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Abstract. Lindstrom [1] introduced a very powerful notion of quantifiers, which
permits multi-place quantification and the simultaneous binding of several vari-
ables. ‘Branching’ quantifification was found to be useful by linguists e.g. for
modelling reciprocal constructions like “Most men and most women admire each
other”. Westersthl [2] showed how to compute the three-place Lingistquanti-
fierfor“Q: A’'s andQ2 B’s R each other” from the binary quantifie@s andQ-,
assuming crisp quantifiers and arguments. In the paper, | generalize his method to
approximate quantifiers like “many” and fuzzy arguments like “young”. A con-
sistent interpretation is achieved by extending the DFS theory of fuzzy quantifica-
tion [3,4], which rests on a system of formal adequacy criteria. The new analysis
is important to linguistic data summarization because the full meaning of recip-
rocal summarizers (e.g. describing factors which are “correlated” or “associated”
with each other), can only be captured by branching quantification.

1 Introduction

The quantifiers found in natural language (NL) are by no means restricted to the abso-
lute and proportional types usually considered in fuzzy set theory. The linguistic theory
of quantification, i.e. the Theory of Generalized Quantifiers (TGQ) [5,6], recognizes
more than thirty different types of quantifiers, including quantifiers of exception like
“all except about ten”, cardinal comparatives like “many more than” and many others
[6]. These quantifiers can be unary (like proper names in “Ronald)®r multi-place;
guantitative (like “about ten”) or non-quantitative (like “all except Lotfi”); and they can

be simplex or constructed, like “most marriéds areY’s or Z's”. However, it is not

only the diversity of possible quantifiers in NL which poses difficulties to a systematic
and comprehensive modelling of NL quantification. Even in simple cases like “most”,
the ways in which these quantifiers interact when combined in meaningful propositions
can be complex and sometimes even puzzling. Consider “Most men and most women
admire each other”, for example, in which we find a reciprocal predicate, “admire each
other”. Barwise [7] argues that so-called branching quantification is needed to capture
the meaning of propositions involving reciprocal predicates. Without branching quanti-
fiers, the above example must be linearly phrased as either

[most  : men(x)][most y : women(y)] adm(z, y)

a.
b. [mosty : women(y)][most x : men(z)] adm(x,y) .

! The proofs of all theorems cited here are listed in [4].



Neither interpretation captures the expected symmetry with respect to the men and
women involved. In fact, we need a construction like

[Q1z: men(z)]

(Q2y : Women(y)]> adm(z, y)

where); = Q2 = most operate in parallel and independently of each other. This
branching use of quantifiers can be analysed in terms of Libiabstjuantifiers [1], i.e.
multi-place quantifiers capable of binding several variables. We then have three argu-
ments, andy should bindz in men(z), y in women(y) and bothz, y in adm(x, y).

Thus, the above expression can be modelled by a Lidaistuantifier of typ€1, 1, 2):

Qz,y,zy(men(z), women(y), adm(z,y)) .

Obviously, the interpretation af depends on the meaning of “most” (majority of),
i.e.most(Yy,Yz) = 1if [Y; NYs| > 3|v3| and0 otherwise, wheré?, Y, are crisp
subsets of the given univerde # &. The quantifiel), on the other hand, accepts the
setsA, B € P(E) (e.g. men and women), and the binary relatidore P(E?) (people
admiring each other in the example). Barwise [7, p.63] showed how to dégfime

a special case; see also Westans{2, p. 274, (D1)]. Hence suppose that andQ-,
like “most”, are nondecreasing in their second argument(J@3,Y>) < Q(Y1,Y3)
whenevefY; C Yy. The complex quantifief) can then be expressed as:

1:3UXVCR:@Q1(AU)=1NQ:(B,V)=1
0 :else

Q(A, B, R) = { (1)
In the following, I will extend this analysis to approximate quantifiers and fuzzy argu-
ments (“Many young and most old people respect each other”). To this end | describe
the assumed formal framework, then incorporating Lir@stiquantifiers which bind
several variables. Finally | apply the above analysis of branching quantifiers and its
generalization by Weste#dl to the modelling of fuzzy branching quantification.

2 The Linguistic Theory of Fuzzy Quantification

TGQ rests on a simple but expressive model of two-valued quantifiers, which offers a
uniform representation for the diversity of NL examples mentioned above. However,
TGQ was not developed with fuzzy sets in mind, and its semantic analysis is essentially
two-valued. To cover a broad range of fuzzy NL quantifiers, | hence developed the ‘DFS
theory’ of fuzzy quantification [4,3] which introduces the following basic notions.

Definition 1 An n-ary fuzzy quantifier@ on a base sefy # @ assigns a gradual
interpretationQ(Xy, ..., X,,) € [0, 1] to all fuzzy subsetX, ..., X,, € P(E).

(75(E) is the fuzzy powerset). Fuzzy quantifiers are expressive operators, but hard to
define because the usual cardinality is not applicable to the fuzzy sets they process. We
hence need simplified specifications, powerful enough to embed all quantifiers of TGQ.



Definition 2 An n-ary semi-fuzzy quantifieon a base seltl # @ assigns a gradual
resultQ(Ys,...,Y,) € [0,1] to all crispsubsetsy, ..., Y, € P(E).

Semi-fuzzy quantifiers are much easier to define because the usual crisp cardinality is
applicable to their arguments. An interpretation mechanism is used to associate these
specifications with their matching fuzzy quantifiers:

Definition 3 A quantifier fuzzification mechanis(@FM) F assigns to each semi-fuzzy
quantifier@ a fuzzy quantifieF (Q) of the same arity and on the same base set.

The resulting fuzzy quantifiers(Q) can then be applied to fuzzy arguments. In order

to ensure plausible results, the QFM should conform to all requirements of linguistic
relevance. My research into various such properties converged into the following system
of six basic postulates.

(Z-1) Correct generalisation. For all crisp argument¥y,...,Y, € P(E), we require
that 7(Q)(Y1,...,Y,) = Q(Y1,...,Y,). (Combined with the other axioms, this
condition can be restricted to < 1). RationaleF(Q) should properly generalize
Q for crisp arguments.

(Z-2) Membership assessmenfThe two-valued quantifier defined by (Y) =1if e €
Y andr.(Y) = 0 otherwise for crisg”, has the obvious fuzzy counterpag( X ) =
ux (e) for fuzzy subsets. We require thai(r.) = 7.. Rationale: Membership as-
sessment (crisp or fuzzy) can be modelled through quantifiers. Whitkecks if
e is present in its argument, returns the degree to whichis contained in its
argument. It is natural to require that be mapped tar., which serves the same
purpose in the fuzzy case.

The fuzzy connectives which best match a QFM are given by a canonical construction.

Definition 4 Theinduced truth functioF (f) : [0,1]" — [0,1] of f : {0,1}" —
[0,1] is defined byF(f) = F(f on=') o, wheren(yy, ..., y,) = {i : y; = 1} for all
Yty Yn €10, 1} and pzi(a, ... 0, (4) = z; forall z; € [0,1],7 € {1,...,n}.

WheneverF is understood, | abbreviate = F(V), = = F(-) etc. These connectives
are extended to fuzzy set operations in the usual ways. The desired criteria involving
fuzzy complement and union can now be expressed as follows.

(2-3) Dualisation. F preserves dualisation of quantifiers, iB(Q')(X1,...,Xn) =
SFQ)( Xy, ..., Xn_1,5X,) for Xq,..., X, € P(E) givenQ'(Y1,...,Y,) =
SQ(Y,...,Y,_1,~Y,) for all crisp arguments. Rationale: “All’'s are B” and
“It is not the case that somé’s are notB’s” should be equivalent.

(Z-4) Union. F must be compatible with unions of arguments, i.e. we should expect
that F(Q") (X1, ..., Xpy1) = F(Q)(X1,..., Xn_1,X, U X,,41) provided that
QY1,....Yn11) = Q(MY1,...,Y,_1,Y, UY,11). Rationale: This postulate per-
mits a compositional treatment of patterns like “Ma#'g are B's or C's”

(Z-5) Monotonicity in arguments. 7 must preserve monotonicity in arguments, i.e. if
Q is nondecreasing/nonincreasing in théh argument, thetF(Q) has the same



property. (Combined with the other axioms, the condition can be restricted to non-
increasing®). Rationale: The interpretation of “All men are tall” and “All young
men are tall” must be systematically different and the former statement expresses
the stricter condition.

The last criterion which | will state requires the extension of mappjhgsy — £’
to fuzzy powerset mappingg : P(E) — P(E’). The usual way of doing this is by

applying the standard extension principle. In this case, the exterfisienf becomes
uf:(X)(e’) = sup{ux(e) : e € f71(e/)} for all ¢’ € E'. In order to define the sixth
criterion, I must admit other choices which match the existential quantifiéss of F.

Definition 5 Theinduced extension principlef 7, dAenotedf, mapsf to the extension
F(f) defineduz ; \(€') = F(mer o f), where f(Y) = {f(e) : e € Y} for all
Y e P(E).

(Z-6) Functional application. 7 must be compatible with ‘functional application’, i.e.
FQ)Xy,...,Xn) = F@Q)(F(f1)(X1),-.., F(fn)(Xn)), where the semi-fuzzy
quantifier@’ is defined by’ (Y1,...,Y,,) = Q(fl(Yl), e fn(Yn)). Rationale:
F must behave consistently over different domakhs

Definition 6 A QFM F which satisfies (Z-1) to (Z-6) is calleddeterminer fuzzifica-
tion scheme (DFS).

(In linguistics, “most”, “almost all” etc. are called ‘determiners’). Afinduces—x =
1 — z and the standard extension principle, then it is callethadard DFSLet us now
consider some properties of these modeld: 6 a DFS, then

— F induces a reasonable set of fuzzy propositional connectives; i®a strong
negationA is at-norm,V is ans-norm etc.

— F (V) is aT-quantifier andF (3) is anS-quantifier in the sense of Thiele [8].

— F is compatible with negations, e.g. “It is not the case that midsare B's”.

— F is compatible with the formation of antonyms, e.g. “Maks are notB’s”.

— F is compatible with intersections of arguments, e.g. “Méstare B's andC's”.

— F is compatible with argument permutations. In particular, symmetry properties of
a quantifier are preserved by applyiftg

— Fis compatible with crisp adjectival restriction, e.g. “Many marri€d are B’s”.

The models also account for some additional considerations of specifically linguistic
interest. For a comprehensive discussion of semantical properties and a description of
prototypical models, see [4]. These models inclide;x, a standard DFS which con-
sistently generalises the Sugeno integral and hence the ‘basic’ FG-count approach to
arbitraryn-place quantifiers. Due to its unique properties, this model is the preferred
choice for all applications that need to capture NL semantics. Another interesting ex-
ampleF.w., consistently generalises the Choquet integral and hence the ‘basic’ OWA
approach. An efficient histogram-based method for implementing quantifiers in these
models is described in [4].



3 Extension towards multiple variable binding

A Lindstrdm quantifieris a classQ of (relational) structures of type= (t1,...,t,),
such thatQ is closed under isomorphism [1, p. 186]. The cardima N specifies the
number of arguments; the componetit& N specify the number of variables that the
quantifier binds in itg-th argument position. For example, the existential quantifier,
which accepts one argument and binds one variable, has typg). The correspond-
ing classg comprises all structuredZ, A) whereE # & is a base setand C F is
nonempty. In the introduction, we already met with a more complex quariifadtype
(1,1,2). Inthis case@ is the class of all structuré®, A, B, R) with Q(A, B,R) =1,
whereA, B € P(E), R € P(E?). To model quantifiers like “all except Lotfi", which
depend on specific individuals, we must drop the assumption of isomorphism closure.
Hence, in principle, @eneralized Lindstim quantifieris a clasQ of relational struc-
tures of typet = (¢y,...,t,). However, it is convenient to stipulate the following
alternative notions.

Definition 7 A two-valued L-quantifieof typet = (¢1,...,t,) on a base sefl # &
assigns a crisp quantification resu@}(Y3,...,Y,) € {0,1} to each choice of crisp
argumentsY; € P(E%), i € {1,...,n}. Afull two-valued L-quantifierQ of typet
assigns a two-valued L-quantifi€yz of typet on E to each base sdf # o.

Hence ‘full’ L-quantifiers are in one-to-one correspondence with generalized Lamalstr
quantifiers. The extension of L-quantifiers to gradual outputs should be obvious.

Definition 8 A semi-fuzzy L-quantifieof typet = (¢1,...,t,) on E # & assigns a
gradual resultQ (Y3, ...,Y,) € [0,1]to all crispY; € P(E'),i € {1,...,n}.

Thus,@ accepts crisp arguments of the indicated types, but it can express approximate
quantification. Semi-fuzzy L-quantifiers establish a uniform specification medium for
quantifiers with multiple variable binding. We further need operational quantifiers and
fuzzification mechanisms which associate specifications and target quantifiers.

Definition 9 Afuzzy L-quantifier of type on E' # @ assigns a gradual interpretation

Q(Xy,...,X,) €10,1] to all fuzzy argumentX; € P(E'),i € {1,...,n}.

Definition 10 AnL-QFM F assigns to each semi-fuzzy quantifigof some type on
E +# o afuzzy L-quantifiefr(Q) of the same typeand on the same base g6t

Let me now associate with every L-QFJ¥ a corresponding ‘ordinary’ QFNFg. For
everyn-ary semi-fuzzy quantifie : P(E)" — [0,1], on E, let Q' denote ther-ary
quantifier onE! defined by’ (Ys,...,Y,) = Q' (9(Y1),...,0(Y,)) forvi,...,Y, €
P(EY), whered : E* — E is the mapping)((e)) = e for (e) € E'. Then let

Fr(Q)(X1, ..., X) = F(Q)AX1), .., B(X,)

forall Xy,..., X, € ﬁ(E), whereﬁ2 is obtained from3 : E — E! with 3(e) =
(e) by applying the standard extension principle. The induced fuzzy connectives and



extension principle ofF are identified with the connectives and extension principle
of the ordinary QFMF§. Based on these preparations, | can now develop criteria for
plausible L-models of fuzzy quantification which parallel my requirements on QFMs.
(The ‘rationale’ for these conditions is the same as above in each case).

(L-1) Correct generalisation. It is required thatF(Q)(Y1,...,Y,) = Q(Y1,...,Yy)
for all crisp argumenty; € P(E%), i € {1,...,n}; combined with the other
axioms, this condition can be restricted to quantifiers of types() ort = (1).

(L-2) Membership assessmentQuantifiers for membership assessment of the special
form 7 : P(EY) — {0,1} for somee € FE also qualify as two-valued L-
quantifiers of type(1) on E. These quantifiers should be mapped to their fuzzy
counterpartsr . of type (1) on E, i.e. we must haveF ((.)) = 7(c)-

(L-3) Dualisation. F preserves dualisation of quantifiers, iE(Q')(X1,...,X,) =
SF(Q)(Xy, ..., Xn_1,5 X,) for all fuzzy X; € P(EY) if Q'(Y1,...,Yn)
SQ(Y,...,Y,1,7Y,) forallcrispY; € P(E'),i € {1,...,n}.

(L-4) Union. F must be compatible with unions of arguments, i.e. we should expect
that F(Q') (X1, ..., Xpy1) = F(Q)(X1,..., Xn_1,X,, U X,,41) provided that
QYr,....Y41) =Q(Y1,..., Y1, Y, UY,11).

(L-5) Monotonicity in arguments. We require thatF preserve monotonicity in argu-
ments, i.e. ifQ is nondecreasing/nonincreasing in theh argument, theif (Q)
has the same property. (The condition can again be restricted to the cageishat
nonincreasing in ite-th argument).

(L-6) Functional application. Given a semi-fuzzy L-quantifigp of typet = (t1,...,t,)
on E, another typet/ = (¢|,...,t)) (samen), a setE’ # &, and mappings
fi: E'Y . Etiforie {1,...,n}, we can define a quantifi€}’ of typet' on E’

by Q' (Vi.....Y,) = QUA(Y1)..... Fu(Ya)) forall Y e PLE™) i € {1,....n}.

~

Itis required thatF(Q') (X1, ..., X») = F(Q)(F(f),(X1), ..., F(f), (Xn)) for
all fuzzy argumentsy; € (E'"),i € {1,...,n}.

Definition 11 An L-QFM which satisfies (L-1) to (L-6) is called &rDFS.

Theorem 1 For every L-DFSF, the corresponding QFNFR is a DFS.

Hence the generalized models are also suitable for carrying out ‘ordinary’ quantifica-
tion. Now letF be an ordinary QFM and lep) be a semi-fuzzy L-quantifier of type
t={t1,...,t,) ONE # @. Letm = max{ty,...,t,} and define; : Bt — E™
andk; : E™ — E% by

Ci(eh' . '7et,;) = (617~ sy €t —15€t, €ty e - ';eti)
Ki(er, ..., em) = (€1,...,€,)
fori € {1,...,n}. lintroduce am-ary semi-fuzzy quantifie®’ on E™ defined by

Q/(Yla tey Yn) = Q(El(yl N Cl(Etl))a s 7EH(YTL N CTL(Etn))) s

forall Yy,...,Y, € P(E™).



Definition 12 For every QFMF, the L-QFMF, is defined by

FL@)(X1, -, Xn) = FQ)(G (KX)o (X))
forall X; € P(E'),ie {1,...,n}.
Theorem 2 If Fis a DFS, thenF g = F, i.e. 1, properly generalizes.
Theorem 3 If F is a DFS, thenF, is an L-DFS, i.e. we obtain plausible models.

Theorem 4 If Fis an L-DFS, ther#Fr;, = F.

Hence every L-DFS’ can now be expressed &% = Fr,. The canonical construction
of Fr, thus permits the re-use 8flox and.F,. to handle fuzzy L-quantification.

4 Application to fuzzy branching quantification

Let me now reconsider the motivating example, “Many young and most old people re-
spect each other”. In this case, we have semi-fuzzy quantifiers many, defined by
many(Yy,Y2) = |Y1 NYs|/|Y1], say, and), = most Both quantifiers are nondecreas-
ing in their second argument, i.e. we can adopt eg. (1). The modification to gradual truth
values will be accomplished in the usual way, i.e. by replacing existential quantifiers
with sup and conjunctions withnin. The semi-fuzzy L-quantifie) of type (1,1, 2)
constructed fron®);, Q> then becomes

Q(A7B7R) - Sup{min(Ql(A7U)aQ2(va)) :UXxVC R}

forall A,B € P(E) andR € P(E?). By applying F, we then obtain the fuzzy L-
quantifier7(Q) suitable for computing interpretations. In the example, we have fuzzy
subsetyoung, old € 75(E) of young and old people, and a fuzzy relatisp 73(E2)

of people who respect each other. The interpretation of “Many young and most old
people respect each other” is then givenQ)(young, old, rsp).

Finally let me describe how Westedil's generic method for interpreting branch-
ing quantifiers can be applied in the fuzzy case. Henc&let)- be arbitrary semi-
fuzzy quantifiers of arityn = 2. | introduce nondecreasing and nonincreasing ap-
proximations of theQ,’s, defined byQ; (Y1,Y2) = sup{Qi(Y1,L) : L C Y>} and
Q; (Y1,Y2) = sup{Q;(Y1,U) : U D Y}, respectively. With the usual replacement of
existential quantification witkup and conjunction withnin, Westersihls formula [2,

p. 281, Def. 3.1] becomes:

Q(A7B7R) = Sup{min{Qf(A, Ul)aQér(BaVl)a I(Av U2)7Q5(va2>} :
(U1NA)x (VinB)C RN (A x B) C (UynA) x (Van B)}

forall A, B € P(E) andR € P(E?). We can then applyF to fetchF(Q). As shown
by Westersihl [2, p.284], his method results in meaningful interpretations provided
that (a)Q; andQ- are ‘logical’, i.e.Q;(Y1, Y2) can be expressed as a function Bf|



and|Y1 n Y2|, and (b) th@i,s SatiSnyi(Yl, Yg) > HllIl(C?z (le7 L)7 Qz ()/17 U) for all
L C Y, C U. The latter condition ensures th@; and (), can be recovered from
their nondecreasing approximatio@$ and their nonincreasing approximatiofs ,
i.e.Q; = min(Q;",Q; ). This is the case whef); and(Q, are nondecreasing in their
second argument (“many”), nonincreasing (“few”), or of unimodal shape (“about ten”,
“about one third"). An example with unimodal quantifiers, which demand the generic

method, is “About fifty young and about sixty old persons respect each other”.

5 Conclusion

In the paper, | proposed an extension of the DFS theory of fuzzy quantification with
Lindstrom-like quantifiers. Westel’s method based on Lindétn quantifiers which
assigns a meaningful interpretation to branching NL quantification was then extended
to approximate quantifiers and fuzzy arguments. The proposed analysis of reciprocal
constructions in terms of fuzzy branching quantifiers is important to linguistic data
summarization [9,10]. Many summarizers of interest express mutual (or symmetric) re-
lationships and can therefore be verbalized by a reciprocal construction. An ordinary
summary like €)1 X;'s are strongly correlated wity, X,'s” neglects the resulting
groups of mutually correlated objects. The proposed analysis in terms of branching
quantifiers, by contrast, permits me to support a novel type of summary specialized on
groups of interrelated objects. Branching quantification, in this view, is a natural lan-
guage technique for detecting such groups in the data. A possible summary involving a
reciprocal predicate is “The intake of most vegetables and many health-related indica-
tors are strongly associated with each other”.
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