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Abstract. The use of logic in question answering (QA) promises better
accuracy of results, better utilization of the document collection, and a
straightforward solution for integrating background knowledge. However,
the brittleness of the logical approach still hinders its breakthrough into
applications. Several proposals exist for making logic-based QA more
robust against erroneous results of linguistic analysis and against gaps
in the background knowledge: Extracting useful information from failed
proofs, embedding the prover in a relaxation loop, and fusion of logic-
based and shallow features using machine learning (ML). In the paper,
we explore the effectiveness of these techniques for logic-based passage
filtering in the LogAnswer question answering system. An evaluation on
factual question of QA@CLEF07 reveals a precision of 54.8% and recall
of 44.9% when relaxation results for two distinct provers are combined.1

1 Introduction

The necessity to incorporate reasoning capabilities into QA systems was recog-
nized as early as 2000 in the NIST roadmap for question answering [1]. Today,
there is also experimental evidence for the claim that question answering can
profit from the use of logical subsystems: A comparison of answer validators in
the Answer Validation Exercise 2006 found that systems reported to use logic
generally outperformed those without logical reasoning [2]. There is also evidence
from the related task of Recognizing Textual Entailment (RTE) that a high ac-
curacy of entailment recognition can only be achieved by structure-sensitive
methods like logic or graph matching [3]. And the best system in the TREC
2006 evaluation of QA systems, PowerAnswer [4], made use of a theorem prover.
However, the logical approach suffers from brittleness: A proof of the question
from a document of interest and the background knowledge succeeds only if
the question and document are analyzed correctly and if every piece of knowl-
edge required to prove the question is actually available in the knowledge base.
1 Funding of this work by the DFG (Deutsche Forschungsgemeinschaft) under con-
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Therefore the successful applications of logic mentioned above resort to robust
methods for logic-based knowledge processing, which show a graceful degrada-
tion of results when there are errors of linguistic analysis or knowledge gaps. In
this paper, we are interested in robustness-enhancing techniques which can be
added to existing theorem provers with minor internal changes. Therefore we do
not try to build an approximate inference engine by adopting an approximate
graph matcher like [5] and adding support for logical rules – this would almost
amount to building a prover from scratch. More suitable solutions are the ex-
traction of useful information from failed proofs [6], combining logic-based and
shallow features using machine learning [7,8], and finally relaxation techniques
[4,6] which reduce the query by subsequently dropping literals until a proof of
the simplified query succeeds. But relaxation does not necessarily find the largest
provable query fragment, since it only inspects a single sequence of simplifica-
tion steps. Moreover the choice of skipped literals usually depends on factors like
internal literal order of the prover which are arbitrary to some degree. We there-
fore propose to abstract from such idiosyncratic aspects by combining relaxation
results of two different provers. The effectiveness of the relaxation approach is
explored in a logical passage filtering task. We also study the effectiveness of
robustness-enhancing techniques like extracting useful information from failed
proofs and combining logical features with shallow ones by machine learning.

The remainder of the paper is organized as follows. Section 2 introduces the
LogAnswer QA system which provides the testbed for the experiments. Section 3
describes the two provers used by LogAnswer and discusses some possible combi-
nations of the relaxation results of both provers. Section 4 presents the results of
passage filtering experiments for several robustness-enhancing techniques. The
main results of the paper are summarized in Sect. 5.

2 Overview of the LogAnswer System

This section sketches the architecture of the LogAnswer QA system which forms
the basis for the experiment described in the paper. The main innovation of Log-
Answer is its use of logic for filtering retrieved passages and for answer extraction.
By avoiding the inefficiency of answer validation, LogAnswer answers questions
in only a few seconds [8]. The system comprises the following processing stages.

Question Analysis. WOCADI [9], a robust parser for German, is used for a deep
linguistic analysis of the given question. The syntactic-semantic analysis results
in a semantic representation expressed in the MultiNet formalism [10].

Passage Retrieval. The IRSAW QA framework [11] is used for finding passages
with a standard IR approach. Using WOCADI, all texts are analyzed prior to
indexing, so that no documents must ever be parsed at query time.

Query Construction. The semantic network for the question is finally turned into
a conjunctive list of query literals. This step involves a synonym normalization by
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replacing all lexical concepts with canonical synset representatives. For example,
the question Wie hieß der Sänger von Nirvana?2 translates into the logical query

val(X1, nirvana.0), sub(X1, name.1.1), attr(X2, X1), attch(X2, X3),

sub(X3, gesangsolist.1.1), subs(X4, heißen.1.1), arg1(X4, X3), arg2(X4, FOCUS)

based on the lexical concepts (word senses) nirvana.0 (Nirvana), name.1.1 (name),
gesangssolist.1.1 (singer soloist), and heißen.1.1 (be named). Here synonym nor-
malization has replaced sänger.1.1 (singer) with the canonical gesangssolist.1.1
(singer soloist). The FOCUS variable represents the queried information.

Robust Entailment Test. The basic idea of the logic-based passage filtering is
that the passage contains a correct answer to the question if there is a proof of
the question from the passage representation and the background knowledge.3

A relaxation loop is used to gain more robustness. Suitable provers must be able
to return the proven portion of a query in the case of a failed proof, and also
identify the literal which caused a complete proof to fail. The relaxation process
then skips the failed literal and tries to prove the resulting query fragment.
The process can be repeated until a proof of the remaining query succeeds, and
the skip count is a useful feature for recognizing (non-)entailment. Consider the
question for the Nirvana lead singer, and this passage (translated from German):
Fans and friends of the lead singer of US-American rock band Nirvana reacted
with grief and dismay to the suicide of Kurt Cobain this weekend. Here the
parser misses a coreference and produces two distinct entities for Cobain and the
Nirvana lead singer. Thus the system finds only a relaxation proof with skipped
literals sub(X3, gesangsolist.1.1), attch(X2, X3) and the FOCUS variable bound
to Kurt Cobain. In practice, relaxation is stopped before all literals are proved
or skipped. One can then only state upper/lower bounds on the provable literal
count, assuming that all (or none) of the remaining literals are provable.

Feature Extraction. The classification of passages rests on the following logic-
based features which depend on the chosen limit on relaxation cycles:

– skippedLitsLb Number of literals skipped in the relaxation proof.
– skippedLitsUb Number of skipped literals, plus literals with unknown status.
– litRatioLb Relative proportion of actually proved literals compared to the

total number of query literals, i.e. 1 − skippedLitsUb/allLits.
– litRatioUb Relative proportion of potentially provable literals (not yet

skipped) vs. all query literals, i.e. 1 − skippedLitsLb/allLits.
– boundFocus Fires if a relaxation proof binds the queried variable.
– npFocus Indicates that the queried variable was bound to a constant which

corresponds to a nominal phrase (NP) in the text.
– phraseFocus Signals that extraction of an answer for the binding of the

queried variable was successful.

2 What was the name of the singer of Nirvana?
3 LogAnswer uses the same background knowledge as the MAVE answer validator [6].
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A simplistic solution for answer extraction is used for computing the phraseFocus
feature. The method leverages information on word alignment, as provided by the
parser for nominal phrases (NPs), in order to find answer strings for the bindings
of the queried variable. This is done by cutting verbatim text from the original
text passage. The basic idea behind the boundFocus, npFocus and phraseFocus
features is that the ability of the answer extraction stage to verbalize the answer
binding might also have something to say about the relevance of the passage.

In addition to the logic-based features, five ‘shallow’ features are used which
do not require a deep parse and can be computed without the help of the prover:

– failedMatch Number of lexical concepts and numerals in the question which
cannot be matched with the candidate document.

– matchRatio Relative proportion of lexical concepts and numerals in the ques-
tion which find a match in the candidate document.

– failedNames Proper names mentioned in the question, but not in the passage.
– irScore Original passage score of the underlying passage retrieval system.
– containsBrackets Indicates that the passage contains a pair of parentheses.

The matching technique used to obtain the values of these shallow features also
takes into account lexical-semantic relations (e.g. synonyms and nominaliza-
tions), see [6]. The containsBrackets feature is motivated as follows: Often the
queried information is contained in parentheses, e.g. ‘Kurt Cobain (Nirvana)’,
but the linguistic parser has difficulty finding the relationship between the ba-
sic entity and the information given in brackets. Thus containment of a pair of
brackets in the passage is significant to the relevance judgement.

ML-based Passage Classification. The Weka machine learning toolbench [12]
is used for learning the mapping from features of retrieved passages to yes/no
decisions concerning containment of a correct answer in the considered passage.
The low precision of the original passage retrieval step means a strong disbalance
between positive and negative examples in the data sets. In order to emphasize
the results of interest (i.e. positive results) and achieve sufficient recall, cost-
sensitive learning is applied. In the experiments, false positives were weighted
by 0.3 while a full weight of 1 was given to lost positives (i.e. false negatives).The
Weka Bagging learner with default settings is used as the classifier. It is wrapped
in a Weka CostSensitiveClassifier to implement the cost-sensitive learning.

3 Combining Provers for Increased Robustness

This section introduces the two provers used by LogAnswer for logic-based pas-
sage filtering and answer extraction. It then discusses how these provers can be
combined for improving robustness of knowledge processing.

3.1 The Regular MultiNet Prover

LogAnswer is equipped with a dedicated prover for MultiNet representations,
which is part of the MWR+ toolbench.4 The MultiNet prover is, in principle,
4 See http://pi7.fernuni-hagen.de/research/mwrplus

http://pi7.fernuni-hagen.de/research/mwrplus
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a regular prover for Horn logic based on SLD resolution. To be precise, the
supported logic is even more restricted since the additional assumption is made
that all facts are variable-free and that (after skolemization), all variables which
occur in the conclusion of a rule also occur in its premise. On the other hand,
the prover offers builtin support for special MultiNet constructions (e.g. efficient
access to so-called layer features of conceptual nodes and a builtin subsump-
tion check for MultiNet sorts). The prover also offers special support for rules
with complex (conjunctive) conclusions which are useful for modelling natural
language-related inferences. The translation into Horn logic splits such rules into
several clauses, which is inefficient because typically all literals in the conclusion
are needed when the rule is applied. The MultiNet prover solves this problem by
keeping track of complex conclusions. When applying such a rule, the complex
conclusion is cached as a lemma in order to shortcut proofs of other literals from
the derived conclusion. The knowledge base can be split into several partitions
which can be flexibly combined or exchanged as needed. Iterative deepening is
used to control the search. While very limited in expressive power, the Multi-
Net prover is extremely fast, and proving a question from a passage usually
takes less than 20ms [8]. The prover has been systematically optimized both
for speed and scalability by utilizing term indexing, caching, lazy computation
(index structures are only built on demand), by optimizing the order in which
literals are proved, and by removing performance bottlenecks with the help of
profiling tools.

3.2 Description of the E-KRHyper Prover

E-KRHyper is an automated theorem proving and model generation system for
first-order logic with equality [13]. It is an implementation of the E-hyper tableau
calculus [14], which integrates a superposition-based handling of equality into the
hyper tableau calculus [15]. E-KRHyper is the latest version in the KRHyper-
series of theorem provers, developed at the University Koblenz-Landau. Designed
for use as an embedded knowledge-processing engine, it has been employed in
a number of knowledge-representation applications. E-KRHyper is capable of
handling large sets of uniformly structured input facts. The system can provide
proof output for models and refutations, and it is able to rapidly switch and
retract input clause sets for an efficient usage as a reasoning server. E-KRHyper
accepts input first-order input in the common TPTP syntax [16].

The principal data structure used in the operation of E-KRHyper is the
E-hyper tableau, a tree labeled with clauses and built up by the application
of the inference rules of the E-hyper tableau calculus. The tableau is generated
depth-first, with E-KRHyper always working on a single branch. Refutational
completeness and a fair search are ensured by iterative deepening with a limit
on the maximum term weight of generated clauses.

Embedded in the LogAnswer system, E-KRHyper is supplied with the Multi-
Net axioms transformed into first-order TPTP syntax. The inference process
then operates on the axioms and the negated query literals, with a refutation
result indicating a successful answer and providing the binding for the queried
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variable. If the reasoning is interrupted due to exceeding the time limit, then
partial results can be retrieved that can guide in the relaxation process.

3.3 Methods for Combining Prover Results

Due to the use of two provers, a pair of results is obtained for each logic-based
feature. The most basic approach for incorporating these features into the ma-
chine learning approach is juxtaposition (JXT), i.e. both results for each feature
are kept and directly passed to the ML method. This method leaves the inter-
pretation of the data entirely to machine learning.

Another approach (OPT) rests on the observation that the relaxation method
is generally pessimistic, since it does not necessarily find the largest provable
query fragment. This suggests an optimistic combination of relaxation features:

skippedLitsLb = min(skippedLitsLb1, skippedLitsLb2),
skippedLitsUb = min(skippedLitsUb1, skippedLitsUb2),

litRatioLb = max(litRatioLb1, litRatioLb2),
litRatioUb = max(litRatioUb1, litRatioUb2).

The other logical features are chosen according to the best value of skippedLitsLb.
Thus, if skippedLitsLb1 < skippedLitsLb2, then boundFocus = boundFocus1,
npFocus = npFocus1 and phraseFocus = phraseFocus1 using the results of the
regular MultiNet prover. Otherwise the values of these features are provided by
E-KRHyper. Notice that E-KRHyper sees slightly different queries compared to
the MultiNet prover, which is due to the transformation of the queries from the
MultiNet format into TPTP formulas. A scaling by query length is necessary so
that both prover results refer to the same number of query literals.

4 Evaluation

The questions of the CLEF07 QA track for German served as the starting point
for the evaluation, since they target at the corpora currently supported by the
IRSAW IR module (CLEF News and Wikipedia).5 From the full set of 200 ques-
tions, all follow-up questions were eliminated since discourse processing is not
of relevance here. Definition questions were omitted as well since knowing the
logical correctness of an answer is not sufficient for deciding if it is suitable as a
definition. The remaining 96 factual questions were checked for parsing quality
and two questions for which construction of a logical query failed and one outlier
question with an unusually high number 37 supporting passages were discarded.
For each of the remaining 93 questions in the test set, IRSAW retrieved up to
200 one-sentence snippets from the pre-analyzed corpora, resulting in a total of
18,500 candidate passages. The snippets with an incomplete parse were elimi-
nated since they cannot be handled by logical processing. The 12,377 passages
5 See http://www.clef-campaign.org/2007.html

http://www.clef-campaign.org/2007.html
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Table 1. Quality of passage filtering as a function of allowable relaxation steps n.
Abbreviations: RMP (regular MultiNet prover), KRH (E-KRHyper), JTX (juxtaposi-
tion), OPT (optimistic combination), IRB (information retrieval baseline, using irScore
only), SHB (shallow baseline, using all shallow features). The 0� runs use strict proofs
and logical features. The 0s runs use strict proofs and both logical and shallow features.

model n precision recall F-score
RMP 0� 0.786 0.043 0.082
RMP 0s 0.46 0.457 0.458
RMP 0 0.471 0.421 0.445
RMP 1 0.458 0.386 0.419
RMP 2 0.502 0.398 0.444
RMP 3 0.505 0.409 0.452
RMP 4 0.453 0.382 0.415
KRH 0� 0.702 0.13 0.219
KRH 0s 0.449 0.449 0.449
KRH 0 0.462 0.429 0.445
KRH 1 0.490 0.390 0.434
KRH 2 0.565 0.378 0.453
KRH 3 0.533 0.386 0.447
KRH 4 0.518 0.402 0.452
IRB – 0.291 0.098 0.147

model n precision recall F-score
JXT 0� 0.702 0.13 0.219
JXT 0s 0.443 0.441 0.442
JXT 0 0.513 0.461 0.485
JXT 1 0.464 0.402 0.430
JXT 2 0.518 0.390 0.445
JXT 3 0.488 0.398 0.438
JXT 4 0.463 0.394 0.426
OPT 0� 0.688 0.043 0.081
OPT 0s 0.462 0.449 0.455
OPT 0 0.496 0.441 0.467
OPT 1 0.435 0.394 0.413
OPT 2 0.493 0.413 0.450
OPT 3 0.548 0.449 0.494
OPT 4 0.514 0.433 0.470
SHB – 0.433 0.421 0.427

with a full parse (133 per query) were annotated for containment of a correct
answer to the question, starting from CLEF07 annotations. The annotation re-
vealed that only 254 of the 12,377 passages really contain an answer.

Table 1 shows the precision, recall, and F-measure for the individual provers
and for the best combinations that were tried, along with baseline results for
exact proofs and for shallow features. These results were obtained by the cost-
sensitive learning approach described in Section 2, using 10-fold cross validation.
Compared to the IBS run only based on the irScore of the passage retrieval
system, all regular runs show a dramatic improvement. The shallow processing
baseline (SHB) demonstrates the potential of suitably chosen shallow features:
Adding the irScore and containsBrackets features now increased the F-score of
the SHB to 42.7%, compared to 36% in earlier work on the same dataset [8].
The brittleness of the logical approach reflects in very poor retrieval scores when
using only logic-based features and exact proofs, see runs labeled ‘0�’. However,
as shown by the ‘0s’ runs, combining the logical features based on exact proofs
with the shallow features through ML eliminates the brittleness. The results
obtained in this way (in particular the RMP-0s run with an F-score of 45.8%)
also clearly outperform the shallow feature baseline. As witnessed by the RMP-
n and KRH-n results for n ∈ {0, . . . , 4}, the methods for extracting plausible
answer bindings for failed proofs and relaxation show no clear positive effect
compared to combining exact proofs with shallow features when a single prover
is used. An improvement only occurs when results of two provers are combined.
The JXT method which juxtaposes the features determined by the two provers
shows good filtering results for n = 0 relaxation steps (with an F-score of 48.5%)
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but does not appear to work very well otherwise. The OPT method shows more
stable performance. For n = 3, it achieves the best result in this experiment,
with a relative improvement of 7.9% over the best F-score for a single prover.

5 Conclusions

We have discussed robustness-enhancing techniques developed for logical pas-
sage filtering in the LogAnswer QA system. The evaluation on factual questions
of CLEF07 revealed that combining logic with shallow features using an ML
classifier is the most effective technique for increasing robustness. For relaxation
and extracting answer bindings for failed proofs, an improvement over the use of
shallow features was only achieved when results of two provers were combined.
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2. Peñas, A., Rodrigo, Á., Sama, V., Verdejo, F.: Overview of the answer validation
exercise 2006. In: Working Notes for the CLEF 2006 Workshop (2006)

3. Giampiccolo, D., Magnini, B., Dagan, I., Dolan, B.: The third PASCAL recognizing
textual entailment challenge. In: Proc. of the Workshop on Textual Entailment and
Paraphrasing, Prague, June 2007, pp. 1–9. ACL (2007)

4. Moldovan, D., Bowden, M., Tatu, M.: A temporally-enhanced PowerAnswer in
TREC 2006. In: Proc. of TREC-2006, Gaithersburg, MD (2006)

5. Haghighi, A.D., Ng, A.Y., Manning, C.D.: Robust textual inference via graph
matching. In: Proc. of HLT/EMNLP 2005, Vancouver, BC, pp. 387–394 (2005)
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