effect of the
optimization reduces.

The results of the experiments are graphically summarized in
Fig. 2 (overall percentages) and Fig. 3 (comparison of detailed
percentages).

C. Answer Reranking Experiments Based on CBR Features

1) Data Set and Basic Setup for Reranking Experiments:
For the learning-to-rank experiments, we needed training data
with realistic values of the CBR features. The folds used
for optimizing the case base cannot be used once again for
training the ranker, since in this case, the CBR features would
already have been adjusted to the data. We therefore composed
the results of the CBR method for the three test folds (of
unseen cases) into a data set for training and testing the ML
ranker. The CBR feature values then stem from three different
configurations of the case base, which likely makes the ML
problem harder, since the ranker cannot adjust to a single CBR
model. But the chosen data set spans all original data, and it
contains only values of CBR features for previously unseen
data. This data set of existing validation features plus CBR

Fig. 2. Overall Percentage Results of Case Retrieval Experiments

Fig. 3. Detailed Percentage Results in Comparison

results is used in a 10-fold cross validation experiment for
evaluating the feature set and the learning-to-rank method.

2) Direct Reranking by Individual CBR Features: The
results of the CBR approach alone, using the CBR features
directly for ranking, are shown in Table I, using the full
non-optimized case base.8 The best results for each column
are shown bold. The metrics used are the mean-reciprocal
rank (MRR) and a criterion ANS-i, i ∈ {1, 2, 3, 4, 5} for the
proportion of test questions with at least one correct candi-
date on ranks 1, . . . , i. The models cbrRelDiff, cbrSimDiff,
cbrSignedSim, cbrYesSim, cbrSignedRank and cbrNoSim use
the corresponding CBR attribute directly for ranking. Our
baseline is irScore, the original ranking of the candidate
retrieval system. Despite the value of our CBR setup for classi-
fication, the quantities derived from the CBR-based similarity
measure perform worse than the baseline in answer ranking.

3) Evaluation of the Learning-to-Rank Approach: The neg-
ative picture concerning reranking by isolated CBR features

8The results for the case base optimized for perfect treatment of correct
candidates, and for the case based optimized for overall performance, are
very similar, so we omit them here.

TABLE I
DIRECT CBR FEATURE RANKING FOR NON-OPTIMIZED CASE BASE

Feature MRR ANS-1 ANS-2 ANS-3 ANS-4 ANS-5
irScore 0.48 0.33 0.46 0.55 0.62 0.67
cbrSimDiff 0.29 0.17 0.26 0.32 0.39 0.41
cbrRelDiff 0.29 0.17 0.26 0.31 0.39 0.41
cbrSignedSim 0.28 0.16 0.24 0.31 0.37 0.44
cbrYesSim 0.27 0.13 0.20 0.28 0.35 0.43
cbrSignedRank 0.22 0.08 0.18 0.21 0.28 0.33
cbrNoSim 0.15 0.04 0.09 0.15 0.17 0.21

TABLE II
ML RESULTS FOR UNOPTIMIZED CASE BASE

Model MRR ANS-1 ANS-2 ANS-3 ANS-4 ANS-5
DSC3 0.72 0.60 0.74 0.83 0.85 0.88
DS3 0.72 0.58 0.76 0.83 0.87 0.89
S 0.71 0.58 0.74 0.82 0.86 0.90
SC 0.69 0.55 0.70 0.80 0.85 0.88
irScore 0.48 0.33 0.46 0.55 0.62 0.67
CI 0.38 0.21 0.34 0.46 0.53 0.59
C 0.28 0.15 0.25 0.29 0.37 0.41

TABLE III
ML RESULTS FOR CASE BASE OPTIMIZED FOR CORRECT CANDIDATES

Model MRR ANS-1 ANS-2 ANS-3 ANS-4 ANS-5
DSC3 0.74 0.61 0.76 0.83 0.88 0.89
DS3 0.72 0.58 0.76 0.83 0.87 0.89
S 0.71 0.58 0.74 0.82 0.86 0.90
SC 0.69 0.55 0.72 0.80 0.85 0.86
irScore 0.48 0.33 0.46 0.55 0.62 0.67
CI 0.37 0.22 0.34 0.41 0.47 0.51
C 0.27 0.14 0.24 0.30 0.34 0.37

changes as soon as the CBR features are combined with the
existing answer validation features of LogAnswer, applying
rank-optimizing decision trees for learning suitable rankers.
The results of the learning-to-rank approach for various com-
binations of feature sets are shown in Tables II–IV.

The feature sets used for training the ML models were
D: deep features (based on results of logic-based answer
validation, as described in [1]), I: the irScore feature, i.e. the
original retrieval score of the candidate retrieval system, S:
shallow features including I (described in [1]), and C: CBR
features. The number 3 is the limit on relaxation steps.

As shown by Table II for the unoptimized case base,
combining all existing answer validation features with the new
CBR-based features yields the best MRR and the best top-
ranked result (ANS-1). As shown by Table III, the same holds
when training the ML ranker on a case base optimized for
perfect treatment of correct answers. This is our best overall
result, with an MRR of 0.74 and a correct top-ranked answer in
61% of the cases. Table IV shows a slight decrease in ranking
quality when optimizing the case base for overall classification
rate. A possible explanation is the strong imbalance of the data,
so that optimizing for classification rate may be detrimental to
the treatment of the few correct answer candidates in the case
base. As shown by the superior DSC3 result in Table III, it is
better to optimize the case base for retrieving correct answers.

TABLE IV
ML RESULTS FOR CASE BASE OPTIMIZED FOR OVERALL PERFORMANCE

Model MRR ANS-1 ANS-2 ANS-3 ANS-4 ANS-5
DS3 0.72 0.58 0.76 0.83 0.87 0.89
DSC3 0.71 0.58 0.74 0.82 0.86 0.88
S 0.71 0.58 0.74 0.82 0.86 0.90
SC 0.70 0.56 0.73 0.81 0.84 0.88
irScore 0.48 0.33 0.46 0.55 0.62 0.67
CI 0.34 0.18 0.28 0.38 0.46 0.52
C 0.27 0.14 0.22 0.28 0.33 0.41

We considered the usage of CBR features in the best ML
ranker DSC3 shown in Table III, by inspecting all branching
conditions in the generated trees (since 10 bags of 10 trees
each were generated in the cross-validation runs, there are
100 trees to base results on). It turns out that 10.7% of all
branching conditions involve cbrSignedSim (rank 2 among
all 26 features seen by the ML ranker), 10.5% of all splits
involve cbrRelDiff (rank 3), 7.1% cbrSignedRank (rank 5),
5.6% cbrNoSim (rank 8), 4.6% cbrYesSim (rank 10), and 4.0%
of all branching conditions involve cbrSimDiff (rank 12). In
total, 42.5% of all split conditions in the learned trees involve
one of the CBR attributes. This demonstrates a strong impact
of CBR results on answer scores, so that new experience in
the case base will also become effective in answer reranking.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an integrated CBR approach to an-
swer validation and reranking for QA systems. Since each
annotated answer candidate for a question provides evidence
for validating answer candidates for future questions, this
approach promises a continuous increase in answer quality,
given that the QA system allows user feedback extending the
case base. By comparing the semantic structure of questions
and potential answers, the proposed CBR approach with its
graph similarity measure complements the logic-based answer
validation that is already implemented in LogAnswer. In the
paper, we have emphasized the use of CBR techniques and
their integration into a working learning-to-rank approach
through CBR-related features. Data from QA@CLEF served
to evaluate case retrieval and the achieved reranking quality.
As to classification rate (percentage of best retrieved cases with
proper class label), the CBR approach works extremely well
for question/answer candidate pairs of the same meaning, and
quite good if the question was already asked and correctly
answered, even if the correct answer candidate is of a dif-
ferent semantic construction. The less similar the questions
and answer candidates become to known ones, the worse
the quality of the best matches. Concerning the integration
of CBR results into the existing answer reranking solution,
experiments show that the best learned models include CBR
features, achieving an MRR up to 0.74 with a correct top-
ranked answer shown in 61% of the cases. The advantage over
the original approach without CBR will increase with time due
to automatic improvements with new user annotations. The
massive use of CBR features by the learning- to-rank method,

comprising 42.5% of all branching conditions in the learned
decision trees, shows that the CBR features have a strong
impact on answer reranking - as needed for improvements in
the case base to push ranking results. For the future, one of our
goals is to demonstrate this positive effect of the human-in-
the-loop experimentally, simulating user feedback by feeding
the case base with growing sets of questions/annotations.

Since at present, the isolated CBR features perform worse
than the irScore baseline of the candidate retrieval system,
or main focus is on improving the similarity measure for
MultiNet graphs. Firstly, we will analyze in depth the local
similarity results for finding those local similarity measures
that classify best. We will optimize the structure and weights
of the global similarity measures for the hard case of ques-
tion/answer candidate pairs completely different from the case
base. To this end, we will also analyze in depth the most
similar components of the MultiNet graphs of correct ques-
tion/answer pairs to find generalizations and abstractions that
will further help to classify those question/answer candidate
pairs that do not share the specific lexical concepts of cases in
the case base, but rather show parallels in the MultiNet graph
structure. We aim to optimize the similarity measure by using
more adapted, relevant implicit knowledge and integrate more
explicit knowledge [12]. Generalized and abstracted cases [13]
promise a more general view in elaborating the similarities.

REFERENCES

[1] U. Furbach, I. Glöckner, and B. Pelzer, “An application of automated
reasoning in natural language question answering,” AI Communications,
vol. 23, no. 2-3, pp. 241–265, 2010.

[2] I. Glöckner, “Finding answer passages with rank optimizing decision
trees,” in Proc. of the 8th Int. Conference on Machine Learning and
Applications (ICMLA-09). IEEE Press, 2009, pp. 208–214.

[3] R. D. Burke, K. J. Hammond, V. A. Kulyukin, S. L. Lytinen, N. Tomuro,
and S. Schoenberg, “Question answering from frequently-asked question
files: Experiences with the FAQ Finder system,” The University of
Chicago, Computer Science Department, Chicago, TR 97-05, Jun. 1997.

[4] K. Jia, X. Pang, and Z. Li, “Question answering system in network
education based on FAQ,” in Proceedings ICYCS ’08. IEEE Computer
Society, 2008, pp. 2577–2581.

[5] M. Lenz, A. Hübner, and M. Kunze, “Question answering with textual
CBR,” in Proceedings of the 3rd Int. Conf. on Flexible Query Answering
Systems (FQAS ’98). London, UK: Springer, 1998, pp. 236–247.

[6] M. Lenz and K. Ashley, Eds., Proceedings of the AAAI98 Workshop on
Textual Case-Based Reasoning. AAAI Press, 1998.

[7] G. Fouque, W. W. Chu, and H. Yau, “A case-based reasoning approach
for associative query answering,” in Proc. of Methodologies for Int.
Systems 8th Int. Symposium (ISMIS’94, 1994, pp. 183–192.

[8] I. Glöckner and B. Pelzer, “The LogAnswer project at CLEF 2009,”
in Results of the CLEF 2009 Cross-Language System Evaluation Cam-
paign, Working Notes for the CLEF 2009 Workshop, Sep. 2009.

[9] S. Hartrumpf, Hybrid Disambiguation in Natural Language Analysis.
Osnabrück, Germany: Der Andere Verlag, 2003.

[10] H. Helbig, Knowledge Representation and the Semantics of Natural
Language. Berlin: Springer, 2006.

[11] A. Aamodt, “Knowledge-intensive, integrated approach to problem solv-
ing and sustained learning,” Ph.D. dissertation, University of Trondheim,
Department of Computer Science and Telematics, 1991.

[12] K.-H. Weis, “Evaluation fallbasierter Systeme – evaluation of case based
reasoning systems,” Master’s thesis, University Kaiserslautern, 1995.

[13] R. Bergmann, Experience Management – Foundations, Development
Methodology and Internet-Based Applications. Berlin: Springer, 2002.

[14] H. Bunke and B. T. Messmer, “Similarity measures for structured
representations,” in Topics in Case-Based Reasoning: First European
Workshop, EWCBR-93, selected papers, S. Wess, K.-D. Althoff, and
M. M. Richter, Eds. Berlin: Springer, 1994, pp. 106–118.

