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Summary. Proportional bounding quantifiers like “Between p1 and p2 percent” are poten-
tially useful for expressing linguistic summaries of data. Given p1, p2, existing methods
for data summarization based on fuzzy quantifiers can be used to assign a quality score to
the summary. However, the problem remains how the optimal choice of p1, p2 in the range
0 ≤ p1 ≤ p2 ≤ 100% can be established. Moreover, the proposed quality indicators are rather
heuristic in nature. The paper presents a method for computing the optimal bounding quan-
tifier which best summarizes the given data. Specifically, the most specific quantifier will be
chosen which results in the highest validity score of the summary given a constraint on the
the percentage range p2 − p1. The method not only assigns validity scores to the quantifiers
of interest but also determines the best choice of quantifier in O(N logm) time, where N is the
size of the base set and m the number of different membership grades in the fuzzy arguments.

1 Introduction

A framework for generating linguistic summaries from imprecise data and for evalu-
ating their usefulness has been developed by Yager [8, 10, 7] and refined by Kacprzyk
and Strykowski [6]. We assume a finite base set E 6= ∅ of individuals of interest, and
a description of these individuals by fuzzy sets X ∈ P̃(E). In practice, the data will
likely be described by a set A of attributes a : E −→Va which assign an attribute value
a(e) to each individual. The fuzzy sets on E, in turn, will only indirectly be given by
fuzzy sets declared on the attribute values. Thus, a fuzzy set X ′ ∈ P̃(Va) declared on
the attribute range of a ∈ A gives rise to the associated fuzzy set X ∈ P̃(E) defined
by µX (e) = µX ′(a(e)). The attribute-based description of the data in a database will
not be of relevance in this paper, however, so that we drop it for simplicity. From this
simplified viewpoint, then, a linguistic summary has the form “Q objects are X’s”
or “Q X1’s are X2’s” (with an associated ‘validity’ or ‘truthfulness’ score τ ∈ [0,1]).
Q ∈ {almost all,many, . . .} is called the ‘quantity in agreement’ of the summary.

While existing data summarization systems are mostly based on Zadeh’s Σ -count
or FG-count approach [11] or on Yager’s OWA operators [9], we will assume a
broader framework which avails us with a uniform analysis of all kinds of linguistic
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Table 1. Main types of linguistic quantifiers

Type example definition
absolute unrestrictive There are more than 3 Y ’s Q(Y ) = q(|Y |)
absolute More than 3 Y1’s are Y2’s Q(Y1,Y2) = q(|Y1∩Y2|)
exception All except 3 Y1’s are Y2’s Q(Y1,Y2) = q(|Y1 \Y2|)

proportional Two of three Y1’s are Y2’s Q(Y1,Y2) =

{
f ( |Y1∩Y2|

|Y1| ) |Y1|> 0
v0 else

cardinal comparative More Y1’s than Y2 are Y3 Q(Y1,Y2,Y3) = q(|Y1∩Y3|, |Y2∩Y3|)

quantifiers [3, 5, 4]. This framework is inspired by the linguistic Theory of Gen-
eralized Quantifiers (TGQ) [1]. It extends the notion of a (two-valued) generalized
quantifier to fuzzy arguments and gradual quantification results in the obvious way:

Definition 1. An nary fuzzy quantifier on a base set E 6= ∅ is a mapping Q̃ :
P̃(E)

n
−→ [0,1] (E needs not be finite).

Expressing an NL quantifier of interest in terms of a fuzzy quantifier is not an easy
task, though – mainly because a simple cardinality-based definition is no longer pos-
sible when the arguments of the quantifier are fuzzy. We therefore introduce so-called
semi-fuzzy quantifiers which serve as a simplified description of the target quantifier.

Definition 2. An nary semi-fuzzy quantifier on a base set E 6= ∅ is a mapping Q :
P(E)n −→ [0,1].

Semi-fuzzy quantifiers are easier to define than fuzzy quantifiers because one needs
not describe their interpretation for fuzzy arguments. The specification of an NL
quantifier in terms of a semi-fuzzy quantifier will be linked to the target fuzzy quan-
tifier (which also accepts fuzzy arguments) by a quantifier fuzzification mechanism.

Definition 3. A quantifier fuzzification mechanism (QFM) F assigns a fuzzy quan-
tifier F (Q) : P̃(E)

n
−→ [0,1] to each semi-fuzzy quantifier Q : P(E)n −→ [0,1].

Table 1 lists the main types of semi-fuzzy quantifiers which are also of interest for
data summarization. In this paper, we will restrict attention to proportional bounded
quantifiers, i.e. quantifiers defined by

rate[r1,r2](Y1,Y2) =

{
1 : Y1 6= ∅∧ |Y1∩Y2|

|Y1|
∈ [r1,r2]

0 : else

These quantifiers are of apparent utility for expressing summaries like “between p1
and p2 percent of the X1’s are X2’s” (r1 = p1/100, r2 = p2/100) or “at least p percent
of the X1’s are X2’s” (r1 = p/100, r2 = 1).

From the perspective of natural language use (i.e. pragmatics), truthfulness of
Q(Y1,Y2) only indicates a possible use of Q – which might represent a very un-
usual case of applying Q, however. In other words, the truth score τ = F (Q)(X1,X2)
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which judges the validity of the summary “Q X1’s are X2’s”, is not restrictive enough
to guide quantifier selection to the most appropriate choice of Q. Consider at least
eighty percent, for example. Clearly the corresponding quantifier should also be true
if all X1’s are X2’s. However, only the quantifier all is appropriate for describing
this situation, while at least eighty percent has a very low appropriateness grade in
this case. Existing approaches to linguistic data summarization have introduced var-
ious quality indicators for quantifier selection to solve this problem. While Yager
[10] uses only the validity score and a metric for informativeness, Kacprzyk and
Strykowski [6] use a multi-dimensional measure based on the degree of truth, the
degree of imprecision, the degree of covering, the degree of ‘appropriateness’ and
the length of the summary. The proposed quality indicators are rather heuristic in
nature, though, while in this paper, we target at a more principled solution.

Hence let X1,X2 ∈ P̃(E) be given. We further assume a fixed model of fuzzy
quantification, i.e. a QFM F (see below). The summary generation is controlled by
a constraint δmax ∈ [0,1) which specifies the maximal admissible percentage range
r2 − r1 (a summary “between 20% and 90% of the X1’s are X2’s” might be pretty
odd, for example). We search for an optimal choice of Q∗ = rate[r∗1 ,r∗2 ], r∗1 ≤ r∗2, with

1. r∗2 − r∗1 ≤ δmax.
2. For all r′1 ≤ r′2 with r′2− r′1 ≤ δmax, F (rate[r′1,r′2])(X1,X2)≤F (Q∗)(X1,X2).
3. If F (rate[r′1,r′2])(X1,X2) = F (Q∗)(X1,X2), then r′1 ≤ r∗1 and r∗2 ≤ r′2.

The first condition asserts that the percentage span r∗2−r∗1 of the optimal quantifier is
within the limits given by δmax, i.e. the summary is sufficiently specific. The second
condition asserts that Q∗ is an optimal choice of such a quantifier, which results in the
highest validity score. The third condition ensures that Q∗ is the narrowest choice of
all quantifiers optimal with respect to the validity score. Let me now explain how Q∗

can actually be computed. In order to simplify presentation, we will further assume
that F (Q∗)(X1,X2) > 1

2 , i.e. summaries with low truth scores will be ignored.

2 Choosing the model F

We need a concrete, well-motivated choice of F to determine the validity score
τ = F (Q)(X1,X2) of the summary. The following construction will assign a suitable
choice of fuzzy connectives to the given QFM.

Definition 4. Let F be a QFM and f : {0,1}n −→ [0,1] a (semi-fuzzy) truth func-
tion. The induced fuzzy truth function F̃ ( f ) : [0,1]n −→ [0,1] is defined by F̃ ( f ) =
F ( f ◦η−1)◦η̃ , where η : {0,1}n −→P({1, . . . ,n}) and η̃ : [0,1]n −→ P̃({1, . . . ,n})
are defined by η(y1, . . . ,yn) = {i : yi = 1} and µη̃(x1,...,xn)(i) = xi, respectively.

The fuzzy set operations ∪̃ : P̃(E)
2
−→ P̃(E) (fuzzy union) and ¬̃ : P̃(E) −→

P̃(E) (fuzzy complement) will be defined element-wise in terms of fuzzy disjunc-
tion ∨̃ = F̃ (∨) and fuzzy negation ¬̃ = F̃ (¬). Based on these induced fuzzy con-
nectives and fuzzy set operations, we can define a class of well-behaved models.
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Table 2. Known classes of standard models: an overview

Type Construction
FΩ -DFS From supervaluation results of three-valued cuts:

Xmin
γ =

X
≥ 1

2 + 1
2 γ

γ ∈ (0,1]

X
>

1
2

γ = 0
Xmax

γ =

X
>

1
2−

1
2 γ

γ ∈ (0,1]

X
≥ 1

2
γ = 0

Tγ (Xi) = {Y : Xmin
γ ⊆ Y ⊆ Xmax

γ }
SQ,X1,...,Xn(γ) = {Q(Y1, . . . ,Yn) : Yi ∈Tγ (Xi), i = 1, . . . ,n}
FΩ (Q)(X1, . . . ,Xn) = Ω(SQ,X1,...,Xn)

Fξ -DFS From suprema and infima of supervaluations:
>Q,X1,...,Xn(γ) = supSQ,X1,...,Xn(γ) ⊥Q,X1,...,Xn(γ) = infSQ,X1,...,Xn(γ)
Fξ (Q)(X1, . . . ,Xn) = ξ (>Q,X1,...,Xn ,⊥Q,X1,...,Xn)

MB-DFS From fuzzy median of supervaluation results:
Qγ (X1, . . . ,Xn) = med1/2(>Q,X1,...,Xn(γ),⊥Q,X1,...,Xn(γ))
MB(Q)(X1, . . . ,Xn) = B(Qγ (X1, . . . ,Xn)γ∈[0,1])

Definition 5. A QFM F is called a determiner fuzzification scheme (DFS) if it sat-
isfies the following conditions for all semi-fuzzy quantifiers Q : P(E)n −→ [0,1] and
fuzzy arguments X1, . . . ,Xn ∈ P̃(E):

(a) F (Q) = Q if n = 0;
(b) F (Q)(Y ) = Q(Y ) for crisp Y ∈P(E), n = 1;
(c) F (πe) = π̃e for all E 6= ∅, e ∈ E, where πe(Y ) = 1 iff e ∈Y and π̃e(X) = µX (e);
(d) F (Q′)(X1, . . . ,Xn) = ¬̃F (Q)(X1, . . . ,Xn−1, ¬̃Xn) whenever the semi-fuzzy quan-

tifier Q′ is defined by Q′(Y1, . . . ,Yn) = ¬̃Q(Y1, . . . ,Yn−1,¬Yn) for all crisp Yi;
(e) F (Q′)(X1, . . . ,Xn+1) = F (Q)(X1, . . . ,Xn−1,Xn ∪̃Xn+1) whenever Q′ is defined

by Q′(Y1, . . . ,Yn+1) = Q(Y1, . . . ,Yn−1,Yn∪Yn+1) for all crisp Yi;
(f) F (Q)(X1, . . . ,Xn)≥F (Q)(X1, . . . ,Xn−1,X ′

n) if Xn ⊆X ′
n given that Q(Y1, . . . ,Yn)≥

Q(Y1, . . . ,Yn−1,Y ′
n) for all crisp Yi, Yn ⊆ Y ′

n;
(g) F (Q◦×n

i=1F̂ ( fi)) = F (Q)◦×n
i=1 f̂i for all fi : E ′ −→ E, where f̂ (Y ) = { f (e) :

e ∈ Y} for all crisp Y and µ
F̂ ( f )(X)(e) = F (πe ◦ f̂ )(X).

The choice of postulates (a) through (g) was based on a large catalogue of semantic
desiderata from which a minimal (independent) system of core requirements was
then distilled. The total list of desiderata validated by these models is discussed in
[4]. A DFS will be called a standard DFS if it induces the standard set of fuzzy
connectives min, max and 1− x.

Table 2 lists three general constructions of models which result in the classes
of FΩ , Fξ and MB DFSes.1 The FΩ -DFSes form the broadest class of standard
DFSes currently known. All practical FΩ -DFSes belong to the more regular Fξ

class, though. The MB-DFSes can be characterized as the subclass of those Fξ

models which propagate fuzziness (in the sense of being compatible with a natural

1 Here, X≥α denotes the α-cut and X>α the strict α-cut, respectively. Moreover, med1/2(x,y)
is the fuzzy median, i.e. the second-largest of the three values x, y, 1

2 .
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fuzziness order). The most prominent example is the following standard DFS MCX,
which generalizes the Zadeh’s FG-count approach:

MCX(Q)(X1, . . . ,Xn) =


1
2 + 1

2 sup{γ : ⊥(γ)≥ 1
2 + 1

2 γ} : ⊥(0) > 1
2

1
2 −

1
2 sup{γ : >(γ)≤ 1

2 −
1
2 γ} : >(0) < 1

2
1
2 : else

abbreviating >(γ) =>Q,X1,...,Xn(γ) and ⊥(γ) =⊥Q,X1,...,Xn(γ). In the following, it is
sufficient to consider the model F = MCX only because all standard DFSes coincide
with MCX for two-valued quantifiers, and because proportional bounding quantifiers
are two-valued quantifiers.

3 Implementation of proportional bounding quantifiers

In order to describe the method for optimal quantifier selection, we must recall
the computational analysis of quantitative quantifiers in Fξ models developed in
[5]. In the following, we assume a finite base set E 6= ∅ of cardinality |E| = N.
For given fuzzy arguments X1, . . . ,Xn ∈ P̃(E), the set of relevant cutting levels is
given by Γ (X1, . . . ,Xn) =

{
2µXi(e)−1 : µXi(e)≥ 1

2

}
∪

{
1−2µXi(e) : µXi(e) < 1

2

}
∪

{0,1}. The computation of quantifiers will be based on an ascending sequence of cut-
ting levels 0 = γ0 < γ1 · · ·< γm−1 < γm = 1 with {γ1, . . . ,γm}⊇Γ (X1, . . . ,Xn) (usually
we will have an equality here). For γ = 0, . . . ,m−1, we abbreviate γ j = γ j+γ j+1

2 . We
further let >j =>Q,X1,...,Xn(γ j) and ⊥ j =⊥Q,X1,...,Xn(γ j). As a prerequisite for imple-
menting the quantifier selection, let us rewrite MCX as a function of the finite sample
Γ (X1, . . . ,Xn) of (three-valued) cut levels.

Proposition 1. Let Q : P(E)n −→ [0,1], X1, . . . ,Xn ∈ P̃(E) and 0 = γ0 < γ1 < · · ·<
γm−1 < γm = 1 be given, Γ (X1, . . . ,Xn) ⊆ {γ0, . . . ,γm}. For j ∈ {0, . . . ,m− 1} let
B j = 2⊥ j −1 if ⊥0 ≥ 1

2 and B j = 1−2>j otherwise. Further let

Ĵ = { j ∈ {0, . . . ,m−1} : B j ≤ γ j+1} , ĵ = min Ĵ .

Then

MCX(Q)(X1, . . . ,Xn) =


1
2 + 1

2 max(γ ĵ,B ĵ) : ⊥0 > 1
2

1
2 −

1
2 max(γ ĵ,B ĵ) : >0 < 1

2
1
2 : else.

These formulas enable us to evaluate fuzzy quantifications in MCX (and for two-
valued quantifiers like rate[r1,r2], in arbitrary standard DFSes). The computation of>j
and ⊥ j must be optimized, though, because a naive implementation which considers
each Yi ∈ Tγ j

(Xi) will not achieve sufficient performance. To this end, we observe
that for proportional bounding quantifiers, >j and ⊥ j can be rewritten as

>j = max{q(c1,c2) : (c1,c2) ∈ R j} ⊥ j = min{q(c1,c2) : (c1,c2) ∈ R j}
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R j = {(|Y1|, |Y1∩Y2|) : Yi ∈Tγ(Yi)} q(c1,c2) =
{

1 : c1 > 0∧ c2
c1
∈ [r1,r2]

0 : else.

In numeric terms, the relation R j can be precisely described as follows:

R j = {(c1,c2) : `1 ≤ c1 ≤ u1,max(`2,c1−u3)≤ c2 ≤ min(u2,c1− `3)}, (1)

where `s = |Zs|min
γ

= |(Zs)
min
γ
| and us = |Zs|max

γ
= |(Zs)

max
γ

|, γ = γ j, depend on Z1 =
X1, Z2 = X1 ∩X2 and Z3 = X1 ∩¬X2, assuming the standard fuzzy intersection and
complement.2 We conclude that

>j = max{q(c1,c2) : `1 ≤ c1 ≤ u1,max(`2,c1−u3)≤ c2 ≤ min(u2,c1− `3)}
= max{q′(c1) : `1 ≤ c1 ≤ u1}

⊥ j = min{q(c1,c2) : `1 ≤ c1 ≤ u1,max(`2,c1−u3)≤ c2 ≤ min(u2,c1− `3)}

=

{
1 : `1 > 0∧ r1 ≤ `2

`2+u3
∧ u2

u2+`3
≤ r2

0 : else

where
q′(c1) =


q(c1,min(u2,c1− `3)) : min(u2,c1− `3) < r1
q(c1,max(`2,c1−u3)) : max(`2,c1−u3) > r1
q(c1,r1) : else.

In order to compute a quantification result based on this formula, one must consider
every choice of j (i.e. m cutting levels) and (at worst) N = |E| choices of c1. Thus,
the complexity of evaluating a proportional bounding quantifier is O(Nm).

4 Optimal quantifier selection

Given X1,X2 ∈ P̃(E), we define rate bound mappings rmin,rmax : [0,1]−→ [0,1]:

rmin(γ) =

{
`2

`2+u3
: `1 > 0

0 : `1 = 0
rmax(γ) =

{
u2

u2+`3
: `1 > 0

1 : `1 = 0

where `s = `s( j) and us = us( j) are defined as (1), and j = max{ j : γ j ≤ γ} for
{γ0, . . . ,γm}=Γ (X1, . . . ,Xn), 0 = γ0 < γ1 < · · ·< γm−1 < γm = 1. Abbreviating rmin

j =
rmin(γ j), rmax

j = rmax(γ j), it is easily shown from the above analysis of >j and ⊥ j
that for a proportional bounding quantifier rate[r1,r2] with r2− r1 ∈ [0,1),

⊥ j =

{
1 : r1 ≤ rmin

j ∧ rmax
j ≤ r2

0 : else
(2)

In particular, choosing r1 = rmin
j and r2 = rmax

j will result in ⊥ j = 1 > 1
2 + 1

2 γ j, i.e.
MCX(rate[rmin

j ,rmax
j ])(X1,X2)≥ 1

2 + 1
2 γ j+1 > 1

2 . Hence let j∗ = max{ j = 0, . . . ,m−1 :

2 The efficient computation of `s( j) and us( j) from the histogram of Zs is explained in [4, 5].
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Fig. 1. Example plot of rmin and rmax and results of quantifier selection

rmax
j − rmin

j ≤ δmax}, r∗1 = rmin
j∗ and r∗2 = rmax

j∗ . If r∗2 − r∗1 > δmax, then no summariza-
tion based on bounding quantifiers is possible because X1,X2 are too fuzzy. In the
normal case that r∗2− r∗1 ≤ δmax, however, the choice of r∗1 and r∗2 will be optimal. To
see this, suppose that MCX(rate[r1,r2])(X1,X2) ≥ MCX(Q∗)(X1,X2), Q∗ = rate[r∗1 ,r∗2 ].
Because MCX(Q∗)(X1,X2) > 1

2 , we also have MCX(Q′)(X1,X2) > 1
2 , where Q′ =

rate[r1,r2]. Now consider ⊥∗ = ⊥Q∗,X1,X2 and ⊥′ = ⊥Q′,X1,X2 . Since Q∗ and Q′ are
two-valued, ⊥∗ and ⊥′ are also two-valued. Moreover ⊥∗ and ⊥′ are monotonically
non-increasing. Thus MCX(rate[r1,r2])(X1,X2) ≥ MCX(Q∗)(X1,X2) is only possible
if ⊥′ ≥ ⊥∗, since MCX preserves inequations of ⊥′ and ⊥∗. We see from ⊥′ ≥ ⊥∗

that ⊥′
j∗ ≥⊥∗

j∗ = 1, i.e. r1 ≤ r∗1 and r∗2 ≤ r2. Now suppose that MCX(Q′)(X1,X2) >

MCX(Q∗)(X1,X2). Then MCX(Q′) = 1
2 + 1

2 γ ′ for γ ′ > γ j∗+1. In particular,⊥′
j∗+1 = 1,

i.e. r1 ≤ rmin
j∗+1 and rmax

j∗+1 ≤ r2. By definition of j∗, r2− r1 ≥ rmax
j∗+1− rmin

j∗+1 > δmax, i.e.
Q′ exceeds the δmax limit. Thus in fact MCX(Q′)(X1,X2) = MCX(Q∗)(X1,X2) and
r1 ≤ r∗1, r∗2 ≤ r2, confirming the optimality of Q∗.

Apparently, the result can be computed in at most m steps ( j = 0, . . . ,m− 1).
Computation of ⊥ j given j is possible in constant time, see (2). Therefore, the opti-
mal choice of r1 and r2 can be computed in O(m) time. However, the computation
of the cardinality coefficients must also be considered. The method for determining
`s( j) and us( j) described in [4, 5] requires a pre-computation of the histograms of
X1,X2, which has complexity O(N logm). In practice, this is sufficient to compute
optimal bounding quantifiers even for large base sets.

Finally we consider an example of quantifier selection. Let us assume that
E = {a,b,c,d,e, f ,g,h, i}, X1 = 1/a + 0.9/b + 0.8/c + 0.8/d + 0.7/e + 0.7/ f +
0.1/g + 1/h + 0.9/i, X2 = 0.05/a + 0.9/b + 0.7/c + 1/d + 1/e + 0.8/ f + 0.1/g +
0.5/h + 0.1/i. The corresponding minimum and maximum rates and the results of
the quantifier selection method for several choices of δmax are shown in Figure 1.
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Here, τ = MCX(Q∗)(X1,X2) is the resulting validity score of the summary. Notice
that a summary like “Between 62.5% and 75% of the X1’s are X2’s” might be mis-
leading because it gives an illusion of precision which is not justified by the data.
We therefore suggest a subsequent linguistic fitting of the selected quantifier which
should be adapted to a reasonable granularity scale. For example, assuming a 5%
granularity scaling, the result for δmax = 0.2 should better be expressed as “Between
60% and 75% of the X1’s are X2’s”.

5 Conclusions

This paper was concerned with the problem of quantifier selection in fuzzy data sum-
marization. For the important class of proportional bounding quantifiers, we have
presented an efficient algorithm which computes the optimal quantifier in O(N logm)
time. Improving upon existing work on fuzzy data summarization, the new method
uses a straightforward optimality criterion rather than heuristic quality indicators;
the method is guaranteed to determine the optimal quantifier; and the optimal selec-
tion can be established very quickly. The resulting quantifier should be fitted to the
quality of the data to improve the linguistic appropriateness of the summary. The rel-
ative proportion coefficients rmin and rmax on which the computation of the optimal
quantifier is based, are interesting in their own right as a graphical representation of
relative proportions found in imprecise data.
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