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Abstract

The paper presents an answer validation system
based on robust textual inference. The system is
evaluated on the AVEOG6 test set for German. Ab-
lation experiments are used to determine the con-
tribution of functional components and knowledge
sources to the achieved validation quality. We
demonstrate the utility of the approach for filter-
ing answers and for the fusion of several answer
sources into a single most trusted answer.

Topics: Answer Validation, Robust Textual Infer-
ence, Information Fusion/Integration, Evaluation.

1 Introduction

Question answering (QA) systems like COGEX [10], QUE-
TAL [2] or InSicht [6] show impressive performance in an-
swering factual questions over large corpora of unrestricted
text. Though these systems use some limited form of infer-
ence, the integration of powerful reasoning capabilities into
QA systems is still a challenging task, and naive applica-
tion of a theorem prover to the knowledge base with several
millions of facts, which is needed to describe the contents
of all documents, will likely not result in acceptable perfor-
mance. The QA system must thus find a trade-off between ex-
ploration of sufficiently many potentially relevant document
passages, and exploitation of each potentially relevant answer
candidate (e.g. by means of a logical entailment check). An
apparent solution is provided by a two-stage approach: a fast
high-recall stage based on simple techniques (which serves as
a generator for answer candidates) coupled with a subsequent
answer validation filter which analyzes the answer candidates
more deeply in order to find the intended answers.

Due to the proliferation of QA techniques and imple-
mented QA systems which complement each other, it makes
sense to build multi-source QA systems like that of Ahn et
al [1] which combine several question-answer streams into
an integrated QA result. Again, answer validation is the key
technique for selecting the correct answers from such an en-
semble of question-answer streams.

The Answer Validation Exercise (AVE) of the CLEF 2006
system evaluation campaign has introduced annotated test
collections and an evaluation methodology for answer vali-
dation systems [11]. The validation exercise consists in the

verification of answers based on a description of the test case
by a hypothesis (answer in affirmative form), supporting text
snippet, and possibly the original question.

e Question: “In welchem Jahr ereignete sich die Katas-
trophe von Tschernobyl?” (En: ‘In which year occurred
the Chernobyl disaster?’)

o Answer: “Am 26. April 1986.” (‘On April 26, 1986°)

e Hypothesis: “Die Katastrophe von Tschernobyl ereig-
nete sich am 26. April 1986.” (En: ‘The Chernoby]l dis-
aster occurred on April 26, 1986.”)

o Snippet: “In Tschernobyl ereignete sich am 26. April
1986 die grosste Katastrophe in der zivilen Nutzung der
Atomenergie.” (‘The worst disaster in civil use of nu-
clear power occurred on April 26, 1986 in Chernobyl.”)

e Result: YES, confidence: 1.0.

The main part of the paper is organized as follows: It first
introduces MAVE (Multinet-based Answer Verification), the
best-performing! system in the CLEF 2006 answer valida-
tion exercise for German, and explains its use of indicators
and robust textual inference for solving answer validation
tasks. The system in its current form is then evaluated on
the AVE 2006 test set, and the results of various experiments
are reported which determine the effects of normalizing syn-
onymous terms; of covering nominalizations; of resolving
anaphoric references; of modelling the relationships between
situations and subsituations; of using false-positive tests; of
gathering evidence from the original question; and of the ro-
bust proving technique based on a relaxation loop for the log-
ical prover. We demonstrate the utility of MAVE as a filter for
QA streams and finally assess its suitability for fusing collec-
tions of answer candidates into a single preferred QA result.

2 System description

Preprocessing The hypotheses in the AVEQ6 test set re-
sult from a simple slot filling method which does not ensure
proper German syntax (e.g. by adapting inflection). Conse-
quently hypotheses are very often syntactically and semanti-
cally defective (e.g. “im Jahre 26. April 1986”, En: ‘in the
year April 26, 1986’). Snippet extraction by the QA systems

IThree systems took part in AVE 2006 for German, and MAVE
produced the best two runs of the five submitted by all participants.



typically ignores sentence, phrase, or even word boundaries.
Many snippets also contain artefacts of named entity recog-
nizers, i.e. collapsed terms like ‘Gianni_Versace’. MAVE
uses regular correction patterns for hypotheses and snippets to
gain robustness against such errors in the inputs. Thus, the de-
fective calendar date is corrected to “am 26. April 1986” (En:
‘on April 26, 1986°), and the collapsed name is expanded to
‘Gianni Versace’, restoring blank characters.

Deep linguistic analysis The WOCADI parser [5] is used
to construct a MultiNet representation [8] of the NL input
(i.e. question, hypothesis, and snippet text). WOCADI also
extracts features of the text at various levels: lemmata, results
of lexical analysis (alternative and actual readings), and coref-
erence information about possible antecedents of anaphora.

Postprocessing The refinement of the semantic representa-
tion constructed by the parser comprises the following steps.

o Assimilation (anaphor resolution) based on the corefer-
ence assignment determined by WOCADI,

e Normalization of synonyms: Synonymy relationships
between lexemes are used for replacing all lexi-
cal constants in the knowledge representation with
canonical representations (e.g. ereignen.l.l —
eintreffen.1.2 for En: ‘occur’). More than 1,000
synonymy relationships from HaGenLex plus 525 addi-
tional synonyms and near-synonyms for frequent terms
in the QA @CLEF corpus are used for normalizing lexi-
cal constants in MultiNet graphs and logical axioms.

e Normalisation and simplification of the semantic rep-
resentation by transformation rules, e.g. elimination of
modalities like “konnen” (En: ‘can’) and “miissen”
(En: ‘must ’) from the representation of queries. Fine-
grained information about the facticity status of all dis-
course entities is already provided by the formalism (see
[8]) but not yet used in the first prototype of MAVE.

e Construction of logical query (pattern of query literals
with cardinality constraints for numeric expressions).

Example: “Die Katastrophe von Tschernobyl ereignete sich
am 26. April 1986.” (En: ‘The Chernobyl disaster occurred
on April 26, 1986°):

(subs X1 "katastrophe.l.1l") (exp !FOCUS X1)
temp !FOCUS X2) (subs !FOCUS "eintreffen.1.2"
attch X3 X1) (attr X3 X4) (sub X3 "stadt.l1.1"

(
(
(
(sub X4 "name.l.1") (val X4 "tschernobyl.O0")
(
(
(
(

attr X2 X5) (attr X2 X6) (attr X2 X7)

val X5 (X8 (card 26))) (sub X5 "tag.l.1")
val X6 (X9 (card 4))) (sub X6 "monat.1l.1")
val X7 (X10 (card 1986))) (sub X7 "jahr.1.1")

The example shows the normalisation of ereignen.1.1
to the synonym eintreffen. 1. 2. There are three numer-
ical constraints, e.g. (val X7 (X10 (card 1986)))
which enforces a cardinal value of 1986 for X10.

Indicator extraction A total of 46 indicators is computed
from the parsing results of WOCADI and subsequent logical

)
)

)

inference and matching. However, only 9 indicators were ac-
tually used in the first MAVE prototype (for details see [3]):

e hypo-triviality Lemma repetition rate. Helps de-
tect trivial hypotheses like “Gianni Versace is Gianni
Versace” where typically hypo-triviality > 0.8.

e hypo-num-sentences Sentence count for hypothe-
sis. A value other than one indicates a parsing error.

e hypo-collapse Size of query pattern divided by
the number of content words in the hypothesis. If
hypo-collapse < 0.7, the parser has likely dropped
parts of the sentence in the semantical representation.

e hypo-missing-constraints Numbers in the text
must be expressed by numerical constraints in the gen-
erated query. The indicator counts expected constraints
not found in the query pattern due to parsing errors.

e hypo-failed-literals The prover is embedded
into a relaxation loop. If a proof fails, the longest prov-
able prefix of the sorted literal list is determined, the next
(failed) literal is removed from the question pattern and
a new proof is attempted with the simplified query. In
this way, one obtains a proof and an answer substitution
as well as a (possibly empty) list of failed literals for ev-
ery query. The indicator counts the number of skipped
literals. 0 means provability in a strict sense.

e question-failed-literals In order to make
MAVE more robust against syntactic errors in hypothe-
ses, a proof of the original question is also attempted
if the question is known. The indicator measures the
numt%er of non-provable question literals obtained in this
case.

e question-missing—-constraints counts the
missing numerical constraints in the logical query gen-
erated from the original question of the QA system.

e hypo-delta-concepts If a proof of the original
question succeeds, the hypothesis will be compared to
the answer found by MAVE in order to validate its cor-
rectness. As a prerequisite, hypo-delta—-concepts
counts the number of content words and numbers in the
answer part of the hypothesis (i.e. the part of the hypoth-
esis overlapping with the original question is excluded
from counting). Example: For “The Chernobyl disas-
ter occurred on April 26, 1986, the answer part (‘hy-
pothesis delta’) is “on April 26, 1986”. Three concepts
or numbers are extracted for subsequent matching: 26,
("april.1.1"14), 1986.

e hypo-delta-matched The proof of the original
question as determined by MAVE involves literals which
contain discourse referents from the snippet representa-
tion. Each discourse entity gets a vote which it equally
distributes over all sentences whose representation con-
tains the discourse entity after assimilation. Thus, if
‘Chernobyl’ occurs in the proof of the question (as a

ZNotice that all question-related indicators will be ignored when
only hypothesis and snippet are specified.



binding of a variable of a literal) and if Chernobyl is ref-
erenced in two sentences of the snippet, then a vote of
0.5 will be added to the accumulated score of both sen-
tences. This will be done for all discourse entities refer-
enced in the proof of the original question, and that sen-
tence which receives the highest accumulated vote will
be chosen as the most important sentence of the snippet
for answering the question. The syno-normalised lex-
ical constants and numbers from the ‘hypothesis delta’
are then matched with the syno-normalised concepts and
numbers in this main sentence, resulting in the number
hypo-delta-matched of successful matches.

Aggregation of indicators An indicator evaluation lan-
guage was implemented for aggregating indicators. Indi-
cators are represented as variables which are automatically
bound to the appropriate values of a given AVE test case. The
language also offers means for coping with undefined values
of indicators. Disregarding such undefined cases for simplic-
ity (the exact formula is explained in [3]), the selection crite-
rion of MAVE can be expressed as:

acceptg = ~false-positiveA
(h-evidenceVg-evidence)

false-positive = (hypo-triviality >0.8)V
(hypo-num-sentences = 2)

h-evidence = -hypo-false-positiveA
(hypo-missing-constraints
+hypo-failed-literals <0)

hypo-false-positive = (hypo-collapse < 0.7)

g-evidence = ~question-false-positiveA
(question-failed-literals
+ question-missing-constraints

+hypo-delta-concepts —hypo-delta-matched < 6)

question-false-positive = (hypo-delta-matched =0)

The acceptance criterion thus depends on the allowable num-
ber of differences 0 from perfect provability/matching.

Knowledge resources The background KB of MAVE com-
prises 2,484 basic facts (edges of the MultiNet graph) involv-
ing 4,666 lexical constants:

e approx. 2,000 lexico-semantic relationships from Ha-
GenLex [7] (e.g. describing nominalizations)

e 500 additional facts (e.g. tables of relationships like ‘Ice-
land’ — ‘Icelandic’ — ‘Icelander’)

MAVE currently uses 103 implicative rules (38 relation-
defining axioms and 65 axioms involving lexical constants).
The first type of axioms is concerned with the proper treat-
ment of nominalizations and the transfer of local and tempo-
ral embedding between situations and subsituations, for ex-
ample. The second type handles meta verbs like “stattfinden”
(En: ‘take place’) which are frequently used for describing
events. It is also utilized for a rudimentary treatment of typi-
cal QA@CLEF topics like birth and death of a person, being
awarded a prize, or membership in organizations.

Figure 1: Recall-precision graph of MAVE, 8 € {0,...,6}
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6 Precision Recall F measure Accuracy
0 0.8319 0.2805 0.4195 0.8051
1 0.6957 0.3626 0.4767 0.8001
2 0.5764 0.4703 0.5179 0.7802
3 04793 0.5581 0.5157 0.7368
4 04011 0.6374 0.4923 0.6700
5 0.3538 0.7025 0.4706 0.6031
6 0.3227 0.7450 0.4503 0.5434

Table 1: Results of MAVE for the AVE-2006 test set

6 Precision Recall F measure Accuracy
0 0.8764 0.2210  0.3529 0.7966
1 0.7343 0.2975 0.4234 0.7966
2 0.5964 0.3768 0.4618 0.7795
3 0.5030 0.4703 0.4861 0.7504
4 04034 0.5439 0.4632 0.6835
5 0.359%4 0.6119 0.4528 0.6287
6 0.3310 0.6601 0.4409 0.5797

Table 2: MAVE results based on hypothesis proofs only

3 Evaluation of answer filtering with MAVE

The AVE 2006 test set used for evaluating the MAVE sys-
tem comprises 1,443 test cases (353 YES, 1,053 NO, 37 UN-
KNOWN). The system runs of MAVE are evaluated for:

__ #computedYES PR __ _#correctYES
recall = #YES precision = #computedYES

2recall-precision
recall+precision

f-measure =

and also for accuracy, i.e. relative frequency of correct
decision. Fig. 1 summarizes the recall-precision scores of
MAVE for different numbers of admissible mismatches (these
results are slightly different from those reported in the origi-
nal AVE task [3] because the MAVE system, the parser, and
also the lexicon have evolved in the meantime):

e The results labeled normal are obtained by the accept
criterion shown above; see Table 1 for details.



6 Precision Recall F measure Accuracy

0 0.7279 0.2805 0.4049 0.7930 Figure 2: Dependency of MAVE on knowledge sources
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The following observations can be made. recall
e The background knowledge of MAVE is much too O Precision Recall Fmeasure Accuracy
. 0 0.8191 0.2181 0.3445 0.7916
sparse. Only 22.1% of hypotheses can be proved in the 1 0.6985 02691 0.3885 07873
usual strict sense (hypo only with 8 = 0 in Table 2). ) ’ ’ '
2 0.6047 0.3683 0.4577 0.7809
e The method for robust entailment checking, which skips 3 0.5277 0.5127 0.5201 0.7624
non-provable literals in a relaxation loop, turns out to be 4 0.4351 0.5977 0.5036 0.7041
very effective in making MAVE absorb a few of these 5 03752 0.6601 0.4784 0.6387
knowledge gaps. For a modest number of 6 = 1 through 6 0.3379 0.7054 0.4569 0.5789
6 = 3 ‘imperfections’, there is a strong gain in recall
which clearly outweighs the loss in precision. Table 4: MAVE results without using axioms or synonyms

e The sensitivity of MAVE against ill-formed hypothe-

ses is alleviated by also using evidence gathered 6 Precision Recall F measure Accuracy
from the proof of the original question. Adding the 0 0.8208 0.2465 0.3791 0.7973
g—evidence criterion, which does not require a parse 1 0.7029 0.3484 0.4659 0.7994
of the hypothesis, further increases recall in the normal 2 0.5830 0.4674 0.5189 0.7824
runs by up to 9.35% for 6 = 2. Precision decreases 3 04828 0.5581 0.5177 0.7390
slightly when using question data but remains high. 4 0.4025 0.6317 0.4917 0.6721
o The false positive tests increase precision by up to 10.4% 5 03534 0.6969  0.4690 0.6038
_ . i 6 0.3227 0.7422  0.4498 0.5441
(for 8 = 0) without compromising recall of the system
(see Table 3 without false positive tests vs. original re- . . .
sults in Table 1 which are filtered by the tests). Table 5: MAVE results without HSIT axioms
e The best results were obtained by the normal accept
criterion described above which uses h—evidence, bekommen.1.1 (En: ‘get something’) also expresses
g-evidence, and all false positive checks. Judging that getting the award is a subsituation of the awarding:

from the f-measure, the best result was obtained for
0 = 2. This run achieved a recall of 47.0% and a pre- .
cision of 57.6% (f-measure: 0.5179). A (obj V ¥) —3B(subs B "bekommen.1.1")
A (exp B X) A (obj B Y) A (hsit V B).

(subs V "verleihen.1.1") A (ornt V X)

In order to determine the relative contribution of the func-

tional components and knowledge sources of MAVE on the MAVE uses three basic HSIT axioms for describing the
achieved filter quality, further ablation experiments were car- transfer of temporal embedding, spatial embedding, and
ried out whose main results are summarized in Fig. 3. circumstantials between situations and subsituations:

e The results labeled ‘full knowledge’ were computed (hsit H P) A (temp H T) — (temp P T)

with the full knowledge base as described above. (hsit H P) A (loc H L) — (loc P L)

° MAVE uses thg HSIT relation to model.s1tugt10nal com- (hsit H P) A (circ S P) — (circ S H).
position: (hsit H P) means that situation H has a

situational part P, or alternatively, that P is a perspec- Examples: If the wedding takes place on the weekend,
tive on the situation H. For example, the following en- then the marriage ceremony takes place on the weekend

tailment from verleihen.1.1 (En: ‘to award’) to (transfer of temporal embedding); if the wedding takes



6 Precision Recall F measure Accuracy
0 0.8305 0.2776  0.4161 0.8044
1 0.6944 0.3541 0.4690 0.7987
2 0.5810 0.4674 0.5181 0.7817
3 04841 0.5609 0.5197 0.7397
4 04025 0.6374 0.4934 0.6714
5 0.3548 0.7025 04715 0.6046
6 0.3231 0.7450 0.4507 0.5441

Table 6: MAVE results without CHEA axioms

place in Munich, then the marriage ceremony takes place
in Munich (transfer of spatial embedding); if the bride
faints at the marriage ceremony, then the bride faints at
the wedding (transfer of circumstantials). As shown by
Table 5 (compared to baseline Table 1), the three HSIT
axioms contribute up to 3.4% of the recall of MAVE.

e The results labeled ‘no axioms/synonyms’ are obtained
in the extreme case that the knowledge base of MAVE
is not used at all. (Accidentally, it made no significant
difference to the results whether synonym normaliza-
tion was activated in this case or not). When no ax-
ioms are used, then the proof of the logical query re-
duces to a direct matching of the query literals with the
nodes and edges in the MultiNet graph. The robust prov-
ing technique based on the relaxation loop is very suc-
cessful in this case. As shown by Table 4 for 6 = 3,
MAVE even performs best in terms of the f-measure
when no knowledge is used at all. However, this does not
mean that direct matching without using any background
knowledge measures up with knowledge-intensive ro-
bust proving. As we shall see below, the knowledge-
based method clearly outperforms simple graph match-
ing when it comes to the fusion of QA streams. The
results of simple matching are also worse in the high
precision range of the recall-precision graph.

Table 6 shows the effects of dropping the so-called CHEA ax-
ioms? which link the representations of verbs and their nomi-
nalizations (e.g. “abschrecken” vs. “Abschreckung”, En: ‘de-
ter’ vs. ‘deterrence’). Compared to the baseline in Table 1,
one gets a minor change of at most 0.85% (at 6 = 1) for the
AVE test set. The effect of coreference resolution becomes
visible from the ablation results in Table 7 which does not
resolve referring expressions. There is only a minor con-
tribution of coreference resolution for the AVE test, which
amounts to 1.42% of recall (for 8 = 1) or less. The effect
is weak since snippets are usually short and answers usually
depend on a single sentence. On average, only 0.6 anaphoric
references are resolved per snippet.

4 Using MAVE for answer stream fusion

Let us now consider the use of MAVE for filtering several
streams of answer candidates, returning the union of all valid
cases. The resulting filter will be useful (a) if the system elim-
inates most wrong answers (i.e. if precision of the system is

3CHEA (change from event to abstractum) is the MultiNet rela-
tion used to describe the semantic analogon of a nominalization.

Recall
0.2720
0.3484
0.4646
0.5552
0.6374
0.7025
0.7450

F measure
0.4094
0.4650
0.5133
0.5144
0.4923
0.4719
0.4503

Precision
0.8276
0.6989
0.5734
0.4792
0.4011
0.3553
0.3227

Accuracy
0.8030
0.7987
0.7788
0.7368
0.6700
0.6053
0.5434

AN W= O

Table 7: MAVE results without coreference resolution
Precision Recall (Relative)

0.8269 0.215  0.3525
0.7397 0270  0.4426
0.6392 0.310  0.5082
0.5965 0.340 0.5574
0.5588 0.380  0.6230
0.5135 0.380  0.6230
0.4968 0.385 0.6311
0.4785 0.390  0.6393
0.4759 0.395  0.6475
0.4706 0.400  0.6557

X dAUN bW — O

Table 8: Answer fusion based on MAVE with full information

high), and (b) if the recall is high enough that for each ques-
tion, at least one correct answer will pass the validity test.

The AVEOQ6 test set contains 1,443 potential answers for
the 200 QA@CLEF questions. Thus on average, 7 answer
candidates are available for each question. The test set only
contains correct answers for 122 questions, however. We thus
wondered how many questions would still be answered cor-
rectly by MAVE after filtering by validity and forming the
union of filtered results. It turned out that using the standard
accept criterion, MAVE still finds at least one correct an-
swer for 68 questions (60 = 2) or 78 questions (8 = 3). Simple
matching without logical inference finds a correct answer for
75 of the questions (again for 8 = 3).

Rather than forming the union of validated answers, an al-
ternative idea is that of selecting a single best answer from the
validated choices. This method promises a tremendous reduc-
tion of data presented to the user, who is only shown the sin-
gle most trusted answer, or no answer at all if no high-quality
answer exists. The idea can be applied to answer streams
originating from a single source or several QA systems.

For a test case p (hypothesis and snippet for a given ques-
tion) and the expected quality (maximal number of acceptable
mismatches) 0 € N, we define the imprecision score of p as

imprec =min{0’ € {0,...,0} : accepty holds for p}.

In the case that no such 6’ exists, we let imprec = 6 + 1.

Now suppose that m answer candidates to a question g are
given. The idea is that of choosing the single best answer, i.e.
that answer which minimizes the imprec score. If the best
imprec score for a question exceeds the given quality limit
0, then the answers will be rejected (i.e. no valid answer has
been found for the question); otherwise the best answer will
be returned as the result of the combined system.

An experiment has been made as to the number of ques-
tions in the test set which will be correctly answered by



Figure 3: Recall-precision graph for answer stream fusion
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0 0.7949 0.155  0.2541
1 0.7143 0.200  0.3279
2 0.6538 0.255 0.4180
3 0.5981 0.320 0.5246
4  0.5492 0.335  0.5492
5 0.5109 0.350 0.5738
6 0.4867 0.365 0.5984
7  0.4654 0.370  0.6066
8 04573 0375 0.6148
9 04518 0375 0.6148

Table 9: Answer fusion (no axioms or synomyms used)

mined by the least effort heuristic of the prover) and does not
search for an optimal (smallest) number of skipped literals.
A comparison to powerful graph matching methods like [9]
would be instructive. The ablation tests demonstrate a posi-
tive effect of the axioms for describing transfer of situational
embeddings. There is obvious potential for an extension by
techniques for temporal reasoning [4]. The remaining abla-
tion tests, i.e. running MAVE without axioms for interpreting
nominalizations and without coreference resolution, show al-
most no effect on the performance of the system. A simi-
lar point can even be made when MAVE is run without any
background knowledge at all. It thus appears that advanced
methods (like coreference resolution) will only be needed as
soon as the questions posed to QA systems and their logical
relationship to the queried documents become more complex,
too. In an experiment on using MAVE for the fusion of alter-
native answers by selecting the best validated answer, MAVE
answered 80 questions correctly. This is a promising first re-
sult compared to the 71 correct answers found by the best
individual system. The most urgent desideratum for MAVE
is the integration of lexico-semantic resources like Germanet,
however. A fuller account of lexico-semantic relations is one
of the prerequisites for increasing recall levels of the system.

References

[11 D. Ahn, V. Jijkoun, K. Miiller, M. de Rijke, S. Schlobach, and
G. Mishne. Making stone soup: Evaluating a recall-oriented
multi-stream question answering system for Dutch. In Proc. of
CLEF 2004. Springer, 2005.

[2] A. Frank, H.-U. Krieger, F. Xu, H. Uszkoreit, B. Crysmann,
B. Jorg, and U. Schifer. Querying structured knowledge
sources. In Proceedings of AAAI-05, Workshop on Question
Answering in Restricted Domains, 2005.

[3] 1. Glockner. University of Hagen at QA @CLEF 2006: Answer
validation exercise. In Working notes of the CLEF06 work-

MAVE when selecting the single best answer for each ques-
tion. Fig. 3 is a summary of the evaluation results for answer
stream fusion (best answer selection) with full knowledge vs.
no knowledge, shown in Tables 8 and 9, respectively. No-
tice that ‘recall’ is determined with respect to the total of
200 QA @CLEF questions. Since only 122 of these were an-
swered correctly by any of the systems in the AVE test set, re-
call of MAVE answer fusion is necessarily bounded by 61%.
By contrast, the ‘relative’ recall column in the tables denotes
the proportion of correctly answered questions compared to
the 122 questions answered by the optimal combined system.
The figure demonstrates a clear advantage of the knowledge-
intensive method normally used by MAVE, as compared to
direct matching without supporting background knowledge.

5 Conclusion

We have presented MAVE, a prototypical answer verification
system for German. The basic ideas underlying MAVE, in
particular the use of a relaxation loop, the idea of gathering
evidence from a proof of the original question, and the tests
for false positives, were shown to be useful in ablation ex-
periments. The simple relaxation method works surprisingly
well, although it only skips query literals (in the order deter-
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