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AG Technische Informatik, Universität Bielefeld, 33501 Bielefeld, Germany
iglockner@web.de

Abstract. Lindström [1] introduced a very powerful notion of quantifiers, which
permits multi-place quantification and the simultaneous binding of several vari-
ables. ‘Branching’ quantifification was found to be useful by linguists e.g. for
modelling reciprocal constructions like “Most men and most women admire each
other”. Westerst̊ahl [2] showed how to compute the three-place Lindström quanti-
fier for “Q1 A’s andQ2 B’sR each other” from the binary quantifiersQ1 andQ2,
assuming crisp quantifiers and arguments. In the paper, I generalize his method to
approximate quantifiers like “many” and fuzzy arguments like “young”. A con-
sistent interpretation is achieved by extending the DFS theory of fuzzy quantifica-
tion [3,4], which rests on a system of formal adequacy criteria. The new analysis
is important to linguistic data summarization because the full meaning of recip-
rocal summarizers (e.g. describing factors which are “correlated” or “associated”
with each other), can only be captured by branching quantification.1

1 Introduction

The quantifiers found in natural language (NL) are by no means restricted to the abso-
lute and proportional types usually considered in fuzzy set theory. The linguistic theory
of quantification, i.e. the Theory of Generalized Quantifiers (TGQ) [5,6], recognizes
more than thirty different types of quantifiers, including quantifiers of exception like
“all except about ten”, cardinal comparatives like “many more than” and many others
[6]. These quantifiers can be unary (like proper names in “Ronald isX”) or multi-place;
quantitative (like “about ten”) or non-quantitative (like “all except Lotfi”); and they can
be simplex or constructed, like “most marriedX ’s areY ’s or Z ’s”. However, it is not
only the diversity of possible quantifiers in NL which poses difficulties to a systematic
and comprehensive modelling of NL quantification. Even in simple cases like “most”,
the ways in which these quantifiers interact when combined in meaningful propositions
can be complex and sometimes even puzzling. Consider “Most men and most women
admire each other”, for example, in which we find a reciprocal predicate, “admire each
other”. Barwise [7] argues that so-called branching quantification is needed to capture
the meaning of propositions involving reciprocal predicates. Without branching quanti-
fiers, the above example must be linearly phrased as either

a. [mostx : men(x)][most y : women(y)] adm(x, y)
b. [most y : women(y)][mostx : men(x)] adm(x, y) .

1 The proofs of all theorems cited here are listed in [4].



Neither interpretation captures the expected symmetry with respect to the men and
women involved. In fact, we need a construction like

[Q1 x : men(x)]
[Q2 y : women(y)]

〉
adm(x, y)

whereQ1 = Q2 = most operate in parallel and independently of each other. This
branching use of quantifiers can be analysed in terms of Lindström quantifiers [1], i.e.
multi-place quantifiers capable of binding several variables. We then have three argu-
ments, andQ should bindx in men(x), y in women(y) and bothx, y in adm(x, y).
Thus, the above expression can be modelled by a Lindström quantifier of type〈1, 1, 2〉:

Qx,y,xy(men(x),women(y), adm(x, y)) .

Obviously, the interpretation ofQ depends on the meaning of “most” (majority of),
i.e. most(Y1, Y2) = 1 if |Y1 ∩ Y2| > 1

2 |Y1| and0 otherwise, whereY1, Y2 are crisp
subsets of the given universeE 6= ∅. The quantifierQ, on the other hand, accepts the
setsA,B ∈ P(E) (e.g. men and women), and the binary relationR ∈ P(E2) (people
admiring each other in the example). Barwise [7, p. 63] showed how to defineQ in
a special case; see also Westerståhl [2, p. 274, (D1)]. Hence suppose thatQ1 andQ2,
like “most”, are nondecreasing in their second argument, i.e.Q(Y1, Y2) ≤ Q(Y1, Y

′
2)

wheneverY2 ⊆ Y ′2 . The complex quantifierQ can then be expressed as:

Q(A,B,R) =
{

1 : ∃U × V ⊆ R : Q1(A,U) = 1 ∧Q2(B, V ) = 1
0 : else

(1)

In the following, I will extend this analysis to approximate quantifiers and fuzzy argu-
ments (“Many young and most old people respect each other”). To this end I describe
the assumed formal framework, then incorporating Lindström quantifiers which bind
several variables. Finally I apply the above analysis of branching quantifiers and its
generalization by Westerståhl to the modelling of fuzzy branching quantification.

2 The Linguistic Theory of Fuzzy Quantification

TGQ rests on a simple but expressive model of two-valued quantifiers, which offers a
uniform representation for the diversity of NL examples mentioned above. However,
TGQ was not developed with fuzzy sets in mind, and its semantic analysis is essentially
two-valued. To cover a broad range of fuzzy NL quantifiers, I hence developed the ‘DFS
theory’ of fuzzy quantification [4,3] which introduces the following basic notions.

Definition 1 An n-ary fuzzy quantifierQ̃ on a base setE 6= ∅ assigns a gradual
interpretationQ̃(X1, . . . , Xn) ∈ [0, 1] to all fuzzy subsetsX1, . . . , Xn ∈ P̃(E).

(P̃(E) is the fuzzy powerset). Fuzzy quantifiers are expressive operators, but hard to
define because the usual cardinality is not applicable to the fuzzy sets they process. We
hence need simplified specifications, powerful enough to embed all quantifiers of TGQ.



Definition 2 An n-ary semi-fuzzy quantifieron a base setE 6= ∅ assigns a gradual
resultQ(Y1, . . . , Yn) ∈ [0, 1] to all crispsubsetsY1, . . . , Yn ∈ P(E).

Semi-fuzzy quantifiers are much easier to define because the usual crisp cardinality is
applicable to their arguments. An interpretation mechanism is used to associate these
specifications with their matching fuzzy quantifiers:

Definition 3 A quantifier fuzzification mechanism(QFM)F assigns to each semi-fuzzy
quantifierQ a fuzzy quantifierF(Q) of the same arity and on the same base set.

The resulting fuzzy quantifiersF(Q) can then be applied to fuzzy arguments. In order
to ensure plausible results, the QFM should conform to all requirements of linguistic
relevance. My research into various such properties converged into the following system
of six basic postulates.

(Z-1) Correct generalisation.For all crisp argumentsY1, . . . , Yn ∈ P(E), we require
thatF(Q)(Y1, . . . , Yn) = Q(Y1, . . . , Yn). (Combined with the other axioms, this
condition can be restricted ton ≤ 1). Rationale:F(Q) should properly generalize
Q for crisp arguments.

(Z-2) Membership assessment.The two-valued quantifier defined byπe(Y ) =1 if e ∈
Y andπe(Y ) = 0 otherwise for crispY , has the obvious fuzzy counterpartπ̃e(X) =
µX(e) for fuzzy subsets. We require thatF(πe) = π̃e. Rationale: Membership as-
sessment (crisp or fuzzy) can be modelled through quantifiers. Whileπe checks if
e is present in its argument,̃πe returns the degree to whiche is contained in its
argument. It is natural to require thatπe be mapped tõπe, which serves the same
purpose in the fuzzy case.

The fuzzy connectives which best match a QFM are given by a canonical construction.

Definition 4 The induced truth functionF̃(f) : [0, 1]n −→ [0, 1] of f : {0, 1}n −→
[0, 1] is defined byF̃(f) = F(f ◦ η−1) ◦ η̃, whereη(y1, . . . , yn) = {i : yi = 1} for all
y1, . . . , yn ∈ {0, 1} andµη̃(x1,...,xn)(i) = xi for all xi ∈ [0, 1], i ∈ {1, . . . , n}.

WheneverF is understood, I abbreviatẽ∨ = F̃(∨), ¬̃ = F̃(¬) etc. These connectives
are extended to fuzzy set operations in the usual ways. The desired criteria involving
fuzzy complement and union can now be expressed as follows.

(Z-3) Dualisation. F preserves dualisation of quantifiers, i.e.F(Q′)(X1, . . . , Xn) =
¬̃ F(Q)(X1, . . . , Xn−1, ¬̃Xn) for X1, . . . , Xn ∈ P̃(E) givenQ′(Y1, . . . , Yn) =
¬̃Q(Y1, . . . , Yn−1,¬Yn) for all crisp arguments. Rationale: “AllA’s areB” and
“It is not the case that someA’s are notB’s” should be equivalent.

(Z-4) Union. F must be compatible with unions of arguments, i.e. we should expect
thatF(Q′)(X1, . . . , Xn+1) = F(Q)(X1, . . . , Xn−1, Xn ∪̃ Xn+1) provided that
Q′(Y1, . . . , Yn+1) = Q(Y1, . . . , Yn−1, Yn ∪ Yn+1). Rationale: This postulate per-
mits a compositional treatment of patterns like “ManyA’s areB’s orC ’s”

(Z-5) Monotonicity in arguments. F must preserve monotonicity in arguments, i.e. if
Q is nondecreasing/nonincreasing in thei-th argument, thenF(Q) has the same



property. (Combined with the other axioms, the condition can be restricted to non-
increasingQ). Rationale: The interpretation of “All men are tall” and “All young
men are tall” must be systematically different and the former statement expresses
the stricter condition.

The last criterion which I will state requires the extension of mappingsf : E −→ E′

to fuzzy powerset mappingsf ′ : P̃(E) −→ P̃(E′). The usual way of doing this is by

applying the standard extension principle. In this case, the extensionf ′ = ˆ̂
f becomes

µ ˆ̂
f(X)

(e′) = sup{µX(e) : e ∈ f−1(e′)} for all e′ ∈ E′. In order to define the sixth

criterion, I must admit other choices which match the existential quantifiersF(∃) of F .

Definition 5 Theinduced extension principleofF , denotedF̂ , mapsf to the extension
F̂(f) definedµF̂(f)(X)(e

′) = F(πe′ ◦ f̂), wheref̂(Y ) = {f(e) : e ∈ Y } for all
Y ∈ P(E).

(Z-6) Functional application. F must be compatible with ‘functional application’, i.e.
F(Q′)(X1, . . . , Xn) = F(Q)(F̂(f1)(X1), . . . , F̂(fn)(Xn)), where the semi-fuzzy
quantifierQ′ is defined byQ′(Y1, . . . , Yn) = Q(f̂1(Y1), . . . , f̂n(Yn)). Rationale:
F must behave consistently over different domainsE.

Definition 6 A QFMF which satisfies (Z-1) to (Z-6) is called adeterminer fuzzifica-
tion scheme (DFS).

(In linguistics, “most”, “almost all” etc. are called ‘determiners’). IfF induces¬x =
1−x and the standard extension principle, then it is called astandard DFS. Let us now
consider some properties of these models. IfF is a DFS, then

– F induces a reasonable set of fuzzy propositional connectives, i.e.¬̃ is a strong
negatioñ∧ is at-norm,∨̃ is ans-norm etc.

– F(∀) is aT -quantifier andF(∃) is anS-quantifier in the sense of Thiele [8].
– F is compatible with negations, e.g. “It is not the case that mostA’s areB’s”.
– F is compatible with the formation of antonyms, e.g. “MostA’s are notB’s”.
– F is compatible with intersections of arguments, e.g. “MostA’s areB’s andC ’s”.
– F is compatible with argument permutations. In particular, symmetry properties of

a quantifier are preserved by applyingF .
– F is compatible with crisp adjectival restriction, e.g. “Many marriedA’s areB’s”.

The models also account for some additional considerations of specifically linguistic
interest. For a comprehensive discussion of semantical properties and a description of
prototypical models, see [4]. These models includeMCX, a standard DFS which con-
sistently generalises the Sugeno integral and hence the ‘basic’ FG-count approach to
arbitraryn-place quantifiers. Due to its unique properties, this model is the preferred
choice for all applications that need to capture NL semantics. Another interesting ex-
ampleFowa, consistently generalises the Choquet integral and hence the ‘basic’ OWA
approach. An efficient histogram-based method for implementing quantifiers in these
models is described in [4].



3 Extension towards multiple variable binding

A Lindström quantifieris a classQ of (relational) structures of typet = 〈t1, . . . , tn〉,
such thatQ is closed under isomorphism [1, p. 186]. The cardinaln ∈ N specifies the
number of arguments; the componentsti ∈ N specify the number of variables that the
quantifier binds in itsi-th argument position. For example, the existential quantifier,
which accepts one argument and binds one variable, has typet = 〈1〉. The correspond-
ing classE comprises all structures〈E,A〉 whereE 6= ∅ is a base set andA ⊆ E is
nonempty. In the introduction, we already met with a more complex quantifierQ of type
〈1, 1, 2〉. In this case,Q is the class of all structures〈E,A,B,R〉withQ(A,B,R) = 1,
whereA,B ∈ P(E), R ∈ P(E2). To model quantifiers like “all except Lotfi”, which
depend on specific individuals, we must drop the assumption of isomorphism closure.
Hence, in principle, ageneralized Lindstr̈om quantifieris a classQ of relational struc-
tures of typet = 〈t1, . . . , tn〉. However, it is convenient to stipulate the following
alternative notions.

Definition 7 A two-valued L-quantifierof typet = 〈t1, . . . , tn〉 on a base setE 6= ∅

assigns a crisp quantification resultQ(Y1, . . . , Yn) ∈ {0, 1} to each choice of crisp
argumentsYi ∈ P(Eti), i ∈ {1, . . . , n}. A full two-valued L-quantifierQ of typet
assigns a two-valued L-quantifierQE of typet onE to each base setE 6= ∅.

Hence ‘full’ L-quantifiers are in one-to-one correspondence with generalized Lindström
quantifiers. The extension of L-quantifiers to gradual outputs should be obvious.

Definition 8 A semi-fuzzy L-quantifierof typet = 〈t1, . . . , tn〉 onE 6= ∅ assigns a
gradual resultQ(Y1, . . . , Yn) ∈ [0, 1] to all crispYi ∈ P(Eti), i ∈ {1, . . . , n}.

Thus,Q accepts crisp arguments of the indicated types, but it can express approximate
quantification. Semi-fuzzy L-quantifiers establish a uniform specification medium for
quantifiers with multiple variable binding. We further need operational quantifiers and
fuzzification mechanisms which associate specifications and target quantifiers.

Definition 9 A fuzzy L-quantifier of typet onE 6= ∅ assigns a gradual interpretation
Q̃(X1, . . . , Xn) ∈ [0, 1] to all fuzzy argumentsXi ∈ P̃(Eti), i ∈ {1, . . . , n}.

Definition 10 An L-QFM F assigns to each semi-fuzzy quantifierQ of some typet on
E 6= ∅ a fuzzy L-quantifierF(Q) of the same typet and on the same base setE.

Let me now associate with every L-QFMF a corresponding ‘ordinary’ QFMFR. For
everyn-ary semi-fuzzy quantifierQ : P(E)n −→ [0, 1], onE, letQ′ denote then-ary
quantifier onE1 defined byQ′(Y1, . . . , Yn) = Q′(ϑ̂(Y1), . . . , ϑ̂(Yn)) for Y1, . . . , Yn ∈
P(E1), whereϑ : E1 −→ E is the mappingϑ((e)) = e for (e) ∈ E1. Then let

FR(Q)(X1, . . . , Xn) = F(Q′)( ˆ̂
β(X1), . . . , ˆ̂

β(Xn))

for all X1, . . . , Xn ∈ P̃(E), where ˆ̂
β is obtained fromβ : E −→ E1 with β(e) =

(e) by applying the standard extension principle. The induced fuzzy connectives and



extension principle ofF are identified with the connectives and extension principle
of the ordinary QFMFR. Based on these preparations, I can now develop criteria for
plausible L-models of fuzzy quantification which parallel my requirements on QFMs.
(The ‘rationale’ for these conditions is the same as above in each case).

(L-1) Correct generalisation. It is required thatF(Q)(Y1, . . . , Yn) = Q(Y1, . . . , Yn)
for all crisp argumentsYi ∈ P(Eti), i ∈ {1, . . . , n}; combined with the other
axioms, this condition can be restricted to quantifiers of typest = 〈〉 or t = 〈1〉.

(L-2) Membership assessment.Quantifiers for membership assessment of the special
form π(e) : P(E1) −→ {0, 1} for somee ∈ E also qualify as two-valued L-
quantifiers of type〈1〉 on E. These quantifiers should be mapped to their fuzzy
counterparts̃π(e) of type〈1〉 onE, i.e. we must haveF(π(e)) = π̃(e).

(L-3) Dualisation. F preserves dualisation of quantifiers, i.e.F(Q′)(X1, . . . , Xn) =
¬̃ F(Q)(X1, . . . , Xn−1, ¬̃Xn) for all fuzzy Xi ∈ P̃(Eti) if Q′(Y1, . . . , Yn) =
¬̃Q(Y1, . . . , Yn−1,¬Yn) for all crispYi ∈ P(Eti), i ∈ {1, . . . , n}.

(L-4) Union. F must be compatible with unions of arguments, i.e. we should expect
thatF(Q′)(X1, . . . , Xn+1) = F(Q)(X1, . . . , Xn−1, Xn ∪̃ Xn+1) provided that
Q′(Y1, . . . , Yn+1) = Q(Y1, . . . , Yn−1, Yn ∪ Yn+1).

(L-5) Monotonicity in arguments. We require thatF preserve monotonicity in argu-
ments, i.e. ifQ is nondecreasing/nonincreasing in thei-th argument, thenF(Q)
has the same property. (The condition can again be restricted to the case thatQ is
nonincreasing in itsn-th argument).

(L-6) Functional application. Given a semi-fuzzy L-quantifierQ of typet = 〈t1, . . . , tn〉
on E, another typet′ = 〈t′1, . . . , t′n〉 (samen), a setE′ 6= ∅, and mappings

fi : E′t
′
i −→ Eti for i ∈ {1, . . . , n}, we can define a quantifierQ′ of typet′ onE′

byQ′(Y1, . . . , Yn) = Q(f̂1(Y1), . . . , f̂n(Yn)) for all Yi ∈ P(E′t
′
i), i ∈ {1, . . . , n}.

It is required thatF(Q′)(X1, . . . , Xn) = F(Q)(F̂(f)1(X1), . . . , F̂(f)n(Xn)) for

all fuzzy argumentsXi ∈ P̃(E′t
′
i), i ∈ {1, . . . , n}.

Definition 11 An L-QFM which satisfies (L-1) to (L-6) is called anL-DFS.

Theorem 1 For every L-DFSF , the corresponding QFMFR is a DFS.

Hence the generalized models are also suitable for carrying out ‘ordinary’ quantifica-
tion. Now letF be an ordinary QFM and letQ be a semi-fuzzy L-quantifier of type
t = 〈t1, . . . , tn〉 onE 6= ∅. Letm = max{t1, . . . , tn} and defineζi : Eti −→ Em

andκi : Em −→ Eti by

ζi(e1, . . . , eti) = (e1, . . . , eti−1, eti , eti , . . . , eti)
κi(e1, . . . , em) = (e1, . . . , eti)

for i ∈ {1, . . . , n}. I introduce ann-ary semi-fuzzy quantifierQ′ onEm defined by

Q′(Y1, . . . , Yn) = Q(κ̂1(Y1 ∩ ζ1(Et1)), . . . , κ̂n(Yn ∩ ζn(Etn))) ,

for all Y1, . . . , Yn ∈ P(Em).



Definition 12 For every QFMF , the L-QFMFL is defined by

FL(Q)(X1, . . . , Xn) = F(Q′)(ˆ̂
ζ1(X1), . . . , ˆ̂

ζn(Xn))

for all Xi ∈ P̃(Eti), i ∈ {1, . . . , n}.

Theorem 2 If F is a DFS, thenFLR = F , i.e.FL properly generalizesF .

Theorem 3 If F is a DFS, thenFL is an L-DFS, i.e. we obtain plausible models.

Theorem 4 If F is an L-DFS, thenFRL = F .

Hence every L-DFSF ′ can now be expressed asF ′ = FL. The canonical construction
of FL thus permits the re-use ofMCX andFowa to handle fuzzy L-quantification.

4 Application to fuzzy branching quantification

Let me now reconsider the motivating example, “Many young and most old people re-
spect each other”. In this case, we have semi-fuzzy quantifiersQ1 = many, defined by
many(Y1, Y2) = |Y1 ∩ Y2|/|Y1|, say, andQ2 = most. Both quantifiers are nondecreas-
ing in their second argument, i.e. we can adopt eq. (1). The modification to gradual truth
values will be accomplished in the usual way, i.e. by replacing existential quantifiers
with sup and conjunctions withmin. The semi-fuzzy L-quantifierQ of type 〈1, 1, 2〉
constructed fromQ1, Q2 then becomes

Q(A,B,R) = sup{min(Q1(A,U), Q2(B, V )) : U × V ⊆ R}

for all A,B ∈ P(E) andR ∈ P(E2). By applyingF , we then obtain the fuzzy L-
quantifierF(Q) suitable for computing interpretations. In the example, we have fuzzy
subsetsyoung,old ∈ P̃(E) of young and old people, and a fuzzy relationrsp ∈ P̃(E2)
of people who respect each other. The interpretation of “Many young and most old
people respect each other” is then given byF(Q)(young,old, rsp).

Finally let me describe how Westerståhl’s generic method for interpreting branch-
ing quantifiers can be applied in the fuzzy case. Hence letQ1, Q2 be arbitrary semi-
fuzzy quantifiers of arityn = 2. I introduce nondecreasing and nonincreasing ap-
proximations of theQi’s, defined byQ+

i (Y1, Y2) = sup{Qi(Y1, L) : L ⊆ Y2} and
Q−i (Y1, Y2) = sup{Qi(Y1, U) : U ⊇ Y2}, respectively. With the usual replacement of
existential quantification withsup and conjunction withmin, Westerst̊ahls formula [2,
p. 281, Def. 3.1] becomes:

Q(A,B,R) = sup{min{Q+
1 (A,U1), Q+

2 (B, V1), Q−1 (A,U2), Q−2 (B, V2)} :
(U1 ∩A)× (V1 ∩B) ⊆ R ∩ (A×B) ⊆ (U2 ∩A)× (V2 ∩B)}

for all A,B ∈ P(E) andR ∈ P(E2). We can then applyF to fetchF(Q). As shown
by Westerst̊ahl [2, p.284], his method results in meaningful interpretations provided
that (a)Q1 andQ2 are ‘logical’, i.e.Qi(Y1, Y2) can be expressed as a function of|Y1|



and|Y1 ∩ Y2|; and (b) theQi’s satisfyQi(Y1, Y2) ≥ min(Qi(Y1, L), Qi(Y1, U) for all
L ⊆ Y2 ⊆ U . The latter condition ensures thatQ1 andQ2 can be recovered from
their nondecreasing approximationsQ+

i and their nonincreasing approximationsQ−i ,
i.e.Qi = min(Q+

i , Q
−
i ). This is the case whenQ1 andQ2 are nondecreasing in their

second argument (“many”), nonincreasing (“few”), or of unimodal shape (“about ten”,
“about one third”). An example with unimodal quantifiers, which demand the generic
method, is “About fifty young and about sixty old persons respect each other”.

5 Conclusion

In the paper, I proposed an extension of the DFS theory of fuzzy quantification with
Lindström-like quantifiers. Westerståhl’s method based on Lindström quantifiers which
assigns a meaningful interpretation to branching NL quantification was then extended
to approximate quantifiers and fuzzy arguments. The proposed analysis of reciprocal
constructions in terms of fuzzy branching quantifiers is important to linguistic data
summarization [9,10]. Many summarizers of interest express mutual (or symmetric) re-
lationships and can therefore be verbalized by a reciprocal construction. An ordinary
summary like “Q1 X1’s are strongly correlated withQ2 X2’s” neglects the resulting
groups of mutually correlated objects. The proposed analysis in terms of branching
quantifiers, by contrast, permits me to support a novel type of summary specialized on
groups of interrelated objects. Branching quantification, in this view, is a natural lan-
guage technique for detecting such groups in the data. A possible summary involving a
reciprocal predicate is “The intake of most vegetables and many health-related indica-
tors are strongly associated with each other”.
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