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Preface and report overview

Natural language heavily depends on quantifying constructions. These often involve
fuzzy concepts like “tall”, and they frequently refer to fuzzy quantities in agreement
like “about ten”, “almost all”, “many” etc. In order to exploit this expressive power
and make fuzzy quantification available to technical applications, fuzzy set theory has
been enriched with various techniques which reduce fuzzy quantification to a compar-
ison of scalar or fuzzy cardinalities [188, 124, 170, 176]. However, it soon became
clear that the results of these methods fail to be plausible in some cases [2, 3, 30, 37,
47, 124, 125, 175]. This certainly hindered the spread of these ‘traditional’ approaches
into commercial applications. Only recently a new solution has been pursued which
showed itself immune against the pitfalls of existing approaches to fuzzy quantifica-
tion. The goal of this report is to compile the material on this new theory known as the
DFS theory of fuzzy quantification, which until now was scattered across several pub-
lications [46, 47, 48, 49, 50, 51]. It will stipulate a canonical terminology and notation,
thus introducing the theory as a consistent whole, including latest developments. The
present report covers the fundamental elements of fuzzy quantification which comprise
the formal framework for describing fuzzy quantifiers; the axioms imposed on plausi-
ble models; my results on derived properties of these models; a catalogue of additional
adequacy requirements; a discussion of several constructive principles along with an
analysis of the generated models; an extensive list of algorithms for implementing
fuzzy quantifiers in the models; and finally some illustrative examples. In particular,
the missing elements have now been added, which were still needed to complete the
proposed solution and make it really useful in practice. Until recently, there was a clear
focus on theoretical topics and beyond some example algorithms sketched in [57, 59],
no systematical discussion of implementation issues. In order to close this gap, the
report now presents an in-depth treatise of the computational aspects of DFS theory.
The report discloses a general strategy for implementing quantifiers in a model of inter-
est, and it further develops a number of supplementary techniques which will optimize
processing times. In particular, I describe an analysis of fuzzy quantifiers in terms of
cardinality coefficients, which can be computed from histogram information. In order
to illustrate the implementation strategy, the basic procedure will then be detailed for
three prototypical models, and the complete algorithms for implementing the relevant
quantifiers in these models will be presented. The quantifiers covered by this method
not only include the familiar absolute and proportional quantifiers known from exist-
ing work on fuzzy quantification. They also include some further important types like
quantifiers of exception (“all except k”) and cardinal comparatives (“many more than”)
which are well-known to linguists, but innovative in the fuzzy sets framework.

The report is organized as follows. Thefirst chapterpresents a general introduc-
tion into the history and main issues of fuzzy natural language quantification. To this
end, the basic characteristics of linguistic quantifiers are reviewed, in order to distill
some requirements on a principled theory of linguistic quantification. Following this,
I discuss the problem of linguistic vagueness and its modelling in terms of continu-
ous membership grades, which is fundamental to fuzzy set theory. Zadeh’s traditional
framework for fuzzy quantification [188, 190] is then explained and it is shown that
both the framework and the particular approaches that evolved from it are inconsistent
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with the linguistic data.

Thesecond chapterintroduces a novel framework for fuzzy quantification in which
the linguistic phenomenon can be studied with the desired comprehensiveness and for-
mal rigor. The framework comprises: fuzzy quantifiers, which serve as the opera-
tional model or target representation of the quantifiers of interest; semi-fuzzy quan-
tifiers, which avail us with a uniform and practical specification format; and finally
QFMs (quantifier fuzzification mechanisms), which establish the link between specifi-
cations and operational quantifiers. The basic representations underlying the proposed
framework are directly modelled after the generalized quantifiers familiar in linguis-
tics [6, 8]. Compared to the two-valued linguistic concept, semi-fuzzy quantifiers add
approximate quantifiers like “almost all”, while fuzzy quantifiers further admit fuzzy
arguments (“tall”, “young” etc.). Thus, semi-fuzzy quantifiers and fuzzy quantifiers
are the apparent extension of the original generalized quantifiers to type III and type
IV quantifications in the sense of Liu and Kerre [99]. The organization of my approach
into specification and operational layers greatly simplifies its application in practice.
The commitments intrinsic to this analysis of fuzzy quantification are discussed at the
end of the chapter, as well as the actual coverage of the proposed approach compared
to the phenomenon of linguistic quantification in its full breadth.

The third chapteris concerned with the investigation of formal criteria which char-
acterize a class of plausible models of fuzzy quantification. The basic strategy can be
likened to the axiomatic description oft-norms [139], which constitute the plausible
conjunctions in fuzzy set theory. Thus my approach is essentially algebraic. The basic
idea is that of making explicit the intuitive expectations on plausible interpretations in
order to eliminate the notorious difficulties of existing approaches. To this end, I will
introduce a system of six basic requirements which distill a larger catalogue of linguis-
tic desiderata. The criteria are chosen such that they capture independent aspects of
plausibility and, taken together, identify a class of plausible models which answers the
relevant linguistic expectations.

It remains to be shown that the proposed axioms successfully capture a class of
plausible models. In thefourth chapter, I produced evidence that this is indeed the
case. To this end, a plethora of criteria will be considered which are significant to the
linguistic plausibility of the computed interpretations and to their expected coherence.
All of these criteria are validated by the proposed models. This supports my choice of
axioms even if some of these might appear rather ‘abstract’ at first sight. Apart from
this purpose of justifying the proposed class of models, the formalization of plausibility
criteria is also a topic of independent interest. By investigating such criteria, we can
further our knowledge about quantifier interpretations in natural languages.

In thefifth chapter I will structure the space of possible models. Specifically I will
place attention on certain subclasses of models, i.e. classes of models with some com-
mon structure or joint properties. The relative homogeneity of the models within these
classes lets me develop some important concepts on these models, e.g. regarding the
specificity of results. In addition I will identify the class of standard models, which
is compliant with the standard choice of connectives in fuzzy set theory. The role of
these standard models to fuzzy quantification can be likened to that of Abelian groups
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vs. general groups in mathematical group theory.

The sixth chapter, then, is devoted to the study of some additional properties, like
continuity (smoothness), which are ‘nice to have’ from a practical perspective, but
not always useful for theoretical investigations, or sometimes even awkward in this
context. Consequently these properties should not be assumed in general, and this is
why I did not include them into my core requirements on plausible models. The chapter
further considers some ‘critical’ properties which cannot be satisfied by the models for
reasons of incompatibility (usually these properties even fail in much weaker systems).
The existence of such cases is not surprising, of course, because fuzzy logic, as a rule,
can never satisfy all axioms of Boolean algebra. These difficulties will usually be
resolved by showing that the critical property conflicts with very basic requirements,
and by pruning the original postulate to a compatible ‘core’ requirement.

Having laid these theoretical foundations, I proceed to the issue of identifying pro-
totypical models, which are potentially useful to applications. It is hence necessary to
investigate certain constructive principles, which give us a grip on such concrete ex-
amples. Existing research has typically tried to explain fuzzy quantification in terms
of cardinality comparisons, based on some notion of cardinality for fuzzy sets. How-
ever, such reduction is not possible for arbitrary quantifiers. Hence a comprehensive
interpretation of linguistic quantifiers must rest on a more general conception.

In chapters seven to ten, I will describe some suitable choices for such construc-
tions which result in the increasingly broader classes ofMB-models (chapter seven),
Fξ-models (chapter eight), and finallyFΩ or Fω-models (chapter nine). All of these
models rest on a generalized supervaluationist approach based on a three-valued cut-
ting mechanism. In thetenth chapter, I consider a different mechanism, based on the
extension principle, which results in the constructive class ofFψ-models. This class of
models which are definable in terms of the standard extension principle, is then shown
to provide a different perspective on the class ofFΩ-models, to which it is coexten-
sive. Apart from introducing these classes of prototypical models, I also demonstrate
how important properties of the models, like continuity, can be expressed in terms of
conditions imposed on the underlying constructions. This facilitates to check whether
a model of interest is sufficiently robust, how it compares with another model by speci-
ficity, etc. In particular, this analysis reveals that all practicalFψ- orFΩ-models belong
to theFξ-type.

The eleventh chapterpresents the algorithmic part of the theory, and is thus con-
cerned with the issue of efficient implementation. Obviously, it only makes sense to
consider practical (i.e. sufficiently robust) models. Thus, I can confine myself to an-
alyzing models of theFξ-type. The general strategies for efficient implementation
that I expound in this chapter, will be instantiated for three prototypical models. The
considered quantifiers include the familiar absolute and proportional types, as well as
quantifiers of exception and cardinal comparatives. Some application examples are
also discussed at the end of the chapter.

In the twelvth chapter, I propose an extension of the basic framework for fuzzy
quantification. My goal is that of supporting the most powerful notion of quantifiers
developed by mathematicians, i.e. so-called Lindström quantifiers [97]. These quanti-

3



fiers are also of potential linguistic relevance, and I explain how they can be used to
model certain reciprocal constructions in natural language.

Thethirteenth chapterwill resume the main contributions of the report, and propose
some directions for future research.

There are four appendices.

Appendix Apresents the technical details of my results on existing approaches that
were cited in the introduction. It develops an evaluation framework for those ap-
proaches to fuzzy quantification, which are based on Zadeh’s traditional framework.
This analysis lets me apply the plausibility criteria developed in the main part of the
report to the existing approaches to fuzzy quantification described in the literature.

Appendix Bdiscusses the basic concept of a fuzzification mechanism, which under-
lies my proposed framework, and it sheds some light on its ramifications.

This report presents a total of 275 theorems and it would have been impossible to
list, or even sketch, the proofs of all of them. In order to keep the size of this work
within limits, and also to improve its readability, the proofs of most theorems have
therefore been detached from this major contribution and published in a series of more
specialized technical reports [46, 48, 49, 50, 51].

Appendix Ccontains a theorem reference chart which connects the theorems cited
here with their original proofs published in these reports.

Finally Appendix Dlists the complete proofs of all ‘new’ theorems, which are mostly
concerned with issues related to implementation and with branching quantification.
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1 An introduction to fuzzy quantification: Origins and basic
concepts

1.1 Motivation and chapter overview

From a linguistic perspective, it isquantificationwhich makes all the difference be-
tween “having no dollars” and “having a lot of dollars”. And it is the meaning of
the quantifier “most” which eventually decides if “Most Americans voted Al Gore” or
“Most Americans voted Bush” (as it stands). Natural language (NL) quantifiers like
“all”, “almost all”, “many” etc. serve an important purpose because they permit us to
talk about properties of collections, as opposed to describing specific individuals only;
in technical terms, quantifiers are a ‘second-order’ construct. Hence the quantifying
statement “Most Americans voted Bush” asserts that the set of voters of George W.
Bush comprises the majority of Americans, while “Bush sneezes” only tells us some-
thing about a specific individual. By describing collections rather than individuals,
quantifiers extend the expressive power of natural languages far beyond that of propo-
sitional logic, thus making them a universal communication medium. Not surprisingly,
then, quantifiers are ubiquitous in everyday language, and examples of quantification
come up in all areas of daily life (see Table 1). But quantifiers are not only frequently
found in spoken and written language; they also have a considerable share in what is
being said. Whether there are “many clouds over Italy” or “very few clouds”, say,
can make quite a difference for prospective tourists planning their summer vacation.
Due to the crucial importance of NL quantifiers to the meaning and expressiveness of
language, but also to the admissible inferences (i.e., the valid logical conclusions), it
is not surprising that quantifying constructions aroused interest since the very begin-
ning of scientific research. In fact, the analysis of quantification, which was originally
considered the subject of logic and thus philosophy, can be traced back to the An-
cient Greek, notably to the ‘first formal logician’, Aristotle [16, p. 40]. In hisTopics,
Aristotle describes the subject of logic as follows.

“Reasoning is an argument in which, certain things being laid down, something
other than these necessarily comes about through them.”
(English translation in Bocheński [16, (10.05), p. 44])

The early interest in universal quantification is explained by this focus on valid rules
and inferential patterns, because universal propositions are necessary to describe gen-
eral laws which are valid for all possible instantiations. For example, the infamous
“All men are mortals” makes an assertion about arbitrary men. Similar considera-
tions apply to existential quantification. Existential propositions let us talk about an
individual without explicitly naming it, and even without knowing its identity, cf. “Pe-
ter screamed” vs. “A man screamed”. In addition, existential quantification results
from universal quantification and negation. These dependencies become visible in the
well-known ‘square of opposition’ or ‘Aristotelian square’, see Bocheński [16, p. 59,
(12.09)] and Chap. 3 below. To sum up, the universal and existential modes of quan-
tification are of special importance to reasoning. Moreover, they represent the simplest
and least peculiar examples of NL quantification. It is therefore not surprising that
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Finance and Economics:
Manyfirms have stopped making markets (p. 75)
Business:
Mostbosses assume they can change prices often and with little effort (p. 63)
Fewbusiness schools teach pricing as a discipline (p. 63)
Politics:
Many Indians admit that they have misgoverned their only Muslim-majority
state. . . (p. 25)
Severalseparatist leaders. . . seem even more willing to co-operate with India
(p. 26)
Science and Technology:
Somephilosophers see free will as an illusion that helps people to interact with
one another (p. 85)
Most courts, for example, accept a claim of insanity as a defence in certain
criminal cases (p. 85)
Literature and Arts:
Few living novelists write better than Mr Winton about the sea (p. 89)
Studies of Feminism:
Someradical women preached free love whilemostemphasised sexual purity
(p. 89)

Table 1: Examples of NL quantification in various areas of everyday life. Source:The
Economist 25-31/05/2002

logicians tentatively confined their work to these regular cases only. However, the un-
derstanding of quantification advanced at a slow pace, and it took more than 2,000
years until the puzzles of universal and existential quantification were finally solved.
In part, this slow progress exemplifies the intellectual difficulties associated with a
second-order abstraction like quantification. Its chief reason, however, was the focus
on syllogistic reasoning. According to Bocheński, a syllogism is“a λóγoς” [form of
speech]“in which if something is posited, something else necessarily follows. More-
over suchλóγoı are there treated as formulas which exhibit variables in place of words
with constant meaning”[16, p. 2]. In practice, the syllogisms used for reasoning are
composed of three parts: a major premiss, a minor premiss, and a conclusion. An
example is [135, p. 206]:

All men are mortal (Major premiss)
Socrates is a man (Minor premiss)
Therefore: Socrates is mortal (Conclusion).

The belief of Aristotle and his followers that“all deductive inference, when strictly
stated, is syllogistic”[135, p. 207] obstructed progress in at least two ways. First of
all, Aristotelian logic is concerned with universal and existential quantification, but it
lacks the notions of universal and existential quantifiers. In other words, the quanti-
fiers “all” and “some” did not appear as logical abstractions in their own right, but only
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as structural elements of the syllogism. This hindered the development of a clear se-
mantics for universal and existential quantification. Another factor which proved itself
obstructive was Aristotle’s analysis of quantifying expressions into subject and pred-
icate. “Sokrates” and “all Greek”, say, are both considered subjects, which obscures
that their logical analysis must be pretty different.1 Thus the syllogistic logic has in-
trinsic weaknesses and Russell even remarks that the logical work of Aristotle was“a
dead end, followed by over two thousand years of stagnation”[135, p. 206]. G. Frege
was the first to recognize the unfortunate effect of analysing quantified propositions
into subject and predicate. In hisBegriffsschrift, he remarks:

“In the first draft of my formula language I allowed myself to be misled by the ex-
ample of ordinary language into constructing judgments out of subject and pred-
icate. But I soon became convinced that this was an obstacle to my specific goal
and led only to useless prolixity.”
(English translation in van Heijenoort [63, p. 13])

Frege therefore replaced subjects and predicates with a novel analysis into function
and argument(s), which is necessary for a convincing account of many-place func-
tions in logic. This analysis, which has now become standard, also permitted Frege
to develop the modern doctrine of quantifiers which,“in contrast to the Aristotelian
tradition, . . . are conceived as separate from the quantified function and its copula,
and are so symbolized”[16, p. 347]. Thus the existential and universal quantifiers –∀
(“for all”) and ∃ (“exists”) in my notation – became first-class citizens of logic. The
subsequent adoption and refinement of Freges doctrine marked a revolution in the his-
torical development of logic which resulted in today’s systems of first-order predicate
logic, higher-order logics, and type theory. The new analysis in terms of function and
argument(s) and the flexible use of quantifiers marked the necessary end of syllogistic
reasoning. It was replaced with modern calculi which unlike syllogisms, are applicable
to arbitrary formulas of predicate logic. Hence formal logic was finally equipped with
a model of quantification which suits its purposes. Apart from the apparent applica-
tion to mathematics, there have also been attempts to utilize the logical quantifiers∀
and∃ for the semantic description of natural language. One of the pioneering works
is Russell’s analysis of definite descriptions like “the author of Waverley”. As Rus-
sell argues, these descriptions are reducible to combinations of the logical quantifiers.
The proposition “Scott was the author of Waverley”, for example, which involves the
definite singular quantifier “the”, is rephrased thus [135, p. 785]:

There is an entityc such that the statement “x wrote Waverley” is true ifx
is c and false otherwise; moreoverc is Scott.

In terms of the logical quantifiers, this analysis becomes

∃c(aw(c) ∧ ∀x(aw(x)→ x = c) ∧ c = Scott) ,

where ‘aw’ abbreviates “author of Waverley”. The analysis of a special kind of NL
quantifier in terms of the logical quantifiers may look promising. However, there is no

1as witnessed by examples likesleep(Sokrates) vs.∀x(greek(x)→ sleep(x)).
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apparent generalization of Russell’s approach to a broader class of NL quantifiers. In
addition, Russell’s theory of descriptions has been faced with substantial criticism due
to its poor account of the involved presuppositions.2

In this chapter, I first show that comparable difficulties must be expected if one tries
to express linguistic quantifiers in terms of∀ and∃. Specifically, the logical quanti-
fiers fail to account for the wealth of NL quantifiers because they are too weak, i.e.
unable to capture the meaning of important examples. Moreover,“the familiar ∀ and
∃ are extremely atypical quantifiers. They have special properties which are entirely
misleading when one is concerned with quantifiers in general”[6, p. 160]. Thus we
have structural differences, like the dependency of many NL quantifiers on a pattern of
several arguments. And certain assumptions which∀ and∃ legitimate must be given
up in the general case. In order to develop a practical notion of quantifiers, we must
then take a look into that property of NL known as ‘vagueness’ or ‘fuzziness’. Ba-
sically, the vagueness of NL makes a limited repository of NL concepts applicable
to a potentially unbounded variety of phenomena, by allowing a partial mismatch be-
tween the descriptive means and the observed phenomenon. Thus the vagueness of
language introduces imprecision or ‘imperfection’ but makes it a practical communi-
cation medium. In the chapter, I provide some background information on linguistic
vagueness and the attempts at its modelling by presenting the fundamentals of vague-
ness theory. Only one of these methods has achieved practical significance, viz Zadeh’s
fuzzy set theory which interprets vague (or ‘fuzzy’) predicates in terms of mathemati-
cal models known as ‘fuzzy sets’. The method is not only applicable to NL predicates,
but also potentially useful for modelling NL quantifiers. Following a discussion of the
origins of fuzzy quantification theory and its main directions of research, I then intro-
duce the central problematic of this report, i.e. themodelling problemof establishing a
system of plausible interpretations for linguistic quantifiers in a suitable framework for
fuzzy quantification. I present Zadeh’s traditional solution to the modelling problem
and the specific interpretation methods that evolved from it. The subsequent evalua-
tion of these approaches based on my own findings and those reported in the literature,
will raise serious doubts concerning the coverage and plausibility of these methods. In
concluding the chapter, I relate these difficulties to Zadeh’s superordinate framework
and outline the necessary improvements for a successful replacement.

1.2 Logical quantifiers vs. linguistic quantifiers

In the comparison of logical quantifiers and NL quantifiers, I will roughly follow the
classic arguments of Barwise and Cooper [6] that the logical quantifiers are insuffi-
cient for modelling NL semantics, thus substantiating the need for a generalization.
Before we can discuss this matter, however, we must first clarify some terminological
subtleties. In the linguistic theory of quantification, quantifying elements like “all”,
“most” etc. are usually referred to as ‘determiners’. The term ‘quantifier’, then, is
reserved for the (interpretation of) nominal phrases only, i.e. for the class ‘NP’ of ex-
pressions such as proper names, descriptions, and quantified terms [45, p. 226]. From

2for example, “the author of Waverley” presupposes that such an author exists. See van der Sandt [137]
and Sag/Prince [136] for a survey of work on presuppositions and pointers into the literature.
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a linguist’s point of view, making a sharp distinction between determiners and quanti-
fiers can be useful, especially at the crossroads of quantifiers and syntactic analysis. In
other cases, however, the distinction is not that productive, and only adds complexity.
For the purposes of this report, it is favourable to adopt a ‘flat’ model of quantifiers,
which offers a uniform representation for both determiners and quantifiers correspond-
ing to NPs, see Chap. 2 for details. Such a flat model is often used in the literature
when emphasis is placed on the quantifying elements ‘per se’ and their semantic de-
scription [9, p. 444]. The model allows me to drop the awkward distinction and view
determiners as a special case of quantifiers.

The chosen terminology is also in good conformance with existing research on fuzzy
quantifiers (to be discussed below), in which expressions like “all” or “most” are gen-
erally called ‘quantifiers’ rather than ‘determiners’. These approaches depart from
the linguistic notion of quantifiers in yet another point, which is concerned with the
possible ranges of quantification. When interpreting a quantifying proposition, one
always needs abase setassociated with the quantifier, i.e. a non-empty setE (for ‘en-
tities’) which supplies the individuals over which the quantification ranges. For the
semantic interpretation of a formula like∀x expensive(x), say, one uses a ‘model’ or
‘structure’ which among other things, specifies the collection of ‘all things’ against
which expensive(x) will be tested. Similar considerations apply to the interpretation
of quantifying propositions in natural language, like the corresponding “Everything is
expensive”. In the usual case of quantification based on determiners and NPs, the base
set of the quantifier coincides with the given universe of discourse, i.e. the collection
of individuals we can talk about. In the above example of the logical quantifiers in
predicate logic, the base set used for interpreting∀ and∃ is always the set of enti-
ties provided by the model. In fact, this is the only type of quantification considered
by most linguists, which usually focus on determiners and NPs. This narrow notion
of quantifiers rests on the hypothesis that determiners and NPs are the only sources
of NL quantifiers over the domain of discourse, see Barwise and Cooper [6, p. 177].
However, there are other constructions in NL which arguably involve quantification,
although they do not fit into the NP picture. As opposed to the ‘explicit’ quantifica-
tions considered so far, which are always connected to determiners like “most”, these
cases make ‘implicit’ use of quantification, which is needed for their semantical inter-
pretation. Typical examples aretemporal adverbslike “always”, “never”, “often”, “a
few times”; andspatial adverbslike “everywhere”, “somewhere” etc.

In this case, the base set of the corresponding quantifiers differs from the universe
of discourse, and quantification now ranges over such things as points in time or space
(the precise nature of the base sets obviously depends on the chosen modelling of time
and space). Another source of examples aredispositions, i.e. propositions like “Slim-
ness is attractive” which are preponderantly, but not necessarily always, true [191,
p. 713]. In this case no quantifier is visible at the NL surface at all. However, the above
disposition can be given the pragmatical interpretation “Usually slimness is attractive”,
which depends on some kind of quantification over situations or circumstances. This
approach was pioneered in Zadeh’s work on dispositional reasoning based on fuzzy set
theory [190, 191]. Similar ideas emerged in non-monotonic logic where the modelling
of default reasoning in terms of generalized quantifiers was proposed [138]. In fuzzy
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NL proposition Logical paraphrase
Everything is expensive ∀x expensive(x)
All bachelors are men ∀x(bachelor(x)→ man(x))
Some men are married ∃x(man(x) ∧married(x))
No man is his own father ¬∃x(man(x) ∧ father(x, x))

Table 2: Quantifying propositions and their translations into predicate logic: Some
elementary examples

set theory, it is customary to adopt a broad notion of quantifiers which also covers such
‘implicit’ cases. I will follow this practice here, thus admitting both the explicit and
implicit types of quantification.

Now that the terminological commitments have been explained, we are ready to
contrast the logical account of quantifiers with some facts about ‘natural’ quantifiers
actually found in human languages. Let us begin with the issue of expressive power, i.e.
is it possible to define the meaning of NL quantifiers in terms of the logical quantifiers
∀ and∃ of first-order predicate logic? It should not come as a surprise that this cannot
be done in general; consequently, we are interested in identifying the precise class
of NL quantifiers which are first-order definable. The linguistic equivalents of the
logical quantifiers, i.e. “all”, “some” as well as the derivations “no” and “not all” have
trivial renderings in first-order logic, see Table 2 for some apparent examples. Noticing
that “some” means “at least one”, we can try and extend the analysis to quantifying
propositions of the general form “There are at least kX ’s”, for some cardinalk ∈ N.
The following definitions of corresponding quantifiers[≥k] should be straightforward:

[≥1]xϕ(x)↔ ∃xϕ(x)
[≥2]xϕ(x)↔ ∃x1∃x2(ϕ(x1) ∧ ϕ(x2) ∧ x1 6= x2)
[≥3]xϕ(x)↔ ∃x1∃x2∃x3(ϕ(x1) ∧ ϕ(x2) ∧ ϕ(x3) ∧ x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3)
...

[≥k]xϕ(x)↔ ∃x1 · · · ∃xk(
k∧
i=1

ϕ(xi) ∧
∧
i 6=j

xi 6= xj) .

Of course, it is also possible to express these quantifiers in terms of cardinalities. Hence
“There are at least kX ’s” asserts that the cardinality of the collection ofX ’s is larger
than or equal tok. The example is representative of the general class of quantifiers
defined in terms of absolute counts. These will be calledabsolute quantifiersin this
report, c.f. [46, p. 82], [99, p. 2], [88, p. 208]; however, the terms ‘cardinal determiners’
[81, p. 98] and ‘quantifiers of the first kind’ [188, p. 149] are also common. Further
examples of this class comprise apparent derivations like “more than k” and “at most
k”, as well as the ‘bounding’ type of quantifiers like “exactly ten” or “between five and
ten”, see Keenan and Moss [81, p. 123]. The corresponding quantifiers, denoted[>k],
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[≤k], [=k] and[≥k;≤u], respectively, are all first-order definable:

[>k]xϕ(x)↔ [≥k + 1]xϕ(x)
[≤k]xϕ(x)↔ ¬[>k]xϕ(x)
[=k]xϕ(x)↔ [≥ k]xϕ(x) ∧ [≤ k]xϕ(x)
[≥k;≤u]ϕ(x)↔ [≥ k]xϕ(x) ∧ [≤ u]xϕ(x) .

Thus typical absolute quantifiers appear to be first-order definable. The issue was
clarified by van Benthem [9, p. 462, Th-6.2], who has a general result on logical defin-
ability:

“All first-order definable quantifiers are logically equivalent to Boolean
compounds of the typesat most k (non-) A are (not) B andthere are
at most k (non-) A .”

Apart from its apparent assertion about absolute quantifiers, what this means is that
as a rule, all other classes of NL quantifiers are not first-order definable. Consider the
quantifier “most”, for example. The truth of a proposition like “Most men are mar-
ried” obviously depends on the relative share of those men which are married. The
example is representative of the general class of quantifiers which depend on a ratio
of cardinalities, so-calledproportional quantifiers. These quantifiers are also known
as ‘proportional determiners’ [81, p. 123], ‘relative quantifiers’ [99, p. 2], [88, p. 209]
or ‘quantifiers of the second kind’ [188, p. 149]. Further examples of the proportional
type comprise “half of the”, “every third”, “five percent”, “more than ten percent”,
“less than twenty percent”, “between ten and twenty percent” etc. Proportional quan-
tifiers are frequently used in natural language (in particular the approximate examples
“many”, “few”, “almost all” etc. which will be discussed later) and also of obvious
relevance to applications. However, these quantifiers are not first-order definable, ex-
cept for a few cases like “100 percent” and “more than 0 percent”, which degenerate
into the logical quantifiers “all” and “some”, respectively. An exemplary proof that
“more than half” is not first-order definable was presented by Barwise and Cooper [6,
Th-C12, p. 213]. Hence predicate logic lacks the expressive power to model common
types of quantifiers, including the proportional examples:“It is not just that we do not
see how to express them in terms of∀ and∃; it simply cannot be done”[6, p. 160]. The
significance of these findings mainly stems from the fact that first-order predicate logic
is the strongest system of logic for which the usual proof theory can be developed [98].
Consequently, there are inherent limits to the development of logical calculi for NL
quantifiers. This somewhat pessimistic prospect forreasoningwith linguistic quanti-
fiers should not discourage themodellingof such quantifiers, though. For example,
it is perfectly possible that many NL quantifiers be definable in a stronger system of
higher-order logic.

In any case, a successful modelling must account for the peculiarities of NL quan-
tifiers, and we shall now consider some of those characteristics which set them apart
from the logical quantifiers. The most conspicious difference is concerned with the
quanticational structure of natural language, i.e. linguistic quantifiers typically show
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more complex patterns of arguments compared to the logical ones. Consider the quan-
tifying proposition “Some men are married”, for example. The proposition can be
viewed as an instance of the general pattern “SomeY1’s areY2’s”, which involves two
argumentsY1, Y2. The first argument,Y1, serves to restrict the quantification to the
individuals of interest (the set of men in our case). It is therefore called therestriction
of the quantifier. The second argument,Y2, asserts something about the individuals
specified byY1 (in this case that one of these individuals is married). This second
argument will be called thescopeof the quantifier. The example thus exemplifies the
restricted useof an NL quantifier, where the range of quantification is controlled by a
restriction argument. Occasionally, one also finds theunrestricted useof an NL quan-
tifier. A proposition like “Something is wrong”, for example, which instantiates the
general pattern “Something isY ”, does not constrain the objects of interest in any way.
There is only one argument,Y , which functions as the scope of the quantifier. Be-
cause no restriction is specified, the quantification ranges over the full base set,E. It is
this usage of “some” after which existential quantification in predicate logic has been
modelled. In formulas of the type∃xϕ(x), there is only a scope argumentϕ(x). We
thus have unrestricted quantification, becausex ranges over all individuals of the given
domain. As it happens, the restricted use of “some”, as in “Some men are married”,
can be reduced to the unrestricted case, i.e. to the equivalent “Something is a man and
married”. It is this principle which underlies the usual translation of existential propo-
sitions into predicate logic, where “Some men are married” would typically map to the
unrestricted statement∃x(men(x)∧married(x)). Universally quantified propositions
permit a similar analysis. Consider the assertion “All bachelors are men”, for example,
which is an instance of the general pattern “AllY1’s areY2’s”. We hence have restricted
quantification, based on the restriction “bachelor” and the scope “men”. Again, the re-
stricted case can be reduced to simple unrestricted quantification. For example, “All
bachelors are men” admits the unrestricted paraphrase “All things are either not bach-
elors or men”. This analysis corresponds to the usual translation into predicate logic,
∀x(bachelor(x)→ men(x)).

Such reductions notwithstanding, my examples demonstrate that it is therestricted
type of quantification which prevails in natural language. Hence NL quantifiers are
usually two-place and controlled by a restriction argument, rather than totally uncon-
strained, ranging over the full domain. The principle of restricted quantification and
the general preference for this type of quantification in NL accounts for the somewhat
arbitrary nature of the base setE as a whole. The base set must be large enough to sup-
ply all individuals we can talk about, and consequently there will be a lot of individuals
in every given situation which are totally unrelated to the task at hand. It is therefore
necessary for successful communication that one’s assertions be constrained to the ob-
jects of actual interest, and restricted quantification is the linguistic device to achieve
this. In fact, there are only very limited ways of expressing unrestricted quantification
in NL, because the restricted form is so closely tied to NL syntax and the general pat-
tern “Q Y1’s areY2’s”. Apart from a few special cases like “everything”, “something”
and “nothing”, which can be considered genuinely unrestricted, and the construction
“There areQ X ’s”, which is possible for absolute quantifiers, it appears that we can
usually only paraphrase the unrestricted form of quantification, by using formulations
like “Q things areX”, or “Q of all things areX”. These facts about natural language
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are in apparent contrast with the situation in predicate logic, where quantifiers are al-
ways unrestricted. Of course restricted existential and universal quantification can be
simulated in predicate logic, and the limitation of the logical language to the simple
unrestricted case is certainly motivated by the availability of this reduction. Turning to
linguistic quantifiers in general, we should therefore examine whether this reduction
generalizes to arbitrary NL quantifiers. In fact, the issue has already been decided by
linguistic research, and the answer came out negative: NL quantifiers which cannot be
expressed in terms of their unrestricted counterparts are rather common. The prime
case are again proportional quantifiers like “most”, “more than 60 percent” etc. An
exemplary proof that “more than half” is irreducible to the unrestricted case was given
by Barwise and Cooper [6, p. 214]:

There is no way to define “More than half of theV ’s” in terms of “More than half
of all things” and the operations of first-order logic, even if one restricts attention
to finite models.

From a different perspective, the irreducibility of many NL quantifiers to unrestricted
quantification demonstrates that these quantifiers do not permit a translation into unary
(one-place) quantification. Hence natural language is typically concerned with multi-
place quantifiers of aritiesn > 1. Up to now, we were only concerned with multi-place
quantifiers of arityn = 2, i.e. restricted quantification of the absolute or proportional
type. However, multi-place quantifiers of arityn > 2 are also quite common. A typical
example is “More men than women are snorers”, which is drawn from the general pat-
tern “MoreY1’s thanY2’s areY3’s”. Hence “more than” is a three-place quantifier. It
is representative of a class of NL quantifiers calledcardinal comparatives[82, p. 305]
or comparative determiners[81, p. 123], which effect a comparison of cardinalities.
For another example, consider “Most dogs and cats are either coddled or uncared-for”.
In linguistics, it is customary to model such cases by complex, constructed quantifiers.
The above proposition, for example, can be analysed in terms of the pattern “MostY1’s
andY2’s are eitherY3’s or Y4’s”, which corresponds to a four-place quantifier. This
treatment of Boolean constructions is necessary in order to preserve the validity of
Frege’s compositionality principle, see Keenan and Moss [81, p. 78-93] for linguistic
motivation and an extensive discussion of the subject. To sum up, the logical quan-
tifiers are generally unrestricted and confined to a single argument, while in natural
language, we usually have restricted quantification and two or more arguments. Due
to this structural difference, a more general model is needed for linguistic quantifiers,
which must be treated as some kind of many-place function.

In the following, we shall consider some further properties of the logical quantifiers
which do not generalize to linguistic quantifiers. The first is concerned with quantita-
tivity: i.e. the logical quantifiers do not refer to specific elements of the domain, and
can thus be defined in terms of the cardinality of their arguments or Boolean combina-
tions. Hence∃xϕ(x) asserts that the set of all things which satisfyϕ(x) has positive
cardinality, while∀xϕ(x) asserts that the complement of this set has zero cardinality.
In general, such quantifiers which depend on cardinalities will be calledquantitative.
Obviously, absolute quantifiers like “more than ten” conform to this scheme. The same
can be said about proportional quantifiers like “most”, which are defined in terms of a
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ratio of cardinalities (assuming that the base setE be finite). Hence many NL quan-
tifiers depend on cardinalities, and are thus quantitative. However, the preponderance
of quantitative examples does not mean that linguistic quantifiers are restricted to the
quantitative type. Some counter-examples comprise “Hans” and other proper names,
“all married” and other composites restricted by an adjective, and finally quantifiers on
infinite base sets – as shown by van Benthem [8, p.474], most quantifiers of interest
become non-quantitative in this case.3 A comprehensive model of NL quantification
should cover all of these cases regardless of quantitativity.

Finally the usual treatment of universal and existential quantification in predicate
logic suggests that the meaning of quantifiers be ‘cast in stone’ and totally independent
of factors like the model chosen for interpretation. This conception is certainly appro-
priate for quantifiers like∀ and∃, which can indeed be defined without reference to
the model. In the following, we shall denote all quantifiers with this invariance prop-
erty aslogical quantifiers, i.e. quantifiers which can be treated as logical symbols. It
is important to notice that many NL quantifiers do not fit into this category. Examples
comprise the quantifier “every man” in the pattern “every man isY ” and other noun
phrases; the quantifier “all married” in the pattern “All marriedY1’s areY2’s” and other
quantifiers restricted by adjectives; and finally “Peter” in the pattern “Peter isY ”, as
well as other proper names. In all of these cases, it is only the chosen model (i.e.
‘structure’, ‘interpretation’) which supplies an interpretation for the non-logical sym-
bols “men” and “married” (predicates) and “Peter” (treated as a constant), thus fixing
the meaning of the above quantifiers. For example, we cannot interpret propositions of
the form “Every man isX” unless we know the denotation of “man”, i.e. the collection
of individuals it refers to. Consequently, “every” is a logical symbol, but the derived
quantifier “every man” is a non-logical symbol. Similar considerations apply to the
remaining examples. In the examples discussed so far, knowing the model was suffi-
cient to decide upon the meaning of the non-logical quantifiers. There are quantifiers,
however, the meaning of which can vary even when the model is fixed, and which thus
show some kind ofcontext dependence. In fact, such quantifiers can even be found
in mathematics. Consider the quantifierQxϕ(x) of Sgro [140], for example, which
asserts that the set of all things which satisfyϕ(x) contains a non-empty open set. As
pointed out by Barwise and Cooper, the meaning ofQ is “determined not by logic,
but by some underlying notion of distance, or, more precisely, by an underlying ‘topol-
ogy’.” [6, p. 162]. Hence a richer notion of model is necessary to fix the meaning of
the quantifier. In linguistics, similar methods must be employed for assigning an inter-
pretation to proportional quantifiers like “more than 50 percent” when the base sets are
infinite, see e.g. Barwise/Cooper [6, p. 163] and van Benthem [8, p. 474-477]. Further-
more, the meaning of such quantifiers as “many” or “few” is context-dependent even
when the base set is finite. To be specific these quantifiers involve some kind of com-
parison. It is this ‘implied’ comparison which brings about their context-dependence,
because“in simple uses at least, the standard of comparison is usually not given”[82,
p. 258]. Keenan and Stavi conclude from this observation that quantifying propositions
involving “many” or “most” cannot be interpreted at all and thus assume no determi-

3we shall see below on p. 15 how the criterion for quantitativity can be formalized such that it also works
for infinite base sets.
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nate truth value. However, these quantifiers are very common in ordinary language
and people normally understand them without difficulty. This indicates that we need
not resign and join the pessimism of Keenan and Stavi. By contrast, the ease with
which people deal with such expressions rather suggests the use of the same strategy
as above, thus postulating a richer source of information which fixes the meaning of
these quantifiers as well. In order to remain agnostic about the precise nature of these
‘enriched’ models and the particular kinds of information needed for disambiguation,
it is useful to delegate this type of problem to some external means, thus leaving the
basic notion of a logical model intact. Following Barwise and Cooper [6, p. 163], I will
therefore assume that there is a richcontextwhich fixes the meaning of all quantifiers
of interest, and leave it to later specialized research to formalize a suitable notion of
contexts.

The examples presented above demonstrate that a generalized notion of quantifiers is
needed to capture the meaning of linguistic quantifiers, because the familiar predicate
calculus covers only a small fraction of NL quantification. In addition, some informal
requirements on such a generalized notion have already been identified (e.g. concern-
ing argument structure). In fact, there are proposals for a generalization of quantifiers
in mathematical logic; the pioneering work in this area was done in the 1950’s by
Mostowski [108]. The Mostowskian notion of a quantifier is apparent from the follow-
ing consideration. Let us denote by{x : ϕ(x)} the set of all things which satisfyϕ(x).
It is then apparent that the logical quantifiers can be expressed in terms of{x : ϕ(x)},
i.e. ∀xϕ(x) asserts that{x : ϕ(x)} = E, and∃xϕ(x) asserts that{x : ϕ(x)} 6= ∅.
Hence both∀ and∃ are definable in terms of a suitable mappingQ : P(E) −→ {0, 1},
whereP(E) denotes the powerset (set of subsets) ofE, i.e.Qxϕ(x) is satisfied in the
given model if and only ifQ(Y ) = 1, whereY = {x : ϕ(x)}. This suggests an appar-
ent abstraction to the class of generalized quantifiers defined in terms of all such map-
pingsQ : P(E) −→ {0, 1}. Basically, we have now arrived at Mostowski’s notion of a
quantifier restricted toE, whereE is the given base set (to be precise, Mostowski uses
a somewhat different notation). However, Mostowski further constrains the admissi-
ble choices ofQ by admitting quantitative examples only. Mostowski was the first to
formalize the intuitive criterion of quantitativity in terms ofautomorphism invariance.
Hence every quantifier restricted toE in Mostowski’s sense hasQ(β(Y )) = Q(Y ),
for all bijectionsβ : E −→ E and allY ∈ P(E), i.e.Q cannot refer to any specific in-
dividuals inE. Mostowski’s proposal has become the standard formalization of quan-
titativity, because it offers a straightforward definition for both finite and infinite base
sets. The ‘quantifiers restricted toE’ so defined, i.e. automorphism-invariant mappings
Q : P(E) −→ {0, 1}, still depend on the base setE 6= ∅. A (full) quantifierQ in the
sense of Mostowski, then, assigns to each base setE 6= ∅ a corresponding quantifier
QE restricted toE. This definition eliminates the dependence of Mostowskian quanti-
fiers on any specific base set, a feature which is probably more important for mathemat-
ical applications than for linguistic description. Resuming, Mostowski has proposed
a straightforward generalization of the logical quantifiers, which increases expressive-
ness and flexibility. His notion of generalized quantifers is taylored to mathematics,
though. Mostowski’s own examples are limited to ‘numerical’ or ‘cardinality’ quan-
tifiers like “at most finitely many” and “at most denumerably many” [108, p. 14/15].
Subsequent work on mathematical generalized quantifiers comprises Keisler’s discus-
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sion of cardinality quantifiers [84], as well as the topological quantifiers studied by
Sgro [140]. The Mostowskian picture is still to narrow for a thorough treatment of
quantification in NL, however. In particular, it neither accounts for restricted or multi-
place quantification, nor for the non-quantitativity of certain NL quantifiers. Moreover,
Mostowski’s assumption that every quantifier be defined on every possible base setE,
is likely not appropriate for NL quantifiers, which might be tied to certain choices of
base sets. Lindström 1966 [97] introduces an even more powerful notion of quantifier,
which takes the generalization begun by Mostowski to an extreme. The quantifiers of
Lindström are able to express multiplace quantification, i.e. they accept several argu-
ments. In addition, Lindström quantifiers are capable of binding more than one variable
at a time (the simultaneous binding of several variables by a quantifier has first been
described by Rosser and Turquette [132]). A Lindström quantifier of type〈1, 0, 2〉, say,
lets us construct logical formulas like

Qx,,yz(ϕ(x), ψ, χ(y, z)) ,

where the three-place quantifierQ binds one variablex in the first argumentϕ(x),
no variables inψ, and two variablesy and z in the third argumentχ(y, z). Thus,
Lindström quantifiers are indeed very expressive. However, they too are not suited as
a general model of linguistic quantifiers because Lindström quantifiers are invariant
under isomorphisms and thus quantitative. Hence both Mostowski’s and Lindström’s
generalizations of quantifiers were not developed with linguistic applications in mind.
Nevertheless, it should be obvious that similar modelling devices are necessary for the
thorough description of quantification in NL. A generalization of quantifiers suited for
linguistics should support all kinds of multi-place quantification, quantitative as well
as non-quantitative examples, and it should not force NL quantifiers to be defined for
arbitrary models. In any case, what we need is a practical model of quantifiers the
application of which is not confined to the ethereal realm of mathematics. In order
to cope with actual language use, this model must give up some idealizations which
are legitimate in mathematical logic. The logical quantifiers are always supplied with
precisely defined inputs and always determine a clear-cut result in response to such
inputs; in this sense, they are idealized quantifiers. But natural language is different.

1.3 The vagueness of language

The familiar systems of logic rest on simplifying assumptions which can no longer
be upheld in the case of natural language. Specifically, classical logic is intended
for sharply defined, unambiguous concepts, which are totally independent of context.
This assumption of predicate logic is well-suited for mathematics; and Abelian groups,
vector fields and the like are the prime cases of such artificial, idealized concepts.
It is remarkable that this precision of artificial, logical languages is totally absent in
natural languages. By contrast, the meanings of NL terms are typically non-idealized
or ‘imperfect’. There are several ways in which this imprecision shows up in NL:

1. vagueness or ‘fuzziness’

2. underspecificity
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3. ambiguity

4. context-dependence

Let us start by discussing the notion of vagueness, the remaining factors will be con-
sidered later on. Vagueness is a typical characteristic of NL concepts. It shows up in
adjectives like “young”, “bald”, “tall”, “expensive”, “smart”, “important”, but also in
nouns like “heap”, “child” or “beauty”. In all of these cases, we experience vagueness.
For example, it is hard to tell the admissible ages of persons who qualify as “young”,
and it is equally difficult to relate the baldness of a person to the number of hair on
the person’s head or similar factors. It is notoriously difficult, but ethically relevant, to
decide upon the precise age an embryo must reach to become a “child”. According to
Keefe and Smith [80, Chap. 1], whose reasoning I will now sketch, vague predicates
like the above can be recognized from the following characteristics. As opposed to
so-called precise predicates, vague predicates haveborderline cases, they havefuzzy
boundaries, and they aresusceptible to Sorites paradoxes. Let me now explain these
criteria in turn. Borderline cases, to begin with, are cases in which we find ourselves
unable or ‘unwilling’ to decide whether or not the property of interest applies. Hence
a borderline bald person is neither clearly bald nor clearly not bald. It is important to
understand that the unclarity associated with borderline cases is not due to a lack of
information, because a borderline bald person will remain a borderline case even if we
gather further information, e.g. by inspecting his scalp with a magnifying-glass. Simi-
larly, deciding if a borderline tall person is tall will not be simplified if we measure the
person’s height with the utmost precision. For example,1.84 metres vs.1.84000001
metres is not likely to make a difference. Consequently, assertions like “Bill is bald” or
“Tim is tall” (assuming these are borderline cases), must be considered neither true nor
false, but rather ‘indeterminate’ or ‘in-between’. Hence vague predicates violate the
law of ‘tertium non datur’, thus suggesting an extension of the two-valued system of
truth values. Vague predicates further lack sharp boundaries. For example, there is no
exact point on a scale of ages which separates “young” persons from those no longer
young. Rather we have afuzzy boundary, i.e. a blurred area of gradual transition. In
general, then, this means that a vague predicateF not only has boundary cases; more-
over, there is not even a clear separation between the clear cases and the borderline
cases. It rather appears that in the boundary area, there is a gradual shift ofF -ness
which runs the gamut from clear positives to clear negatives. Finally vague predicates
are susceptible to Sorites paradoxes. According to Keefe and Smith [80, p. 9/10],

A paradigm Sorites set-up for the predicateF is a sequence of objectsxi,
such that the two premises

(1) Fx1

(2) For alli, if Fxi, thenFxi+1

both appear true, but, for some suitable largen, the putative conclusion

(3) Fxn

seems false.
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For example, (1) a person of age ten is young; (2) a young person remains young when
aging by 1 millisecond; (3) a ninety-year old is young. By instantiating the general
scheme, similar examples can be constructed for arbitrary vague predicates.

In the above discussion of vagueness, I preferred ‘simple’ predicates which mainly
depend on a single dimension – like “tall” (height), “young” (age) or “bald” (which
was supposed to depend on the number of hair for simplicity). Obviously, multidimen-
sional predicates like “big”, or predicates like “beautiful” or “important”, where the
relevant dimensions are not even clear, also exhibit vagueness, and the three criteria
for vagueness also cover these cases. In addition, the vagueness of natural language is
not restricted to common nouns like “heap” or “importance” and adjectives like “tall”
or “young”. By contrast, vagueness is ubiquituous in NL and can be found right across
all syntactic categories. For examples, verbs like “hurry”, adverbs like “slowly”, modi-
fiers like “very” and quantifiers like “many” or “almost all” are all vague. At this point,
I would like to explain the classificatory difference between vagueness and the other
sources of imperfection in NL.

• Underspecificity, to begin with, is“a matter of being less than adequately in-
formative for the purpose in hand”, examples being“Someone said something”
and“an integer greater than thirty”, see [80, p. 5]. These examples demonstrate
that underspecificity per se has nothing to do with fuzzy boundaries, borderline
cases, and the Sorites paradox.

• Ambiguityrefers to one-to-many relationships between words and word senses.
“Liver”, for example, can denote someone who lives, as in “loose liver”, but it
can also refert to the part of the body, as in “liver complaint”.4 The individual
word senses of an ambiguous term can be either vague or not, just like ordinary
word senses. Hence, ambiguity as such has nothing to do with vagueness.

• Context dependencedescribes the variability in the meaning of NL terms which
can be attributed to a change in external factors. (We have already met this
phenomenon when discussing quantifiers like “many”). For example, a small
basket-ball player may well exceed the height of a tall equestrian. Obviously,
many vague predicates are context-dependent. Relational adjectives like “tall”,
“young”, “expensive” in particular, depend on a standard of comparison which is
usually not stated explicitly, and must hence be resolved from context. However,
as pointed out by Keefe and Smith [80, p. 6]:

“Fix on a context which can be made as definite as you like (in particular,
choose a specific comparison class): “tall” will remain vague, with bor-
derline cases and fuzzy boundaries, and the sorites paradox will retain its
force. This indicates that we are unlikely to understand vagueness or solve
the paradox by concentrating on context-dependence.”

In communication, the imperfection of NL results in some uncertainty regarding the
information conveyed. It is therefore instructive to relate the above notions of un-

4the possible association of “loose livers” and “liver complaints” is not a semantical issue but rather a
matter of spirits.
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derspecificity, ambiguity, context-dependence and vagueness to the ‘classical’ model
of uncertainty, i.e. probability theory. In my view, underspecificity, ambiguity and
context-dependence all introduce a number ofalternativesregarding the intended in-
terpretation. In the case of underspecificity, these alternatives result from the use of
overly general terms; in the case of ambiguity, the alternatives express different word
senses; and in the case of context-dependence, we have the option of choosing different
comparison classes. In order to decide between these alternatives, we cannot do better
but rely on experience and hence, expectations. This indicates that probability theory,
which is concerned with the formalization of expectations, might provide a suitable
framework for discussing these phenomena. Vagueness, however, is not primarily an
epistemic question and caused by a lack of information. For example, if someone is
borderline tall, then“no amount of further information about his exact height (and the
heights of others) could help us decide whether heis tall” [80, p. 2]. Consequently, a
probabilistic model which fills in expectations of the missing pieces of information will
not help here. Moreover, the probabilistic model assumes a clear distinction between
positive and negative outcomes of an event. Vagueness, however, means a lack of such
a definite or sharp distinction, thus undermining the very preconditions of probabilistic
modelling. Finally, vagueness does not seem to involve any kind of “events”. Con-
sequently, it is generally agreed that vagueness falls outside the realm of probability
theory, and needs a different methodology for its modelling.

Compared to the precision achieved in logic, the phenomenon of vagueness appears
as a deficiency or ‘imperfection’ at first sight. Nevertheless, vagueness appears to be a
universal principle inherent to all natural languages. In contrast to artificial languages
designed on the logician’s desk, natural languages had to stand the test of actual lan-
guage use; these languages were never meant to be ‘ideal’, they had to be practical,
robust and flexible in the first place. This hints at the potential relevance of vague-
ness to the functioning of NL and its utility as a communication medium, i.e. there
seems to be a purpose served by vague predicates, which makes vagueness more than
an eliminable feature of NL, but rather one of its essential components. And indeed,
from a different perspective, the seeming weakness of NL turns into one of its greatest
strengths: while artificial systems of logic essentially depend on everything to be made
100% precise, this requirement is alien to NL, which easily accomodates vagueness
and imprecision. The demand for accuracy intrinsic to classical logic might thus create
a burden of ‘precisification’ and formalization which makes its application impractical
or even not feasible. In addition, the vagueness of NL accounts for the imprecision
of our senses. Not surprisingly, then, perceptual predicates like “red” which directly
refer to perceptual categories are typically vague. Wright [160] considers such predi-
cates ‘tolerant’, because there is “a notion of degree of change too small to make any
difference” to their applicability.

Resuming, natural languages profit from incorporating this kind of tolerance, which
lets them absorb a certain degree of the variability and imprecision that we face. It
hence appears that it is two-valued logic and ‘classical’ digital computers modelled
after it, which have some deficiency concerning real-world application due to their
intrinsic brittleness. In sum, then, there is much to be gained from a mathematical
modelling of vagueness and its application in computer programs with increased ro-
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bustness which are capable of solving complex tasks in real-world environments.

The models of vagueness described in the literature can be classified into epis-
temic approaches, supervaluationist approaches, and finally models based on many-
valued logics, usually either three-valued or continuous-valued. The latter proposals
are also known as ‘degree theories of vagueness’. From theepistemicpoint of view
[23, 24, 142, 159], borderline propositions are either true or false, but they are un-
knowingly so. Thus, vague predicates are not inherently different from exact predi-
cates; we are only ignorant of their precise boundaries. Obviously, this epistemic view,
which denies the very phenomenon of vagueness, does not contribute much to the goal
of utilizing vagueness for robust computer programs. When trying to model vague
predicates in a two-valued logic, we will be forced to introduce an artificial precise
boundary, which gives a wrong impression of total accuracy, and also results in a sub-
stantial loss of information. Thesupervaluationist approachattempts to avoid the bias
made by committing to such an artificial boundary:

“Replacing vagueness by precision would involve fixing a sharp boundary between
the positive and negative extensions and thereby deciding which way to classify
each of the borderline cases. However, adopting anyoneof these ways of mak-
ing a vague predicate precise – any one of “precisification” or “sharpening” –
would be arbitrary. For there aremany, equally good, sharpenings. According to
supervaluationism, our treatment of vague predicates should take account ofall of
them” Keefe and Smith [80, p. 24].

Based on the resulting alternatives, the truth of a proposition is then determined by the
following principle of supervaluation:

“A sentence is true iff it is true on all precisifications, false iff false on all precisi-
fications, and neither true nor false otherwise”Keefe and Smith [80, p. 24].

This ‘third case’ admitted in supervaluationism is usually not considered a genuine
truth value on a par with “true” and “false”, but rather a truth value gap [42], i.e. no
truth value at all, or a truth value ‘glut’ [13], i.e. both true and false. However, if the
third case is viewed as a genuine third truth value, say1

2 , this naturally takes us to the
modelling of vagueness in terms of a three-valued logic, as proposed by Tye [155]. In
a theoretical set-up which only supports three cases (“true”; “false”; and “gap”, “glut”,
or third truth value), we are forced to introduce a sharp boundary between the clear
positives and the borderline cases (similarly between borderline cases and clear neg-
atives). This appears unnatural and contradicts the principle of ‘tolerance’ mentioned
above. Considering the vague predicate “tall”, for example, there is a strong intuition
that changing the height of a person by0.1mm cannot decide if someone is clearly tall
or not clearly tall; 1 millisecond of elapsed time will not decide if someone is clearly
young or not clearly young, etc. This observation suggests the use of a continuous-
valued model, in which the various shades ofF -ness of a vague predicateF can be
represented by real numbers raging from0 (complete falsity) to1 (fully true). The
resultingdegree theoriesof vagueness obviously account for borderline cases (which
result in intermediate truth values) and fuzzy boundaries (which can be modelled as
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a smooth transition between the extreme cases of0 and1). The Sorites paradox can
now be resolved as follows: the inductive premise (2), “IfFxi thenFxi+1”, is not
completely true, but only very nearly true. Although there is never a substantial drop
in degrees of truth between consecutivexi’s, repeated application of (2) will accumu-
late these effects. Consequently, the truth ofFxi will decrease asi becomes larger,
until it approaches complete falsity, as witnessed by the falsity of the putative conclu-
sionFxn. Thus, the Sorites paradox resolves nicely, and the continuous-valued model
gives a satisfactory account of all three characteristics of vagueness. In the literature,
there are different proposals for degree theories, and defences of using a continuous-
valued model [13, 41, 60, 96, 101, 179]. However, only one of these approaches has
acquired practical significance outside philosophical debates, and is highly visible both
in scientific research and commercial applications.

1.4 Fuzzy set theory: A model of linguistic vagueness

In the 1930’s, the philosopher M. Black made a first suggestion that vague predicates
be modelled by continuous degrees ofF -ness [13]. However, Black’s speculations
went almost unnoticed for some decades and he did not found a degree-based school
of vagueness modelling. Thus the origins of the degree-based model of vagueness are
commonly seen in L.A. Zadeh’s independent work on the subject. In 1965, Zadeh pub-
lished a seminal paper [179], in which he introduces the basic notions of a fuzzy set
(i.e., mathematical representation of a vague predicate). He further proposes general-
izations of the classical set operations to such fuzzy sets, thus unfolding the rudiments
of a set theory which incorporates ‘fuzziness’.

The fundamental concept of fuzzy set theory is easily explained: afuzzy subsetX of
some base setE assigns to each individuale ∈ E a membership degreeµX(e) in the
continuous rangeI = [0, 1]. The mappingµX : E −→ [0, 1] so defined is called the
membership functionofX. For simplicity, we shall callX a fuzzy set(rather than fuzzy
subset ofE) when the choice ofE is clear from the context or inessential. Two-valued
sets can be viewed as a special case of fuzzy sets, which only assume membership
degrees in the set2 = {0, 1}. In this case,µX coincides with the characteristic func-
tion, or indicator function, ofX. Two-valued sets are often calledcrisp in fuzzy set
theory. The term ‘fuzzy’ is usually taken to include both the crisp and the genuinely
fuzzy cases; and only when directly contrasting crisp and fuzzy sets, I will assume a
dichotomy of (genuinely) fuzzy vs. crisp/precise. Obviously, a fuzzy setX is uniquely
determined by the functionµX ; and membership functions, which are nothing but or-
dinary mappingsf : E −→ [0, 1], are a possible representation of fuzzy sets. Many
authors therefore identify fuzzy sets and their membership functions. For reasons to
be explained in Chap. 2 p. 69, I will not enforce this identification, and usually prefer
theµX -based notation. The collection of all fuzzy subsets of a given setE, called the
fuzzy powersetof E, will be symbolizedP̃(E). The fuzzy counterparts of the classi-
cal set-theoretical operations intersection, union and complementation are mappings

∩,∪ : P̃(E)
2
−→ P̃(E) and¬ : P̃(E) −→ P̃(E). They are defined element-wise in

21



terms of their membership degrees as follows:

µX1∩X2(e) = min(µX1(e), µX2(e))
µX1∪X2(e) = max(µX1(e), µX2(e))
µ¬X(e) = 1− µX(e) ,

for all X1, X2, X ∈ P̃(E). The notion of afuzzy relationcan be developed in total
analogy to the definition for ordinary sets. Thus, ann-ary fuzzy relationR, for some
n ∈ N, is a fuzzy subset ofEn. In other words,R assigns a membership grade
µR(e1, . . . , en) ∈ [0, 1] to eachn-tuple of elementse1, . . . , en ∈ E.

In two-valued logic, it is customary to discern between first-order and second-order
predicates. First order predicates apply ton-tuples of individuals; thus, the semantical
value of ann-ary predicate symbol is ann-ary relation. Second-order predicates, by
contrast, apply to properties of individuals, which, in an extensional setting, correspond
to subsets of the domain. Consequently, the denotation of a second-order predicate is
ann-ary second-order relation, i.e. a subsetR ⊆ P(E)n. The notion of a second-order
relation is easily generalized to the situation in fuzzy set theory. In this case, a fuzzy
second-order predicate applies to fuzzy properties, which signify fuzzy subsets of the
base setE, and every such choice of arguments must be assigned to a membership
grade. Consequently, afuzzy second-order relationof arityn, which is suited to model
this case, will be defined as a fuzzy subsetR ∈ P̃(P̃(E)

n
). In other words,R assigns a

membership gradeµR(X1, . . . , Xn) to eachn-tuple of fuzzy setX1, . . . , Xn ∈ P̃(E),
which signifies the extent to which the the relation applies to(X1, . . . , Xn). We shall
return to these second-order concepts in a minute when introducing fuzzy quantifiers.
Before doing that, however, I will briefly relate the fuzzy sets model to the degree-
based account of vagueness, and I would also like to sketch the ‘success story’ of the
theory and its major branches of research.

From the perspective of vagueness theory, Zadeh’s proposal of fuzzy sets introduces
a mathematical model of vague predicates. The membership grades express the degree
of compatibilityof F to the individuale. As in every degree theory, the clear posi-
tives can be identified withµF (e) = 1 and the clear negatives withµF (e) = 0. The
intermediate cases whereµF (e) is chosen from the open interval(0, 1) permit us to
express all those shades ofF -ness, which are not adequately captured by the extreme
casesµF (e) ∈ {0, 1}. For example, we can now choose a fuzzy settall ∈ P̃(E) of tall
people in some base setE, whereµtall (e) describes the extent to which the individual
e is tall. In practice, it is customary to define fuzzy predicates in terms of the rele-
vant attributes, or dimensions, that they depend on. Hence consider a scale of heights
[0, 300], measured in centimetres. We introduce a fuzzy setTALL ∈ P̃([0, 300]) such
that µTALL(h) describes the extent of tallness for a person of heighth ∈ [0, 300].
Based on the auxiliary fuzzy set, we then defineµtall (e) = µTALL(height (e)) for
all e ∈ E, where the attributeheight : E −→ [0, 300] specifies the height of the
individuals in centimetres. Thus fuzzy set theory provides a continuous-valued model
of vagueness. However, fuzzy set theory is not limited to the modelling of linguistic
vagueness, and it has a very different agenda compared to that of many-valued logics,
as pointed out by Zadeh [79, preface, p. xi].
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The impressive success of fuzzy sets both in research and applications is probably
also due to Zadeh’s clear conception of the purpose that fuzziness serves in human rea-
soning, and the potential of humanistic computing methods which incorporate fuzzy
sets and linguistic modelling. Contrasting human intelligence and the ‘machine intel-
ligence’ achieved by today’s computers, Zadeh [79, preface, p. ix] remarks that

“The difference in question lies in the ability of the human brain –an ability which
present-day digital computers do not possess– to think and reason in imprecise,
nonquantitative, fuzzy terms. It is this ability that makes it possible for humans
to decipher sloppy handwriting, understand distorted speech, and focus on that
information which is relevant to a decision. And it is the lack of this ability that
makes even the most sophisticated large scale computers incapable of communi-
cating with humans in natural –rather than artificially constructed– languages.”

The significance of Zadeh’s intuitions was demonstrated in 1975 when Mamdani and
Assilian presented the first example of a working fuzzy controller [102]. Their ground-
breaking experiment demonstrated that it is possible to control a complex system (in
this case, a steam engine) by a fuzzy model which is derived from a linguistic, rather
than mathematical, description of the control knowledge. The apparent benefits of
such fuzzy controllers catapulted fuzzy modelling from academic debate into engi-
neering and commercial products like anti-skid brakes, washing machines, auto-focus
cameras etc. Apart from fuzzy control [34, 62, 117], the application of fuzzy mod-
elling techniques was also successful in: approximate reasoning [11, 38, 111] and
fuzzy expert systems [94, 112, 195], fuzzy decision making [25, 71, 196], fuzzy design
and optimization [95, 197], fuzzy pattern recognition and cluster analysis [10, 116],
fuzzy data fusion [15, 39], fuzzy databases [19, 120, 194], fuzzy information retrieval
[105, 17, 18] and finally linguistic data summarization [73, 126, 162, 173, 193]. To-
day, various textbooks on fuzzy set theory are available, e.g. [36, 89, 115]. In addition,
there are two collections of the influential publications of L.A. Zadeh [90, 178].

1.5 The case for fuzzy quantification

As mentioned in the section on vagueness theory, linguistic quantifiers like “many” can
be vague (or fuzzy, as we now say). In order to clarify some points at the junction of
fuzziness and NL quantification, I will make some classificatory distinctions. Hence
consider the following examples of quantifying propositions:

I. Every student passed the exam.

II. Every sports car is expensive.

III. Many students passed the exam.

IV. Many sports cars are expensive.

In the first example, the quantifier “every” is applied to the crisp restriction “students”
and the crisp scope “(person who) passed the exam”. In this case, there is no im-
precision whatsoever, and we can clearly decide between the two options “true” and
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“false”. Thus, the quantification results in a two-valued truth value. A quantifier which,
given crisp arguments, always results in quantifications which are either clearly true or
clearly false, will be called aprecise quantifier. “every” is an obvious example. In
II., the precise quantifier “every” is applied to fuzzy arguments. There is a fuzzy re-
striction, the fuzzy set of sports cars, and also a fuzzy scope argument, the fuzzy set of
expensive things (resolved from the context as denoting the comparison class of “ex-
pensive cars”). In this kind of situation, i.e. when at least one argument of a quantifier
is genuinely fuzzy, we shall say that there isfuzziness in the arguments. The example
demonstrates that we must then expect borderline cases and a fuzzy boundary even
when the quantifier itself is precise. This suggests a gradual modelling of quantifica-
tion based on precise quantifiers when there is fuzziness in the arguments. Let us now
turn to III., where the quantifier “many” is applied to the choice of crisp arguments
known from the first example. Here, we clearly have borderline situations, and the
other criteria for vagueness also apply. In order to avoid the possible confusion with
the technical term ‘fuzzy quantifier’ to be introduced later, quantifiers like “many”,
which exhibit vagueness even for crisp inputs, will be calledapproximate quantifiers.
A plausible model of approximate quantifiers should capture their fuzziness and thus
profit from the use of fuzzy sets. It is important to keep the cases exemplified by II.
and III. clearly separated. In II., we obtain fuzzy quantification results because there
is fuzziness in the arguments; the quantifier itself is precise. In III., by contrast, the
arguments are crisp. Consequently, the fuzziness of quantification results can also be
due tofuzziness in quantifiers, which are of the approximate type. My examples II. and
III. isolate these factors, thus proving their independence. But of course, these sources
can also appear in combination. This is demonstrated by example IV., where an ap-
proximate quantifier is applied to fuzzy arguments. Hence we have fuzziness both in
the quantifier and in the arguments. As we have seen in II. and III. above, any of these
factors can bring about fuzzy quantification results. Consequently, the quantification
in IV., where both sources of fuzziness must be considered, also demands a gradual
modelling in order to account for these cases. Approximate quantifiers like “many”
are actually very common in natural language. The following list presents some more
examples of approximate quantifiers expressed by determiners. The corresponding
classes of quantifiers are absolute quantifiers, proportional quantifiers, quantifiers of
exception, cardinal comparatives and proportional comparatives, respectively.

a. “(absolutely) many”, “(absolutely) few”, “about ten”, “several thousands”. . .
(approximate specification of the cardinality of a set)

b. “(relatively) many”, “(relatively) few”, “almost all”, “about 40 percent”,. . .
(approximate specification of a proportion of cardinalities)

c. “all except a few”, “all except about ten”,. . .
(approximate specification of the allowable number of exceptions)

d. “far more than”, “some more than”,. . .
(approximate comparison of cardinalities)

e. “a much larger proportion than”, “about the same percentage”,. . .
(approximate comparison of proportions)
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When comparing logical and linguistic quantifiers, I introduced the distinction between
explicit and implicit quantifiers, which are defined on base sets other than the universe
of discourse. In addition to the above ‘explicit’ cases, approximate quantifiers are also
frequently used to express implicit kinds of quantification:

f. “often”, “rarely”, “recently”, “mostly”, “almost always”,. . .
(approximate temporal specification)

g. “almost everywhere”, “hardly anywhere”, “partly”,. . .
(approximate spatial specification)

h. “usually”, “typically”, . . .
(dispositional quantification)

i. “in almost every way”, “in most respects”,. . .
(quantification over properties, ways of doing things)

As mentioned above, there are examples of implicit quantification in dispositional or
habitual propositions which do not involve a visible quantifier at all, like the earlier
“Slimness is attractive”. Zadeh [190, 191] suggests that these cases be treated as
(covert) uses of approximate quantifiers like “usually”.

It is rather instructive, and also of great importance to my later analysis of fuzzy
quantifiers, to relate the above cases I.–IV. to the ‘fields of quantification’ of Liu and
Kerre [99, p. 2], who classify the possible instances of fuzzy quantification into four
basic categories. The classification is presented for unrestricted quantification only,
i.e. for a unary quantifierQ and a single argumentA, as in “There areQ A’s”, “Q
things areA”, or QxA(x) in a logical notation. Noticing that both the quantifierQ and
predicateA can either be crisp or fuzzy, Liu and Kerre obtain the following table of
possible combinations [99, p. 2]:

A crisp A fuzzy
Q crisp I II
Q fuzzy III IV

In this report I am mainly concerned with multi-place quantifiers. For quantifiers which
accept several arguments, the classification must be generalized as follows.

Type I: the quantifier must be precise and all arguments must be crisp;

Type II: the quantifier must be precise, but fuzzy arguments are admitted;

Type III: the quantifier is allowed to be fuzzy, but all arguments must be crisp;

Type IV: both the quantifier and its arguments are allowed to be fuzzy.

Let us now return to my examples introduced at the beginning of this section. It is
clear that in the above example I., we have Type I quantification, in case II., a Type
II quantification, etc. However, the two classifications are not identical. In my own
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examples, there is a dichotomy between precise and approximate quantifiers; in par-
ticular, approximate quantifiers cannot be precise. This is different in the classification
of Liu and Kerre, where the term ‘fuzzy’, which refers to fuzzy sets, includes both the
crisp and genuinely fuzzy cases, i.e. the above use of ‘fuzzy’ for quantifiers means:
either precise or approximate. Consequently, Type I quantifications are a special case
of both Type II and Type III quantifications, which in turn are special cases of Type IV
quantifications. Generally speaking, a two-valued modelling is only adequate for Type
I quantifications. The most general form, i.e. Type IV quantification, not only includes
the remaining cases; it is also most relevant from the perspective of applications. Con-
sequently, achieving a proper treatment of type IV quantifications is the main objective
of every model of fuzzy quantification.

1.6 The origins of fuzzy quantification

It was L.A. Zadeh who first brought fuzzy NL quantifiers to scientific attention and
who wrote the pioneering papers on the modelling of these quantifiers with methods
from fuzzy set theory. In a series of papers starting in the mid-1970’s [180, 181, 182,
183, 184, 185, 186, 187, 188], Zadeh developed the fundamentals of possibility theory5

[180, 182], which served as the basis for his proposal on natural language semantics,
the meaning representation language PRUF [183]. These research efforts were aimed
at the development of a theory of approximate reasoning [180, 181, 183], in which
the knowledge about the variables is represented in terms of possibility distributions,
from which the reasoning process constructs further distributions or linguistic truth
values. In these publications Zadeh exposes his first ideas about fuzzy quantifiers,
however only in short passages, e.g. [184, p. 166-168], and usually in an exemplary
way. In fact, there were no systematic inquiries into the subject before 1983, when
Zadeh published the first treatise solely devoted to fuzzy quantifiers. In [188], he
introduces the basic distinction of quantifiers of the first and the second kinds (i.e.
absolute and proportional), and he develops a framework for modelling such quantifiers
in terms of fuzzy numbers. In addition, several generalizations of the familiar notion of
cardinality to fuzzy sets are considered, and it is shown how these cardinality measures
can be utilized for implementing fuzzy quantification. Finally, Zadeh also makes a
proposal for syllogistic reasoning with fuzzy quantifiers. It is this ground-breaking
publication, which established fuzzy quantification as a special branch of fuzzy set
theory. Some other publications of Zadeh on the subject, which are also influential,
comprise: a theory of commonsense knowledge [189], which emphasizes the role of
fuzzy NL quantifiers; a further refinement of fuzzy reasoning with fuzzy quantifiers
[190]; Zadeh’s quantificational model of dispositions [191]; and the discussion of fuzzy
quantifiers in connection with uncertainty management in expert systems [192].

Again, there are some precursors to Zadeh’s work on fuzzy quantification. Inmany-
valued logic, the research into quantifiers which accept many-valued arguments was
launched in 1939 when J.B. Rosser [129] presented the first treatise on the subject.

5Roughly speaking, possibility theory is concerned with the representation and processing of imprecise
information expressed by fuzzy propositions. For example, “Marcel is young” conveys some information
about Marcel’s age, which can be described by a possibility distribution.
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Other important contributions to quantification in many-valued logics, which ante-
date Zadeh’s work, were made by Rosser/Turquette [130, 131, 132] and Rescher [127,
128]. The treatment of quantifiers in many-valued logic, however, is usually restricted
to Type II quantifications only, i.e. generalizations of precise quantifiers applied to
many-valued arguments. In principle, some of these methods, notably the proposal of
Rescher [127], are also capable of expressing many-valued Type IV quantifications,
but the authors were obviously not interested in, or even aware of such cases. To be
sure, Rescher [128, p. 201] remarks that he considers the generalization of orthodox
∀ and∃ a ‘moot question’, giving to understand that he has more interesting cases in
mind. He envisions quantifications referring to the semantical status of many-valued
propositions, which is made accessible from the object language. Rescher’s examples
(for a three-valued logic) include the following quantifiers:

Quantifier Meaning

(∃Ix)Px “P has borderline cases”
(∀Tx)Px “Everything is a clear positive ofP ”
(MTx)Px “Most things are clear positives ofP ”
(M Ix)Px “Most things are borderline cases ofP ”

The basic idea of accessing the degree of determinacy (i.e. vagueness or fuzziness)
through quantification is indeed an interesting one, and I will return to Rescher’s ex-
amples later. At this point, it is sufficient to observe that the quantifiers∃I ,∀T ,MT

andM I , although applied to three-valued arguments, always result in a two-valued,
precise quantification. Thus, Rescher’s examples, too, are not an anticipation of Type
IV quantifications, which were first considered by Zadeh.

Obviously, natural language quantifiers are also of intrinsic interest to linguists, and
there is indeed a linguistic school of ‘generalized quantifiers’ which emerged at roughly
the same time when Zadeh presented his early ideas on fuzzy quantifiers. The linguistic
theory, whose beginnings are Barwise [4, 5] and Barwise/Cooper [6], will be discussed
at length later on. At this point, it is sufficient to remark that the linguistic model always
starts from crisp arguments and precise quantifiers; approximate cases like “many” are
either not considered at all [82], or alternatively forced into the precise framework and
‘modelled’ as precise quantifiers [6, 61]. Barwise and Cooper [6] are well aware of the
vagueness inherent to these quantifiers, and suggest an extension of their basic analy-
sis to a three-valued model; however, they do not elaborate this idea further. Zadeh,
it appears, is familiar with the linguistic account of NL quantification, which he men-
tions in the introduction to his 1983 publication [188, p. 149]. Nevertheless, there is
no visible influence of the linguistic analysis on his proposal, and his work on fuzzy
quantification is certainly original and independent of the linguistic literature. But, lin-
guistic quantifiers are not independent of language; hence it is not clear at this point if
the departure from linguistics is really a virtue of Zadeh’s approach. To sum up, Zadeh
was indeed the first to recognize that quantifying constructions in NL usually express
Type IV quantifications, and the basic notion of a fuzzy quantifier he introduces in-
corporates both fuzziness in quantifiers and in their arguments. His 1983 publication
marks the beginning of specialized research into fuzzy quantification and today, there
are substantial contributions covering diverse aspects of the subject. Before discussing
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the technical details of Zadeh’s proposal, I would therefore like to explain the main
research directions of the evolving field. Having identified the main issues, I will then
review Zadeh’s basic concept of a fuzzy quantifier and the framework for fuzzy quan-
tification involving such quantifiers that he proposes.

1.7 Issues in fuzzy quantification

From a methodological perspective, we can discern three main issues in fuzzy quan-
tification: interpretation, reasoning and summarization. These three areas differ both
in their goals, and in the aspect of fuzzy quantification being investigated.

Interpretation. The most basic problem to be solved is that of precisely describ-
ing the meaning of fuzzy quantifiers, i.e. themodelling problem. Making available
such descriptions is a prerequisite of implementing fuzzy quantifiers on computers,
and of using these important NL constructs in men-machine-communication. Obvi-
ously, the chosen interpretations must match the expected meaning of the considered
NL quantifiers in order to avoid misunderstanding. The computer models should there-
fore mimick the use of these quantifiers in ordinary language. In order to develop
such interpretations, we need a formalism which lets us express the semantics of fuzzy
quantifiers with sufficient detail. In this framework, the relationship between linguis-
tic target quantifiers and their mathematical interpretations must then be analysed. In
other words, a methodology must be developed which lets us identify the mathemati-
cal model of an NL quantifier of interest by describing its expected behaviour. Given
a fuzzy quantifying proposition like “Many expensive cars are spacious”, we can then
use the models of “most”, “expensive”, “cars” and “spacious” to construct the interpre-
tation of the expression as a whole. As witnessed by the example, which is based on an
approximate quantifier “many” applied to the fuzzy argument of “spacious cars”, this
methodology must be developed for general Type IV quantifications. Only then will it
become possible to model the interesting cases, like the above example and other cases
of gradual evaluations. For example, Type IV quantifications are also necessary to rank
a collection of cars according to the quality criterion “Few important parts are made
from plastic”. Similar criteria are very common in everyday reasoning and typically
used when we have to decide among several options. A good deal of the literature
on fuzzy quantifiers is concerned with the issue of interpretation, although most of
these publications also introduce some prototypical application. Examples comprise
the works of Zadeh [188], Ralescu [124] and Yager [170, 176]; see Liu and Kerre [99],
Barro et al [3] and Delgado et al [29] for overviews of approaches described in the
literature. A more detailed discussion of interpretations for fuzzy quantifiers and the
various facets of the ‘modelling problem’ will be given in the next section.

Reasoning Another class of papers is concerned with the manipulation of expres-
sions involving fuzzy quantifiers. Specifically, the goal is to develop methods which
deduce further knowledge from a set of facts and rules involving fuzzy quantifiers.
Compared to the former issue of interpretation, this reasoning process will usually not
demand complete knowledge of the given situation, i.e. there is some uncertainty con-
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cerning the exact values of some of the variables. However, even partial, imperfect
knowledge of a situation is often sufficient to draw valuable and reliable conclusions;
all of us bear witness to this in our everyday problem solving. In computer models
of this form of ‘approximate reasoning’ or ‘reasoning under uncertainty’, such par-
tial knowledge can be expressed, for example, in terms of facts and rules involving
fuzzy predicates and fuzzy quantifiers. Ideally, the axiom schemes and deductive rules
(e.g. modus ponens) used by the reasoning system should permit the derivation of new
truths (valid formulas) from given ones, and the assumed calculus should also cover the
full space of logical consequences of the base knowledge. The classical procedure to
achieve this is to define a semantical notion of entailment and then make sure that the
calculus parallels semantic entailment, i.e. the calculus should be both correct and com-
plete. However, this route was not taken in Zadeh’s pioneering work [188, 190, 191],
who develops his theory of approximate reasoning from independent considerations.
Important contributions of other authors comprise [35, 123, 143, 152, 153, 167, 168],
to name just a few. These approaches are often more particular about the semantical
justification of their reasoning schemes. Thöne [152], for example, shows that it is
possible to draw precise conclusions in the presence of uncertainty. A survey of the
‘state of the art’ in reasoning with fuzzy quantifiers is presented in [100].

Summarisation The third main issue in fuzzy quantification is concerned with the
generation of quantifying expressions which best describe a given situation. This prob-
lematic is different from the generation of quantifying expressions in a fuzzy reasoning
system, where the system’s limited knowledge of the situation is further elaborated by
applying the calculus rules. By contrast, a system for data summarisation is usually
supposed to have complete knowledge of the situation of interest, usually stated in
terms of elementary facts. The goal is to construct a succinct description of the situa-
tion, which captures the important characteristics of the data. In order to express these
descriptions, the system is equipped with a repertoire of NL concepts (represented
by fuzzy subsets) and of fuzzy quantifiers, which introduce the possible quantities in
agreement like “few”, “many”, “almost all” etc. Typically, the situation to be described
comprises a large number of individuals. This is why the extraction of the quantifying
description can be viewed as a process of summary generation. The generated descrip-
tions are particularly useful because they can be rephrased in ordinary language, which
makes them easily communicable. A typical example of such a summary is “Much
sales of components is with a high commission”, see [73, p. 31]. As witnessed by
the example, the process results in a concise linguistic summary which is often more
informative than a list of plain facts. Owing to these advantages, fuzzy quantifiers
have become the preferred tool inlinguistic data summarization[72, 73, 126, 177],
building on the basic methodology proposed by Yager [162, 173]. In general there
are many possible ways of summarizing a given situation. Research has therefore fo-
cussed on the development of heuristic criteria intended to guide summary generation
to the most promising solutions. The fundamental requirement on a candidate sum-
mary is of course itstruthfulness, i.e. it should properly describe the situation at hand.
Truth or ‘validity’ is not sufficient to identify the optimal summary, though. Yager
[162, 173] therefore adds a measure of informativeness. Subsequent research has iden-
tified further validity criteria, which decide upon the quality of the generated summary.
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Kacprzyk and Strykowski [73, p. 30], for example, present a system which relies on the
following indicators: the degree of imprecision/fuzziness of the summary, its degree
of covering the data, the degree of ‘appropriateness’, and finally the length of the sum-
mary. The system has been used for the linguistic summarization of sales data at a
computer retailer [72, 73].

1.8 The modelling problem

In this report, I will focus exclusively on the issue of interpretation, or more precisely,
the notoriousmodelling problemof accomplishing a plausible interpretation for NL
quantifiers with methods from fuzzy set theory. There is good reason for doing that,
and much to be gained from a solution which improves the available quantifier inter-
pretations. First of all, the modelling problem is fundamental, i.e. none of the various
research directions in fuzzy quantification is really independent of its solution. Thus, it
seems methodologically preferable to give priority to the modelling problem, because
valid results of approximate reasoning, and a convincing summarization, can only be
achieved once the semantics of fuzzy quantifiers is better understood. In addition,
solving the modelling problem is also rewarding from a practical point of view. There
is a number of applications the implementation of which merely requires a plausible
interpretation of fuzzy quantifiers. These applications neither involve reasoning nor
summarization. Let me first explain howreasoning with fuzzy quantifiersdepends on
the modelling problem; data summarization and other applications will be considered
in turn. In order to carry out reasoning with fuzzy quantifiers, one needs a calculus
which specifies the ‘admissible moves’. This calculus should parallel the semantics of
the logical language, and hence strive to be correct and complete in the ideal case. The
semantics of the logical language, however, not only depends on fuzzy set-theoretical
models of predicates like “tall”; it also requires an interpretation for the other non-
logical symbols and fuzzy quantifiers in particular. This hints at the dependency of
reasoning with fuzzy quantifiers on an assumed model of fuzzy quantification, and thus
suggests that the issue of interpretation should be elaborated prior to addressing the de-
pendent issue of reasoning. In fact, working out a plausible semantics from which a
well-motivated calculus can then be derived, might help to avoid premature proposals
on reasoning with fuzzy quantifiers. As mentioned earlier, it must be clear in advance
that calculi for NL quantifiers will never be ‘perfect’, and reasoning with fuzzy quan-
tifiers must always search for a trade-off between correctness (validity of inferences),
completeness (coverage of expected inferences), and other factors (see p.11 above).
In my view, Zadeh’s proposal [188, 190] marks only a beginning in this search for an
optimum, because his approach is essentially a variant of syllogistic reasoning, and
hence susceptible to similar criticism as the traditional syllogistic logic, (see section
1.1). In addition, it is not anchored in an interpreted language equipped with a formal
semantics. These theoretical difficulties notwithstanding, the advances reported in the
survey paper of Liu and Kerre [100] foster hope that technical solutions exist which
are sufficient for applications. The development of such solutions will certainly profit
from an improved understanding of fuzzy quantification. For example, the semantical
analysis of NL quantifiers might reveal further structural properties, which can then be
cast into new patterns of reasoning.
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Now let us investigate how quantifier interpretations, and hence a solution to the
modelling problem, affect the results oflinguistic data summarization. In this area
of application, research has focussed on the development of sophisticated search al-
gorithms and ranking criteria, which capture the most relevant quality dimensions for
linguistic summaries. Furthermore system prototypes have been implemented which
demonstrate the new technology. The exact point where quantifier interpretations enter
the scene is, of course, the determination of the validity scores (degree of truth) of the
candidate summaries, which is one of the relevant quality dimensions. Consequently,
these systems can directly profit from improvements on the interpretation side, because
the procedure for calculating degrees of truth can easily be updated by exchanging the
model of quantification. Plugging in a new, superior model will improve the ‘valid-
ity’ or ‘truth’ scores, which results in a better overall ranking of summary candidates.
Hence advances in the formal analysis and interpretation of fuzzy quantifiers are cru-
cial for improved reasoning with fuzzy quantifiers and linguistic data summarization.
However, there are further areas of application, especially at the crossroads of natu-
ral language processing (NLP) and user interfaces, where the potential contribution of
fuzzy quantifiers is ever so striking.

1. Querying of databases and information retrieval (IR) systems.An improved
querying of databases and IR systems can be achieved by integrating certain ex-
pressions of natural language into the querying language, however retaining the
basic idea of a formal query syntax. For example, imagine a powerful database
interface which supports queries involving fuzzy quantifiers and other elements
of ordinary language. Prototypes of such interfaces, which permit more nat-
ural and convenient ways of querying, have already been developed for SQL
databases [22] and for Microsoft ACCESS V.2 [74, 193]. In perspective, this
type of database interfaces might prove useful for interactive data discovery
[126]. Similar techniques can also be developed for the querying of unstructured
data, with obvious applications to information retrieval. Experimental retrieval
systems with enhanced querying facilities (including fuzzy quantifiers and other
techniques of fuzzy set theory) are described in [56, 18].

2. Natural language interfaces.Apart from the above applications based on arti-
ficial query languages, models of fuzzy quantification will also gain relevance
in the wake of natural language interfaces (NLIs), which permit the users to is-
sue commands in unrestricted natural language. Depending on the application, a
complete implementation of such a system must also comprise a model of fuzzy
quantification, in order to make sure that quantifiers in the NL queries be inter-
preted properly. An experimental retrieval system combining NLI technology
and query processing with fuzzy quantifiers is described in [55, 54].

3. Decisionmaking and data fusion.In a broader context, fuzzy quantifiers can be
viewed as a class of linguistic operators for information aggregation and data
fusion [59, 15]. Due to their potential for combining evaluations of individual
criteria, the use of these operators has already become popular in fuzzy decision
support systems, where fuzzy quantifiers serve to implement multi-criteria deci-
sionmaking [27, 67, 75, 170]. An application of aggregation based on fuzzy
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quantifiers to process fuzzy temporal rules for mobile robot guidance is de-
scribed in [109].

For a survey of applications, see also Liu and Kerre [100]. These applications bear
witness to the need for solving the modelling problem, in order to make a coherent in-
terpretation of fuzzy NL quantifiers possible. From a more technical point of view, we
can divide the overall problem of interpreting fuzzy NL quantifiers into the following
stages:

(a) a class of mathematical models or ‘modelling devices’, must be introduced, thus
establishing a repository of candidate interpretations for NL quantifiers;

(b) in a second step, the correspondence between NL quantifiers and the available
modelling devices must be clarified.

By a framework for fuzzy quantification, then, I mean a proposal for solving the mod-
elling problem of NL quantification for a certain class of quantifiers of interest. Thus,
in principle, a framework for fuzzy quantification must specify the range of quantifi-
cational phenomena it attempts to cover; it must introduce the repository of candidate
interpretations; and finally it must explain in formal terms how the natural language
expressions of interest find their matching modelling constructs. In practice, there
must be someinput to this process, i.e. aspecificationof the intended NL quantifier,
from which the corresponding formal interpretation is then determined. Consequently,
a framework for fuzzy quantification is also expected to afford a practical way of spec-
ifying the NL quantifiers of interest, and it must provide some kind ofinterpretation
mechanism, which associates these specifications (descriptions of NL quantifiers) to
matching operational quantifiers (mathematical models of the NL quantifier of inter-
est). The specification medium introduced by the framework should permit a straight-
forward description in order to be useful in practice. However, it must also be suffi-
ciently expressive in order to catch all quantifiers of interest. Within such a framework,
the interpretation mechanism, ormodel of fuzzy quantification, then becomes a map-
ping which assigns quantifier interpretations to given specifications. Assuming a plau-
sible choice of interpretation mechanism, this general procedure solves the modelling
problem because we can now compute quantification results from the descriptions of
NL quantifiers combined with the information about their arguments.

1.9 The traditional modelling framework

In his pioneering publication [188], Zadeh develops all the components necessary for
establishing a framework for fuzzy quantification, i.e. a solution skeleton to the mod-
elling problem for a certain class of NL quantifiers which must then be instantiated by
concrete interpretation mechanisms. The majority of later approaches to fuzzy quan-
tification described in the literature have adopted Zadeh’s ideas. Thus Zadeh’s proposal
can rightfully be said to constitute thetraditional framework for fuzzy quantification.
Zadeh [188, 190] embarks on the above strategy for solving the modelling problem. In
presenting the framework, he demarcates a class of quantifiers to be treated; he pro-
poses a mathematical model for these quantifiers as well as a system of specifications
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for such quantifiers; he evolves a general strategy for determining the target operators
starting from these descriptions, and he also makes two proposals for concrete models
of fuzzy quantification (interpretation mechanisms). We shall consider these compo-
nents in turn. The subject of study, to begin with, comprises absolute and proportional
quantifiers, or quantifiers of the ‘first kind’ and ‘second kind’ in Zadeh’s terminology
[188, p. 149]:

“We shall employ the class labels ‘fuzzy quantifiers of the first kind’ and ‘fuzzy
quantifiers of the second kind’ to refer to absolute and relative counts, respectively,
with the understanding that a particular quantifier, e.g.many, may be employed in
either sense, depending on the context.”

Turning to concrete instances of such quantifiers, Zadeh notes that [188, p. 149]:

“Common examples of quantifiers of the first kind are:several, few, many, not
very many, approximately five, close to ten, much larger than ten, a large number,
etc. while those of the second kind are:most, many, a large fraction, often, once
in a while, much of, etc.”

It should be apparent from these examples that Zadeh adopts a broad notion of quanti-
fiers here, i.e. he considers both quantifiers on the universe of discourse (like “several”
or “most”) as well as quantifiers defined on other base sets (like “often” and “once in
a while”). However, the classificatory distinction of quantifiers as to the agreement
or disagreement of their base set with the universe of discourse is unknown to Zadeh.
To be sure, he uses the labels ‘explicit’ vs. ‘implicit’ quantification, which I utilize to
differentiate between these cases, but they bear a different meaning in Zadeh’s work.
Following Zadeh, a quantifier is only considered implicit if there is no visible quanti-
fying element at all, as in the case of dispositional propositions. By contrast, I include
all linguistic constructions which need quantification for their interpretation, but do not
involve a quantifier proper in the narrow linguistic sense. In any case, we can assert
that Zadeh’s approach is concerned with absolute and proportional quantifiers in a wide
sense, which also embraces examples like “often”, “usually” etc. In a subsequent pa-
per, however, Zadeh identifies quantifiers of the first and second kinds with one-place
and two-place quantifiers in general [190, p. 757]:

“It is useful to classify fuzzy quantifiers into quantifiers of the first kind, second
kind, third kind, etc., depending on the arity of the second-order fuzzy predicate
which the quantifier represents.”

In order to eliminate this potential source of confusion, I will generally use the class
labels ‘absolute’ and ‘proportional’ here, rather than quantifiers of the first and second
kinds, and I will use cardinalsn = 1 or n = 2 to denote the arity of the quantifiers,
thus discerning the unrestricted and restricted uses. It is apparent from Zadeh’s mod-
elling examples in [188] that he, too, is concerned with both cases. The unrestricted
use then corresponds to a quantifier restricted by a crisp predicate, as in “Few men are
wise”. Here, “men” can be viewed as supplying the domain in which the unrestricted
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statement “There are few wise” can then be interpreted. Resuming, Zadeh’s framework
targets at the modelling of the unrestricted and restricted use of absolute and propor-
tional quantifiers. Zadeh also mentions quantifiers of the third kind, exemplified by
“many more than” [190, p. 757], or by likelihood ratios and the certainty factors used
in expert systems [188, p. 149], but the framework is only developed for the first two
kinds.

Now that the scope of Zadeh’s approach to fuzzy quantification has been explained,
we will discuss Zadeh’s solution to the modelling problem for the chosen quantifiers.
Let us first consider the repository of modelling devices, i.e. the candidate interpre-
tations for NL quantifiers of the indicated types that Zadeh proposes. It must be re-
marked in advance that Zadeh is not very explicit regarding the difference between
fuzzy quantifiers ‘per se’ (i.e. mathematical modelling devices, operational models)
and their specifications or representations. In other words, the fundamental notion of a
fuzzy quantifier (as an operational model) is only implicit in [188]; in the subsequent
publication [190, p. 756/757], Zadeh clearly separated it from representations or spec-
ifications of his fuzzy quantifiers. But, what is a fuzzy quantifier? The answer to this
question is straightforward from the above characterization of Type IV quantifications:
a fuzzy quantifier must accept one or more fuzzy arguments and result in a membership
degree which signifies the desired outcome of quantification. Thus, fuzzy quantifiers
are essentially fuzzy second-order relations (or membership functions thereof). In his
examples, Zadeh develops these notions only for unary quantifiers and quantifiers in-
volving two arguments; he merely hints at the possibility of more general cases [189,
p. 149]. I will therefore focus on quantifiers of aritiesn = 1 or n = 2 in the fol-
lowing. Hence letE 6= ∅ be some base set. Afuzzy one-place quantifier̃Q onE,
then, (also calledunary), is a mapping which associates a gradual quantification re-
sult Q̃(X) ∈ [0, 1] to each choice of the fuzzy argumentX ∈ P̃(E). Some examples
comprise:

Q̃1(X) = µX(e) for some fixede ∈ E

Q̃2(X) = sup{µX(e) : e ∈ E}

Q̃3(X) = µ[j] whereµ[j] is thej-th largest membership grade ofX, E finite

Q̃4(X) =
∑
e∈E µX(e)
|E|

, E finite.

The extension to fuzzy two-place quantifiers should be obvious: afuzzy two-place
quantifieronE (or binary quantifier) is a mapping which associates a gradual quan-
tification resultQ̃(X1, X2) in the unit range to each choice of the fuzzy arguments
X1, X2 ∈ P̃(E). For some first examples, consider the two-place fuzzy quantifiers
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defined as follows:

Q̃5(X1, X2) = Q̃2(X1 ∩X2)

Q̃6(X1, X2) = Q̃3(X1 ∩X2), E finite

Q̃7(X1, X2) = Q̃3(X1 \X2), E finite

Q̃8(X1, X2) =
∑
e∈E min(µX1(e), µX2(e))∑

e∈E µX1(e)
, E finite.

The above definition of unary and binary fuzzy quantifiers obviously accounts for fuzzy
quantification of the intended kinds. We have one or two arguments, which are allowed
to be fuzzy, and the quantifier determines a gradual result. Thus, the proposed concept
of fuzzy quantifiers is capable of expressing the desired type IV quantifications for the
unrestricted and retricted uses of absolute and proportional quantifiers. In this way,
Zadeh’s proposal solves the first part of the modelling problem, i.e. providing a suit-
able class of modelling devices. But, how are these candidate interpretations related
to the target class of absolute and proportional quantifiers found in natural languages?
For example, are the quantifiers̃Q1 to Q̃8 introduced above realized in natural lan-
guage and if so, which linguistic quantifiers do they express? And conversely (this
is the more important form of the problem): Is there a systematic way of interpreting
NL quantifiers in terms of such fuzzy quantifiers, and how can we justify a partic-
ular choice of interpretation? In fact, Thiele [149] has been successful in analyzing
this relationship for the ‘classical’ examples of universal and existential quantifiers.
However, an attempt to directly describe this relationship for a broader class of quan-
tifiers would likely be doomed to failure, due to the inherent difficulty in dealing with
second-order fuzzy predicates. As explained above, it is more promising to pave a
way for describing NL quantifiers and to make provisions for interpretation mecha-
nisms (the particular ‘models’, or ‘approaches’ to fuzzy quantification) which decide
on the interpretation of these descriptions. Zadeh is well aware of this problematic.
In his seminal paper [188] on fuzzy quantifiers, he even skips over the introduction
of fuzzy quantifiers as second-order predicates (which he tacitly uses for interpreta-
tion, of course), so eager to propose the chosen descriptions and the mechanisms to
be used for interpretation. Zadeh’s approach rests on two fundamental ideas, one of
which relates to the proposed specifications, while the other clarifies the role of the
interpretation mechanisms. Zadeh’s first idea is concerned with the representation of
fuzzy quantifiers. As pointed out in [190, p. 756],

“ . . . the concept of a fuzzy quantifier is related in an essential way to the concept
of cardinality – or, more generally, the concept of measure – of fuzzy sets. More
specifically, a fuzzy quantifier may be viewed as a fuzzy characterization of the
absolute or relative cardinality of a collection of fuzzy sets.

Hence Zadeh utilizes that the considered simple quantifiers can be expressed in terms
of the cardinality of their argument or on the relative share of two cardinalities: Abso-
lute quantifiers like “about fiftyY1’s areY2’s” depend on|Y1 ∩ Y2| while proportional
quantifiers like “mostY1’s areY2’s” depend on|Y1∩Y2|/|Y1|. In this way, it is possible
to replace the second-order notion of a fuzzy quantifier with a first-order representation
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as a fuzzy subset of the real line (for absolute quantifiers) or of the unit interval (for
proportional quantifiers):

Q̃(Y ) = µQ(|Y |) for absolute quantifiers

Q̃(Y1, Y2) = µQ(|Y1 ∩ Y2|/|Y1|) for proportional quantifiers

Notes

• This reduction is admissible in the crisp case, when the cardinalities|Y1 ∩ Y2|
and |Y1| are well-defined. We shall see later that Zadeh envisions a similar,
cardinality-based evaluation in the fuzzy case as well. However, it is not nec-
essarily so that fuzzy quantification must always reduce to a fuzzy cardinality
measure.

• I have followed Zadeh in considering the unrestricted use of absolute quantifiers
and the two-place use of proportional quantifiers as fundamental; it should be
obvious how to adapt these equalities for restricted absolute and unrestricted
proportional quantification.

• In principle, a membership functionµQ : N −→ I should be sufficient for
specifying absolute quantifiers which refer to cardinal numbers, after all. Some
of the later models of fuzzy quantification, however, will demand a specification
for arbitrary real numbers.

• In the above equality for proportional quantifiers, the case thatY1 = ∅ is silently
ignored in the literature. In principle, an additional constantv0 ∈ I would be
necessary in order to specify a unique quantification result in this case as well.

To sum up, Zadeh proposes a reduction of second-order fuzzy quantifiers to first-order
specifications. In terms of these simplified descriptions, then, an absolute quantifier
can be described by a membership functionµQ : R+ −→ I, while a proportional
quantifier can be represented by a membership functionµQ : I −→ I. A possible
choice ofµQ for the proportional quantifier “almost all” is shown in Fig. 1. In this
case, we have a membership functionµalmost all defined by

µalmost all (x) = S(x, 0.7, 0.9) (1)

for all x ∈ I, whereS is Zadeh’sS-function defined by

S(x, α, γ) =



0 : x ≤ α

2 ·
(
x− α
γ − α

)2

: α < x ≤ α+ γ

2

1− 2 ·
(
x− γ
γ − α

)2

:
α+ γ

2
< x ≤ γ

1 : x > γ

(2)

for all x, α, γ ∈ I. Zadeh [188, p. 150] further proposes to view these first-order
representations as fuzzy numbers:
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Figure 1: A possible definition ofµalmost all

“More generally, we shall view a fuzzy quantifier as a fuzzy number which provides
a fuzzy characterization of the absolute or relative cardinality of one or more fuzzy
or nonfuzzy sets.”

However, there might be some convexity implications of fuzzy numbers (depending
on the chosen notion of fuzzy number, of course) which are violated by artificial quan-
tifiers like “an even number of”. Therefore I will avoid the term “fuzzy number” in
connection with Zadeh’s first-order representations. I have decided to use the follow-
ing unambiguous notation in order to keep the second-order notion of fuzzy quantifiers
and their first-order descriptions cleanly separated. The second-order fuzzy quantifiers

are symbolized as mappings̃Q : P̃(E) −→ I or Q̃ : P̃(E)
2
−→ I, i.e. I do not use the

µQ-notation for them, and they are further labelled by the tilde˜ in order to signify that
they refer to Type IV quantifications and thus accept fuzzy arguments. The first order-
descriptions by contrast, will always be written in theµQ-notation, which then denotes
a mappingµQ : R+ −→ I or µQ : I −→ I, depending on the type of the quantifier

of interest (i.e. absolute or proportional). Hencẽalmost all is a second-order fuzzy

quantifier ˜almost all : P̃(E)
2
−→ I, while µalmost all refers to the membership

function of its first order description,µalmost all : I −→ I. As to the chosen termi-
nology, I would like to eliminate a possible source of confusion by introducing differ-
ent terms forQ̃ (the second-order fuzzy quantifier) andµQ (the membership function
of the first-order representation). For the sake of making a classificatory distinction,
I will reserve the term ‘fuzzy quantifier’ for the second-order constructQ̃. The first-
order descriptionsµQ : I −→ I or µQ : I −→ I, by contrast, will be calledfuzzy
linguistic quantifiers. It should be pointed out that Zadeh and his followers identify
the above cases and generally use ‘fuzzy quantifiers’ and ‘fuzzy linguistic quantifiers’
interchangeably; for clarity, however, I will be particular about my distinction and use
‘fuzzy quantifiers’ and ‘fuzzy linguistic quantifiers’ as technical terms with different
meanings as explained above. In addition, when talking aboutapproaches based on
fuzzy linguistic quantifiers, I refer to those approaches which operate on theseµQ’s
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in order to determine the interpretation of NL quantifiers. In this way, I also solve
the terminological problem of discerning the traditional account of fuzzy quantifica-
tion (which rests on first-orderµQ’s or ‘fuzzy linguistic quantifiers’) from the novel
approach exposed here, which introduces a very different framework.

Now that the repository of modelling devices as well as suitable specifications of
such quantifiers have been introduced (i.e. unary or binary fuzzy quantifiers as the
operations, and fuzzy linguistic quantifiers as representations), it should be pretty ob-
vious how an interpretation mechanismZ must look like which closes the gap be-
tween the first order representationsµQ and corresponding operational quantifiers
Q̃ = Z(µQ). In principle, then, the interpretation mechanism is expected to map
specifications of absolute quantifiersµQ : R+ −→ I to unary or binary quantifiers

Z(1)
abs(µQ) : P̃(E) −→ I andZ(2)

abs(µQ) : P̃(E)
2
−→ I, in order to express the un-

restricted and restricted use of the quantifier for a given base setE 6= ∅. A similar
definition is also needed for specifications of proportional quantifiersµQ : I −→ I,

which should be mapped to unary quantifiersZ(1)
prp(µQ) : P̃(E) −→ I, for modelling

the unrestricted use, andZ(2)
prp(µQ) : P̃(E)

2
−→ I to express restricted quantifica-

tion. Zadeh does not content himself with devising this general framework for fuzzy
quantification, however, in which the modelling problem is solved through a reduction
to first-order representations. He also takes the next step ahead by showing how to
design such interpretation mechanisms. His second fundamental idea on fuzzy quan-
tification, then, is concerned with the functioning of a model of fuzzy quantification.
Specifically, Zadeh [188, p. 159] proposes to determine the quantification results from
the fuzzy linguistic quantifierµQ and the given arguments through a computational
metaphor, which reduces fuzzy quantification to a comparison of fuzzy cardinalities or
ratios of cardinalities. To this end, he suggests to view the following propositions as
semantically equivalent:

There areQ A’s⇔ Count(A) isQ

Q A’s areB’s⇔ Prop(B|A) isQ.

Hence in order to evaluate an absolute quantifying statement like “There are about
eightyX ’s”, one needs a scalar or fuzzy measure of the cardinality of fuzzy sets, which
determines a quantityCount(X), or card(X) in my notation. The resulting quantity
must then be compared to the fuzzy linguistic quantifier, i.e. to the givenµQ, and this
comparison determines the numerical score of the final quantification result, symbol-
izedZ(1)

abs(µQ)(X) in my notation. Turning to proportional quantifiers, a proposition
like “Almost all X1’s areX2’s” is believed to result in some quantityProp(X2|X1)
denoting the proportion, or relative share ofX2’s which areX1’s. Again, this quan-
tity can either be a scalar number or a fuzzy subset in the unit intervalI = [0, 1]. By
comparing the resulting quantity to the givenµQ in some way, one then obtains the

quantification result, symbolizedZ(2)
prp(µQ)(X1, X2) in my notation. It should be ap-

parent from this description that those who adopt Zadeh’s ideas have two degrees of
freedom for developing approaches to fuzzy quantification: (a) the measure of fuzzy
cardinality and relative cardinality, i.e. the definitions to substitute forcard(X) and
Prop(X2|X1); and (b), the way in which the comparison of these (absolute or relative)
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cardinalities is accomplished.

Before turning to the individual approaches which instantiate this framework, and
serve to implement fuzzy quantifiers in applications, I would like to comment on a
few further differences between Zadeh’s terminology and my own classifications. This
clarification should suit those readers accustomed to Zadeh’s writings on the subject.
Zadeh uses the terms ‘universe of discourse’ and ‘base set’ in a different way than I
do. What I call the ‘universe of discourse’, i.e. the dedicated base set which supplies
the individuals that we can talk about, has no special name in Zadeh’s system, and is
equated with other base sets, i.e. collections over which a quantification can possibly
range (points of time or in space etc.). However, Zadeh uses the term ‘universe of
discourse’, rather than ‘base set’, to denote all of these collections. In Zadeh’s writings
[188, p. 159], the term ‘base set’ is reserved for the qualifying first argumentA in a
pattern like “MostA’s areB’s”, and it hence corresponds to what I call the ‘restriction’
of a quantifier. Zadeh has no special term for denoting the second argumentB, which
I call the ‘scope’ of the quantifier. To be sure, Zadeh also uses the word ‘scope’. In his
terminology, however, the scope of a (binary) quantifier is the argument tuple(B,A),
whereA,B ∈ P̃(E) are given choices of the variables in the pattern “Q A’s areB’s”,
see [188, p. 47].

1.10 A survey of existing approaches

The abstract framework for fuzzy quantification described above introduces specifi-
cations and target operations for absolute and proportional quantifiers, and it clari-
fies the role of interpretation methods. In order to be useful in practice, however,
the framework must be populated with concrete proposals for possible interpretation
mechanisms, and Zadeh [188] does not miss his opportunity to present two instructive
examples. In his first method described in [188], called theΣ-count approachin the
sequel, Zadeh avails himself of a scalar measure of the cardinality of fuzzy sets and of
fractions of such cardinalities. This scalar measure, known as theΣ-count or ‘power’
of a fuzzy set [31], serves to implement the cardinality comparisons in “card(X) is
Q” and “Prop(Y |X) isQ”, to which Zadeh attempts to reduce all Type IV quantifica-
tions. Zadeh’s second proposal, referred to as theFG-count approachin the sequel, no
longer supposes that the cardinality of a fuzzy set can be represented by a single scalar
number; by contrast, it now uses a fuzzy subset of the cardinal numbers, determined by
the so-called FG-count, in order to describe the cardinality of fuzzy sets, see [188] for
details. Other authors have usually adopted Zadeh’s classification of absolute and rel-
ative quantifiers, and his basic framework for representing and interpreting quantifiers
of these types. And most authors share his assumption that Type IV quantifications
can be reduced to a comparison of (absolute or relative) cardinalities. Correspond-
ingly, the approaches described in the literature mainly differ in the measure of fuzzy
cardinality used and in the way that the required comparison of fuzzy cardinalities
is accomplished. The particular methods used for interpretation stem from different
considerations and also account for different objectives: In some cases, the new pro-
posals are directly motivated from negative evidence against an earlier technique; the
modified method then targets at an improvement for the critical cases. An example
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is Ralescu’s FE-count approach [124]. Other contributions attempt a generalization
of existing methods, e.g. by replacingmin andmax with general fuzzy conjunctions
and disjunctions [28, 30] or by making use of general implications [3, p. 15, eq. (3)].
Finally, there are also proposals to exchange Zadeh’s methods with conceptually differ-
ent techniques, thus pursuing independent directions within Zadeh’s overall framework
[170, 172, 174, 176].

Specifically, Yager [165] proposes an approach to fuzzy quantification suited for
nondecreasing quantifiers, which is essentially based on the FG-count. In [166], Yager
presents a generalization of his method to arbitrary fuzzy conjunctions and conjunc-
tions. In addition, Yager extends his method towards binary proportional quantifiers,
thus incorporating importances [171, p.72]. His method, although not introduced in
this way, is a generalization of the basic FG-count model (see section A.5). Ralescu
[124] attempts to improve upon the FG-count model with a third proposal for inter-
preting fuzzy quantifiers, known as theFE-count approach, where the FG-count is
exchanged with the so-called FE-count, another measure for the cardinality of fuzzy
sets described by Zadeh [188]. Each of the three basic methods considered so far – i.e.
theΣ-count, FG-count and FE-count approaches – adopts its particular notion of fuzzy
cardinality, which serves as the basis for performing cardinality comparisons. Thus,
these approaches exemplify Zadeh’s basic idea of reducing Type IV quantifications to
a gradual comparison “card(X) is Q” or “ Prop(Y |X) is Q”. A different approach
was proposed by Yager [170], who models fuzzy quantifiers as Ordered Weighted Av-
eraging (OWA) operators, thus reducing fuzzy quantification to a special case of aggre-
gation problem. The basic OWA approach, which is restricted to unary proportional
quantifiers based on nondecreasing choices ofµQ, has later been extended towards
nonincreasing and unimodal quantifiers [175]. In addition, Yager has developed sev-
eral methods for incorporating importances [170, 172, 174]. It should be remarked that
the OWA approach, although originally not declared in terms of a cardinality measure,
also fits into the general framework because it can be defined from a measure of fuzzy
cardinality (FG-count), see note below on page 49. Another reduction to cardinality-
based calculations is described in [30]. The three approaches mentioned earlier as well
as the OWA approach, have been most important to the theoretical development of
fuzzy quantification, and they are most frequently found in applications (in particu-
lar theΣ-count and OWA method are very popular). I therefore consider these four
methods themain approachesto fuzzy quantification, which will be discussed at some
more length in the remainder of this chapter. Apart from these well-known methods,
there are several minor variants and generalizations which also belong in Zadeh’s gen-
eral framework and share his basic assumptions. Finally, a few independent proposals
have been made, which bring in fresh thought and open up some interesting new di-
rections. Let us first consider the approaches in Zadeh’s framework before turning to
more exotic cases.

To begin with, there are several variants of the OWA approach, which differ in their
formalization of two-place quantification, or ‘importance qualification’ in Yager’s ter-
minology. Here, I view the earliest, 1988 method as basic [170]. Two alternative
techniques to include weights are described in [172, 174]. A recent proposal of Yager,
which is also concerned with importance qualification in an OWA setting, is mentioned
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in [177]. Yager’s models of two-place quantification make essential use of a coeffi-
cient derived from the given quantifier, the so-called ‘degree of orness’ (see section
A.4 below for details). Others have tried to develop improved methods for restricted
proportional quantification which are also parametrized by the degree of orness. Vila
et al [156], for example, propose a convex combination (i.e. linear interpolation) of
restricted universal and existential quantification, where the degree of orness is used
as the interpolation coefficient. Delgado, Sánchez and Vila [28] propose an integral-
based method which incorporates both the FG-count and OWA approaches, depend-
ing on the choice of fuzzy conjunction and disjunction.6 The method is extended to-
wards restricted proportional quantification, again, by employing an aggregation oper-
ator parametrized by the degree of orness. The same authors have recently presented
a general cardinality-based method which also encompasses the FG-count and OWA
approaches as special cases [30]. This proposal certainly marks an important theoret-
ical advance because it explains these techniques from a unifying, cardinality-based
perspective. In addition, the ‘core’ approaches are extended to arbitrary quantifiers
(without special assumptions on monotonicity), and a general analysis of relative car-
dinalities and binary proportional quantification is also provided. Finally, Barro et al
[3] consider a generalization of Yager’s [171] inclusion approach towards general fuzzy
implications (but they do not recommend their method due to some intrinsic problems
which it shares with Yager’s proposal).

Due to the conceptual vicinity of fuzzy quantification and cardinality assessments,
another point of departure is the improvement or generalization of the underlying car-
dinality measures, from which novel methods for fuzzy quantification can then be de-
rived. The work of Delgado et al [30] mentioned above fits nicely into this category.
Historically, the discussion of cardinality measures for fuzzy sets starts with Zadeh’s
proposal of a fuzzy cardinality in [184], and Blanchard’s [14] subsequent research
into a suitable notion of fuzzy cardinality. Dubois and Prade [37] improve on Zadeh’s
original definition of fuzzy cardinality [184] (which may generate non-convex fuzzy
cardinalities) and on the FE-count measure (which discerns less structure than possi-
ble) by presenting an alternative measure of fuzzy cardinality with improved formal
properties. In addition, Dubois and Prade develop a methodology for cardinality com-
parisons of fuzzy sets, which establishes a meaningful interpretation to statements like
“A has more elements thanB” whenA,B are fuzzy sets. However, they seem to view
this as an application of cardinality measures, not as a special kind of fuzzy quantifica-
tion. Some further publications on the cardinality of fuzzy sets, which I cannot discuss
here, have been contributed by Ralescu [125] and Wygralak [161].

Next we shall consider approaches which depart from the general picture framed by
Zadeh. Prade [119], to begin with, presents a fuzzy pattern-matching approach to the
evaluation of fuzzy quantifiers which can be applied to arbitrary absolute quantifiers
µQ : R+ −→ I without special monotonicity requirements. The approach does not
generate a unique quantification resultZ(µQ)(X) ∈ I, though, but rather determines
interval-valued interpretations[N,Π], N,Π ∈ I. As shown by Bosc and Lietard [20,
p. 11], the result interval contracts into a unique scalar for monotonic quantifiers; the
approach then coincides with the FG-count approach. The contributions of Bosc and

6the method is also described in English in Barro et al [3, p. 19-21].
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Lietard [20, 21] are also of interest because they reduce the basic FG-count approach
to a Sugeno integral, and the basic OWA approach to a Choquet integral. Thus, these
‘core’ approaches can be explained by a comprehensive theory of fuzzy measures and
integrals. Moreover, the integral-based reformulation is no longer restricted to quanti-
fiers expressed in terms of cardinalities; obviously, it can handle arbitrary fuzzy mea-
sures (i.e. nondecreasing unary quantifiers). However, Bosc and Lietard abstract from
the problem of supporting nonmonotonic and multiplace quantifiers. Let us now turn
to ‘independent’ approaches, which do not adopt Zadeh’s proposal of reducing Type
IV quantifications to a comparison of fuzzy cardinalities (actually, the above proposal
of Bosc and Lietard also finds its place here). In retrospect, the first such method for
fuzzy quantification has been described by Yager [164, p. 196]:

“One commonly used approach of accomplishing this is called the substitution
approach. . . In this approach, we try to represent a quantified statement by an
equivalent logical sentence involving atoms which are instances of the predicate
evaluated at the elements inD.”

(HereD is the domain of discourse, i.e. the base set). Yager attributes this method
to Suppes 1957 [146]. But, Rescher [128, p. 203] also mentions the method in his
standard reference on many-valued logic, and he believes it was introduced earlier by
Wittgenstein. In fact, as noted by Bocheński [16, p. 15, p. 349], the method has been re-
discovered over the centuries, and its beginnings can be attributed to Albert of Saxony
(1316-1390), who first proposed a reduction of existential and universal propositions
to disjunctions and conjunctions, cf. [16, (34.07), p. 234]. From a practical perspec-
tive, the substitution approach is rather a framework for methods which must still be
refined into concrete approaches, because there are various degrees of freedom in in-
stantiating the basic pattern for approximate quantifiers (for a concrete example of a
conforming model, see Th-102 on p. 217 below). Another line of independent research
was pursued by H. Thiele [147, 148, 149]. Starting from a definition of ‘general fuzzy
quantifiers’, i.e. mappings̃Q : P̃(E) −→ I, Thiele develops various concepts useful
for classifying such quantifiers. These methods permit him to characterize the general
classes of fuzzy universal and existential quantifiers, called T- and S-quantifiers, re-
spectively. Later Thiele also discussed ‘median quantifiers’ [150]. These are likely not
realized in language, however, and they will be of no importance in this sequel. An-
other specialized class of quantifiers, so-called ‘implicational’ quantifiers, have been
analysed by H́ajek and Kohout [69] within their checklist-paradigm for defining fuzzy
truth functions.

To sum up, a variety of interpretation mechanisms or more generally, methods for
fuzzy quantification, have been proposed which all target at the proper modelling of
these quantifiers in conformance with their meaning in ordinary language; a survey of
approaches is also given in [3, 29, 99]. However, there is no consensus about the proper
choice, i.e. no clear favourite which best answers the linguistic expectations. Thus all
models exist in parallel and theΣ-count, OWA and FG-count approaches are often con-
sidered in theoretical treatise and in applications (only the FE-count approach is hardly
used with a good cause, as we shall see). In other words, no single model has emerged
which clearly outperforms the other approaches. Quite the reverse, it appears that each
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method comes with its own difficulties, and notes on the counter-intuitive behavior
of these approaches are scattered over the literature [2, 3, 30, 37, 47, 124, 125, 175].
Specifically, Zadeh’s first proposal, theΣ-count approach, was criticized by Yager
[175], who presents a counter-example which documents the unwanted ‘accumula-
tive’ behaviour of the method when there are a lot of small (but non-zero) member-
ship grades. Barro et al [3, p. 13] and Glöckner [47, p. 12-15] have further criticism.
And Zadeh himself warns that his approach is not compatible with the formation of
antonyms [188, p. 167]. Ralescu [124] criticizes Yager [165] and hence the basic FG-
count approach, demonstrating that the method yields implausible interpretations when
the quantifier is non-monotonic or unimodal, like the example “a few”. Although Yager
wisely excludes these cases from consideration [165, p. 639], Ralescu’s example is in-
structive in illustrating the limits of the FG-count model. Arnould and Ralescu [2] also
argue against the FG-count approach, referring to Yager [165]. However, the prob-
abilistic model underlying their criticism [2] makes an unusal methodological com-
mitment. Yager’s inclusion approach [171], which extends the basic FG-count model
towards importance qualification, was criticized by Glöckner [47, p. 21-25], see also
section A.5 below. Gl̈ockner also presents a counter-example against the FE-count
approach of Ralescu [124], which reveals that the method is unable to model the ex-
istential quantifier [47, p. 25/26]. Dubois and Prade [37] put further evidence against
the FG-count and FE-count approaches, by criticizing the underlying cardinality mea-
sures for fuzzy sets. Glöckner [47, p. 16-20], Delgado, Sánchez and Vila [30, p. 32]
and Barro, Bugarı́n, Carĩnena and D́ıaz-Hermida [3, p. 18] present counter-examples
against the three variants of the OWA approach for restricted proportional quantifica-
tion described in [170], [172] and [174], respectively. Among other points of criticism,
these extensions of the OWA approach to importance qualification fail to be monotonic
(i.e. inequalities between quantifiers are not preserved), and the approach cannot faith-
fully represent its target class of operators even for crisp arguments. The quantifier
interpolation method of Vila et al [156] fails for similar reasons, as shown by Barro
et al [3, p. 19] and Delgado et al [30, p. 32]. Turning to the proposals of Delgado,
Sánchez and Vila, their integral-based method [28] shows non-monotonic behaviour,
and unexpected results even for crisp arguments, as reported by Barro et al [3, p. 22]
referring to restricted proportional quantification. The cardinality-based method pre-
sented in [30], which offers a unifying perspective on both the FG-count and OWA
approaches, has lost much of its original appeal since Barro et al [3, p. 23] subjected
it to a critical inspection. Specifically, the resulting interpretations can show a dis-
continuous dependency on the membership grades of the involved fuzzy sets, and the
approach is neither compatible with negation, antonyms, nor dualisation of quanti-
fiers. Finally, Barro et al [3, p. 15, eq. (3)] discourage the use of their own extension of
Yager’s inclusion approach; apparently, it only serves to inspect a possible direction of
research and demonstrate that it should not be pursued further. In sum, then, we have a
scattered picture of rivaling approaches, all of which appear to struggle with their own
difficulties.

Let us now discuss the four main approaches at some more length (further techni-
cal details and supplementary information can be found in appendix A). In order to
provide a common point of reference for the various counter-examples that will be
presented, I will commit to a designated scenario. For that purpose, I have chosen
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Figure 2: Running example of a base setE, the pixels forming Germany.Left. Fuzzy
subsetX1: Southern Germany.Right. Fuzzy subsetX2: Cloudy.

an example domain of meteorological images which describe ‘cloudiness situations’.
These images form part of the document base of an experimental retrieval system for
multimedia weather documents [54, 55]. This system had to be capable of ranking
satellite images according to accumulative criteria like “Almost all of Southern Ger-
many is cloudy”. Consequently, we will now be concerned with the followingimage
ranking task, where the images of interest are first evaluated for their compatibility
with a given quantifying criterion, and the computed numerical scores are then used to
rearrange the images into a plausible order, which should parallel the perceived quality
of match. The fuzzy sets (or images, in this case) involved in this process are de-
picted in Fig. 2. Here, the base setE comprises the pixel coordinates which form the
shape of Germany. There are two images to be considered.X1 is a fuzzy subset of
E which represents Southern Germany. The region of white pixels fully belongs to
Southern Germany, and the grey pixels are those which belong to Southern Germany
to some degree.X2 is a fuzzy subset which represents a cloudiness situation. White
pixels are fully cloudy, grey pixels are cloudy to some degree. (In the right image, the
contours of Germany have been added in order to facilitate interpretation. The lower
part fully belongs to Southern Germany, the upper part belongs to Germany, but not
to Southern Germany, and the middle part contains the intermediate cases.) The im-
agesX1 (southern Germany) andX2 (representing a cloudiness situation) constitute
the fuzzy arguments to which a binary proportional quantifierQ̃ is then applied, which
determines a quantification resultQ̃(X1, X2) ∈ I. Given a suitable choice of the quan-
tifier, Q̃(X1, X2) will express the degree to which “Almost all of southern Germany is
cloudy” in the given situation. The simple scenario so defined provides a testbed for
approaches to fuzzy quantification, because each methodZ will determine its specific
choice of quantifier̃Q = Z(2)

prp(µQ). The specific properties ofZ will express in the

numerical scoresτ = Z(2)
prp(µQ)(X1, X2) it assigns to the example images. In many

cases, an implausible assignment will also show up in the ranked list of images, which
departs from the expected order by relevance.
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1.11 The Sigma-count approach

Let us first review theΣ-count approachproposed by Zadeh [188], a simple model
of fuzzy quantification derived from a scalar cardinality measure for fuzzy sets. The
model rests on the computation ofΣ-counts, also known as thepowerof a fuzzy set,
which are defined as the sum of all membership grades, thus

Σ-Count(X) =
∑
e∈E

µX(e) .

Zadeh’s basic idea is thatΣ-Count(X) ‘may be used as anumerical summaryof the
fuzzy cardinality of a fuzzy set’ [184, p. 167], and can hence be substituted for the
ordinary cardinality of crisp sets in order to evaluate quantifying expressions. For
unrestricted absolute statements “There areQ X ’s”, then, we get the associated score
µQ(Σ-Count(X)), based on the givenµQ : R+ −→ I andX ∈ P̃(E). The so-
calledrelativeΣ-count[180] is used for modelling proportional quantification, i.e. the
interpretation is based on the relative share of thoseX1 that areX2. For a statement
“Q X1’s areX2’s” involving a proportional quantifier, we then obtain the score

τ = µQ

(
Σ-Count(X1 ∩X2)

Σ-Count(X1)

)
,

whereµQ : I −→ I andX1, X2 ∈ P̃(E). It is apparent from these formulas that
the Σ-count approach depends only on very basic arithmetics, which makes it very
easy to implement and thus attractive for applications. However, there are serious
concerns regarding its ability to catch the actual meaning of NL quantifiers. The first
line of criticism is concerned with the known deficiency of theΣ-Count approach to
accumulatemembership grades, see e.g. Ralescu [124, 125] and Yager [175]. Hence
supposeE = {John, Lucas} is a set of persons andbald the fuzzy subset defined by

µbald (John) = 0.5, µbald (Lucas) = 0.5 .

TheΣ-count approach then judges the statement “Exactly one person is bald” as being
fully true, which is clearly inacceptable. In general terms, the problem is that a number
of smaller membership grades can possibly become indiscernible from a single large
membership grade. The images depicted in Fig. 3 further elucidate this mismatch with
the expected semantics of quantifiers in ordinary language. In the center result image
there is about ten percent cloud coverage of Southern Germany, and the condition
“About ten percent of Southern Germany are cloudy” correctly evaluates true in the
Σ-count approach. In the right image, however,all of Southern Germany is almost not
cloudy (i.e. cloudy to the low degree of 10%), which clearly does not mean that ten
percent of Southern Germany are cloudy.7 In fact, Zadeh anticipated these problems,
and suggested that ‘for some applications, it is necessary to eliminate from the count
those elements ofF whose grade of membership falls below a specified threshold’
[184, p. 167], in order to avoid these unwanted effects. Needless to remark that the

7This is apparent because everyone who claims that 10 percent of Southern Germany be cloudy in the
right image, must also be able to tellwhich 10% of Southern Germany is cloudy. However, there is no
reasonable choice for that because all pixels which belong to Southern Germany are almost not cloudy.
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Figure 3: TheΣ-count approach accumulates ‘small’ membership grades in an unde-
sirable way. Results of “About 10 percent of Southern Germany are cloudy”. Left:
Southern Germany. Result for center image:1 (plausible). Result for right image:1
(inadequate).

proposed thresholds run counter to the methodological desideratum of a principled
theory which offers explanatory value.

Apart from its accumulative behaviour, theΣ-count approach is subject to further
criticism concerning its treatment of non-fuzzy quantifiers. Suppose that the NL quan-
tifier to be modelled is of the precise type, e.g. “more than 30 percent”. Such quantifiers
require a membership functionµQ which is also two-valued.8 But if µQ is two-valued,
then theΣ-count approach produces a ‘degenerate’ model in terms of a fuzzy quantifier
which only returns the crisp results0 or 1 (i.e., fully false or fully true). In particular,
the resulting interpretations are discontinuous mappings and very sensitive to slight
changes in the membership degrees of the fuzzy sets supplied to the quantifier. The
example in Fig. 4 illustrates this extreme brittleness of theΣ-count approach. Here,
the center image and the right image depict very similar cloudiness situations. How-
ever, the results obtained from theΣ-count approach are radically different (0 vs. 1).
Obviously, this sensitivity to minor variations in the membership degrees is inaccept-
able for many real-world applications which depend on sensory data and are thus faced
with noise, limited accuracy of sensors, quantization errors etc. It is worth noticing that
Zadeh’s technical hint of adding thresholds will produce discontinuous behaviour even
for genuine fuzzy quantifiers with smooth membership functions. To sum up, theΣ-
count approach is appealing at first sight due to its stunningly simple definition, which
makes it very easy to implement. However, the known faults of the approach do not
encourage its use for applications. Its accumulating effects and brittleness can already
be observed in the simple case of one-place quantification. Consequently theΣ-Count
approach does not possess a reasonable ‘core’, which might provide a starting point
for a plausible extension to a broader class of quantifiers. This justifies my decision
not to develop theΣ-count approach further in the report, because it offers little help
for defining models which answer our linguistic expectations.

8As we shall see below in section A.3 which discusses the issue in some more depth, it is not permissible
to replace the two-valued mappingµQ with a smooth choice of quantifier in order to avoid these effects,
because the intended semantics of the quantifier would be lost.

46



1.12 The OWA approach

Next we shall consider Yager’s OWA approach to fuzzy quantification [170, 171],
which is based on ordered weighted averaging (OWA) operators. The basic OWA
approach is only concerned with proportional quantifiers, which are further required
to be ‘regular nondecreasing’, i.e.µQ : I −→ I satisfiesµQ(0) = 0, µQ(1) = 1 and
µQ(x) ≤ µQ(y) wheneverx ≤ y. Now letm = |E| be the number of elements in
the given domain. ThenµQ(j/m) − µQ((j − 1)/m) is the quantifier’s increment if
the number of elementsj − 1 is increased toj, or proportionally from(j − 1)/m to
j/m. By µ[j](X) we denote thej-th greatest membership grade ofX (including dupli-
cates), i.e. thej-th element in the ordered sequence of membership values. Intuitively,
µ[j](X) expresses the degree to whichX has at leastj elements. Using this notation,
Yager’s rule for unrestricted proportional quantification then assigns to “Q things are
X” the following score,

τ =
m∑
j=1

(µQ(j/m)− µQ((j − 1)/m)) · µ[j](X) , (3)

whereµQ : I −→ I must be regular nondecreasing andX ∈ P̃(E). This ‘core’ OWA
approach is defined for unrestricted (one-place) quantification only. Recognizing the
need to incorporate importances and hence support two-place quantification as well,
Yager [170, p. 190], [171] suggests to transform the fuzzy argumentsX1,X2 supplied
to a two-place quantifier into a single fuzzy setZ to which the original rule for unary
quantification is then applied. A restricted quantifying statement “Q X1’s areX2’s”
is then assigned the score of the unrestricted statement “There areQ Z ’s”, which can
already be handled by (3). The fuzzy setZ is defined by

µZ(e) = max(µX1(e), 1− orness(µQ)) · µX2(e)max(µX1 (e),orness(µQ))

see eq. (250) below for details onorness(µQ), the so-called ‘degree of orness’ ofµQ.
This extension to restricted quantification makes it possible to treat cases like “Almost
all young are poor”, which require two argumentsyoung , poor ∈ P̃(E) to be taken
into consideration. However, there is negative evidence regarding its linguistic plausi-
bility, because the proposed formula fails to assign plausible models to any ‘genuine’

Figure 4: Results of computing “At least 60 percent of Southern Germany are cloudy”
with theΣ-count approach. Left: Southern Germany. Result for center image: 0, result
for right image: 1.
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Figure 5: Application of the OWA-approach. Results of “At least 60 percent of South-
ern Germany are cloudy”. Left: Southern Germany. Result for center image: OWA:
0.1, desirable outcome: 1. Result for right image: OWA: 0.6, desirable: 0.

proportional quantifiers. In fact, the only two cases which are handled successfully are
the logical quantifiers “all” and “exists” (see p. 405+ below). Here we shall confine
ourselves to a suggestive example, which demonstrates that the theoretical defects are
also potentially detrimental to applications. Hence consider the situation depicted in
Fig. 5, and the corresponding results that were obtained from OWA operators with im-
portance qualification. In this case, the task was to assess the truth of the proposition
“At least 60 percent of Southern Germany are cloudy”, which is obviously valid in the
center image, but not in the right image. The OWA approach, though, ranks the right
image higher than the center image. As witnessed by Fig. 5, the results of the OWA
approach show an undesirable dependency on cloudiness grades in regions III and IV,
which do not belong to Southern Germany at all. This kind of behaviour runs counter
to the intuitive meaning of the NL quantifier “at least 60 percent”.

Additional difficulties show up once the core OWA approach is extended beyond
regular nondecreasing quantifiers. To see this, consider the quantifier “less than 60 per-
cent”, which does not belong to the regular nondecreasing type. In order to make the
OWA approach applicable nonetheless, we must resort to equivalent NL paraphrases.
For example, we can use “at least 60 percent” and evaluate “Less than 60 percent
of theX1’s areX2’s” by negating the result of “At least 60 percent of theX1’s are
X2’s”, which means a reduction to the regular nondecreasing type. Alternatively, we
can use “More than 40 percent of theX1’s areX2’s” and evaluate “Less than 60 per-
cent of theX1’s areX2’s” by computing “More than 40 percent of theX1’s are not
X2’s”. Intuitively, we should expect the final results of these computations to coincide
because they stem from equivalent paraphrases. Yager’s proposal for OWA(2)

prp treats
both cases differently, though. A counter-example is shown in Table 1.12, referring to
Fig. 5. Similar remarks apply to the modelling of unimodal and other more complex
quantifiers, see p. 408+ for a thorough discussion. To sum up, the basic OWA approach
for regular nondecreasing one-place quantifiers appears to be rather well-behaved, at
least no counter-examples are known. Thus the ‘core’ approach, which is too lim-
ited for important applications of quantifiers, will be considered a potential candidate
and starting point for future extensions, which target at covering non-monotonic and
two-place quantifiers (importance qualification) as well. However, earlier proposals
to affect this extension have failed, and clearly fall short of the interpretation quality
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Quantifier center image right image
not at least 60 percent 0.9 0.4
more than 40 percent not 0.4 0
desired result 0 1

Table 3: “Less than 60 percent of Southern Germany are cloudy.” Results of possible
renderings when applying the OWA approach to the images in Fig. 5

achieved by the basic method. As was shown by Barro et al [3] and Delgado et al [30,
p. 32], this negative evidence also generalizes to other attemps at extending the OWA
approach to two-place quantification.

1.13 The FG-count approach

Apart from theΣ-count approach, Zadeh [188] also proposes another model of fuzzy
quantification; see also Yager [165] who uses the same basic formulas in the context of
rule-based expert systems. TheFG-count approachtries to improve upon the use ofΣ-
counts by replacing the former, scalar measure with a fuzzy measure of the cardinality
of fuzzy sets. Hence let FG-count(X) denote the fuzzy set of cardinals defined by

µFG-count(X)(j) = µ[j](X) (4)

for all j ∈ N. (Here and in the following it is convenient to stipulate thatµ[0](X) = 1
andµ[j](X) = 0 for j > |E|). Intuitively, FG-count(X) captures the degree to which
X has at leastj elements (for all possiblej). The FG-count incorporates a richer
base of information compared to theΣ-count, which now becomes a summary of the
FG-count defined by

Σ-Count(X) =
∞∑
j=0

µFG-count(X)(j)− 1 ,

see Zadeh [188, p. 157].9 The new measure of fuzzy cardinality can be used to derive
a corresponding model of fuzzy quantification. In the ‘basic’ FG-count approach, the
score of an absolute quantifying statement “There areQ X ’s” becomes

τ = max{min(µQ(j), µFG-count(X)(j)) : j = 0, . . . , |E|}

whereµQ : R+ −→ I must be nondecreasing andX ∈ P̃(E). The basic FG-count
approach so defined only covers nondecreasing quantifiers, and does not incorporate
importances. A possible extension towards the ‘hard case’ of two-place, weighted
quantification has been described by Yager [171, p.72].10 A proportional quantifying

9It should be apparent from (3) and (4) that the OWA-approach, too, can be expressed in terms of the
fuzzy cardinality measure FG-count(X). This demonstrates that the OWA approach, although not originally
introduced in this way, is in fact a cardinality-based model of fuzzy quantification.

10Zadeh’s original ‘proposal’ for two-place proportional quantification in the FG-count setting had to be
excluded from consideration. The relationship between the above method for two-place quantification and
the basic FG-count approach is explained in section A.5.
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(a) Southern Germany#1 (b) Southern Germany#2 (c) cloudy

Figure 6: Application of the FG-count approach. Results of “At least 5 percent of
Southern Germany are cloudy”. Left: Southern Germany#1. Center image: Southern
Germany#2. Right image: Cloudy. Result for Southern Germany#1: 0.55, Result for
Southern Germany#2: 0.95. The desired result: 0.

statement “Q X1’s areX2’s” is then assigned the score,

τ = max
{

min
(
µQ

(∑
v∈S µX1(v)∑
v∈E µX1(v)

)
,HS

)
: S ∈ P(E)

}
HS = min{max(1− µX1(v), µX2(v)) : v ∈ S} ,

whereµQ : I −→ I is again assumed to be nondecreasing andX1, X2 ∈ P̃(E). In
order to get some impression of the resulting interpretations, we consider the situation
depicted in Fig. 6. There are no clouds at all in (the support of) Southern Germany#1,
so we should expect that “At least five percent of Southern Germany are cloudy” be
completely false. The different result,0.55, reveals a defect of the proposed model.
The example further demonstrates that the resulting operators can be discontinuous: if
we replace Southern Germany#1 with the slightly different Southern Germany#2, then
the result jumps to0.95, although there are still no clouds in the region of interest.
Hence some interpretations obtained from the two-place formula are very sensitive to
noise, which discourages the use of the model for practical applications. Implausible
results will also be obtained when quantifications like “Less than 30 percent of South-
ern Germany are cloudy”, which cannot be interpreted directly due to their monotonic-
ity pattern, are reduced to NL paraphrases involving nondecreasing quantifiers: (a)
“It is not the case that at least 30 percent of Southern Germany are cloudy”; and (b)
“More than 70 percent of Southern Germany are not cloudy”. These NL paraphrases
are equivalent and should therefore be interchangeable. The proposed extension of the
FG-count approach to two-place quantification, though, produces incoherent results in
both cases. To sum up, the ‘core’ FG-count approach appears to be well-behaved and
does not have any overt flaws. But to be useful in practice, it must be extended beyond
nondecreasing quantifiers. Most importantly, support for restricted quantification must
be added. However, existing attempts at such an extension have not been succesful.
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Figure 7: Application of the FE-approach. Results of “The image regionX is
nonempty”. Left: desired result: 1, FE-count approach: 1. Right: desired result:
1, FE-count approach: 0.5.

1.14 The FE-count approach

Finally we review the FE-count approach of Ralescu [124]. This proposal is rather
similar to the FG-count method, but tries to overcome the restriction to nondecreasing
quantifiers by replacing the FG-count with a different measure of fuzzy cardinality. The
FE-count introduced by Zadeh [188] rests on the observation thatµFG-count(X)(j) =
µ[j](X), i.e. thej-th greatest membership grade of the fuzzy setX, only specifies the
degree to whichX containsat leastj elements and hence does not fully capture the
notion of cardinality. It is therefore changed toµFE-count(X)(j) = min(µ[j](X), 1 −
µ[j+1](X)), which expresses the degree to whichX has at leastj, but notj + 1 el-
ements, i.e. the grade to whichX has exactlyj elements. The FE-count approach
utilizes the new cardinality measure for interpreting absolute quantifying statements
“There areQ X ’s”. These are now assigned the score

τ = max{min{µ[j](X), 1− µ[j+1](X), µQ(j)} : j = 0, . . . , |E|} ,

whereµQ : R+ −→ I andX ∈ P̃(E). A method for interpreting two-place and
proportional quantification in the FE-count approach has not been described in the lit-
erature. Let us now consider the example depicted in Fig. 7. The crisp image region
shown in left image is clearly nonempty, because it contains several ‘white’ pixels
with full degree of membership. The fuzzy image region displayed in the right im-
age is certainly nonempty to the same degree of1.0, because it embraces the crisp
nonempty image region shown on the left. The FE-count approach, however, only
rates the left image as nonempty to the desired degree of1.0. Although the right image
displays a larger region, the result drops to0.5, which is clearly inacceptable. Unlike
the FG-count approach it intends to improve upon, the FE-count model therefore shows
incoherent behaviour even in the simplest case of one-place quantification based on a
nondecreasing, absolute quantifier (in this case, the quantifier∃ defined byµ∃(0) = 0,
µ∃(x) = 1 for all x > 0). In other words, there is no reasonable ‘core approach’
worthy of being generalized to a broader class of NL quantifiers. Just like theΣ-count
approach, the FE-count proposal must therefore be dropped altogether in the report,
because it does not provide a starting point for improved models.
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1.15 Chapter summary: The need for a new framework

In this chapter, I have highlighted the characteristics of NL quantifiers. And fuzziness,
which enters into quantifying propositions through approximate quantifiers and vague
arguments, was shown to be an essential component of linguistic quantification. An
evaluation of the main approaches to fuzzy quantification as to their linguistic ade-
quacy came out negative, however, and in the literature, one finds serious criticism on
all methods that have been proposed. The typical problems of these approaches are
the following. Firstly non-monotonic quantifiers like “about half”, “around twenty”
or “an even number of”, appear to be notoriously difficult, and none of the traditional
approaches will assign plausible interpretations in this case (this is apparent because
only two approaches have a reasonable ‘core’, i.e. the FG-count and OWA methods,
which in both cases is restricted to nondecreasing quantifiers). This criticism extends to
restricted proportional quantification, as in “MostX1’s areX2’s”. Proportional quanti-
fiers in NL are often nondecreasing or nonincreasing in their second argument (“most”,
for example, is positive monotonic inX2), but they are usually lacking special mono-
tonicity properties in their first argument (e.g. “most” is neither nondecreasing nor
nonincreasing inX1). Thus, we expect that traditional approaches, which cannot even
handle non-monotonic unary quantifiers, will also fail to determine plausible interpre-
tations for two-place proportional quantifiers. And indeed, the formulas proposed for
restricted proportional quantification, as in “Many tall people are lucky”, where both
the restriction “tall” and the scope “lucky” are fuzzy, fall short of the linguistic expec-
tations (as witnessed by the above examples for the main approaches and the pointers
to the literature for the remaining approaches). This defect must be regarded seri-
ous because for applications, proportional quantifiers with importance qualification are
usually the most relevant case. Thus, the interpretation methods which evolved from
Zadeh’s traditional framework to fuzzy quantification are either faced with counter-
examples or much too limited.

In principle it would be possible to experiment further with Zadeh’s working scheme
and formulate new proposals within the given set-up. However, there might be struc-
tural reasons or other forces intrinsic to Zadeh’s proposal which obstructed progress
despite the considerable research efforts that have been made. First of all, it is not only
the existing approaches to fuzzy quantification which are too limited – like the FG-
count and OWA methods with their restriction to unary monotonic quantifiers. Quite
the reverse, the very framework proposed by Zadeh is far too narrow. It artificially re-
stricts attention to absolute and proportional quantifiers, thus disregarding many other
types of similar importance to natural language. For example, quantifiers of exception
like “all except ten”, cardinal comparatives like “many more than” or “twice as many”,
and comparatives on relative cardinalities like “a larger proportion”, should all be cov-
ered by a comprehensive theory. Zadeh’s framework, however, is essentially restricted
to unary quantifiers and certain binary quantifiers. Consequently, the approaches in
this tradition are only declared for these special cases. But, two-place quantification,
which marks the limits of what existing approaches can do (or no longer can do), is not
the end of the scale concerning the number of arguments that must be handled. Car-
dinal comparatives, in particular, call for three-place quantification (“Many moreX1’s
thanX2’s areX3’s”), and comparatives on relative cardinalities even demand four-
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place quantification (“The proportion ofX1’s which areX2’s is much greater than the
proportion ofX3’s which areX4’s”). Finally, the treatment of compound quantifiers
(“ManyX1’s,X2’s andX3’s areX4’s orX5’s”) renders impossible an a priory limit on
the arity of quantifiers. In other words, what we need is a theory of fuzzy multi-place
quantification, i.e. a generic solution for arbitraryn-place quantifiers. The problem
of restricted proportional quantification or ‘importance qualification’, which posed in-
surmountable difficulties so far, will then be clarified in passing. It is important to
understand that the problem of the traditional framework cannot be solved by simply
adding further types of quantifiers. This is because we need an analysis which accounts
for arbitrary NL quantifiers, and from the representational perspective, this means that
a universal specification medium is required. Zadeh’s framework, however, doesnot
offer a uniform representation, which suits different kinds of quantifiers. By contrast,
each type of quantifier comes with its own specification format (e.g.µQ : R+ −→ I
for absolute quantifiers andµQ : I −→ I for proportional quantifiers). Moreover,
each type of quantifier needs its own interpretation method (rule for computing quan-
tification results). For example,Σ-counts are used for interpreting absolute quantifiers
while proportional quantifiers demand a different interpretation which involves a frac-
tion of Σ-counts. This makes it tedious to integrate new types of quantifiers. Most im-
portantly, such a piecewise definition of the interpretation method, which is scattered
over the considered quantifier types, bears a high risk of incoherence. Because there
is no formal link between the separate interpretations, it becomes hard to guarantee
the expected systematicity, and to prevent effects of implausibility to enter the overall
model. To sum up, the necessary extension to further types of quantifiers would result
in a multiplicity of representations and interpretation rules, which is difficult to con-
trol and would likely bring about unpredictible interpretations. This lack of a uniform
representation, and also the lack of a universal interpretation method which covers all
quantifiers, is likely the most serious weakness of Zadeh’s proposal.

A generic solution, which incorporates arbitrary types of quantifiers, would certainly
be preferable. The traditional framework, however, cannot be extended towards such
a solution on formal grounds. This problem is thoroughly intertwined with Zadeh’s
views on the functioning of interpretation mechanisms. Specifically, the problem can
be traced to Zadeh’s idea of equating “There areQ X ’s” and “card(X) is Q” (for
absolute quantifiers), and of proposing a similar rendering of “Q X1’s areX2’s” as
“Prop(X2|X1) is Q” in the proportional case. This conception of fuzzy quantifi-
cation suggests that an interpretation method stipulate definitions ofcard(X) and
Prop(X2|X1), and further specify how to compare the resulting quantities. It then
appears that fuzzy quantification is essentially a matter of discovering the proper cardi-
nality measures and aggregation operators, see Barro et al [3, p. 2]. From a broader per-
spective, however, this fundamental assumption that fuzzy quantification be reducible
to cardinality comparisons is no longer valid. In fact, such reduction is not even pos-
sible in the crisp case. As pointed out in the comparison of logical and linguistic
quantifiers on p. 14, not all linguistic quantifiers can be reduced to cardinality assess-
ments, because not all (NL) quantifiers are ‘quantitative’ and treat all elements in the
domain alike. This means an a priori limitation for all methods to fuzzy quantification
derived from a cardinality measure, which is intrinsic to Zadeh’s framework and all
evolving approaches. In order to avoid a similar limitation a comprehensive solution
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to fuzzy quantification must be formulated independently of any cardinality measure.
I have already mentioned that the cardinality-based analysis does not combine nicely
with quantifiers on infinite base sets, (e.g. mass quantifiers) because most quantifiers of
interest, like proportional quantifiers, become non-quantitative in this case [8, p.474].
Consequently, the traditional approaches are usually limited to finite base sets. (It
must be remarked, though, that Zadeh [184] discusses mass quantification based on in-
tegration rather than element-counting, thus replacing the concept of cardinality with
measure-theoretical notions in order to account for such situations). A generic solution
to fuzzy quantification should also incorporate infinite base sets. It is likely due to the
internal difficulties of existing approaches that applications of fuzzy quantifiers, like
fuzzy database querying, tend to support several interpretation methods. Kacprzyk and
Zadrȯzny’s fuzzy querying interface to Microsoft Access V.2 [74], for example, sup-
ports both theΣ-count and OWA models. And Bosc and Pivert [22], when discussing
an extension of the classical SQL language with fuzzy retrieval features, suggest the
use of even three methods, i.e.Σ-counts, OWA operators/Choquet integral, and finally
FG-counts/Sugeno integral. The burden of selecting the model which works best in
the given situation is thus shifted to the user of these systems. However, I am not sure
that the users of the database can decide on the proper interpretation when the database
designers feel unable to do that. In addition, it is well possible that none of the avail-
able options will yield a satisfactory answer to the query. Thus the state of the art in
fuzzy quantification does not permit a reliable use of fuzzy quantifiers in applications.
The above ‘solution’ of shifting these problems to the responsibility of the users is not
acceptable.

When viewing the development of fuzzy quantification in retrospect, one recognizes
that research in this area has lost much of its original impetus: In the beginning, i.e.
starting with Zadeh’s pioneering 1983 publication, there was rapid progress; it did not
take longer than 1988 that the main approaches had entered the scene. Following that
came the current period, which is marked by advances in applications like reasoning
with fuzzy quantifiers, multi-criteria decisionmaking, fuzzy querying of databases or
linguistic data summarization. However, there was a slow-down on the methodical
side and no substantial progress in the modelling of fuzzy quantifiers. The seeming
stability of this area, and the spread of fuzzy quantifiers into applications, does not
imply that the development has settled and reached a theoretically satisfactory analy-
sis. Quite the reverse, the known counter-examples are still unresolved, and the few
recent proposals for interpretation methods [28, 29, 30, 156] are also linguistically in-
consistent [3, 30]. In my view, it is this lack of linguistic plausibility which hinders
the break-through of fuzzy quantifiers into commercial applications. Thus the develop-
ment of fuzzy quantification appears to be blocked by several factors, and the weakness
of existing approaches, as well as the general slow-down of progress, is caused by the
way of thinking about fuzzy quantification. This suggests that future research into
fuzzy quantification should challenge Zadeh’s theoretical skeleton. The precise com-
mitments of his framework should be reexamined and replaced with a new set of basic
concepts if necessary, which better reflect the methodical necessities. In other words,
a novel framework for fuzzy quantification is needed, which eliminates the represen-
tational and interpretational limitations of Zadeh’s earlier throw. The new framework
should permit a solution of the modelling problem for a representative class of lin-
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guistic quantifiers which comprises all examples mentioned so far. To this end, it is
necessary to drop the use of first-order representations and the reduction to cardinality
comparisons, and install more expedient modelling devices in lieu of these. Pursuing
such independent directions might put off the brakes and foster substantial advances in
fuzzy quantification.

A novel framework which targets at reliable quantifier interpretations will need to
reconcile fuzzy set theory and linguistics. Zadeh himself concedes that his approach
be ‘different’ from (i.e. incompatible with) the linguistic model [188, p. 149]. How-
ever, it appears that few people have reflected the consequences of this departure from
linguistic consensus. In fact, it is not even possible to view the two-valued quantifiers
usually considered by linguists [6, 8, 82] as a special case of Zadeh’s fuzzy linguistic
quantifiers. The adoption of a very different analysis results not only in poor cover-
age, though, but also shows up in interpretations which are linguistically inconclusive.
This turning away from the competent scientific discipline I consider the worst mistake
of existing methods. These approaches are designed from an engineering perspective
and intended for use by practitioners; and the solution offered is usually motivated
by concepts of fuzzy set theory, rather than derived from linguistic considerations. In
particular it appears that none of the authors felt the need for an explicit linguistic val-
idation of their proposals. As witnessed by the numerous counter-examples, the bona
fide assumption of linguistic plausibility, implicit in existing work, should definitely
be replaced with a more explicit and purposive strategy. Thus, linguistic adequacy
must be central to the very design of interpretation methods, and it should be explicitly
guaranteed by appropriate means. However few is known about the junctions of fuzzy
quantification and linguistic analysis. Fuzzy set theorists neglected the linguistic facets
while linguists abstracted from the very fact of fuzziness. This certainly marks a blind
spot on the landscape of fuzzy quantification which should be examined in order to trig-
ger progress in fuzzy quantification. In other words, the problem of concrete models
must be set back for the moment, in order to render precise what is meant by a plau-
sible interpretation. The explicit formalization of adequacy criteria, then, will make a
lasting contribution to our understanding of fuzzy quantification, and establish a solid
foundation for a theory of fuzzy NL quantification. In addition, the resulting criteria
might sharpen the dispute over interpretation methods and initiate a purposive search
for conforming interpretations. As opposed to the bona fide assumption of linguistic
adequacy made in earlier work, the candidate models can then be tested rigorously
against a catalogue of linguistic desiderata, prior to considering their dissemination
into applications.
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2 A framework for fuzzy quantification

2.1 Motivation and chapter overview

The main objective of this work is that of developing a conclusive solution to the mod-
elling problem which admits subsequent refinements into a comprehensive theory of
fuzzy quantification. In this chapter, we will be concerned with the most fundamen-
tal aspects of the modelling problem, i.e. how can linguistic quantifiers be specified
in a straightforward way, and how can we systematically establish the matching fuzzy
quantifier starting from such a description? In devising a solution to these problems,
linguistic plausibility must be the central concern. The reasoning set forth in the in-
troduction gives witness that the traditional framework for fuzzy quantification fails
in this respect, and its flaws can partially be attributed to the basic representationsµQ
which are too restrictive and inhomogeneous. Thus, linguistic concerns will likely af-
fect all components of a solution to the modelling problem. The novel framework for
fuzzy quantification to be presented in this chapter should be attractive both from the
linguistic and fuzzy sets perspective. The framework should be broad enough to cover
all phenomena routinely treated by the linguistic theory of quantification; and it should
further be structurally compatible to the linguistic analysis, i.e. evolve from established
linguistic knowledge. Finally the framework should extend these notions towards ap-
proximate quantifiers and fuzzy arguments. It is hoped that the structural affinity to the
linguistic analysis will also allow a reuse of the concepts found useful by linguists for
linguistic description, which must then be generalized to the fuzzy case.

We have already learned that the traditional framework for fuzzy quantification has
not been designed after this list of desiderata. However, the existing approaches to
fuzzy quantification and their joint analytic commitments have been similar to such an
extent that an induction to the fuzzy sets-based modelling of linguistic quantifers in
general is not admissible, the potential of which is not in the least exhausted. Thus
my proposal will rest on the hypothesis that fuzzy set theory is a valuable tool for
modelling vague NL concepts and also of potential utility to the analysis of linguistic
quantifiers. The basic concept is considered worth maintaining and developing into a
theory of NL quantification – the difficulties of earlier proposals notwithstanding. Still,
the novel approach should pursue a different strategy and derive its force from linguis-
tics because it appears that only fresh thought from this area can give new impetus to
research into fuzzy quantification. Recalling the components of such framework iden-
tified in the introduction, the envisioned skeleton for a theory of fuzzy quantification
must fix the range of quantificational phenomena to be modelled, propose a system of
specifications (descriptions) and operations (computational quantifiers) for the consid-
ered NL quantifiers, and finally establish the correspondence between NL quantifiers
(as expressed by the proposed specifications) and matching computational quantifiers.

The scope of the framework, it has been mentioned, should include all phenom-
ena usually encountered in linguistic discource. More specifically, the framework
should cover all (two-valued) generalized quantifiers known from the linguistic theory
[6, 8, 82], a concept which will be explained in the first section following this overview.
In particular, the new proposal should finally surmount the artificial restrictions of ex-
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isting approaches, i.e. it should support a broad class of NL quantifiers beyond the
absolute and proportional types, which includes multi-place and non-quantitative ex-
amples as well as quantifiers on infinite base sets.

Obviously, a powerful notion of fuzzy quantifiers is called for to express type IV
quantifications involving approximate quantifiers and fuzzy arguments in this general
setting. The view of fuzzy quantifiers as fuzzy second-order predicates which is men-
tioned in some of Zadeh’s works is a good point of departure for the necessary gener-
alization of quantifiers; we only need to make sure that quantifiers of arbitrary arities
and defined on arbitrary nonempty base sets are also included.

Thus, we need not give up the operational forms of fuzzy NL quantifiers postulated
in fuzzy set theory. The choice of the specification medium, however, is more critical
and must avoid the flaws of Zadeh’s first-order descriptions. We need a universal spec-
ification medium suitable to describe linguistic quantifiers of arbitrary kinds, which
is simple but powerful and also useful in practice. The reduced descriptions which
replace the formerµQ’s must be strong enough to uniquely identify all quantifiers of
interest and to portray all relevant phenomena despite the necessary abstractions. How-
ever, the improved specifications should be as easy to use as the membership functions
µQ known from existing work.

The association between specifications of quantifiers and their matching operational
forms is not arbitrary or random in nature, and we should hence strive at analyzing
this relationship and formalizing it in mathematical terms. Postulating another ad-hoc
rule for interpretation (i.e. mathematical formula, algorithm) will only achieve modest
progress, by contrast – should the formula prove defective, like all earlier proposals,
not too much of insight has been gained. As a consequence, I suggest that the prob-
lem of interpretation be discussed in a more general perspective, and approached in
small, theoretically motivated steps. As opposed to existing approaches, which confine
themselves to introducing yet another rule for interpreting quantifiers, I thus insist on a
clear separation of theoretical analysis (what are plausible models?) and the later iden-
tification and implementation of concrete models. Only this explicit a priori analysis
will guarantee controllable and reliable results. A candidate model which passes the
quality check is worthy of implementation, while all others must be rejected.

To sum up, the framework should actively support the solution of the modelling
problem by subdividing the global problem and delegating part of the responsibility to
a model of fuzzy quantification (which will then be cast in an algorithm). Naturally
such a model cannot include the aspect of specification, which is needed to identify the
quantifiers to be modelled. This task is on part of the users who avail themselves of the
specification medium to describe the quantifiers of interest. As already mentioned, the
framework is expected to guarantee controllable and transparent interpretations and en-
sure the reliable use of fuzzy quantifiers in applications. To accomplish this, I will first
introduce a generic modelling device for describing all possible associations between
specifications and operational quantifiers. In accordance with my above considera-
tions, the issue of theoretical analysis, i.e. identifying those models which answer the
linguistic expectations on the meaning of fuzzy quantifiers, then becomes strictly sepa-
rated from the practical issue of implementing quantifiers in these models. This modu-
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lar approach establishes a level of abstraction suitable for formal inquiries which are no
longer constricted with computational details. Due to the fact that the models of fuzzy
quantification, which refer to the correspondence between specifications and opera-
tional forms, are a certain kind of mappings, the algebraic method can be used. Thus,
the plausible choices are characterized by describing their observable behaviour rather
than appealing to some ethereal ‘nature’ or internal structure of such mechanisms. The
concept of a ‘raw’ model will permit a formalization of explicit requirements on plau-
sible models. Unlike ad-hoc interpretation rules, the plausibility criteria that evolve
from this procedure will grow into a catalogue capable of refinement: It can be de-
veloped incrementally and will not collapse entirely should individual criteria need
replacement. It is of course hoped that a careful analysis of coherent interpretations
and their formalization into axiomatic requirements will ultimately converge and form
a stable body of criteria which identifies the class of plausible models.

2.2 Two-valued quantifiers

The logical quantifiers∀ and∃ can be viewed as abstractions from natural language
quantifiers. In the introduction I mentioned Russell’s theory of descriptions which at-
tempts an analysis of the singular definite quantifier “thesg” (as in “the author of Waver-
ley”) in terms of the logical quantifiers. However, the wealth of linguistic quantifiers
was neglected for a long time and the semantical structure of NL quantification was
also ill-understood. Thus, R. Montague’s discoveries on the proper analysis of noun
phrases in (a fragment of) English [107], which constitute the natural locus of quantifi-
cation, was nothing less than a linguistic sensation. Based on a powerful logical ma-
chinery, his intensional logic IL11, Montague demonstrated that a compositional treat-
ment of quantifiers in natural language is indeed possible, which conforms to Frege’s
principle (i.e. the meaning of a complex expression is a function of the meaning of its
subexpressions). Montague was mainly interested in the syntactico-semantical struc-
ture of noun phrases; considering a small number of classical quantifiers was sufficient
to demonstrate the points he wanted to make. Still, a comprehensive treatment of NL
quantifiers needs to account for a larger repository. Montague’s ground-breaking work
encouraged further research into various directions including the analysis of a broader
class of quantifiers, beyond the simple examples “all” and “some”. The linguistic dis-
course about quantifiers was also influenced by the development of logical systems
that admit non-linear, ‘branching’ modes of quantification, in which the quantifiers op-
erate independently of each others.12 Hintikka [68] initiated a debate among linguists
and philosophers of language claiming that branching quantification is necessary for
the semantic description of natural languages. The following example due to Hintikka
[68, p. 342] is intended to paraphrase a Henkin-like quantificational structure:

11a variant of intensional type theory which supports theλ-operator; operators for forming the extension
and intension of given expressenions, and modal tense operators.

12see e.g. Henkin [66] and Walkoe [157] for systems of (two-valued) logic that support partially ordered
structures of quantifiers. I will return to the issue of branching quantification on p. 88 below and in Chap. 12,
which is exclusively concerned with the issue.
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“Every writer likes a book of his almost as much as every critic dislikes some book
he has reviewed.”

Barwise [5] presented more conclusive examples involving only two quantifiers, like

“Most philosophers and most linguists agree with each other about branching
quantification” [5, p. 60].

For that purpose, Barwise needed generalized quantifiers like “most” because the ex-
ample collapses into linear quantification for the regular choices∃ and∀. Together
with R. Cooper, Barwise then prepared a seminal work on such generalized quanti-
fiers, which established the modern linguistic analysis of quantification, i.e. the theory
of generalized quantifiers (TGQ). Important contributions to TGQ were also made by
J. van Benthem [8, 9], E. Keenan, J. Stavi and L. Moss [81, 82] and many others. The
theory of generalized quantifiers evolved rapidly, mainly during the 1980’s, and its
body of results on linguistic quantification still represents the linguistic consensus on
that matter. In fact, the reader is already acquainted with part of the linguistic view of
NL quantification. In the introduction, I anticipated some results of TGQ to explain
the basic characteristics of linguistic quantifiers and to pinpoint the deficits of existing
approaches. Unlike these attempts at fuzzy quantification, the theory of generalized
quantifiers rests on a simple but expressive model of (generalized) quantifiers, which
captures a wealth of linguistic examples. This basic model of a quantifier is restricted
to two-valued (precise) quantifications, but it establishes a uniform representation for
all kinds of such quantifiers including unrestricted and restricted quantification, multi-
place quantifiers, composite quantifiers, as well as quantitative and non-quantitative
examples. There are several (equivalent) ways how the basic concept of a two-valued
generalized quantifier can be introduced in formal terms. Hence let me present that def-
inition which best suits my present purposes, and comment on the possible alternatives
in due succession.

Definition 1
A two-valued (generalized) quantifieron a base setE 6= ∅ is a mappingQ : P(E)n −→
2, wheren ∈ N is the arity (number of arguments) ofQ, and2 = {0, 1} denotes the
set of crisp truth values.

Notes

• Consequently, a two-valued quantifierQ assigns a crisp quantification result
Q(Y1, . . . , Yn) ∈ 2 to each choice of crisp argumentsY1, . . . , Yn ∈ P(E). Let
me point out that the universeE might be any nonempty set of objects; unless
otherwise stated, I will always permit base sets ofinfinite cardinalityas well.
In particular, the domain of quantification need not range over concrete objects.
In typical applications of fuzzy quantifiers like fuzzy information retrieval [58]
or multi-criteria decision making [170], for example,E becomes a set of search
expressions, or the set of premises of a fuzzy IF-THEN rule, respectively.
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Let me now comment on the definitional alternatives.

• As a matter of fact, it is not very common to define generalized quantifiers the
way I introduced them, i.e. as two-valued mappings. By contrast, many au-
thors assume a slightly different albeit equivalent definition of these generalized
quantifiers, which are modelled asn-ary second order relations. The two-valued
quantifierQ : P(E)n −→ 2 according to my above definition, and the corre-
sponding generalized quantifiersQ′ ∈ P(P(E)n) can obviously be transformed
into each other, by utilizing the relationship

(Y1, . . . , Yn) ∈ Q′ ⇔ Q(Y1, . . . , Yn) = 1

for all Y1, . . . , Yn ∈ P(E). My decision to use the characteristic function rather
than the relation itself anticipates the later use of membership functions in the
fuzzy case.
The remaining authors usually prefer a nested representationQ′′ : P(E)n−1 −→
P(E). This notation highlights the ‘scope’ argument of the quantifier, which
accepts the interpretation of the verbal phrase (see note below on p. 62). Again,
two-valued quantifiersQ : P(E)n −→ 2 as defined by Def. 1, and mappings
Q′′ : P(E)n−1 −→ P(E) are interdefinable, according to the relationship

Yn ∈ Q′′(Y1, . . . , Yn−1)⇔ Q(Y1, . . . , Yn) = 1

for all Y1, . . . , Yn ∈ P(E). This style of expressing generalized quantifiers is
usually found in work concerned with the relationship between syntactic analysis
and semantical interpretation. In particular, the nested representation is adopted
in Barwise and Cooper’s foundational work on TGQ. See [45, p. 228+] for an
extensive discussion of the alternative perspectives on the basic notion of a gen-
eralized quantifier.

• The above definition of two-valued quantifiers includes the case of nullary quan-
tifiers (n = 0). These can be identified with the constants0 and1. The decision
to permit nullary quantifiers proved to be rather convenient in some cases. TGQ,
however, rests on a narrower definition and usually restricts attention to quanti-
fiers of aritiesn ≥ 1. This is justified from the perspective of natural language
description because every NL quantifier must at least offer one slot, which ac-
cepts the denotation of the verb phrase (see section 2.8 below for an extended
discussion of nullary quantifiers).

• Finally it is common practice in TGQ to permit quantifiers being undefined in
some cases. Specifically, it is definite quantifiers like “the” which call for unde-
fined interpretations or other formal devices, in order to account for the possible
failure of presuppositions (for example, “the man” only denotes if there is ex-
actly one man in the current domain or discourse context). For our present pur-
poses, though, it is not necessary to incorporate undefined interpretations into
the basic concept of a two-valued quantifier, because the issue will be resolved
anyway once we proceed to a richer set of truth values. See p. 65 for alternative
definitions of singular and plural “the”, and section 2.9 for more details on the
issue of undefined interpretation.
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The quantifiers that prevail in natural language are of the binary variety, as in “AllY1’s
areY2’s”. Let me now introduce some basic examples of such two-place quantifiers.

Definition 2
LetE 6= ∅ be some base set. We define

allE(Y1, Y2) = 1⇔ Y1 ⊆ Y2

someE(Y1, Y2) = 1⇔ Y1 ∩ Y2 6= ∅

noE(Y1, Y2) = 1⇔ Y1 ∩ Y2 = ∅

at least k E(Y1, Y2) = 1⇔ |Y1 ∩ Y2| ≥ k
more than k E(Y1, Y2) = 1⇔ |Y1 ∩ Y2| > k

at most k E(Y1, Y2) = 1⇔ |Y1 ∩ Y2| ≤ k
less than k E(Y1, Y2) = 1⇔ |Y1 ∩ Y2| < k

exactly k E(Y1, Y2) = 1⇔ |Y1 \ Y2| = k

all except k E(Y1, Y2) = 1⇔ |Y1 \ Y2| ≤ k
between r and s E(Y1, Y2) = 1⇔ r ≤ |Y1 ∩ Y2| ≤ s

for all Y1, Y2 ∈ P(E), k, r, s ∈ N.

Notes

• The symbol|•| denotes cardinality. I will usually drop the subscriptE when the
base setE is understood.

• To give an example how expressions involving these two-valued quantifiers can
be evaluated, suppose that

E = {John, Lucas, Mary}

is a set of persons,men = {John, Lucas} ∈ P(E) is the set of men inE, and
married = {Mary, Lucas} is the set of those persons inE who are married.
Then by the above definitions,

some (men , married ) = some ({John, Lucas}, {Mary, Lucas}) = 1 ,

but

all(men , married ) = all({John, Lucas}, {Mary, Lucas}) = 0 .

• Natural language quantifiers have a dedicated argument slot occupied by the in-
terpretation of the verbal phrase, e.g.Y2 in “All Y1’s areY2’s”, or “sleep” in
“All men sleep”. As remarked in the introduction, this particular argument will
be called thescopeof the quantifier. The scope is the argument exposed in the
nested representation of quantifiers presented on page 61. In my “flat” represen-
tation, I take the scope to be then-th (last) argument of ann-place quantifier
by convention. For example, inalmost all (Y1, Y2), the second argument is the
scope of the quantifier. The remaining, first argument of a two-place quantifier
will again be called itsrestriction.
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Of course, it is also possible to fit the usual logical quantifiers∀ and∃ into the TGQ
framework, and express these as generalized quantifiers. We then obtain the apparent
definitions,

∀(Y ) = 1⇔ Y = E and ∃(Y ) = 1⇔ Y 6= ∅ (5)

for all Y ∈ P(E). It is instructive to consider the relationship between unary∀ and the
two-place quantifier “all”, in order to clarify the distinction between the restricted and
unrestricted use of NL quantifiers, that was already mentioned in the introduction:

• In the case that the NL quantifier, which is implicitly two-place, is employed in
a quantifying expression which involves two overt arguments, this corresponds
to the restricted use of the quantifier. “All married are men”, for example, finds
an interpretation in terms of a two-place quantificationall(married ,men). The
restricted use of the quantifier corresponds to the natural way in which quanti-
fiers are applied in NL.

• In some cases, it is also possible to model quantifying NL statements by one-
place quantification, although the involved NL quantifier regularly takes two
arguments. This is the type of quantification that I called unrestricted, because
the full domainE is substituted for the unspecified first argument, thus filling
in the restriction of the quantifier. The logical quantifier∀ : P(E) −→ 2 for
example, which models the unrestricted use of the NL quantifier “all”, can be
expressed in terms of two-placeall by ∀(Y ) = all(E, Y ) for all Y ∈ P(E). The
example illustrates how the full domainE provides the missing restriction (first
argument), which is required by the two-place base quantifier. In other words,
the unrestricted quantification in∀(Y ) means that “All elements of the domain
areY ” or simply, “All things areY ”.

Clearly the unrestricted use, which is ubiquitous in predicate logic, is of minor impor-
tance to the description of natural language. We will see later in section 6.7, p. 181
that two-place, restricted quantification can be reduced to the unrestricted use of quan-
tifiers in certain cases. However, such reduction is only possible for certain types of
quantifiers, and it does not generalize to the fuzzy case.

Apart from the above examples of absolute quantifiers which depend on absolute
counts, and quantifiers of exception like “all except k”, there are many other types of
NL quantifiers that deserve interest.13 The most prominent class is certainly that of
proportional quantifiers, which depend on the relative share (or ratio) ofY1’s that are
Y2’s. Assuming for convenience that the base setE be finite, we can easily define some
generic examples, from which a broad range of NL quantifiers can be derived.

Hence let us make the following stipulations.

13For a more extensive discussion of absolute quantifiers and quantifiers of exception also covering im-
plementation issues, see section 11.8.
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Definition 3
LetE 6= ∅ be some base set. We define

[rate ≥ r](Y1, Y2) = 1⇔ |Y1 ∩ Y2| ≥ r |Y1|
[rate > r](Y1, Y2) = 1⇔ |Y1 ∩ Y2| > r |Y1|
[rate ≤ r](Y1, Y2) = 1⇔ |Y1 ∩ Y2| ≤ r |Y1|
[rate < r](Y1, Y2) = 1⇔ |Y1 ∩ Y2| < r |Y1|
[rate = r](Y1, Y2) = 1⇔ |Y1 ∩ Y2| = r |Y1|
[r1 ≤ rate ≤ r2] = 1⇔ r1|Y1| ≤ |Y1 ∩ Y2| ≤ r2|Y1|

for r ∈ I, Y1, Y2 ∈ P(E).

In terms of these quantifiers, a statement like “At least 70 percent of theY1’s areY2’s”
can now be modelled by

at least 70 percent (Y1, Y2) = [rate ≥ 0.7](Y1, Y2) ,

and “More than 60 percent of theY1’s areY2’s” can be modelled by

more than 60 percent (Y1, Y2) = [rate > 0.6](Y1, Y2) .

In particular, the quantifier “most” becomes

most = [rate > 0.5] . (6)

This definition of “most” covers its technical sense, as in “Most Americans voted for
Bush”, where one vote can result in an all-or-nothing decision. In other contexts, a
gradual modelling would be more appropriate. By instantiating the generic quantifiers
[rate ≤ r] and [rate < r] in the apparent way, we can also cover natural language
quantifiers of the type “at most r percent” and “less than r percent”. Similarly, a state-
ment like “Exactly 10 percent of theY1’s areY2’s” can now be interpreted as

exactly 10 percent (Y1, Y2) = [rate = 0.1](Y1, Y2) .

Finally, the parametric quantifier[r1 ≤ rate ≤ r2] is useful for modelling a statement
like “Between 10 and 30 percent of theY1’s areY2’s”, which then becomes

between 10 and 30 percent (Y1, Y2) = [0.1 ≤ rate ≤ 0.3](Y1, Y2) .

A more detailed analysis of proportional quantifiers including approximate examples
is given below in section 11.9.

Next we shall discuss a couple of further quantifiers taken from different linguistic
classes: quantifiers of comparison, definite quantifiers, proper names (which can nat-
urally be modelled through quantification), composite quantifiers, and others. As to
quantifiers of comparison, consider a statement like “MoreY1’s thanY2’s areY3’s”.
The involved quantifier “more than” can readily be formalized as

more than (Y1, Y2, Y2) = 1⇔ |Y1 ∩ Y3| > |Y2 ∩ Y3| .
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The quantifier “more than” is representative of a class of three-place comparison quan-
tifiers known as cardinal comparatives [82, p. 305]. Despite their obvious practical
utility, these quantifiers attracted few interest in existing work on fuzzy quantification,
which focussed on the absolute and proportional types. I have decided to pay some
more attention to these quantifiers in this report. An extensive discussion of cardinal
comparatives including implementation details is presented in section 11.10.

Now turning to the definite type of quantifiers, we must discern the singular and
plural usage, and thus introduce different quantifiersthe sg andthepl in order to model
“The Y1 is Y2” and “TheY1’s areY2’s”, respectively. We can try a Russellian analysis
and force these quantifiers into the two-valued framework,

the sg(Y1, Y2) = 1⇔ |Y1| = 1 ∧ Y1 ⊆ Y2

thepl(Y1, Y2) = 1⇔ |Y1| > 1 ∧ Y1 ⊆ Y2 ,

for all Y1, Y2 ∈ P(E). As remarked above, it is this type of quantifiers which motivates
the incorporation of undefined interpretations, in order to better express the presuppo-
sition thatY1 be a singleton (singular “the”) or contain at least two elements (plural
“the”). Denoting ‘undefined’ by↑, the quantifiers would typically be written as

the sg(Y1, Y2) =

 1 : |Y1| = 1 ∧ Y1 ⊆ Y2

0 : |Y1| = 1 ∧ Y2 6⊆ Y2

↑ : |Y1| 6= 1

thepl(Y1, Y2) =

 1 : |Y1| > 1 ∧ Y1 ⊆ Y2

0 : |Y1| > 1 ∧ Y1 6⊆ Y2

↑ : |Y1| ≤ 1

This kind of modelling is easily fitted to the framework for fuzzy quantification devel-
oped below, by representing ‘↑’ as a third truth value12 , which then means ‘undefined’
or ‘undecided’; see Barwise and Cooper [6, p. 171] for motivation of a three-valued
model in the framework of TGQ.

Now advancing to proper names, let us first consider an example which illustrates
why proper names can be conceived as quantifiers in the first place. Hence suppose
that the given domainE contains some person, say “George”, that we are interested in.
We can then model NL statements of the type “George isY ” as a special case of unary
quantification, by resorting to the proper name quantifier

george (Y ) = 1⇔ George ∈ Y ,

for all Y ∈ P(E). A more detailed discussion of this construction and its generalization
to the fuzzy case is presented in section 3.3.

Finally, it is often useful to assume that more complex types of NL expressions be
quantifiers as well, which stem from certain syntactic constructions. (Generally, this
strategy will aid a compositional interpretation in the sense of Frege’s principle). Ex-
amples which involve such composite quantifiers are “All marriedY1’s areY2’s”, which
results from a construction known as ‘adjectival restriction’, and “SomeY1’s areY2’s
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or Y3’s”, which semantically expresses a union of argument sets. The interpretations
of the corresponding quantifiersQ1, Q2 are readily stated, viz

Q1(Y1, Y2) = all(Y1 ∩married , Y2)
Q2(Y1, Y2, Y3) = some (Y1, Y2 ∪ Y3)

for all Y1, Y2 ∈ P(E), wheremarried ∈ P(E) denotes the set of all married people.

As witnessed by the above examples of two-valued quantifiers of various kinds, TGQ
has indeed managed to devise a uniform representation, which is capable of expressing
a broad range of extensional NL quantifiers. Within this formal framework, linguists
and philosophers of language have developed concepts which describe the semantical
characteristics of NL quantifiers and apparent relationships between these quantifiers,
e.g. negation, antonyms, duality, monotonicity properties, symmetry, having extension,
conservativity, adjectival restriction and others (see Gamut [45, pp. 223-256] for expla-
nation. All of these concepts will also be cleanly introduced in a later chapter of this
work, and they will serve an important purpose in what follows).

Due to its straightforward analysis of two-valued quantifiers, research in TGQ ad-
vanced at a rather fast pace and helped to clarify such questions like the classification
of linguistic quantifiers in terms of their formal properties; the search for semantic uni-
versals that govern the possible meanings of linguistic terms (NPs), the investigation of
algebraic properties like symmetry, circularity etc., and the issue of expressive power;
see Gamut [45, p. 223-236] for a survey. The development of TGQ was pursued most
actively in the 1980’s. Since then, it became an integral part of modern theories of NL
semantics like DRT [77, 144] or DQL [33] and others, and can thus be said to represent
some kind of linguistic consensus, although there are, of course, some rivaling views,
like the analysis of quantifiers in MultiNet [65].

Thus TGQ has had its successes and it was stimulating to linguistic research in many
regards. But, there are also some drawbacks. Obviously, TGQ is suited to statically
represent the meaning of quantifying propositions. However, knowledge processing
involving linguistic quantifiers is difficult on formal grounds, knowing that most quan-
tifiers are not first-order definable. Hence an axiomatization of reasoning schemes for
these quantifiers will necessarily be imperfect. In addition, the analysis of linguistic
quantifiers expressed by noun phrases that was achieved by TGQ still needs refinement,
because it only deals with non-referring terms. In order to interpret referential terms
and to resolve anaphora (e.g. anaphoric pronouns like “he”), an extension to some
model of discourse is inevitable. The restriction to isolated NPs or sentences must
hence be given up in favour of larger units of discourse, or texts. And indeed, there
was enormous interest in discourse representation theory [77, 64, 144] once the basic
issues of non-referential NPs (extensional generalized quantifiers) had been clarified.

Another peculiarity, which hinders the practical application of TGQ in certain cases,
is its lack of vagueness modelling: neither is vagueness permitted in the arguments of
a quantifier, nor is the quantifier itself allowed to be vague. This kind of idealization
was certainly useful because it permitted research in TGQ to focus on the core issues
und achieve rapid progress in these areas. And, the basic need for a treatment of
vagueness is acknowledged by the proponents of TGQ, although they refrain from
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handling vagueness in their own work. For example, Barwise and Cooper have the
following remark on the treatment of vagueness in their seminal publication on TGQ
[6, p. 163]:

“The fixed context assumption is our way of finessing the vagueness of non-logical
determiners. We think that a theory of vagueness like that given by Kamp” [78]
“for other kinds of basic expressions could be superimposed on our theory. We do
not do this here, to keep things manageable”.

In other words, Barwise and Cooper concede the necessity of modelling vagueness, but
they consider the vagueness of language a phenomenon that can be isolated from the
core problem of analyzing linguistic quantification. The proposed separation of quan-
tificational analysis and vagueness modelling is not admissible on logical grounds,
though. This is because the vagueness of quantifiers and their arguments will neces-
sarily express in the representation of linguistic quantifiers and in the concepts used
for their classification. A generalized quantifier of TGQ, say, only accepts two-valued
arguments and produces two-valued results in return to such arguments. Hence gener-
alized quantifiers are neither suited for processing vague terms which form the quanti-
fiers’ arguments, nor are they capable of expressing vague or ‘approximate’ quantifica-
tion. If the incorporation of vagueness calls for a different notion of generalized quan-
tifiers, however, then the concepts building on this modelling construct, like antonym,
dual, adjectival restriction, quantitativity, conservativity etc. must all be adapted as well
and redefined in such a way that they make sense in the more general situation (i.e. in
the presence of vagueness).

Barwise and Cooper are not aware of this need because they apparently sympathize
with the epistemic view of vagueness. Hence the vagueness of language is essentially a
matter of context dependence or lack of knowledge needed for interpretation (e.g. stan-
dards of comparison assumed by a speaker). If this view is correct, then the machinery
used for semantical interpretation can be kept two-valued, provided that we have some
hypothetical “rich context” which fixes the meaning of all context-dependent expres-
sions including vague terms and quantifiers (i.e. under the ‘fixed context assumption’
of Barwise and Cooper [6, p. 163] mentioned above). Other authors in TGQ, specifi-
cally Keenan and Stavi, deny the possibility of modelling such contexts. Because the
standard of comparison required for interpreting “many” or “few” is not given, they
conclude that such “value judgment dets” cannot be assigned a semantical value at all
[82, p. 258]. Barwise and Cooper, by contrast, remain agnostic about the issue of actual
context modelling and simply delegate the problem to specialized research.

I have already mentioned that Barwise and Cooper also encourage an extension of
their basic framework to a three-valued model [6, p. 171]. Thus, an incorporation of
the supervaluationist or three-valued view of vagueness also seems to fit into their
methodological picture. However, as we have learnt in the introduction, the epistemic
and supervaluationist or three-valued models do not really give a convincing account
of Sorites paradoxes and thus, of vagueness. To me, they appear like attempts to lay the
‘demon’ of vagueness in formal chains, rather than trying to profit from its power, in the
same way that natural languages do. The only model of vagueness which accomplishes
this is in my view, the continuous-valued model assumed by the degree theories of
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vagueness. The superiority of this model is also evident from the positivistic argument
that only the degree theory of vagueness – as witnessed by its main proponent of fuzzy
set theory – has made its way outside academic debate and acquired practical relevance
in experimental and commercial software as well as consumer products. Thus I will
adopt the fuzzy-sets based model in this work, which is most convincing to me and also
successful in practice. In addition, there are proposals for fuzzy-sets based applications
which require a plausible model of type IV quantifications. These systems will profit
considerably from improved models of linguistic quantifiers based on the fuzzy-set
theory.

Now that I opted for a vagueness modelling in the fuzzy sets framework, it is still
necessary to account for the issue of context dependence. The problem has not simply
gone away because“linguistic concepts are not only predominantly vague, but their
meanings are almost invariably context-dependent as well”[89, p. 280]. To develop
a theory of fuzzy quantification and avoid getting stuck in this complex issue, I will
join Barwise and Cooper in assuming a rich context which uniquely determines the
meaning of all basic expressions like “tall”, “young” (predicates) and “many”, “few”
(quantifiers), without analysing these contexts any further. In a degree-based setting,
this means that “many”, “tall” etc. now find a unique interpretation in terms of contin-
uous membership grades.

The resulting gradual model of a quantifier like “many”, however, can no longer be
represented by a two-valued generalized quantifierQ : P(E)2 −→ 2. And general-
ized quantifiers are not even useful for interpreting propositions like “All Swedes are
blonde”, because the fuzzy setblonde ∈ P̃(E) is not an admissible argument of the
generalized quantifierall : P(E)2 −→ 2. In other words, we need an extension of
two-valued generalized quantifiers to fuzzy generalized quantifiers, which are capable
of expressing type IV quantifications.

2.3 Fuzzy quantifiers

In the following, I will present the apparent extension of generalized quantifiers which
gives a natural account of approximate quantifiers like “about ten”, and further makes
all quantifiers applicable to fuzzy arguments like “tall” and “rich”. This extension is
necessary because NL quantifiers undoubtedly accept this kind of arguments in ordi-
nary language, and because many quantifiers themselves are also vague. Thus, the
proposal of generalized quantifiers suitable for type IV quantifications, which I will
now make, gives a more realistic picture of linguistic quantifiers compared to the limi-
tations and idealizations of the original concept assumed by the Theory of Generalized
Quantifiers.

Definition 4
Ann-ary fuzzy quantifieron a base setE 6= ∅ is a mappingQ̃ : P̃(E)

n
−→ I.

68



Notes

• A fuzzy quantifierQ̃ : P̃(E)
n
−→ I hence assigns to eachn-tuple of fuzzy

argument setsX1, . . . , Xn ∈ P̃(E) an interpretatioñQ(X1, . . . , Xn) ∈ I, which
is allowed to be gradual.

• The above definition corresponds to Zadeh’s [190, pp. 756] alternative view of
fuzzy quantifiers as fuzzy second-order predicates. These are modelled as map-
pings in order to simplify notation. It should be pointed out, though, that unlike
Zadeh, I explicitly permit arbitrary aritiesn ∈ N. In a similar way, my pro-
posal generalizes Thiele’s [149] notion of a (unary) ‘general fuzzy quantifier’
Q : P̃(E) −→ I, which it extends beyond the simplest casen = 1.

• The generic concept of fuzzy quantifiers assumed here (originally dubbedfuzzy
determiners), was originally introduced in [46, p. 6]. For the reasons explained
in the introduction, I have now switched to the familiar term ‘fuzzy quantifier’,
though, which probably sounds less awkward to non-linguists.

• GivencrispargumentsY1, . . . , Yn ∈ P(E), and a fuzzy quantifier̃Q : P̃(E)
n
−→

I, the quantifying expressioñQ(Y1, . . . , Yn) should be well-defined as well.
Thus, I will assume that ordinary subsets be viewed as a special case of fuzzy
subsets, and it is hence understood thatP(E) ⊆ P̃(E), whereP̃(E) is again
the set of fuzzy subsets ofE. Note that this subsumption relationship does not
hold if one identifies fuzzy subsets and their membership functions, i.e. if one
stipulates that̃P(E) = IE , whereIE denotes the set of mappingsf : E −→ I.
This is also the reason why I do not enforce this identification in my notation.
However, I assume that the appropriate transformations (e.g. from a crisp subset
A ⊆ E to its characteristic functionχA ∈ 2E ⊆ IE) are carried out and for the
sake of readability, these will be suppressed in the notation.

As opposed to two-valued quantifiers, fuzzy quantifiers accept fuzzy input, and hence
render it possible to evaluate quantifying statements like “Q̃ young people are rich”.
This amounts to the computation of the quantification resultQ̃(young , rich ) ∈ I,
whereyoung , rich ∈ P̃(E) are the fuzzy subsets of “young” or “rich” people, re-
spectively. In addition, the admissible outputs of fuzzy quantifiers are free to assume
intermediate results in the unit range, and no longer tied to the crisp choices{0, 1}.
Fuzzy quantifiers are therefore capable of expressing all possible shades of quantifica-
tion results, thus achieving a more natural modelling of the borderline area of an ap-
proximate quantifier. Summarizing, the above definition simply spells out the obvious
extensions, which are necessary for incorporating fuzzy arguments and approximate
quantifiers into the basic notion of a generalized quantifier.

Let us now consider examples of fuzzy quantifiers. To this end, I stipulate some ad-
hoc definitions for the unary quantifiers̃∀, ∃̃ : P̃(E) −→ I and the binary quantifiers
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ãll , s̃ome : P̃(E)
2
−→ I, viz

∀̃(X) = inf{µX(e) : e ∈ E} (7)

∃̃(X) = sup{µX(e) : e ∈ E} (8)

ãll(X1, X2) = inf{max(1− µX1(e), µX2(e)) : e ∈ E} (9)

s̃ome (X1, X2) = sup{min(µX1(e), µX2(e)) : e ∈ E} (10)

for all X,X1, X2 ∈ P̃(E). These simple quantifiers are readily employed for mod-
elling fuzzy NL quantification. Hence let us assume for the moment thatãll pro-
vide the correct interpretation of the natural language quantifier “all”. A statement
like “All young are poor” can then be evaluated by computing the quantification re-
sult of ãll(young ,poor ), whereyoung ,poor ∈ P̃(E) are the fuzzy denotations
of “young” and “poor”. Hence letE = {Joan, Lucas, Mary} and suppose that
young , rich ∈ P̃(E) are defined by

µyoung (e) =

 1 : e = Joan
0.7 : e = Lucas
0.2 : e = Mary

µrich (e) =

 0.9 : e = Joan
0.8 : e = Lucas
0.6 : e = Mary

for all e ∈ E. In Zadeh’s succinct notation for fuzzy sets, i.e.

X =
∑
e∈E

f(e)/e

symbolizes the fuzzy setX ∈ P̃(E) with µX = f , these fuzzy sets can be expressed
thus:

young = 1/Joan + 0.7/Lucas + 0.2/Mary
rich = 0.9/Joan + 0.8/Lucas + 0.6/Mary .

Referring to this choice of fuzzy arguments, the gradual quantification result of “All
young are poor” then becomes

ãll(young ,poor ) = min{max(1− 1, 0.9),max(1− 0.7, 0.8),max(1− 0.2, 0.6)}
= min{0.9, 0.8, 0.8}
= 0.8 .

2.4 The dilemma of fuzzy quantifiers

In the previous section, I have augmented the original generalized quantifiers of TGQ
by fuzzy inputs and gradual quantification results, in order to meet the demands of
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real-world language. The straightforward notion of fuzzy quantifiers that I proposed
establishes a class of operators which incorporate the fuzziness of language. Thus,
I solved one part of the modelling problem by introducing the required operational
quantifiers. The modelling problem has another facet, though, that will be wrestled
with in this section. Specifically, we still need to elucidate the relationship between the
proposed modelling constructs (fuzzy quantifiers) and the NL quantifiers of interest.
Thus, how can we: (a), determine a well-motivated choice of fuzzy quantifier which
properly models a given NL quantifier and (b), defend this choice against all possible
alternatives, which might appear equally plausible at first sight?

We all have strong intuitions about the proper definition of linguistic quantifiers on
crisp subsets ofE. For example, the definition of∀ : P(E) −→ 2 stated in Def. 2 is
certainly uncontroversial. When turning to the fuzzy case, however, a plenty of possi-
ble options suddenly enters the scene (only to mention the wealth of conceivable fuzzy
conjunctions that exist even in the simple propositional case). The resulting set of com-
peting interpretations must hence be pruned to some unique preferred choice, which
should be clearly distinguished from the remaining alternatives. Unfortunately, there
are only few intuitions in the fuzzy case, which might guide us to the optimal model,
i.e. to that choice of fuzzy quantifier which best corresponds to the natural language
quantifier of interest. At least, it becomes rather difficult to assess the plausibility of
such correspondence assertions, and to check how the the particular selection made
measures up with the competing alternatives.

In order to demonstrate this problem, let us consider the simple universal quantifier
∀, and make an attempt to extrapolate its meaning to the fuzzy case. In (7), I already
made a proposal for a fuzzy analogue of this quantifier. However, what about the
following alternative stipulations, which only constitute a small sample of the possible
options:

∀̃′(X) =

∑
e∈E

µX(e)

|E|

∀̃′′(X) =
{

1 : X = E
0 : else

∀̃′′′(X) = inf

{
m∏
i=1

µX(ai) : A = {a1, . . . , am} ∈ P(E) finite, ai 6= aj if i 6= j

}

for all X ∈ P̃(E). Some of these quantifiers apparently do not qualify as plausible
models of∀ in the fuzzy case, while others are not so easy to assess. The first alter-
native∀̃′ for example can be rejected without further ado, because it fails to coincide
with the two-valued quantifier∀ on crisp arguments. The second example also vio-
lates some intuitive postulates. For example, producing crisp outcomes only does not
seem very natural for a fuzzy quantifier. Moreover, the fuzzy quantifier∀̃′′ shows an
undesirable discontinuity in the membership gradesµX(e), which makes it too brittle
for applications. Additional evidence for rejecting this choice of quantifier stems from
Thiele’s analysis of fuzzy universal quantifiers, see [147, 148, 149] and section 4.16
below. As to the third example, there are no a priori concerns against the use of∀̃′′′
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as a fuzzy model of the universal quantifier. In fact, both my original definition of∀̃
and the alternativẽ∀′′′ comply with Thiele’s analysis, and must hence be considered
plausible choices of fuzzy universal quantifiers.

The examples demonstrate that for elementary quantifiers, some basic intuitions per-
sist when admitting fuzzy arguments. However, these are not necessarily strong enough
to establish a unique preferred choice. The case-by-case verification that a proposed
fuzzy quantifierQ̃ make a plausible model of the given NL quantifier, soon becomes
too tedious when considering a larger number of quantifiers. Moreover, the manual
procedure makes it very difficult for the stipulated correspondences to achieve the de-
sired systematicity and consistency. The quest for coherence in particular, even sug-
gests that such direct correspondence assertions be avoided altogether. A generic solu-
tion, by contrast, should achieve an adequate modelling of any novel and unanticipated
natural language examples, that the resulting theory of fuzzy quantifiers might later be
confronted with. This is especially important because we cannot trust that there will
always be sufficient intuitions to determine a plausible interpretation for a given quan-
tifier. In unclear cases which lack apparent modelling clues, a generic solution might
prove invaluable for establishing the desired correspondences.

This scarcity of intuitions concerning the proper modelling of NL quantifiers in the
fuzzy case (or the presence of spurious intuitions that misguide us into the wrong con-
clusions), becomes evident once we move from the simplest example∀ to other com-
mon quantifiers like “at least 10 percent”, which is representative of the proportional
type. Given a finite base setE, we can readily define a corresponding two-valued quan-
tifier at least 10 percent : P(E)2 −→ 2 by at least 10 percent = [rate ≥ 0.1].
The target quantifier then takes the more explicit form,

at least 10 percent (Y1, Y2) =
{

1 : |Y1 ∩ Y2| ≥ |Y1|/10
0 : else

(11)

for all Y1, Y2 ∈ P(E), which also reveals the dependency of the quantifier on the
cardinality |•| of crisp sets. However, it is not that easy to provide a straightforward

definition of a corresponding fuzzy quantifier ˜at least 10 percent : P̃(E)
2
−→ I.

This is becauseX1, X2 in

˜at least 10 percent (X1, X2)

are fuzzy subsetsX1, X2 ∈ P̃(E). The familiar cardinality measure for ordinary sets,
which made possible the above definition (11) of the two-valued quantifier, is not ap-
plicable to these fuzzy arguments, and consequently, it cannot be used to define the
fuzzy quantifier. And there is no reliable and uncontroversial notion of the cardinality
of fuzzy sets, which avails us with a substitute for|•| in the fuzzy case. It is of course
possible to make ad-hoc stipulations, as in the earlier example of the logical quantifiers.
Thus we might subscribe to theΣ-count approach, arguing that

˜at least 10 percent (X1, X2) =
{

1 : Σ-Count(Y1 ∩ Y2) ≥ Σ-Count(Y1)/10
0 : else
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be the proper fuzzy analogue of “at least 10 percent”. This proposal is representative
of those modelling attempts which simply replace the crisp cardinality in (11) with
some generalized cardinality for fuzzy sets. The resulting formulas might look appeal-
ing at first sight, because they bear a superficial resemblance to the straightforward
expressions which describe the basic quantifier in the crisp case. However, these sug-
gestive formalizations easily lure us into models with latent flaws, and the quality of
the computed results becomes hardly predictable. The proposed interpretation of “at
least 10 percent” for example, can show abrupt changes in response to slight variations
of the membership grades. Moreover the earlier criticism of theΣ-count approach
exemplified by Fig. 3, also applies to the quantifier “at least 10 percent”.

These difficulties in establishing a conclusive interpretation of “at least 10 percent”
hint at an intriguing problem because the class of fuzzy quantifiers is certainly rich
enough to contain the intended model – it is only we cannot identify it. Thus it appears
that we have run into some kind of dilemma. Thisdilemma of fuzzy quantification
shows up in the awkward situation that we either do not have the expressive power
available, which is necessary to model the quantifiers of interest, or that we do have
the required expressive power, but cannot control the tool that offers it:

• The simpletwo-valued quantifiersof TGQ fail to give a natural account of ap-
proximate quantification. However, it is usually easy to define quantifiers which
fit into the two-valued framework;

• The proposedfuzzy quantifiersachieve a natural modelling of a broad range of
NL quantifers including the approximate variety, but we are unable to locate the
proper model within the wealth of available choices.

It is this struggle between expressiveness and ease of specification which makes the
problem of establishing correspondences that notorious. In order to check whether the
dilemma is inescapable, let us now recall the above distinction between the two ways
how fuzziness interacts with NL quantification, which shaped the proposed definition
of fuzzy quantifiers. According to the classification of Liu and Kerre, fuzziness can
enter into a quantifier either through its inputs (when supplied with fuzzy arguments),
or it can be inherent to an approximate quantifier itself, which then produces gradual
outputs even when the arguments are crisp. In order to capture both phenomena the
proposed fuzzy quantifiers had to account for

a. continuous quantification results, in order to express approximate quantifiers;
and also

b. the fuzziness of NL concepts inserted into the argument slots, which necessitates
the quantifier to accept (and cope with) fuzzy arguments.

At this point, it is instructive to notice that “at least 10 percent”, the quantifier which
I used to demonstrate the dilemma, is representative of the precise, non-approximate
variety. Thus the difficulty of establishing correspondences is not an artifact introduced
by approximate quantifiers. As a matter of fact, the above problems experienced with
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fuzzy quantifiers are all concerned with the second aspect of also letting fuzzy sets fill
the argument slots of a quantifier. Thus the problem of establishing correspondences
only arises if one tries to jump into type IV quantifications and treat both sources of
fuzziness at a time. This suggests an obvious middle course: why worry about the
details of processing fuzzy arguments when it is only the precise description of an NL
quantifier that is at issue? In fact, the seeming dilemma can be resolved nicely if we
recall my analysis of a ‘framework for fuzzy quantification’ explained in the introduc-
tion. For its range of considered NL quantifiers, such a framework must introduce a
class of operational quantifiers, of specifications for such quantifiers, and a description
of the relationship between the two. What the ‘dilemma of fuzzy quantifiers’ really
shows is that fuzzy quantifiers, albeit useful as quantifying operations, are not suit-
able for specification purposes. Nor are two-valued generalized quantifiers of TGQ,
which are unable to express the important type III quantifications (i.e. approximate
quantifiers). The apparent conclusion is that a practical specification medium must
be developed, which avoids the fallacies of both two-valued and fuzzy quantifiers. In
order to simplify the specification process, and establish a system of coherent interpre-
tations I therefore suggest the obvious middle course between two-valued quantifiers
and fuzzy quantifiers, thus separating the ‘hard’ part, that of handling fuzziness in the
arguments, from the less delicate part, that of supporting gradual quantifications. The
resulting intermediary representations, called semi-fuzzy quantifiers, will be discussed
in the next section.

2.5 Semi-fuzzy quantifiers

In the previous chapter, we experienced substantial difficulty establishing a model of
“at least 10 percent” as a fuzzy quantifier. The unclear behaviour of the linguistic
prototype given fuzzy arguments forced me to proclaim the ‘dilemma of fuzzy quanti-
fiers’, i.e. there is a basic conflict between expressive power and ease of specification.
Fuzzy quantifiers, one the one hand, are simply too rich a set of operators to investigate
the relevant questions directly and establish the desired correspondences in a straight-
forward way. Quite the reverse, it even appears that the proposed fuzzy quantifiers are
expressive to such an extent, that they probably raise more issues than they answer.
The generalized quantifiers of TGQ, on the other hand, are unable to capture approx-
imate quantifiers due to their assumption of bivalent quantifications. Attributing the
main source of difficulty to the presence of fuzzy arguments then shaped the idea of
taking the obvious ‘middle course’ between two-valued quantifiers and fuzzy quanti-
fiers. I will hence narrow the scope to quantification based on crisp arguments (as is
done in TGQ) but resulting in gradual outputs (similar to fuzzy quantifiers). It is of
course hoped that setting aside the intricacies of fuzzy arguments will avail us with a
practical specification medium for natural language quantifiers, which also improves
our point of departure for solving the puzzles of fuzzy quantification. Let me now
define a suitable notion of quantifier to express such type III quantifications.

Definition 5
Ann-ary semi-fuzzy quantifieron a base setE 6= ∅ is a mappingQ : P(E)n −→ I.
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Notes

• Q hence assigns to eachn-tuple of crisp subsetsY1, . . . , Yn ∈ P(E) a gradual
interpretationQ(Y1, . . . , Yn) ∈ I.

• The concept of semi-fuzzy quantifiers (originally dubbed ‘fuzzy pre-determiners’)
has been introduced in [46, p. 7]. The later change of terminology is due to
similar considerations as in the case of fuzzy determiners, i.e. as a courtesy to
common practice outside linguistics.

The proposed semi-fuzzy quantifiers are half-way between two-valued quantifiers and
fuzzy quantifiers because they have crisp input and fuzzy (gradual) output. By sup-
porting quantification results in the continuous rangeI = [0, 1], semi-fuzzy quantifiers
accommodate that characteristic of fuzzy quantifiers, which is critical to the modelling
of approximate quantification. But, we need to avoid that peculiarity which made it
that difficult to define fuzzy quantifiers and to defend the chosen interpretation against
competing alternatives. Thus, semi-fuzzy quantifiers accept crisp arguments only. This
eliminates the need to specify the intended responses for arbitrary fuzzy arguments.
The concept of semi-fuzzy quantifiers (i.e. crisp inputs, gradual quantifications) is rich
enough to embed all two-valued quantifiers of TGQ, because the set of all mappings
Q : P(E)n −→ I comprises the two-valued quantifiersQ : P(E)n −→ {0, 1}. Thus,
the methodical goal of incorporating two-valued generalized quantifiers into the new
class of operators has indeed been achieved. The embedding of two-valued quanti-
fiers permits the reuse of all interpretations for NL quantifiers that are known from
TGQ. In perspective, it also lets us profit from the existing body of knowledge on NL
quantification, that has already been gathered by linguists.

The limitation to crisp inputs has another consequence, which I consider one of its
main virtues. Due to the fact that all arguments are known to be crisp, it is easy to
establish the cardinality of the involved sets. Consequently, semi-fuzzy quantifiers can
be expressed in terms of the cardinality of their arguments or Boolean combinations
thereof. Consider “at least 10 percent”, for example. The definition for crisp arguments
is certainly uncontroversal, and it is easy to understand how the quantification “at least
10 percent of theY1’s areY2’s” must be expressed in terms of|Y1| and|Y1 ∩ Y2| given
crisp arguments, see (11). It cannot be overestimated that the problem of specifying
the corresponding fuzzy quantifier now vanishes, because there is no well-established
substitute for|•| in the fuzzy case.

The specification in terms of semi-fuzzy quantifiers is uniform across quantifier
types. For example, both absolute quantifiers like “about ten” and proportional quan-
tifiers like “about ten percent” turn into binary quantifiersQ : P(E)2 −→ I, which
abstract from the common pattern “Q Y1’s areY2’s” (see also examples below). Semi-
fuzzy quantifiers are not only sufficiently expressive to capture all quantifiers in the
sense of TGQ, though. They also enrich these with a natural account of approximate
quantification through a fuzzy sets model, without sacrificing the conceptual simplicity
of the original generalized quantifiers and their descriptive utility. Resuming, the pro-
posed semi-fuzzy quantifiers offer a practical specification medium for a broad range
of linguistic quantifiers.
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Let us now consider some examples of semi-fuzzy quantifiers. First of all, the two-
valued quantifiers introduced in Def. 2 and Def. 3, as well as the derived models of NL
quantifiers presented above (i.e. “at least k”, “all except k”, “at least p percent” etc.),
all qualify as instances of semi-fuzzy quantifiers, because the notion of a semi-fuzzy
quantifier conveniently embeds the original two-valued quantifiers of TGQ. Hence let
me turn to examples of semi-fuzzy quantifiers proper, i.e. approximate quantifiers like
“almost all”. There are proposals for defining many of such quantifiers in the traditional
framework, i.e. in terms of a membership functionµQ : R+ −→ I or µQ : I −→
I. These membership functions are easily translated into corresponding semi-fuzzy
quantifiers. To see how this conversion looks like in practice, consider the proportional
quantifiers “almost all”. In the introduction, I proposed a modelling of “almost all”
in terms of the membership functionµalmost all given by eq. (1). In order to define
a corresponding semi-fuzzy quantifier, we only need to explicitly state the argument
structure, which is suppressed in the membership functionµalmost all . The semi-
fuzzy quantifieralmost all : P(E)2 −→ I then becomes

almost all (Y1, Y2) =

{
µalmost all(

|Y1∩Y2|
|Y1| ) : Y1 6= ∅

1 : else
(12)

for all Y1, Y2 ∈ P(E). We can get a rough picture of how the quantifier behaves
from Fig. 1, which displays the plot of the membership function. My decision to stip-
ulate thatalmost all (∅, Y ) = 1 is justified by the observation that we also have
all(∅, Y ) = 1, and “almost all” should express a weaker condition than “all”, which
demands that we letalmost all (∅, Y ) = 1 as well.

In order to catch a larger class of NL quantifiers, it is convenient to define parametric
quantifiers from which concrete instances such as “many”, “almost all”, “often”, “al-
most everywhere” etc. can be derived. For purpose of illustration, let us consider two
parametrized examples.

abs many ρ, τ : P(E)2 −→ I
“Many X1’s areX2 compared to an absolute expected valueρ ∈ R with sharp-
ness parameterτ ∈ [0, ρ]”; and

rel many ρ, τ : P(E)2 −→ I
“The proportion ofX1’s that areX2 is large compared to an expected proportion
ρ ∈ [0, 1] with sharpness parameterτ ∈ [0, ρ]”.

Formally, we define these generic quantifiers as follows (assuming an arbitrary finite
domainE 6= ∅):

abs many ρ, τ (Y1, Y2) = S(|Y1 ∩ Y2|, ρ− τ, ρ+ τ)

rel many ρ, τ (Y1, Y2) =

{
1 : |Y1| = 0
S( |Y1∩Y2|

|Y1| , ρ− τ, ρ+ τ) : |Y1| 6= 0

for all Y1, Y2 ∈ P(E), whereS again denotes Zadeh’sS-function [188, pp. 183+],
see also eq. (2) above. The proposed definitions ofabs many ρ, τ andrel many ρ, τ
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cover various meanings of “many” and similar quantifying expressions such as “often”,
“relatively often”, etc. In particular the proposed modelling of “almost all” in terms of
equality (12), is just an instance of the general pattern captured byrel many and can
now be expressed as

almost all = rel many 0.8, 0.1.

The choice of parameters obviously depends on the quantifier to be modelled, but it is
also application-specific. In addition, other options for modelling a given NL quanti-
fier, e.g. in terms of trapezoidal membership functions, might well be equally plausible.
I will return to the issue of context-dependence in the chapter summary, which also dis-
cusses the problem of constructing plausible membership functions among the wealth
of possible choices.

Apart from the generic examples, it is also worthwhile considering the following
quantifier (which is unparametrized):

as many as possible : P(E)2 −→ I
which might be interpreted as denoting “The relative share ofX1’s that areX2”.

We can give a (very rough) account of the quantifier by defining

as many as possible (Y1, Y2) =

{
1 : |Y1| = 0
|Y1∩Y2|
|Y1| : |Y1| 6= 0 (13)

for all Y1, Y2 ∈ P(E). Thus “the more, the better”. The above stipulation for empty
Y1, i.e.as many as possible (∅, Y ) = 1, is again motivated by the observation that
intuitively, “all” poses a stronger condition, whenceas many as possible (∅, Y ) ≥
all(∅, Y ) = 1. We shall see some applications of this quantifier later in the report,
which demonstrate that the model, albeit very simplistic, can still be useful. The cho-
sen interpretation of “as many as possible” corresponds to Yager’s ‘pure averaging’
quantifierQmean described in [170, p. 187].

The above examples of semi-fuzzy quantifiers demonstrate that the proposed concept
is indeed useful for specifying natural language quantifiers. The quantifying operators
which I described in terms of semi-fuzzy quantifiers show a very clear input-output
behaviour. These quantifiers are simple functions of crisp cardinalities. Thus, the
relationship between the arguments of the quantifier and the resulting interpretation is
easily grasped. It is clear in advance that the specification of a particular quantifier is
strongly context-dependent. However, the clarity of semi-fuzzy quantifiers makes our
linguistic intuitions applicable again, thus simplifying the identification of a plausible
model. We can thus match the available quantifiers with the intended interpretation
of the target NL quantifier in the given situation. Unlike fuzzy quantifiers, the new
descriptions are easily communicable and thus encourage a constructive dispute about
the interpretation of a quantifier in the application of interest.

The diversity of possible linguistic quantifiers is not at all accounted for by the tra-
ditional approaches to fuzzy quantification and theirµQ-based representations. Semi-
fuzzy quantifiers, by contrast, are capable of expressing a wealth of possible examples
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including quantifiers of exception, cardinal comparatives, proper names, definite quan-
tifiers etc. the importance of which has long been recognized by linguists, but escaped
the attention of fuzzy set theorists.

This extended coverage is possible because the quantificational structure, i.e. the de-
pendency of quantifiers on a particular combination of the arguments like the absolute
count, relative share, difference of cardinalities etc., is considered part of the specifi-
cations and thus explicitly encoded by each semi-fuzzy quantifier as an integral part of
its definition. Existing approaches, by contrast, isolate this kind of argument structure
from a skeleton specification (fuzzy number); the dependency on absolute counts, a
ratio of cardinalities etc. must then be imposed by the interpretation mechanism. It is
this difference in the assumed responsibility for argument structure which unlike the
traditionalµQ’s, makes semi-fuzzy quantifiers a universal specification medium for
extensional quantifiers.

In technical terms, semi-fuzzy quantifiers are capable of modelling both quantitative
and non-quantitative types of quantifiers, while the traditional approach is limited to
the quantitative variety; semi-fuzzy quantifiers make no assumptions on the finiteness
of the domain, while previous approaches have usually limited themselves to the finite
case; and only semi-fuzzy quantifiers have been designed with fuzzy multi-place quan-
tification in mind and can thus express linguistic quantifiers regardless the number of
arguments involved (for details concerning the coverage of quantificational phenom-
ena, see the chapter summary). Semi-fuzzy quantifiers easily embed all two-valued
generalized quantifiers in the sense of TGQ, which are enriched by a wealth of approx-
imate types. Existing approaches, however, fail to embed the ‘classical’ generalized
quantifiers, and thus fall behind the standards that have already been set in linguistics.

From a strategic point of view, the affinity of semi-fuzzy quantifiers to TGQ promises
a straightforward generalization of the existing, linguistically motivated concepts, which
might also contribute to a deeper understanding of fuzzy quantification. These bene-
fits of semi-fuzzy quantifiers will not only foster the development of the theoretical
background, but also open new fields of future application. Being a generic specifi-
cation medium for natural language quantifiers, semi-fuzzy quantifiers not only cover
the basic quantifiers for technical applications (like importance aggregation). Unlike
the specialized representations of previous approaches, they target at the full range
of quantifiers met in dialogue systems, machine translation, and other applications of
natural language processing.

2.6 Quantifier fuzzification mechanisms

At this point, the proposed framework comprises fuzzy quantifiers and semi-fuzzy
quantifiers. The former are the apparent abstraction of two-valued generalized quanti-
fiers, which also embraces the known classes of operators studied in previous work on
fuzzy quantification. However, the expressive power required to describe type IV quan-
tifications is rather obstructive to establishing a well-justified interpretation for given
NL quantifiers, because the expected behaviour of a quantifier is typically not very
clear when supplied with fuzzy arguments. Thus, we need fuzzy quantifiers as target
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operations but they make poor a specification medium. Semi-fuzzy quantifiers, by con-
trast, no longer enforce a commitment to any details beyond the obvious characteristics
of the target NL quantifier. With semi-fuzzy quantifiers, we are actually freed from the
difficulties caused by fuzzy quantifiers because on the side of the inputs, everything is
kept simple and crisp. This effectively avoids the original dilemma of having to specify
precise outputs when the arguments of the quantifier are loaded with fuzziness. As a
consequence, resorting to semi-fuzzy quantifiers makes the problem of specification
much more feasible, due to their virtues as reduced descriptions. Based on semi-fuzzy
quantifiers, it hence becomes a straightforward task to describe the intended meaning of
given linguistic quantifiers like “at least 10 percent”. As witnessed by these modelling
examples for prototypical quantifiers, establishing an auxiliary layer of specifications
indeed payed off.

Needless to say that semi-fuzzy quantifiers, although useful as descriptions of the
quantifiers of interest, are not suitable for interpreting type IV quantifications. For
example, we are not yet able to assign a meaning to NL statements like “Almost all
rich people are tall”, even when we have managed to precisely describe “almost all”
in terms of a semi-fuzzy quantifier. These sacrifice the processing of fuzzy arguments
like “tall” or “rich” in order to restrict the specifications to the clear cases. Compared
to fuzzy quantifiers, we thus have the opposite pattern: semi-fuzzy quantifiers are good
for specification purposes, but they make a poor choice of operation medium, and can-
not handle the range of possible arguments. Hence both semi-fuzzy and fuzzy quan-
tifiers are necessary components of the evolving framework, and these two concepts
will serve complementary functions in a theory of fuzzy quantification. While semi-
fuzzy quantifiers provide the specification medium, the original fuzzy quantifiers are
still needed as the target operators which actually compute quantification results from
given instantiations of fuzzy arguments. Only the particular choice of fuzzy quantifiers,
although hard to establish, will achieve the desired completeness of interpretation. In
other words, none of the two functions is overly useful as long as the specification and
operation layers remain isolated.

This is were models enter the scene, because in my setting, a model of fuzzy quantifi-
cation is nothing but an explicit description of the relationship between specifications
(semi-fuzzy quantifiers) and corresponding operations (fuzzy quantifiers). The formal
definition of these models, for which I will coin the term ‘quantifier fuzzification mech-
anism’ or QFM for short, is in fact quite simple, and it should now be really obvious
from the above considerations:

Definition 6
A quantifier fuzzification mechanism(QFM) F assigns to each semi-fuzzy quantifier
Q : P(E)n −→ I a corresponding fuzzy quantifierF(Q) : P̃(E)

n
−→ I of the same

arity n ∈ N and on the same base setE.14

QFMs are the missing component which closes the gap between the specification and
interpretation layers, thus completing the new framework for fuzzy quantification. The

14I avoid to callF a ‘function’ or ‘mapping’ because the collection of semi-fuzzy quantifiers might form
a proper class.
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proposed framework now lets us specify the intended quantifierQ : P(E) −→ I by
describing its behaviour for crisp arguments, determine the matching operationF(Q),
and then apply this operation to interpret quantifying statements, by computing type
IV quantificationsF(Q)(X1, . . . , Xn) for given fuzzy setsX1, . . . , Xn ∈ P̃(E). Con-
sider universal quantification, for example. Starting from the two-valued quantifier
∀ : P(E) −→ 2 defined by (5) and a given QFMF , we automatically obtain the fuzzy
analogueF(∀) : P̃(E) −→ I. Examples of prototypical QFMs which can be substi-
tuted forF will be presented in Chap. 7 to Chap. 10 below. In all of these models, we
obtainF(∀)(X) = ∀̃(X) = inf{µX(e) : e ∈ E}, i.e. the fuzzy universal quantifier
coincides with my original proposal (7). Having available such a mechanism, we can
also apply it to “at least 10 percent” as defined in Def. 3. This solves the above problem
of determining the proper definition of “at least 10 percent” as a fuzzy quantifier, which
is now given a unique answerrelative toF , namelyF(at least 10 percent ). Given
a plausible choice ofF , we can simply fetch the desired model of “at least 10 percent”,
without ever having to rack our brains on the proper specification of the quantifier for
fuzzy arguments.

It is probably safe to assume that the coherence and systematicity observed in natural
language will reflect in correspondence assertions which are coherent and systematic
to a similar degree. In other words, the plausible models of natural language quantifi-
cation are subjected to strong regularities, which clearly separate these models from
meaningless or inconsistent examples. It is this hidden structure of plausible models
that must eventually be uncovered and distilled into explicit criteria for ‘good’ or pre-
ferred choices, which answer our intuitive expectations. At this point, it should be re-
marked that the sole purpose of QFMs is that of introducing variables which range over
arbitrary correspondence assignments. Thus, the definition of candidate modelsper se
is separated from the subsequent task of characterizing those interpretations which are
linguistically valid. Starting from this full class of unrestricted models, which both
surrounds all meaningful examples as well as a bunch of incoherent assignments, we
can now try and identify the plausible choices by formalizing the intuitive criteria for
semantical soundness.

It is the merit of QFMs to bring about a theoretical framework in which such ad-
equacy criteria can be investigated with all the formal rigor which is necessary for
turning our linguistic intuitions into precise definitions. Compared to the ‘manual’
procedure of defining interpretations on a case-by-case basis, the QFM approach elim-
inates the need to justify each individual choice of quantifier. This is because the
fuzzification mechanismitself (as opposed to the instances of fuzzification) can now
be subjected to a critical evaluation. Provided a sufficient catalogue of criteria, the
margin for interpreting individual quantifiers, will be narrowed down to the plausible
choices. This axiomatic procedure eliminates the risk of covert inconsistencies which
is notorious to manual correspondence assertions or to a splitting of interpretations for
each type of quantifers, as is done in the traditional framework.
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2.7 The quantification framework assumption

In the last section, I completed the presentation of the new framework for fuzzy quan-
tification, which now comprises the triple of specifications (semi-fuzzy quantifiers),
operations (fuzzy quantifiers) and correspondence assignments modelled by QFMs. I
also explained how the proposed framework answers the dilemma of fuzzy quantifiers.
Every NL quantifier of interest can now be specified in the convenient format offered
by semi-fuzzy quantifiers, and we only need to apply the chosen QFM to fetch the final
interpretation. In this way, we are no longer forced to specify a precise numerical inter-
pretation of the NL quantifier when there is fuzziness in the arguments: The processing
of such arguments is now delegated to the QFM. The proposed notion of unrestricted
QFMs will later be constrained to a class of intended choices.

In the given framework, developing further the theory of fuzzy quantification thus
boils down to tracing out and formalizing the intuitive conditions on plausible mod-
els; compiling a generating system of basic axioms which entail the full catalogue of
quality criteria; and finally to the identification and implementation of practical models
which satisfy these requirements. This methodology will permit us to assess the phe-
nomenon of fuzzy NL quantification, to give a comprehensive account of its various
aspects, and finally to combine these pieces into the first theory of fuzzy quantification
elaborated with formal rigor.

In view of such perspectives, it is worthwile reflecting the commitments made by
the novel framework. In order to clarify the descriptive capacity that may be expected
of the proposed approach, we must trace out its inherent assumptions, which decide
upon the expressiveness of the framework and also demarcate its theoretical limits. In
fact, there is an implicit assumption here, which silently crept in when I introduced
semi-fuzzy quantifiers and quantifier fuzzification mechanisms. This condition can be
rendered succinctly in terms of the following construction of underlying semi-fuzzy
quantifiers:

Definition 7
Let Q̃ : P̃(E)

n
−→ I be a fuzzy quantifier. Theunderlying semi-fuzzy quantifier

U(Q̃) : P(E)n −→ I is defined by

U(Q̃)(Y1, . . . , Yn) = Q̃(Y1, . . . , Yn) ,

for all n-tuples ofcrispsubsetsY1, . . . , Yn ∈ P(E). HenceU(Q̃) simply ‘forgets’ that
Q̃ can be applied to fuzzy sets, and only considers its behaviour on crisp arguments.

Taking benefit of this concept, we can now express the followingquantification frame-
work assumptionthat must be fulfilled in order to put the proposed framework into
operation:

Quantification framework assumption (QFA):
If two base quantifiers of interest (i.e. NL quantifiers to be defined directly)
have distinct interpretations̃Q 6= Q̃′ as fuzzy quantifiers, then they are
already distinct on crisp arguments, i.e.U(Q̃) 6= U(Q̃′).
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The QFA condition ensures the applicability of the QFM framework because we can
then represent̃Q, Q̃′ by Q = U(Q̃) andQ′ = U(Q̃′), without compromising the
existence of a QFMF which takesQ to Q̃ = F(Q) andQ′ to Q̃′ = F(Q′). If
the QFA is violated byQ̃ and Q̃′, however, then it is impossible for any QFM to
separate the quantifiers, becauseU(Q̃) = U(Q̃′) entails that the same interpretation
F(U(Q̃)) = F(U(Q̃′)) be assigned to both quantifiers.

The QFA expresses the linguistic postulate (universal principle) that there is no pair
of base quantifiers in any natural language which coincide on two-valued arguments,
but differ for fuzzy arguments. It should be pointed out that the linguistic theory of
quantification, TGQ, depends on the very same assumption, because it restricts atten-
tion to two-valued arguments only. In doing this, it is silently presumed that crisp
arguments will reveal sufficient structure to discuss the phenomenon of interest. Start-
ing from its basic concept of a generalized quantifier, TGQ has conducted research into
various facets of NL quantification, and gathered a solid stock of knowledge on such
diverse issues as semantic universals, algebraic properties, expressive power, logical
definability, and also on purely linguistic matters like ‘there-insertion’ or ‘negative po-
larity’ items.15 It is remarkable that all these findings stem from a simplifying model
of NL quantifiers which trusts to idealized, crisp inputs. Most of these results have un-
doubtedly something to say about NL quantification in general, and will likely persist
in the fuzzy case. Judging from this perspective, the impressive body of knowledge
that we owe to TGQ makes a bold point that the framework assumption be useful, be-
cause it demonstrates that the phenomena of linguistic interest can also be reproduced
in the test-tube of crisp arguments.

At first sight, the fundamental assumption underlying the quantification framework
appears uncritical, because it makes so elementary a requirement. However, there is
good reason why I restricted the condition to some notion of ‘base quantifiers’, rather
than expressing it unconditionally. Natural language is open-ended, and it is indeed
possible to construct a few examples which must be treated with different methods.
Thus, it all depends on the notion of base or ‘simplex’ quantifierQ̃, which must be
directly expressed in terms of semi-fuzzy quantifiers, i.e. asQ̃ = F(Q).

If the total of conceivable linguistic quantifiers are declared base quantifiers, then it
is clear in advance that the QFA will be violated. This is because a continuous-valued
logic cannot validate all axioms of Boolean algebra on formal grounds. Natural lan-
guages, however, permit us to express arbitrary Boolean combinations of a quantifier’s
arguments. Starting from a pair of Boolean expressions which are equivalent in the
two-valued, but not in the fuzzy case, we can thus construct a pair of quantifiers whose
argument structure parallels these Boolean expressions. These quantifiers will coincide
for crisp arguments, but not necessarily for fuzzy arguments, thus violating the QFA
criterion. A simple example is̃Q(X) = ∀̃(X ∪ ¬X), or “Everything isX or notX”,
versusQ̃′(X) = 1 const, which paraphrases a constantly true proposition like “Every-
thing belongs to the base set”, which by cylindrical extension (i.e. adding a vacuous
variable) becomes a unary quantifier. The standard choice of fuzzy universal quanti-

15see e.g. [6] (universals), [8] (algebraic properties), [81] (expressiveness), [9] (definability) and [70]
(linguistic issues).
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fier (infimum) and the standard set of connectives then results inQ̃ 6= Q̃′, although
U(Q̃) = U(Q̃′) = 1 coincide.

It hence appears that we can treat a (large!) fragment of extensional NL quantifiers
as base quantifiers, which are modelled directly in terms of a semi-fuzzy quantifier,
i.e. Q̃ = F(Q). However, certain cases will escape this procedure. The interpreta-
tion of these non-simplex quantifiers must be constructed from the interpretation of
other base quantifiers, i.e. they do not permit a reduction to crisp arguments and must
hence be analyzed at the level of fuzzy quantifiers. To demonstrate which examples
are base quantifiers and which are not, let us reconsider the many-valued quantifiers
of Rescher [128, p. 199]. Identifying all intermediate truth valuesz ∈ (0, 1) with the
third truth value of Rescher’s original definition, Rescher’s quantifiers∃I , ∀T , MT

andM I already mentioned on page 27 in the introduction, can readily be extended to
unary fuzzy quantifiers defined for all fuzzy arguments. These quantifiers, which make
certain aspects of the many-valued interpretation accessible from the object language,
exemplify the possibility of counter-examples that cannot be regarded as base quanti-
fiers. Rescher’s quantifiers (or apparent derivations) can also be realized linguistically,
as shown by the following examples from ordinary English:

1. Many borderline-cases of bald men use hair restorers.

2. All clear cases of insanity are kept under strict observation.

3. All stationary patients are clear cases of dementia.

In order to demonstrate the problems associated with the modelling of Rescher’s quan-
tifiers, let us consider the quantifier̃∃I : P̃(E) −→ I defined by∃̃I(X) = 1 if
µX(e) ∈ (0, 1) for somee ∈ E, and ∃̃I(X) = 0 otherwise. The type IV quan-
tification ∃̃I(P ) then expresses the linguistic pattern “There are borderline cases of
P ’s”. In order to check the validity of the QFA criterion in this case, let us suppose
that Q̃ = ∃̃I , and the constantly false quantifier̃Q′(X) = 0 which corresponds to a
false proposition like “The base set is empty”, both be base quantifiers. We then ob-
serve thatU(∃̃I) = U(Q̃′) = 0 is constantly false because for crisp arguments, one
generally finds no borderline cases. Hence, there are two distinct quantifiersQ̃ = ∃̃I
andQ̃′ expressible in NL which coincide for crisp arguments. This demonstrates that
∃̃I cannot be considered a base quantifier, because the resulting semi-fuzzy quanti-
fier coincides with the constantly false quantifier, but the expected interpretation∃̃I
is clearly different from the constantly false fuzzy quantifier, thus contradicting the
QFA criterion. Moreover, linguists have postulated a universal principle of ‘variety’
observed by all natural languages, which states that (restricting attention to crisp ar-
guments, as is always done in linguistics), such ‘trivial’ or non-informative quantifiers
like U(∃̃I) = 0, although available in mathematical models, never occur as basic, non-
constructed quantifiers of a natural language [8, p. 452]. This provides further evidence
that the representationQ = U(∃̃I) must be rejected on linguistic grounds, i.e.∃̃I must
be considered a constructed, rather than simplex quantifier. Obviously, this does not
mean that̃∃I cannot be handled by the framework at all, it just means that it cannot be
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expressed directly in the form̃∃I = F(Q), as stated in the QFA. The possible reduction
of ∃̃I to the interpretation of a base quantifier is obvious from its decomposition into
“There areR’s”, where the propositionR abbreviates “borderline case ofP ”. Thus,
“borderline case of” is now viewed as part of the argument and no longer attached to
the quantifier – an analysis which is equally plausible. Leth : I −→ I be the mapping
defined byh(0) = h(1) = 0 andh(z) = 1 otherwise. ThenR can be computed from
P by applying the ‘linguistic hedge’h, i.e. µR(e) = h(µP (e)) for all e ∈ E. We
can then express̃∃I in terms of the existential quantifierF(∃), i.e. ∃̃I(P ) = F(∃)(R),
assuming thatF(∃) coincides with∃ in the crisp case.

Returning to the question of identifying non-simplex quantifiers, it appears that quan-
tifying constructions which explicitly refer to the fuzziness, vagueness or determinacy
of their arguments violate the QFA and must hence be viewed as constructed quanti-
fiers. In particular, linguistic hedges can only be applied to the arguments of a fuzzy
quantifier rather than a semi-fuzzy one, because modifications of membership grades
are meaningless for crisp arguments. Thus quantifiers constructed from hedging arenot
base quantifiers. Such exceptions notwithstanding, the positive examples of base quan-
tifiers clearly prevail in natural languages. They include lexicalized quantifiers like de-
terminers (“most”, “many”), discontinuous determiners (“more. . . than”), and certain
syntactically complex determiners like (“more than half”). A further clarification of
the notions of a base quantifier versus constructed quantifier would certainly be desir-
able, although the majority of linguistic cases clearly belong to the non-constructed
type which can be represented in terms of a semi-fuzzy quantifier.

2.8 A note on nullary quantifiers

In closing the chapter, I would like to add two technical remarks concerning the status
of nullary quantifiers (this section) and the treatment of undefined quantifications in
the proposed framework (next section). The reader will probably have noticed that the
above definitions of semi-fuzzy and fuzzy quantifiers admit the case of quantifiers with
arity n = 0. Here I want to briefly remark on these nullary quantifiers and defend my
decision to include the nullary cases into the base definitions of quantifying operators.
Let me note in advance that nullary quantifiers are artificial constructs (or boundary
cases of quantifiers) which are not observed in natural language. This is because every
NL quantifier must at least support one argument slot, which accepts the interpretation
of the verbal phrase. For a minimal example, consider “Joan sleeps”, where “Joan” is
mapped to a one-place quantifierjoan : P(E) −→ 2, to which the extensionsleep ∈
P(E) of the verb “sleep” is then inserted. The above example hence translates into
joan (sleeps ), which determines the resulting truth value from the known identity of
“Joan” and the known set of sleeping people. This minimal example illustrates that the
slot for the interpretation of the verb phrase is mandatory in natural language, which
excludes the possibility of nullary quantification. Nevertheless, it can be pretty useful
for theoretical investigations to have such boundary cases available (for example, they
naturally arise from repeated argument insertions, to be discussed below in section
4.10). I have hence decided to define semi-fuzzy and fuzzy quantifiers accordingly.
As we shall learn below in Def. 24, admitting quantifiers of arityn = 0 will indeed
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contribute to the succinct presentation of my axiom system for plausible models, which
will refer to nullary quantifiers in its first and most fundamental axiom (Z-1).

In order to better understand what nullary quantifiers are, and also in order to jus-
tify my later notation for nullary quantification, we need to recall some very basic
mathematics. IfA is some set andn ∈ N, thenAn is commonly taken to denote
set of mappings fromn = {0, . . . , n − 1} to A, i.e.An = A{0, ..., n−1}. Conse-
quently,A0 = A∅ = {∅}. A nullary semi-fuzzy quantifierQ : P(E)0 −→ I, i.e.
Q : {∅} −→ I, is therefore uniquely determined by the valueQ(∅) ∈ I which it
assumes for theempty tuple, written as∅. This provides evidence of a one-to-one cor-
respondence between nullary semi-fuzzy quantifiersQ : P(E)0 −→ I and elements
Q(∅) = y ∈ I in the unit interval. Acknowledging these dependencies, I will at times
refer to nullary quantifiers as ‘constant quantifiers’. To give an example, the quanti-
fier Q : {∅} −→ I defined byQ(∅) = 1

2 , is a nullary semi-fuzzy quantifier, and
true , false : {∅} −→ I, defined bytrue (∅) = 1 andfalse (∅) = 0, are of course
also constant semi-fuzzy quantifiers.

Similar considerations apply to nullaryfuzzyquantifiersQ̃ : P̃(E)
0
−→ I. In this

case, we obtain that̃P(E)
0

= P̃(E)
∅

= {∅}, which again substantiates a one-to-
one correspondence between nullary or ‘constant’ fuzzy quantifiersQ̃ : {∅} −→ I,
and elements̃Q(∅) ∈ I. In particular, the setI(P(E)0) = I{∅} of constant semi-fuzzy

quantifiers overE coincides with the set of constant fuzzy quantifiersI(P̃(E)
0
) = I{∅},

for any considered base setE 6= ∅.

2.9 A note on undefined interpretation

In TGQ, the concept of two-valued quantifiers is often slightly extended, by also ac-
counting for the possibility of undefined interpretations. It is hence admitted that cer-
tain quantifiers, like the definite quantifier “the” already mentioned above, might fail to
denote in some cases. This suggests that the original definition of two-place quantifiers
be weakened to partial (incompletely defined) mappings, which are allowed to be unde-
fined at certain inputs. Alternatively, one might resort to a three-valued modelling, and
hence represent the ‘undefined’ or ‘undecided’ case by a third truth value, as suggested
by Barwise and Cooper [6, p. 171]. In this report, I have decided not to incorporate this
extension to undefined interpretations into the base concept of two-valued quantifiers.
In addition, the abstractions of semi-fuzzy and fuzzy quantifiers, which will be central
to this report, are both modelled as total mappings as well. This decision to keep un-
defined interpretations out of the ‘pure’ base definition of two-valued quantifiers, rests
upon the observation that the essential regularities of NL quantifiers can already be
expressed at the simplified level of total, two-valued quantifiers, as witnessed by influ-
ential publications like [8, 9], which explicitly restrict attention to these well-behaved
cases.16 Other authors like Keenan & Stavi [82, p. 277] and Hamm [61] avoid un-
defined interpretations altogether and even stick to the Russelian analysis of definite
quantifiers. The remaining literature only touches upon the fact that an extension to
partial or three-valued quantifiers would be more adequate. The formal apparatus of

16Obviously, this does not entail that all NL quantifiers be two-valued and total.
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TGQ, however, is fully developed only for the two-valued, total case, in order to avoid
the intricacies introduced by partial or three-valued mappings. In particular, the issue
of how the refined quantifiers behave when supplied with the resulting three-valued
inputs, is not elaborated in TGQ.17 In other words, the definitions and theorems usu-
ally idealize from the ‘real-world dirt’ of undecided quantification results, and confine
themselves to the simple case of total, two-valued quantifiers. From the perspective
of fuzzy quantification, the proposed refinement into three-valued quantifiers is still
too coarse, and it is rather held that a further refinement to the continuous-valued case
be necessary, in order to achieve a more natural modelling of the non-idealized, ap-
proximate quantifiers that are typical of real languages. The refined descriptions of
quantifiers that I made possible by introducing semi-fuzzy and fuzzy quantifiers, per-
mit us to express all possible shades of a quantification result, which might tend to the
crisp outcomes0 (false) or1 (true) only to some degree. In particular, the issue of unde-
fined or undecided results neatly resolves into this more general proposal, because the
improved descriptions also permit a quantifier to assume the undecided result (repre-
sented by12 ). As a by-product of this continuous-valued refinement and the subsequent
adaptation of all relevant concepts of TGQ, I will also achieve a thorough development
of the basic notions of TGQ for the three-valued subcase of quantifiers that assume
their values in{0, 1

2 , 1}. In other words, semi-fuzzy quantifiers are rich enough to
embed the extensions to three-valued quantifiers, and the corresponding fuzzy quanti-
fiers can easily handle any three-valued arguments. To sum up, my analysis would not
profit from supporting undefined interpretations, and the motivating cases for partial
quantifiers are already accounted for by the continuous-valued model.

2.10 Chapter summary

In this chapter, I introduced a theoretical skeleton for models of fuzzy quantification
which permits a coherent interpretation of a broad class of NL quantifiers. Recalling
the characteristics of linguistic quantifiers discussed in the introduction, the framework
was expected to support general multi-place quantifiers, non-quantitative examples and
the like. The most useful departure for devising such a framework I found to be the
theory of generalized quantifiers TGQ, which offers a suitable notion of (crisp) gen-
eralized quantifiers that only needs to be extended towards fuzzy quantification. By
committing to the basic analysis of TGQ, the later translation of its conceptual appara-
tus to fuzzy quantifiers will become a straightforward task.

In the introduction, a framework for fuzzy quantification was described as compris-
ing four parts: a description of its scope, which fixes the range of considered quan-
tifiers; a definition of operational target quantifiers; a definition of specifications for
such quantifiers; and finally interpretations which connect the specifications of quan-
tifiers to their operational forms. Starting from the linguistic analysis, my goal was
that of covering all quantifiers known to the linguistic theory (TGQ), however admit-
ting approximate quantifiers and fuzziness in the arguments of a quantifier. To this

17Barwise and Cooper [6, p. 171] merely suggest that Kleene’s three-valued logic might provide the
blueprint for this refinement. Interestingly, all standard models of fuzzy quantification developed below
will comply with this strategy, see p. 166.
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end, I first defined the suitable notion of fuzzy quantifiers which accounts for these
considerations. In order to develop practical specifications, it was useful to adopt the
fuzzification pattern described in the appendix. The framework thus introduces a sys-
tem of intermediate representations which are justified by the assumption that certain
variables (in this case, the arguments of the quantifier) be crisp, and a fuzzification
mechanism for fuzzy quantifiers which translates these simplified descriptions to their
operational forms, i.e. to fuzzy quantifiers which admit fuzziness in all variables.

The concrete proposal of semi-fuzzy quantifiers that I made to avail us with such
descriptions rests on a clear separation between approximate quantifiers (fuzziness in
the quantifier itself) and the problem of fuzzy arguments, the processing of which
will be delegated to the particular models of fuzzy quantification. Thus, semi-fuzzy
quantifiers are justified by the separate dimensions of fuzzy quantification identified
by Liu and Kerre [99, p. 2], i.e. rows vs. columns in the table of ‘fields of quantifi-
cation’ shown on p. 25. The plenty of advantages discussed in the previous sections
make a strong point that semi-fuzzy quantifiers be practical base representations for
NL quantifiers. They practically avoid the ‘dilemma of fuzzy quantification’ by taking
an intermediate course between two-valued quantifiers (which are too weak) and fuzzy
quantifiers (which are too expressive for specification purposes). Moreover the depen-
dency of semi-fuzzy quantifiers on crisp arguments admits suggestive definitions based
on crisp cardinalities. The proposed notion of semi-fuzzy quantifiers accomplishes the
goal of embedding the quantifiers known to linguistics, and it also establishes a uni-
versal description format which suits all types of quantifiers. Absolute quantifiers like
“about ten” and proportional examples like “most”, for example, both map to binary
quantifiersQ : P(E)2 −→ I. Semi-fuzzy quantifiers therefore achieve the desired in-
dependence of any particular types of quantifiers like absolute, proportional etc. Com-
pared to fuzzy quantifiers, the definition of their semi-fuzzy cousins in terms of the
cardinality of crisp sets eliminates a multiplicity of choices that were artifacts of an
over-expressive modelling device. The compatibility of semi-fuzzy quantifiers with
the familiar cardinality measure is a practical benefit for semi-fuzzy quantifiers, the
relevance of which can hardly be overvalued.

The separation of specification and operational forms which is intrinsic to my frame-
work then necessitates the stipulation of correspondences between given specifications
and their associated target quantifiers. It is clear in advance that a satisfying account
of fuzzy quantification can only be given if this passage from specification medium to
operation medium be systematic and internally coherent. There should be clear rules
for determining a target quantifier from its specification to avoid any ad-hoc choices.
In order to be able to discuss distinct systems of such rules, these rule systems, which
associate fuzzy quantifiers with given base descriptions, must become an explicit part
of my model. I therefore postulated the concept of fuzzification mechanisms to ex-
press these correspondences, which encapsulate all details concerning the mapping
from specifications to target quantifiers.

By the quantification framework, I thus mean the triple of semi-fuzzy quantifiers
(specification medium), fuzzy quantifiers (operation medium) and QFMs (map of cor-
respondences). The scope of the framework spans both the generalized quantifiers of
TGQ and the Type IV quantifications of fuzzy set theory. The framework thus in-
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cludes a variety of extensional quantifiers which are permitted to be multi-place and
non-quantitative (i.e. not necessarily definable in terms of cardinalities). In addition,
there is no a priory limitation to finite domains.

When discussing the quantification framework assumption, I discussed a few ‘ex-
otic’ quantifiers which cannot be reduced to a semi-fuzzy quantifier because they then
become meaningless. The prime example are Rescher’s quantifiers or more generally,
complex quantifiers built from a hedging construction. In the following, I would like
to comment on further quantificational phenomena not accounted for by my proposal;
all of these are also not handled by the linguistic theory and of course, they cannot be
treated by existing work on fuzzy quantification. The necessary extensions to cover
these cases are sometimes obvious from the usual treatment of these phenomena in
logic and linguistics. However, I must concentrate on the core issues of fuzzy NL
quantification in this work, and the phenomena not treated do not seem to be intrinsi-
cally connected to linguistic quantification as such.

Higher-order quantifiers, to begin with, are not accounted for by the proposed frame-
work. As remarked by Bocheński [16, (48.21)], the distinction between first order
propositions (which refer to individuals) and propositions of second order or higher
(which refer to sets of individuals, sets of such sets etc.) originates with Russell [134,
p. 236+]. The corresponding higher-order logics, and even the full theory of finite
types [134, 26, 1], were found to be valuable tools for linguistic description. To keep
things simple, however, my current framework only formalizes first-order quantifica-
tion. Most linguistic quantifiers are first-order but there are also examples of higher-
order quantification. As remarked by Keenan and Stavi, these express in ‘higher-order’
NPs like “two sets of dishes” or “a pride of lions”, whose denotations“arguably in-
clude properties of collections of individuals rather than of individuals”[82, p. 256].

The basic framework further abstracts from so-calledbranching quantification, in
which the linear sequence of nested quantifiers is replaced with partial dependencies,
thus admitting several quantifiers to operate in parallel and independently of each other
[66, 157]. As already mentioned, the relevance of branching quantification to the anal-
ysis of language has been a matter of linguistic debate [122, 68, 5, 158], and I take
sides with Barwise that branching quantification is indeed necessary to describe cer-
tain reciprocal constructions. Thus, I will show in the later Chap. 12 how the basic
framework can be extended towards branching quantification. This is also a first step
towards fuzzy higher-order quantification because branching quantification, as noted
by Barwise, is just a human language technique to conceal the use of certain higher-
order constructions.

The quantifiers of TGQ areextensional, i.e. they operate on sets of individuals (ex-
tensions) rather than ‘meanings’ or ‘intensions’ (usually represented as mappings from
states of affairs into extensions), so there is no indexing by some parameter which
corresponds to states of affairs. As pointed out by Barwise and Cooper [6, p. 203],
they deliberately restricted themselves to an extensional fragment of English, striving
to highlight the central issues. For pretty much the same reasons, the generalizations
of semi-fuzzy and fuzzy quantifiers that I proposed were also chosen to be extensional.
The following characterization of extensional determiners due to Keenan and Stavi also

88



extends to the more general types of fuzzy quantifications:

“To say that a detd is extensional is to say, for example, that whenever the
doc[t]ors and the lawyers are the same individuals thend doctorsandd lawyers
have the same properties, e.g.,d doctors attended the meetingnecessarily has the
same truth value asd lawyers attended the meeting. Thusevery is extensional,
since if the doctors and the lawyers are the same then, every doctor attended iff
every lawyer did”[82, p. 257].

This characterization results in a logic built ‘on top’ of these quantifiers18 to be exten-
sional as well, according to the usual ‘principle of extensionality’ [45, p. 5],

χ↔ χ′ |= ϕ↔ [χ′/χ]ϕ

i.e. substitutivity of expressions with identical reference. Following Frege [43], there
is a fundamental difference between the sense (‘Sinn’ in Frege’s terms, i.e. meaning,
intension) of natural language expressions and their reference (‘Bedeutung’ in Frege’s
terms, i.e. extension). Specifically, as shown by Quine [121], there are certain po-
sitions in linguistic expressions called ‘opaque contexts’ in which the substitution of
coextensional terms is no longer admissible but rather alters the overall meaning. Thus
a complete model of linguistic quantification will likely have to deal with intensional
arguments. And the quantifier itself might also be intensional, like “all alleged” [8,
p. 448] or “an undisclosed number of” [82, p. 257]:

“It is not hard to imagine a situation in which the doctors and the lawyers are the
same and but [sic]an undisclosed number of lawyers attended the meetingis true
and an undisclosed number of doctors attended the meetingis false. (Imagine a
meeting of medical personnel. The chairman announces the number of doctors in
attendance but not the number of lawyers)”[82, p. 257].

Thus, the principle of extensionality fails in this case. However,“the restriction to
extensional models looks more severe than it actually is. In fact there are not many
really intensional NPs or determiners”, see Gamut [45, p. 228]. In addition, it is rel-
atively clear how to integrate intensional features into a given system of logic. The
standard method of accomplishing this was developed by S. Kripke [93, 92], i.e. one
must add a primitive notion of a possible state of affairs (or ‘possible world’ in modal
logic), an accessibility relation on states, and define the semantics in terms of these
states and their accessibility. This basic approach underlies Montague’s intensional
logics [106, 107], for example. Should there evolve a need to treat intensional quan-
tifiers as well, an analogous extension of a logic with generalized quantifiers and the
corresponding semantical concepts would be possible. For reasons of simplicity and
readibility, though, I will not pursue this direction in the report.

Finally the Theory of Generalized Quantifiers, and my proposed extensions as well,
specifically target at ‘count NPs’ [82, p. 256] or ‘discrete quantifiers’ [8, p. 448] like “a
lot of” or “many”, rather than so-called ‘mass quantifiers’ or ‘continuous quantifiers’

18such a logic with generalized quantifiers has been developed by Barwise and Feferman [7, Ch. 2].
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like “much” or “little”. This peculiarity gains some weight as soon as we broaden the
range of NL quantifiers towards temporal or spatial quantification. In this case, the
underlying regions in time and space are possibly best modelled as atomless masses.
Hence a comprehensive model will need to support some form of ‘mass quantification’.
The present work tries to provide a good starting point for developing a theory of
mass quantification, by developing all of its concepts for base sets of both finite and
infinite cardinality. It is not the goal of this report to develop a theory of fuzzy mass
quantification, however. To this end, it would certainly be necessary to incorporate
additional elements from the theory of fuzzy measures.

Now that the scope of the framework and its possible extensions have been clarified,
we shall contemplate the separation of responsibilities inherent to the framework, in
order to identify the directions to be pursued in the remainder of the report. In the
introduction, I briefly discussed the sources of imperfection in NL, and specifically, I
explained the difference between vagueness (fuzziness) and context-dependence. This
classificatory distinction, as well as the ubiquity of both sources of imperfection, is
also recognized in fuzzy set theory:

“Linguistic concepts are not only predominantly vague, but their meanings are
almost invariably context-dependent as well”,

see Klir and Yuan [89, p. 280]. The meanings of linguistic operations, and quantifiers
in particular, make no exception in this respect. Therefore the meaning of linguis-
tic quantifiers can only be fixed once the relevant context is known (e.g. for a given
application). However, as pointed out by Klir and Yuan [89, p. 281],

“The problem of constructing membership functions that adequately capture the
meanings of linguistic terms employed in a particular application, as well as the
problem of determining meanings of associated operations on the linguistic terms,
are not problems of fuzzy set theoryper se.”

In a way, this problem has something to say about natural language and its relation-
ship to the proposed modelling devices, not about the formal models themselves. (Not
surprisingly, then, the problem is also shared both by semi-fuzzy quantifiers and fuzzy
linguistic quantifiersµQ). Roughly speaking, the less precise or specific the representa-
tions of linguistic quantifiers, the more uniquely can they be established. Obviously (as
reflected by the QFA), the representations must also be powerful enough to uniquely
identify the quantifiers of interest. Thus, a compromise must be sought, and semi-fuzzy
quantifiers achieve a reasonable trade-off between nonspecificity and expressive power.
Concerning the division of responsibility, it is clear in advance that the particular quan-
tifiers to be modelled involve ‘particulars’ and are thus, idiosyncratic. Consequently
the specifications of the relevant quantifiers cannot be determined by a general theory,
they must rather be fixed as part of designing an application. It is up to a software engi-
neer or domain expert to select an appropriate system of such base descriptions which
capture the meaning of the target quantifiers in the given application. The methodol-
ogy for interpreting these specifications of quantifiers, however, is independent of the
particular decisions regarding the intended specification. By contrast, it is supposed
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to ensure thatall semi-fuzzy quantifiers be consistently generalised to corresponding
fuzzy quantifiers. In order to develop the theory of fuzzy quantification without getting
stuck in context-dependence, it was necessary to introduce the universal specification
medium, which encapsulates the context-dependence and other idiosyncratic aspects
of linguistic quantification. The theory of quantification, by contrast, must explain
how such specifications be interpreted systematically. It is here that I expect observ-
able regularities which should be laid open by subsequent research and distilled into
formal criteria. In the remainder of the report, then, I will be concerned with this com-
plex problem. The QFMs which I introduced as some kind of place-holder for the
possible correspondence assignments are a prerequisite of formalizing the underlying
dependencies between specifications and target operations. By making the correspon-
dence assertions first-class citizens of my theoretical framework, it becomes possible
to develop the desired formal criteria which let us assess the perceived quality of an
interpretation. By adding more and more such criteria, we can subsequently prune the
class of considered models, until the hidden regularities are eventually uncovered that
discern intended models from implausible assignments. This process, which allows an
incremental refinement, will culminate in a systematical description of plausible mod-
els called ‘determiner fuzzification schemes’, which I will present in the next chapter.
In any case, a plausible model defined on the proposed specifications is expected to cor-
rectly extrapolate the meaning of simple specifications to the general case of a fuzzy
quantifier supplied with fuzzy arguments.

Thus we can further the theory of fuzzy quantification by clearly isolating the context-
dependent factors. Concerning a fuzzy sets-based modelling in general, Klir and Yuan
have the following remark [89, p. 281]:

“while context dependency is not essential for developing theoretical resources
for representing and processing linguistic concepts, it is crucial for applications
of these tools to real-world problems. That is, a prerequisite to each application
of fuzzy set theory are meanings of relevant linguistic concepts expressed in terms
of appropriate fuzzy sets as well as meanings of relevant operations on fuzzy sets.”

This difficulty of establishing a precise interpretation is clearly a matter of language
and cannot be attributed to the modelling devices chosen for formalization. The prob-
lem must therefore be approached by a more general methodology of assessing the
meaning of linguistic terms:

“These problems belong to the general problem ofknowledge acquisitionwithin
the underlying framework of fuzzy set theory. That is, fuzzy set theory provides a
framework within which the process of knowledge acquisition takes place and in
which the elicited knowledge can efficiently be represented”,

see Klir and Yuan [89, p. 281]. The application designer who decides on the interpre-
tation of the supported quantifiers should therefore resort to methods for knowledge
acquisition which are suitable for constructing fuzzy sets. There are several techniques
for determining membership grades which are also applicable to the membership func-
tions of fuzzy quantifiers. A survey of these techniques including direct methods, indi-
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rect methods, and approaches based on artifical neural networks (ANNs), is presented
in Klir and Yuan [89, Chap. 10, p. 280-301], who also give pointers into the specialized
literature.

These methods for acquiring membership functions of fuzzy sets (and thus, for defin-
ing semi-fuzzy quantifiers), merely offer some kind of engineering solution however,
i.e. they target at a technical answer to the problem, but do not account for any em-
pirical findings on the cognitive representation of linguistic quantifiers. It might hence
be interesting to take a look into the psychological literature. Indeed, there are a few
empirical studies on the context dependence observed in the meaning of approximate
quantifiers. Some promising research into these directions has been carried out by S.E.
Newstead and his co-workers [114, 113], who report their findings on the shift in a
quantifier’s meaning relative to a change in external factors like size of the participat-
ing objects, total number of objects etc. The list of considered quantifiers comprises
“a few”, “few”, “several”, “many”, and “lots of”. The empirical basis on the context-
dependence of approximate quantifiers is still very scarce, though, and it is not yet
very clear how a general understanding of context-dependence might evolve from such
isolated pieces of information.

So far, we have been concerned with the possible support for the specification pro-
cess (i.e. determining a matching choice of semi-fuzzy quantifier), considering both
the generic methods for the acquisition of membership functions that are already avail-
able today, and potential guidelines derived from psychological experiments that might
shape future proposals. Another topic of interest is theclassification of semi-fuzzy
quantifiersinto the main classes like absolute, proportional, cardinal comparative etc.,
which parallel the corresponding types of quantifiers in languages. However, I can-
not pursue these interesting directions further in this report because the very complex
problem of interpreting the given specifications consistently will absorb my full and
undivided attention. Regardless of the specification chosen for a quantifier of interest,
we cannot proceed unless we have a plausible interpretation mechanism for carrying
out the desired type IV quantifications. The next chapter will hence be concerned with
defining a class of such plausible models.
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3 The axiomatic class of plausible models

3.1 Motivation and chapter overview

In this chapter, an attempt is made to formalize the precise requirements that must be
obeyed by ‘reasonable’ approaches to fuzzy quantification, and hence to suggest an ax-
iomatic class of plausible models. This formalization will build on the quantification
framework established in the previous chapter. The suggested framework provides a
rich domain of approaches to fuzzy quantification, which is broad enough to contain
the models of interest. The ‘raw’ approaches (and potential models) in this class will
now be subjected to further study and selection. The primary goal is that of taylor-
ing these totally unrestricted QFMs to a class of truemodelsof fuzzy quantification,
and hence make explicit the intuitive expectations on plausible interpretations of fuzzy
quantifiers. Emphasis will be placed on a sound methodology and uncompromising
formal rigor, which targets at a solid axiomatic foundation of fuzzy natural language
quantification.

From a methodical perspective, it seems advantageous to decompose the superordi-
nate goal of achieving plausible interpretations of fuzzy quantifiers and separate the
following two factors, which both decide upon the success of the overall endeavour. In
order to adequately model a given NL quantifier, we need

1. a plausible choice of base descriptions (i.e. suitable semi-fuzzy quantifiers),
which is due to the programmer or application designer; and

2. a plausible translation into corresponding fuzzy quantifiers, which is under the
responsibility of the fuzzification mechanism.

While the first aspect is considered application-specific and not easily susceptible to
systematic study, the second aspect of plausible translation is at the heart of the report,
and it is now time to fully enter into this topic. The present chapter is exclusively de-
voted to the analysis of those generic aspects of fuzzy quantification, which seemingly
control the transfer from the base representation of semi-fuzzy quantifiers into the tar-
get operators of full-fledged fuzzy quantifiers, and hence potentially resolve the prob-
lem of adequate translation, and guide the development of a systematic, well-founded
solution. Roughly speaking, I expect a model of fuzzy quantification to be internally
coherent and in conformance to linguistic considerations. In addition, these properties
should be ascertained for arbitrary types of quantifiers, in order to avoid the tedious
justification of plausible interpretations on an individual case basis.

In order to achieve these goals with the desired generality, I will pursue a strategy
which is essentially algebraic: rather than making any claims on ‘the meaning’ of a
natural language quantifier, and its corresponding model as a fuzzy quantifier, I hence
assume that most (if not all) important aspects of the meaning of a quantifier express
in terms of its observable behaviour. The considered model of fuzzy quantification
can then be required to transport that behaviour which shows up at the base level, to
the generalized situation of fuzzy quantifiers. In other words, the reduction of fuzzy
quantification to quantifier fuzzification mechanisms, permits me to express linguistic
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adequacy requirements on ‘intended’ approaches to fuzzy quantification in terms of
preservation and homomorphism properties of the corresponding fuzzification map-
pings. The resulting axioms are mainly of the ‘preservation’ or ‘compatibility’ (homo-
morphism) type, i.e. I require that

• F maps particular (simple) semi-fuzzy quantifiers to their obvious fuzzy ana-
logues;

• F preserves relevant properties and relationships of quantifiers;

• F commutes with certain operations for building new quantifiers from given
ones.19

For example, ifP is a property of semi-fuzzy quantifiers, andP ′ is the corresponding
property of fuzzy quantifiers, we can ask if a QFMF preservesP in the sense that
wheneverP (Q) holds for a semi-fuzzy quantifierQ, we also haveP ′(F(Q)), i.e.
the corresponding property holds for the fuzzy quantifierF(Q) associated withQ.
Likewise, if C is a construction on semi-fuzzy quantifiers (which builds a new semi-
fuzzy quantifierC(Q), givenQ), andC ′ is the corresponding construction on fuzzy
quantifiers, we can ask ifF is compatible with the construction, in the sense that we
always haveF(C(Q)) = C ′(F(Q)), i.e. it does not matter whether we first apply the
construction and then ‘fuzzify’ usingF , or whether we first applyF and then perform
the construction.

The particular properties that will be considered, and those relationships between
quantifiers which bear linguistic relevance, will usually be adopted from the linguistic
theory of natural language quantification, TGQ. This seems beneficial in order to an-
swer the intuitive expectations on the interpretation of linguistic quantifiers. It is here
that the conceptual superiority of the proposed framework over existing approaches be-
comes evident, which is much better suited for implementing the algebraic approach.
To be specific, the membership functionsµQ : I −→ I or µQ : R+ −→ I that existing
approaches build on, do not have direct counterparts in NL description and hence lack
a straightforward and unambiguous semantical interpretation. This severely impedes
an application of the available linguistic criteria, which might assess the adequacy of
existing approaches from the natural language perspective. In addition, the assumed
membership functions do not provide a uniform representation for describing the core
behaviour of the target quantifiers. A possible attempt to develop formal plausibility
criteria on the level of theµQ, would inevitably need to discern the heterogeneous base
formats. Consequently, a given linguistic criterion would typically need to be fitted to
all relevant types of base representations (i.e. absolute quantifiers, proportional quan-
tifiers, and possibly additional kinds), and hence split up into a bunch of individual
cases, rather than finding a unifying formalization.

By contrast, the quantification framework pursued here rests on the uniform base
representation offered by semi-fuzzy quantifiers, which simply express the behaviour
of the target NL quantifier on crisp arguments, and hence come with an obvious and

19in the sense that it does not matter whether we first apply the operation and then applyF , or whether
we first applyF and then apply the (fuzzy analogue of the) considered operation.
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clear cut semantics. In particular, the proposed framework is supreme over existing
approaches, because both its source and target representations (semi-fuzzy and fuzzy
quantifiers) are sufficiently close to the notion of two-valued quantifiers assumed by the
linguistic theory of quantification, in order to allow a straightforward adaptation of the
concepts of TGQ which describe important aspects of quantifiers. In the report, we will
find ample evidence that it is usually easy to reformulate these properties of quantifiers,
relationships between quantifiers, and constructions on quantifiers into corresponding
properties, relationships and constructions on semi-fuzzy quantifiers and fuzzy quanti-
fiers. Embarking on the algebraic approach, I will then require that those aspects of the
meaning of semi-fuzzy quantifiers which express in these criteria be preserved when
applyingF . As we shall see, TGQ knows about most important aspects of a quanti-
fier’s behaviour and successfully forges these into precise definitions. In particular, the
proposed models which satisfy the adopted criteria, will indeed respond to a great deal
of intuitive adequacy concerns.

I should emphasize, though, that only a very modest number of these criteria will be
required explicitly, and directly show up in the defining axioms for plausible mood-
els. This is because the axiom system should not only fulfill the superordinate goal,
and hence precisely describe the intended approaches to fuzzy quantification. By con-
trast, the axioms should also account for certain design principles, which shape their
appearance and guide their specific compilation into the total system. In particular, the
conditions should be mutually independent, and hence capture independent aspects or
dimensions in the space of models. This requirement of independence is essential from
a methodical point of view because it avoids any redundancy in proofs, which might
arise from superfluous conditions. In order to meet this criterion, the proposed axiom
system must be minimal, i.e. irreducible to a smaller axiom set. Of course, the system
must still cover the full set of desired plausibility criteria, which then become part of
its deductive hull.

Let me now enter into particulars and introduce the properties, constructions and
other required concepts which culminate into the proposal of a concrete axiom system,
the so-called ‘DFS axioms’. The rigid axiomatic foundation which is achieved by
the suggested axioms, is of particular importance in the context of fuzzy logic where
– even in the case of the propositional connectives – a large number of alternative
interpretations have been proposed. The DFS axioms, then, will provide a criterion to
discern well-founded approaches to fuzzy quantification from ad-hoc ones.

3.2 Correct generalization

Perhaps the most elementary condition on a quantifier fuzzification mechanism is that it
properly generalizes the original semi-fuzzy quantifier. We can express this succinctly
if we recall the notion of an underlying semi-fuzzy quantifierU(Q̃) which simply
restricts the fuzzy quantifier̃Q to crisp arguments, see Def. 7. It is natural to assume
that a model of fuzzy quantification satisfies

U(F(Q)) = Q , (14)
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for all choices of semi-fuzzy quantifierQ, which means thatF(Q) properly generalizes
Q in the sense that

F(Q)(Y1, . . . , Yn) = Q(Y1, . . . , Yn)

whenever all arguments are crisp, i.e. provided thatY1, . . . , Yn ∈ P(E).

Concerning the status of this requirement, ‘correct generalization’ is rather funda-
mental and should not be confused with the later linguistic postulates which express
concepts of TGQ. By contrast, the requirement of ‘correct generalization’ is neces-
sary to ensure the internal coherence of the QFM, and decides upon its capacity as a
fuzzification mechanism. This is because it requires the ‘downward compatibility’ of
the model with respect to to the original specification in terms of crisp arguments, and
hence enforces the basic success condition of the fuzzification pattern, which underlies
the quantification framework. Due to this enabling role for the proposed framework,
the above equality (14) will constitute my first requirement imposed on plausible mod-
els of fuzzy quantification. I should note in advance, however, that the corresponding
criterion (Z-1) in the final axiom system (stated in Def. 24) will be restricted to the
case of nullary and monadic quantifiers (n ≤ 1). This serves the purpose of keeping
the axioms simple. When taken together, these axioms will of course entail the orig-
inal criterion, and hence guarantee that equality (14) holds for quantifiers of arbitrary
aritiesn ∈ N.

Let us now consider some examples involving such quantifiers of aritiesn ≤ 1. As
concerns monadic (one-place) quantifiers, let us assume thatE 6= ∅ is a given domain
of persons. We shall further assume that there are some men among the persons inE,
but no children. Hence the extensions of “men” and “children” inE, men , children ∈
P(E), satisfymen 6= ∅ andchildren = ∅, respectively. Now consider the existential
quantifier∃ : P(E) −→ 2, which determines the quantification results of∃(men) = 1
and∃(children ) = 0. We certainly expect the fuzzification process to preserve these
interpretations, and application of the associated fuzzy quantifierF(∃) : P̃(E) −→ I
should result inF(∃)(men) = 1 andF(∃)(children ) = 0.

Let us now turn to the case of nullary quantifiers (n = 0). It has already been
remarked in section 2.8 that the sets of nullary semi-fuzzy quantifiers and nullary fuzzy
quantifiers coincide, regardless of the chosen base setE 6= ∅. Hence for every nullary
semi-fuzzyQ : P(E)0 −→ I, the considered quantifieritself already qualifies as a
fuzzy quantifier, and there is nothing to generalize or to fuzzify. It is hence essential
that these quantifiers be mapped to themselves by every plausible choice of a QFM.
Now returning to the above equality (14), it is easily observed that this is precisely
whatU(F(Q)) = Q states in the case of nullaryQ. This is because both the nullary
semi-fuzzy quantifierQ, as well as the nullary fuzzy quantifierF(Q), are uniquely
determined by their value obtained at the empty tuple∅. By Def. 7, then, we obtain
fromU(F(Q)) = Q and the fact that the empty tuple is crisp that these values coincide,
i.e.F(Q)(∅) = U(()F(Q))(∅) = Q(∅). HenceQ andF(Q) coincide, as desired.
To give an example, consider the nullary quantifiertrue defined bytrue (∅) = 1.
A conforming choice ofF should result inF(true ) = true , in order to catch the
semantics of the constant quantifier.
This completes the discussion of the first requirement which must be fulfilled by all
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models of fuzzy quantification.

3.3 Membership assessment

Membership assessment (crisp or fuzzy) can be modelled through quantification. For
an elemente of the given base set, we can define a two-valued quantifierπe which
checks ife is present in its argument. Similarly, we can define a fuzzy quantifierπ̃e
which returns the degree to whiche is contained in its argument. It is natural to require
that the crisp quantifierπe be mapped tõπe, which plays the same role in the fuzzy
case.
In order to express this precisely on the formal level, I will now introduce this special
type of semi-fuzzy quantifiers (and a corresponding type of fuzzy quantifiers) that al-
low us to treat membership assessments as a special case of quantification. Let us first
recall the concept of acharacteristic functionand agree on the following notation.

Definition 8
SupposeE is a given set andA ∈ P(E) a (crisp) subset ofE. ByχA : E −→ 2 we
denote thecharacteristic functionofA, i.e. the mapping defined by

χA(e) =
{

1 : e ∈ A
0 : e /∈ A

for all e ∈ E.

Building on this concept, I suggest the following definition of projection quantifiers,
which covers the case of crisp arguments:

Definition 9
SupposeE is a base set ande ∈ E. Theprojection quantifierπe : P(E) −→ 2 is
defined by

πe(Y ) = χY (e) ,

for all Y ∈ P(E).

Notes

• The use of the term ‘projection quantifier’ is motivated by the observation that
we can viewπe as the projection of the ‘E-tuple’ χA : E −→ 2 onto that
componentχA(e), which is indexed bye.

• To present an example, supposeE = {Joan, Lucas, Mary} is a set of persons
andmarried ∈ P(E) the subset of married persons inE. Thenjoan = πJoan :
P(E) −→ 2 is a projection quantifier, and

joan (married ) = πJoan(married )

=
{

1 : Joan ∈ married
0 : Joan /∈ married
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The example illustrates thatπJoan can indeed be used to evaluate statements of
the type “Is JoanX?”, whereX is a crisp predicate. In particular, it is suitable for
modelling the interpretation of the proper name “Joan” as a two-valued quantifier
(provided that the individualJoan is contained in the considered domain). See
[6, p. 164+] for a linguistic case that proper names be treated as a special type of
NL quantifiers.

A corresponding definition of fuzzy projection quantifiers is straightforward.

Definition 10
Let a base setE be given ande ∈ E. Thefuzzy projection quantifier̃πe : P̃(E) −→ I
is defined by

π̃e(X) = µX(e)

for all X ∈ P̃(E).

Notes

• Again, I have coined the term ‘fuzzy projection quantifier’ because the mapping
π̃e : P̃(E) −→ I can be viewed as the projection of the ‘E-tuple’ µX : E −→ I
onto its componentµX(e), which is indexed bye.

• Fuzzy projection quantifiers provide the missing class of operators, which are
suited to model gradual membership assessments like “To which grade is Joan
X?” through fuzzy quantification. For example, we simply need to evaluate
π̃Joan(tall ) in order to assess the grade to which Joan is tall, and we can com-
pute π̃Joan(rich ) to determineµrich (Joan), the degree to which Joan is rich.

In particular, the fuzzy projection quantifier̃πJoan : P̃(E) −→ I is suitable
for interpreting the proper name “Joan” as a fuzzy quantifier (again under the
presupposition that the individualJoan be present in the considered base set).

It is apparent from the above reasoning that crisp and fuzzy projection quantifiers play
the same basic role of crisp/fuzzy membership assessment. Intuitively, a plausible
model of fuzzy quantification should be compatible with the fundamental operation
of membership assessment, and hence assign to each crisp projection quantifierπe its
obvious fuzzy counterpart, the corresponding fuzzy projection quantifierπ̃e. In other
words, we expect that

F(πe) = π̃e ,

regardless of the chosen base setE 6= ∅ and considered elemente ∈ E.
This makes the second requirement to be imposed on all models of fuzzy quantification.

3.4 The induced propositional logic

The linguistic theory of quantification knows a various constructions on natural lan-
guage quantifiers which involve the use of a Boolean connective (like negation) or
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corresponding set-theoretic operation (e.g. complementation). Examples comprise the
negation of quantifiers, antonyms, duals, intersections and unions in the arguments of a
quantifier, conjunctions and disjunctions of quantifiers, and others.20 In order to gener-
alize these constructions on two-valued quantifiers to the case of semi-fuzzy and fuzzy
quantifiers, the Boolean connectives must be replaced with suitable continuous-valued
counterparts. Similarly, the move from two-valued quantifiers to fuzzy quantifiers ne-
cessitates the use of set-theoretic operations on fuzzy sets, and hence forces us to select
a particular fuzzy complement, intersection and union, in terms of which the general-
ized constructions will then be expressed. Of course, one could simply resort to the
standard choices, like standard negation1− x, conjunctionmin and disjunctionmax,
but this would make too strong a commitment and foreclose the theoretical analysis
of broader classes of models, which rely on general fuzzy negations, conjunctions and
disjunctions.
The intent to cover such general models as well, hence forces us to allow for general
fuzzy set operations (rather than the standard choices), which are then used to define
the constructions on quantifiers. We must then permit the choice of connectives to
depend on the considered QFM, and hence fit these constructions to the model. In ad-
dition to associating this canonical choice of fuzzy operations to the QFM of interest,
we must further justify the particular selection made, which should be well-motivated.
Again, it would be tedious and obstructive to formal analysis, if the required decisions
were made on an individual case basis. As in the case of QFMs, the intended for-
mal treatment necessitates the development of a general solution which controls the
transfer from propositional functions to corresponding fuzzy truth functions under a
given QFM. This construction must be fully general and hence applicable to arbitrary
QFMs.
In order to implement this approach, and hence devise a construction parametrized by
the QFM, which assigns canonical choices of ‘induced’ fuzzy truth functions and in-
duced fuzzy set operations to the corresponding crisp concepts, we need a natural em-
bedding of propositional functions into semi-fuzzy quantifiers, to which the QFM of
interest can then be applied. In turn, we then need an inverse construction which deter-
mines the target fuzzy truth function from the resulting fuzzy quantifier. The required
operations on fuzzy sets can then be defined from the resulting fuzzy connectives in
the apparent way, i.e. by applying the fuzzy connectives to the observed membership
grades.
I have investigated two alternative schemes which rest on distinct embeddings and cor-
responding inverse constructions, that are motivated from independent considerations.
We shall see later in theorem Th-8 that in all intended models, both constructions es-
tablish the same canonical choice of induced truth functions This indicates that the
construction of induced fuzzy truth functions, which I introduce now, indeed results
in the appropriate choice of connectives and fuzzy set operations for the given QFM
(more details on the alternative construction can be found below in section 4.4).
In order to establish the link between logical connectives and quantifiers, we first ob-
serve that2n ∼= P({1, . . . , n}), using the bijectionη : 2n −→ P({1, . . . , n}) de-

20All mentioned constructions will be formally defined and discussed later on.
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fined by

η(x1, . . . , xn) = {k ∈ {1, . . . , n} : xk = 1} , (15)

for all x1, . . . , xn ∈ 2. We can use an analogous construction in the fuzzy case. We
then haveIn ∼= P̃({1, . . . , n}), based on the bijectioñη : In −→ P̃({1, . . . , n})
defined by

µη̃(x1,...,xn)(k) = xk , (16)

for all x1, . . . , xn ∈ I and k ∈ {1, . . . , n}. These bijections can be utilized for
a translation between semi-fuzzy truth functions (i.e. mappingsf : 2n −→ I) and
corresponding semi-fuzzy quantifiersQf : P({1, . . . , n}) −→ I, which implements
the embedding of propositional functions into semi-fuzzy quantifiers, and similarly the
translation from fuzzy quantifiers̃Q : P̃({1, . . . , n}) −→ I into fuzzy truth functions
f̃ : In −→ I, which implements the required inverse embedding.

Definition 11
SupposeF is a QFM andf : 2n −→ I is a mapping (i.e. a ‘semi-fuzzy truth function’)
for somen ∈ N. The semi-fuzzy quantifierQf : P({1, . . . , n}) −→ I is defined by

Qf (Y ) = f(η−1(Y ))

for all Y ∈ P({1, . . . , n}). In terms ofQf , the induced fuzzy truth functioñF(f) :
In −→ I is then defined by

F̃(f)(x1, . . . , xn) = F(Qf )(η̃(x1, . . . , xn)) ,

for all x1, . . . , xn ∈ I.

Notes

• If f : 20 −→ I is a nullary semi-fuzzy truth function (i.e., a constant), then
Qf : P(∅) −→ I turns into a nullary semi-fuzzy quantifier on the universe
E = {∅}, noticing thatP(∅) = P({∅})0 = {∅}. Hence in this case, the fuzzy
truth functionF̃(f) : I0 −→ I can be expressed as̃F(f)(∅) = F(c)(∅), where
c : P({∅})0 −→ I is the constantc(∅) = f(∅).

• We shall not impose restrictions on the induced connectives directly; these will
be entailed by the remaining axioms.

• WheneverF is clear from the context, we shall abbreviateF̃(f) as f̃ . For ex-
ample, the induced disjunction will be writteñ∨.

Induced operations on fuzzy sets, i.e. fuzzy complement¬̃ : P̃(E) −→ P̃(E), fuzzy

intersection∩̃ : P̃(E)
2
−→ P̃(E) and fuzzy unioñ∪ : P̃(E)

2
−→ P̃(E), can be

defined element-wise in terms of the induced negation¬̃ : I −→ I, conjunction∧̃ :
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I×I −→ I or disjunction∨̃ : I×I −→ I, respectively. For example, the induced
complement̃¬X ∈ P̃(E) of X ∈ P̃(E) is defined by

µ¬̃X(e) = ¬̃µX(e) ,

for all X ∈ P̃(E) ande ∈ E. In the following, I will assume that an arbitary but fixed
choice of these connectives and fuzzy set operations is given (usually provided by a
QFM).
We shall now consider those constructions on semi-fuzzy and fuzzy quantifiers which
either involve a fuzzy truth function (like negation), or a corresponding fuzzy set-
theoretic operation (like complementation). The considered constructions therefore
depend on the underlying fuzzy truth function or operation on fuzzy sets that has been
chosen as a generalisation of the corresponding crisp operation. By introducing a
canonical construction of fuzzy truth functions that are induced by a QFM, and by
then defining the induced operations on fuzzy sets based on these truth functions in the
apparent way, I have solved the problem of selecting a suitable fuzzy negation, fuzzy
disjunction etc. from the endless choices of possible fuzzy negations, disjunctions etc.
that could be considered for each QFM of interest. It is then assumed that each model
of fuzzy quantification should be ‘self-consistent’, in the sense of being compatible
with its own set of induced connectives.

3.5 The Aristotelian square

Based on the induced fuzzy negation and complement, we can now express impor-
tant constructions on quantifiers like negation, formation of antonyms, and dualisation.
These constructions are well-known from logics and linguistics because they express
on the linguistic surface, and it is hence essential for models of fuzzy quantification to
be compatible with these constructions (even though this requirement proved to be no-
toriously difficult for previous approaches to fuzzy quantification). Let us now consider
those constructions in turn that depend on the induced negation or complementation in
some way; constructions that build on other truth functions or set-theoretic operations
will be considered later on.

In analogy to the external negation¬Q fuzzy quantifierQ : P(E)n −→ 2 based on
two-valued negation¬ : 2 −→ 2 of a two-valued quantifierQ : P(E)n −→ 2 in TGQ
[6, p. 186] and [45, p. 236], we shall first introduce the external negation of (semi-)
fuzzy quantifiers. In natural language, this operation corresponds to the negation of a
whole sentence, rather than negation of the noun phrase.

Definition 12
Theexternal negatioñ¬Q : P(E)n −→ I of a semi-fuzzy quantifierQ : P(E)n −→ I
is defined by

(¬̃Q)(Y1, . . . , Yn) = ¬̃(Q(Y1, . . . , Yn)) ,

for all Y1, . . . , Yn ∈ P(E). The definition of̃¬ Q̃ : P̃(E)
n
−→ I in the case of fuzzy

quantifiersQ̃ : P̃(E)
n
−→ I is analogous.
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For example, “no” is the negation of “some”. Hence

no(women ,men) = ¬̃ some (women ,men) ,

which formally expresses that “No women are men” can be paraphrased as “It is not
the case that some women are men”.21

In addition to the external negation¬Q of a two-valued quantifier, TGQ discerns an-
other type of negation, which corresponds to theantonymor internal negationQ¬ of
a two-valued quantifier [6, p. 186] and [45, p. 237]. Here I prefer the term ‘internal
complementation’ (rather than ‘internal negation’) because the construction involves
the complementation of one of the argument sets.

Definition 13
Let a semi-fuzzy quantifierQ : P(E)n −→ I of arity n > 0 be given. Theantonym
Q¬ : P(E)n −→ I ofQ is defined by

Q¬(Y1, . . . , Yn) = Q(Y1, . . . , Yn−1,¬Yn) ,

for all Y1, . . . , Yn ∈ P(E). The antonymQ̃¬̃ : P̃(E)
n
−→ I of a fuzzy quantifier

Q̃ : P̃(E)
n
−→ I is defined analogously, based on the given fuzzy complement¬̃.

Notes

• For example, “no” is the antonym of “all”. Hence

no(women ,men) = all(women ,¬men) ,

which formally captures that “No women are men” can be paraphrased as “All
women are not men”.

• The antonym is constructed by (crisp or fuzzy) complementation in thelastargu-
ment of the quantifier. This conforms to linguistics expectations because by con-
vention, I have used the last argument to accept the interpretation of the verbal
phrase; e.g. the NL expression “No women are men” is interpreted by inserting
the interpretationmen ∈ P(E) of the verbal phrase “are men” into the second
argument slot. Compatibility with internal complementation should not be artifi-
cially restricted to then-th argument, though, and the particular indexing of the
arguments should be inessential to the outcome of fuzzy quantification. Plau-
sible approaches to fuzzy quantification should hence respect complementation
in all arguments. By means of permutations of arguments, to be discussed in
section 4.5, we will be able to reduce the general compatibility condition to the
base condition on complementation in the last argument.

• Zadeh [188, p. 165] has proposed a notion of antonymy for proportional quanti-
fiers, which is defined on their representations in terms of membership functions
µQ : I −→ I.

21Here and in the following examples I will assume that the considered negation¬̃ satisfies¬̃ 0 = 1
and¬̃ 1 = 0. This property of the induced negation will be ensured by the axioms stated at the end of the
chapter.
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TGQ also knows the concept of thedual of a two-valued quantifier (written asQ�̃ in
my notation), which is the antonym of the negation of a quantifier (or equivalently, the
negation of the antonym) [6, p. 197], [45, p. 238]. Hence

Definition 14
ThedualQ�̃ : P(E)n −→ I of a semi-fuzzy quantifierQ : P(E)n −→ I, n > 0 is
defined by

Q�̃(Y1, . . . , Yn) = ¬̃Q(Y1, . . . , Yn−1,¬Yn) ,

for all Y1, . . . , Yn ∈ P(E). The dualQ̃�̃ = ¬̃ Q̃¬̃ of a fuzzy quantifier̃Q is defined
analogously.

For example, “some” is the dual of “all”. Again resorting to crisp concepts like “men”
and “mammals”, we may hence assert that

all(men ,mammals ) = ¬̃ some (men ,¬mammals ) .

The latter relationship ensures that “All men are mammals” can be paraphrased into “It
is not the case that some men are not mammals”.

Acknowledging the significance of these constructions to the description of natural
language, we expect plausible models of fuzzy quantification to be homomorphic with
respect to these constructions on quantifiers. HenceF(no) should be the negation of
F(some ),F(no) should be the antonym ofF(all) andF(some ) should be the dual
of F(all). Concerning external negation, this will ensure, for example, that “No rich
are young” can be paraphrased as “It is not the case that some rich are young”, which is
justified becauseF(no)(rich , young ) = ¬̃ F(some )(rich , young ). As to internal
complementation, we obtain thatF(no)(rich , young ) = F(all)(rich , ¬̃ young ),
and hence “No rich are young” can also be phrased as “All rich are not young”. Finally
in the case of the dual, we conclude fromF(all)(rich ,old ) = ¬̃ F(some )(rich , ¬̃old )
that “All rich are old” means the same as “It is not the case that some rich are not old”.

The interdependencies of external negation, internal complementation (formation of
antonyms) and dualisation are summarized in theAristotelian square.22 The Aris-
totelian square of the quantifier “all” is displayed in Fig. 8.

The Aristotelian square expresses in graphical form that the operators(•) (identity),
¬̃(•) (external negation),(•)¬ (antonym) and(•)�̃ (dualisation) constitute a Klein
group structure on semi-fuzzy quantifiers:

◦ (•) ¬̃(•) (•)¬ (•)�̃
(•) (•) ¬̃(•) (•)¬ (•)�̃
¬̃(•) ¬̃(•) (•) (•)�̃ (•)¬
(•)¬ (•)¬ (•)�̃ (•) ¬̃(•)
(•)�̃ (•)�̃ (•)¬ ¬̃(•) (•)

22Sometimes also referred to as thesquare of opposition, see e.g. Gamut [45, p.238].
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Figure 8: The Aristotelian square ofall

Or in the case of fuzzy quantifiers,

◦ (•) ¬̃(•) (•)¬̃ (•)�̃
(•) (•) ¬̃(•) (•)¬̃ (•)�̃
¬̃(•) ¬̃(•) (•) (•)�̃ (•)¬̃
(•)¬̃ (•)¬̃ (•)�̃ (•) ¬̃(•)
(•)�̃ (•)�̃ (•)¬̃ ¬̃(•) (•)

The square can be properly set up for arbitrary semi-fuzzy quantifiersQ : P(E)n −→
I and fuzzy quantifiers̃Q : P̃(E)

n
−→ I provided that̃¬ : I −→ I is involutive and

satisfies¬̃ 1 = 0, ¬̃ 0 = 1. These conditions will of course be entailed by the DFS
axioms stated below.

The requirement thatF be compatible with external negation, internal complemen-
tation (formation of antonyms) and dualisation, can then be summarized into the con-
dition that the considered model of fuzzy quantification preserve Aristotelian squares
(for more details, see section 4.7).

In order to warrant this, there is no need to explicitly require the compliance ofF
with all three constructions involved in the square. As will later be shown in Th-11 and
Th-12, the targeted conformance to these constructions can be distilled into a single
representative requirement, that of preserving duals of quantifiers. It is hence sufficient
to demand that

F(Q�̃) = F(Q)�̃

for all semi-fuzzy quantifiersQ : P(E)n −→ I of arity n > 0.
The latter condition comprises the third requirement, which governs plausible choices
of models.
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3.6 Unions of argument sets

Apart from complementation, we can also perform other set-theoretic operations on
the arguments of a quantifier. Due to De Morgan’s law, and the known compatiblity of
the considered models to complementation, which has been ensured by the previous
requirement, it is sufficient to consider Boolean and fuzzy unions of arguments, in or-
der to ensure that the given model of fuzzy quantification fully preserves the Boolean
argument structure that can be expressed in NL. Let us hence introduce the construc-
tion which builds new quantifiers from given ones by means of forming the union of
arguments:

Definition 15
Let a semi-fuzzy quantifierQ : P(E)n −→ I of arity n > 0 be given. We define the
semi-fuzzy quantifierQ∪ : P(E)n+1 −→ I by

Q∪(Y1, . . . , Yn+1) = Q(Y1, . . . , Yn−1, Yn ∪ Yn+1)

for all Y1, . . . , Yn+1 ∈ P(E). In the case of fuzzy quantifiers,̃Q∪̃ is defined analo-
gously, based on the given fuzzy set operation∪̃.

Notes

• To see how this construction expresses on the level of NL surface, consider the
example that “Most men drink or smoke”, and its model as a quantifying ex-
pression,most (men ,drink ∪ smoke ), where I have assumed for the sake of
argument that the extensionssmoke ,drink ∈ P(E) of “smoke” and “drink”
be crisp. The above quantifying expression can be decomposed into the con-
structed quantifier “MostY1 areY2 or Y3”, i.e. Q′ = most ∪, which is applied
to the argument triple(men ,drink , smoke ).

• The construction is also underlying the definition of the two-place NL quantifier
“all” in terms of the monadic universal quantifier∀ known from logics, because
all(Y1, Y2) = ∀((¬Y1) ∪ Y2).

• The dual construction of intersections in arguments can be defined along the
same lines, see section 4.9.

In order to ensure the full preservation of Boolean argument structure, conforming
models of fuzzy quantification can be expected to comply with the above construction
of unions in arguments. I hence require thatF preserves the union of arguments, which
is formally captured by the equality

F(Q∪) = F(Q)∪̃ (17)

which must be valid for arbitrary semi-fuzzy quantifiersQ : P(E)n −→ I of arity
n > 0.
Hence consider the example that “Most rich are old or lucky”, whichs is modelled by
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the fuzzy quantifying expressionF(most )(rich ,old ∪̃lucky ) built from the fuzzy ex-
tensionsrich ,old , lucky ∈ P̃(E) of “rich”, “old”, and “lucky” persons, respectively.
The compliance ofF with equality (17) then ensures that the involved composite quan-
tifier F(most )∪̃ can be properly represented by its underlying semi-fuzzy quantifier
Q′ = most ∪. Hence it does not matter whether “Many rich are old or lucky” is com-
puted by evaluatingF(many )(rich ,old ∪̃lucky ) or by resorting to the decomposition
F(Q′)(rich ,old , lucky ) based onQ′(Y1, Y2, Y3) = many (Y1, Y2 ∪ Y3).
As mentioned above, the requirement (17) imposed on unions of arguments can be
combined with other conditions like compatibility with internal complementation, in
order to achieve full preservation of Boolean argument structure. In particular, this will
ensure thatF(all)(X1, X2) = F(∀)((¬X1) ∪ X2), i.e. the two-place NL quantifier
“all” can be determined from the monadic universal quantifier∀ even when there is
fuzziness in the arguments.

This completes the discussion of Boolean argument structure, and the corresponding
condition of preserving unions in arguments, which formalizes the fourth requirement
on models of fuzzy quantification.

3.7 Monotonicity in the arguments

It is essential for a model of fuzzy quantification to elicit the expected entailment re-
lationships. The fifth requirement on plausible models, which is introduced now, cap-
tures those entailments that stem from monotonicity properties of the involved quanti-
fiers. In order to express the relevant monotonicity properties of semi-fuzzy and fuzzy
quantifiers, let us first recall the definition of the fuzzy inclusion relation.

Definition 16 (Fuzzy inclusion relation)
SupposeE is some set andX1, X2 ∈ P̃(E) are fuzzy subsets ofE. We say thatX1 is
contained inX2 (in symbols,X1 ⊆ X2) if

µX1(e) ≤ µX2(e)

for all e ∈ E.

Based on this concept, I can now state precisely what it means for a (semi-)fuzzy
quantifier to be monotonic in one of its arguments.

Definition 17 (Monotonicity in the i-th argument)
A semi-fuzzy quantifierQ : P(E)n −→ I is said to benondecreasing in itsi-th argu-
ment, i ∈ {1, . . . , n}, if

Q(Y1, . . . , Yn) ≤ Q(Y1, . . . , Yi−1, Y
′
i , Yi+1, . . . , Yn)

whenever the involved argumentsY1, . . . , Yn, Y
′
i ∈ P(E) satisfyYi ⊆ Y ′i . Q is said

to benonincreasing in thei-th argumentif under the same conditions, it always holds
that

Q(Y1, . . . , Yn) ≥ Q(Y1, . . . , Yi−1, Y
′
i , Yi+1, . . . , Yn) .
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The corresponding definitions for fuzzy quantifiersQ̃ : P̃(E)
n
−→ I are entirely

analogous. In this case, the arguments range overP̃(E), and ‘⊆’ is the fuzzy inclusion
relation.

Notes

• To present an example, “all” is nonincreasing in the first argument and nonde-
creasing in the second argument. From the former property, we then know that

all(married ∩men ,have children ) ≥ all(men ,have children ),

which expresses that “All married men have children” makes a weaker require-
ment than “All men have children”. As to the latter property, we may conclude
from the nondecreasing monotonicity of “all” in its second argument that

all(men ,have daughters ) ≤ all(men ,have children ) .

Consequently “All men have daughters” poses a stronger condition than “All
men have children”.

• In TGQ, nondecreasing monotonicity in the scope argument (i.e. in the argu-
ment slot which accepts the interpretation of the verb phrase) is usually termed
upward monotonicity, while a quantifier which is nonincreasing in this position
is calleddownward monotonic, see e.g. [45, p. 232+].23 Recalling my conven-
tion of reserving the last argument for denotation of the verb phrase, this means
that positive monotonic quantifiers correspond to those quantifiers that are non-
decreasing in then-th argument, and downward monotonicity captures those
quantifiers that are nonincreasing in theirn-th argument. For example, “all” is
upward monotonic and “no” is downward monotonic. Let me remark that the
property of upward/downward monotonicity is rather typical of NL quantifiers.

• In the common case of two-place quantification, TGQ has also coined special
terms for monotonicity in the first argument. In TGQ, those two-place quanti-
fiers that are nondecreasing in their restriction are dubbedpersistent, while those
that are nonincreasing in the first argument are calledantipersistent, see e.g. [6,
p. 193] and [45, p. 242+]. Simple examples are “some” (persistent) and “all”
(antipersistent). Compared to upward/downward monotonicity, there are fewer
instances of NL quantifiers which are persistent or antipersistent [45, p. 243].
For example, proportional quantifiers like “most” typically lack both persistence
and antipersistence.

• Zadeh [188, p. 164] has coined the similar notions ofmonotone nondecreasing
andmonotone nonincreasingquantifiers, which refer to the membership func-
tionsµQ : I −→ I used to define the proportional type.

23Barwise and Cooper [6, p. 184+], however, refer to positive and monotonic kinds as monotone increasing
and monotone decreasing, respectively.
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Let me now substantiate the close relationship between monotonicity properties of a
quantifier and valid patterns of reasoning, and show how the monotonicity type of
a quantifier constrains the inventory of admissible syllogisms. Hence consider the
quantifier “more than ten”, which is nondecreasing in its first argument. It then holds
that

more than ten (married ∩men ,have children )
≤ more than ten (men ,have children ) .

It is this inequality which justifies the syllogism

More than ten married men have children
All married men are men
More than ten men have children

Other quantifiers like “some” can be substituted for “more than ten” here, which are
also nondecreasing in the first argument. In the case of a quantifier which is nonin-
creasing in the first argument, like “no” or “all”, the above pattern is no longer valid,
and must be replaced with a pattern which fits the new quantifier type. In this case, we
obtain the converse inequality

no(men ,have children ) ≤ no(married ∩men ,have children )

and a corresponding pattern of reasoning,

No men have children
All married men are men
No married men have children

As concerns monotonicity in the second argument, let us consider the quantifier “most”
which is nondecreasing in its second argument. We then obtain that

most (men ,married ) ≤ most (men ,married ∪ divorced ) ,

i.e. “Most men are married” expresses a stronger condition than “Most men are married
or divorced”. Again, the above inequality justifies the pattern of reasoning,

Most men are married
All married are married or divorced
Most men are married or divorced

Let us now turn to the fuzzy case. Even when there is fuzziness in the arguments, we
would certainly expect the above patterns of reasoning to remain applicable. In fact,
it appears that these patterns describe a characteristic of the quantifier which is inde-
pendent of the particular choice of arguments, and remains applicable even when the
involved concepts are fuzzy. Acknowledging that the admissible choices of syllogisms
are justified by the underlying inequality that express the monotonicity properties of the
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considered quantifiers, this means that we must enforce thepreservation of monotonic-
ity propertiesin order to maintain the applicable patterns of reasoning. For example, it
should hold in a plausible model of fuzzy quantification that

F(more than ten )(young ∩̃men , rich )

≤ F(more than ten )(young ∩̃ persons , rich )

assuming thatmen ⊆ persons . It is this inequality which permits us to conclude
from “More than ten young men are rich” to the entailed “More than ten young persons
are rich”, regardless of the fuzziness inyoung , rich ∈ P̃(E). Similarly, it should hold
that

F(most )(young , very poor ) ≤ F(most )(young ,poor ) ,

assuming that the fuzzy subsetsvery poor ,poor ∈ P̃(E) satisfy very poor ⊆
poor . We can then draw from “Most young are very poor” the logical conclusion that
“Most young are poor”. These examples illustrate the above observation that the con-
sidered entailment relationships will transfer to the general case of fuzzy arguments,
provided that the chosen model of quantificationF is known to preserve the underly-
ing monotonicity properties. The relevant adequacy condition on QFMs can then be
phrased as follows.

Definition 18 (Preservation of monotonicity in the arguments)
A QFMF is said topreserve monotonicity in the argumentsif semi-fuzzy quantifiers
Q : P(E)n −→ I which are nondecreasing (nonincreasing) in theiri-th argument,
i ∈ {1, . . . , n}, are mapped to fuzzy quantifiersF(Q) which are also nondecreasing
(nonincreasing) in theiri-th argument.

Notes

• HenceF(all) should be nonincreasing in the first and nondecreasing in the sec-
ond argument. The above motivating examples based onF(more than ten )
andF(most ) are also instances of the general preservation property, of course.

• When combined with the other requirements on models of fuzzy quantification,
the preservation condition can be restricted to the case thatQ is nonincreasing in
its last argument.Again, this restriction will serve the purpose of simplifying the
axioms system and ensuring its independence. The fifth requirement on plausi-
ble models will be stated in terms ofnonincreasing(rather than nondecreasing)
monotonicity for technical purposes; when presented in this way, the criterion
facilitated the the proof that̃F(¬) is a strong negation operator. To provide an
example where the restricted property applies directly, consider the two-valued
quantifier “no”, which is nonincreasing in its last argument. By the restricted
preservation condition, then,F(no) is nonincreasing in its last argument also.
For instance, this ensures that

F(no)(young , rich ) ≤ F(no)(young , very rich ) ,

and hence “No young are very rich” is entailed by “No young are rich”.
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To sum up, every plausible model of fuzzy quantification should preserve the relevant
entailment relationships, which are often tied to the monotonicity type of the involved
quantifier. It is hence crucial for the theory of fuzzy quantification to consider the
underlying monotonicity properties of quantifiers which show up in these entailments.
The fifth requirement on models of fuzzy quantification hence enforces a criterion
which is essential to the preservation of general monotonicity properties, and in turn
ensures that all corresponding patterns of reasoning remain valid in the presence of
fuzziness.

3.8 The induced extension principle

The final requirement on plausible models of fuzzy quantification is concerned with the
problem of establishing a systematic relationship between the interpretation of quanti-
fiers in different base sets. To this end, a homomorphism condition will be introduced
which uses powerset mappings to connect the behaviour of the fuzzification mecha-
nism across domains, which achieves the desired coherence of results.

Definition 19 (Powerset mapping)
To each mappingf : E −→ E′, we associate a mappinĝf : P(E) −→ P(E′) (the
powerset mappingof f ) which is defined by

f̂(Y ) = {f(e) : e ∈ Y } ,

for all Y ∈ P(E).

Notes

• Often the same symbolf is used to denote both the original mapping and its
extension to powersets. In the present context, however, it is important to discern
the base mappingf from its associated powerset mapping, and I will hence use
the f̂ -notation throughout.

• There is a closely related concept, namely that of the inverse image mapping
f−1 : P(E′) −→ P(E) of a givenf : E −→ E′, which is (as usual) defined by

f−1(V ) = {e ∈ E : f(e) ∈ V } , (18)

for all V ∈ P(E′). Often if V is a singleton, i.e.V = {v} for somev ∈ E′, I
will simply write f−1(v).

The underlying mechanism which transportsf to f̂ can be generalized to the case of
fuzzy sets; such a mechanism is then called anextension principle. Formally, I define
(a pretty general class of) extension principles as follows.

Definition 20 (Extension principle)
An extension principleE assigns to each mappingf : E −→ E′ a corresponding
mappingE(f) : P̃(E) −→ P̃(E′). For convenience, we shall assume thatE,E′ 6= ∅.
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Notes

• Extension principles hence provide the desired mechanism which associates
fuzzy powerset mappingsE(f) : P̃(E) −→ P̃(E′) with given base mappings
f : E −→ E′. I do not impose any a priori restrictions on the well-behavedness
of extension principles. These will later result from the axioms on plausible
models of fuzzy quantification. A survey on the intuitive expectations on reason-
able choices, along with the theorems that these adequacy conditions are fulfilled
in the models, is given below in section 4.12. These results and the analysis of
standard quantifiers in section 4.16 will further reveal that plausible extension
principles can be expressed in terms of existential quantification, and can hence
be represented by a possibly infinitary formula built from an underlyings-norm.

• I have excluded the case thatE = ∅ or E′ = ∅ in order to allow a simpler
definition of induced extension principles that will be associated with QFMs (to
be defined below in Def. 22). After all, the case of base mappingsf with an
empty domain or range is irrelevant to our present purposes anyway. However,
the issue is likely to be judged differently when discussing extension principles
in a broader context. Let me hence emphasize that the restriction to nonempty
sets is just a matter of convenience and in fact marginal to the targeted under-
standing of of extension principles. This is because every extension principle (in
the sense of the above definition) can readily be completed into a ‘full’ extension
principle, which is also defined in the case ofE = ∅ orE′ = ∅. Hence consider
f : ∅ −→ E′. In this case, we stipulate that

E(f) = c∅ , (19)

wherec∅ : P̃(∅) −→ P̃(E′) is the constant which to∅ ∈ P̃(∅) = {∅}
assigns the setc∅(∅) = ∅ ∈ P̃(E′). Let us now address the remaining case
thatE′ = ∅. Here we simply observe from the definition of functions that the
consideredf : E −→ ∅ only qualifies as a mapping ifE = ∅ as well. The case
of E′ = ∅ is hence already covered by equality (19).

The prototypical example of an extension principle has been suggested by Zadeh [180].
Recast in my notation, this ‘standard extension principle’ is defined as follows.

Definition 21 (Standard extension principle)
Let f : E −→ E′ a mapping. Thestandard extension principleassigns tof the fuzzy

powerset mappinĝ̂f : P̃(E) −→ P̃(E′) defined by

µ ˆ̂
f(X)

(y) = sup{µX(e) : e ∈ f−1(y)}

for all y ∈ E′.

Note. The extension principle can also be generalized ton-ary mappingsf : E1 ×
· · · × En −→ E′ which it takes ton-ary fuzzy powerset mappingŝ̂f : P̃(E1)× · · · ×
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P̃(En) −→ P̃(E′), defined by

µ ˆ̂
f(X1,...,Xn)

(y) = sup{
n

min
i=1

µXi(ei) : (e1, . . . , en) ∈ f−1(y)} ,

for all X1 ∈ P̃(E1), . . . , Xn ∈ P̃(En) andy ∈ E′; see Yager [169] for details. This
generalized version of the extension principle will be of no importance for the follow-
ing. However, it is apparent that the general extension principlesE considered here can
be generalized ton-place mappings along the same lines.
With each QFM, we can associate a corresponding extension principle through a canon-
ical construction.

Definition 22
Every QFMF induces an extension principlêF which to eachf : E −→ E′ (where
E, E′ 6= ∅) assigns the mappinĝF(f) : P̃(E) −→ P̃(E′) defined by

µF̂(f)(X)(e
′) = F(χf̂(•)(e

′))(X) ,

for all X ∈ P̃(E), e′ ∈ E′; or more succinctly:

µF̂f(X)(e
′) = F(πe′ ◦ f̂)(X)

The equivalence of the first and second form is obvious from my definition of projec-
tion quantifiers, see Def. 9). The powerset functionsf̂ : P(E) −→ P(E′) and the
corresponding fuzzy powerset functionŝF(f) : P̃(E) −→ P̃(E′) obtained from the
induced extension principle are important in our context because they can be applied to
the argument sets of semi-fuzzy quantifiers (crisp case,f̂ ) and fuzzy quantifiers (fuzzy
case, usinĝF(f)).

We hence require that every ‘reasonable’ choice ofF be compatible with its induced
extension principle in the following sense.
Suppose thatQ : P(E)n −→ I is a semi-fuzzy quantifier andf1, . . . , fn : E′ −→
E are given mappings,E′ 6= ∅. We can construct a semi-fuzzy quantifierQ′ :
P(E′)n −→ I by composingQ with the powerset mappingŝfi, . . . , f̂n, i.e.

Q′(Y1, . . . , Yn) = Q(f̂1(Y1), . . . , f̂n(Yn)) ,

for all Y1, . . . , Yn ∈ P(E). This can be expressed more compactly if we recall the
concept ofproduct mapping. If g1, . . . , gm : A −→ B are any mappings, then
n
×
i=1

gi : An −→ Bn is defined by

(
n
×
i=1

gi)(x1, . . . , xn) = (g1(x1), . . . , gn(xn)) .

By using the product, the above definition ofQ′ then becomesQ′ = Q◦
n
×
i=1

f̂i, because

(Q ◦
n
×
i=1

f̂i)(Y1, . . . , Yn) = Q(f̂1(Y1), . . . , f̂n(Yn)) (20)
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for all Y1, . . . , Yn ∈ P(E′); ‘◦’ denotes functional composition. By utilizing the in-
duced extension principlêF of a QFM, we can perform a similar construction on fuzzy
quantifiers, thus composing̃Q : P̃(E)

n
−→ I with F̂(f1), . . . , F̂(fn) to form the

fuzzy quantifierQ̃ ◦
n
×
i=1
F̂(fi) : P̃(E′)

n
−→ I defined by

(Q̃ ◦
n
×
i=1
F̂(fi))(X1, . . . , Xn) = Q̃(F̂(f1)(X1), . . . , F̂(fn)(Xn)) ,

for all X1, . . . , Xn ∈ P̃(E′). We require that a plausible choice of QFMF comply
with this construction, and hence impose the following homomorphism condition with
respect to the application of (crisp or fuzzy) powerset functions:

Definition 23 (Compatibility to functional application)
LetF be a given QFM. We say thatF is compatible with functional applicationif the
equality

F(Q ◦
n
×
i=1

f̂i) = F(Q) ◦
n
×
i=1
F̂(fi) (21)

is valid for all semi-fuzzy quantifiersQ : P(E)n −→ I and mappingsf1, . . . , fn :
E′ −→ E with domainE′ 6= ∅.

Notes

• I have chosen the term ‘functional application’, because the constructed quan-
tifier is obtained from applying the extended functionsf1, . . . , fn to the corre-
sponding arguments.

• Let me remark in advance that it is not possible to span the intended class of
models if the induced powerset mappingsF̂(fi) are replaced with the standard

choice of fuzzy powerset mappingŝ̂fi, that are obtained from the standard exten-
sion principle. As will be shown below in theorem Th-33, the use of the standard
extension principle would restrict the admissible models of fuzzy quantification
to those that induce the standard disjunctionF̃(∨) = max. I considered this
too restrictive because I wanted to have models for arbitraryt- ands-norms. It
was the intent to cover such general models that necessitated the development
of the induced extension principle and its thorough use in the theory of fuzzy
quantification, because all reference to the standard extension principle must be
avoided in order to obviate a restriction to the limited class of ‘standard models’.
(Of course, the standard models are the preferred choice in most applications,
but it deepens the knowledge of fuzzy quantification if other models can also be
studied).

As mentioned above, the induced extension principleF̂ enables us to construct fuzzy

quantifiersQ′ = Q ◦
n
×
i=1
F̂(fi) on a base setE from a given fuzzy quantifierQ on

anotherbase setE′. It is this cross-domain characteristic which makes the compliance
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condition expressed by (21) especially important to the theory of fuzzy quantification.
In fact, the required compatibility with functional application will constitute theonly
criterion in the proposed axiom system, which controls the behaviour ofF on different
base setsE,E′. For example, ifβ : E −→ E′ is a bijection,Q : P(E′)n −→ I is a
semi-fuzzy quantifier, andQ′ : P(E)n −→ I is defined by

Q′(Y1, . . . , Yn) = Q(β̂(Y1), . . . , β̂(Yn))

for all Y1, . . . , Yn ∈ P(E), then

F(Q′)(X1, . . . , Xn) = F(Q)(F̂(β)(X1), . . . , F̂(β)(Xn))

for all X1, . . . , Xn ∈ P̃(E), and

F(Q)(X1, . . . , Xn) = F(Q′)(F̂(β−1)(X1), . . . , F̂(β−1)(Xn))

for all X1, . . . , Xn ∈ P̃(E′), which shows thatF may not depend on any particular
properties of elements of a base setE.
The sixth and last requirement that will be imposed on models of fuzzy quantification,
viz being compatible with functional application, hence enforces a coherent behaviour
of F across domains.

3.9 Determiner fuzzification schemes: the DFS axioms

The requirements on plausible models of fuzzy quantification can be summarized into
the following axiom system. These conditions, which comprise the ‘DFS axioms’,
achieve the definition of a well-motivated target class that I strived for. The individual
models in the class will be called a ‘determiner fuzzification scheme’ or DFS for short.
The term ‘determiner’ has been preferred to ‘quantifier’ in order to avoid a possible
confusion of quantifier fuzzification mechanisms, which span the required background
of potential models on which the adequacy conditions can be defined; and determiner
fuzzification schemes, which identify the subclass of intended models.

Definition 24 (Determiner fuzzification schemes)
A QFMF is called adeterminer fuzzification scheme(DFS) if the following conditions
are satisfied for all semi-fuzzy quantifiersQ : P(E)n −→ I.

Correct generalisation U(F(Q)) = Q if n ≤ 1 (Z-1)

Projection quantifiers F(Q) = π̃e if Q = πe for somee ∈ E (Z-2)

Dualisation F(Q�̃) = F(Q)�̃ n > 0 (Z-3)

Internal joins F(Q∪) = F(Q)∪̃ n > 0 (Z-4)

Preservation of monotonicity IfQ is nonincreasing in then-th arg, then (Z-5)

F(Q) is nonincreasing the inn-th arg,n > 0

Functional application F(Q ◦
n
×
i=1

f̂i) = F(Q) ◦
n
×
i=1
F̂(fi) (Z-6)

wheref1, . . . , fn : E′ −→ E, E′ 6= ∅.
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Notes

• These conditions simply combine the six requirements developed above, which
capture important expectations on models of fuzzy quantification. Some of the
requirements have been weakened as much as possible, in order to simplify
proofs that a given candidate QFMF is indeed a model of the theory, and in
order to facilitate the proof that the axioms are independent. It is these con-
siderations which motivated the restriction of ‘correct generalisation’ (Z-1) to
quantifiers of aritiesn ≤ 1, and the restriction of the monotonicity requirement
to quantifiers that are nonincreasing in their last argument. The ‘full’ require-
ments are of course entailed by the weakened versions that I included into the
axiom system; see theorems Th-2 and Th-16 in the next chapter.

• I have taken pains to avoid the use of the standard connectives and the standard
extension principle in the DFS axioms (in favor of theinducedconnectives and
induced extension principle of a DFS) because the requirement of being com-
patible to the standard choices would have excluded all models which induce
F̃(∨) 6= max and F̃(∧) 6= min. (This claim will be formally established in
the later theorem Th-47, which states that substituting the standard connectives
and standard extension principle into the above definition, provides a charac-
terization of the ‘standard models’ of fuzzy quantification). By referring to the
induced constructions only, one possible pitfall has been circumvented, which
would have excluded all non-standard models from consideration.

• The original presentation of determiner fuzzification schemes in [46] was based
on a set of nine DFS axioms. These axioms contained some subtle interdepen-
dencies, though, which motivated my later effort to condense the original axioms
into the equivalent axiom system presented above. See [48] for details on both
axiom systems and the proof of their equivalence.

At first sight, the axioms might give a condensed and rather abstract impression. In
addition, the precise compilation of the requirements might appear arbitrary to some
degree, although the individual criteria are certainly straightforward and supported by
ample motivation (see explanations above). In order to better judge the proposed axiom
system and appreciate the particular compilation of requirements, let me briefly recall
the goals, and especially the design principles, which guided the search for a solid
axiomatic foundation and ensure that it is both intuitively appealing, and beneficial
from a methodical perspective.

It was the pivotal objective when phrasing and selecting the requirements, to com-
pile an independentaxiom system which covers the essential adequacy criteria from
the perspective of linguistics and fuzzy logic. In view of the goal of obtaining an inde-
pendent system, it was of course not possible to include all conceivable semantic pos-
tulates directly into the axiom set, thus compromising its minimality and irreducibility.
In order to achieve the desired independence, the linguistic relevance of the individual
axioms had to give priority to the superordinate goal. In other words, the axioms in
isolation arenot necessarily expected to formalize semantical requirements, and need
not directly originate from linguistics. By contrast, it is only the axiom system as a
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whole which is required to entail all properties of interest, and thus achieve a formal-
ization of plausible models. When compiling the DFS axioms, I started from a large
number of conceivable adequacy properties, all of which catch some aspect of fuzzy
quantification (these semantical postulates will be exposed in the following chapters). I
then tried to single out a generating core of requirements, and subsequently eliminated
redundancies and interdependences. The final set of axioms as presented above, hence
results from a process of simplification and compression. Let me now attest that this
process indeed distilled an axiom system with the desired properties and that the pri-
mary design goal, that of independence, has hence been achieved. The proposed DFS
axioms therefore accomplish a minimal characterisation of the target class of models,
and are not reducible to a smaller axiom set.

Theorem 1
The DFS axioms(Z-1)–(Z-6) are independent, i.e. none of the conditions is entailed by
the remaining conditions.

This makes an important result on the proposed axiomatic foundation, because the
independence of the axioms substantiates that the suggested criteria capture distinct
aspects which become visible in the behaviour of approaches to fuzzy quantification.
Consequently, each of these criteria spans its own dimension, along which the space of
possible models can be analyzed.

Although linguistic significance of theindividualaxioms was not the prime concern,
and only expected to emerge from the axioms acting in concert, the actual requirements
which I compiled into the DFS axioms, do not come off too badly in this respect. In
fact, most of these requirements imposed on legal choices of models directly origi-
nate from logical or linguistic considerations, like modelling of proper names (Z-2),
modelling of duals (Z-3), modelling of unions (Z-4), and the preservation of important
entailment relationships (Z-5). The remaining axioms, i.e. the basic requirement of
‘correct generalization’ (Z-1), and the more subtle desideratum of ‘functional applica-
tion’ (Z-6), are not directly motivated by linguistic considerations, but rather enforce
the internal and cross-domain coherence of all admissible models. It should be appar-
ent from this capacity of the latter conditions, that both are essential to the modelling
of fuzzy quantification in NL. To sum up, the proposed axiomatic foundation of fuzzy
quantification rests on a compilation of formal requirements which are well-motivated,
linguistically significant, and mutually independent. It should have become clear from
the explanation of the individual requirements that the imposed conditions are nec-
essary for plausible models, and hence do not prune any useful approaches to fuzzy
quantification. However, it is not possible to assess from a brief glance at the axioms,
if their deductive hull indeed covers all properties of linguistic relevance. This issue
of completeness of the axioms, which is concerned with their capacity of answering
the important linguistic expectations, can only be judged by making explicit the total
of intuitive assumptions on plausible models, by developing formal criteria which as-
sess the properties of interest, and by evaluating these criteria on the suggested class of
models. It is apparent that the discussion of these topics requires considerable effort,
and the investigation of all questions regarding the completeness or coverage of the
axioms, has hence been detached into the subsequent three chapters.
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3.10 Chapter summary

The quantification framework that I developed in the previous chapter, introduced a
rich class of approaches to fuzzy quantification, which become instances of quantifier
fuzzification mechanisms. The definition of these ‘raw’ and totally unrestricted ap-
proaches has been shaped in such a way that (apart from many odd examples), it cer-
tainly also catches the more interesting cases, i.e. those of plausible models for fuzzy
quantification. The framework hence opened the required space of base objects, which
can now be subjected to further study. In the present chapter, the next logical step
was then undertaken, and I made an effort to identify the subclass of plausible models
within the proposed framework. In order to accomplish this identification, I decided
to pursue a strategy which is essentially algebraic, and hence characterize the plausi-
ble models in terms of those structural aspects which express in observable properties,
rather than directly referring to the internal structure of the desired models, or propos-
ing and justifying individual choices of prototypical models (as opposed to embarking
on a generic solution).

• I have therefore considered severalpropertiesof semi-fuzzy quantifiers and fuzzy
quantifiers which capture their distinct behavioural dimensions. The properties
of interest sometimes originate from logic, but my prime source of these proper-
ties is the logico-linguistic Theory of Generalized Quantifiers, which has focused
on those criteria which are essential from a linguistic perspective, and best ex-
press the intuitive semantical expectations. Having formalized such properties,
one can then assert that a ‘reasonable’ approach of fuzzy quantification should
preserve the important properties of arbitrary quantifiers (for example, mono-
tonicity properties).

• In addition to preserving linguistic properties of quantifiers, I was also interested
in gaining a system which preserves importantrelationshipsbetween quantifiers.
The prime example are functional relationships between quantifiers which are
established by certainconstructions(like dualisation or negation). Compatibility
with such constructions corresponds to the well-known mathematical concept of
a homomorphism (structure-preserving mapping).

The basic trust of this algebraic procedure is that all important aspects of plausible
models indeed become visible in some way (rather than being confined to some ‘ethe-
real nature’ of the model), and can hence be described and actually enforced, by formal
criteria which constrain the admissible choices of models. It is hence assumed that de-
manding the preservation of sufficiently many behavioural dimensions, which express
in properties, relationships and certain constructions, will eventually achieve the de-
sired characterisation of plausible models. This solution to the superordinate goal of
identifying the models should obey an important constraint, though. It is probably not
wise to turn all adequacy criteria that come to mind into conditions imposed on ad-
missible models, which would likely result in an axiom set too clumsy for succinct
proofs, and hence not conducive to rapid progress of the theory. By contrast, I pre-
ferred to distill a reduced system of core requirements on the models, with the capacity
of generating the full set of conditions, which then show up in the deductive hull. To
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be precise, I even demanded the axiom system to be independent, i.e. irreducible to
a smaller axiom set. This minimimality of the system helps avoid any redundancy in
proofs, and also offers the theoretical advantage that the intuitive concerns on adequate
models become separated into distinct formal dimensions, each of which reflects an
independent aspect of the meaning of quantifiers.

In the chapter, I explained various intuitive requirements on the models, which were
then compiled into ‘DFS axioms’, the suggested axiomatic framework for plausible
models of fuzzy quantification. The development and selection of these criteria was
steered by the design principles motivated above, and hence aimed at a succinct and
redundancy-free characterization of the intended models. The resulting system is com-
posed of well-motivated requirements which indeed achieve the desired separation of
semantical dimensions, as witnessed by the proven independence of the axioms. Con-
cerning the individual conditions that govern legal choices of models, the relevance of
the six axioms to fuzzy NL quantification can be sketched as follows.

• The first condition of ‘correct generalisation’ (Z-1) is mandatory to ensure the
internal coherence of the quantification framework. By demanding that the re-
sulting fuzzy quantifiers properly generalize the base descriptions of semi-fuzzy
quantifiers which they are supposed to extend, and hence coincide with the base
quantifier on crisp arguments, this condition enforces the success condition of
the fuzzification pattern, which underlies the use of a fuzzification mechanism.

• The semantical postulate (Z-2) which demands the proper interpretation of pro-
jection quantifiers, makes explicit the relationship of crisp/fuzzy membership
assessments and quantification. This requirement is essential from a linguis-
tic perspective because it warrants the intended modelling of proper names like
“Joan”, which are generally viewed as a special type of quantifiers in TGQ.

• The requirement of compatibility with dualisation (Z-3) is also essential from
a logical and linguistic standpoint, because it enforces the full compliance of
the models not only with the formation of duals, but also with the important
constructions of external negation and formation of antonyms.

• The condition on ‘internal joins’ (Z-4), which demands the conformance of
the models to unions of arguments, is also anchored in linguistics, because it
achieves a compositional interpretation of NL examples like “Most men drink or
smoke”. Apart from its linguistic motivation, the condition is of key relevance
to the DFS axioms, because it makes the only requirement which mediates the
behaviour of the considered QFM for quantifiers of different arities. In fact, it
is this condition which achieves the desired cross-arity coherence of the model,
and thus contributes to the proper modelling of fuzzy multi-place quantification.

• The requirement of ‘monotonicity in arguments’ (Z-5) assumes responsibility of
the monotonicity type of a base quantifier, which should translate to the fuzzy
case. This is especially important in order to preserve the valid entailments
which pertain to these monotonicity properties, and which reveal important ex-
pectations on the meaning of matching fuzzy quantifiers.

118



• The final criterion (Z-6) which demands the compliance with functional applica-
tion, is not directly inspired from linguistics. Noticing that all other axioms refer
to quantifiers on a single base setE only, it was necessary to add a requirement
which links the behaviour ofF across domains. The criterion of functional ap-
plication is solely concerned with this issue of cross-domain coherence, which
it traces back to the obvious desideratum of compositionality with respect to
powerset mappings.

It should be apparent from this summary that the DFS axioms are straightforward, and
grounded either in linguistics, or in apparent demands for coherence. In addition, the
axioms areconsistent. We shall experience in the later chapters Chap. 7–Chap. 10 that
the axioms admit rich and interesting classes of models.

When formalizing the axioms, I have taken great care to avoid any reference to the
standard connectives and the standard extension principle of fuzzy logic. The rationale
behind that becomes clear from the later theorem Th-47, which states that the class of
models shrinks down to those ‘standard’ choices which inducemin andmax, as soon
as the standard connectives and extension principle enter into the axioms. In order
to maintain the possibility of ‘non-standard models’ which induce general fuzzy con-
junctions other thanmin, I therefore developed corresponding ‘induced’ constructions,
and hence associated a canonical choice of fuzzy truth functions and general extension
principle with each QFM of interest. Those constructions on quantifiers which depend
on a fuzzy truth function or the extension principle, then become parametrized by these
induced constructions. This strategy targets at a coherent or ‘self-consistent’ system
which is compatible with its own induced constructions. It must be admitted, though,
that the study of these general models is still in its infant stage, and no examples of
the general type, beyond the known examples of standard models, have been discov-
ered so far. It is hence an open problem whether models exist which do not induce the
standard extension principle or the standard choice of fuzzy connectives, and future
research should be directed at this issue.

In this chapter, I have presented a core axiom system for approaches to fuzzy quan-
tification, and I also supplied ample evidence in favour of the proposed axioms, and
explained their relevance through convincing natural language examples. However, an
axiom set cannot be appropriately judged when looking at the axioms in isolation; and
it is crucial to the full understanding of the DFS axioms and their associated models,
that the properties of the axiom setas a wholebe investigated, by exploring the space
of logical entailments. Specifically, we should try and make explicit all intuitive ex-
pectations on the models, and verify that the total of resulting criteria are valid in the
suggested models. This will permit a well-founded decision upon the completeness of
the axioms, and ascertain their precise capacity of explaining our linguistic expecta-
tions on the interpretation of fuzzy quantifiers in NL.
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4 Semantic properties of the models

4.1 Motivation and chapter overview

In the previous chapter, an independent system of condititions has been developed,
which capture important requirements on the desired models of fuzzy quantification.
It is a natural consequence of the independence of the proposed axiom system, i.e.
minimality/irreducibility, that the axioms are rather condensed. Due to this succinct
presentation of the plain requirements on plausible models it is not clear at this point
whether the axioms are also complete, and capture all of the intuitive expectations that
one would like to see incorporated into a plausible model of fuzzy quantification. Of
course, there are some tradeoffs here, because some of the desiderata might become
mutually inconsistent, when they are displaced from their Boolean origins into a fuzzy
framework. In addition, it must be carefully decided upon the core requirements, from
which practical concerns and other optional criteria must be clearly separated. For
example, considerations on robustness or continuity of the models should not enter
into the core axiom system, because discontinuous models, which occur as boundary
cases, can well be of interest to theoretical investigations, although they certainly do
not qualify for practical application due to their extreme brittleness. Keeping these
general factors in mind, I will now take care of the completeness issue. The following
chapters will provide ample evidence that the models of the theory are well-behaved
in a variety of ways, and hence redeem the promise of providing a satisfying account
of fuzzy quantification. As opposed to the previous chapter, which focused on a few
representative postulates for reasonable choices of models, we will now be concerned
with identifying a larger body of semantical criteria that control the behaviour of plau-
sible approaches to fuzzy quantification. A semantical constraint thus expresses an
observable regularity, which should be expected of all models of fuzzy quantification.
Most of these criteria originate from the Theory of Generalized Quantifiers and hence
reflect linguistic considerations on the models. Typical examples of these conditions
are of the homomorphism kind, and require the compatibility of a QFM with con-
structions of linguistic relevance, like forming negations and antonyms, restricting an
argument by an adjective, etc. Due to the fact that TGQ relies on a two-valued notion
of quantifiers, the involved concepts must generally be fitted to semi-fuzzy and fuzzy
quantifiers. However, the required changes will be apparent in all cases, and the result-
ing generalized concepts are absolutely straightforward. Apart from adopting concepts
from TGQ, some other postulates will also originate from logics, or capture impor-
tant theoretical considerations. This type of requirement is concerned with the precise
interpretation of the standard logical quantifiers; with the expected behaviour of ‘in-
duced’ concepts like the induced extension principle; the interrelation between unary
and multi-place quantification, and others. Finally, some of the plausibility criteria are
targeted at the issues raised by the presence of fuzzy sets, and thus have something to
say about our understanding of fuzziness in natural language. In each individual case,
I have usually tried to set the concept in context and explain its relevance to the the-
ory of fuzzy quantification. Following this brief motivation, I then develop the precise
definition, by proposing a criterion which formalizes the semantical postulate. Having
introduced the required concepts, the models are then related to the proposed criterion,
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and judged from their compliance with the given formal requirement.

In order to organize the wealth of results, the material has been split into three sub-
sequent chapters. The present chapter starts by investigating those requirements that I
consider absolutely basic, and mandatory for all models without ifs and buts. It will be
shown that all of these criteria express universal properties of a DFS, and are indeed
valid in arbitrary models of the theory. The subsequent chapter, by contrast, will focus
on those concepts that relate several models, and hence require more homogeneity on
the model’s side. It is there that I consider several ways of granulating the models into
natural subclasses, which provide the necessary context of models that fullfill minimal
requirements on structural similarity. The last chapter in this series, finally turns to
special postulates which cannot be demanded of arbitrary models for various reasons.
For example, some possible criteria will conflict with other desirable properties and
must hence be considered optional; other characteristics are necessary for practical ap-
plications but irrelevant in theoretical contexts; and some conceivable postulates are
even inconsistent with the core axioms. The latter examples are valuable in particular,
because they demarcate the maximal set of adequacy properties that can be expected
of optimal models, by shaping the area beyond these theoretical limits.

4.2 Correct generalisation

Let us start with the most basic requirement on any type of fuzzification mechanism,
that ofcorrect generalisation. It is essential to the use of the fuzzification pattern that
the generalized model which results from the fuzzification mechanism consistently
extends the crisp base model from which it is built. In the case of quantifier fuzzifica-
tion mechanisms, we would hence like the fuzzy quantifiersF(Q) that result from the
mechanism to coincide with the original semi-fuzzy quantifiersQ on arbitrary crisp
arguments. I have already shown on p. 96 how this requirement can be succinctly ex-
pressed in terms of the ‘underlying semi-fuzzy quantifiers’U(Q̃), and it then becomes
U(F(Q)) = Q. Acknowledging its importance, correct generalisation has been made
an integral part of the DFS axioms, and I have required in (Z-1) thatU(F(Q)) = Q be
valid for all nullary or unary quantifiers The restriction to quantifiers of aritiesn ≤ 1
helped to simplify the axiom system, and hence to shorten the required proofs that
certain QFMs of interest are indeed models of the theory. Let us now overcome the
restriction ton ≤ 1 and establish thatF(Q) consistently extendsQ, regardless of the
arity n ∈ N of the considered quantifierQ : P(E)n −→ I.

Theorem 2
SupposeF is a DFS andQ : P(E)n −→ I is ann-ary semi-fuzzy quantifier. Then
U(F(Q)) = Q, i.e. for all crispsubsetsY1, . . . , Yn ∈ P(E),

F(Q)(Y1, . . . , Yn) = Q(Y1, . . . , Yn) .

For example, ifE is a set of persons, andwomen , married ∈ P(E) are the crisp sets
of “women” and “married persons” inE, then

F(some )(women , married ) = some (women , married ) ,
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i.e. the ‘fuzzy some’ obtained by applyingF coincides with the (original) ‘crisp some’
whenever the latter is defined, which is of course highly desirable.

4.3 Properties of the induced truth functions

Let us now turn to the fuzzy truth functions induced by a DFS, which constitute the
propositional part of its induced logic. The first theorem is concerned with the identity
truth functionid2 : 2 −→ 2 defined byid2(0) = 0, id2(1) = 1.

Theorem 3 (Identity truth function)
In every DFSF , F̃(id2) = idI.

The identity truth function is hence generalised to the fuzzy identity truth function
idI : I −→ I which maps every gradual truth valuex ∈ I to itself, which is quite
satisfactory.

As for negation, the standard choice in fuzzy logic is certainly¬ : I −→ I, defined
by ¬x = 1 − x for all x ∈ I. The essential properties of this prototypical choice of
negation are captured by the following definition, which guides reasonable choices of
negation operators.

Definition 25 (Strong negation)
¬̃ : I −→ I is called astrong negation operatorif it satisfies

a. ¬̃ 0 = 1 (boundary condition)

b. ¬̃x1 ≥ ¬̃x2 for all x1, x2 ∈ I such thatx1 < x2 (i.e. ¬̃ is monotonically
nonincreasing)

c. ¬̃ ◦ ¬̃ = idI (i.e. ¬̃ is involutive).

Notes

• Whenever the standard negation¬x = 1 − x is being assumed, I will drop the
‘tilde’-notation. Hence the standard fuzzy complement is denoted¬X, where
µ¬X(e) = 1− µX(e). Similarly, the external negation of a (semi-) fuzzy quan-
tifier with respect to the standard negation is written¬Q, and the antonym of a
fuzzy quantifier with respect to the standard fuzzy complement is written asQ̃¬.

• Apart from the standard choice, further examples of these negation operators are
e.g. Sugeno’sλ-complements [145].

As witnessed by the following theorem, the fuzzy negation induced by a DFSF is
plausible in the sense of belonging to the class of strong negation operators.

Theorem 4 (Negation)
In every DFSF , ¬̃ = F̃(¬) is a strong negation operator.

123



With conjunction, there are several common choices in fuzzy logic (although the stan-
dard is certainly∧ = min). All of these belong to the class oft-norms, which cap-
ture the expectations on reasonable conjunction operators, cf. Schweizer/Sklar [139],
Klir/Yuan [89, p. 61+].

Definition 26 ( t-norms)
∧̃ : I× I −→ I is called at-norm if it satisfies the following conditions.

a. x ∧̃ 0 = 0, for all x ∈ I

b. x ∧̃ 1 = x, for all x ∈ I

c. x1 ∧̃ x2 = x2 ∧̃ x1 for all x1, x2 ∈ I (commutativity)

d. If x1 ≤ x′1, thenx1∧̃x2 ≤ x′1∧̃x2, for all x1, x
′
1, x2 ∈ I (i.e.∧̃ is monotonically

nondecreasing)

e. (x1 ∧̃ x2) ∧̃ x3 = x1 ∧̃ (x2 ∧̃ x3), for all x1, x2, x3 ∈ I (associativity).

The prototypicalt-norm is the standard fuzzy conjunction∧ = min (it is the largest
t-norm). Other well-known examples oft-norms are thealgebraic product̃∧a and the
bounded product̃∧b, which are defined by

x1 ∧̃a x2 = x1 · x2

x1 ∧̃b x2 = max(0, x1 + x2 − 1)

for all x1, x2 ∈ I. For a less well-known examplar, consider∧̃m, defined by

x1 ∧̃m x2 =

 2x1x2 : max(x1, x2) < 1
2

1 + 2x1x2 − x1 − x2 : min(x1, x2) ≥ 1
2

min(x1, x2) : else
(22)

for all x1, x2 ∈ I, see [46, p. 30]. Of course, there are many othert-norms; for a recent
discussion of advanced topics and pointers to other publications, see e.g. [86, 104].
Let us now state that the fuzzy conjunction induced by a DFS is ‘reasonable’, in the
sense of belonging to the class oft-norms.

Theorem 5 (Conjunction)
In every DFSF , ∧̃ = F̃(∧) is a t-norm.

The dual concept oft-norm is that of ans-norm or t-co-norm, which expresses the
essential properties of fuzzy disjunction operators.

Definition 27 ( s-norms)
∨̃ : I× I −→ I is called ans-norm if it satisfies the following conditions.

a. x ∨̃ 1 = 1, for all x ∈ I

b. x ∨̃ 0 = x, for all x ∈ I

124



c. x1 ∨̃ x2 = x2 ∨̃ x1 for all x1, x2 ∈ I (commutativity)

d. If x1 ≤ x′1, thenx1∨̃x2 ≤ x′1∨̃x2, for all x1, x
′
1, x2 ∈ I (i.e.∨̃ is monotonically

nondecreasing)

e. (x1 ∨̃ x2) ∨̃ x3 = x1 ∨̃ (x2 ∨̃ x3), for all x1, x2, x3 ∈ I (associativity).

Examples ofs-norms are the standard choice∨ = max (it is the smallests-norm), the
algebraic sum̃∨a and the bounded sum̃∨b defined by

x1 ∨̃a x2 = x1 + x2 − x1 · x2

x1 ∨̃b x2 = min(1, x1 + x2)

for all x1, x2 ∈ I.

Theorem 6 (Disjunction)
In every DFS,x1 ∨̃ x2 = ¬̃(¬̃x1 ∧̃ ¬̃x2), i.e. ∨̃ is the duals-norm of∧̃ under¬̃.

Hence the fuzzy disjunction induced by a DFS is also plausible, and it is definable
in terms of∧̃ and¬̃. A similar point can be made about the other two-place logical
connectives, see [46, p. 29 and p. 32]. For example, the induced implication of a DFS
can be expressed in terms of∨̃ and¬̃ (and hence also in terms of∧̃ and¬̃):

Theorem 7 (Implication)
In every DFS,x1 →̃ x2 = ¬̃x1 ∨̃ x2.

The only connectives which are not apparently reducible to∧̃ and ¬̃, because their
construction involves a subtle dependency between variables, are the antivalencexor
and the equivalence↔. I will discuss these connectives later because they require more
effort (see remarks on p. 165 and p. 176).

4.4 A different view of the induced propositional logic

The definition of induced fuzzy truth functions presented in Def. 11 is not the only
possible choice, and I have already mentioned that an alternative construction has been
developed, which is equally straightforward. In fact, the first publication on DFS the-
ory [46] relied on that construction which has now become ‘alternative’. It was only
the desire to obtain an independent axioms system, which later guided the decision in
[48] to introduce a new construction. This new construction has now become standard,
because it indeed helped to eliminate some subtle interdependencies in the initial def-
inition of the DFS axioms. In the following, I will explain the principles that underly
the first construction of induced connectives, thus demonstrating that it is plausible
as well. I will then go on and show that the ‘new’ and ‘old’ constructions coincide
in every DFS, which makes an additional point that these models are well-motivated.
Hence both constructions provide different views of the induced propositional logic
from their specific perspective.
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The alternative construction of induced truth function, which I define now, rests on
the observation that (a) the set of crisp truth values2 = {0, 1} and the powersetP({∗})
are isomorphic; and (b) the set of continuous truth valuesI = [0, 1] and the fuzzy
powersetP̃({∗}) are also isomorphic, where{∗} is an arbitrary singleton set, e.g.
{∗} = {∅}. Suitable mappings which establish these isomorphisms are the appar-
ent bijections (a)π∗ : P({∗}) −→ 2; and (b)π̃∗ : P̃({∗}) −→ I. The basic idea is to
utilize the former bijection for a transfer of the original truth function to a semi-fuzzy
quantifier, to which the considered QFMF can be applied. Now utilizing the latter
bijection, the resulting fuzzy quantifier can then be transformed into the desired fuzzy
truth function. The alternative construction can hence be described as follows.

Definition 28
Let a mappingf : 2n −→ I be given. We can viewf as a semi-fuzzy quantifier
f∗ : P({∗})n −→ I by defining

f∗(X1, . . . , Xn) = f(π∗(X1), . . . , π∗(Xn)) .

By applying the considered QFMF , f∗ is generalized to a fuzzy quantifierF(f∗) :

P̃({∗})
n
−→ I, from which we obtain a fuzzy truth functioñ̃F(f) : In −→ I,˜̃F(f)(x1, . . . xn) = F(f∗)(π̃−1

∗ (x1), . . . , π̃−1
∗ (xn))

for all x1, . . . , xn ∈ I.

More details on this construction can be found in [46]. As already remarked above, it
results in the same canonical choice of fuzzy truth functions, if the consideredF is a
DFS.

Theorem 8

In every DFS,F̃ = ˜̃F .

F̃ can be distinct from˜̃F if F is not a DFS, though, and indeed the construction
used inF̃ provided better support for developing DFS theory further and extracting

an independent system of axioms. The alternative definition˜̃F was less suited to ac-

complish this task because the construction of˜̃F(∧) and ˜̃F(∨) involves multi-place
quantification (n = 2), while the computation of̃F(∧) and F̃(∨) is based on one-
place quantification. It is this simplification which made it possible to formalize DFS
theory in terms of independent conditions and develop the current set of DFS axioms
(Z-1)–(Z-6).

I will now discuss homomorphism properties of every DFS with respect to operations
on the argument sets.

4.5 Argument permutations

Definition 29 (Argument permutations)
LetQ : P(E)n −→ I be a semi-fuzzy quantifier andβ : {1, . . . , n} −→ {1, . . . , n}
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a permutation. ByQβ : P(E)n −→ I we denote the semi-fuzzy quantifier defined by

Qβ(Y1, . . . , Yn) = Q(Yβ(1), . . . , Yβ(n)) ,

for all Y1, . . . , Yn ∈ P(E). In the case of fuzzy quantifiers̃Q : P̃(E)
n
−→ I, the

quantifierQ̃β : P̃(E)
n
−→ I is defined analogously.

It is well-known that every permutation can be decomposed into a composition of trans-
positions. These express a single permutation step which simply swaps two selected
elements in a given finite sequence:

Definition 30 (Transpositions)
For all n ∈ N (n > 0) andi, j ∈ {1, . . . , n}, thetranspositionτi, j : {1, . . . , n} −→
{1, . . . , n} is defined by

τi, j(k) =

 i : k = j
j : k = i
k : else

for all k ∈ {1, . . . , n}. I further stipulate a succinct notation forτi, n, which is
abbreviated byτi = τi, n. The transpositionτi has the effect of exchanging positionsi
andn.

Notes

• The restricted class of transpositionsτi, i ∈ {1, . . . , n}, is still capable of com-
posing arbitrary permutations, because every transpositionτi, j can be expressed
asτi, j = τi ◦ τj ◦ τi.

• In the case of these simple transpositions,Qτi(X1, . . . , Xn) becomes

Qτi(X1, . . . , Xn) = Q(X1, . . . , Xi−1, Xn, Xi+1, . . . , Xn−1, Xi) .

Due to the conceptual and notational simplicity of the transpositionsτi, these offer the
preferred representation of permutations that will be used throughout the report.
The importance of argument permutations/transpositions is witnessed by the following
examples.

1. There is a meaning ofonly : P(E)2 −→ 2 whereonly = allτ1, i.e.

only (X1, X2) = all(X2, X1)

for all X1, X2 ∈ P(E). For example, ifE is a set of persons,men ∈ P(E) the
set of thosev ∈ E which are men, andsmokers ∈ P(E) is the set24 of persons
who are smokers, then

only (men , smokers ) = allτ1(men , smokers ) = all(smokers , men) ,

i.e. the meaning of “Only men are smokers” coincides with that of “All smokers
are men”.

24we shall assume that this set be crisp for the sake of argument
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2. Argument transpositions render it possible to express symmetry properties of
quantifiers. For example, the quantifiersome : P(E)2 −→ 2 is symmetrical in
its arguments, which can be stated as

some = some τ1 .

This warrants that in the above domain of persons/smokers,

some (men , smokers ) = some τ1(men , smokers ) = some (smokers , men) ,

which expresses our intuition that the meanings of “Some men are smokers” and
“Some smokers are men” coincide.

As stated by the following theorem, DFS theory ensures that all considered models of
fuzzy quantification commute with argument transpositions, and hence guarantees that
the corresponding constructions based on fuzzy quantifiers and fuzzy arguments still
exhibit the desired semantics.

Theorem 9
Every DFSF is compatible with argument transpositions, i.e. whenever a semi-fuzzy
quantifierQ : P(E)n −→ I and a choice ofi ∈ {1, . . . , n} are given, thenF(Qτi) =
F(Q)τi.

Recalling that permutations can be expressed as a sequence of transpositions, Th-9
actually ensures thatF commutes with arbitrary permutations of the arguments of a
quantifier. In particular, symmetry properties of a quantifierQ carry over to its fuzzified
analogueF(Q). For example, it holds in every DFS thatF(some ) = F(some )τ1
and hence

F(some )(rich , young ) = F(some )(young , rich ) ,

i.e. the meaning of “Some rich people are young” and “Some young people are rich”
coincide. Of course, we also obtain that

F(only )(old , rich ) = F(all)τ1(old , rich ) = F(all)(rich , old ) ,

i.e. “Only old people are rich” means that “All rich people are old”, where the exten-
sionsold , rich ∈ P̃(E) of old and rich people are now assumed to be fuzzy.

4.6 Cylindrical extensions

Let us now consider another property related to the argument structure of quantifiers. In
the case that an argument is ‘redundant’ or ‘vacuous’, by having no effect on the actual
outcome of a semi-fuzzy quantifierQ, we would certainly expect that the argument
will also have no effect on the quantification results obtained from the associated fuzzy
quantifierF(Q). This intuitive criterion can be formalized as follows.
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Definition 31
SupposeF is a QFM. We say thatF is compatible with cylindrical extensionsif the
following condition holds for every semi-fuzzy quantifierQ : P(E)n −→ I. Whenever
n′ ∈ N, n′ ≥ n; i1, . . . , in ∈ {1, . . . , n′} such that1 ≤ i1 < i2 < · · · < in ≤ n′, and

Q′ : P(E)n
′
−→ I is defined by

Q′(Y1, . . . , Yn′) = Q(Yi1 , . . . , Yin)

for all Y1, . . . , Yn ∈ P(E), then

F(Q′)(X1, . . . , Xn′) = F(Q)(Xi1 , . . . , Xin) ,

for all X1, . . . , Xn ∈ P̃(E).

This property of being compatible with cylindrical extensions is very fundamental.
It simply states that vacuous argument positions of a quantifier can be eliminated.
For example, ifQ′ : P(E)4 −→ I is a semi-fuzzy quantifier and if there exists a
semi-fuzzy quantifierQ : P(E) −→ I such thatQ′(Y1, Y2, Y3, Y4) = Q(Y3) for all
Y1, . . . , Y4 ∈ P(E), then we know thatQ′ does not really depend on all arguments; it
is apparent that the choice ofY1, Y2 andY4 has no effect on the quantification result.
It is hence straightforward to require thatF(Q′)(X1, X2, X3, X4) = F(Q)(X3) for
all X1, . . . , X4 ∈ P̃(E), i.e.F(Q′) is also independent ofX1, X2, X4, and it can be
computed fromF(Q).

Theorem 10

Every DFSF is compatible with cylindrical extensions.

Hence every model of DFS theory fulfills a property which is vital to every plausible
model of multi-place quantification.

4.7 Negation and antonyms

We have considered so far the elementary adequacy properties of QFMs under the se-
mantical constructions of permuting and vacuously extending arguments. The compat-
ibility with these constructions is essential for the approach to be internally consistent
albeit rather formal in nature. I now turn to properties that also express on the linguistic
surface. I will first consider those constructions that involve a negation step, which can
either be applied inside the quantifying expression (internal complementation of argu-
ments, antonyms), or applied from ‘outside’ to the quantifying expression as a whole
(external negation). The compatibility of the models of DFS theory to these semantical
constructions is in each case ensured by their known compatibility to dualisation (Z-3)
and by the elementary properties underlying the framework that were discussed above.

Theorem 11
Every DFSF is compatible with the formation of antonyms. Hence ifQ : P(E)n −→ I
is a semi-fuzzy quantifier of arityn > 0, thenF(Q¬) = F(Q)¬̃.

129



The theorem guarantees e.g. thatF(all)(rich , ¬̃ lucky ) = F(no)(rich , lucky ). Let
us notice that by Th-9, the theorem generalises to arbitrary argument positions. Hence
every DFS is fully compatible to the complementation of arguments.

Theorem 12
Every DFSF is compatible with the negation of quantifiers. Hence ifQ : P(E)n −→ I
is a semi-fuzzy quantifier, thenF(¬̃Q) = ¬̃ F(Q).

For example, the theorem ensures that

F(at most 10 )(young , rich ) = ¬̃ F(more than 10 )(young , rich )

becauseat most 10 = ¬̃more than 10 , i.e. “at most 10” is the negation of “more
than 10”.

We can summarize (Z-3), Th-11 and Th-12 as ensuring that every DFS preserves
Aristotelian squares.25 I.e. if Q : P(E)n −→ I is an arbitrary semi-fuzzy quantifier,
then the square
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@
@
@
@
@
@I

�
�
�
�
�
��

dual

?

6

external negation

?

dual

6

�
�
�

�
�
�	

@
@
@
@
@
@R

¬̃Q¬ antonym -� ¬̃Q

is transported byF to the corresponding square on fuzzy quantifiers,
25Because all relations displayed in the Aristotelian square are bidirectional, it is presumed that¬̃ =

F̃(¬) be involutive. However, we already know from Th-4 that¬̃ is even a strong negation operator.
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where the indicated relations of antonymy, negation and duality are still valid, i.e.
which coincides with
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¬̃ F(Q)¬̃ antonym -� ¬̃ F(Q)

Every DFS also commutes with thePiaget group of transformations, the relevance of
which stems from empirical findings in developmental psychology. (For a note on the
importance of the Piaget group of transformations to fuzzy logic, see Dubois & Prade
[36, p. 158+]). The Piaget group corresponds to the formation of

(identity) I(Q) = Q

(negation) N(Q) = ¬̃Q
(reciprocity) R(Q) = Qτ1¬τ1 . . . τn¬τn
(correlativity) C(Q) = ¬̃R(Q) ,
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whereQ : P(E)n −→ I is a semi-fuzzy quantifier (analogously for fuzzy quanti-
fiers).26 This is obvious from the definability ofI, N, R, C in terms of external nega-
tion, internal complementation and argument transpositions, with which every DFS is
compatible by Th-12, Th-11 and Th-9.

4.8 Symmetrical difference

We already know from Th-11 that every DFS is compatible with argument-wise com-
plementation. Let us now establish thatF respects even more fine-grained application
of the negation operator.

Definition 32
SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier (n > 0) andA ∈ P(E) a crisp
subset ofE. ByQ4A : P(E)n −→ I we denote the semi-fuzzy quantifier defined by

Q4A(X1, . . . , Xn) = Q(X1, . . . , Xn−1, Xn4A)

for all X1, . . . , Xn ∈ P(E), where4 denotes the symmetrical set difference. For fuzzy
quantifiersQ̃, we defineQ̃4̃A analogously, where the fuzzy symmetrical difference
X1 4̃X2 ∈ P̃(E) is defined byµX14̃X2

(e) = µX1(e) x̃or µX2(e) for all e ∈ E.

By using the symmetrical difference, we can negate the membership values of only
part of the elements of an argument set (namely of those which are contained inA).
Hence ifQ : P(E)n −→ I is a semi-fuzzy quantifier, then

Q4A(Y1, . . . , Yn) = Q(Y1, . . . , Yn−1, Z)

where

χZ(e) =
{
¬χYn(e) : e ∈ A
χYn(e) : e /∈ A

for all Y1, . . . , Yn, A ∈ P(E) ande ∈ E. Likewise if Q : P̃(E)
n
−→ I is a fuzzy

quantifier andA ∈ P(E) is crisp, then

Q4̃A(X1, . . . , Xn) = Q(X1, . . . , Xn−1, Z)

where

µZ(e) =
{
¬̃µXn(e) : e ∈ A
µXn(e) : e /∈ A

for all X1, . . . , Xn ∈ P̃(E), e ∈ E. Let us now state that every DFS is compatible
even with this more fine-structured type of negation.

26The operator-based definition ofR(Q) might look complicated. Provided a choice of arguments
X1, . . . , Xn ∈ P(E), this expression becomes

R(Q)(X1, . . . , Xn) = Q(¬X1, . . . ,¬Xn) .
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Theorem 13
SupposeF is a DFS. Then for every semi-fuzzy quantifierQ : P(E)n −→ I (n > 0)
and every crisp subsetA ∈ P(E), F(Q4A) = F(Q) 4̃A .

4.9 Intersections of arguments

The DFS axiom (Z-4) explicitly requires that a plausible model of fuzzy quantification
be compatible with unions of arguments. In addition, we have already seen in Th-
11 that the models of DFS theory preserve antonymy, and are hence compatible with
the complementation of arguments as well. Now I will turn to the construction of
intersecting arguments which has not been considered so far. It is again convenient to
introduce an operator-based notation.

Definition 33 (Internal meets)
SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier,n > 0. The semi-fuzzy quantifier
Q∩ : P(E)n+1 −→ I is defined by

Q∩(X1, . . . , Xn+1) = Q(X1, . . . , Xn−1, Xn ∩Xn+1) ,

for all X1, . . . , Xn+1 ∈ P(E). In the case of a fuzzy quantifiers̃Q : P̃(E)
n
−→ I,

Q̃∩̃ : P̃(E)
n+1
−→ I is defined analogously, based on the induced intersection∩̃.

The compatibility of a QFM with intersections in the arguments of a quantifier is then
expressed in the apparent way, i.e.F should satisfyF(Q∩) = F(Q)∩̃ for all Q :
P(E)n −→ I of arity n > 0. Knowing that every DFS commutes with unions of
arguments, it is not surprising that we also obtain a positive result in the dual case of
intersections:

Theorem 14
Every DFSF is compatible with the intersection of arguments.

For example,F(some ) = F(∃)∩̃, because the two-place quantifiersome can be
expressed assome = ∃∩.

Let us also notice that from Th-9, every DFS is then in fact known to commute with
intersections in arbitrary argument positions. For example, consider the NL statement
“Most of the young and rich are tall”. In order to interpret this statement and construct
its meaning from the fuzzy extensionsyoung , rich andtall ∈ P̃(E), we use a decom-
position into the quantifierQ′ defined byQ′(Y1, Y2, Y3) = most (Y1 ∩ Y2, Y3), which
expresses “MostY1’s andY2’s areY3’s”. It is then reasonable to expect that the above
statement can be interpreted by applying the resulting fuzzy quantifierF(Q′) to the
argumentsyoung , rich and tall . This is exactly where the considered property ap-
plies, and we conclude that indeedF(Q′)(young , rich , tall ) = F(many )(young ∩̃
rich , tall ), as desired.

133



4.10 Argument insertion

Let us now consider the operation of inserting an argument into a quantifier. By isolat-
ing the insertion of a single argument, we obtain the following construction on semi-
fuzzy quantifiers:

Definition 34 (Argument insertion)
SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier of arityn > 0, andA ∈ P(E).
ByQ/A : P(E)n−1 −→ I we denote the semi-fuzzy quantifier defined by

Q/A(X1, . . . , Xn−1) = Q(X1, . . . , Xn−1, A)

for all X1, . . . , Xn−1 ∈ P(E). (An analogous definition of̃Q/A is assumed for fuzzy
quantifiers).

Note. As usual, attention is placed on the last argument. The insertion of other argu-
ments can be modelled by a preceeding argument transposition. For example, we can
insertA into the second argument slot by constructingQτ2/A. The insertion of multi-
ple arguments can then be decomposed into a sequence of single argument insertions.
The significance of argument insertion mainly stems from its ability to model an impor-
tant natural language construction known asadjectival restriction, see e.g. [8, p. 448]
and [45, p. 247]. To present an example, an NL sentence like “Many married men have
children” can be interpreted by inserting the argumentsmarried ,have children ∈
P(E), which represent the extensions of the NL concepts “married” and “have chil-
dren”, respectively, into the composite quantifier “Many marriedX ’s areY ’s”. The
involved composite quantifier is then said to be constructed from the base quantifier
“many” by ‘adjectival restriction’, in this case based on the crisp adjective “married”.
To see how the above construction of argument insertion supports the modelling of
adjectival restriction, let us simply notice that the construction of the composite quan-
tifierQ′ corresponds to an intersection with the denotation of the adjective, in this case
Q′(Y1, Y2) = many (Y1 ∩married , Y2). Adjectival restriction can hence be decom-
posed into the constructions of intersecting argument sets and the insertion of constant
arguments like “married”. In terms of the relevant operators on quantifiers, we can
then express the composite quantifierQ′ as

Q′ = Qτi∩/Aτi .

This has the desired effect of restricting thei-th argument of the semi-fuzzy quantifier
Q to a considered subsetA ∈ P(E), which usually results from the interpretation of a
crisp extensional adjective like “married”.

The concept of argument insertion is also important because it allows an incremental
interpretation of complex expressions in the sense of Frege’scompositionality prin-
ciple (see e.g. Gamut [45, p.140]), which states that the meaning of a complex ex-
pression is a function of the meanings of its subexpressions. To provide an example
(which again illustrates the mechanism of restricting an argument), let us consider
the sentence “Most male persons are married”. Suppose thatE is a base set, and
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person ,male ,married ∈ P(E) are the extensions of “person”, “male” and “mar-
ried” in E, respectively. Informally, we can think of this sentence as being interpreted
in the following steps.27

Q = MostX1’s areX2’s

Q′ = Most maleY1’s areY2’s

Q′′ = Most male persons areZ ’s

Q′′′ = Most male persons are married

Ever since R. Montague published his influential work on ‘the proper treatment of
quantification in ordinary English’ [107] (reprinted in [154]), formal linguists would
typically model the incremental interpretation process in some variant of the typed
λ-calculus. This might look roughly28 as follows:

Q = λX1X2.most (X1, X2) = most

Q′ = λY1Y2.most (Y1 ∩male , Y2)
Q′′ = λZ.Q′(person , Z)
Q′′′ = Q′′(married ) .

By means of the operators that were defined on semi-fuzzy quantifiers, I can recast this

Q = most

Q′ = most τ1∩/maleτ1
Q′′ = Q′τ1/person

Q′′′ = Q′′/married .

The following theorem establishes the compatibility of a DFS to the insertion of argu-
ments like “married”.

Theorem 15
EveryF is compatible with argument insertions, i.e.F(Q/A) = F(Q)/A for all semi-
fuzzy quantifiersQ : P(E)n −→ I of arity n > 0 and all crisp subsetsA ∈ P(E).

The theorem hence states that every DFS commutes with the insertion ofcrisp argu-
ments. It is limited in scope to the case of crisp arguments because, given a semi-fuzzy
quantifierQ : P(E)n −→ I and afuzzysubsetA ∈ P̃(E), Q/A would be undefined.
(Q is asemi-fuzzy quantifier and hence defined on crisp arguments only!) Neverthe-
less, the axiom ensures that

F(allτ1∩/married τ1)(men , lucky ) = F(all)(married ∩̃men , lucky )

27This decomposition only serves illustrative purposes. A formal linguist is likely to prefer a different
decomposition of the above sentence.

28For convenience, I will use a variant of the typedλ-calculus which offers product types. In monadic
type theory, the expressions might look somewhat different.
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provided thatmarried ∈ P(E) is crisp, i.e. we obtain the same result when applying
F to the composite quantifier

Q = all marriedY1’s areY2

and then evaluatingF(Q)(men , lucky ), or when first applyingF to all and then
inserting the extensions of “married men” and “lucky”. The theorem is also useful
because it generally ensures thatboundary conditions(with respect to the crisp case)
are valid. For example, it is apparent from the above theorem that

x1 ∧̃ 1 = x1

for all x1 ∈ I, which is one of the defining conditions oft-norms.

I will return later to the problem that adjectival restriction with a fuzzy adjective
cannot be modelled directly simply because fuzzy arguments cannot be inserted into a
semi-fuzzy quantifier. It is apparent from this simple fact, that a construction different
from Q/A is needed to handle fuzzy adjectival restriction. It will be shown later in
section 6.8, how the insertion of fuzzy arguments into semi-fuzzy quantifiers can be
modelled in the framework of DFS theory. The latter construction will then permit a
compositional interpretation of fuzzy adjectival restriction as well.

4.11 Monotonicity properties

In this section, I will discuss monotonicity properties of quantifiers, i.e. semantical
characteristics that can be expressed through a comparison of gradual quantification
results under the natural order ‘≤’. Such comparisons are of obvious relevance to
logic because small results (close to ‘false’) generally reflect stronger conditions, while
a weakening of conditions expresses in larger membership grades (close to ‘true’).

Theorem 16
SupposeF is a DFS andQ : P(E)n −→ I. ThenQ is monotonically nondecreasing
(nonincreasing) in itsi-th argument (i ≤ n) if and only ifF(Q) is monotonically
nondecreasing (nonincreasing) in itsi-th argument.

For example,some : P(E)2 −→ 2 is monotonically nondecreasing in both argu-

ments. By the theorem, then,F(some ) : P̃(E)
2
−→ I is nondecreasing in both

arguments also. In particular,

F(some )(young men , very tall ) ≤ F(some )(men , tall ) ,

i.e. “Some young men are very tall” entails “Some men are tall”, ifyoung men ⊆
men andvery tall ⊆ tall .

So far, we have only considered global monotonicity properties, i.e. monotonicity
properties which hold unconditionally and for arbitrary choices of argument sets. In
some cases, it can also be instructive to consider monotonicity properties which hold
only locally, in a specified range of argument sets.
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Definition 35
SupposeQ : P(E)n −→ I andU, V ∈ P(E)n are given. We say thatQ is locally non-
decreasing in the range(U, V ) if for all X1, . . . , Xn, X

′
1, . . . , X

′
n ∈ P(E) such that

Ui ⊆ Xi ⊆ X ′i ⊆ Vi (i = 1, . . . , n), we haveQ(X1, . . . , Xn) ≤ Q(X ′1, . . . , X
′
n).

We will say thatQ is locally nonincreasing in the range(U, V ) if under the same con-
ditions,Q(X1, . . . , Xn) ≤ Q(X ′1, . . . , X

′
n). On fuzzy quantifiers, local monotonicity

is defined analogously, butX1, . . . , Xn, X
′
1, . . . , X

′
n are taken fromP̃(E), and ‘⊆’ is

the fuzzy inclusion relation.

To present an example, consider the proportional quantifiermore than 10 percent =
[rate > 0.1], which is neither nonincreasing nor nondecreasing in its first argument.
Nevertheless, some characteristics of the quantifier express themselves in its local
monotonicity properties. For example, suppose thatA,B ∈ P(E) are subsets ofE,
whereA is assumed to be nonempty. Thenmore than 10 percent is locally non-
increasing in the range((A,B), (A ∪ ¬B,B)), and it is locally nondecreasing in the
range((A,B), (A ∪B,B)).
A frequently observed case of local monotonicity properties is that of a quantifier
which is locally constant in some range(U, V ), i.e. both nondecreasing and nonin-
creasing. Hence let againE 6= ∅ be some finite base set,e ∈ E an arbitrary element
of E, andr ∈ (0, 1]. Then,[rate ≥ r] is locally constant in the range(U, V ), where
U = ({e},∅) andV = (E,∅). If {e} ⊆ X1 ⊆ E and∅ ⊆ X2 ⊆ ∅, i.e.X2 = ∅,
we always have

|X1 ∩∅|
|X1|

=
|∅|
|X1|

=
0
|X1|

= 0 ,

and hence

[rate ≥ r](X1,∅) = 0 .

It is natural to require thatF preserves such local monotonicity properties, i.e. if
Q : P(E)n −→ I is locally nondecreasing (nonincreasing) in some range(U, V ),
then we expectF(Q) : P̃(E)

n
−→ I to be nondecreasing (nonincreasing) in that

range as well.
Let us now state that every DFS preserves monotonicity properties of semi-fuzzy quan-
tifiers even if these hold only locally, i.e. all considered models of fuzzy quantification
comply with this requirement:

Theorem 17
SupposeF is a DFS,Q : P(E)n −→ I a semi-fuzzy quantifier andU, V ∈ P(E)n.
ThenQ is locally nondecreasing (nonincreasing) in the range(U, V ) if and only if
F(Q) is locally nondecreasing (nonincreasing) in the range(U, V ).

The theorem hence ensures that those characteristics of a quantifier which become
visible through its local monotonicity properties be preserved when applying a DFS.
Hence in the second example above, we obtain thatF([rate ≥ r])(X1,∅) = 0 for all
fuzzy subsets with nonempty core, which is quite satisfying.
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The models can also be shown to bemonotonicin the sense of preserving inequalities
between quantifiers. Let us firstly define a partial order≤ on (semi-)fuzzy quantifiers.

Definition 36
SupposeQ, Q′ : P(E)n −→ I are semi-fuzzy quantifiers. Let us writeQ ≤ Q′ if for
all X1, . . . , Xn ∈ P(E), Q(X1, . . . , Xn) ≤ Q′(X1, . . . , Xn). On fuzzy quantifiers,
we define≤ analogously, whereX1, . . . , Xn ∈ P̃(E).

For example,[rate > 0.5] ≤ [rate > 0.2], which reflects our intuition that “More than
50 percent of theY1’s areY2’s” is a stronger condition than “More than 20 percent of
theY1’s areY2’s”.

Theorem 18
SupposeF is a DFS andQ, Q′ : P(E)n −→ I are semi-fuzzy quantifiers. Then
Q ≤ Q′ if and only ifF(Q) ≤ F(Q′) .

The theorem ensures that inequalities between quantifiers carry over to the correspond-
ing fuzzy quantifiers. Hence

F(more than 50 percent )(blonde , tall ) ≤ F(more than 20 percent )(blonde , tall ) ,

as desired.
Let me also give another example, which illustrates the utility of cylindrical extensions.
We firstly observe that by Def. 36,Q ≤ Q′ is defined only ifQ andQ′ have the same
arity n. But it may be useful to express inequalities also in the case of quantifiers
involving a different number of arguments. For example,all∩ : P(E)3 −→ 2 can be
said to be smaller thanall : P(E)2 −→ 2 in the sense that

all∩(Y1, Y2, Y3) = all(Y1, Y2 ∩ Y3) ≤ all(Y1, Y2) ,

for all Y1, Y2, Y3 ∈ P(E). Let us now establish that this kind of inequality is preserved
by every DFSF . We define the following cylindrical extensionQ : P(E)3 −→ 2 of
all : P(E)2 −→ 2, viz

Q(Y1, Y2, Y3) = all(Y1, Y2) ,

for all Y1, Y2, Y3 ∈ P(E). This derived semi-fuzzy quantifierQ has the same arity as
all∩, and hence the above theorem Th-18 is now applicable. We can further utilize the
earlier theorem Th-10 and conclude that

F(all)(X1, X2) = F(Q)(X1, X2, X3) by Th-10

≤ F(all∩)(X1, X2, X3) by Th-18

= F(all)(X1, X2 ∩̃X3)

for all X1, X2, X3 ∈ P̃(E). In particular, ifold ,bald , rich ∈ P̃(E) are the (fuzzy)
extensions of “old”, “bald” and “rich”, respectively, in our example universeE, then

F(all)(old , bald ∩̃ rich ) ≤ F(all)(old , bald ) ,

i.e. “All old are bald and rich” expresses a stronger condition than “All old are bald”.
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Definition 37
SupposeQ1, Q2 : P(E)n −→ I are semi-fuzzy quantifiers andU, V ∈ P(E)n. We say
thatQ1 is (not necessarily strictly) smaller thanQ2 in the range(U, V ), in symbols:
Q1 ≤(U, V ) Q2, if for all X1, . . . , Xn ∈ P(E) such thatU1 ⊆ X1 ⊆ V1, . . . , Un ⊆
Xn ⊆ Vn,

Q1(X1, . . . , Xn) ≤ Q2(X1, . . . , Xn) .

On semi-fuzzy quantifiers,Q1 ≤(U, V ) Q2 is defined analogously, butX1, . . . , Xn ∈
P̃(E), and ‘⊆’ denotes the fuzzy inclusion relation.

For example, the two-place quantifier “all” is smaller than “some” whenever the first
argument is nonempty, i.e.

all ≤(({e},E}), (E,E)) some ,

for all e ∈ E.
As I now state, every model preserves inequalities between quantifiers even if these
hold only locally.

Theorem 19
SupposeF is a DFS,Q1, Q2 : P(E)n −→ I andU, V ∈ P(E)n. Then

Q1 ≤(U, V ) Q2 ⇔ F(Q1)≤(U, V ) F(Q2) .

The theorem hence ensures that local inequalities, like those observed in the case of
“some” and “all”, are preserved when applying a DFS. In particular, iftall , lucky ∈
P̃(E) are fuzzy subsets ofE andtall has nonempty support, then

all(tall , lucky ) ≤ some (tall , lucky ) ,

as desired.

4.12 Properties of the induced extension principle

Now I turn to the formal properties of the induced extension principle ofF . This anal-
ysis substantiates that the induced extension principle achieves a plausible assignment
of fuzzy powerset mappings to given base mappings. Building on this foundation, it
becomes possible to establish that all considered models of fuzzy quantification pre-
serve the important semantical properties of quantitativity and extensionality, which are
closely tied to the induced extension principle. In addition, every DFS can be shown to
be contextual, and hence captures some intuitive requirements on the intended effects
of fuzziness in a quantifier’s arguments.
Let us now state the formal results that underly the later theorems of linguistic rele-
vance.

Theorem 20
SupposeF is a DFS andF̂ the extension principle induced byF . Then for allf :
E −→ E′, g : E′ −→ E′′ (whereE 6= ∅, E′ 6= ∅, E′′ 6= ∅),
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a. F̂(g ◦ f) = F̂(g) ◦ F̂(f)

b. F̂(idE) = idP̃(E)

Note. A reader familiar with category theory will recognize this as the statement that
F̂ is a covariant functor from the category of non-empty sets to the category of fuzzy
power sets, provided that on objectsE, we defineF̂(E) = P̃(E).29It should be ap-
parent from the remarks on p. 111 how to dispense with the restriction to non-empty
sets if so desired.F̂ is a faithful functor becausef 6= g implies F̂(f)|P(E) = f̂ 6=
ĝ = F̂(g)|P(E), i.e. F̂(f) 6= F̂(g). F̂ is also injective on objects;E 6= E′ implies

P̃(E) 6= P̃(E′).
The induced extension principles of all DFSes coincide on injective mappings with the
apparent plausible definition:

Theorem 21
SupposeF is a DFS andf : E −→ E′ is an injection. Then for allX ∈ P̃(E), e ∈ E′,

µF̂(f)(X)(e) =
{
µX(f−1(e)) : e ∈ Im f
0 : e /∈ Im f

This result on the extension of injective mappings turned out to be rather useful and in
the following, it will be used repeatedly.
Next I will establish that a DFS is compatible with exactly one extension principle.
Knowing this might facilitate the proof that a given DFS induces a certain extension
principle.

Theorem 22
SupposeF is a DFS andE an extension principle such that for every semi-fuzzy quan-

tifier Q : P(E′)n −→ I and allf1 : E −→ E′, . . . , fn : E −→ E′, F(Q ◦
n
×
i=1

f̂i) =

F(Q) ◦
n
×
i=1
E(fi) . ThenF̂ = E .

The extension principlêF of a DFSF is uniquely determined by the fuzzy existential
quantifiersF(∃) = F(∃E) : P̃(E) −→ I induced byF .

Theorem 23
SupposeF is a given DFS. For every mappingf : E −→ E′ and all e′ ∈ E′,
µF̂(f)(•)(e

′) = F(∃)∩̃/f−1(e′) .

The converse can also be shown: the fuzzy existential quantifiers obtained from a DFS
F are uniquely determined by its extension principleF̂ .

29By the category of fuzzy power sets I mean the category in which the objects are fuzzy power setsP̃(E),
the morphisms are mappingsf : P̃(E) −→ P̃(E′) which to each fuzzy subsetX ∈ P̃(E) assign a fuzzy
subsetf(X) ∈ P̃(E′), and◦ is the usual composition of functions.
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Theorem 24
Let a DFSF be given. IfE 6= ∅ and∃ = ∃E : P(E) −→ 2, thenF(∃) = π̃∅ ◦ F̂(!) ,
where! : E −→ {∅} is the mapping defined by!(x) = ∅ for all x ∈ E.

This completes my analysis of the formal characteristics underlying the extension prin-
ciples that are induced by the models of DFS theory. Some applications in which this
analysis supported the proof of semantical properties of the models are stated below in
sections 4.13 (quantitativity), 4.14 (extensionality) and 4.15 (contextuality).

The analysis of the extension principle presented here is complemented with the
results on the interpretation of the standard quantifiers, which are presented below in
section 4.16. This is because the induced extension principle is closely related to the
interpretation of existential quantifiers. Its precise structure becomes apparent once
we combine the above theorem Th-23 with the later explicit formula for existential
quantification in the models, see Th-32.

4.13 Quantitativity

Many quantifiers of interest, like “almost all”, “most” etc., do not depend on any par-
ticular characteristics of the elements in the base set. It is not the specific choice of
elements that determines the quantification result, but only the quantitative aspects.
In the finite case, such quantifiers can be defined from the cardinalities of the ar-
guments (or cardinalities of Boolean combinations). Other quantifiers, like “John”
(proper names) or “Most marriedX1’s areX2’s” (adjectival restriction), though, are
closer tied to the domain and its particular elements. Cardinality information about
combinations of the arguments is not sufficient to determine the semantical interpre-
tation of these quantifiers in any given situation, and these quantifiers are therefore
called ‘non-quantitative’.30 In TGQ, the notion of quantitativity is commonly given an
elegant and convincing definition in terms of automorphism invariance, which traces
back to Mostowski [108]. This formalisation is easily adopted to the case of semi-fuzzy
quantifiers and even fuzzy quantifiers:

Definition 38 (Quantitative semi-fuzzy quantifier)
A semi-fuzzy quantifierQ : P(E)n −→ I is called quantitativeif for all automor-
phisms31 β : E −→ E and allY1, . . . , Yn ∈ P(E),

Q(Y1, . . . , Yn) = Q(β̂(Y1), . . . , β̂(Yn)) .

Similarly

Definition 39 (Quantitative fuzzy quantifier)
A fuzzy quantifier̃Q : P̃(E)

n
−→ I is said to bequantitativeif for all automorphisms

β : E −→ E and allX1, . . . , Xn ∈ P̃(E),

Q̃(X1, . . . , Xn) = Q̃( ˆ̂
β(X1), . . . , ˆ̂

β(Xn)) ,

30Non-quantitative quantifiers are sometimes also dubbed ‘qualitative’.
31i.e. bijections ofE into itself
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where ˆ̂
β : P̃(E) −→ P̃(E) is obtained by applying the standard extension principle.

By Th-21, the induced extension principles of all DFSes coincide on injective map-
pings. Therefore, the explicit mention of the standard extension principle in the above
definition doesnot tie its applicability to any particular choice of extension principle.

The definition in terms of automorphism invariance formalizes the expectation that a
quantitative quantifier cannot rely on any specific properties of the individual elements
gathered in the arguments. By contrast, the quantification results must remain invari-
ant when the elements are consistently renamed or exchanged with others, provided
that distinct elements are kept separate. To give an example, consider the base set
E = {John,Lucas,Mary} and the automorphismβ defined byβ(John) = Lucas,
β(Lucas) = Mary andβ(Mary) = John. In the case of the quantifier “all”, which is
quantitative, we then obtain that

all({John}, {John,Lucas})
= 1
= all({Lucas}, {Lucas,Mary})

= all(β̂({John}), β̂({John,Lucas})) ,

as expected. The example also witnesses that the quantifierJohn = πJohn is non-
quantitative, because

πJohn({John}) = 1 6= 0 = πJohn({Lucas}) = πJohn(β̂({John})) .

As stated by the following theorem, the quantitativity aspect of quantifiers is recog-
nized by every model of DFS theory:

Theorem 25
SupposeF is a DFS. For all semi-fuzzy quantifiersQ : P(E)n −→ I,Q is quantitative
if and only ifF(Q) is quantitative.

For example, the quantitative quantifiersall , some and at least k are mapped to
quantitative fuzzy quantifiersF(all), F(some ) andF(at least k ), respectively. On
the other hand, the non-quantitative projection quantifierjohn = πJohn is mapped to
the fuzzy projection quantifierF(john ) = π̃John, which is also non-quantitative.

4.14 Extensionality

One of the characteristic properties of natural language quantifiers that has been dis-
covered by TGQ is that ofhaving extension: if E ⊆ E′ are base sets, the interpretation
of the quantifier of interest inE is QE : P(E)n −→ I, and its interpretation inE′ is
QE′ : P(E′)n −→ I, then

QE(Y1, . . . , Yn) = QE′(Y1, . . . , Yn) , (23)
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for all Y1, . . . , Yn ∈ P(E), see e.g. [8, p. 453], [45, p. 250]. Having extension is a
pervasive phenomenon. The reader may wish to check that all two-valued or semi-
fuzzy quantifiers introduced so far possess this property.32 For example, supposeE is
a set of men and thatmarried , have children ∈ P(E) are subsets ofE. Further
suppose that we extendE to a larger base setE′ which, in addition to men, also
contains, say, their shoes. We should then expect that

most E(married ,have children ) = most E′(married ,have children ) ,

because the shoes we have added toE are neither men, nor do they have children.
The cross-domain property of having extension expresses some kind of context insen-
sitivity: given Y1, . . . , Yn ∈ P(E), we can add an arbitrary number of objects to our
original domainE without altering the quantification result. Alternatively, we can drop
elements ofE which are irrelevant to all argument sets (i.e. not contained in the union
of Y1, . . . , Yn). In other words: if a quantifier has extension, then

QE(Y1, . . . , Yn) = QEmin(Y1, . . . , Yn) ,

whereEmin = Y1 ∪ · · · ∪ Yn, i.e.QE(Y1, . . . , Yn) depends only on those elements
e ∈ E which are contained in at least one of theYi’s; the choice of the total domain
E has no impact on the quantification result as long as it is large enough to contain the
argument setsY1, . . . , Yn of interest. Having extension is hence a robustness property
of NL quantifiers with respect to the choice of the full domainE, which is often to some
degree arbitrary. An analogous definition of having extension for fuzzy quantifiers is
easily obtained from (23); in this case, the property must hold for allX1, . . . , Xn ∈
P̃(E).33,34 It is natural to require that the fuzzy quantifiers corresponding to given
semi-fuzzy quantifiers which have extension also possess this property.

Definition 40 (Extensionality)
A QFMF is said to beextensionalif it preserves extension, i.e. if each pair of semi-
fuzzy quantifiersQ : P(E)n −→ I, Q′ : P(E′)n −→ I such thatE ⊆ E′ and
Q′|P(E)n = Q, i.e.Q(X1, . . . , Xn) = Q′(X1, . . . , Xn) for all X1, . . . , Xn ∈ P(E),
is mapped to fuzzy quantifiersF(Q) : P̃(E)

n
−→ I, F(Q′) : P̃(E′)

n
−→ I with

F(Q′)|P̃(E)
n = F(Q), i.e.F(Q)(X1, . . . , Xn) = F(Q′)(X1, . . . , Xn), for all X1,

. . . ,Xn ∈ P̃(E).

Theorem 26
Every DFSF is extensional.

32With the possible exception of “many” in its absolute sense. However, absolute “many” can be modelled
by a parametrized family of quantifiers that have extension, where the choice of the parameter is made from
the context.

33Here we must viewP̃(E) as a subset of̃P(E′), with the obvious embedding̃P(E) 3 X 7→ X′ ∈
P̃(E′), where

µX′ (e) =

{
µX(e) : e ∈ E
0 : e /∈ E

for all e ∈ E′.
34The reader is warned not to confuse this definition of fuzzy quantifiers that ‘have extension’ with the

totally unrelated concept of anextensionalfuzzy quantifier, introduced by Thiele [149].
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This is apparent from (Z-6) and Th-21.
The role of this theorem to the semantics of fuzzy quantifiers becomes clear if the
crisp conceptsmarried andhave children in the above example are substituted with
fuzzy replacements. Hence consider the NL statement “Few young are rich”. Just as
in the crisp example, we certainly expect

F(fewE)(young , rich )

to be invariant under the precise choice of domain, too, as long as it is large enough
to contain the fuzzy setsyoung , rich of interest (to be precise, the support of the
union of the fuzzy arguments). For example, adding other individuals (like the above
shoes) to the domain, which are fully irrelevant to the arguments, should not affect
the computed semantic value. By the above theorem, then, every considered model of
fuzzy quantification is known to comply with these adequacy considerations.

4.15 Contextuality

The preservation of locally observed properties, like local monotonicity in Th-17 and
Th-19, can be explained in terms of a fundamental property which underlies all models
of DFS theory.

Unlike most other adequacy criteria discussed so far, this property, called ‘contextu-
ality’, is not borrowed from logic or linguistics. By contrast, it captures an important
aspect of the semantics of fuzzy quantification, which is directly related to the way
we perceive fuzziness. In order to formalize contextuality, I first need to recall some
familiar notions of fuzzy set theory. Hence letX ∈ P̃(E) be a given fuzzy subset. The
supportand thecore of X, in symbols: spp(X) ∈ P(E) and core(X) ∈ P(E), are
defined by

spp(X) = {e ∈ E : µX(e) > 0} (24)

core(X) = {e ∈ E : µX(e) = 1} . (25)

In other words, spp(X) contains all elements which potentially belong toX and core(X)
contains all elements which fully belong toX. The interpretation of a fuzzy subsetX
is hence ambiguous only with respect to crisp subsetsY in thecontext range

cxt(X) = {Y ∈ P(E) : core(X) ⊆ Y ⊆ spp(Y )} . (26)

For example, let the base setE = {a, b, c} be given and suppose thatX ∈ P̃(E) is the
fuzzy subset

µX(e) =
{

1 : x = a or x = b
1
2 : x = c

(27)

In this case, the corresponding context range becomes

cxt(X) = {Y : {a, b} ⊆ Y ⊆ {a, b, c}} = {{a, b}, {a, b, c}} .
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Now let us consider the existential quantifier∃ : P(E) −→ 2. Because∃({a, b}) =
∃({a, b, c}) = 1, we know that∃(Y ) = 1 for all crisp subsets in the context range
of X. We hence expect thatF(∃)(X) = 1, simply because the crisp quantification
result is always equal to one, regardless of whether we assume thatc ∈ X or that
c /∈ X. Abstracting from the example, we obtain the following apparent definition of
contextual equality, relative to a given context range.

Definition 41 (Contextually equal)
Assume thatQ,Q′ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) are given. We say thatQ
andQ′ arecontextually equalrelative to(X1, . . . , Xn), in symbols:Q∼(X1,...,Xn)Q

′,
if and only if

Q|cxt(X1)×···×cxt(Xn) = Q′|cxt(X1)×···×cxt(Xn) ,

i.e.

Q(Y1, . . . , Yn) = Q′(Y1, . . . , Yn)

for all Y1 ∈ cxt(X1), . . . , Yn ∈ cxt(Xn).

It is apparent that for eachE 6= ∅, n ∈ N andX1, . . . , Xn ∈ P̃(E), the resulting
relation of contextual equality∼(X1,...,Xn) is an equivalence relation on the set of all
semi-fuzzy quantifiersQ : P(E)n −→ I.

Definition 42
A QFMF is said to becontextualif for all Q,Q′ : P(E)n −→ I and every choice of
fuzzy argument setsX1, . . . , Xn ∈ P̃(E),

Q∼(X1,...,Xn) Q
′

entails that

F(Q)(X1, . . . , Xn) = F(Q′)(X1, . . . , Xn) .

As illustrated by the otivating example, it is highly desirable that a QFM satisfies this
very elementary albeit fundamental adequacy condition. And indeed, every DFS can
be shown to elicit the desired property:

Theorem 27
Every DFSF is contextual.

To give an example of how contextuality is useful in establishing properties of QFMs,
consider the following theorem which generalizes Th-15.

Theorem 28
SupposeF is a contextual QFM which is compatible with cylindrical extensions. Then
F is compatible with argument insertions, i.e.F(Q/A) = F(Q)/A for all semi-fuzzy
quantifiersQ : P(E)n −→ I of arity n > 0 and all crisp subsetsA ∈ P(E).

Other applications of contextuality are presented below in Chap. 6, which substantiate
the significance of the novel concept to the modelling of fuzzy quantification.

145



4.16 Semantics of the standard quantifiers

We have already seen in Th-23 and Th-24 that the existential quantifier can be ex-
pressed in terms of the induced extension principle and vice versa. In the following,
I would like to present some further results on the interpretation of the universal and
existential quantifiers in the considered models of fuzzy quantification.

Let me first recall Thiele’s analysis of fuzzy universal and existential quantification
[147, 148, 149]. Thiele has developed an axiomatic characterisation of these dual types
of quantifiers and their expected semantics in the presence of fuzziness, which culmi-
nates in the proposed definitions of T-quantifiers and S-quantifiers. Thiele also devel-
ops representation theorems for T- and S-quantifiers which make explicit how these
can be decomposed into possibly infinitary formulas involvingt- or s-norms. These
theorems, which will be presented below, have proven invaluable for establishing the
results on the interpretation of the standard quantifiers in DFS theory.

Thiele’s definition of T-quantifiers captures the essential requirements on fuzzy uni-
versal quantifiers. Making use of the concepts developed here, the proposed definition
can be expressed as follows.

Definition 43 (T-quantifiers)
A fuzzy quantifier̃Q : P̃(E) −→ I is called aT-quantifierif Q̃ satisfies the following
axioms:

a. For allX ∈ P̃(E) ande ∈ E, Q̃(X ∪ ¬{e}) = µX(e);

b. For allX ∈ P̃(E) ande ∈ E, Q̃(X ∩ ¬{e}) = 0;

c. Q̃ is nondecreasing, i.e. for allX,X ′ ∈ P̃(E) such thatX ⊆ X ′, it holds that
Q̃(X) ≤ Q̃(X ′);

d. Q̃ is quantitative, i.e. for every automorphism (permutation)β : E −→ E,

Q̃ ◦ ˆ̂
β = Q̃.

Note. In the above definition,∩ is the standard fuzzy intersection based onmin, and∪
is the standard fuzzy union based onmax. However, all fuzzy intersections based on
t-norms and all fuzzy unions based ons-norms will give the same results, because one
of the arguments is a crisp subset ofE.
There is a close relationship between T-quantifiers andt-norms. Following Thiele, I
define the connectivẽ∧Q̃ which corresponds to the T-quantifier.

Definition 44
SupposẽQ : P̃(E) −→ I is a T-quantifier and|E| > 1. ∧̃Q̃ : I× I −→ I is defined by

x1 ∧̃Q̃ x2 = Q̃(X)
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for all x1, x2 ∈ I, whereX ∈ P̃(E) is defined by

µX(e) =

 x1 : e = e1

x2 : e = e2

1 : else
(28)

wheree1 6= e2, e1, e2 ∈ E are two arbitrary distinct elements ofE.

Note. It is evident by the quantitativity of T-quantifiers thatx1 ∧̃Q̃ x2 does not depend
on the choice ofe1, e2 ∈ E. It is Thiele’s merit of having shown that T-quantifiers
are exactly those quantifiers that can be decomposed into the following (possibly in-
finitary) construction based on an underlyingt-norm:

Theorem 29 (Characterisation of T-quantifiers)
SupposẽQ : P̃(E) −→ I is a T-quantifier where|E| > 1. Then∧̃Q̃ is a t-norm, and

Q̃(X) = inf

{
m

∧̃Q̃
i=1

µX(ai) : A = {a1, . . . , am} ∈ P(E) finite,ai 6= aj if i 6= j

}

for all X ∈ P̃(E).
(See Thiele [147, Th-8.1, p.47])

Building upon Thiele’s characterisation theorem for T-quantifiers, I was able to im-
prove upon previous work on the interpretation of the standard quantifiers in DFS the-
ory [46, Th-26, p.42] and show that the fuzzy universal quantifiersF(∀) induced by a
DFS are plausible in the sense of belonging to the class of T-quantifiers:

Theorem 30 (Universal quantifiers in DFSes)

SupposeF is a DFS andE 6= ∅ is a given base set. ThenF(∀) : P̃(E) −→ I is a
T-quantifier constructed from the inducedt-norm ofF , i.e.F(∀) is defined by

F(∀)(X) = inf
{
m

∧̃
i=1

µX(ai) : A = {a1, . . . , am} ∈ P(E) finite,ai 6= aj if i 6= j

}
for all X ∈ P̃(E).

Thiele has also introduced the dual concept of S-quantifiers, which formalize the se-
mantical requirements on reasonable fuzzy existential quantifiers. These are defined as
follows (again adapted to my notation):

Definition 45 (S-quantifier)
A fuzzy quantifier̃Q : P̃(E) −→ I is called anS-quantifierif Q̃ satisfies the following
axioms:

a. For allX ∈ P̃(E) ande ∈ E, Q̃(X ∪ {e}) = 1;
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b. For allX ∈ P̃(E) ande ∈ E, Q̃(X ∩ {e}) = µX(e);

c. Q̃ is nondecreasing, i.e. for allX,X ′ ∈ P̃(E) such thatX ⊆ X ′, it holds that
Q̃(X) ≤ Q̃(X ′);

d. Q̃ is quantitative, i.e. for every automorphism (permutation)β : E −→ E,

Q̃ ◦ ˆ̂
β = Q̃.

Again, it is possible to define a connective, denoted∨̃Q̃, which will play a special role
in characterising the class of S-quantifiers.

Definition 46
SupposẽQ : P̃(E) −→ I is an S-quantifier and|E| > 1. ∨̃Q̃ : I × I −→ I is defined
by

x1 ∨̃Q̃ x2 = Q̃(X)

for all x1, x2 ∈ I, whereX ∈ P̃(E) is defined by

µX(e) =

 x1 : e = e1

x2 : e = e2

0 : else
(29)

ande1 6= e2, e1, e2 ∈ E are two arbitrary distinct elements ofE.

Note. Again, the independence of∨̃Q̃ on the chosen elementse1, e2 ∈ E is apparent
from the quantitativity of S-quantifiers.
We notice the dual characterisation theorem for S-quantifiers that has been proven by
Thiele:

Theorem 31 (Characterisation of S-quantifiers)
SupposẽQ : P̃(E) −→ I is an S-quantifier where|E| > 1. Then∨̃Q̃ is ans-norm, and

Q̃(X) = sup

{
m

∨̃Q̃
i=1

µX(ai) : A = {a1, . . . , am} ∈ P(E) finite,ai 6= aj if i 6= j

}

for all X ∈ P̃(E).
(See Thiele [147, Th-8.2, p.48])

Note. Some properties ofs-norm aggregation of infinite collections in the form ex-
pressed by the theorem (and hence, as expressed by S-quantifiers) have been studied
by Rovatti and Fantuzzi [133] who view S-quantifiers as a special type of non-additive
functionals. Based on the characterisation of S-quantifiers, a theorem dual to Th-30
can be proven for existential quantifiers.
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Theorem 32

Consider a DFSF and a base setE 6= ∅. ThenF(∃) : P̃(E) −→ I is an S-quantifier
constructed from the induceds-norm ofF , i.e.F(∃) is defined by

F(∃)(X) = sup
{
m

∨̃
i=1

µX(ai) : A = {a1, . . . , am} ∈ P(E) finite,ai 6= aj if i 6= j

}
for all X ∈ P̃(E).

Let me remark that ifE is finite, i.e.E = {e1, . . . , em} where theei are pairwise
distinct, then the expressions presented in the above theorems can be simplified into

F(∀)(X) =
m

∧̃
i=1

µX(ei) ,

F(∃)(X) =
m

∨̃
i=1

µX(ei) .

Hence the fuzzy universal (existential) quantifiers ofF are reasonable in the sense that
the important relationship between∀ and∧ (∃ and∨, resp.), which holds in the finite
case, is preserved by the DFS. In particular, the above theorems show that in every
DFS, the fuzzy existential and fuzzy universal quantifiers are uniquely determined by
the induced fuzzy disjunction and conjunction.

Theorem 33

SupposeF is a DFS,F̂ its induced extension principle and̃∨ = F̃(∨).

a. F̂ is uniquely determined bỹ∨, in the way described by Th-23 and Th-32, i.e.

µF̂(f)(X)(e
′) = sup

{ m

∨̃
i=1

µX(ai) : A = {a1, . . . , am} ∈ f−1(e′) finite,

ai 6= aj if i 6= j
}

for all f : E −→ E′,X ∈ P̃(E) ande′ ∈ E′, whereE,E′ 6= ∅.

b. ∨̃ is uniquely determined bŷF , viz.x1 ∨̃x2 = (π̃∅◦F̂(!))(X) for all x1, x2 ∈ I,
whereX ∈ P̃({1, 2}) is defined byµX(1) = x1 andµX(2) = x2, and ! is the
unique mapping! : {1, 2} −→ {∅}.

In particular, ifF̂ = ˆ̂(•) is the standard extension principle, then∨̃ = max. Because
I did not want QFMs in which̃∨ 6= max to be a priori excluded from consideration, it
was not possible to state (Z-6) in terms of the standard extension principle. Acknowl-
edging this constraining role, it was hence necessary to introduce general extension
principles along with the construction of induced extension principles, which selects
an appropriate choice of such general extension principle for each givenF . Only by
developing the theory of fuzzy quantification in this way it was possible to leave open
the chance for models based on different choices of fuzzy disjunction, like bounded
sum or algebraic sum, and also the extreme case of drastic sum.
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4.17 Fuzzy inverse images

We shall now return to a more theoretically oriented construction which is neverthe-
less worthwhile investigating, because it contributes to a theorem (in the subsequent
section) which elucidates the semantic relationship between unary (i.e. one-place) and
general multi-place quantification, that is underlying all models of DFS theory. The
required construction is that offuzzy inverse images, a notion closely related to the
extension principle.

In the case of crisp sets, I assume the usual definition of inverse images which has al-
ready been stated in the previous chapter, see equality (18). Generalising this concept,
every QFMF induces fuzzy inverse images by means of the following construction.

Definition 47
SupposeF is a QFM andf : E −→ E′ is some mapping.F induces afuzzy inverse
image mappingF̂−1(f) : P̃(E′) −→ P̃(E) which to eachY ∈ P̃(E′) assigns the
fuzzy subset̂F−1(f) defined by

µF̂−1(f)(Y )(e) = F(χf−1(•)(e))(Y ) ,

for all e ∈ E.

If F is a DFS, then its induced fuzzy inverse images coincide with the apparent ‘rea-
sonable’ definition:

Theorem 34
SupposeF is a DFS,f : E −→ E′ is a mapping andY ∈ P̃(E′). Then for alle ∈ E,
µF̂−1(f)(Y )(e) = µY (f(e)) .

HenceF not only induces a plausible extension principle, but also induces a reasonable
choice of the reverse construction.

4.18 The semantics of fuzzy multi-place quantification

In this section, I will uncover the internal structure of fuzzy multi-place quantification
and elucidate its semantical grounding into one-place quantification. The key tool for
analysing multi-place quantification will be provided by formalizing thereductionof
ann-place quantifier to a corresponding unary quantifier.35

In order to understand hown-place quantifiers can be reduced to one-place quan-
tification, let us recall that for arbitrary setsA,B,C, it always holds thatAB×C ∼=
(AB)C , a relationship commonly known as ‘currying’. We then have

P(E)n ∼= (2E)n ∼= 2E×n ∼= P(E × n) ∼= P(E × {1, . . . , n}) ,
35In an earlier report [48], I used the terms ‘unary’ and ‘monadic’ interchangeably. Here I am more

consistent about that and now stick to the standard terminology, i.e. a quantifier isunary if it accepts one
argument; and it ismonadicif each occurrence of the quantifier binds one variable at a time.
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and similarly

P̃(E)
n ∼= (IE)n ∼= IE×n ∼= P̃(E × n) ∼= P̃(E × {1, . . . , n}) ,

wheren abbreviates{0, . . . , n− 1} as usual. For convenience, I have replacedE × n
by E × {1, . . . , n}, which better suits the convention of numbering the arguments of
ann-place quantifier from1 to n (rather than from0 to n − 1). This suggests that
by exploiting the bijectionP(E)n ∼= P(E × {1, . . . , n}), n-place quantification as
expressed by someQ : P(E)n −→ I can be replaced by one-place quantification using
a one-place quantifier〈Q〉 : P(E × {1, . . . , n}) −→ I, and that converselyF(Q) :
P̃(E)

n
−→ I can always be recovered fromF(〈Q〉) : P̃(E × {1, . . . , n}) −→ I.

To establish this result, we need some formal machinery. For a given domainE and
n ∈ N, I will abbreviateEn = E × {1, . . . , n}. This will provide a concise notation
for the base sets of the resulting unary quantifiers. Forn = 0, we obtain the empty
productE0 = ∅.

Definition 48 ( ın,Ei )
LetE be a given set,n ∈ N \ {0} andi ∈ {1, . . . , n}. By ın,Ei : E −→ En we denote
the inclusion defined by

ın,Ei (e) = (e, i) ,

for all e ∈ E.

Note. The crisp extension (powerset mapping, see Def. 19) ofın,Ei : E −→ En will
be denoted bŷı n,Ei : P(E) −→ P(En). The inverse image mapping ofıE,ni will be
denoted(ı E,ni )−1 : P(En) −→ P(E), see equality (18).
We can use these injections to define the unary quantifier〈Q〉 of interest.

Definition 49
LetQ : P(E)n −→ I be ann-place semi-fuzzy quantifier, wheren > 0. Then〈Q〉 :
P(En) −→ I is defined by

〈Q〉(X) = Q((ı n,E1 )−1(X), . . . , (ı n,En )−1(X))

for all X ∈ P(En).

For fuzzy quantifiers,〈Q̃〉 is defined similarly, using the fuzzy inverse image mapping

(̂̂ı
n,E

i )−1 : P̃(En) −→ P̃(E) of ın,Ei :

Definition 50
Let Q̃ : P̃(E)

n
−→ I be a fuzzy quantifier,n > 0. The fuzzy quantifier〈Q̃〉 :

P̃(En) −→ I is defined by

〈Q̃〉(X) = Q̃((̂̂ı
n,E

1 )−1(X), . . . , (̂̂ı
n,E

n )−1(X)) ,

for all X ∈ P̃(En).
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I now wish to establish the relationship between〈Q〉 andQ (semi-fuzzy case) and〈Q̃〉
andQ̃ (fuzzy case). Let us first introduce a concise notation for iterated unions of a
quantifier’s arguments:

Definition 51
Suppose thatQ : P(E)n −→ I is a semi-fuzzy quantifier,n > 0 andk ∈ N \ {0}. The
semi-fuzzy quantifierQ∪k : P(E)n+k−1 −→ I is inductively defined as follows:

a. Q∪1 = Q;

b. Q∪k = Q∪k−1∪ if k > 1.

For fuzzy quantifiers̃Q : P̃(E)
n
−→ I, Q̃∪̃k : P̃(E)

n+k−1
−→ I is defined analo-

gously.

Theorem 35
For every semi-fuzzy quantifierQ : P(E)n −→ I wheren > 0,

Q = 〈Q〉∪n ◦
n
×
i=1

ı̂ n,Ei .

Note. This demonstrates thatn-place crisp (or ‘semi-fuzzy’) quantification, where
n > 0, can always be reduced to one-place quantification. If we allowed for empty
base sets, this would also go through forn = 0; I only had to exclude this case because
E0 = ∅, i.e. in this case we have〈Q〉 : P(∅) −→ I, which does not qualify as a
semi-fuzzy quantifier because the base set is empty.
A theorem analogous to Th-35 can also be proven in the fuzzy case:

Theorem 36
Supposẽ∨ : I × I −→ I hasx ∨̃ 0 = 0 ∨̃ x = x for all x ∈ I, and ∪̃ is the fuzzy
union element-wise defined in terms of∨̃. For every fuzzy quantifier̃Q : P̃(E)

n
−→ I,

n > 0,

Q̃ = 〈Q̃〉∪̃n ◦
n
×
i=1

ˆ̂ı
n,E

i .

Note. The theorem shows that it is possible to reducen-place quantification to one-
place quantification in the fuzzy case as well. Nullary quantifiers (n = 0) had to be
excluded for same reason as in Th-35.
The central fact which links these results to QFMs is the following:

Theorem 37
SupposeF is a QFM with the following properties:

a. x ∨̃ 0 = 0 ∨̃ x = x for all x ∈ I;
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b. for all semi-fuzzy quantifiersQ : P̃(E)
n
−→ I wheren > 0,

F(Q∪) = F(Q)∪̃;

c. F satisfies(Z-6) (functional application);

d. If E,E′ are nonempty sets andf : E −→ E′ is an injective mapping, then

F̂(f) = ˆ̂
f , i.e.F coincides with the standard extension principle on injections.

Then for all semi-fuzzy quantifiersQ : P(E)n −→ I of arity n > 0,

F(〈Q〉) = 〈F(Q)〉 .

In particular, every DFS commutes with〈•〉, and hence permits the reduction of multi-
place quantification to one-place quantification. In other words, the behaviour ofF
on general multi-place quantifiers of arbitrary aritiesn > 0 is already implicit in the
definition ofF for one-place quantifiers, because the quantification results of multi-
place quantification are completely determined by the behaviour ofF in the unary
case. In fact, we can actuallydefineF(Q) in terms ofF(〈Q〉), by utilizing Th-35 and
Th-36. The semantical relationship discovered here, and the associated constructions
of 〈Q〉 and〈Q̃〉, hence allow us togeneratea full-fledged QFM from its core of an
underlying ‘unary QFM’. In perspective, this would permit us to restrict attention to
the behaviour ofF on one-place quantifiers, and to reformulate the DFS axioms (Z-1)–
(Z-6) into axioms imposed on the unary base mechanism which underliesF . However,
the resulting axioms are likely to become more abstract than the current DFS axioms,
and I shall hence not pursue this idea further here.

From a practical standpoint, the techniques developed in this section have already
proven useful for establishing the equivalence of the alternative constructions of in-
duced fuzzy truth functions in all models of the theory.

4.19 Chapter summary

In the chapter, I first explained the general objectives which motivate the research into
semantical postulates for fuzzy quantification. Roughly speaking, the investigation of
this topic is essential, because ‘reasonable’ approaches which conform to the essential
postulates will achieve linguistic adequacy, logical coherence, and also offer a natural
account of fuzziness. Acknowledging the significance of these quality criteria to the
modelling of fuzzy quantification, I hence researched into a diversity of such require-
ments, forged these into precisely defined criteria on QFMs, and established in the
theorems, that arbitrary models of fuzzy quantification fulfill these criteria, provided
the models comply with the proposed axiom system (Z-1)–(Z-6). Consequently, ev-
ery model which rests on this axiomatic foundation is known to be well-behaved in a
variety of ways. This substantiates the claim that the proposed axiom system, albeit
compressed in appearence, indeed covers a wide range of intuitive expectations on the
models, which includes the essential requirements.
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As to specific adequacy conditions, I first considered the property of correct gener-
alisation, which is directly ensured by condition (Z-1) for quantifiers of arityn ≤ 1.
By combining the latter condition with the remaining axioms, I was then able to es-
tablish the ‘full’ property which now covers unrestricted quantifiers of arbitrary arities.
Knowing that the requirement of ‘correct generalisation’ holds unconditionally in ev-
ery DFS, is of special importance to the proposed framework, because it provides a
post-hoc justification for applying the fuzzification pattern, and hence bears witness
that the proposed framework is well-constructed.

Before turning to quantifiers, I then considered the propositional fragment of the
models, which is determined by the construction of induced truth functions. As to the
simpler case of unary connectives, I first proved that the identity truth function maps
to the corresponding identity on the unit interval, which is of course the only accept-
able choice for the continuous-valued case. Now considering negation, the models
were shown to translate the original crisp negation into a strong negation operator, in
conformance with the usual abstraction of reasonable negation operators that is made
in fuzzy set theory. Next I investigated the two-place connectives, thus substantiating
that these are assigned a reasonable semantics as well. With conjunction, the intuitive
expectations on plausible choices are captured by the familiar concept of at-norm, and
indeed all induced conjunctions of the models can be shown to belong to this class.
As to disjunction, it is the notion of ans-norm which constitutes the class of or-like
connectives, and it was shown that in all considered models, the disjunction translates
into the¬̃-duals-norm of the induced conjunction, which is highly desirable. In addi-
tion, the induced implication can be expressed in terms of the induced disjunction and
negation, following the usual pattern.

This completes my summary of induced truth functions, which are all obtained by
instantiating the generic scheme defined in Def. 11. From a methodological stand-
point, however, it is not only interesting to analyse these individual instances, but also
to analyse the construction of induced connectives itself, and to explore its possible
alternatives. By comparing the fuzzy truth functions determined from these schemes, I
then gathered more evidence that the obtained choice of connectives is indeed canoni-
cal, because it is shared by two independent constructions.

Following this discussion of their propositional structure, attention was then shifted
to the quantifiers themselves, and the models were analyzed for their compliance with
certain operations on the quantifiers’ arguments. Some of these operations underly the
linguistic description of NL quantification and are familiar from TGQ, while others
are concerned with coherence, and disclose some important properties which are both
elementary but easily overlooked, because they are only too self-evident and usually
go without saying.

First of all, I considered a construction which permutes argument positions. I started
by defining the base operation on a given quantifier, which simply alters the order of the
arguments in the way specified by the permutation. The generic argument permutation
scheme was then restricted to a special type of elementary transpositions, into which
every permutation can be decomposed. I also presented an example in which the con-
struction is directly applied to construct an NL quantifier, and another example which
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illustrates the utility of the considered construction to express symmetry properties of
quantifiers. Because these symmetries reveal an important aspect of the meaning of
quantifiers, it is essential that plausible approaches to fuzzy quantification be compat-
ible with the underlying construction. The proposed axiom system is strong enough
to ensure that all conforming models be homomorphic to argument transpositions (and
hence also to argument permutations). In particular, these models will recognize the
symmetry pattern of a given base quantifier, and extrapolate its symmetry properties to
the fuzzy case.

Having discussed the issue of argument symmetry, I turned to cylindrical extensions,
a construction which augments a given quantifier by vacuous argument positions. This
construction is mainly required to fit a number of given quantifiers to a certain joint
construction, which requires that all of the involved quantifiers refer to a common
argument list. After stating the formal definition of cylindrical extensions, I addressed
the question whether the considered models of fuzzy quantification comply with this
construction. The results of this study again came out positive. In fact, if an argument
of a semi-fuzzy quantifier has no effect on the computed outcomes, then it will also
have no effect on the quantification results of the corresponding fuzzy quantifier.

Following the discussion of this coherence requirement, the various types of negation
were investigated, in order to assess the degree to which the models preserve Boolean
structure. The analysis of the models on this background, revealed the full compliance
of a DFS with the formation of antonyms (complementation of arguments) and the ex-
ternal negation of quantifiers (where the negation operator is applied to the quantifying
expression as a whole). Combining this with known conformance to dualisation, which
is ensured by (Z-3), it is then apparent that every DFS preserves Aristotelian squares
of quantifiers. These visualize the interrelations between the various types of negation,
which can be applied to a quantifier. The relevance of the Aristotelian squares stems
from their close relationship to the Piaget group of transformations, which catches
some findings of developmental psychology. Apart from the block-wise type of nega-
tion/complementation considered so far, I then discussed a more fine-grained type of
negation, which can be modelled by the symmetrical difference of arguments with
given crisp sets. In this way, only part of a fuzzy argument can be complemented,
while the remaining portion is left unchanged. This fine-structured type of negation
does not pose problems to the considered models, though, which can handle it uncon-
ditionally, just like the simple negation and complementation.

Having considered the Boolean structure which expresses in the various types of
negation, attention was then shifted to the structure imposed by unions and intersec-
tions. As to the formation of unions, it is explicitly required by (Z-4) that all models
comply with this construction when it occurs in the last argument. By utilizing the
earlier result on argument permutation, it is then immediate that every DFS conforms
to unions in arbitrary argument position. Now recalling the compliance of the models
to complementation, and making use of De Morgan’s law, it then came out that every
model also conforms to intersections in arbitrary argument positions. In this sense, the
models are fully compatible with Boolean argument structure.

In addition, the models were shown to comply with another construction of relevance
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to natural language, the insertion of arguments into a quantifier. To be precise, the
relevance of argument insertions stems from their contribution to an important NL
construction known as adjectival restriction, which can be reduced to intersections
and argument insertion. In order to discuss this construction, I first introduced an
operator-based notation for describing an elementary insertion step. I then proved
that every DFS complies with the insertion operation. This demonstrates in particular,
that all models comply with adjectival restriction by a crisp adjective (like “married”).
The discussion of fuzzy argument insertion has been delayed to the later section 6.8,
because it requires special attention. Due to the simple fact that a fuzzy argument
cannot be inserted into a semi-fuzzy quantifier, it is necessary to handle fuzzy argument
insertion and fuzzy adjectival restriction with a rather different approach.

Acknowledging the importance of monotonicity properties, which constrain the valid
conclusions, a special case of monotonicity condition has been included into the set of
DFS axioms. The condition enforces that legal models preserve the nonincreasing
monotonicity of a quantifier in its last argument, see (Z-5). This artificial restriction
of the criterion was motivated by the desire to keep the axiom system as succinct as
possible, in order to simplify later proofs which depend on the axioms. However, it
is the unrestricted preservation of monotonicity properties of any kind, that one would
expect of a reasonable approch to fuzzy quantification. I hence reviewed the mono-
tonicity issue in some depth, and also studied some more general ways in which it
shows up in NL quantfiers. To begin with, I now established that monotonicity proper-
ties in arguments are preserved by all considered models, regardless of the position of
the argument and its monotonicity type (nondecreasing/nonincreasing). I then refined
this result, by directing attention towards monotonicity properties which hold only lo-
cally, a notion which I defined in terms of closed ranges of crisp sets. The proposed
relativization of monotonicity properties to any desired choice of argument ranges, is
not critical to the models. In fact, every DFS can be shown to preserve any type of
monotonicity properties, even if they hold only locally. Apart from the preservation of
monotonicity properties, which pertain to the argument structure of a quantifier, it was
also the monotonicity of the fuzzification mechanism itself which received attention.
Intuitively, we would expect that the models preserve inequalities between quantifiers,
and indeed every DFS was shown to be monotonic in this sense. Again, it is possible
make a refinement into local inequalities between quantifiers, which hold only in a
given range of arguments, and to prove the compliance of the models with the novel
relativized concept.

The subsequent analysis of the induced extension principle also revealed some in-
teresting findings. First of all, it was shown that the induced extension principle is
functorial, and hence permits a decomposition of powerset mappings whenever con-
venient. Attention was then drawn to the fact that on injective mappings, there is
only one reasonable definition of the corresponding powerset mapping. In turn, it was
shown that all induced extension principles coincide on injective mappings with the ap-
parent plausible definition. Some additional results on the induced extension principle
have also been proven. For example, it is only possible for one extension principle at a
time, to be compatible with the construction of functional application, which underlies
condition (Z-6). Most importantly, the covert relationship between the induced exten-
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sion principle and existential quantification was now disclosed. In fact, the induced
powerset mappings can always be expressed in terms of existential quantification and
conversely, existential quantification can always be reduced to an application of the
extension principle.

Having presented these general results on the abstract behaviour of the extension
principle, I got into details of important semantical properties, which are closely tied to
the extension principle. First and foremost, I have generalized the well-known concept
of quantitativity to semi-fuzzy and fuzzy quantifiers, adopting the usual modelling of
quantitativity in terms of automorphism invariance. The subsequent analysis of the
models under the aim of quantitativity revealed that the quantitative type of semi-fuzzy
quantifiers is mapped to quantitative counterparts, while non-quantitative examples
remain non-quantitative under the fuzzification. This makes a very satisfying result,
which demonstrates the suitability of DFSes to model both types of quantifiers, and
hence sets the theory in stark contrast to existing approaches, which only know of a
limited fragment of the quantitative type.

In addition, the abstract findings on the interpretation of fuzzy powerset mappings,
also fostered research into one of the central linguistic requirements. This criterion
on the models has been taylored to a characteristic of linguistic quantifiers known as
‘having extension’, which expresses an important insensitivity property of NL quantifi-
cation with respect to the precise choice of the domain. Intuitively, the domain simply
constitutes a background for quantification, but its total extent should be inessential.
Having explained this property and its significance to the modelling of NL semantics,
I proposed the definition of an extensional QFM, which captures the precise require-
ments on those choices ofF , which preserve the property of having extension. It was
then immediate from the previous result concerning the natural extension of injective
mappings, that every model of the theory is indeed extensional. Hence all models of
fuzzy quantification comply with one of the key requirements from a linguistic per-
spective, and properly model a typical and possibly universal aspect of quantifiers in
natural language.

I also introduced the novel concept of contextuality, which is concerned with our
intuitive understanding of fuzziness, and the relationship between fuzzy sets and crisp
sets that live on the same domain. The concept attempts to formalize the straightfor-
ward observation that it is not the clear cases with crisp membership grades, that pose
problems for interpretation. Quite the reverse, the extra effort in supporting fuzziness is
only caused by the undecided or unclear cases with gradual membership, which force
us to make additional assumptions in order to ensure a plausible interpretation. Now
utilizing the familiar notions of core and support (envelope) of a fuzzy set, it was shown
that the collection of these unclear cases can be resolved into a closed range of crisp
sets, which precisely describes the ambiguous cases. The fuzzy set is hence viewed as
providing a context for interpretation, which clearly delimits the alternatives that must
be considered for fuzzy quantification, and hence permits local computations. Based
on these preparations, I then introduced the postulate for contextuality, which forces
all plausible models to separate clear cases from unclear cases, and strictly confine all
ambiguity to the context ranges of the fuzzy arguments. Subsequently, all models of
the theory were shown to comply with this criterion. Hence all cases outside the con-
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text range are considered irrelevant to the quantification result, because they escape the
conceivable range of compatible interpretations of the arguments. Although contextu-
ality makes a very elementary requirement, we shall experience later that it conflicts
with another desideratum, that of preserving general convexity properties of quanti-
fiers. However, contextuality clearly outweighs the other considerations, because it
captures so elementary an aspect of fuzzy quantification that it is hard to imagine how
a violation of this principle could ever be acceptable.

The logical aspects, and in particular the prototypical quantifiers∀ and∃, also re-
ceived their due attention. The goal of this investigation was to disclose the precise
interpretation rules for the universal and existential quantifiers. In particular, I wanted
to show that in accordance with intuitive expectations, one could relate universal quan-
tification and conjunction, as well as existential quantification and disjunction. It was
further hoped that the research into the standard quantifiers might contribute to the
development of an explicit formula which precisely describes the induced extension
principle. In order to accomplish these goals, I started from successful work on the
standard quantifiers that was described in the literature, i.e. from Thiele’s modelling
of the logical quantifiers through so-called T- and S-quantifiers. It was then easily
shown that the universal and existential quantifiers induced by a DFS, indeed belong to
these classes of plausible choices. I then applied Thiele’s decomposition theorems and
hence obtained the final representation of these quantifiers, which is now explicitly
constructed from the inducedt-norm/s-norm of the model. The achieved decompo-
sition reveals in particular, that the important relationship between conjunction and
universal quantification (disjunction and existential quantification), which holds in the
crisp case, is preserved when applying a DFS. By substituting the new representation
into the earlier formulas which compute the extension principle from the existential
quantifier, I finally obtained a new representation of the induced extension principle.
Specifically, the abstract definition of the induced extension principle stated in Def. 22
was broken down into an explicit formula, which reveals its precise internal structure.

Finally, I treated two more theoretically oriented topics. I first reviewed the notion of
inverse images (the converse of powerset mappings). Unlike extension principles, there
is only one natural generalisation of inverse images to the fuzzy case. Assuming the
apparent construction of induced fuzzy inverse images for a givenF , we should then
expect that the model of fuzzy quantification induce the above natural choice of inverse
images. Indeed, all models of fuzzy quantification were shown to be plausible in this
respect. The latter result then contributed to the solution of the last problem considered
in this chapter, which was concerned with the reducibility of multi-place quantification
to a special kind of one-place (unary) quantification in the general case. By exploiting
an apparent Currying relationship, I managed to reduce multi-place semi-fuzzy quan-
tifiers and multi-place fuzzy quantifiers to ‘simple’ unary quantifiers. I then developed
the precise conditions that a QFMF must fulfill in order to be compatible with these
reductions. It happens that these conditions are satisfied by every DFS, which com-
pletes the proof that in the considered models, multi-place quantification can indeed be
reduced to a specifically constructed, unary quantifier, supplied with a single argument
which results from a canonical construction.
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5 Special subclasses of models

5.1 Motivation and chapter overview

The last chapter has shed some light on the semantical properties shared by arbitrary
models of the theory. However, no attempt has been made so far to structure the total of
models into natural subclasses and to investigate the specific properties of their mod-
els, which might not be shared by other classes of DFSes. Apart from this research
into the subclasses themselves, it is also the precise relationships between the sub-
classes that raise interest. Furthermore the identification of subclasses provides a local
context in which those concepts can be developed, that require a minumum degree of
homogeneity on the models’ side. For example, the structure of the models must be
sufficiently similar, in order to permit their reasonable comparison. Most importantly,
the relative homogeneity of models in the same class, renders possible the definition
of certain constructions on the given subclasses. For example, the models gathered in
a class will be sufficiently homogeneous to permit a construction which combines a
given collection of models into new models. Finally, the research into subclasses also
serves to identify a class of standard models for fuzzy quantification, which best meet
our intuitive expectations.

In the chapter, the models are first grouped by their induced negation. I then propose
a scheme for model transformations, which is capable of fitting a given QFM to differ-
ent choices of negation operators. It will come out of this investigation that it is possible
to switch from any choice of induced negation to any other choice of induced negation.
These results justify the subsequent practice to shape the theory to the¬-DFSes, which
induce the standard negation. Following this, the¬-DFSes will be further grouped by
their induced disjunctioñ∨, thus forming the the classes of∨̃-DFSes. These classes
will be sufficiently homogeneous to allow the development of the model aggregation
scheme, which fuses a given collection of∨̃-DFSes into a new model. I then formal-
ize the intuitive notion of specificity, i.e. the degree to which a model commits to crisp
quantification results, which installs a natural order for the intended comparisons. I will
also develop the necessary concepts to locate the extreme cases in terms of specificity.
Attention will then be shifted to a different classification of the models, which will
now be grouped both by their induced negation and disjunction. I will then define con-
junctions and disjunctions of quantifiers, and present some first results concerning the
compatibility of a restricted class of models with these novel constructions. I will also
describe the precise interpretation of equivalence and antivalence/xor in the considered
type of models. Finally I will turn to the issue of identifying the class of standard mod-
els for fuzzy quantification within the proposed framework. Intuitively, the standard
models should conform to the standard concepts of fuzzy set theory, like the standard
negation1 − x, the standard conjunction and disjunctionmin andmax, the standard
extension principle etc. These expectations on standard models are easily forged into a
precise definition of the target class. Acknowledging the distinguished position of the
resulting standard DFSes, it is worthwhile developing an axiomatisation. I will hence
adapt the original axiom system in such a way that it uniquely identifies the standard
type of models.
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5.2 Models which induce the standard negation

To begin with, let us classify the models according to their induced negation.

Definition 52
Let ¬̃ : I −→ I be a strong negation operator. A DFSF is called a¬̃-DFS if its
induced negation coincides with̃¬, i.e. F̃(¬) = ¬̃ . In particular, we will callF a
¬-DFS if it induces the standard negation¬x = 1− x.

In the following I will establish that without loss of generality, one can restrict attention
to ¬-DFSes. To achieve this, a mechanism is needed which allows us to transform
a given DFSF into another. A suitable model transformation scheme is defined as
follows.

Definition 53 (Model transformation scheme)
SupposeF is a DFS andσ : I −→ I a bijection. For every semi-fuzzy quantifier
Q : P(E)n −→ I and allX1, . . . , Xn ∈ P̃(E), we define

Fσ(Q)(X1, . . . , Xn) = σ−1F(σQ)(σX1, . . . , σXn) ,

whereσQ abbreviatesσ◦Q, andσXi ∈ P̃(E) is the fuzzy subset withµσXi = σ◦µXi .

Let us now establish that every proper instantiation of the transformation scheme in-
deed constructs a new model of fuzzy quantification:

Theorem 38
If F is a DFS andσ : I −→ I an increasing bijection, thenFσ is a DFS.

It is well-known [89, Th-3.7] that for every strong negation¬̃ : I −→ I there is a
monotonically increasing bijectionσ : I −→ I such that̃¬x = σ−1(1− σ(x)) for all
x ∈ I. The mappingσ is called thegeneratorof ¬̃.

Theorem 39
SupposeF is a ¬̃-DFS andσ : I −→ I is the generator of̃¬. ThenF ′ = Fσ−1

is a
¬-DFS andF = F ′σ.

The theorem states that the model transformation accomplishes a bidirectional transla-
tion between the models which is capable of adapting the induced negation.

The transformation scheme hence achieves a universal translation property with re-
spect to strong negation operators: every model can be fitted to any choice of negation
operator and vice versa. Put differently, each class of¬̃-DFSes is representative of the
full class of models, because the remaining classes of¬̃′-DFSes (based on different
choices of the negation¬′) can be generated from the given source class. In particular,
no models of interest are lost if we focus on¬-DFSes only, i.e. to those models which
induce the standard negation. Due to the universal translation property, the definitions
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of novel concepts and constructions on the models can now be restricted to¬-DFSes
whenever convenient.

In the following, the models based on the standard negation are further grouped
according to their induced disjunction.

Definition 54
A¬-DFSF which induces a fuzzy disjunctioñ∨ is called a∨̃-DFS.

The benefit of introducing these classes of models is that∨̃-DFSes are sufficiently
homogeneous for a straightforward definition of constructions that act on collections of
these models. In particular, it now becomes possible to introduce the following model
aggregation scheme, which combines a collection of∨̃-DFSes into a new̃∨-DFS, in
accordance with a given aggregation operatorΨ.

Theorem 40 (Model aggregation scheme)
SupposeJ is a non-empty index set and(Fj)j∈J is a J -indexed collection of̃∨-
DFSes. Further suppose thatΨ : IJ −→ I satisfies the following conditions:

a. If f ∈ IJ is constant, i.e. if there is ac ∈ I such thatf(j) = c for all j ∈ J ,
thenΨ(f) = c.

b. Ψ(1− f) = 1−Ψ(f), where1− f ∈ IJ is point-wise defined by(1− f)(j) =
1− f(j), for all j ∈ J .

c. Ψ is monotonically increasing, i.e. iff(j) ≤ g(j) for all j ∈ J , thenΨ(f) ≤
Ψ(g).

If we defineΨ[(Fj)j∈J ] by

Ψ[(Fj)j∈J ](Q)(X1, . . . , Xn) = Ψ((Fj(Q)(X1, . . . , Xn))j∈J )

for all semi-fuzzy quantifiersQ : P(E)n −→ I and X1, . . . , Xn ∈ P̃(E), then
Ψ[(Fj)j∈J ] is a ∨̃-DFS.

In particular, convex combinations (e.g., arithmetic mean) and stable symmetric sums
[141] of ∨̃-DFSes are agaiñ∨-DFSes.

The¬-DFSes can be partially ordered by ‘specificity’ or ‘fuzziness’, in the sense of
closeness to12 . We define a partial order�c ⊆ I× I by

x�c y ⇔ y ≤ x ≤ 1
2 or 1

2 ≤ x ≤ y , (30)

for all x, y ∈ I. �c is Mukaidono’s ambiguity relation, see [110]. This basic definition
of �c for scalars can be extended to the case of DFSes in the obvious way:

Definition 55
SupposeF , F ′ are ¬-DFSes. We say thatF is consistently less specificthanF ′,
in symbols: F �c F ′, if for all semi-fuzzy quantifiersQ : P(E)n −→ I and all
X1, . . . , Xn ∈ P̃(E), F(Q)(X1, . . . , Xn)�c F ′(Q)(X1, . . . , Xn).
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We now wish to establish the existence of consistently least specific∨̃-DFSes. As
it turns out, the greatest lower specificity bound of a collection of∨̃-DFSes can be
expressed using the fuzzy median, defined as follows.

Definition 56
Thefuzzy medianmed 1

2
: I× I −→ I is defined by

med 1
2

(u1, u2) =


min(u1, u2) : min(u1, u2) > 1

2

max(u1, u2) : max(u1, u2) < 1
2

1
2 : else

The plot ofmed 1
2

is displayed in Fig. 9.
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Figure 9: The fuzzy medianmed 1
2

med 1
2

is an associative mean operator [15] and the only stable (i.e. idempotent) asso-

ciative symmetric sum [141].
The fuzzy median can be generalised to an operatorm 1

2
: P(I) −→ I which accepts

arbitrary subsets ofI as its arguments. Firstly, because it is associative, idempotent and
commutative,med 1

2
can be generalized to arbitraryfinitesets of arguments (just apply

med 1
2

in any order). Noting that for all finiteX = {x1, . . . , xn} ⊆ I, n ≥ 2, it holds
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that

m 1
2
X = med 1

2
(minX, maxX) ,

the proper definition ofm 1
2
X in the casen = 0, n = 1 becomes

m 1
2
∅ = med 1

2
(min∅, max∅) = med 1

2
(1, 0) = 1

2 ,

m 1
2
{u} = med 1

2
(min{u}, max{u}) = med 1

2
(u, u) = u

I now extendm 1
2

to arbitrary subsetsX ⊆ I as follows.

Definition 57
The generalised fuzzy medianm 1

2
: P(I) −→ I is defined by

m 1
2
X = med 1

2
(inf X, supX) , for all X ∈ P(I).

Note. This definition is obviously compatible with the above considerations on the
proper definition ofm 1

2
X for finite subsets ofI. Based on the generalized fuzzy

median, I can now state the desired theorem on the existence and representation of
lower specificity bounds on given collections of∨̃-DFSes.

Theorem 41
Suppose that̃∨ is an s-norm, andF a non-empty collection of̃∨-DFSesF ∈ F.
Then there exists a greatest lower specificity bound onF, i.e. a∨̃-DFSFglb such that
Fglb�cF for all F ∈ F (i.e.Fglb is a lower specificity bound), and for all other lower
specificity boundsF ′, F ′ �c Fglb.
Fglb is defined by

Fglb(Q)(X1, . . . , Xn) = m 1
2
{F(Q)(X1, . . . , Xn) : F ∈ F} ,

for all Q : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E).

In particular, the theorem asserts the existence of a least specific∨̃-DFSes, i.e. when-
ever∨̃ is ans-norm such that̃∨-DFSes exist, then there exists a least specific∨̃-DFS
(just apply the above theorem to the collection of all∨̃-DFSes).
As concerns the converse issue of most specific models, i.e. least upper bounds with
respect to�c, the following definition of ‘specificity consistency’ turns out to provide
the key concept:

Definition 58
Supposẽ∨ is an s-norm andF is a non-empty collection of̃∨-DFSesF ∈ F. F is
called specificity consistentif for all Q : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E),
eitherRQ,X1,...,Xn ⊆ [0, 1

2 ] or RQ,X1,...,Xn ⊆ [ 1
2 , 1], where

RQ,X1,...,Xn = {F(Q)(X1, . . . , Xn) : F ∈ F} .
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Based on this definition of specificity consistency, I can now express the exact con-
ditions under which a collection of̃∨-DFSes has a least upper specificity bound, and
provide an explicit description of the resulting bound in those cases where it exists.

Theorem 42
Supposẽ∨ is ans-norm andF is a non-empty collection of̃∨-DFSesF ∈ F.

a. F has upper specificity bounds exactly ifF is specificity consistent.

b. If F is specificity consistent, then its least upper specificity bound is the∨̃-DFS
Flub defined by

Flub(Q)(X1, . . . , Xn) =

{
supRQ,X1,...,Xn : RQ,X1,...,Xn ⊆ [ 1

2 , 1]
inf RQ,X1,...,Xn : RQ,X1,...,Xn ⊆ [0, 1

2 ]

whereRQ,X1,...,Xn = {F(Q)(X1, . . . , Xn) : F ∈ F}.

5.3 Models which induce the standard disjunction

The models of fuzzy quantification can also be grouped according to their induced
negation and disjunction:

Definition 59
A DFSF such that̃¬ = F̃(¬) and∨̃ = F̃(∨) is called a(¬̃, ∨̃)-DFS.

The (¬̃, max)-DFSes in particular, comprise those models that induce the standard
disjunction and an arbitrary strong negation operator. These are the models for which
I can now present a theorem concerning the interpretation of conjunctions and disjunc-
tions of quantifiers. In order to express these results, it is first necessary to introduce
the relevant constructions, which build conjunctions and disjunctions from given quan-
tifiers.

In the Theory of Generalized Quantifiers there are constructionsQ∧Q′ andQ∨Q′ of
forming the conjunction (disjunction) of two-valued quantifiersQ,Q′ : P(E)n −→ 2,
see e.g. [6, p. 194], [45, p. 234]. These constructions are easily generalized to (semi)-
fuzzy quantifiers.

Definition 60
Supposẽ∧, ∨̃ : I× I −→ I are given (usually the connectives induced by an assumed
QFM). For all semi-fuzzy quantifiersQ, Q′ : P(E)n −→ I, the conjunctionQ ∧̃ Q′ :
P(E)n −→ I and the disjunctionQ ∨̃Q′ : P(E)n −→ I ofQ andQ′ are defined by

(Q ∧̃Q′)(X1, . . . , Xn) = Q(X1, . . . , Xn) ∧̃Q′(X1, . . . , Xn)

(Q ∨̃Q′)(X1, . . . , Xn) = Q(X1, . . . , Xn) ∨̃Q′(X1, . . . , Xn)

for all X1, . . . , Xn ∈ P(E). For fuzzy quantifiers,̃Q ∧̃ Q̃′ and Q̃ ∨̃ Q̃′ are defined
analogously.
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Note. Conjunctions and disjunctions of (semi-)fuzzy quantifiers of different arities
can be formed through cylindrical extensions, i.e. by adding vacuous arguments, see
section 4.6.
As to the interpretation of these conjunctions and disjunctions of quantifiers, I have the
following result which is valid for(¬̃, max)-DFSes.

Theorem 43
SupposeF is a (¬̃, max)-DFS. Then for allQ, Q′ : P(E)n −→ I,

a. F(Q ∧Q′) ≤ F(Q) ∧ F(Q′)

b. F(Q ∨Q′) ≥ F(Q) ∨ F(Q′).

Notes

• Let me emphasize that the theorem doesnotstate the compatibility of(¬̃, max)-
DFSes to conjunction and disjunction, it simply establishes bounds on the quan-
tification results. See section 6.4 for a discussion why the inequalities in the
above theorem cannot be replaced with equalities on formal grounds.

• Because the theorem refers to the standard fuzzy conjunction and disjunction,
the constructions on quantifiers have been writtenQ ∧Q′ andQ ∨Q′, omitting
the ‘tilde’ notation for fuzzy connectives. Similarly, the standard fuzzy intersec-
tion and standard fuzzy union will be writtenX ∩ Y andX ∪ Y , resp., where
µX∩Y (e) = min(µX(e), µY (e)) andµX∪Y (e) = max(µX(e), µY (e)). The
same conventions are stipulated for intersectionsQ̃∩ and unionsQ̃∪ of the ar-
guments of a fuzzy quantifier, as well as for dualsQ� of semi-fuzzy quantifiers
or Q̃� of fuzzy quantifiers, based on the standard negation.

I have not made any claims yet concerning the interpretation of↔̃ = F̃(↔) and
x̃or = F̃(xor) in a given DFSF , and indeed, there are currently no results available
for the full class of models. In the special case of(¬̃, max)-DFSes, though, these
connectives are tied to the following interpretation.

Theorem 44
SupposeF is a (¬̃, max)-DFS. Then for allx1, x2 ∈ I,

a. x1 ↔̃ x2 = (x1 ∧ x2) ∨ (¬̃x1 ∧ ¬̃x2)

b. x1 x̃or x2 = (x1 ∧ ¬̃x2) ∨ (¬̃x1 ∧ x2) .

5.4 The standard models of fuzzy quantification

The most restricted subclass of models we will consider – and the best-behaved – is
that ofstandard DFSes, i.e. the class of those models which comply with the standard
operations of fuzzy set theory (min, max etc.). Due to the supreme adequacy properties
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shown by these models, and their conformance to the established core of fuzzy set
theory, it is suggested that this type of DFSes be considered the standard models of
fuzzy quantification. Formally, I define standard DFSes as follows.

Definition 61
By astandard DFSwe denote a(¬,max)-DFS.

Building on the earlier theorems, the fuzzy truth functions induced by a standard DFS
can now be summarized as follows.

Theorem 45 (Truth functions in standard DFSes)
In every standard DFSF ,

¬̃x1 = 1− x1

x1 ∨̃ x2 = max(x1, x2)

x1 ∧̃ x2 = min(x1, x2)
x1 →̃ x2 = max(1− x1, x2)
x1 ↔̃ x2 = max(min(x1, x2), min(1− x1, 1− x2))
x1 x̃or x2 = max(min(x1, 1− x2), min(1− x1, x2))

The standard DFSes therefore induce the standard connectives of fuzzy logic, i.e. the
propositional fragment of a standard model coincides with the well-known K-standard
sequence logic of Dienes [32]. In particular, Kleene’s three-valued logic [85, p. 344] is
obtained when restricting to the three-valued fragment.36 From the above theorem Th-
33, then, standard DFSes are also known to induce the standard extension principle. As
concerns the standard quantifiers, we obtain the familiar choices as well For example,
it is apparent from theorems Th-30 and Th-32 that

F(∃)(X) = sup{µX(e) : e ∈ E}
F(∀)(X) = inf{µX(e) : e ∈ E}

for all X, X1, X2 ∈ P̃(E). This is quite satisfactory.

Let me further emphasize that the standard models represent a boundary case of
DFSes because they induce the smallest fuzzy existential quantifiers, the smallest ex-
tension principle, and the largest fuzzy universal quantifiers. This is immediate from
Th-32, Th-23 and Th-30, respectively, keeping in mind thatmin is the largestt-norm
andmax the smallests-norm.

Finally, we consider the interpretation of two-valued quantifiers in the standard mod-
els. Interestingly, there is absolutely no freedom concerning the interpretation assigned
to these quantifiers, which is fully determined by the requirements imposed on the stan-
dard models:

36Some readers might prefer a different choice of the implication operator, namelyx1→̃x2 = min(1, 1−
x1 + x2). However, it is clear that every QFM with the highly desirable property of preserving Aristotelian
squares will also preserve the interdefinability of the propositional connectives, and therefore differ from
L/ukasiewicz logic.
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Theorem 46
All standard DFSes coincide on two-valued quantifiers. Hence ifF ,F ′ are standard
DFSes andQ : P(E)n −→ 2 is a two-valued quantifier, thenF(Q) = F ′(Q).

This result establishes a link between the standard models and other fuzzification
mechanisms described in the literature. This is because the examples of standard
models introduced in [46] are known to coincide with the fuzzification mechanism of
Gaines [44] on two-valued quantifiers. We can then conclude from the above theorem
that all standard models are indeed compatible with this mechanism. Standard DFSes
are more powerful in scope, though, and consistently generalize the Gainesian mech-
anism to arbitrary semi-fuzzy truth functions and semi-fuzzy quantifiers (see section
10.9 below for a more detailed discussion of the Gainesian fuzzification mechanism).
In terms of the classification of quantification types introduced by Kerre and Liu [99,
p. 2], the theorem asserts that all ‘Type II’ quantifications in the sense of the proposed
classification are assigned the very same interpretation across all standard models. In
other words, the axioms for standard models of fuzzy quantification are strong enough
to identify a unique admissible interpretation for arbitrary Type-II quantifications.

5.5 Axiomatisation of the standard models

In this section, I will achieve an axiomatisation of the standard models of fuzzy quan-
tification, by presenting a system of conditions on the considered fuzzification mecha-
nismF which precisely characterise the class of standard DFSes. It should be apparent
from the previous remarks which changes to the base axioms (Z-1)–(Z-6) are necessary
to effect a reduction to the standard models. These considerations are summarized in
the following adapted system of conditions onF :

Definition 62
Consider a QFMF . For all semi-fuzzy quantifiersQ : P(E)n −→ I, we stipulate the
following conditions.

Correct generalisation U(F(Q)) = Q if n ≤ 1 (S-1)

Projection quantifiers F(Q) = π̃e if there existse ∈ E s.th.Q = πe
(S-2)

Dualisation F(Q�) = F(Q)� n > 0 (S-3)

Internal joins F(Q∪) = F(Q)∪ n > 0 (S-4)

Preservation of monotonicity IfQ is nonincreasing inn-th arg, then (S-5)

F(Q) is nonincreasing inn-th arg,n > 0

Functional application F(Q ◦
n
×
i=1

f̂i) = F(Q) ◦
n
×
i=1

ˆ̂
f i (S-6)

wheref1, . . . , fn : E′ −→ E, E′ 6= ∅.

Note. Let me briefly remark on the differences compared to the original DFS axioms
(Z-1)–(Z-6). Firstly in (S-3), the induced negation/complement has been replaced with
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the standard choice of fuzzy negation/complement. In (S-4), the induced fuzzy union
has been replaced with the standard fuzzy union. Finally, (S-6) is built upon the stan-
dard extension principle, rather than requiring the compatibility ofF with its induced
extension principle.
As stated by the next theorem, these conditions indeed capture the precise requirements
for F to be a standard DFS.

Theorem 47 The conditions(S-1)–(S-6) are necessary and sufficient forF to be a
standard DFS.
(Proof: D.1, p.437+)

Note. In Chap. 7 below, I will identify an important model and show that it is out-
standing among the approaches to fuzzy quantification. We shall then see in Def. 97
how the axiomatic characterization of standard DFSes can be further developed into an
axiomatization of the distinguished model.

5.6 Chapter summary

Building on the discussion of general properties in the last chapter, I have now made
an attempt to group the models into natural subclasses, and to investigate their specific
properties and mutual relationships. In particular, the goal was to develop those con-
cepts that require a certain homogeneity on part of the models. For example, certain ag-
gregating constructions, but also comparisons between DFSes, are only possible if the
considered models show a similar structure, and hence assume a certain notion of com-
patibility. In the chapter, I first grouped the models according to their induced negation,
thus forming the classes of̃¬-DFSes. This classification of the models mainly served
to investigate tranformations which permit a transfer between the subclasses, and hence
elucidate their precise relationship. In particular, I have proposed the model transfor-
mation scheme, which achieves a bidirectional translation between different classes of
¬̃-DFSes. By instantiating the transformation scheme, a given model of fuzzy quan-
tification can be adapted to any desired choice of induced negation. In this sense, all
negation operators are universal to DFSes. Utilizing this universal translation property,
we can now restrict attention to a single representative choice, which will be assumed
the prominent example,¬x = 1 − x, and the corresponding class of¬-DFSes which
induce the standard negation. Hence the analysis of model transformations culminated
in the identification of a single representative class, to which all other classes can be
reduced. This makes an important result which might speed up research into fuzzy
quantification, because it is sufficient to define all novel concepts on the representative
class of¬-DFSes only, and the intricacies of providing a fully general account can
effectively be avoided. By applying the model transformation scheme, the resulting
concepts can easily be extended to other types of models if so desired.

Keeping the standard negation fixed, I subsequently refined the original granulation
of the models, and further grouped the¬-DFSes by their induced negation, thus shap-
ing the classes of̃∨-DFSes (which induce thes-norm ∨̃ and the standard negation).
I then introduced a number of concepts which live on∨̃-DFSes. It is the refinement
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into the new classes which rendered this development possible, because the behaviour
of the models has now become sufficiently coherent. In particular, the relative homo-
geneity of the models allowed me to define a new construction on the models, that of
model aggregation. To this end, I introduced the model aggregation scheme, along with
a formalization of the precise conditions which constrain the admissible aggregation
operators. This investigation revealed that the∨̃-DFSes are closed under an important
class of operations which comprises stable symmetric sums, convex combinations, and
other important aggregation operators. A concrete example has also been given of how
the scheme is applied, viz. the construction of the greatest lower specificity bound from
a collection of given models.

Apart from providing the required substrate of classes for introducing novel con-
structions, the refinement intõ∨-DFSes also shows suitable granularity for discussing
the specificity of models. This is because the members of the new classes are suffi-
ciently similar, that the models within the classes can now be related to each other in
an intuitive sense. Due to the symmetry of DFSes with respect to negation, it is not
useful to relate the models by the usual order≤. I therefore adopted Mukaidono’s
ambiguity relation, and turned it into the specificity order�c imposed on the models.
Roughly speaking, the models are then compared by the degree to which they commit
to the two-valued poles. The investigation of this aspect of the models is of particular
importance, because one is often interested in obtaining as specific results as possible.
Unlike ≤, the proposed relation�c is not a total order, i.e. some choices of models
might still fail to be comparable. The models are then considered inconsistent, because
there are situations in which they commit to opposite crisp outcomes. However, even
in this case of mutually inconsistent models, the∨̃-DFSes have been shaped in such a
way that it is at least possible to construct a joint lower bound on the models, a closure
property which is not valid for unrestricted DFSes. In the chapter, I have developed
the formal machinery required for discussing specificity issues. In particular, I was
able to precisely identify the boundary cases in terms of specificity. To this end, I first
introduced the generalized fuzzy median, which is essential for describing the struc-
ture of lower bounds. In fact, it was shown that by instantiating the model aggregation
scheme with the generalized fuzzy median, it is possible to effectively construct the
greatest lower specificity bound for every given collection of∨̃-DFSes. As concerns
the converse issue of upper specificity bounds, we required the notion of ‘specificity
consistency’ of a given collection of models. Such a collection is considered specificity
consistent if all models are mutually consistent in the sense explained above. Put dif-
ferently, the collection is specificity consistent if all models are comparable under�c.
It came out of my investigation that the notion of specificity consistency is of crucial
relevance to the theory of specificity, because it is this criterion which decides upon the
existence of least upper specificity bounds. Finally, the precise structure of the upper
bounds has been identified.

Following this discussion of specificity, I then focused on two constructions not yet
addressed in the previous chapter, that of forming conjunctions and disjunctions of
quantifiers. Some first results on the interpretation of conjunctions and disjunctions
in DFSes have then been presented, which cover an important subclass of DFSes and
all standard models. In particular, I have investigated the compatibility of(¬̃, max)-
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DFSes with these constructions, which tie the induced disjunction to the standard
choice, and group the conforming models by their induced negation. For this type
of models, I was able state inequalities, which express upper and lower bounds on
the possible outcome of the conjunction and disjunction. As we shall see in the next
chapter, this already makes the strongest result which is possible in the general case,
because most DFSes fail to comply with conjunctions and disjunctions in the precise
sense. In particular, this applies to all standard DFSes. Apart from researching con-
junctions and disjunctions of quantifiers, I also cast a look at the interpretation of the
equivalence and antivalence/xor truth functions in models of the assumed type. Again,
it will only become obvious in the next chapter, why these choices of truth function
pose special difficulties.

Finally, a distinguished subclass of the models has been investigated, that of stan-
dard DFSes. In these models, the fuzzy connectives, logical quantifiers, and the ex-
tension principle are all tied to their standard interpretation in fuzzy logic. It is this
conformance to the standard body of fuzzy set theory which lets me consider this type
of DFSes the standard models for fuzzy quantification, which can be defined in the
assumed framework. In the chapter, I first presented a formal definition of the mod-
els, which makes the extra requirement that the givenF induce the standard negation
and standard disjunction. It was then shown that this simple condition is sufficient
to achieve the desired standard interpretation of all constructions in the DFS frame-
work. Among other things, it will emerge from this analysis that the propositional part
of each standard model coincide with the K-standard sequence logic of Dienes, and
that the three-valued fragment coincide with well-known Kleene’s logic. The latter
observation in particular, will be of key relevance to the later chapters of the report
because it guides research into a constructive principle for models of the theory. In
addition, I have shown that all standard DFSes coincide on two-valued quantifiers (and
by (Z-1), of course also on two-valued arguments). This indicates that all standard
models consistently extend the Gainesian fuzzification mechanism, proposed in [44],
from two-valued propositional functions to the complex case of multi-place quantifica-
tion based on arbitrary semi-fuzzy quantifiers. After reviewing these properties of the
standard models, I then developed an axiomatization of standard DFSes in terms of a
modification of the original axiom system (Z-1)–(Z-6). This effort is justified by the
special role of the standard type among all models of the theory. The required changes
to the axioms are rather obvious, and indeed have the desired effect of identifying the
target class of standard models.
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6 Further semantical properties and theoretical adequacy
limits

6.1 Motivation and chapter overview

The previous chapters were devoted to the study of plausible models for fuzzy quan-
tification, and developed an analysis of the generic properties shown by all models, as
well as special concepts like the specificity order and the model aggregation scheme,
which had to be defined on natural subgroups of the models. In this chapter, I will now
take care of the optional characteristics of a DFS, which prove useful only in certain
situations, and I will also discuss the problematic cases, which fit less nicely into the
proposed framework. Typically, these difficulties are not tied to the framework, though,
and merely witness that the considered properties pose problems to fuzzy quantifica-
tion in general.

As to the optional criteria, there are several reasons that might prohibit turning a con-
sidered adequacy criterion, appealing as it might be, into a general postulate imposed
on all plausible models. First of all, some of the criteria express practical concerns, and
would exclude cases of theoretical interest when required for arbitrary models. The
desideratum on continuity or smoothness in particular, would compromise the closure
of the models with respect to specificity bounds. In addition, some of the properties
conflict with other properties which are also intuitively appealing. This situation is
of course familiar in fuzzy set theory, due to the known fact that it is impossible to
define a Boolean algebra on the set of continuous truth values in[0, 1]. In particular,
it is well-known that the desiderata of idempotence/distributivity and compliance with
the law of contradiction, exclude each other in the fuzzy framework. It is hence not
surprising that these conflicts reach beyond the propositional part and also show up
in the realm of fuzzy quantification. In the following, we will learn about a few such
properties, which are desirable in certain situations, but conflict with other desirable
characteristics. Depending on the relative importance of these adequacy criteria, I will
then resort to different strategies in order to cope with this kind of situation.

• In those cases where one of the properties clearly outweighs the other, and must
be considered a mandatory constraint on plausible models, the other desideratum
must be dropped altogether, or fitted to the conflict situation, by weakening the
imposed condition to those core situations which are still compatible with the
superordinate requirement.

• In those cases where the considerations are of equal weight, it is probably best to
regard both conditions as optional features of approaches to fuzzy quantification.
It is then the application at hand, which decides upon that pattern of properties
which best meet its specific goals.

In the chapter, I first consider the optional type of conditions, which do not raise any
conflicts with fundamental postulates. I start by discussing two criteria that capture
different aspects of smoothness or continuity, and hence take into account the chief
robustness concerns on the models, which arise from an application perspective. Fol-
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lowing that, some regularities will be investigated, which describe the way in which a
model handles the unspecificity observed in the inputs. Intuitively, one would expect
that the model’s outputs cannot become more specific when there is less information
in the inputs. These concerns regarding the propagation of fuzziness in the model will
be formalized in terms of the specificity order�c introduced in the last chapter. Both
in the case of continuity and propagation fuzziness there is good reason not to im-
pose these conditions in general, and they hence constitute important cases of optional
conditions.

Having studied these issues in some depth, I then review the construction introduced
in the last chapter, of forming the conjunction and disjunction of quantifiers that share
the same arity. It is here that I will substantiate the claim that standard models cannot
comply with this construction on formal grounds, and compatibility with conjunctions
and disjunctions is indeed reserved to rather special types of models (if any). Simi-
lar results will be obtained in the subsequent analysis of those quantifiers which show
duplications of variables in their defining equation. Again, an incompatibility with
certain types of models will be detected, which also includes the standard models. It
is hence best to consider these conditions optional, and reserve both the conformity
to conjunctions/disjunctions, and the compliance with multiple occurrences of vari-
ables, to special types of situations (e.g. theoretical treatise). Following the discussion
of these rather abstract criteria, which once again evoke the known conflict between
idempotence/distributivity and the law of contradiction in fuzzy logic, I will then turn
attention to three conditions of strong linguistic relevance. First of all, I will consider
a generalized form of monotonicity which shows up in so-called convex quantifiers,
and investigate the potential of the models to preserve such unimodal, bell-shaped,
trapezoid etc. monotonicity patterns of quantifiers. I will then discuss one of the cen-
tral properties of NL quantifiers which has attracted much interest in the literature on
TGQ, that of conservativity. In particular, I will pursue two alternative generalizations
of conservativity to the fuzzy case, one of which is universally valid, and the other one
totally inconsistent, even under assumptions considerably weaker than the proposed
DFS axioms. Finally I review the construction of argument insertion, and the related
topic of adjectival restriction. To this end, I will elaborate an apparent idea how a com-
positional treatment of fuzzy argument insertion, and hence of adjectival restriction by
fuzzy adjectives, can be achieved in the given framework. Acknowledging the structur-
ing role of Frege’s compositionality principle to the formalization of natural language
semantics, this will prepare the later specification of those models which are optimally
plausible from a linguist’s standpoint.

6.2 Continuity conditions

Firstly I introduce two adequacy criteria concerned with distinct aspects of the ‘smooth-
ness’ or ‘continuity’ of a DFS. These conditions are essential for the models to be
practical because it is extremely important for applications that the results of a DFS
be stable under slight changes in the inputs. These ‘changes’ can either occur in the
fuzzy argument sets (e.g. due to noise), or they can affect the semi-fuzzy quantifier. For
example, if a person A has a slightly different interpretation of quantifierQ compared
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to person B, then we still want them to understand each other, and the quantification
results obtained from the two models of the target quantifier should be very similar in
such cases.
In order to express the robustness criterion with respect to slight changes in the fuzzy
arguments, a metric on fuzzy subsets is needed, which serves as a numerical quantity
of the similarity of the arguments. For all base setsE 6= ∅ and alln ∈ N, we define
the metricd : P̃(E)

n
× P̃(E)

n
−→ I by

d((X1, . . . , Xn), (X ′1, . . . , X
′
n)) =

n
max
i=1

sup{|µXi(e)− µX′i(e)| : e ∈ E} , (31)

for all X1, . . . , Xn, X
′
1, . . . , X

′
n ∈ P̃(E). Based on this metric, we can now express

the desired criterion for continuityin arguments.

Definition 63
We say that a QFMF is arg-continuousif and only ifF maps allQ : P(E)n −→ I
to continuous fuzzy quantifiersF(Q), i.e. for all X1, . . . , Xn ∈ P̃(E) and ε > 0
there existsδ > 0 such thatd(F(Q)(X1, . . . , Xn),F(Q)(X ′1, . . . , X

′
n)) < ε for all

X ′1, . . . , X
′
n ∈ P̃(E) with d((X1, . . . , Xn), (X ′1, . . . , X

′
n)) < δ.

Arg-continuity means that a small change in the membership gradesµXi(e) of the
argument sets does not changeF(Q)(X1, . . . , Xn) drastically; it hence expresses an
important robustness condition with respect to noise.
The second robustness criterion is intended to capture the idea that slight changes in a
semi-fuzzy quantifier should not cause the quantification results to change drastically.
To introduce this criterion, we must first define suitable distance measures for semi-
fuzzy quantifiers and for fuzzy quantifiers. Hence for all semi-fuzzy quantifiersQ,Q′ :
P(E)n −→ I,

d(Q,Q′) = sup{|Q(Y1, . . . , Yn)−Q′(Y1, . . . , Yn)| : Y1, . . . , Yn ∈ P(E)} , (32)

and similarly for all fuzzy quantifiers̃Q, Q̃′ : P̃(E)
n
−→ I,

d(Q̃, Q̃′) = sup{|Q̃(X1, . . . , Xn)− Q̃′(X1, . . . , Xn)| : X1, . . . , Xn ∈ P̃(E)} .
(33)

Definition 64
We say that a QFMF is Q-continuousif and only if for each semi-fuzzy quantifier
Q : P(E)n −→ I and all ε > 0, there existsδ > 0 such thatd(F(Q),F(Q′)) < ε
wheneverQ′ : P(E)n −→ I satisfiesd(Q,Q′) < δ.

Q-continuity captures an important aspect of robustness with respect to imperfect knowl-
edge about the precise definition of a quantifier; i.e. slightly different definitions ofQ
will produce similar quantification results.
Both conditions are crucial to the utility of a DFS and must be possessed by every
practical model. They are not part of the DFS axioms because I wanted to have models
for generalt-norms (including the discontinuous variety).
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6.3 Propagation of fuzziness

The next two criteria are concerned with the ‘propagation of fuzziness’, i.e. the way in
which the amount of imprecision in the model’s inputs affects changes of the model’s
outputs. To this end, let us recall the partial order�c ⊆ I× I defined by equality (30).
We can extend�c to fuzzy setsX ∈ P̃(E), semi-fuzzy quantifiersQ : P(E)n −→ I
and fuzzy quantifiers̃Q : P̃(E)

n
−→ I as follows:

X �c X
′ ⇐⇒ µX(e)�c µX′(e) for all e ∈ E;

Q�c Q
′ ⇐⇒ Q(Y1, . . . , Yn)�c Q

′(Y1, . . . , Yn) for all Y1, . . . , Yn ∈ P(E);

Q̃�c Q̃
′ ⇐⇒ Q̃(X1, . . . , Xn)�c Q̃

′(X1, . . . , Xn) for all X1, . . . , Xn ∈ P̃(E) .

Intuitively, we expect that the quantification results become less specific whenever the
quantifier or the argument sets become less specific: the fuzzier the input, the fuzzier
the output. For example, consider a base setE = {Joan, Lucas, Mary} and fuzzy
subsetslucky , lucky ′ ∈ P̃(E) defined by

lucky = 1/Joan + 0.8/Lucas + 0.2/Mary,

lucky ′ = 0.6/Joan + 0.5/Lucas + 0.4/Mary .

Thenlucky ′�c lucky , i.e. the former interpretation of “lucky” is less committed to the
possible crisp decisions. We should hence expect e.g. thatF(most )(rich , lucky ′)�c
F(most )(rich , lucky ) as well, and hence the quantification results based onlucky ′

should be less decided than those computed from the fuzzy subsetlucky , which bears
more specific information.

Definition 65
Let a QFMF be given.

a. We say thatF propagates fuzziness in argumentsif and only if the following
property is satisfied for allQ : P(E)n −→ I andX1, . . . , Xn, X

′
1, . . . , X

′
n: If

Xi�cX ′i for all i = 1, . . . , n, thenF(Q)(X1, . . . , Xn)�cF(Q)(X ′1, . . . , X
′
n).

b. We say thatF propagates fuzziness in quantifiersif and only ifF(Q)�c F(Q′)
wheneverQ�c Q′.

Notes

• Both conditions are certainly natural to require, and I consider them as desirable
but optional. A more thorough discussion of propagation of fuzziness and its
tradeoffs can be found in Chap. 8, 245.

• The intuitive expectation that the output cannot get more detailed when the in-
put gets fuzzier, is satisfied by the standard connectives¬x = 1 − x, ∧ = min
and∨ = max. Hence the standard models of the proposed system make good
candidates for propagation of fuzziness. We shall see below in Th-131 that both
conditions are possible but in fact optional for standard models, and also that the
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conditions are mutually independent. This indicates that propagation of fuzzi-
ness in quantifiers and propagation of fuzziness in arguments open distinct se-
mantical dimensions, in the full space of models for fuzzy quantification.

• Let me also remark that the standard conjunction and disjunction are not the only
choice oft- ands-norms that propagate fuzziness in their arguments. In fact, the
t-norm ∧̃m defined by equality (22) apparently also propagates fuzziness in its
arguments, a property which transfers to the duals-norm ∨̃m of ∧̃m under the
standard negation. The corresponding class of∨̃m-DFSes might then witness
the existence of nonstandard models that propagate fuzziness. However, I am
currently lacking any evidence on the existence of models in this formal class.

6.4 Conjunctions and disjunctions of quantifiers

Let us now review the construction introduced in Def. 60, which builds a new quantifier
from a conjunction or disjunction of given ones. In the last chapter, I presented a
result on the interpretation of such conjunctions and disjunctions in(¬̃, max)-DFSes.
However, I was only able to establish an inequality, rather than the full compatibility
of the models with these constructions. The goal of my present investigation is to
gain some understanding, why I was unable to prove a better compliance result for
(¬̃, max)-DFSes, and strengthen these inequalities into precise equalities. As we shall
now learn, the attempts to improve upon the original weak result are bound to fail,
because thet-norm min, which is induced by(¬̃, max)-DFSes, violates the law of
contradiction.

Theorem 48
Suppose a DFSF has the property that

F(Q ∧̃Q′) = F(Q) ∧̃ F(Q′) (34)

for all semi-fuzzy quantifiersQ, Q′ : P(E)n −→ I, where∧̃ = F̃(∧). Then∧̃ satisfies
x ∧̃ ¬̃x = 0 for all x ∈ I.

A DFSF which is homomorphic with respect to conjunctions (or equivalently, disjunc-
tions) of quantifiers therefore induces at-norm which respects the law of contradiction.
This is clearly unacceptable since it would exclude many interestingt-norms; in par-
ticular, the standard choicẽF(∧) = min. I have thereforenot required in general that
a DFS be homomorphic with respect to conjunctions/disjunctions of quantifiers.

6.5 Multiple occurrences of variables

The reader will certainly have noticed our special treatment of the propositional con-
nectives↔ andxor. The difficulties in proving properties of the models with respect
to these connectives are caused by the fact that the definition of↔, xor : 2× 2 −→ 2
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involvesmultiple occurrencesof propositional variables, viz.

x1 ↔ x2 = (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2)
= (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2)

x1 xor x2 = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)
= (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ,

for all x1, x2 ∈ {0, 1}. A brief glance at the DFS axioms reveals that there isno
axiom which describes this case of duplicated variables. In order to be able to discuss
the issue on the formal level, let us introduce the following construction which permits
multiple occurrences of a variable in the definition of a quantifier.

Definition 66
SupposeQ : P(E)m −→ I is a semi-fuzzy quantifier andξ : {1, . . . , n} −→
{1, . . . , m} is a mapping. ByQξ : P(E)n −→ I we denote the semi-fuzzy quan-
tifier defined byQξ(Y1, . . . , Yn) = Q(Yξ(1), . . . , Yξ(n)), for all Y1, . . . , Yn ∈ P(E).
We use an analogous definition for fuzzy quantifiers.

The interesting case is that of a non-injectiveξ, which inserts the same variable in two
(or more) argument positions of the original quantifierQ.

Theorem 49
SupposeF is a DFS which is compatible with the duplication of variables, i.e. when-
everQ : P(E)m −→ I andξ : {1, . . . , n} −→ {1, . . . , m} for somen ∈ N, then
F(Qξ) = F(Q)ξ . Then the induced conjunctioñ∧ = F̃(∧) satisfiesx ∧̃ ¬̃x = 0 for
all x ∈ I.

Again, I consider this too restrictive and therefore havenot required thatF be homo-
morphic with respect to the duplication of variables.

6.6 Convex quantifiers

Apart from the monotonicity type of quantifiers, TGQ has also developed more so-
phisticated concepts which describe the characteristic shape of a given quantifier. The
following definition of convex quantifiers covers unimodal, bell-shaped, trapezoidal
and other generic examples.

Definition 67
SupposeQ : P(E)n −→ I is ann-ary semi-fuzzy quantifier such thatn > 0. Q is said
to beconvex in itsi-th argument, wherei ∈ {1, . . . , n}, if

Q(X1, . . . , Xn) ≥ min( Q(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

Q(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn))

wheneverX1, . . . , Xn, X
′
i, X

′′
i ∈ P(E) andX ′i ⊆ Xi ⊆ X ′′i .

Convexity of a fuzzy quantifier̃Q : P̃(E)
n
−→ I in thei-th argument is defined analo-

gously, whereX1, . . . , Xn, X
′
i, X

′′
i ∈ P̃(E), and ‘⊆’ is the fuzzy inclusion relation.
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Note. In TGQ, those quantifiers that I call ‘convex’ are usually dubbed ‘continuous’,
see e.g. [151] and [45, Def. 16, p. 250]. I have decided to change terminology in order
to avoid the possible ambiguity of ‘continuous’, which could also mean ‘smooth’. To
present an example, the absolute quantifier “between 10 and 20” is convex in both
arguments, and the proportional quantifier “about 30 percent” is convex in the second
argument. Some well-known properties of convex quantifiers (in the sense of TGQ)
also carry over to semi-fuzzy and fuzzy quantifiers.

Theorem 50 (Conjunctions of convex semi-fuzzy quantifiers)
SupposeQ,Q′ : P(E)n −→ I are semi-fuzzy quantifiers of arityn > 0 which are
convex in thei-th argument, wherei ∈ {1, . . . , n}. Then the semi-fuzzy quantifier
Q ∧Q′ : P(E)n −→ I, defined by

(Q ∧Q′)(X1, . . . , Xn) = min(Q(X1, . . . , Xn), Q′(X1, . . . , Xn))

for all X1, . . . , Xn ∈ P(E), is also convex in thei-th argument.

Note. The theorem states that conjunctions of convex semi-fuzzy quantifiers are convex
(provided the standard fuzzy conjunction∧ = min is chosen).
A similar point can be made about fuzzy quantifiers.

Theorem 51 (Conjunctions of convex fuzzy quantifiers)
SupposẽQ, Q̃′ : P̃(E)

n
−→ I are fuzzy quantifiers of arityn > 0 which are convex in

thei-th argument, wherei ∈ {1, . . . , n}. Then the fuzzy quantifier̃Q∧Q̃′ : P̃(E)
n
−→

I, defined by

(Q̃ ∧ Q̃′)(X1, . . . , Xn) = min(Q̃(X1, . . . , Xn), Q̃′(X1, . . . , Xn))

for all X1, . . . , Xn ∈ P̃(E), is also convex in thei-th argument.

Let us also observe that every convex semi-fuzzy quantifier can be decomposed into a
conjunction of a nonincreasing and a nondecreasing semi-fuzzy quantifier:

Theorem 52 (Decomposition of convex semi-fuzzy quantifiers)
A semi-fuzzy quantifierQ : P(E)n −→ I is convex in itsi-th argument,i ∈ {1, . . . , n},
if and only ifQ is the conjunction of a nondecreasing and a nonincreasing semi-fuzzy
quantifier, i.e. if there existQ+, Q− : P(E)n −→ I such thatQ+ is nondecreasing in
its i-th argument;Q− is nonincreasing in itsi-th argument, andQ = Q+ ∧Q−.

Again, a similar point can be made about fuzzy quantifiers:

Theorem 53 (Decomposition of convex fuzzy quantifiers)
A fuzzy quantifier̃Q : P̃(E)

n
−→ I is convex in itsi-th argument,i ∈ {1, . . . , n}, if

and only ifQ̃ is the conjunction of a nondecreasing and a nonincreasing fuzzy quanti-
fier, i.e. if there exist̃Q+, Q̃− : P̃(E)

n
−→ I such thatQ̃+ is nondecreasing in itsi-th

argument;Q̃− is nonincreasing in itsi-th argument, and̃Q = Q̃+ ∧ Q̃−.
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We say that a QFMF preserves convexity if convexity of a quantifier in its arguments
is preserved when applyingF .

Definition 68
A QFM F is said topreserve convexity ofn-ary quantifiers, wheren ∈ N \ {0}, if
and only if everyn-ary semi-fuzzy quantifierQ : P(E)n −→ I which is convex in
its i-th argument is mapped to a fuzzy quantifierF(Q) which is also convex in itsi-
th argument.F is said topreserve convexityif F preserves the convexity ofn-ary
quantifiers for alln > 0.

As we shall now see, preservation of convexity is a plausibility criterion which in its
strong form conflicts with other desirable properties. Let us first notice that contextu-
ality of a QFM excludes preservation of convexity.

Theorem 54

SupposeF is a contextual QFM with the following properties: for every base set
E 6= ∅,

a. the quantifierO : P(E) −→ I, defined byO(Y ) = 0 for all Y ∈ P(E), is
mapped to the fuzzy quantifier defined byF(O)(X) = 0 for all X ∈ P̃(E);

b. IfX ∈ P̃(E) and there exists somee ∈ E such thatµX(e) > 0, thenF(∃)(X) >
0;

c. IfX ∈ P̃(E) and there existse ∈ E such thatµX(e) < 1, thenF(∼∀)(X) > 0,
where∼∀ : P(E) −→ 2 is the quantifier defined by

(∼∀)(Y ) =
{

1 : X 6= E
0 : X = E

ThenF does not preserve convexity of one-place quantifiersQ : P(E) −→ I on finite
base setsE 6= ∅. In particular, no DFS preserves convexity.

This means that even if we restrict to the simple case of one-place quantifiers on finite
base sets, there is still no QFMF which conforms to the very elementary semantical
postulates stated in the theorem, and at the same time preserves convexity under the
simplifying assumptions.

Because contextuality is a rather fundamental condition, it seems better to weaken
the requirements on the preservation of convexity, rather than compromising contextu-
ality or the other elementary conditions.

Noticing that the common examples of convex NL quantifiers are typically of the
quantitative kind, it is straightforward to weaken the requirement of preserving con-
vexity to quantitative convex quantifiers (see Def. 38 and Def. 39 for the assumed
definitions of quantitativity). Unfortunately, this weakening is insufficient yet and the
targeted class of convex quantifiers still too broad, as witnessed by the following theo-
rem.
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Theorem 55

SupposeF is a contextual QFM which is compatible with cylindrical extensions and
satisfies the following properties: for all base setsE 6= ∅,

a. the quantifierO : P(E) −→ I, defined byO(Y ) = 0 for all Y ∈ P(E), is
mapped to the fuzzy quantifier defined byF(O)(X) = 0 for all X ∈ P̃(E);

b. IfX ∈ P̃(E) and there exists somee ∈ E such thatµX(e) > 0, thenF(∃)(X) >
0;

c. IfX ∈ P̃(E) and there exists and there exists somee ∈ E such thatµX(e′) = 0
for all e′ ∈ E\{e} andµX(e) < 1, thenF(∼∃)(X) > 0, where∼∃ : P(E) −→
2 is the quantifier defined by

(∼∃)(Y ) =
{

1 : X = ∅

0 : X 6= ∅

ThenF does not preserve the convexity of quantitative semi-fuzzy quantifiers of ar-
ity n > 1 even on finite base sets. In particular, no DFS preserves the convexity of
quantitative semi-fuzzy quantifiers of arityn > 1.

This leaves open the possibility that certain models will preserve the convexity of quan-
titative semi-fuzzy quantifiers of arityn = 1. For simplicity, we shall investigate this
preservation property for the case of finite domains only.

Definition 69
A QFMF is said toweakly preserve convexityif F preserves the convexity of quanti-
tative one-place quantifiers on finite domains.

In this case, we get positive results on the existence of models that satisfy the specified
criterion, and hence weakly preserve convexity. An example of the conforming DFS
MCX will be given below in Def. 96.

Let is now turn to a special case of two-place quantification. In general, we have
negative results concerning the preservation of convexity for quantifiers of arityn >
1, even if these are quantitative (see Th-55). However it is possible for a DFS to
preserve convexity properties of two-place quantifiers in the case of absolute two-place
quantifiers, which are of obvious interest to natural language interpretation.

Theorem 56
SupposeQ : P(E)2 −→ I is an absolute quantifier on a finite base set, i.e. there exists
a quantitative one-place quantifierQ′ : P(E) −→ I such thatQ = Q′∩. If a DFSF
has the property of weakly preserving convexity andQ is convex in its arguments, then
F(Q) is also convex in its arguments.

Although the proportional type is not covered, the theorem demonstrates that weak
preservation of convexity is strong enough a condition to ensure a proper interpretation
of many NL quantifiers of interest, e.g.between 10 and 20 , about 50 and others.
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6.7 Conservativity

One of the pervasive properties of NL quantifiers isconservativity[82, p. 275, eq. (40)],
[9, p. 445], [8, p. 452], [45, pp. 245-249].

Definition 70 (Conservativity)
We shall callQ : P(E)2 −→ I conservativeif

Q(X1, X2) = Q(X1, X1 ∩X2)

for all X1, X2 ∈ P(E).

All two-valued or semi-fuzzy quantifiers introduced so far are conservative.37 In par-
ticular, all proportional quantifiers are conservative by definition, see Def. 166. To
give an example, ifE is a set of persons,married ∈ P(E) is the subset of married
persons, andhave children ∈ P(E) is the set of persons who have children, then the
conservative semi-fuzzy quantifieralmost all : P(E)2 −→ I satisfies

almost all (married ,have children )
= almost all (married ,married ∩ have children )

i.e. the meanings of “Almost all married persons have children” and “Almost all mar-
ried persons are married persons who have children” coincide. Like having extension,
conservativity expresses an aspect of context insensitivity: if an element of the domain
is irrelevant to the restriction (first argument) of a two-place quantifier, then it does not
affect the quantification result at all. For example, every conservativeQ : P(E)2 −→ I
apparently satisfiesQ(X1, X2 ∩ X1) = Q(X1, X2 ∪ ¬X1). Hence in the case that
e /∈ X1 for a given elemente of the base set, it does not matter whethere ∈ X2 or

e /∈ X2. A corresponding fuzzy quantifierF(Q) : P̃(E)
2
−→ I should at least possess

the following property ofweak conservativity:

Definition 71 (Weak conservativity)

A fuzzy quantifier̃Q : P̃(E)
2
−→ I is said to beweakly conservativeif

Q̃(X1, X2) = Q̃(X1, spp(X1) ∩X2) ,

for all X1, X2 ∈ P̃(E), wherespp(X1) is the support ofX1, see(24).

This definition is sufficiently strong to capture the context insensitivity aspect of con-
servativity: an elemente ∈ E which is irrelevant to the restriction of the quantifier, i.e.
µX1(e) = 0, has no effect on the quantification result, which is independent ofµX2(e).

Theorem 57
Every DFSF weakly preserves conservativity, i.e. ifQ : P(E)2 −→ I is conservative,
thenF(Q) is weakly conservative.

37with the only exception of “only”.

180



Definition 72 (Strong conservativity)

Let us say that a fuzzy quantifier̃Q : P̃(E)
2
−→ I is strongly conservativeif

Q̃(X1, X2) = Q̃(X1, X1 ∩̃X2) for all X1, X2 ∈ P̃(E).

In addition to the context insensitivity aspect, strong conservativity also reflects the
definition of crisp conservativity in terms of intersection with the first argument.

Theorem 58
Assume the QFMF satisfies the following conditions: (a)̃F(id2) = idI; (b) ¬̃ is a
strong negation operator; (c)̃∧ is a t-norm; (d)F is compatible with internal meets,
see Def. 33; (e)F is compatible with dualisation. ThenF does not strongly preserve
conservativity, i.e. there are conservativeQ : P(E)2 −→ I such thatF(Q) is not
strongly conservative. In particular, no DFS strongly preserves conservativity.

Hence strong preservation of conservativity cannot be ensured in a fuzzy framework,
even under assumptions which are much weaker than the DFS axioms. However, the
weak form of preserving conservativity already covers the most important aspects from
an adequacy perspective, and it should be sufficient for most practical concerns that the
considered models comply with conservativity in this sense.

It is instructive to see how conservativity interacts with the property of having exten-
sion, in case a quantifier satisfies both. Then for all crispY1, Y2 ∈ P(E), Y1 6= ∅,

QE(Y1, Y2) = QE(Y1, Y1 ∩ Y2)
= QE′(E′, Y1 ∩ Y2)
= Q′E′(Y1 ∩ Y2) ,

whereE′ = Y1, andQ′E′ : P(E′) −→ I is the unrestricted form ofQE′ defined by
Q′E′(Z) = QE′(E′, Z) for all Z ∈ P(E′). This example demonstrates that in the
crisp case, restricted quantification based on a quantifier which is conservative and has
extension can be reduced to unrestricted (one-place) quantification on another domain
(supplied by the first argument). The example thus explains why one-place, unre-
stricted quantification is important although natural language quantifiers are typically
at least two-place. Of course, such a reduction is not possible in the fuzzy case because
a fuzzy subsetY1 ∈ P̃(E) cannot serve as a domain (we have only admitted crisp base
setsE).

6.8 Fuzzy argument insertion

In our comments on argument insertion (see p. 136) we have remarked that adjectival
restriction with fuzzy adjectives cannot be modelled directly: ifA ∈ P̃(E) is a fuzzy
subset ofE, then onlyF(Q)/A is defined, but notQ/A. However, one can ask if
F(Q)/A can be represented by a semi-fuzzy quantifierQ′, i.e. if there is aQ′ such
that

F(Q)/A = F(Q′) . (35)
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The obvious choice ofQ′ is the following.

Definition 73
SupposeF is a QFM,Q : P(E)n+1 −→ I is a semi-fuzzy quantifier andA ∈ P̃(E).
ThenQ /̃ A : P(E)n −→ I is defined by

Q /̃ A = U(F(Q)/A) ,

i.e.Q /̃ A(Y1, . . . , Yn) = F(Q)(Y1, . . . , Yn, A) for all crisp Y1, . . . , Yn ∈ P(E).

Notes

• Q /̃ A is written with the ‘tilde’ notatioñ/ in order to distinguish it fromQ/A
and emphasise that it depends on the chosen QFMF .

• as already noted in [46, p. 54],Q′ = Q /̃ A is the only choice ofQ′ which
possibly satisfies (35), because anyQ′ which satisfiesF(Q′) = F(Q)/A also
satisfies

Q′ = U(F(Q′)) = U(F(Q)/A) = Q /̃ A ,

which is apparent from Th-2.

Unfortunately,Q /̃ A is not guaranteed to fulfill (35) in a QFM (not even in a DFS).
Let us hence turn this equality into an adequacy condition which ensures thatQ /̃ A
conveys the intended meaning in a given QFMF :

Definition 74
SupposeF is a QFM. We say thatF is compatible with fuzzy argument insertionif
for every semi-fuzzy quantifierQ : P(E)n −→ I of arity n > 0 and everyA ∈ P̃(E),
F(Q /̃ A) = F(Q)/A .

The main application of this property in natural language is that of adjectival restric-
tion of a quantifier by means of a fuzzy adjective. For example, supposeE is a set of
people, andlucky ∈ P̃(E) is the fuzzy subset of those people inE who are lucky. Fur-
ther suppose thatalmost all : P(E)2 −→ I is a semi-fuzzy quantifier which models
“almost all”. Finally, suppose the DFSF is chosen as the model of fuzzy quantifica-
tion. We can then construct the semi-fuzzy quantifierQ′ = almost all ∩ /̃ lucky . If
F is compatible with fuzzy argument insertion, then the semi-fuzzy quantifierQ′ is
guaranteed to adequately model the composite expression “Almost allX1’s are lucky
X2’s”, because

F(Q′)(X1, X2) = F(almost all )(X1, X2 ∩̃ lucky )

for all fuzzy argumentsX1, X2 ∈ P̃(E), which (relative toF) is the proper expression
for interpreting “Almost allX1’s are luckyX2’s” in the fuzzy case. Compatibility with
fuzzy argument insertion is a very restrictive adequacy condition. We shall present the
unique standard DFS which fulfills this condition on p. 210.
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6.9 Chapter summary

The results presented in this chapter complete the series of investigations related to the
semantical properties of approaches to fuzzy quantification, which ultimately decide
upon the suitability of these approaches for modelling natural language quantification.
While the first chapter in the series was devoted to generic properties shown by every
DFS, and the next chapter devoted to specific constructions and concepts that live on
natural subgroups of the models, the present chapter finally addressed those cases of
properties which cannot be assumed of all prototypical models. Roughly speaking,
there are two joint features which link the discussed properties, and motivated my
decision to bundle them into this chapter.

• First, these properties are typically too strong from a theoretical perspective. To
be specific, some of the properties compromise the desired closure of the mod-
els under certain constructions. The properties also exclude whole classes of
models which violate application requirements, but deserve theoretical interest
nonetheless. Consider turning the criterion of arg-continuity into a mandatory
requirement on all models, for example. This would exclude the boundary case
of those models which induce the smallestt-norm, because the drastic product
is known to be discontinuous. Hence there is good reason for not including this
condition into the list of absolute requirements which must be obeyed by all ad-
missible models. These methodical considerations nonwithstanding, it certainly
pays off to formalize the continuity requirement, in order to justify the selection
of robust models which respond to the demands of practical applications.

• The second type of properties comprises the problematic cases, which result in
a partial inconsistency with some desired models, or even an absolute inconsis-
tency with all acceptable models. In the first case (e.g. duplication of variables),
it is possibly best to regard the additional requirement as optional, while in the
latter case of total inconsistency, the strategy suggested itself of weakening the
conflicting condition, and elaborating that core requirement which is still com-
patible with the given axiomatic foundation.

As to specific results of the chapter, I first took care of the practical concern of ro-
bustness or stability against small changes in the inputs. In other words, all practical
models should absorb slight variations due to noise, quantization errors etc., which are
typical of real-world applications. It was pointed out that there are two kinds of in-
put to the fuzzification mechanism, viz. the fuzzy quantifier and its arguments. Hence
two facets of robustness must be distinguished, (a) robustness against variation in the
quantifier, and (b), robustness against variation in the arguments. In both cases, the
variation observed can either be non-systematic (random or resulting from impreci-
sion) or systematic, in which case it reflects the varying interpretations of quantifiers
and NL concepts across language users. Regardless of the type of source which causes
the variation, it is necessary for robust system behaviour that at least the minimal re-
quirement of continuity be satisfied, which must be required for both types of sources.
These general ideas shaped the subsequent definition of models which are
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• Q-continuous, i.e. continuous in the base quantifiers, in order to ensure the ro-
bustness of the quantification results under slight changes in the quantifier; and

• arg-continuous, which ensures the robustness of the quantification results under
slight changes in interpretation of NL concepts, i.e. the resulting fuzzy quanti-
fiers must be continuous in their arguments.

Due to the omnipresence of noise and random factors in any type of real-world appli-
cations, and due to the inevitable differences in the way that people conceive language,
it is essential for any practical model to obey these continuity conditions. Nonethe-
less, the robustness criteria should only be considered optional. As explained above,
this will keep a number of interesting albeit discontinuous examples in the full class of
models, which evolve as boundary cases.

Following the discussion of these robustness issues, I then investigated the compati-
bility of the models with the specificity order�c. Roughly speaking, it seems reason-
able to assume that whenever either the quantifier or the argument sets become fuzzier,
the computed quantification results should become fuzzier, too. In order to express this
condition in terms of the specificity order, the basic definition of�c as a relation on
scalars, was extended to fuzzy arguments and semi-fuzzy as well as fuzzy quantifiers in
the apparent way. This made it possible to state precisely what it means for a QFM to
propagate fuzziness in its inputs, i.e. the quantifiers and their arguments. As concerns
examples of models which propagate fuzziness, I first recalled that the standard choice
of fuzzy connectivesmin, max and1− x are known to be compatible with�c. Hence
the standard DFSes bear the potential of including the new type of models which prop-
agate fuzziness (although other choices beyond standard models are also conceivable).
As we shall see in the next chapter, the standard DFSes redeem this promise, and in-
deed provide a rich source of examples with this property. Not all standard models
share these properties, though, which will be evidenced in the subsequent Chap. 8. It
is also there that the reasons become clear, why the criteria of propagating fuzziness in
quantifiers and arguments should not be considered mandatory, because other demands
on the models could outweigh these conditions in certain types of applications.

Turning to the problematic cases, I first investigated a compositionality requirement
with respect to conjunctions and disjunctions of quantifiers. These constructions have
already been introduced in the previous chapter, which also presented a theorem con-
cerning the compliance of the models with this construction. However, the theorem
Th-43 only covered a special case of models, that of(¬̃, max)-DFSes. In addition,
the theorem did not claim the exact conformity of the models to this construction; by
contrast, it only established upper and lower bounds. In the present chapter, we now
learnt that these results cannot be improved from inequalities into precise equalities,
at least not in the general case. To be specific, it was shown that the compliance of a
model with conjunctions and disjunctions, entails that the inducedt-norm satisfy the
law of contradiction. For example, the bounded product would make a possible choice
of the induced conjunction. Concerning the standard models, the novel result strength-
ens the previous theorem Th-43, and shows that the presented bounds are based on
inequalities proper. This is because the standard conjunctionmin does not satisfy the
law of contradiction, and hence standard models do not match with conjunctions and
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disjunctions. In order not to rule out the standard choices, it is therefore necessary to
accept a possible violation of compositionality in these cases.

Similar considerations apply in the case of another construction, which builds a new
quantifier from a given one by unifying variables in different argument positions. This
construction was motivated by the examples of the equivalence (biimplication) and an-
tivalence (xor) connectives, which require multiple occurrences of variables in their
definition. In order to develop the formal analysis of such duplications of variables, I
proposed a formal definition which captures rather general manipulations in the vari-
ables, including the known constructions of permutations and cylindrical extensions.
Apart from these unproblematic cases, the new construction can also model the desired
multiple occurrences of variables. Based on this formalization, I was then able to show
that every model which combines with multiple occurrences of variables, induces at-
norm that respects the law of contradiction. Hence by the same reasoning as in the last
example, the compliance with duplications of variables cannot be expected of general
models, because this would exclude the prioritized class of standard choices.

Having considered these rather abstract criteria, I again approached the Theory of
Generalized Quantifiers, and explored the models under their compliance with three
concepts of relevance to linguistic description. To begin with, TGQ knows a more
general property that can also be expressed in terms of inequalities, which abstract
from simple, unidirectional monotonicity conditions. The conforming quantifiers are
dubbed ‘continuous’ in TGQ, but I have decided to change terminology here and call
these quantifiersconvexin the considered argument, in order to avoid a possible con-
fusion with continuity in its smoothness sense. Roughly speaking, the convexity con-
dition no longer requires that the dependency of the quantifier on the argument of
interest be uniformly increasing or decreasing (as in the unproblematic case of mono-
tonicity properties), but also allows more general dependencies that are bell-shaped,
trapezoidal etc. Special cases include unimodal quantifiers [176, p. 131], which have
a unique peak of unity membership. For example, “about ten” can be modelled as a
unimodal quantifier. In the chapter, I first pursued the apparent generalisation of the
convexity property to semi-fuzzy and fuzzy quantifiers. I then established the closure
property of convex quantifiers under the standard conjunction, and I further proved that
every convex quantifier can be decomposed into a conjunction of a nonincreasing and a
nondecreasing quantifier. Both results apply to semi-fuzzy as well as fuzzy quantifiers,
and generalize analogous properties of two-valued convex (continuous) quantifiers that
are known from TGQ. Having dwelled upon the notion of convexity, I then discussed
the intuitive expectation that the convex shape of quantifiers be preserved when apply-
ing a QFM. It came out of this investigation, though, that the preservation of convexity
causes severe problems for fuzzy quantification, and there is clear negative evidence
against it in the general case. To be specific, it is impossible for a QFM to preserve gen-
eral convexity properties even under assumptions considerably weaker than the DFS
axioms. This indicates that it is the preservation condition which must be weakened,
rather than the definition of plausible models. In practice, it would be acceptable for a
model of fuzzy quantification to deform the convex shape of those formal quantifiers
which do not actually express in natural language, provided that the model behave as
desired in all cases of urgent relevance from the linguistic perspective. I hence observed
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that most (probably all) convex quantifiers of NL are of the quantitative kind, and ad-
justed the condition of propagating convexity accordingly. However, this refinement
did not remedy the core problem, and forced me to consider another reformulation of
the criterion, which still covers the frequent case of convex absolute quantifiers, like
the NL examples “about ten”, “between ten and twenty” etc. This property of weakly
preserving convexity distills those aspects of the convexity requirements that are com-
patible with the more elementary base assumptions, and can hence be achieved in a
fuzzy framework. I will present a positive example which demonstrates that the prop-
erty can indeed be fulfilled in Chap. 7. However, the property is still demanding even
in its weak form, and certainly confined to a very small fragment of the models.

Following the discussion of convexity properties, I turned to the definition and analy-
sis ofconservativequantifiers. Conservativity makes one of the pervasive and perhaps
even universal properties of simple NL quantifiers, which catches hold of an important
aspect of context insensitivity. Basically, a quantifier is considered conservative if it
is the restriction of the quantifier which decides upon its interpretation, and not the
chosen domain. For example, the truth of “All men are mortal” depends on the set of
considered men only, and their specific properties; while the remaining elements of the
base set, which fall outside the considered subdomain of ‘men’, have no effect at all
on the quantification results. The original notion of conservativity familiar from TGQ
is readily extended to a definition for arbitrary semi-fuzzy quantifiers, and Def. 70 as-
sumes the trivial adaptations without mention. The most appropriate generalization of
conservativity to full-fledged fuzzy quantifiers is less obvious, though. In the chapter, I
pursued two different definitions which extend the original concept to the case of fuzzy
arguments.

a. The proposed definition of weak conservativity merely targets at domain insen-
sitivity, which comprises the key aspect of conservativity anyway. The quantifi-
cation results of weakly conservative quantifiers should hence be independent
of those elements which are totally irrelevant to the restriction of the quantifier.
This conception of conservativity combines easily with the proposed framework.
Based on this notion of conservative fuzzy quantifiers, it can then be shown that
all models of fuzzy quantification weakly preserve conservativity, and hence map
conservative semi-fuzzy quantifiers to fuzzy quantifiers which are conservative
in the weak sense.

b. The alternative proposal of strong conservativity is obtained when the crisp in-
tersection in the original definition of conservativity is replaced with the induced
fuzzy intersectioñ∩, and the scope of the new definition is then shifted to fuzzy
quantifiers and fuzzy arguments. Apart from the context insensitivity aspect, the
resulting strong form of conservativity also seizes the definition of crisp con-
servativity in terms of an intersection with the first argument. Concerning the
compliance of this alternative notion with the models of fuzzy quantification,
the chapter provided negative evidence, though. As witnessed by Th-58, strong
conservativity conflicts with fundamental assumptions on plausible choices of
models, and hence cannot be ensured in a fuzzy framework.
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As indicated by these findings, it is the weak sense of conservativity that is adequate
in the presence of fuzzy arguments, and the definition of two-valued conservativity
in terms of a conjunction of restriction and scope, must be considered a contingent
property which is idiosyncratic to the simple Boolean case.

Finally, I discussed the construction of fuzzy argument insertion. In order to mo-
tivate this criterion, I briefly reviewed adjectival restriction based on crisp adjectives
like “married”, which can be modelled by crisp argument insertions. From a linguis-
tic point of view, it is crucial to ensure a compositional interpretation of adjectival
restriction, in accordance with Frege’s compositionality principle. Hence the interpre-
tation of a composite expression should be in functional dependence on the meanings
of its subexpressions. When applied to the current situation of adjectival restriction this
means that the target quantifierQ̃′ which results from adjectival restriction ofQ byA
should be representable in terms of a semi-fuzzy quantifierQ′, which hence satisfies
Q̃′ = F(Q′), andQ′ should show a functional dependency on the original represen-
tationQ and the interpretation of the adjectiveA, i.e.Q = c(Q,A), wherec is the
construction for adjectival restriction. In the crisp case, these goals were of course
accomplished by lettingc(Q,A) = Qτi∩/Aτi; this restricts thei-th argument ofQ to
the crisp denotationA of the given adjective. In the important case of fuzzy adjectives,
the strategy suggests itself to decompose fuzzy adjectival restriction in an analogous
way, and hence resolve it into an intersection, argument transpositions, and the cru-
cial step of fuzzy argument insertion. However, fuzzy arguments cannot be inserted
into the assumed base representations of semi-fuzzy quantifiers. Consequently the tar-
get construction cannot be modelled directly, and a different approach is necessary in
order to implement fuzzy argument insertion and achieve the desired compositional
interpretation in the general case. To this end, I observed that there are narrow con-
straints on the allowable choices ofQ /̃ A, which is intended to model the quantifier
which results from inserting the fuzzy argumentA into the last argument slot of the
semi-fuzzy quantifierQ. In fact, it is clear from theorem Th-2 that there is at most
one conceivable choice of semi-fuzzy quantifierQ′ = Q /̃ A which possibly satis-
fiesF(Q′) = F(Q)/A, and I was able to trace this quantifier to the explicit formula
Q′ = U(F(Q)/A). These considerations prune the allowable alternatives and leave
over a unique definition forQ /̃ A, which must result from the construction ofQ′ de-
scribed above. However, it is not a matter of course that this choice ofQ′ = Q /̃ A
properly representsF(Q)/A in terms of an underlying semi-fuzzy quantifier. Quite the
reverse, we must explicitly require this and enforce the equalityF(Q /̃ A) = F(Q)/A,
which makes the defining criterion for compatibility with fuzzy argument insertion. A
QFM compliant with this construction then permits an explicit representation of inter-
mediate quantifiers which result from the insertion of a fuzzy argument into one of the
argument slots, because it offers compatible base descriptionsQ′ = Q /̃ A on the level
of semi-fuzzy quantifiers. We shall experience in the next chapter that fuzzy argument
insertion poses an extremely demanding requirement. A prototypical example which
fulfills the requirement will then be presented, but it will also be substantiated that
this particular model already exhausts all positive choices among the standard DFSes,
and hence constitutes the unique standard model which complies with fuzzy argument
insertion.
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7 The class of models defined in terms of three-valued cuts
and fuzzy-median aggregation

7.1 Motivation and chapter overview

By stating the DFS axioms, I have made explicit the linguistic expectations on models
of fuzzy quantification. In the following chapters, I will now turn attention from the
discussion of generic semantic postulates to the models themselves, which instantiate
the axiomatic framework. From a theoretical position, this shift to concrete models
is necessary because these testify the consistency of the proposed axioms. In addi-
tion, the analysis of these examples and the identification of their internal structure,
might disclose the fundamental principles that underly fuzzy quantification. Needless
to say that the development of practical models and their subsequent computer imple-
mentation, is absolutely mandatory in order to make the theory useful for applications.
The following chapters are devoted to the investigation of increasingly broader classes
of models, each of which has its relative merits to the theory of fuzzy quantification.
These classes will be defined in terms of parametrized mechanisms which build a va-
riety of models from a generic constructive principle. For each considered classes, I
will hence start by introducing the parametrized base mechanism, which spans a ‘raw’
class of totally unrestricted fuzzification mechanisms. By imposing conditions on the
allowable choices of parameters, the unrestricted class of QFMs can then be pruned to
the subclass of well-behaved models, which can be defined from the base mechanism.

In order to implement this basic strategy, we must first locate a suitable starting point
from which to abstract the required constructive principle. As we shall see in a minute,
the proven techniques of fuzzy logic, and in particularα-cuts which resolve a fuzzy
concept into layers of crisp computations, are not suited to define models of the theory.
The failure ofα-cuts to define models, is apparently caused by their lack of symmetry
with respect to complementation. It is this observation which pointed my attention to
the richer descriptions offered by three-valued sets, because these permit the definition
of a three-valued cutting mechanism which overcomes the asymmetry problem. In or-
der to ensure a consistent processing of the resulting three-valued sets, I first develop
a constructive principle for Kleene’s three-valued logic, which is known to underly all
standard models. The basic mechanism will then be fitted to the case of semi-fuzzy
quantifiers, which can be accomplished by fuzzy median aggregation. In this way, we
obtain a fuzzy quantification resultQγ(X1, . . . , Xn) ∈ I for each choice of the cutting
parameterγ. The results spread over the cut levels must then be aggregated by apply-
ing an aggregation operatorB. This completes the base construction of fuzzification
mechanisms in terms of three-valued cuts and fuzzy-median aggregation, which opens
the raw class ofMB-QFMs. Embarking on the general strategy described above, I will
then develop a characterisation of the class ofMB-DFSes in terms of necessary and
sufficient conditions on the aggregation mappingB. A simplified construction based on
aggregation mappingsB′ : H −→ I will now be apparent from this characterisation,
which reduces some of the redundancy in the original description. Building on this
improved representation, I then introduce some prototypicalMB-DFSes, which also
comprise the most important exemplars. Following the presentation of these examples,
I then develop the formal apparatus, which is necessary to assess the characteristic
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properties of the individual models. In some cases, it also comes out that a considered
property is shared by allMB-DFSes. In addition, the available tools for analysing
MB-DFSes will help to identify the extreme cases of models in terms of specificity.
Finally, I will disclose that one of the proposed models combines unique semantical
properties. In order to acknowledge its distinguished position, the remainder of the
chapter will be dedicated to a thorough discussion of this prime example, which is
foremost among all standard models of fuzzy quantification.

7.2 Alpha-cuts are not suited to define models

In the proposed framework, an instance of fuzzy quantification can be desribed in terms
of the following data, (a) the given semi-fuzzy quantifierQ : P(E)n −→ I, and (b),
a choice of fuzzy argumentsX1, . . . , Xn ∈ P̃(E). The problem to be solved is that
of making the quantifier applicable to the fuzzy arguments, although it is (directly)
defined for crisp arguments only. One idea that comes to mind is that of resorting to
the familiar concept ofα-cuts and strictα-cuts, which resolve the fuzzy arguments into
layers of crisp arguments which are organized by the cutting parameterα. For each
considered layer, the resulting crisp arguments can then be supplied to the semi-fuzzy
quantifier, which determines a corresponding quantification result for each cut level. In
order to formalize this basic approach, let me first recall the usual definition ofα-cuts
and strictα-cuts:

Definition 75
LetE be a given set,X ∈ P̃(E) a fuzzy subset ofE andα ∈ I. ByX≥α ∈ P(E) we
denote theα-cut

X≥α = {e ∈ E : µX(e) ≥ α} .

Definition 76
LetX ∈ P̃(E) be given andα ∈ I. ByX>α ∈ P(E) we denote the strictα-cut

X>α = {e ∈ E : µX(e) > α} .

The effect ofα-cutting relative toµX(e) is displayed in Fig. 10.
α-cuts and strictα-cuts are linked by negation, as witnessed by the following equali-
ties. For all fuzzy subsetsX ∈ P̃(E) andα ∈ I,

(¬X)≥α = ¬(X>¬α) (36)

(¬X)>α = ¬(X≥¬α) . (37)

It is apparent from these equalities that neitherα-cuts nor strictα-cuts are compatible
with complementation.
We can now seize the above suggestion of evaluating the quantifierQ for the crisp
arguments obtained at each cut levelα ∈ I. The quantification resultsf(α) =
Q((X1)≥α, . . . , (Xn)≥α) obtained at the cut levelsα ∈ I must then be combined
into a single scalar result. This process is delegated to a subsequent aggregation step.
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Figure 10:α-cut as a function ofα andµX(v)

Probably the first choice of aggregation operation which comes to mind is that of inte-
gration. Let us hence consider the following attempt to define a QFM based onα-cuts
and integration:

A(Q)(X1, . . . , Xn) =
∫ 1

0

Q((X1)≥α, . . . , (Xn)≥α) dα ,

for all semi-fuzzy quantifiersQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E). We should
first notice that this is really only an ‘attempt’ to define a QFM, because the above
integral may not exist (I have not made any assumptions on the ‘well-behavedness’ of
Q, like measurability). HenceA is only partially defined.38 However, even if we allow
an arbitrary completion ofA into a fully defined fuzzification mechanism, the result-
ing QFMA still fails to be a DFS. This is becauseA is subject to an additional flaw,
apart from its ‘definition gaps’. It is easily observed thatA does not comply with the
construction of internal complementation, and hence violates a semantical postulate
which is known from Th-11 to be mandatory for all intended models.
From a broader perspective, the failure of the above attempt to define a model by inte-
gration overα-cuts is just an instance of a more general fact, and cannot be attributed
to the choice of the integral which served as the aggregation operator. By contrast, it
can be shown that it is impossible in general, to define models of the DFS axioms from
layers ofα-cuts. This is because there exists no choice of aggregation operator which
makes a DFS of the proposed base construction:

38To see this, consider a non-measurable functionf : I −→ I and letE = I. DefineQ : P(I) −→ I

by Q(X) = f(inf X) for all X ∈ P(I). A is undefined on the fuzzy subsetX∗ ∈ P̃(I) defined by
µX∗ (e) = e for all e ∈ I, becauseQ(X∗≥α) = f(α).
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Theorem 59 (Nonexistence of alpha-cut based DFSes)
DefineC,Q : P(E)n −→ I 7→ C(Q) : P̃(E)

n
−→ P̃(I) by

µC(Q)(X1,...,Xn)(α) = Q((X1)≥α, . . . , (Xn)≥α)

for all α ∈ I. There exists noS : P̃(I) −→ I such thatF = S◦C satisfies the following
conditions:

• F̃(id2) = idI, i.e. the identity truth function is mapped to its proper fuzzy ana-
logue;

• ¬̃ = F̃(¬) is a strong negation operator;

• F is compatible with internal complementation.

In particular, there exists noS : P̃(I) −→ I such thatF = S ◦ C is a DFS.

Note. The second part of the theorem is again apparent from Th-11. This failure of
theα-cut based approach to define plausible models of fuzzy quantification is caused
by their lack of symmetry with respect to complementation, see (36) and (37). Due to
this negative evidence concerning the potential utility ofα-cuts to decompose fuzzy
quantification into several layers of quantification involving crisp arguments, I will
now consider a different but related mechanism. The well-knownresolution principle
has successfully been applied in other contexts for the transfer of crisp concepts into
corresponding concepts for fuzzy sets. Adapted to the present situation of semi-fuzzy
quantifiers supplied with fuzzy arguments, the resolution principle becomes:

Definition 77 (Resolution principle)
Letf : P(E) −→ V be a mapping. ByR(f) we denote the mappingR(f) : P̃(E) −→
P̃(V ) which to eachX ∈ P̃(E) associates the fuzzy setR(f)(X) defined by

µR(f)(X)(v) = sup{α ∈ I : f(X≥α) = v}

for all v ∈ V . We then say thatR(f) is obtained fromf by applying the the resolution
principle.

Note. I have stated the resolution principle for one-place functions only. Because
P(E)n ∼= P(E × n) and P̃(E)

n ∼= P̃(E × n), this generalises ton-place functions
f : P(E)n −→ V in the obvious way, i.e. by component-wiseα-cutting.
By applying the resolution principle, then, a semi-fuzzy quantifierQ : P(E)n −→ I is
mapped to thatR(Q) : P̃(E)

n
−→ P̃(I) which to each choice ofX1, . . . , Xn ∈ P̃(E)

assigns the fuzzy subsetR(Q)(X1, . . . , Xn) ∈ P̃(I) defined by

µR(Q)(X1,...,Xn)(v) = sup{α ∈ I : Q((X1)≥α, . . . , (Xn)≥α) = v} ,

for all v ∈ I.
Upon closer inspection, the resolution principle comes out as a special but important
case of the generalα-cut based approach discussed first, which has already been shown
to be doomed to failure. As a corollary to the above theorem onα-cut based attempts
to define DFSes, we hence obtain:
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Theorem 60 (Nonexistence of models based on the resolution principle)
It is not possible to define models of the theory based on the resolution principle, i.e.
noS : P(I) −→ I exists which makesF = S ◦ R a DFS.

By theα-cut representationof a choice of fuzzy arguments(X1, . . . , Xn) ∈ P̃(E)
n
, I

denote the fuzzy setRES(X1, . . . , Xn) ∈ P̃(P(E))
n

defined by

µRES(X1,...,Xn)((Y1, . . . , Yn)) = sup{α ∈ I : (X1)≥α = Y1, . . . , (Xn)≥α = Yn} ,

for all Y1, . . . , Yn ∈ P(E). Of course, DFSes can be defined based on thisα-cut rep-
resentation ofX1, . . . , Xn (at least if DFSes exist at all, which will be proven below).
But this is a trivial statement, since(X1, . . . , Xn) can be recovered from itsα-cut
representation.

7.3 From two-valued logic to Kleene’s logic, and beyond

As witnessed by Th-45, the{0, 1
2 , 1}-valued portion of the logic induced by a standard

model coincides with Kleene’s three-valued logic (see [85, p. 344]; also described e.g.
in [87, p. 29]). This observation provides a suitable starting point for defining models
of the theory. Kleene’s logic can be constructed from two-valued logic by the following
mechanism of generalizing a propositional functionf : 2n −→ 2 to the three-valued
f̆ : {0, 1

2 , 1}n −→ {0, 1
2 , 1}.

Suppose thatx1, . . . , xn ∈ {0, 1
2 , 1} are given. Associate to eachxi a setT (yi) ∈

P(2) as follows:

T (yi) =


{0} : xi = 0
{0, 1} : xi = 1

2

{1} : xi = 1

The setT (yi) collects the alternative interpretations ofyi as two-valued truth values:
0 and 1 are non-ambiguous and correspond to unique interpretations{0} and {1},
respectively, while the12 represents absence of knowledge, and is hence ambiguous
between all possible choices in{0, 1}. In terms of these sets of alternatives, we then
definef̆ : {0, 1

2 , 1}n −→ {0, 1
2 , 1} by

f̆(x1, . . . , xn) =


1 : f(y1, . . . , yn) = 1 for all yi ∈ T (yi), i = 1, . . . , n
0 : f(y1, . . . , yn) = 0 for all yi ∈ T (yi), i = 1, . . . , n
1
2 : else

for all x1, . . . , xn ∈ {0, 1
2 , 1}.

In this definition, the ‘indeterminate’ value12 is treated by considering both alternatives
0, 1. The truth-values0 and1 do not induce any indeterminacy. Let us now recall the
definition of the generalized fuzzy median, see Def. 57. By usingm 1

2
: P(I) −→ I, I

can now state the above definition more compactly, viz

f̆(x1, . . . , xn) = m 1
2
{f(y1, . . . , yn) : yi ∈ T (yi), i = 1, . . . , n} . (38)
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This median-based definition has the advantage that it can also be applied to functions
f : 2n −→ I, which it maps tof̆ : {0, 1

2 , 1}n −→ I, and thus takes us beyond
Kleene’s logic.

7.4 Adaptation of the mechanism to quantifiers

In this sequel, we are more interested in quantifiers rather than propositional functions.
Hence let us adapt the above mechanism to the case of three-valued quantifiers, which
are then translated into quantifiers that accept three-valued arguments. To this end, I
must first introduce some concepts related to three-valued subsets, which are necessary
to express the definition of the target mechanism.
Three-valued subsets of a given base setE will be modelled in a way analogous to
fuzzy subsets, i.e. we shall assume that each three-valued subsetX of E is uniquely
characterised by its membership functionνX : E −→ {0, 1

2 , 1} (I use the symbol
νX rather thanµX in order make unambiguous that the membership function is three-
valued). The collection of three-valued subsets of a givenE will be denotedP̆ (E); we

shall assume that̆P (E) is a set, and clearly we havĕP (E) ∼= {0, 1
2 , 1}E . As in the

case of fuzzy subsets, it might be convenient to identify three-valued subsets and their
membership functions, i.e. to stipulatĕP (E) = {0, 1

2 , 1}E . However, I will again not
enforce this identification.

I will assume that each crisp subsetX ∈ P(E) can be viewed as a three-valued sub-
set ofE, and that each three-valued subsetX of E can be viewed as a fuzzy subset of
E. Hence at times, the same symbolX will be used to denote a particular crisp subset
of E, as well as the corresponding three-valued and fuzzy subsets. If one chooses to
identify membership functions and three-valued/fuzzy subsets, then the crisp subsetX
is distinct from its representation as a three-valued or fuzzy subset, which corresponds
to its characteristic functionχX . In this case, it is understood that the appropriate trans-
formations (i.e., using characteristic function) are performed wheneverX is substituted
for a three-valued or fuzzy subset.

Let us now recall the construction of Kleene’s logic presented in the previous section,
which was based on the representation of three-valuedx ∈ {0, 1

2 , 1} by corresponding
ambiguity rangesT (x) ∈ P(2). This basic construction is easily adapted to three-
valued subsets. In order to express the ‘ambiguity’ or ‘indeterminacy’ which originates
from occurrences of the membership grade1

2 , a closed range of crisp subsets ofE will
then be associated with each three-valued subsetX ∈ P̆ (E). This range, denoted
T (X), is intended to capture the alternative interpretations of the three-valued setX
in terms of compatible two-valued sets.

Definition 78
SupposeE is some set andX ∈ P̆ (E) is a three-valued subset ofE. We associate
withX crisp subsetsXmin, Xmax ∈ P(E), defined by

Xmin = {e ∈ E : νX(e) = 1}
Xmax = {e ∈ E : νX(e) ≥ 1

2} .
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Based onXmin andXmax, we associate withX the range of crisp setsT (X) ⊆ P(E)
defined by

T (X) = {Y ∈ P(E) : Xmin ⊆ Y ⊆ Xmax} .

Notes

• If e ∈ E is such thatνX(e) = 1, then allY ∈ T (X) containe; if e ∈ E is
such thatνX(e) = 0, then noY ∈ T (X) containse, and for thosee ∈ E with
νX = 1

2 , T (X) contains all combinations of the alternativese ∈ Y , e /∈ Y .

• The pairs(Xmin, Xmax), Xmin ⊆ Xmax form a representation of the three-
valued setsX because everyX can be recovered from(Xmin, Xmax) in the
apparent way, viz

νX(e) =

 1 : e ∈ Xmin

0 : e /∈ Xmax

1
2 : else

for all e ∈ E.

Based on this concept, which resolves each three-valued subset into its ambiguity range
of compatible crisp subsets, I can now modify the above mechanism for extending
two-valued propositional functions to three-valued arguments, and fit its core idea to
the case of three-valued quantifiers. It is then convenient to abbreviate

T (X1, . . . , Xn) = T (X1)× · · · × T (Xn) .

I can then define

Q̆(X1, . . . , Xn)

=


1 : Q(Y1, . . . , Yn) = 1 for all (Y1, . . . , Yn) ∈ T (X1, . . . , Xn)
0 : Q(Y1, . . . , Yn) = 0 for all (Y1, . . . , Yn) ∈ T (X1, . . . , Xn)
1
2 : else

for all X1, . . . , Xn ∈ P̆ (E). This construction extends the three-valued quantifierQ :
P(E)n −→ {0, 1

2 , 1} to a quantifierQ̆ : P̆ (E)
n
−→ {0, 1

2 , 1}, which now accepts
three-valued arguments. Again, we can profit from the generalized fuzzy medianm 1

2
and rephrase this according to the same idea which underlies equality (38). Stated this
way, the mechanism can be applied to arbitrary semi-fuzzy quantifiers as well, which
produce continuous rather than three-valued outputs. A given semi-fuzzy quantifier
Q : P(E)n −→ I is then mapped to a quantifier̆Q : P̆ (E)

n
−→ I, which generalizes

its base quantifierQ to the case of three-valued arguments:

Definition 79
To all semi-fuzzy quantifiersQ : P(E)n −→ I, we associate a correspondinğQ :
P̆ (E)

n
−→ I defined by

Q̆(X1, . . . , Xn) = m 1
2
{Q(Y1, . . . , Yn) : Y1 ∈ T (X1), . . . , Yn ∈ T (Xn)}

for all X1, . . . , Xn ∈ P̆ (E).
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The resultingQ̆ now accepts three-valued arguments. In the general case, though, we
must deal with unrestricted fuzzy arguments which are not tied to membership grades
in {0, 1

2 , 1}. In the following, I hence suggest a reduction of fuzzy quantification to
the case of three-valued arguments.

7.5 Three-valued cuts of fuzzy subsets

We are now able to evaluate quantifying statements which involve three-valued argu-
ments. In order to further generalize this construction and support arbitrary fuzzy ar-
guments, I propose the use of a cutting mechanism which reduces the fuzzy arguments
of the quantifier to corresponding three-valued arguments, and control this reduction
by a cutting parameterγ ∈ I. We know from Th-59 thatα-cuts (i.e. simple two-valued
cuts) are not suited to effect the reduction, due to their lack of symmetry with respect to
complementation. However, it is apparent how a reduction to three-valued sets (rather
than the crisp sets ofα-cuts) can be performed in a symmetrical fashion, and hence
achieves the desired compliance with negation. Let me first state the definition for in-
dividual membership grades in the unit interval, which are cut to membership grades
in {0, 1

2 , 1} which correspond to ‘false’, ‘unknown’ and ‘true’, respectively.

Definition 80
For everyx ∈ I andγ ∈ I, the three-valued cut ofx at γ is defined by

tγ(x) =


1 : x ≥ 1

2 + 1
2γ

1
2 : 1

2 −
1
2γ < x < 1

2 + 1
2γ

0 : x ≤ 1
2 −

1
2γ

if γ > 0, and

t0(x) =


1 : x > 1

2
1
2 : x = 1

2

0 : x < 1
2

in the case thatγ = 0.

Note. The cutting parameterγ can be conceived of as a degree of ‘cautiousness’ be-
cause the largerγ becomes, the closertγ(x) will approach the ‘undecided’ result of1

2 .
Hencetγ′(x)�c tγ(x) wheneverγ ≤ γ′.
The three-valued cut mechanism for scalars can be extended to three-valued cuts of
fuzzy subsets, by applying it element-wise to the membership functions:

Definition 81
SupposeE is some set andX ∈ P̃(E) a subset ofE. The three-valued cut ofX at
γ ∈ I is the three-valued subsetTγ(X) ∈ P̆ (E) defined by

νTγ(X)(e) = tγ(µX(e)) ,

for all e ∈ E.
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Figure 11: Three-valued cut as a function ofγ andµX(v)

Note. The effect of three-valued cutting is displayed in Fig. 11.
Usually the three-valued cut will not be applied in isolation. By contrast, it will be
composed with the construction introduced in Def. 78, and hence resolved into a pair of
crisp sets((Tγ(X))min, (Tγ(X))max), or alternatively into the crisp rangeT (Tγ(X))
determined by the three-valued set which results from the cut operation. Due to this
practice, which generally combines the cut operation with the subsequent resolution,
it is convenient to introduce the succinct notationXmin

γ andXmax
γ for the above pair

of crisp sets, and also introduce an abbreviationTγ(X) for the cut rangeT (Tγ(X))
which represents the three-valued cut at the ‘cautiousness level’γ ∈ I by a set of crisp
alternatives.

Definition 82

LetE be some set,X ∈ P̃(E) a fuzzy subset ofE andγ ∈ I. Xmin
γ , Xmax

γ ∈ P(E)
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andTγ(X) ⊆ P(E) are defined by

Xmin
γ = (Tγ(X))min

Xmax
γ = (Tγ(X))max

Tγ(X) = T (Tγ(X)) = {Y : Xmin
γ ⊆ Y ⊆ Xmax

γ } .

Hence ifγ > 0, then

Xmin
γ = X

≥ 1
2 +

1
2γ

Xmax
γ = X

>
1
2−

1
2γ
,

and in the case thatγ = 0,

Xmin
0 = X

>
1
2

Xmax
0 = X

≥ 1
2
.

Notes

• Let us recall that the three-valued set which results from the three-valued cut of
X atγ ∈ I can be represented by the pair(Xmin

γ , Xmax
γ ), and further notice that

bothXmin
γ andXmax

γ are defined byα-cuts. Hence every three-valued cut can be
represented by a pair ofα-cuts, which in turn also determines the corresponding
range of crisp sets,Tγ(X).

• Theγ-indexed family(Xmin
γ , Xmax

γ )γ∈I faithfully representsX becauseX can
recovered from this representation by means of

µX(e) =

{
1
2 + 1

2 sup{γ ∈ I : e ∈ Xmin
γ } : e ∈ Xmin

0
1
2 −

1
2 sup{γ ∈ I : e /∈ Xmax

γ } : e /∈ Xmin
0

for all e ∈ E. Hence every fuzzy subsetX can be resolved into a family of pairs
(Xmin

γ , Xmax
γ )γ∈I which represent the three-valued cuts ofX at all choices of

γ ∈ I.

• In turn,X is also faithfully represented by the family of cut ranges(Tγ(X))γ∈I,
becauseXmin

γ andXmax
γ can be recovered from these ranges by forming the

intersectionXmin
γ = ∩Tγ(X) and the unionXmax

γ = ∪Tγ(X). Hence when
resorting to the cut ranges, we also achieve the resolution property for three-
valued cuts.

• Abusing language, I will usually identify the pair of crisp sets(Xmin
γ , Xmax

γ ),
and the cut rangeTγ(X) with the three-valued cutTγ(X), and refer to both as
‘the three-valued cut ofX atγ’ although in a precise sense, the three-valued cut
is only represented by these modelling devices.
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It is also instructive to observe how the choice of the ‘cautiousness parameter’γ effects
the results of the cutting operation on a given fuzzy subsetX. If γ = 0, the set of
indeterminates (i.e. of thosee ∈ E such thate ∈ Xmax

γ \ Xmin
γ ) contains only those

e ∈ E with µX(e) = 1
2 ; all other elements ofE are mapped to the closest truth value

in {0, 1}. As γ increases, the set of indeterminates is increasing. Forγ = 1, then, the
level of maximal cautiousness is reached where all elements ofE except those with
µX(e) ∈ {0, 1} are interpreted as indeterminates (see also Fig. 11).

Some obvious properties ofXmin
γ andXmax

γ are summarized in the following theo-
rem.

Theorem 61 Suppose thatE is a given set andX,X ′ ∈ P̃(E) are fuzzy subsets ofE.
Then for allγ ∈ I,

a. (¬X)min
γ = ¬(Xmax

γ ) and(¬X)max
γ = ¬(Xmin

γ );

b. (X ∩X ′)min
γ = Xmin

γ ∩X ′min
γ and(X ∩X ′)max

γ = Xmax
γ ∩X ′max

γ ;

c. (X ∪X ′)min
γ = Xmin

γ ∪X ′min
γ and(X ∪X ′)max

γ = Xmax
γ ∪X ′max

γ .

(Proof: D.2, p.442+)

This demonstrates that the three-valued cutting mechanism is compatible with all Boolean
operations on the arguments of a quantifier, i.e.

Tγ((¬X)) = {¬Y : Y ∈ Tγ(X)}
Tγ((X ∩X ′)) = {Y ∩ Y ′ : Y ∈ Tγ(X), Y ′ ∈ Tγ(X ′)}
Tγ((X ∪X ′)) = {Y ∪ Y ′ : Y ∈ Tγ(X), Y ′ ∈ Tγ(X ′)} ,

for all X,X ′ ∈ P̃(E) andγ ∈ I.

7.6 The fuzzy-median based aggregation mechanism

In this section we can put the pieces together and combine the interpretation mech-
anism for three-valued arguments, which takesQ to Q̆, and the three-valued cutting
operation. The three-valued cuts at a given levelγ will then be applied to reduce given
choices of fuzzy arguments to the simpler situation of three-valued arguments, which
can already be handled by̆Q. Hence in order to evaluate a quantifying statement
based on a semi-fuzzy quantifierQ : P(E)n −→ I at a given level of cautiousness
γ, we apply the above mechanism toQ, yielding Q̆ : P̆ (E)

n
−→ I, and then in-

sert the three-valued cuts of the fuzzy argument sets atγ. In fact, both mechanisms,
i.e. quantifier generalisation and three-valued cut, are exclusively used in this specific
combination. It is hence justified to introduce a shorthand notation for the composition
of the two mechanisms, and subsequently treat the resulting combination as an atomic
construction which can be used to define models. This approach is summarized in the
following definition.
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Definition 83
For everyγ ∈ I, we denote by(•)γ the QFM defined by

Qγ(X1, . . . , Xn) = m 1
2
{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} ,

for all semi-fuzzy quantifiersQ : P(E)n −→ I.

Notes

• It should be apparent how the definition ofQγ(X1, . . . , Xn) evolves from the
composition ofQ̆ introduced in Def. 79, and the three valued cuts defined by
Def. 81.

• Considering the resulting construction in total, the basic idea that can be identi-
fied is that of treating the crisp ranges which correspond to the three-valued cuts
as providing a number of alternatives to be checked. Hence in order to evaluate
a semi-fuzzy quantifierQ at a certain cut levelγ, we have to consider all choices
of Q(Y1, . . . , Yn), whereYi ∈ Tγ(Xi). The set of alternative results obtained in
this way must then be aggregated to a single result in the unit interval, which is
achieved by applying the generalized fuzzy median.

• If the base setE is finite, then the number ofdistinct three-valued cuts of
X1, . . . , Xn ∈ P̃(E) is finite as well. In this case,f(γ) = Qγ(X1, . . . , Xn)
is a step function, i.e. piece-wise constant inγ, except for a finite number of
discontinuities. It is this property which makes the concept of three-valued cuts
and the definition of(•)γ still suited for efficient implementation: results need
to be computed only for the (usually small) number of distinct three-valued cuts.
More details on the computational aspect can be found in Chap. 11.

The next theorem presents a result concerning the monotonicity properties off(γ) =
Qγ(X1, . . . , Xn), when viewed as a function ofγ ∈ I.

Theorem 62
LetQ : P(E)n −→ I be a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E).

a. IfQ0(X1, . . . , Xn) > 1
2 , thenQγ(X1, . . . , Xn) is monotonically nonincreasing

in γ andQγ(X1, . . . , Xn) ≥ 1
2 for all γ ∈ I.

b. IfQ0(X1, . . . , Xn) = 1
2 , thenQγ(X1, . . . , Xn) = 1

2 for all γ ∈ I.

c. IfQ0(X1, . . . , Xn) < 1
2 , thenQγ(X1, . . . , Xn) is monotonically nondecreasing

in γ andQγ(X1, . . . , Xn) ≤ 1
2 for all γ ∈ I.

Note. These monotonicity properties reflect the intuition that as soon as one becomes
more cautious (i.e. the ‘level of cautiousness’γ increases), the results obtained will
become less specific, in the sense of being closer to1

2 .
Owing to this fuzzy-median based aggregation mechanism, we are now able to inter-
pret fuzzy quantifiers for any fixed choice of the cutting parameterγ ∈ I. However,
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none of the QFMs(•)γ is a DFS yet, because the required information is spread over
various cut levels, and the fuzzy median suppresses too much structure at each isolated
cut level. Nonetheless, these QFMs prove useful in defining models of fuzzy quan-
tification. We simply need to abstract from individual cut levels, and simultaneously
consider the results obtained at all levels of cautiousnessγ.

7.7 The unrestricted class of MB-QFMs

In order to implement this basic idea of supplying the assumed QFM with the total
amount of information, which is spread across cautiousness levels, we consider the
γ-indexed family(Qγ(X1, . . . , Xn))γ∈I. Unlike the individual QFMs(•)γ , which
fail to be a DFS because they only see one choice ofγ at a time, thecollectionof
their resultsQγ(X1, . . . , Xn), obtained for all choices ofγ ∈ I, contains the desired
information across cut levels. In order to construct fuzzification mechanisms which
have a chance of being a DFS, it is hence suggested to apply an aggregation operator
to theseγ-indexed results. This can be done e.g. by means of integration:

Definition 84
ByM we denote the QFM defined by

M(Q)(X1, . . . , Xn) =
∫ 1

0

Qγ(X1, . . . , Xn) dγ

for all semi-fuzzy quantifiersQ : P(E)n −→ I and fuzzy argumentsX1, . . . , Xn ∈
P̃(E).

Note. The integral is known to exist because the integrandsf(γ) = Qγ(X1, . . . , Xn)
are bounded and monotonic by Th-62.
Let me now state that the fuzzification mechanism so defined indeed qualifies as a
model of fuzzy quantification.

Theorem 63
M is a standard DFS.

Notes

• M is the first DFS that I discovered, and subsequently implemented in order to
support quantifying queries in an experimental retrieval system for multimedia
weather documents [53].

• As we shall see below,M is also a ‘practical’ model because it satisfies both
continuity requirements that have been defined for QFMs. Consequently, the
quantification results obtained fromM are robust against variation or noise in
the fuzzy argumentsX1, . . . , Xn and in the chosen quantifierQ.

• For the implementation of quantifiers inM see Chap. 11.
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The integral, which was used in the definition ofM, is not the only possible way of
abstracting from the cutting parameterγ. In the following, I will hence generalize this
example and consider a broader range of aggregation operators. I will use the symbol
B for such aggregation operators, and the resulting QFM will be denotedMB. Before
introducing the desired construction of QFMs, let us first identify the precise domain
on which these aggregation operators can act.

Definition 85

B
+,B

1
2 ,B− andB ⊆ II are defined by

B
+ = {f ∈ II : f(0) > 1

2 andf(I) ⊆ [ 1
2 , 1] andf nonincreasing}

B

1
2 = {f ∈ II : f(x) = 1

2 for all x ∈ I }
B
− = {f ∈ II : f(0) < 1

2 andf(I) ⊆ [0, 1
2 ] andf nondecreasing}

B = B
+ ∪ B

1
2 ∪ B− .

Note. In the following, we shall denote byca : I −→ I the constant mapping

ca(x) = a , (39)

for all a, x ∈ I. Using this notation, apparentlyB
1
2 = {c 1

2
}.

In terms of these abbreviations, we can now express the following theorem, which is
actually a corollary of Th-62:

Theorem 64
SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier and(X1, . . . , Xn) ∈ P̃(E)

n
.

a. IfQ0(X1, . . . , Xn) > 1
2 , then(Qγ(X1, . . . , Xn))γ∈I ∈ B+;

b. IfQ0(X1, . . . , Xn) = 1
2 , then(Qγ(X1, . . . , Xn))γ∈I ∈ B

1
2 (i.e. constantly1

2 );

c. IfQ0(X1, . . . , Xn) < 1
2 , then(Qγ(X1, . . . , Xn))γ∈I ∈ B−.

In particular, the theorem substantiates that regardless ofQ : P(E)n −→ I and
X1, . . . , Xn ∈ P̃(E), it always holds that

(Qγ(X1, . . . , Xn))γ∈I ∈ B .

HenceB is large enough to embed all mappingsf(γ) = Qγ(X1, . . . , Xn) which can
arise from a possible quantification instance, as given byQ and a choice ofX1, . . . , Xn.
In other words, it contains the full range of operands that must possibly be accepted
by the assumed aggregation operatorB. Conversely, the setB is also exhausted by the
possible range of(Qγ(X1, . . . , Xn))γ∈I. Hence for eachf ∈ B there exist choices of
Q andX1, . . . , Xn such thatf = (Qγ(X1, . . . , Xn))γ∈I, as I will now state:
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Theorem 65
Supposef is some mappingf ∈ B. DefineQ : P(I) −→ I by

Q(Y ) = f(inf Y ) (Th-65.a.i)

for all Y ∈ P(I) and letX ∈ P̃(I) be the fuzzy subset with membership function

µX(z) = 1
2 + 1

2z (Th-65.a.ii)

for all z ∈ I. Then

Qγ(X) = f(γ)

for all γ ∈ I.

Note. Combining this with the above observations, we now have evidence thatB is
the minimal set of mappingsf : I −→ I which embeds all possible operands of the
assumed aggregation mapping. HenceB precisely characterises the domain of suitable
aggregation operators.

Let us now return to the original idea of abstracting from the above definition of
M, and formulating a generic construction of QFMs, by aggregating the results of
Qγ(X1, . . . , Xn) obtained for all choices of the cautiousness parameter. We know
from the last theorem that a corresponding aggregation operator must be defined onB,
because(Qγ(X1, . . . , Xn))γ∈I ∈ B, and no smaller setA ⊆ II will suffice.
Hence consider an aggregation operatorB : B −→ I. By composingB with the
γ-indexed cut mechanism, we can now construct a QFM, denotedMB, which corre-
sponds to the operatorB. This basic suggestion can be formalized as follows.

Definition 86
SupposeB : B −→ I is given. The QFMMB is defined by

MB(Q)(X1, . . . , Xn) = B((Qγ(X1, . . . , Xn))γ∈I) ,

for all semi-fuzzy quantifiersQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E).

By the class ofMB-QFMs I mean the class of all QFMsMB defined in this way.
Because no conditions whatsoever were imposed on the aggregation mappingB, it
is apparent that the resulting fuzzification mechanisms constitute a ‘raw’, totally un-
restricted class ofMB-QFMs, which apart from the well-behaved models, also con-
tains many QFMs which violate the axiomatic requirements. In order to shrink down
this ‘raw’ class to the reasonable cases ofMB-DFSes and hence identify its plausi-
ble models, I will now address the problem of formalizing the required conditions on
admissible choices of the aggregation mapping.

7.8 Characterisation of MB-DFSes

In this section, I will identify the class of well-behaved models among the ‘raw’MB-
QFMs, based on properties that are visible in the aggregation mapping. To this end, I
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first introduce some constructions onB. These will permit us to capture the relevant
behaviour of the aggregation mapping in a system of conditions imposed onB. In turn,
the proposed conditions are then shown to be necessary and sufficient forMB to be a
DFS, and thus precisely characterise the admissible choices ofB. To begin with, let
me now define the required constructions on the domain of the aggregation operator.

Definition 87

Supposef : I −→ I is a monotonic mapping (i.e., either nondecreasing or nonincreas-
ing). The mappingsf [, f ] : I −→ I are defined by:

f ] =

{
lim
y↘x

f(y) : x < 1

f(1) : x = 1

f [ =

{
lim
y↗x

f(y) : x > 0

f(0) : x = 0

for all x ∈ I.

Notes

• Let me remark thatf ] andf [ are well-defined, i.e. the limits in the above ex-
pressions exist, regardless off . This is becausef is known to be bounded and
monotonic.

• It is further apparent that iff ∈ B, thenf ] ∈ B andf [ ∈ B.

I will now introduce several coefficients which describe certain aspects of a mapping
f : I −→ I.

Definition 88 Suppose thatf : I −→ I is a monotonic mapping (i.e., either nonde-
creasing or nonincreasing). We define

f∗0 = lim
γ↘0

f(γ) (40)

f0
∗ = inf{γ ∈ I : f(γ) = 0} (41)

f
1
2
∗ = inf{γ ∈ I : f(γ) = 1

2} (42)

f∗1 = lim
γ↗1

f(γ) (43)

f1↑
∗ = sup{γ ∈ I : f(γ) = 1} . (44)

As usual, let us stipulate thatsup∅ = 0 andinf ∅ = 1.

Notes

• All limits in the definition of these coefficients exist due to the assumed mono-
tonicity of f : I −→ I.
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• The conditions imposed on legal choices ofB will only utilize one of these co-

efficients,f
1
2
∗ . The remaining coefficients will permit the subsequent definition

of example models.

Based on these concepts, I can now state several axioms governing the behaviour of
reasonable choices ofB.

Definition 89 Suppose that an aggregation mappingB : B −→ I is given. For all
f, g ∈ B, we define the following conditions onB:

B(f) = f(0) if f is constant, i.e.f(x) = f(0) for all x ∈ I (B-1)

B(1− f) = 1− B(f) (B-2)

If f̂(I) ⊆ {0, 1
2 , 1}, then (B-3)

B(f) =


1
2 + 1

2f
1
2
∗ : f ∈ B+

1
2 : f ∈ B

1
2

1
2 −

1
2f

1
2
∗ : f ∈ B−

B(f ]) = B(f [) (B-4)

If f ≤ g, thenB(f) ≤ B(g) (B-5)

Note. Let me briefly comment on the meaning of the individual conditions. (B-1)
states thatB preserves constants. In particular, allMB-QFMs such thatB satisfies
(B-1) coincide on three-valued argument sets. (B-2) expresses thatB is compatible
with the standard negation1− x. (B-3) ensures that all conformingMB-QFMs coin-
cide on three-valued quantifiers. (B-4) expresses some kind of insensitivity property of
B, which turns out to be crucial with respect toMB satisfyingfunctional application
(Z-6). Finally, (B-5) expresses thatB is monotonic, i.e. application ofB preserves in-
equalities.
Taken as a whole, the proposed system of conditions onB precisely captures the re-
quirements on reasonable choices ofB. To see this, we first notice that everyB : B −→
I which satisfies (B-1) to (B-5) makesMB a standard DFS:

Theorem 66
The conditions(B-1)–(B-5) on B : B −→ I are sufficient forMB to be a standard
DFS.

Next I consider the converse issue that every choice ofB : B −→ I which makesMB
a DFS, in fact satisfies the proposed set of conditions. Again, I have a positive result
here.

Theorem 67
The conditions(B-1)–(B-5) onB : B −→ I are necessary forMB to be a DFS.

Combining this with Th-66, it is easily seen that
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Theorem 68
EveryMB-DFS is a standard DFS.

Let us further notice that

Theorem 69
The conditions(B-1)–(B-5) are independent.

Hence none of these conditions can be expressed in terms of the remaining conditions.
In other words, I have succeeded in formalizing a minimal set of conditions, and the
conditions indeedseparatethe distinct factors that guide reasonable choices ofB. In
addition, the mutual independence of the conditions avoids redundant effort in proofs.

7.9 A simplified construction based on mappings B′ : H −→ I

In the following, a simplified representation ofMB-DFSes will be developed, which
facilitates the presentation and investigation of specific models. To this end, let us first

observe thatB is completely determined by its behaviour onB+ ∪B
1
2 , provided that it

satisfies (B-2). This is apparent because for everyf ∈ B−, we obtain that1− f ∈ B+

and henceB(f) = 1−B(1− f). Noticing thatc 1
2

= 1− c 1
2

, we can further conclude

that in everyB which satisfies (B-2), it holds that

B(c 1
2

) = 1− B(1− c 1
2

) = 1− B(c 1
2

) ,

i.e.B(c 1
2

) = 1
2 . We can hence strengthen the above remark, and state thatB is even

fully determined by its behaviour onB+ only. If we further assume thatB satisfies
(B-5), then we also know thatB(f) ≥ B(c 1

2
) = 1

2 for all f ∈ B+. This means that

we can restrict the range of possibleB(f) to the upper half of the unit interval,[ 1
2 , 1].

In order to develop the simplified constructions, let us now recall from Th-67 that the
considered conditions (B-2) and (B-5) are necessary forMB to be a DFS. Hence no
models of interest are lost if we focus on thoseB : B −→ I which satisfy (B-2) and
result inB(f) ≥ 1

2 for all f ∈ B+. In this case, I can give a more concise description
of the models:

Definition 90
ByH ⊆ II we denote the set of nonincreasing mappingsf : I −→ I, f 6= c0, i.e.

H = {f ∈ II : f nonincreasing andf(0) > 0 } .

We can then associate with eachB′ : H −→ I aB : B −→ I as follows:

B(f) =


1
2 + 1

2B
′(2f − 1) : f ∈ B+

1
2 : f ∈ B

1
2

1
2 −

1
2B
′(1− 2f) : f ∈ B−

(45)
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It is apparent that eachB constructed in this way again satisfies (B-2) and results in
B(f) ≥ 1

2 for all f ∈ B+. Conversely, all suitable choices ofB can be represented in
terms of this new construction, as I will now state.

Theorem 70
ConsiderB : B −→ I and suppose thatB satisfies(B-2) and results inB(f) ≥ 1

2 for
all f ∈ B+. ThenB can be defined in terms of a mappingB′ : H −→ I according to
equality(45). B′ is defined by

B′(f) = 2B( 1
2 + 1

2f)− 1 . (46)

By the above reasoning, these conditions are satisfied by everyB : B −→ I which
fulfills (B-2) and (B-5); in particular, every choice ofB which makesMB a DFS can
be represented in this simplified format. We can hence restrict attention on properties
of mappingsB′ : H −→ I, and still cover all of the desired models.

7.10 Characterisation of the models in terms of conditions on B′

Let us now characterise theMB-models in terms of conditions on the core aggregation
mappingB′, which are hence fitted to the simplified construction.

Definition 91 SupposeB′ : H −→ I is given. For allf, g ∈ H, we define the following
conditions onB′:

B′(f) = f(0) if f is constant, i.e.f(x) = f(0) for all x ∈ I (C-1)

If f(I) ⊆ {0, 1}, thenB′(f) = f0
∗ , (C-2)

B′(f ]) = B′(f [) if f̂((0, 1]) 6= {0} (C-3)

If f ≤ g, thenB′(f) ≤ B′(g) (C-4)

These conditions onB′ are straightforward from the known conditions (B-1)–(B-5) that
must be imposed on the correspondingB. The following results on the (C-1)–(C-4) are
therefore apparent from the previous results on the ‘B-conditions’:

Theorem 71
The conditions(C-1)–(C-4) on B′ : H −→ I are sufficient forMB to be a standard
DFS.

Theorem 72
The conditions(C-1)–(C-4)onB′ : H −→ I are necessary forMB to be a DFS.

Theorem 73
The conditions(C-1)–(C-4)are independent.

Note. In the above theorems on the ‘C-conditions’, it is understood thatMB is con-
structed fromB′ according to (45) and Def. 86.
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To sum up, the simplified construction of the relevantMB-QFMs in terms of a map-
pingB′ : H −→ I also lends itself to a succinct characterisation of the target models.
Based on this characterisation, it has now become easy to verify that a ‘DFS candi-
date’MB indeed qualifies as one of the intended models, by performing a few simple
checks on the aggregation operatorB : B −→ I or B′ : H −→ I. In fact, knowing
the precise contraints that govern admissible choices ofB′, also guided my search into
examples of models.

7.11 Examples of MB-models

In the following, I will present some examples ofMB-QFMs. For convenience, the
new construction based onB′ will be utilized, in order to simplify the presentation
of these models and achieve succinct definitions. Let us first reconsider the modelM,
which motivated the generalization to the class ofMB-QFMs, and fit its definition into
the new format. In terms of the improved notation which is now available, the original
definition ofM can be rephrased as follows.

Theorem 74
M is theMB-QFM defined by

B′∫ (f) =
∫ 1

0

f(x) dx ,

for all f ∈ H.

Now turning to new examples, I first introduce the following modelMU .

Definition 92
ByMU we denote theMB-QFM defined by

B′U (f) = max(f1↑
∗ , f

∗
1 )

for all f ∈ H, where the coefficientsf∗1 and f1↑
∗ are defined by equalities(43) and

(44), resp.

As I now state,MU is indeed a plausible model. In fact, this can be asserted for a
broader type ofMB-QFMs, of whichMU is only a special example:

Theorem 75
Suppose⊕ : I2 −→ I is ans-norm andB′ : H −→ I is defined by

B′(f) = f1↑
∗ ⊕ f∗1 , (Th-75.a)

for all f ∈ H, where the coefficientsf1↑
∗ andf∗1 are defined by(44) and (43), respec-

tively. Further suppose thatB : B −→ I is defined in terms ofB′ according to equality
(45), and thatMB is the QFM defined in terms ofB according to Def. 86. The QFM
MB is a standard DFS.
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In particular,MU is a standard DFS. We will see later on thatMU plays a special role
amongMB-type, by establishing a lower bound on these models with respect to the
specificity order.
In [46, Def. 44, p. 63], another exampleM∗ was presented, which is defined as follows.

Definition 93
ByM∗ we denote theMB-QFM defined by

B∗′(f) = f0
∗ · f∗0 ,

for all f ∈ H, where the coefficientsf0
∗ andf∗0 are defined by(41)and (40), resp.

The following model, based on a similar construction, will be of some interest to the
later analysis of the class ofMB-DFSes.

Definition 94
ByMS we denote theMB-QFM defined by

B′S(f) = min(f0
∗ , f

∗
0 )

for all f ∈ H, using the same abbreviations as forM∗.

Abstracting from the underlying construction, we may assert the following.

Theorem 76
SupposeB′ : H −→ I is defined by

B′(f) = f0
∗ � f∗0

for all f ∈ H, where� : I2 −→ I is a t-norm. Further suppose that the QFMMB is
defined in terms ofB′ according to(45)and Def. 86. ThenMB is a standard DFS.

In particular,MS is a standard DFS. LikeMU , the modelMS is also of special rele-
vance to theMB-type. We shall see later that it plays the opposite role, and constitutes
an upper bound on the models under the specificity order.
In [46, Def. 45, p. 64], a further type of modelM∗ was presented.

Definition 95
ByM∗ we denote theMB-QFM defined by

B′∗(f) = sup{x · f(x) : x ∈ I} ,

for all f ∈ H.

By slightly altering this construction, I discovered a model which is now known to be
of key relevance to DFS theory.
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Definition 96
ByMCX we denote theMB-QFM defined by

B′CX(f) = sup{min(x, f(x)) : x ∈ I}

for all f ∈ H.

By abstracting from the constructive principle underlying these examples, we obtain
the following more general result:

Theorem 77
Suppose� : I2 −→ I is a continuoust-norm andB′ : H −→ I is defined by

B′(f) = sup{γ � f(γ) : γ ∈ I} (Th-77.a)

for all f ∈ H. Further suppose thatB : B −→ I is defined in terms ofB′ according to
equality(45). Then the QFMMB, defined by Def. 86, is a standard DFS.

Note. In particular,MCX andM∗ are standard models.
As remarked above,MCX is a DFS with unique properties, and a separate section has
therefore been devoted to its discussion. Before focusing on this particular model in
sect. 7.13, however, it is first necessary to develop the criteria onB orB′ which permit
us to check whether a given DFSMB satisfies an adequacy property of interest. For
example, it would be helpful if we could perform specificity comparisons solely based
on the known aggregation mappingsB′; if we could testMB for Q-continuity and
arg-continuity by looking atB′ only, etc. In turn, these conditions will then permit a
deeper investigation ofMCX and other prominent models of the theory.

7.12 Properties of MB-models

Let us now take a closer look atMB-DFSes. The present goal is to expose the internal
structure of these models and relate it to the properties of interest, like the continuity
requirements or propagation of fuzziness. I am also interested in identifying properties
shared by allMB-DFSes, which hence unveil some characteristic aspects of this class
of models. In addition, it is useful to locate models with special properties, and in par-
ticular the boundary cases with respect to the specificity order. Knowing these extreme
cases delimits the space of possible models, which is opened by the proposed base
construction. These special examples hence provide some insight into the behaviour
that must be expected by other models of interest, which are known to be in-between
the extreme poles.
To begin with, I state a theorem which simplifies the comparison ofMB-DFSes with
respect to specificity:

Theorem 78
SupposeB′1,B′2 : H −→ I are given. Further suppose thatB1,B2 ∈ BB are the
mappings associated withB′1 andB′2, respectively, according to equality(45), and
MB1 ,MB2 are the corresponding QFMs defined by Def. 86. ThenMB1 �cMB2 if
and only ifB′1 ≤ B′2.
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Based on the above theorem and the examples of models introduced so far, it is now
easily shown that�c is a genuine partial order onMB-DFSes.

Theorem 79
�c is not a total order onMB-DFSes.

Note. In particular, the standard DFSes are only partially ordered by�c.
In practice, this means that we cannot simply compile a list of the example models (or
other models) ordered by specificity, because some of these might fail to be comparable
under�c. However, it is still possible to investigate extreme cases ofMB-DFSes with
respect to the specificity order. For example, it is not hard to prove that the DFSMU

defined by Def. 92 represents a boundary case ofMB-DFSes in terms of specificity:

Theorem 80
MU is the least specificMB-DFS.

Let us now consider the question of the existence of most specificMB-DFSes. We
first observe that

Theorem 81
AllMB-DFSes are specificity consistent.

It is then immediate from Th-42 that there exists a least upper specificity boundFlub

on every nonempty collection ofMB-models. As I will now show,Flub is in fact an
MB-DFS.

Theorem 82
LetF be a given nonempty collection ofMB-DFSes. The least upper specificity bound
Flub of F is anMB-DFS.

Hence arbitrary collections ofMB-QFMs have a least upper specificity bound, which
is again anMB-DFS. If we start from the collection ofallMB-DFSes, then we obtain
the modelMS defined in Def. 94, which represents the other extreme case ofMB-
DFS in terms of specificity:

Theorem 83
MS is the most specificMB-DFS.

Next I will discuss the two continuity requirements that were identified in sect. 6.2,
and develop the required criteria for deciding upon the Q-continuity and arg-continuity
of a givenMB-DFS. Let us first make some general observations how the continuity
conditions are related to(•)γ .

Theorem 84
LetQ,Q′ : P(E)n −→ I be given. Thend(Qγ , Q′γ) ≤ d(Q,Q′) for all γ ∈ I.
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We can use this inequality to formulate a condition onB′ : H −→ I which is necessary
and sufficient forMB to be Q-continuous. To this end, we first define a metricd :
H×H −→ I by

d(f, g) = sup{|f(γ)− g(γ)| : γ ∈ I} (47)

for all f, g ∈ H.

Theorem 85
SupposeMB is anMB-DFS andB′ is the corresponding mappingB′ : H −→ I.
MB is Q-continuous if and only if for allε > 0 there existsδ > 0 such that|B′(f) −
B′(g)| < ε wheneverf, g ∈ H satisfyd(f, g) < δ.

In the case of continuity in arguments, we need a different distance measure onH.
Hence let us defined′ : H×H −→ I by

d′(f, g) = sup{inf{γ′ : γ′ ∈ I, max(f(γ′), g(γ′)) ≤ min(f(γ), g(γ))} − γ : γ ∈ I} ,
(48)

for all f, g ∈ H. Let us notice thatd′ is only a ‘pseudo-metric’. It is symmetric
and satisfies the triangle inequality, but fails to be a metric in the strict sense because
d′(f, g) = 0 does not entail thatf = g. However, thosef, g with d′(f, g) = 0 are
treated alike by reasonable choices ofB′. It is this fact which justifies the use ofd′ in
lieu of a metric, which permits a successful reduction of arg-continuity to a criterion
decidable from the aggregation mapping. The next theorem established this desired
criterion, and hence shows how the arg-continuousMB models can be characterised
in terms of the underlying mappingB′ : H −→ I.

Theorem 86
SupposeB′ : H −→ I satisfies(C-2), (C-3) and (C-4). Further suppose thatMB is
defined in terms ofB′ according to(45)and Def. 86. Then the following conditions are
equivalent:

a. MB is arg-continuous.

b. for all f ∈ H and all ε > 0, there existsδ > 0 such that|B′(f) − B′(g)| < ε
wheneverd′(f, g) < δ.

Sometimes the following sufficient condition is simpler to check.

Theorem 87
LetB′ : H −→ I be a given mapping which satisfies(C-2), (C-3) and (C-4). If for all
ε > 0 there existsδ > 0 such thatB′(g)−B′(f) < εwheneverf ≤ g andd′(f, g) < δ,
thenMB is arg-continuous.

Both theorems have proven useful for deciding the continuity issue in the case of the
example models. In the following, I present the results of this investigation, which
establish or reject the properties of Q-continuity and arg-continuity for the examples
ofMB-models.
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Theorem 88
Suppose⊕ : I2 −→ I is ans-norm andB′ : H −→ I is defined by(Th-75.a). Further
suppose thatB : B −→ I is defined in terms ofB′ according to equality(45), and that
MB is the QFM defined in terms ofB according to Def. 86. The QFMMB is neither
Q-continuous nor arg-continuous.

In particular,MU violates both continuity conditions.

Theorem 89
SupposeB′ : H −→ I is defined byB′(f) = f0

∗�f∗0 for all f ∈ H, where� : I2 −→ I
is a t-norm. Further suppose that the QFMMB is defined in terms ofB′ according to
(45)and Def. 86. ThenMB is neither Q-continuous nor arg-continuous.

In particular,MS andM∗ fail at both continuity conditions. These results illustrate
thatMU andMS are only of theoretical interest, because they represent extreme
cases in terms of specificity. Due to their discontinuity, these models are not suited
for applications. The DFSM∗ is also impractical.
Having considered these boundary cases, I will now discuss practical models. In order
to establish thatM is arg-continuous, it is useful to know how the distance measures
d andd′ are related. To this end, I introduce the mapping(•)♦ : H −→ H defined by

f♦(v) = inf{γ ∈ I : f(γ) < v} (49)

for all f ∈ H andv ∈ I. It is easily checked that indeedf♦ ∈ H wheneverf ∈ H. Let
us now utilize this concept to unveil the relationship betweend andd′.

Theorem 90
For all f, g ∈ H, d′(f, g) = d(f♦, g♦).

Building on the above theorem, it is then easy to show that the modelM satisfies both
continuity conditions:

Theorem 91
M is bothQ-continuous and arg-continuous.

This proves thatM is indeed practical, and hence a model worth considering for use
in applications that need fuzzy quantifiers.
As concerns theMCX -type, I have the following positive result:

Theorem 92
Let� : I2 −→ I be a uniformly continuoust-norm, i.e. for allε > 0, there exists
δ > 0 such that|x1�y1−x2�y2| < ε wheneverx1, x2, y1, y2 ∈ I satisfy‖(x1, y1)−
(x2, y2)‖ < δ. Further suppose thatB′ : H −→ I is defined by equality(Th-77.a), and
define the QFMMB in terms ofB′ according to(45) and Def. 86 as usual. ThenMB
is bothQ-continuous and arg-continuous.
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In particular, the modelMCX which exhibits the best theoretical properties (see sec-
tion 7.13 below), is indeed a good choice for applications, because it satisfies both
continuity conditions. The theorem also shows thatM∗, presented on page 209, is a
practical DFS.

This completes the discussion of the continuity conditions. Next we consider the
requirement of propagating fuzziness in quantifiers and arguments, see Def. 65. It can
be shown that allMB-models conform to both facets of propagating fuzziness.

Theorem 93
EveryMB-DFS propagates fuzziness in quantifiers.

Theorem 94
EveryMB-DFS propagates fuzziness in arguments.

The above theorems indicate that theMB-DFSes constitute a subclass of the standard
models which is especially well-behaved. We shall see in later chapters that other
types of models can violate the requirement of propagating fuzziness. The two aspects
of propagating fuzziness then become independent attributes that may or may not be
fulfilled by a model of interest.

Finally let us turn attention to the behaviour ofMB-DFSes for three-valued quan-
tifiers and for three-valued arguments. As it turns out, there is no room for variation
in these cases, and the results of allMB-models are completely determined from the
underlying construction based on three-valued cuts and the fuzzy median.

Theorem 95
AllMB-DFSes coincide on three-valued arguments, i.e. in the case that all arguments
X1, . . . , Xn ∈ P̃(E) involved in the quantification have membership gradesµXi(e) ∈
{0, 1

2 , 1} for all e ∈ E.

Note. This is different from general standard DFSes which by Th-2, are guaranteed to
coincide for two-valued arguments only.
A similar result can be established for three-valued quantifiers.

Theorem 96
AllMB-DFSes coincide on three-valued semi-fuzzy quantifiers, i.e. in the case thatQ
assumes results in the restricted range{0, 1

2 , 1} only, and can hence be expressed as
Q : P(E)n −→ {0, 1

2 , 1}.

Again, this is different from general standard DFSes, which are guaranteed to coincide
only for two-valued quantifiers, see Th-46.

7.13 A standard model with unique properties: MCX

We already know from the previous section that the modelMCX is both Q-continuous
and arg-continuous. It is hence a practical model and suited for applications. In addi-
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tion,MCX propagates fuzziness in quantifiers and in arguments, just like everyMB-
DFS. However, these results provide no clue yet, whatexactlyit is that makesMCX

so special. The present section is devoted exclusively to this issue and will substantiate
thatMCX is indeed unique amongMB-DFSes. In fact, the particular qualities held
by this model are distinguished even among the full class of standard models of fuzzy
quantification.

In section 4.10, I have introduced the construction of fuzzy argument insertion, and
I explained that only those models which conform to this construction can adequately
represent adjectival restriction by a fuzzy adjective, as in “MostX ’s are luckyY ’s”.
Compatibility with fuzzy argument insertion is therefore highly desirable from a lin-
guistic standpoint, because it ensures that this general type of adjectival restriction
can be interpreted in a compositional way. As concerns fuzzy argument insertion, the
following positive result has been proven forMCX :

Theorem 97
The DFSMCX is compatible with fuzzy argument insertion.

It is this property held by the model, which explains the distinguished role ofMCX .
In fact, it can be shown thatMCX is the unique standard DFS which complies with
this adequacy condition:

Theorem 98
MCX is the only standard DFS which is compatible with fuzzy argument insertion.

HenceMCX is foremost among the standard models. Due to the special importance
of MCX , it is probably worthwhile to attempt an axiomatization of the model, in
terms of a system of conditions which uniquely characteriseMCX . In fact, the de-
sired axiomatization is rather obvious, because we only need to augment the previous
axiomatization of the standard models, which has been presented in Def. 62, by the
requirement of being compatible with fuzzy argument insertion:

Definition 97
Consider a QFMF . For all semi-fuzzy quantifiersQ : P(E)n −→ I, I introduce the
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following conditions.

Correct generalisation U(F(Q)) = Q if n ≤ 1 (M-1)

Projection quantifiers F(Q) = π̃e if there existse ∈ E s.th.Q = πe
(M-2)

Dualisation F(Q�) = F(Q)� n > 0 (M-3)

Internal joins F(Q∪) = F(Q)∪ n > 0 (M-4)

Preservation of monotonicity IfQ is nonincreasing inn-th arg, then (M-5)

F(Q) is nonincreasing inn-th arg,n > 0

Functional application F(Q ◦
n
×
i=1

f̂i) = F(Q) ◦
n
×
i=1

ˆ̂
f i (M-6)

wheref1, . . . , fn : E′ −→ E, E′ 6= ∅.

Fuzzy argument insertion F(Q /̃ A) = F(Q)/A for all A ∈ P̃(E), n > 0
(M-7)

We can then assert that the above conditions (M-1)–(M-7) indeed achieve an axioma-
tisation of the modelMCX .

Theorem 99 MCX is the unique QFM which satisfies(M-1)–(M-7).
(Proof: D.3, p.443+)

Note. By the above reasoning, this theorem is really straightforward and an immediate
consequence of Th-47 and Th-98.
As witnessed by the theorem, we have succeeded to uniquely identifyMCX in the full
space of possible QFMs, solely based on its observable behaviour. This was possible
because the structure ofMCX shows up in the distinguishing property (M-7), which
is sufficient to characteriseMCX within the class of standard models. Because the
system (M-1)–(M-7) also comprises a minimal set of conditions, this makes a rather
satisfying result from a theoretical point of view.

In addition to being compatible with fuzzy argument insertion,MCX also exhibits
a number of other remarkable characteristics. At present, no other models are known
which possess any of these distinguished properties. I hence suspect that the other
properties, too, are unique toMCX , but there is no proof of this yet, and more research
should be directed to these issues.
Let us first consider the preservation of convexity properties.

Theorem 100
The DFSMCX weakly preserves convexity.

Theorem 101
SupposeMB is anMB-DFS. IfMB weakly preserves convexity, thenMCX �cMB.

The above theorems substantiate thatMCX is the least specificMB-DFS which weakly
preserves convexity. As remarked above, there is no evidence yet that other models ex-
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ist which fulfill this criterion, and it might hence express another distinctive property
ofMCX .

Let us further observe thatMCX is a concrete implementation of a so-called ‘sub-
stitution approach’ to fuzzy quantification [164], i.e. the fuzzy quantifier is modelled
by constructing an equivalent logical formula. This is apparent if we rewriteMCX as
follows.

Theorem 102
For everyQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E),

MCX(Q)(X1, . . . , Xn)

= sup{Q̃LV,W (X1, . . . , Xn) : V,W ∈ P(E)n, V1 ⊆W1, . . . , Vn ⊆Wn}

= inf{Q̃UV,W (X1, . . . , Xn) : V,W ∈ P(E)n, V1 ⊆W1, . . . , Vn ⊆Wn}

where

Q̃LV,W (X1, . . . , Xn) (50)

= min(Ξ̃V,W (X1, . . . , Xn), L(Q,V,W )) (51)

Q̃UV,W (X1, . . . , Xn) (52)

= max(1− Ξ̃V,W (X1, . . . , Xn), U(Q,V,W )) (53)

Ξ̃V,W (X1, . . . , Xn) (54)

=
n

min
i=1

min(inf{µXi(e) : e ∈ Vi}, inf{1− µXi(e) : e /∈Wi}) (55)

L(Q,V,W ) (56)

= inf{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆Wi, all i} (57)

U(Q,V,W ) (58)

= sup{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆Wi, all i} . (59)

Notes

• To see how this is related to the substitution approach, let us notice that in the
common case of a finite base set,inf andsup reduce to the logical connectives
∧ = max and∨ = min as usual. The infimum and supremum are only needed
to express the infinitary conjunctions and disjunctions that are required for quan-
tification on infinite domains. In addition, it was necessary to allow occurrences
of continuous-valued constantsL(Q,V,W ), U(Q,V,W ) ∈ I in the resulting
formulas because the fuzzification mechanism is applied to general semi-fuzzy
quantifiers, not only to two-valued quantifiers.

• From a different point of view, the above representation ofMCX demonstrates
that the model can be defined independently of the cut ranges and the median-
based aggregation mechanism. By contrast, it can be rephrased into a compact
form, which reduces fuzzy quantification inMCX to the evaluation of a Boolean
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formula involving fuzzy connectives and continuous-valued propositional vari-
ables.

Before discussing any implications of the above reformulation ofMCX in terms of
the substitution approach, I will first give an example of the proposed construction, in
order to facilitate understanding of the above reformulation ofMCX , and to elucidate
the structure of the constructed formula and the function of the involved coefficients.
Hence let us consider a simple two-element base setE = {a, b} and a semi-fuzzy
quantifier defined onE, say

Q(Y ) =


0 : Y = ∅

2
3 : Y = {b}
1 : Y = {a} ∨ Y = {a, b}

for all Y ∈ P({a, b}). Let us now construct the quantification formula step by step,
in order to gain some understanding how it is built from the base quantifier. Hence
let a fuzzy argument setX ∈ P̃({a, b}) be given. It is convenient to abbreviatep =
µX(a), q = µX(b). The following table lists all possible choices ofV,W ∈ P({a, b})
with V ⊆W , along with the corresponding expressionΞ̃V,W (X) which expresses the
compatibility ofX with the closed range of subsets{Y ∈ P(E) : V ⊆ Y ⊆ W}, and
the lower and upper boundsL(Q,V,W ) andU(Q,V,W ) on the quantification results
achieved byQ in this given range of subsets.

V W Ξ̃V,W (X) L(Q,V,W ) U(Q,V,W )
∅ ∅ ¬p ∧ ¬q 0 0
∅ {a} ¬q 0 1
∅ {b} ¬p 0 2

3
∅ {a, b} 1 0 1
{a} {a} p ∧ ¬q 1 1
{a} {a, b} p 1 1
{b} {b} ¬p ∧ q 2

3
2
3

{b} {a, b} q 2
3 1

{a, b} {a, b} p ∧ q 1 1

Based on this table, we can then fill in the formulas which define the upper and lower
bound quantifiers̃QUV,W (X) andQ̃LV,W (X):

V W Q̃LV,W (X) Q̃UV,W (X)
∅ ∅ ¬p ∧ ¬q ∧ 0 p ∨ q ∨ 0
∅ {a} ¬q ∧ 0 q ∨ 1
∅ {b} ¬p ∧ 0 p ∨ 2

3
∅ {a, b} 1 ∧ 0 0 ∨ 1
{a} {a} p ∧ ¬q ∧ 1 ¬p ∨ q ∨ 1
{a} {a, b} p ∧ 1 ¬p ∨ 1
{b} {b} ¬p ∧ q ∧ 2

3 p ∨ ¬q ∨ 2
3

{b} {a, b} q ∧ 2
3 ¬q ∨ 1

{a, b} {a, b} p ∧ q ∧ 1 ¬p ∨ ¬q ∨ 1
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Recalling the first construction of the quantification formula described in Th-102,
which resorts to the lower bound quantifiersQ̃LV,W , we can now build the desired for-
mula which reducesMCX(Q)(X) to a propositional expression involving continuous-
valued variables:

MCX(Q)(X) = max{¬p ∧ ¬q ∧ 0,¬q ∧ 0,¬p ∧ 0, 1 ∧ 0, p ∧ ¬q ∧ 1, p ∧ 1,
¬p ∧ q ∧ 2

3 , q ∧
2
3 , p ∧ q ∧ 1} .

After some element-wise simplification, this becomes

MCX(Q)(X) = max{0, 0, 0, 0, p ∧ ¬q, p,¬p ∧ q ∧ 2
3 , q ∧

2
3 , p ∧ q} .

By eliminating all occurrences of the identity0 of max, and by utilizing the law of
absorption, the above expression can then be reduced to

MCX(Q)(X) = p ∨ (q ∧ 2
3 ) .

Of course, we could also have applied the second construction of the quantification
formula proposed in Th-102, which is based on the upper bound quantifiersQ̃UV,W . In
this case, too, we start by building the ‘raw’ formula which expressesMCX(Q)(X),
now based on the second construction. We then obtain the conjunction,

MCX(Q)(X) = min{p ∨ q ∨ 0, q ∨ 1, p ∨ 2
3 , 0 ∨ 1,¬p ∨ q ∨ 1,¬p ∨ 1,

p ∨ ¬q ∨ 2
3 ,¬q ∨ 1,¬p ∨ ¬q ∨ 1} .

Now effecting some element-wise simplification, the raw formula becomes

MCX(Q)(X) = min{p ∨ q, 1, p ∨ 2
3 , 1, 1, 1, p ∨ ¬q ∨

2
3 , 1, 1} .

Again by removing occurrences of the identity1 of min, and by taking benefit of the
law of absorption in order to eliminate some of the subexpressions, we can further
simplify the latter result into

MCX(Q)(X) = (p ∨ q) ∧ (p ∨ 2
3 ) .

Now recalling the law of distributivity, we can extract the variablep from the two
disjunctions, and hence rewrite the above equation as

MCX(Q)(X) = p ∨ (q ∧ 2
3 ) .

Hence the result of the second construction indeed coincides with that obtained from
the first construction, as claimed by the theorem. This completes the example, which
demonstrated the utility of the substitution formulas to the modelling of fuzzy quantifi-
cation, and I will now discuss some further observations which are apparent from the
reformulation ofMCX .

The above representation ofMCX , which is made explicit by Th-102, also reveals
the robustness of this model against variation in the quantifier and its arguments. This
is important because in practice, there often remains some uncertainty concerning the
precise choice of numeric membership grades which best model the target NL quanti-
fier and the arguments (i.e. the target NL concepts which are to be modelled by suitable
fuzzy sets).
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• Let us first observe from the above representation thatMCX(Q)(X1, . . . , Xn)
is not only arg-continuous (i.e. a smooth function of the membership grades
µXi(e) attained by the arguments), but indeed extremely stable against slight
changes of the membership grades. This is because for alli ∈ {1, . . . , n} and
e ∈ E, ∣∣∣∣ ∂MCX(Q)(X1, . . . , Xn)

∂µXi(e)

∣∣∣∣ ≤ 1

whenever the partial derivative is defined, which is obvious from the above rep-
resentation. A change in the arguments which does not exceed a given∆ hence
cannot change the quantification results by more than∆. This indicates that
withMCX , the precise choice of membership grades (which might be to some
degree arbitrary), is rather uncritical.

• A similar remark can also be made concerning the robustness of the quantifi-
cation resultsMCX(Q)(X1, . . . , Xn) against variation in the chosen quantifier.
In this case, we observe that for all(Y1, . . . , Yn) ∈ P(E)n,∣∣∣∣ ∂MCX(Q)(X1, . . . , Xn)

∂Q(Y1, . . . , Yn)

∣∣∣∣ ≤ 1

whenever the partial derivative is defined, which is again obvious from the above
representation. In fact, a change ofQ(Y1, . . . , Yn) by some∆ > 0 can maxi-
mally change the quantification results by∆. Hence the precise choice of the
semi-fuzzy quantifier is uncritical withMCX as well.

This means that the imprecision in the choice of numeric membership grades for quan-
tifier and arguments is not amplified in any way when applyingMCX , but either kept
at its original level, or even suppressed.

Summarizing, I have managed to relate the modelMCX to Yager’s suggestion of
modelling fuzzy quantification by constructing a suitable logical formula [164], known
as the ‘substitution approach’. In addition, I have discussed some important implica-
tions that are apparent from the representation ofMCX in terms of a fuzzy proposi-
tional formula. In the following, I will continue along these lines, of connecting the
model to existing work on fuzzy quantification. To this end, I first recall the definition
of the Sugeno integral, which is very closely tied to the model.

Definition 98
SupposeQ : P(E) −→ I is a nondecreasing semi-fuzzy quantifier andX ∈ P̃(E). The
Sugeno integral(S)

∫
X dQ is defined by

(S)
∫
X dQ = sup{min(α,Q(X≥α)) : α ∈ I} .

Let us now observe thatMCX properly generalizes the Sugeno integral:
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Theorem 103
SupposeQ : P(E) −→ I is nondecreasing. Then for allX ∈ P̃(E),

(S)
∫
X dQ =MCX(Q)(X) .

HenceMCX(Q) coincides with the well-known Sugeno integral whenever the latter
is defined. Unlike the integral, though,MCX is defined for arbitrary semi-fuzzy quan-
tifiers, and hence extends the Sugeno integral from monotonic measures to the ‘hard’
cases of unrestricted multiplace and non-monotonic quantifiers.
In order to relate this result with previous approaches to fuzzy quantification, I Hence
let us formally define the quantityµ[j](X) already mentioned in the introduction.

Definition 99
Let a finite base setE 6= ∅ of cardinality |E| = m be given. For a fuzzy subset
X ∈ P̃(E), we denote byµ[j](X) ∈ I, j = 1, . . . ,m, the j-th largest membership
value ofX (including duplicates).
More formally, consider an ordering of the elements ofE such thatE = {e1, . . . , em}
andµX(e1) ≥ · · · ≥ µX(em). Then defineµ[j](X) = µX(ej). It is apparent that the
results do not depend on the chosen ordering if ambiguities exist.
Let us further stipulate thatµ[0](X) = 1 and thatµ[j](X) = 0 wheneverj > m.

As a corollary to the above theorem, we then obtain (cf. [20]):

Theorem 104
SupposeE 6= ∅ is a finite base set,q : {0, . . . , |E|} −→ I is a nondecreasing mapping
andQ : P(E) −→ I is defined byQ(Y ) = q(|Y |) for all Y ∈ P(E). Then for all
X ∈ P̃(E),

MCX(Q)(X) = max{min(q(j), µ[j](X)) : 0 ≤ j ≤ |E|} .

Notes

• HenceMCX consistently generalises the basic FG-count approach of [165,
188], which is restricted to quantitative and nondecreasing one-place quantifiers.

• From a computational point of view, the theorem shows that in the special case
of nondecreasing quantitative unary quantifiers on finite domains,MCX(Q)(X)
can be determined from a fuzzy cardinality measure onX, namely from the
well-known FG-count(X). As will be shown later in Th-245, it is possible to
generalize this result to arbitrary quantitative unary quantifiers on finite domains.
In this generic case, though, the FG-count must be replaced with a different
measure of fuzzy cardinality, the fuzzy interval cardinality‖X‖iv, which will be
introduced below in Def. 162.

In closing this section onMCX , I finally discuss two additional properties of the
model which make it particular suited for real-world applications. The first property
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is concerned with an aspect of parsimony. Typical applications of fuzzy logic do not
fully exploit the available range of continuous truth values. In many situations, it is
sufficient to restrict attention to a modest number of truth values/membership grades.
For example, a repertoire of five possible grades

Υ = {0, 1
4 ,

1
2 ,

3
4 , 1} (60)

might be adequate, which correspond to the ordinal scale

‘false’, ‘quite false’, ‘undecided’, ‘quite true’, ‘true’. (61)

The modelMCX combines well with such ordinal scales of truth values, and hence
supports a parsimoneous use of membership grades. This is becauseMCX does not
‘invent’ any new truth values, provided that the restricted scale is closed under nega-
tion:

Theorem 105
LetΥ ⊂ I be a given set with the following properties:

• Υ is finite;

• if υ ∈ Υ, then1− υ ∈ Υ;

• {0, 1} ⊆ Υ.

Further suppose thatQ : P(E)n −→ Υ is a semi-fuzzy quantifier with quantification
results inΥ and thatX1, . . . , Xn ∈ P̃(E) are Υ-valued fuzzy subsets ofE, i.e. based
on membership functionsµXi : E −→ Υ, i = 1, . . . , n. Then it also holds that
MCX(Q)(X1, . . . , Xn) ∈ Υ.

Hence in the above example of the five element setΥ defined by (60), fuzzy quantifi-
cation based onMCX will always yield results in{0, 1

4 ,
1
2 ,

3
4 , 1}, provided that both

the semi-fuzzy quantifier and its arguments assume values in this restricted range only.

So far, we have considered a restriction to finite scales of membership grades, which
is possible in many applications and reduces the complexity of the model. The achieved
parsimony limits the set of available truth values but does not alter the basic modelling
style, which is essentially numerical and heavily relies on the use of numbers to express
non-numerical, symbolic natural language concepts. In applications which emphasize
the linguistic aspects of fuzzy quantification, it might be more natural to depart from
numerical modelling altogether, and express the membership grades and gradual truth
values in terms of ordinal scales, like the one presented in (61). Due to the fact that the
computational procedures of fuzzy modelling rely on the use of numerical membership
grades, the question then arises of how these ordinal scales should be embedded into
the continuous range of truth values in[0, 1], and hence be interpreted in terms of nu-
merical membership grades. In practice, there is seldom perfect knowledge concerning
the precise choice of numeric membership grades which best represent the given ordi-
nal scale. It is hence essential to a good model of fuzzy information processing, and
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in particular of fuzzy quantification, that a certain variation in the choice of member-
ship grades, which may result from this uncertainty concerning the precise embedding
into numerical representations, be absorbed by the interpretation process. As stated
by the next theorem,MCX is robust with respect to such variation in the numeric
membership grades, as long as these changes are symmetrical with respect to negation.
Recalling the model transformation scheme introduced in Def. 53, we can express this
property as follows.

Theorem 106
Supposeσ : I −→ I is a mapping which satisfies the following requirements:

• σ is a bijection;

• σ is nondecreasing;

• σ is symmetrical with respect to negation, i.e.σ(1−x) = 1−σ(x) for all x ∈ I.

ThenMCX
σ =MCX .

The theorem states that if the scale of continuous truth values is deformed in a consis-
tent way, then the results obtained from fuzzy quantification based onMCX will be
subjected to exactly the same deformation, and automatically fit into the adapted scale.

Let us return to the above example on finite truth values, which is also suited to
demonstrate how the property expressed by the theorem is related to the original prob-
lem, that of absorbing the uncertainty concerning the interpretation of ordinal truth
values in terms of numerical assignments. In the example, I have chosen to interpret
the ordinal scale presented in (61) in terms of the numbers{0, 1

4 ,
1
2 ,

3
4 , 1}. However,

it might be more appropriate to model ‘quite true’ by4
5 instead of the earlier34 . The

requirements stated in the theorem then guide us to adapt ‘quite false’ accordingly,
which receives the new interpretation of1

5 . In terms of the re-interpretation mapping
σ, these decisions can be expressed as

σ( 3
4 ) = 4

5 , σ( 1
4 ) = 1

5 . (62)

Let us now consider an arbitrary extension ofσ to a ‘full’ mapping σ : I −→ I,
which conforms to the requirements of Th-106 and fulfills the criteria stated in (62).
We then also know thatσ(0) = 0, σ( 1

2 ) = 1
2 andσ(1) = 1. Hence by applying

σ, the original interpretation of the ordinal scale (61) in terms of{0, 1
4 ,

1
2 ,

3
4 , 1}, is

consistently transformed into an alternative interpretation of the scale, which is now
based on{0, 1

5 ,
1
2 ,

4
5 , 1}. Combined with the earlier result Th-105, the new theorem

Th-106 then ensure that the results obtained fromMCX automatically adapt to the
new interpretation of the ordinal scale, provided that both the semi-fuzzy quantifier
and the fuzzy argument sets are fitted to the new interpretation by applyingσ. Hence
suppose that we hadMCX(many )(rich , lucky ) = 3

4 prior to the re-interpretation,
which corresponds to the ordinal result ‘quite true’. Now we fitrich , lucky to the
alternative interpretation by applyingσ, hence obtaining the new argumentsσrich ,
σlucky . The quantifier must also be adapted to the new interpretation, and hence
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translates intoσmany . Let us now instantiate the theorem by the given data; we then
obtain that

MCX
σ(many )(rich , lucky ) =MCX(many )(rich , lucky ) . (63)

Now expanding the left hand member of the equality according to Def. 53, the above
equality (63) becomes

σ−1MCX(σmany )(σrich , σlucky ) =MCX(many )(rich , lucky ) ,

which finally can be rewritten as

MCX(σmany )(σrich , σlucky ) = σ(MCX(many )(rich , lucky )) .

Hence the quantification result obtained from the re-interpretation of the ordinal scale
(left-hand member of the equation) can be computed from the quantification result
based on the original interpretation of the ordinal scale, simply by applying the re-
interpretation mappingσ which fits the result into the new system (right-hand member
of equation). In the above example, then, the equation ensures that the previous result
of

MCX(many )(rich , lucky ) = 3
4 ,

which corresponds to ‘quite true’ under the original interpretation, now translates into

MCX(σmany )(σrich , σlucky ) = 4
5 ,

which is the proper representation of ‘quite true’ in the adapted system.
These remarks complete the discussion of the last example, which was intended to
demonstrate the interactions between the two properties that were identified forMCX .
The example indicates that when taken together, these conditions ensure that the model
of fuzzy quantification be suited to handle ordinal scales of truth values, provided that
these are closed under negation. This is because the first condition (expressed in Th-
105) permits a restriction to the finite set of numerical membership grades that interpret
the ordinal values. In particular, it is possible to translate the numerical quantification
result back into an ordinal result in the assumed base scale. In turn, the second con-
dition (expressed in Th-106) asserts that the precise numerical interpretation of the
ordinal base scale is inessential, because the re-translation of the result into the ordinal
scale is invariant under the chosen assignment of numerical membership grades.

To sum up, I have formalized two interesting properties of QFMs which take care
of some typical concerns that arise in real-world applications: the first property of the
model frees the application from handling the full range of continuous membership
grades, and permits the application to decide itself upon the desired granularity of dis-
cerned membership grades. The second condition acknowledges the problem that a
precise choice of numerical membership grades, which is enforced by the underly-
ing numeric model, is typically hard to justify from an application point of view, and
possibly even arbitrary to some degree. It is therefore mandatory that the model of
fuzzy quantification be robust against this type of uncertainty, and hence absorbs the
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resulting variation in possible choices of numeric membership grades. As opposed
to the desideratum of smoothness in quantifiers and arguments, which captures the
case of non-systematic small variations, the second property suggested here captures
the remaining case of coherent variations, which are allowed to be arbitrarily large.
Apart from formalizing these properties and explaining their relevance to applications,
I have also demonstrated by an example, that the properties are most useful when taken
together, because the model is then suited to handle ordinal scales of truth values, re-
gardless of the chosen numerical interpretation. As witnessed by the above theorems
Th-105 and Th-106, in which the two criteria are developed, the modelMCX shows
both of these adequacy properties, which makes an even bolder point for preferring this
particular model in applications.

7.14 Chapter summary

This chapter was devoted to the quest of a constructive principle for models of fuzzy
quantification. The primary objective was to establish a class of unrestricted QFMs
from a uniform base construction, which provides a rich source of plausible models.
We can then impose conditions on the ‘raw’ QFMs, which translate our expectations
on admissible models into requirements on the underlying construction, and hence
precisely locate the subclass of intended models within the total of unrestricted QFMs
that can be built from this construction.

In order to identify such a constructive principle suited to span an interesting class of
models, I have first investigated the potential utility of proven mechanisms of fuzzy set
theory to define models of fuzzy quantification. These techniques have furthered the
development of fuzzy set theory because they support a generalization of two-valued,
crisp concepts into corresponding concepts that live on fuzzy sets. This ‘automatic’
transfer from a crisp concept to a corresponding concept on fuzzy sets is possible be-
cause these techniques achieve a uniform reduction of the fuzzy analogue to compu-
tations based on the original crisp concept. Acknowledging the significance of these
techniques to fuzzy logic in general, I have reviewed the well-knownα-cut reductions,
and the resolution principle in particular, which decompose the considered construc-
tion on fuzzy sets into layers of crisp computations. Their known utility to other parts
of fuzzy logic notwithstanding, the formal analysis of these techniques revealed that
they offer little help when it comes to defining models of fuzzy quantification. I have
also tracked the reason why these common tools of fuzzy set theory cannot be used to
define DFSes, and explained this failure in terms of their lack of symmetry with re-
spect to complementation. It was this observation which guided the search of the base
construction into a reformulation of the cutting mechanism, which should be done in
a way compatible with complementation. Quite obviously, this requirement cannot be
satisfied by modified two-valued cuts.

I hence decided to utilize a three-valued cutting mechanism, which overcomes the
asymmetry problem. A resolution property similar to that ofα-cuts has been proven
for the proposed mechanism, which demonstrates that it can faithfully represent a given
fuzzy subset in terms of the information spread over its three-valued cuts. The mech-
anism is hence comparable in expressive power to the knownα-cuts. In principle, the
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novel representation in terms of three-valued sets still lends itself to implementation,
because every three-valued cut can be represented by a pair ofα-cuts. However, a di-
rect reduction into layers of crisp computations is not possible with three-valued cuts,
because these result in three-valued rather than crisp subsets. It was therefore sug-
gested to further resolve three-valued sets into closed ranges of crisp sets, on which
the necessary computations can be effected. The individual results collected for all
choices of crisp sets in the considered ranges must then be aggregated into the final
outcome of the interpretation process. Observing that the targeted class of standard
models embeds Kleene’s three-valued logic, it seemed advantageous to develop the
aggregation procedure in such a way, that the resulting mechanism implements a con-
structive principle for Kleene’s logic. This basic approach was then fitted to the case
of three-valued quantifiers rather than propositional functions. Finally it was shown
how the necessary generalization to semi-fuzzy quantifiers, and hence from three-
valued to continuous-valued quantification results, can be accomplished by fuzzy me-
dian aggregation. These considerations culminated in the definition of the QFMs(•)γ .
Given a semi-fuzzy quantifierQ and a choice of fuzzy argumentsX1, . . . , Xn, the
construction ofQγ(X1, . . . , Xn) first collects all quantification resultsQ(Y1, . . . , Yn)
obtained from choices of crisp setsY1, . . . , Yn in the cut ranges. It then applies the
generalized fuzzy median and combines these alternatives into the quantification re-
sultQγ(X1, . . . , Xn) ∈ I, which represents the interpretation of the fuzzy quantifying
expression at the given ‘level of cautiousness’γ ∈ I. In this way, we obtain an inter-
pretation resultQγ(X1, . . . , Xn) for all choices ofγ ∈ I. However, none of the QFMs
(•)γ is a DFS itself. Therefore a second aggregation step is necessary which considers
all local results ofQγ(X1, . . . , Xn) in parallel and hence exploits the total informa-
tion spread over the cut levelsγ, in order to build models from this construction. This
second aggregation stage is delegated to an aggregation operatorB, which abstracts
from the cutting parameterγ ∈ I and hence determines the final quantification result
MB(Q)(X1, . . . , Xn) = B((Qγ(X1, . . . , Xn))γ∈I). This makes a generic base con-
struction for QFMs, parametrized by the chosen aggregation operatorB, which spans
the unrestricted class ofMB-QFMs. I have also given a first example, the DFSM, in
order to demonstrate that the chosen approach succeeds in defining plausible models,
and hence deserves further investigation. Following that, some formal machinery has
been developed, which extracts the relevant features that govern the behaviour of all
‘reasonable’ aggregation mappingsB. In terms of these concepts, I then managed to
express an independent system of necessary and sufficient conditions which capture
the precise requirements onB that makeMB a DFS. It also came out of this analysis
that allMB-DFSes are indeed standard models.

This knowledge of the necessary conditions onB which hold wheneverMB is a
plausible model, also rendered possible a simplification of the base construction, be-
cause it now emerged that every conforming choice ofB is fully determined by its
behaviour on the restricted domain,B+. The elimination of this redundance still con-
tained inB, then guided a reduction into simplified aggregation mappingsB′ : H −→
I, which capture the core behaviour of the original mapping. Starting from a given
B′, the ‘full’ aggregation mappingB can then be recovered by means of a simple
transformation. The mappingsB′ are useful because they better support the definition
of models, which can typically be stated in a more compact form. In addition, no

226



models of interest are lost under the simplified representation, which was proven to
cover all plausible models. Taking benefit of the simplified representation, I have then
introduced some prominent examples ofMB-DFSes, which instantiate the proposed
base construction. Some of these models also occupy a special position in the broader
classes of models which will be introduced in subsequent chapters, or even to the full
class of standard models.

Now that we have several models available, the question arises of how these models
are interrelated, and which particular model should be preferred in a given application.
In order to decide upon these issues, it is necessary to assess the characteristic proper-
ties of givenMB-DFSes, which help to locate them within the full range of models,
e.g. by relating the models to the extreme poles. This kind of analysis also provides the
necessary information for a comparison of models according to semantical or practical
considerations. This helps to identify that choice of model which best suits a given
application. Following these lines, I have developed the required criteria for check-
ing anMB model for its special semantical characteristics, but also for more practical
concerns, like different aspects of robustness. In order to permit a simple and quick as-
sessment of these properties, the corresponding criteria have generally been reduced to
elementary tests, which can be readily decided from the aggregation mappings. For ex-
ample, I have shown how to simplify a comparison of the models by specificity, which
can effectively be reduced to an inequality on the level ofB′. From this elementary
criterion, it was then easily proven that�c is not a linear order onMB-DFSes, i.e. we
cannot compile a list of such models sorted by specificity. However, it was possible
to identify the extreme cases ofMB-models in terms of specificity. According to this
analysis, the results that must be expected from a givenMB model are in between the
least specific bound determined byMU , and the upper specificity bound established
byMS . In particular, allMB-DFSes are specificity consistent, and hence rather ho-
mogeneous compared to the broader classes of models that will be considered in later
chapters of the report.

Following this discussion of specificity issues, I turned to the two facets of continuity
which govern the behaviour of practicalMB-DFSes. Based on the proposed distance
measures onB′, I was able to express precise conditions onB′ which ensure thatMB
be Q-continuous and arg-continuous, respectively, and hence exhibit some minimum
stability against small fluctuations in their inputs. Having analysed this precondition
of practical models, I then addressed the issue of propagating fuzziness. This investi-
gation revealed thatMB-DFSes are quite homogeneous in this respect, too, because
all of these models propagate fuzziness both in quantifiers and arguments. Hence less
specific input cannot result in more specific output when resorting to these models of
fuzzy quantification, in conformity with our intuitive expectations. The relative homo-
geneity of theMB models also expresses in their uniform behaviour when fed with
three-valued inputs. In fact, allMB-DFSes can be shown to coincide on three-valued
quantifiers, and also on three-valued arguments (given an arbitrary quantifier). This is
different from general standard models which coincide on two-valued quantifiers and
two-valued arguments only.

The above criteria for extracting the characteristic features ofMB-DFSes have then
been applied to the example models, in order to assess their particular properties. This
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investigation of the example models revealed that the modelsMU andMS , which
represent the extreme poles in terms of specificity, are of few utility to applications.
These models violate both continuity conditions, and hence lack the minumum robust-
ness requirements that must be assured for applications. Consequently, these models
are of theoretical interest only, due to their distinguished position in the full class of
models. The modelsM andMCX , by contrast, were shown to exhibit the desired
robustness, because they conform to both continuity requirements. This makes these
models a good choice for application. In fact, the modelM is the first example of
a DFS, which was used for the implementation of fuzzy quantifiers in a prototypical
application [53]. As concerns the DFSMCX , it soon emerged from my investiga-
tion that the model combines several astonishing properties which make it foremost
among all standard models of fuzzy quantification. A separate section has hence been
devoted to the modelMCX , in order to acknowledge its unique position, and to detail
its characteristic properties.

The distinguishing property ofMCX , which lets the model surpass all standard
models, is thatMCX complies with fuzzy argument insertion, and hence supports a
compositional interpretation of fuzzy adjectival restriction, as in “Many young rich are
lucky”. Knowing that all other standard models fall short of this property, it hence
captures a genuine characteristic ofMCX . This observation made it possible to bring
forward an axiomatization in terms of a minimal set of conditions which uniquely
identify the model based on its observable behaviour. In fact, it was sufficient to aug-
ment the core axiom system for standard models by the requirement of fuzzy argument
insertion in order to achieve this result.

Apart from its prime characteristic, the compliance with fuzzy argument insertion,
the model combines various additional qualities which might also be distinctive, be-
cause no other models are currently known which share these characteristics. To begin
with,MCX is the only known model which preserves convexity properties of quanti-
fiers (to the maximal degree possible for a DFS). In addition, it bounds by specificity
all models with this property, should further examples of such models exist. The model
can also be related to existing research on fuzzy quantification in several ways. It hence
seizes some recurrent themes which are essential to the modelling of fuzzy quantifiers,
and develops these into a consistent account of fuzzy quantification in its generality.
In particular,MCX can be shown to implement the so-called ‘substitution approach’
[164]; the model hence expresses fuzzy quantification in terms of a propositional for-
mula involving the standard fuzzy connectives, and continuous-valued propositional
variables. In order to elucidate this alternative representation ofMCX , I have pre-
sented a detailed example which explains in a step-by-step fashion how the substitu-
tion formula is constructed from the coefficientsL(Q,V,W ) andU(Q,V,W ) sampled
from the quantifier, and the compatibility measureΞ̃V,W (X) which judges the degree
to which the fuzzy setX belongs to a range of crisp sets{Y ∈ P(E) : V ⊆ Y ⊆W}.
The new representation also contributes to the development of algorithms, because the
resulting formulas can guide the interpretation of fuzzy quantifiers in the model. In
fact, some of the evaluation formulas presented in Chap. 11 have been developed from
this representation. We will then see that the formulas forMCX can be simplified
further in the case of quantitative one-place quantifiers. Based on a suitable measure
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of fuzzy cardinality, it will then be possible to compute the quantification results of
MCX directly from cardinality information. Some other theorems are also apparent
from the alternative representation of the model. First of all, it is apparent from this
representation thatMCX is not only continuous in quantifiers and their arguments,
but indeed achieves extreme robustness against fluctuations in the input, because all
involved gradients are tied to the range[−1, 1]. This means that the imprecision in the
choice of numeric membership grades for quantifier and arguments is not amplified in
any way when applyingMCX , but either kept at its original level, or even suppressed.
Hence the precise choices of numerical membership grades, which are necessary to
fit the NL quantifier and its arguments into the fuzzy framework, are rather uncritical
with the model. The representation ofMCX in terms of the substitution formulas also
facilitated the proof thatMCX consistently extends the well-known Sugeno integral
to arbitraryn-place quantifiers, and hence overcomes its restriction to monotonic mea-
sures. Recalling the known relationship between the Sugeno integral and the FG-count
approach, it then came out that the model also generalizes the FG-count approach to
the ‘hard’ cases of multi-place and non-monotonic quantification.

Some further insensitivity properties ofMCX have also been proven from this repre-
sentation, which answer some typical needs that arise when fuzzy sets meet real-world
applications. Firstly, it is often preferable to restrict the set of allowable membership
grades, in order to reduce the complexity of the system, but also to better fit fuzzy
techniques to the application, which now decides itself upon the desired granularity of
the model. The interpretations of fuzzy quantifiers must then be compatible with the
restriction of admissible truth values, and when supplied with conforming input, also
assume results from the allowable choices. The second property is concerned with the
notorious problem of determining that choice of numerical membership grades which
best represent the target NL concepts. Apart from small, non-systematic fluctuations in
the inputs, whichMCX absorbs due to its continuity and uncritical shape, the model
should also withstand larger coherent changes, in order to optimally suppress any vari-
ation which may result from the uncertainty concerning the proper numerical assign-
ments. Taken together, both conditions ensure that the model can handle ordinal scales
of membership. I have presented a detailed example which explains how the conjunc-
tion of these properties makes the model immune against the numerical interpretation
of the ordinal base scale. Knowing that the modelMCX combines both properties,
it can hence be applied for fuzzy quantification with ordinal grades of membership.
To sum up, I have shown that the DFSMCX combines unique semantical properties,
and hence constitutes the best model of fuzzy quantification from a linguistic perspec-
tive. It is this distinguished agreement with linguistic expectations which makes it the
preferred choice for all applications that need to implement natural language seman-
tics. Apart from its linguistic adequacy, the model also has practical virtues, notably
its particular robustness against both random and systematic variation in the model’s
inputs. Finally, the model supports a parsimoneous modelling style, because it permits
a restriction to ordinal scales of truth values.
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8 The class of models defined in terms of upper and lower
bounds on three-valued cuts

8.1 Motivation and chapter overview

In the previous chapter, a rich class of standard models for fuzzy quantification has
been introduced, which comply with the axiomatic postulates for fuzzy natural lan-
guage quantification. In addition, a distinguished model has been identified, which is
the preferred choice for all applications that emphasize the natural language aspect of
fuzzy quantifiers, and need to capture their intuitive semantics. This positive result on
the modelMCX might suggest that we can stop the exploration of further models,
now that the universal, perfect case of a standard DFS has been discovered. Things are
more complicated, though, because there are situations in which different requirements
on the models prevail over the desideratum of linguistic adequacy, which are not nec-
essarily satisfied by the modelMCX , nor by any other choice of anMB-DFS. Such
demands may arise, for example, in non-linguistic applications of information aggre-
gation, data fusion, and multi-criteria decisionmaking. These applications usually in-
volve the computation of a result ranking, or a weighting of alternatives, which in turn
permits the selection of the best choice. In this kind of situation, it might then become
the prime concern to ensure a fine-grained differentiation of the available options, and
the model of fuzzy quantification must hence be as discriminating as possible.

As we shall learn below, the known models of theMB-type are disadvantageous
in this respect, however. Surprisingly, the reason for their suboptimal discriminat-
ing power is buried in the fact that everyMB-DFS propagates fuzziness. There is
an apparent trade-off here because propagation of fuzziness undoubtedly captures one
of our expectations on plausible models – it is simply hard to understand that the re-
sults should become more specific when the inputs (quantifier or argument) get fuzzier.
However, there is a price to be paid for the propagation of fuzziness: as the input be-
comes less specific, the result of anMB-DFS is likely to attain the least specific value
of 1

2 , see Th-121 and Th-127 below. In some applications, it might hence be preferable
to sacrifice the propagation of fuzziness, in favour of a model with enhanced discrimi-
natory force, which still remains useful when the input is overly fuzzy. This makes the
first point for considering models beyond theMB-type, in order to better serve such
non-linguistic, special-purpose applications. Secondly, the investigation of additional
models is also necessary in order to better relate existing work on fuzzy quantification
to the axiomatic solution embarked upon here. The results of the previous chapter sub-
stantiate that the Sugeno integral and hence the ‘basic’ FG-count approach can be fitted
into the proposed framework; they can be consistently generalized to the ‘hard’ cases
of fuzzy quantification involving multi-place, non-quantitative and/or non-monotonic
quantifiers. By generalizing the base construction for theMB models, and hence open-
ing a richer class of models, it might be possible to prove a similar result for the Cho-
quet integral and hence the ‘basic’ OWA approach. Thirdly, the study of a richer class
of models is of great theoretical interest, because it also aims at a better understand-
ing of the full class of standard models. A generalization of the constructive principle
might separate those aspects of the models which are idiosyncratic to the chosen base
mechanism, from those that express genuine facts about fuzzy quantification. Specifi-
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cally, I would like to study some prototypical standard models which fail to propagate
fuzziness in quantifiers and/or arguments, and gain some insight into the structure and
properties of these models, which are rather distinct fromMB-DFSes. The bottom
line is that broadening the considered class of models will also broaden the knowledge
about fuzzy quantification in general.

In order to achieve the desired generalization ofMB-type models, the use of the
fuzzy median in the definition ofQγ(X1, . . . , Xn) will be replaced with a more general
construction. We get an idea of how to proceed if we simply expand the definition of
the generalized fuzzy median and rewriteQγ(X1, . . . , Xn) as

Qγ(X1, . . . , Xn) = med 1
2

(sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)},
inf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)}) .

(64)

(This reformulation is justified by Def. 57 and Def. 83). The fuzzy median can then
be replaced with other connectives, e.g. the arithmetic mean(x + y)/2. If we view
sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} andinf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} as map-
pings that depend onγ, then we can even eliminate the pointwise application of the
connective and define more ‘holistic’ mechanisms.

In the subsequent chapter, I will seize this basic suggestion, and implement a corre-
sponding extension ofMB-DFSes. Following the usual scheme of developing classes
of models, I will first motivate the new base construction, which spans the unrestricted
class ofFξ-QFMs. Again, the full class of raw mechanisms will then be shrunk to the
reasonable cases, by characterizing theFξ-DFSes in terms of conditions imposed on
the aggregation mappingξ. After presenting examples of models, I will then develop
the necessary formal machinery, to assess the relevant properties ofFξ-DFSes. Finally,
the resulting techniques will be tested on the example models. As will emerge from
this analysis, the novel class of models is rich enough to accomplish the three objec-
tives which necessitated the quest for additional models. First of all, the two criteria of
propagating fuzziness will no longer be tied to all models, and now become indepen-
dent attributes which may or may not be possessed by the considered examples. The
second goal will also be achieved, by identifying a prototypical model in the new class,
which generalizes the Choquet integral. Finally, the introduction of the new class will
also have a number of theoretical ramifications, and hence sheds some light into the
unknown of fuzzy quantification.

8.2 The unrestricted class of Fξ-QFMs

As mentioned above, it was decided to build the new class from a generalisation of the
construction forMB-type models, which is already understood. Hence let us recon-
sider the definition ofQγ(X1, . . . , Xn), which underlies the construction of the known
models. As demonstrated by equality (64) above, the application of the fuzzy median
connectivemed 1

2
can be separated from a prior computation of the supremum and in-

fimum sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} andinf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)},
respectively. By abstracting from the cutting parameterγ in these expressions, we ar-
rive at the following definition of upper and lower bound mappings, which delimit the
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possible quantification results in the cut ranges:

Definition 100
Let a semi-fuzzy quantifierQ : P(E)n −→ I and fuzzy argumentsX1, . . . , Xn be
given. I define the upper bound mapping>Q,X1,...,Xn : I −→ I and the lower bound
mapping⊥Q,X1,...,Xn : I −→ I by

>Q,X1,...,Xn(γ) = sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)}
⊥Q,X1,...,Xn(γ) = inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} .

The following properties of>Q,X1,...,Xn and⊥Q,X1,...,Xn are apparent:

Theorem 107
SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E) a choice
of fuzzy arguments. Then

1. >Q,X1,...,Xn is monotonically nondecreasing;

2. ⊥Q,X1,...,Xn is monotonically nonincreasing;

3. ⊥Q,X1,...,Xn ≤ >Q,X1,...,Xn .

We can hence define the domainT of aggregation operatorsξ : T −→ I which combine
the results of>Q,X1,...,Xn and⊥Q,X1,...,Xn as follows.

Definition 101
T ⊆ II × II is defined by

T = {(>,⊥) : > : I −→ I nondecreasing,⊥ : I −→ I nonincreasing,⊥ ≤ >} .

It is apparent from Th-107 that(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) ∈ T, regardless of the
semi-fuzzy quantifierQ : P(E)n −→ I and the choice of fuzzy argumentsX1, . . . , Xn ∈
P̃(E). In addition, it can be shown thatT is the minimal set which embeds all such
pairs of mappings.

Theorem 108
Let (>,⊥) ∈ T be given. We define semi-fuzzy quantifiersQ′, Q′′, Q : P(2× I) −→ I
by

Q′(Y ) = >(supY ′) (65)

Q′′(Y ) = ⊥(inf Y ′′) (66)

Q(Y ) =
{
Q′′(Y ) : Y ′ = ∅

Q′(Y ) : else
(67)

where

Y ′ = {z ∈ I : (0, z) ∈ Y } (68)

Y ′′ = {z ∈ I : (1, z) ∈ Y } (69)
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for all Y ∈ P(2× I).
Further suppose that the fuzzy subsetX ∈ P̃(2× I) is defined by

µX(c, z) =

{
1
2 −

1
2z : c = 0

1
2 + 1

2z : c = 1
(70)

for all (c, z) ∈ 2× I.
Then> = >Q,X and⊥ = ⊥Q,X .

Based on the aggregation operatorξ : T −→ I, we define a corresponding QFMFξ in
the obvious way.

Definition 102
For every mappingξ : T −→ I, the QFMFξ is defined by

Fξ(Q)(X1, . . . , Xn) = ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) , (71)

for all semi-fuzzy quantifiersQ : P(E)n −→ I and all fuzzy subsetsX1, . . . , Xn ∈
P̃(E).

The class of QFMs defined in this way will be called the class ofFξ-QFMs. Appar-
ently, it contains a number of models that do not fulfill the DFS axioms. I hence impose
five elementary conditions on the aggregation mappingξ which provide a characteri-
sation of the well-behaved models, i.e. of the class ofFξ-DFSes.

8.3 Characterisation of Fξ-models

Definition 103 For all (>,⊥) ∈ T, we impose the following conditions on aggregation
mappingsξ : T −→ I.

If > = ⊥, thenξ(>,⊥) = >(0) (X-1)

ξ(1−⊥, 1−>) = 1− ξ(>,⊥) (X-2)

If > = c1 and⊥(I) ⊆ {0, 1}, thenξ(>,⊥) = 1
2 + 1

2⊥
0
∗ (X-3)

ξ(>[,⊥) = ξ(>],⊥) (X-4)

If (>′,⊥′) ∈ T such that> ≤ >′ and⊥ ≤ ⊥′, thenξ(>,⊥) ≤ ξ(>′,⊥′) (X-5)

As stated in the following theorems, the conditions imposed onξ capture exactly the
requirements that makeFξ a DFS. Let us show first that (X-1) to (X-5) are sufficient
for Fξ to be a standard model.

Theorem 109
If ξ : T −→ I satisfies(X-1) to (X-5), thenFξ is a standard DFS.

Theorem 110
The conditions(X-1) to (X-5) on ξ : T −→ I are necessary forFξ to be a DFS.
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Hence the ‘X-conditions’ are necessary and sufficient forFξ to be a DFS, and allFξ-
DFSes are indeed standard DFSes. The criteria can also be shown to be independent.
To facilitate the independence proof, I first relateMB-QFMs to the broader class of
Fξ-QFMs:

Theorem 111
SupposeB : B −→ I is a given aggregation mapping. ThenMB = Fξ, where
ξ : T −→ I is defined by

ξ(>,⊥) = B(med 1
2

(>,⊥)) (72)

for all (>,⊥) ∈ T, andmed 1
2

(>,⊥) abbreviates

med 1
2

(>,⊥)(γ) = med 1
2

(>(γ),⊥(γ)) ,

for all γ ∈ I.

Hence allMB-QFMs areFξ-QFMs, and allMB-DFSes areFξ-DFSes.
Sometimes we should be aware of the relationship between the ‘B-conditions’ and the
‘X-conditions’ in the case ofMB-QFMs. The next theorem helps us to prove that the
‘X-conditions’ are independent, because the ‘B-conditions’ have already been shown
to be independent in [48]:

Theorem 112
SupposeB : B −→ I is given andξ : T −→ I is defined by equality(72). Then

1. (B-1) is equivalent to(X-1);

2. (B-2) is equivalent to(X-2);

3. (a) (B-3) entails(X-3);

(b) the conjunction of(X-2) and (X-3) entails(B-3);

4. (a) (B-4) entails(X-4);

(b) the conjunction of(X-2) and (X-4) entails(B-4);

5. (B-5) is equivalent to(X-5).

Note. The theorem also proved useful in other contexts, e.g. to show that theMB-
DFSes are exactly thoseFξ-DFSes that propagate fuzziness in both quantifiers and
arguments.

Theorem 113
The conditions(X-1) to (X-5) are independent.
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8.4 Examples of Fξ-models

Let us now give examples of ‘genuine’Fξ-DFSes (i.e. models that go beyond the
special case ofMB-DFSes).

Definition 104
The QFMFCh = FξCh is defined in terms ofξCh : T −→ I by

ξCh(>,⊥) = 1
2

∫ 1

0

>(γ) dγ + 1
2

∫ 1

0

⊥(γ) dγ ,

for all (>,⊥) ∈ T.

Note. Both integrals are guaranteed to exist because> and⊥ are monotonic and
bounded.

Theorem 114
FCh is a standard DFS.

The DFSFCh is of special interest because of its close relationship to the well-known
Choquet integral, which is defined as follows.

Definition 105
SupposeQ : P(E) −→ I is a nondecreasing semi-fuzzy quantifier andX ∈ P̃(E). The
Choquet integral(Ch)

∫
X dQ is defined by

(Ch)
∫
X dQ =

∫ 1

0

Q(X≥α) dα .

Theorem 115
SupposeQ : P(E) −→ I is nondecreasing. Then for allX ∈ P̃(E),

(Ch)
∫
X dQ = FCh(Q)(X) .

HenceFCh coincides with the Choquet integral on fuzzy quantifiers whenever the latter
is defined. Recalling the notationµ[j](X) introduced in Def. 99, we then obtain the
following corollary to the above theorem (cf. [20]):

Theorem 116
SupposeE 6= ∅ is a finite base set,q : {0, . . . , |E|} −→ I is a nondecreasing mapping
such thatq(0) = 0, q(|E|) = 1, andQ : P(E) −→ I is defined byQ(Y ) = q(|Y |) for
all Y ∈ P(E). Then for allX ∈ P̃(E),

FCh(Q)(X) =
|E|∑
j=1

(q(j)− q(j − 1)) · µ[j](X) ,

i.e.FCh consistently generalises Yager’s OWA approach [170].
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Definition 106
The QFMFS is defined in terms ofξS : T −→ I by

ξS(>,⊥) =


min(>∗1, 1

2 + 1
2⊥
≤ 1

2
∗ ) : ⊥(0) > 1

2

max(⊥∗1, 1
2 −

1
2>
≥ 1

2
∗ ) : >(0) < 1

2
1
2 : else

for all (>,⊥) ∈ T, where the coefficientsf
≤ 1

2
∗ , f

≥ 1
2

∗ ∈ I are defined by

f
≤ 1

2
∗ = inf{γ ∈ I : f(γ) ≤ 1

2} (73)

f
≥ 1

2
∗ = inf{γ ∈ I : f(γ) ≥ 1

2} , (74)

for all f : I −→ I.

Theorem 117
FS is a standard DFS.

A third model of interest is the following QFMFA:

Definition 107
The QFMFA is defined in terms ofξA : T −→ I by

ξA(>,⊥) =


min(⊥∗0, 1

2 + 1
2⊥

0
∗) : ⊥∗0 > 1

2

max(>∗0, 1
2 −

1
2>

1↓
∗ ) : >∗0 < 1

2
1
2 : else

for all (>,⊥) ∈ T.

Theorem 118
FA is a standard DFS.

8.5 Properties of the Fξ-models

Turning to properties ofFξ-DFSes, I shall first investigate the precise conditions under
which anFξ-DFS propagates fuzziness in quantifiers and/or in arguments.

Definition 108
We say thatξ : T −→ I propagates fuzzinessif and only if

ξ(>,⊥)�c ξ(>′,⊥′)

whenever(>,⊥), (>′,⊥′) ∈ T with>�c >′ and⊥�c ⊥′.
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Theorem 119
AnFξ-QFM propagates fuzziness in quantifiers if and only ifξ propagates fuzziness.

If Fξ is a DFS, thenξ’s propagating fuzziness is equivalent to the following condition,
which is much easier to check:

Theorem 120
Supposeξ : T −→ I satisfies(X-1) to (X-5). Thenξ propagates fuzziness if and only if

ξ(>,⊥) = ξ(>,max(⊥, 1
2 ))

for all (>,⊥) ∈ T with⊥(0) > 1
2 .

For proofs that a givenFξ-DFS does not propagate fuzziness in quantifiers, the follow-
ing necessary condition can be of interest.

Theorem 121
Let ξ : T −→ I be a mapping which satisfies(X-1) to (X-5). If ξ propagates fuzziness,
then

ξ(>,⊥) = 1
2

whenever(>,⊥) ∈ T such that>(0) ≥ 1
2 ≥ ⊥(0).

It is this condition which explains why the results ofMB-DFSes tend to attain12
when the input is overly fuzzy. If one really needs different quantification results for
(>,⊥), (>′,⊥′) with ⊥(0) ≤ 1

2 ≤ >(0) and⊥′(0) ≤ 1
2 ≤ >

′(0), one obviously must
resort toFξ-DFSes that do not propagate fuzziness in quantifiers.
As concerns the examples ofFξ-models, one can attest the following.

Theorem 122
FCh does not propagate fuzziness in quantifiers.

HenceFCh is a ‘genuine’Fξ-DFS (i.e. not anMB-DFS) by Th-93. In particular,
this proves that theFξ-DFSes indeed form a more general class of models thanMB-
DFSes. For the DFSFS , we obtain a positive result.

Theorem 123
FS propagates fuzziness in quantifiers.

Turning toFA, we have

Theorem 124
FA does not propagate fuzziness in quantifiers.

We can also state the necessary and sufficient conditions onξ for Fξ to propagate
fuzziness in arguments. To this end, I first introduce the following property ofξ.
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Definition 109
We say thatξ : T −→ I propagates unspecificityif and only if

ξ(>,⊥)�c ξ(>′,⊥′)

whenever(>,⊥), (>′,⊥′) ∈ T satisfy> ≥ >′ and⊥ ≤ ⊥′.

Theorem 125
An Fξ-QFM propagates fuzziness in arguments if and only ifξ propagates unspeci-
ficity.

If Fξ is sufficiently well-behaved (in particular, ifFξ is a DFS), it is possible to state
the following equivalent condition:

Theorem 126
Supposeξ : T −→ I satisfies(X-2), (X-4) and (X-5). Then the following conditions
are equivalent:

a. ξ propagates unspecificity;

b. for all (>,⊥) ∈ T with⊥(0) ≥ 1
2 , ξ(>,⊥) = ξ(c1,⊥).

I have also established a necessary condition which facilitates the proof that a given
Fξ-DFSes does not propagate fuzziness in arguments:

Theorem 127
If anFξ-DFS propagates fuzziness in arguments, then

ξ(>,⊥) = 1
2

whenever(>,⊥) ∈ T such that>(0) ≥ 1
2 ≥ ⊥(0).

For example, we can use this condition to prove that

Theorem 128
FCh does not propagate fuzziness in arguments.

As concernsFS , we have the following result.

Theorem 129
FS does not propagate fuzziness in arguments.

Note. HenceFS is a ‘genuine’Fξ-DFS as well, which is apparent from Th-94.
Turning toFA, which failed to propagate fuzziness in quantifiers, it is easily observed
thatFA still propagates fuzziness in its arguments:

Theorem 130
FA propagates fuzziness in arguments.
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In particular, the conditions of propagating fuzziness in quantifiers and arguments are
independent in the case ofFξ-DFSes, as stated in the following corollary.

Theorem 131
The conditions of propagating fuzziness in quantifiers and in arguments are indepen-
dent forFξ-DFSes.

Finally, we can characterize the subclass ofMB-DFSes which are exactly thoseFξ-
DFSes that propagate fuzziness in both quantifiers and arguments.

Theorem 132
Suppose anFξ-DFS propagates fuzziness in both quantifiers and arguments. ThenFξ
is anMB-DFS.

Note. The converse implication is already known from Th-93 and Th-94.
Next I shall investigate the exact conditions under which anFξ-QFM is Q-continuous
or arg-continuous. To be able to discuss Q-continuousFξ-QFMs, we introduce a met-
ric d : T× T −→ I. For all nondecreasing mappings>,>′ : I −→ I, I define

d(>,>′) = sup{|>(γ)−>′(γ)| : γ ∈ I} . (75)

I proceed similarly for nondecreasing mappings⊥,⊥′ : I −→ I. In this case,

d(⊥,⊥′) = sup{|⊥(γ)−⊥′(γ)| : γ ∈ I} . (76)

Finally, I defined : T× T −→ I by

d((>,⊥), (>′,⊥′)) = max(d(>,>′), d(⊥,⊥′)) , (77)

for all (>,⊥), (>′,⊥′) ∈ T. It is apparent thatd is indeed a metric. I will utilized to
express a condition onξ which characterises the Q-continuousFξ-QFMs.

Theorem 133
Let ξ : T −→ I be a given mapping which satisfies(X-5). Then the following condi-
tions are equivalent:

a. Fξ is Q-continuous;

b. for all ε > 0, there existsδ > 0 such that|ξ(>,⊥) − ξ(>′,⊥′)| < ε whenever
(>,⊥), (>′,⊥′) ∈ T satisfyd((>,⊥), (>′,⊥′)) < δ.

If ξ is sufficiently well-behaved, then the above condition can be simplified to the
following criterion, which is easier to check.

Theorem 134
Supposeξ : T −→ I satisfies(X-2) and (X-5). Then the following conditions are
equivalent:
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a. Fξ is Q-continuous;

b. for all ε > 0, there existsδ > 0 such thatξ(>′,⊥) − ξ(>,⊥) < ε whenever
(>,⊥), (>′,⊥) ∈ T satisfyd(>,>′) < δ and> ≤ >′.

I have the following results for the examples ofFξ-DFSes.

Theorem 135
FCh is Q-continuous.

Theorem 136
FS is not Q-continuous.

Theorem 137
FA is not Q-continuous.

As concerns continuity in arguments, I first need to introduce another distance measure
d′ : T × T −→ I, which can be used to characterise the arg-continuousFξ-QFMs in
terms of conditions onξ. For all nondecreasing mappings>,>′ : I −→ I, we define

d′(>,>′) = sup{inf{γ′ : min(>(γ′),>′(γ′)) ≥ max(>(γ),>′(γ))} − γ : γ ∈ I} .
(78)

Similarly for nonincreasing mappings⊥,⊥′ : I −→ I,

d′(⊥,⊥′) = sup{inf{γ′ : max(⊥(γ′),⊥′(γ′)) ≤ min(⊥(γ),⊥′(γ))} − γ : γ ∈ I} .
(79)

Finally, we defined′ : T× T −→ I by

d′((>,⊥), (>′,⊥′)) = max(d′(>,>′), d′(⊥,⊥′)) , (80)

for all (>,⊥), (>′,⊥′) ∈ T. It is easily checked thatd′ is a ‘pseudo-metric’, i.e.
it is symmetric and satisfies the triangular inequality, butd′((>,⊥), (>′,⊥′)) = 0
does not imply that(>,⊥) = (>′,⊥′). However,d′ is a metric modulo][, i.e. on

the equivalence classes of(>,⊥) ∼ (>′,⊥′) ⇔ (>[],⊥[]) = (>′[
]
,⊥′[

]
). Hence

d′((>,⊥), (>′,⊥′)) = 0 entails that(>,⊥) ∼ (>′,⊥′), i.e. ξ(>,⊥) = ξ(>′,⊥′)
wheneverξ satisfies (X-2), (X-4) and (X-5). Based ond′, I can now assert the follow-
ing.

Theorem 138
Supposeξ : T −→ I satisfies(X-2), (X-4) and (X-5). Then the following conditions
are equivalent:

a. Fξ is arg-continuous;

b. for all (>,⊥) ∈ T and all ε > 0, there existsδ > 0 such that|ξ(>,⊥) −
ξ(>′,⊥′)| < ε whenever(>′,⊥′) ∈ T satisfiesd′((>,⊥), (>′,⊥′)) < δ.
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In some cases, the following sufficient condition can shorten the proof that a givenFξ
is arg-continuous.

Theorem 139
Supposeξ : T −→ I satisfies(X-2) and(X-5) ThenFξ is arg-continuous if the follow-
ing condition holds: For allε > 0 there existsδ > 0 such thatξ(>′,⊥)− ξ(>,⊥) < ε
whenever(>,⊥), (>′,⊥) ∈ T satisfyd′(>,>′) < δ and> ≤ >′.

Based on these theorems, it is easy to prove the following.

Theorem 140
FCh is arg-continuous.

Theorem 141
FS is not arg-continuous.

Theorem 142
FA is not arg-continuous.

HenceFCh is continuous both in quantifiers and arguments; which is important for
applications. The second example,FS , fails at both continuity conditions and is hence
not practical. (We will see below thatFS is of theoretical interest because it represents
a boundary case ofFξ-DFS).
I am also interested in the specificity ofFξ-DFSes. The following theorem facilitates
the proof that a givenFξ-QFM is less specific than anotherFξ-QFM by relating the
specificity order onFξ to the specificity order onξ:

Theorem 143
Let ξ, ξ′ : T −→ I be given mappings. Then the following conditions are equivalent:

a. Fξ �c Fξ′ ;

b. ξ �c ξ′.

In the case ofFξ-models that propagate fuzziness in quantifiers, it is sufficient to check
a simpler condition.

Theorem 144
Let ξ, ξ′ : T −→ I be given mappings which satisfy(X-1) to (X-5) and suppose that
ξ, ξ′ have the additional property thatξ(>,⊥) = ξ′(>,⊥) = 1

2 whenever(>,⊥) ∈ T
with>(0) ≥ 1

2 ≥ ⊥(0). Then the following conditions are equivalent:

a. Fξ �c Fξ′ ;

b. for all (>,⊥) ∈ T with⊥(0) > 1
2 , ξ(>,⊥) ≤ ξ′(>,⊥).

As regards least specificFξ-DFSes, we can prove the following:
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Theorem 145
MU is the least specificFξ-DFS.

Turning to the issue of most specific models, I first state a theorem for establishing
or rejecting specificity consistency. This is useful because specificity consistency is
tightly coupled to the existence of least upper specificity bounds, see Th-42.

Theorem 146
Consider a pair of mappingsξ, ξ′ : T −→ I. The QFMsFξ andFξ′ are specificity
consistent if and only ifξ, ξ′ are specificity consistent, i.e. for all(>,⊥) ∈ T, either
{ξ(>,⊥), ξ′(>,⊥)} ⊆ [0, 1

2 ] or {ξ(>,⊥), ξ′(>,⊥)} ⊆ [ 1
2 , 1].

An investigation of a possible most specificFξ-DFS reveals the following.

Theorem 147
The class ofFξ-DFSes is not specificity consistent.

Hence by Th-42, a ‘most specificFξ-DFS’ does not exist. However, we obtain a pos-
itive result if we restrict attention to the class ofFξ-DFSes which propagate fuzziness
in quantifiers or arguments. This is apparent from the following observation.

Theorem 148
SupposeF is a collection ofFξ-DFSesFξ ∈ F with the property thatξ(>,⊥) = 1

2
whenever(>,⊥) ∈ T is such that>(0) ≥ 1

2 ≥ ⊥(0). ThenF is specificity consistent.

We then have the following corollaries.

Theorem 149
The class ofFξ-DFSes that propagate fuzziness in quantifiers is specificity consistent.

Theorem 150
The class ofFξ-DFSes that propagate fuzziness in arguments is specificity consistent.

By Th-42, theFξ-models that propagate fuzziness in quantifiers have a least upper
specificity bound which, as it turns out, also propagates fuzziness in quantifiers.

Theorem 151
FS is the most specificFξ-DFS that propagates fuzziness in quantifiers.

Similarly, we can conclude from Th-150 that there is a most specificFξ-DFS that
propagates fuzziness in arguments.

Theorem 152
FA is the most specificFξ-DFS that propagates fuzziness in arguments.

243



8.6 Chapter summary

To sum up, the chapter made an effort to extend the class of known models, and to
show that models exist which do not propagate fuzziness. In order to better judge the
advances made, let me recall the reasons why I wanted to explore standard models
beyond the original class ofMB-DFSes. The first reason was concerned with propa-
gation of fuzziness.MB-DFSes are particularly well-behaved in this respect because
they propagate fuzziness in quantifiers as well as in arguments: the fuzzier the input,
the fuzzier the output. In most cases, this is the expected and desirable behaviour be-
cause one usually does not want the results to become more precise when there is less
precision in the input. However, I have already remarked that applications exist in
which the propagation of fuzziness should be sacrificed, in order to prevent the results
from attaining the least specific value of1

2 . This might be appropriate, for example,
when the input is overly fuzzy and one still needs a fine-grained result ranking. The ex-
tension of the originalMB-type models to a richer class was also necessary for relating
the present approach to existing work on fuzzy quantification. In order to embed the
Choquet integral and hence the core OWA approach into the axiomatic framework, the
simpleMB-models proved to be insufficient, because the Choquet integral does not
propagate fuzziness. Finally, it was expected that the study of a broader class would
gain new insight into the structure of fuzzy quantification, which might contribute to a
complete classification of standard models.

In order to define a suitable class of models, it was necessary to identify a corre-
sponding constructive principle, which can then be instantiated into concrete mod-
els. I have hence reviewed those concepts which originally proved useful for defin-
ingMB-DFSes. The construction of these models in terms of three-valued cuts pro-
vided a suitable starting point for the generalisation to a broader class of models. To
this end,Qγ(X1, . . . , Xn) andB : B −→ I had to be replaced with a pair of up-
per and lower bound mappings(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) ∈ T, along with an ag-
gregation operatorξ : T −→ I which maps such pairs into quantification results
ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn). These mappings capture some important aspects of the
quantifier and its intended behaviour for the considered fuzzy arguments. However, the
important information is scattered across the cut levels and hence a subsequent aggre-
gation step is needed. This is accomplished by applying a mappingξ, which computes
the final quantification resultFξ(Q)(X1, . . . , Xn) = ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn). In
order to identify the subclass of well-behaved models within the unrestricted class of
resultingFξ-QFMs, I have then formalized the precise requirements onξ that makeFξ
a DFS, by presenting a system of necessary and sufficient conditions. Due to the fact
that these conditions are mutually independent, the proposed system avoids any redun-
dancy in later proofs. I have also developed the full set of criteria required to check
whether a givenFξ-type model propagates fuzziness in quantifiers and/or arguments
and hence complies with the intuitive expectation that less detailed input should not re-
sult in more specific output; whether it satisfies the continuity requirements and hence
shows a certain robustness against noise in the arguments or alternative interpretations
of a fuzzy quantifier; and how it compares to other models in terms of specificity. In
particular, I have shown that the class ofFξ-DFSes is broad enough to contain mod-
els which are rather different fromMB-DFSes. Among theFξ-DFSes, some models
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neither propagate fuzziness in arguments nor in quantifiers; some models propagate
fuzziness in quantifiers, but not in arguments, while others propagate fuzziness in ar-
guments, but not in quantifiers. Of course, there are also models that satisfy both
requirements. By investigating the latter class, I was able to locate the knownMB-
DFSes within the full class ofFξ-DFSes, and characterize them as precisely those
Fξ-DFSes which propagate fuzziness both in quantifiers and arguments.

My analysis of the newFξ-type models also explains why the models which do not
propagate fuzziness have a chance of performing better than those that propagate fuzzi-
ness in situations where the inputs are overly fuzzy. This can be mainly attributed to the
property described in Th-121 and Th-127: if anFξ-DFS propagates fuzziness in quan-
tifiers or in arguments, thenFξ(Q)(X1, . . . , Xn) = 1

2 whenever>Q,(X1,...,Xn) ≥ 1
2

and⊥Q,(X1,...,Xn) ≤ 1
2 . Hence there is a certain range in which the results of the given

Fξ-DFS are constantly12 , which can be undesirable if one needs a fine-grained result
ranking. Because both types of propagating fuzziness cause this kind of behaviour,
one must resort to models that fail at both conditions if one needs specific results even
when there is a lot of fuzziness in the inputs. The DFSFCh is a promising choice in
such situations because it also fulfills the continuity requirements. It is anticipated that
FCh will find a number of uses in real-world applications that utilize fuzzy quantifiers.
However,FCh is also an interesting model from a theoretical point of view because
the model can be shown to embed the Choquet integral, thus generalizing it to the
case of non-monotonic and multi-place quantifiers. The chapter hence also succeeds
in relating DFS theory with existing work on fuzzy quantification because the Choquet
integral is known to embed the core OWA approach.

Concerning theoretical aspects of fuzzy quantification, the chapter proves that there
are standard models beyondMB-DFSes, and it also substantiates the existence of stan-
dard DFSes which do not propagate fuzziness in arguments and/or quantifiers. In par-
ticular, the conditions of propagating fuzziness in quantifiers and arguments have been
shown to be independent forFξ-type models. This is quite different from the original
MB-DFSes which are rather homogeneous. The mutual similarity of theMB-models
also expresses in their specificity consistency, a property which must also be aban-
doned when turning to broader classes of models. As witnessed by Th-147, theFξ
models are not specificity consistent, and hence a ‘most specificFξ-DFS’ does not
exist. However, there is a most specificFξ-DFS which propagates fuzziness in quan-
tifiers, vizFS , and there is also a most specificFξ-DFS which propagates fuzziness
in arguments, vizFA. ApparentlyFS andFA are not practical models because they
fail on both continuity conditions, but this seems to be typical for boundary cases with
respect to specificity.

As concerns the collection ofFξ-DFSes in its entirety, it is not clear at this stage
whether the new models form a ‘natural’ class with certain distinguished properties.
However, the introduction ofFξ-DFSes clearly led to the discovery of relevant models,
like FCh, which can be expressed in terms of the new construction. Most importantly,
it turned out that the upper and lower bound mappings>Q,X1,...,Xn and⊥Q,X1,...,Xn

are easy to compute for common quantifiers. This is witnessed, for example, by a
successful implementation of absolute and proportional quantifiers in the modelFCh,
which is described in Chap. 11 below. Apart from its theoretical merits, I hence con-
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sider the newFξ-DFSes a fruitful source of practical models, which will prove useful
in future applications.
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9 The full class of models defined in terms of three-valued
cuts

9.1 Motivation and chapter overview

In this chapter, a further step will be taken to extend the class of known models. By
abstracting from the mechanism used to defineFξ-QFMs, I first introduce the full
class of QFMs definable in terms of three-valued cuts: the class ofFΩ-QFMs. Unlike
Fξ-QFMs, the definition of which is based on the upper and lower bounds on the
results obtained for the three-valued cuts and a subsequent aggregation step, the new
models are defined directly in terms of the ‘raw’ result set obtained for the cuts, to
which an aggregation mappingΩ is then applied. Hence the new approach captures all
models definable in terms of three-valued cuts, and promises to span a general class
of models worthwhile investigating. After introducing the surrounding class ofFΩ-
QFMs, the structure of its well-behaved members is then analysed, by making explicit
the necessary and sufficient conditions on the aggregation mappingΩ that makeFΩ

a DFS. In addition, the required theory will be developed that permits us to check
interesting properties ofFΩ-models, e.g. whether a givenFΩ propagates fuzziness, and
how givenFΩ-QFMs are related in terms of specificity. It is shown that the new class
of models is genuinely broader thanFξ-DFSes. However, it does not introduce any
new ‘practical’ models because thoseFΩ-DFSes which are Q-continuous, and hence
potentially suited for applications, are in factFξ-DFSes. These findings hence provide
a justification forFξ-QFMs. It is also shown that the full class of standard models
which propagate fuzziness both in quantifiers and arguments, is genuinely broader
than the class ofMB-DFSes. But again, all models outside the known range of models
fail to be Q-continuous. Apart from investigating these properties, a subclass ofFΩ-
QFMs will also be introduced, the class ofFω-QFMs. These QFMs can be expressed
in terms of a simpler construction which excludes some of the ‘raw’FΩ-QFMs. I
show how this subclass is related to the full class ofFΩ-QFMs. Among other things,
this investigation reveals that the considered subclass still contains all well-behaved
models, and hence theFΩ-DFSes andFω-DFSes coincide. The relevance ofFω-
QFMs stems from the fact that they can easily be linked to the alternative classes of
models introduced later on. In other words,Fω-QFMs are needed to establish the link
between the models defined in terms of three-valued cuts and those defined in terms of
the extension principle. An investigation ofFω-QFMs is hence essential to the proof
that these classes coincide, which is one of the main contributions to DFS theory made
in this chapter.

9.2 The unrestricted class of FΩ-QFMs

To begin with, I will now extend the class ofFξ-QFMs to the full class of QFMs
definable in terms of three-valued cuts of the argument sets. Hence let a semi-fuzzy
quantifierQ : P(E)n −→ I and a choice of fuzzy argumentsX1, . . . , Xn ∈ P̃(E) be
given. In order to spot a starting point for the desired generalization, we re-consider
the definition of>Q,X1,...,Xn and⊥Q,X1,...,Xn . Apparently, the upper and lower bound
mappings can be decomposed into (a) the three-valued cut mechanism, and (b) a sub-
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sequentinf/sup-based aggregation:

>Q,X1,...,Xn(γ)
= sup{Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)}
= supSQ,X1,...,Xn(γ)

(81)

and

⊥Q,X1,...,Xn(γ)
= inf{Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)}
= inf SQ,X1,...,Xn(γ)

(82)

for all γ ∈ I, provided we defineSQ,X1,...,Xn(γ) as follows.

Definition 110
For every semi-fuzzy quantifierQ : P(E)n −→ I and allX1, . . . , Xn ∈ P̃(E), the
mappingSQ,X1,...,Xn : I −→ P(I) is defined by

SQ,X1,...,Xn(γ) = {Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)} ,

for all γ ∈ I.

Some basic properties ofSQ,X1,...,Xn are stated in this theorem.

Theorem 153
Consider a semi-fuzzy quantifierQ : P(E)n −→ I and choice of fuzzy subsetsX1, . . . , Xn ∈
P̃(E). Then

a. SQ,X1,...,Xn(0) 6= ∅;

b. SQ,X1,...,Xn(γ) ⊆ SQ,X1,...,Xn(γ′) wheneverγ, γ′ ∈ I with γ ≤ γ′.

It is hence apparent that all possible choices ofSQ,X1,...,Xn are contained in the fol-
lowing setK.

Definition 111
K ⊆ P(I)I is defined by

K = {S ∈ P(I)I : S(0) 6= ∅ andS(γ) ⊆ S(γ′) wheneverγ ≤ γ′} .

As I will now state,K is the minimal set which contains all possible choices for
SQ,X1,...,Xn . To this end, I first have to introduce coefficientss(z) ∈ I associated
with S ∈ K, which will play an essential role throughout this chapter.

Definition 112
ConsiderS ∈ K. We associate withS a mappings : I −→ I defined by

s(z) = inf{γ ∈ I : z ∈ S(γ)} ,

for all z ∈ I.
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It is convenient to define a notation for thes(z)’s obtained from a given quantifier and
arguments.

Definition 113
For every semi-fuzzy quantifierQ : P(E)n −→ I and allX1, . . . , Xn ∈ P̃(E), we
denote the mappings obtained fromSQ,X1,...,Xn by applying Def. 112 bysQ,X1,...,Xn :
I −→ I. The resulting mapping is hence defined by

sQ,X1,...,Xn(z) = inf{γ ∈ I : z ∈ SQ,X1,...,Xn(γ)} ,

for all z ∈ I.

As we shall see later, allFΩ-DFSes can be defined in terms ofsQ,X1,...,Xn .

Theorem 154
LetS ∈ K be given and defineQ : P(2× I) −→ I by

Q(Y ) = Qinf Y ′(Y ′′) (83)

for all Y ∈ P(2× I), where

Y ′ = {y ∈ I : (0, y) ∈ Y } (84)

Y ′′ = {y ∈ I : (1, y) ∈ Y } (85)

and theQz : P(I) −→ I, z ∈ I are defined by

Qz(Y ′′) =
{
z : supY ′′ > s(z)
z0 : else

(86)

for all Y ′′ ∈ P(I) if z /∈ S(s(z)), and

Qz(Y ′′) =
{
z : supY ′′ ≥ s(z)
z0 : else

(87)

in the case thatz ∈ S(s(z)). z0 is an arbitrary element

z0 ∈ S(0) , (88)

which exists by Th-153. Further suppose thatX ∈ P̃(2× I) is defined by

µX(a, y) =

{
1
2 : a = 0
1
2 −

1
2y : a = 1

(89)

for all a ∈ 2, y ∈ I. ThenSQ,X = S.

HenceK is exactly the set of allS = SQ,X1,...,Xn obtained for arbitrary choices of
quantifiers and arguments. In order to obtain a quantification result fromSQ,X1,...,Xn ,
I apply an aggregation operatorΩ : K −→ I in the obvious way.

249



Definition 114
Consider an aggregation operatorΩ : K −→ I. The corresponding QFMFΩ is
defined by

FΩ(Q)(X1, . . . , Xn) = Ω(SQ,X1,...,Xn) ,

for all semi-fuzzy quantifiersQ : P(E)n −→ I and fuzzy argumentsX1, . . . , Xn ∈
P̃(E).

By the class ofFΩ-QFMs, I mean the collection of all QFMs defined in this way.
As usual, we must impose conditions to shrink the full class ofFΩ to its subclass of
FΩ-DFSes.

9.3 Characterisation of the FΩ-models

Definition 115
For all S ∈ K, we defineS], S[ ∈ K as follows.

S] =
{
∩{S(γ′) : γ′ > γ} : γ < 1
I : γ = 1 S[ =

{
S(0) : γ = 0
∪{S(γ′) : γ′ < γ} : γ > 0

for all γ ∈ I.

Note. The definition is slightly asymmetric; I have departed from the usual scheme of
definingS](1) = S(1) in this case because the present definition ofS](1) = I allows
more compact conditions onΩ, and eventually for shorter proofs.
I further stipulate a definition ofS v S′ which will serve to express a monotonicity
condition onΩ.

Definition 116
For all S, S′ ∈ K, let us say thatS v S′ if and only if the following two conditions are
valid for all γ ∈ I:

1. for all z ∈ S(γ), there existsz′ ∈ S′(γ) with z′ ≥ z;

2. for all z′ ∈ S′(γ), there existsz ∈ S(γ) with z ≤ z′.

It is apparent from this definition thatv is reflexive and transitive, but not necessarily
antisymmetric (i.e.S v S′ andS′ v S does not imply thatS = S′). Hencev is a
preorder.
We are now ready to state the conditions on reasonable choices ofΩ : K −→ I, in
analogy to the conditions (B-1)–(B-5) forMB-models and to the conditions (X-1)–
(X-5) for theFξ-type:

Definition 117 ConsiderΩ : K −→ I. We impose the following conditions onΩ. For
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all S ∈ K,

If there existsa ∈ I with S(γ) = {a} for all γ ∈ I, thenΩ(S) = a. (Ω-1)

If S′(γ) = {1− z : z ∈ S(γ)} for all γ ∈ I, thenΩ(S′) = 1− Ω(S). (Ω-2)

If 1 ∈ S(0) andS(γ) ⊆ {0, 1} for all γ ∈ I, thenΩ(S) = 1
2 + 1

2s(0). (Ω-3)

Ω(S) = Ω(S]) (Ω-4)

If S′ ∈ K satisfiesS v S′, thenΩ(S) ≤ Ω(S′). (Ω-5)

Note. The only condition which is slighly different from the usual scheme is (Ω-4).
The departure from requiringΩ(S]) = Ω(S[) turned out to shorten the proofs. The
latter equality is entailed by the above conditions, however.

Theorem 155
The conditions(Ω-1)–(Ω-5) on Ω : K −→ I are sufficient forFΩ to be a standard
DFS.

In the following, I introduce another construction which elucidates the exact properties
of S ∈ K that a conforming choice ofΩ can rely on.

Definition 118
For all S ∈ K, we defineS‡ ∈ K by

S‡(γ) = {z ∈ I : there existz′, z′′ ∈ S(γ) with z′ ≤ z ≤ z′′}

for all γ ∈ I.

Note. It is apparent that indeedS‡ ∈ K. The effect of applying‡ to S is that of ‘filling
the gaps’ in the interior ofS. The resultingS‡ will be a closed, half-open, or open
interval.

The importance of this construction with respect toFΩ-QFMs stems from the invari-
ance of well-behavedFΩ-QFMs with respect to the gap-filling operation:

Theorem 156
SupposeΩ : K −→ I is a given mapping such thatFΩ satisfies(Z-5). Then

Ω(S) = Ω(S‡) ,

for all S ∈ K.

This means that a well-behaved choice ofΩ may only depend onsupS(γ), inf S(γ),
and the knowledge whethersupS(γ) ∈ S(γ) andinf S(γ) ∈ S(γ). Apart from this,
the ‘interior structure’ ofS(γ) is irrelevant to the determination ofΩ(S).

The above gap-filling operation has also proven useful for proving that (Ω-5) is nec-
essary forFΩ to satisfy (Z-5). The other ‘Ω-conditions’ are easily shown to be nec-
essary forFΩ to be a DFS, and require only minor adjustments of the corresponding
proofs forFξ-QFMs that were presented in [50].
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Theorem 157
The conditions(Ω-1)–(Ω-5) onΩ : K −→ I are necessary forFΩ to be a DFS.

Hence the ‘Ω-conditions’ are necessary and sufficient forFΩ to be a DFS, and allFΩ-
DFSes are indeed standard models. In order to prove that the criteria are independent,
I relateFξ-QFMs to their apparent superclass ofFΩ-QFMs.

Theorem 158
Consider an aggregation mappingξ : T −→ I. ThenFξ = FΩ, whereΩ : K −→ I is
defined by

Ω(S) = ξ(>S ,⊥S) , (90)

for all S ∈ K, and(>S ,⊥S) ∈ T is defined by

>S(γ) = supS(γ) (91)

⊥S(γ) = inf S(γ) (92)

for all γ ∈ I.

This is apparent. Hence allFξ-QFMs areFΩ-QFMs and allFξ-DFSes areFΩ-DFSes.
The next theorem permits to reduce the independence proof of the conditions onΩ to
the independence proof of the conditions imposed onξ.

Theorem 159
Supposeξ : T −→ I is given andΩ : K −→ I is defined by(90). Then

a. (X-1) is equivalent to(Ω-1);

b. (X-2) is equivalent to(Ω-2);

c. (X-3) is equivalent to(Ω-3);

d. 1. the conjunction of(X-2), (X-4) and (X-5) implies(Ω-4);

2. (Ω-4) implies(X-4);

e. (X-5) is equivalent to(Ω-5).

Based on this theorem and the known independence of the conditions (X-1)–(X-5), it
is now easy to prove the desired result concerning independence.

Theorem 160
The conditions(Ω-1)–(Ω-5) imposed onΩ : K −→ I are independent.
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9.4 The unrestricted class of Fω-QFMs

As has been remarked above, everyFΩ-DFS can be defined in terms of the mapping
sQ,(X1,...,Xn) : I −→ I and this usually makes a simpler representation. It therefore
makes sense to introduce the class of QFMs definable in terms ofsQ,(X1,...,Xn) : I −→
I.

Theorem 161
SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E) a
choice of fuzzy arguments. ThensQ,X1,...,Xn

−1(0) 6= ∅, i.e. there existsz0 ∈ I with
sQ,X1,...,Xn(z0) = 0.

Hence all possible choices ofsQ,X1,...,Xn are contained in the following setL.

Definition 119
L ⊆ II is defined by

L = {s ∈ II : s−1(0) 6= ∅} .

The following theorem states thatL is the minimum subset ofII which contains all
possible mappingssQ,X1,...,Xn :

Theorem 162
For all s ∈ L, let us defineS : I −→ P(I) by

S(γ) = {z ∈ I : γ ≥ s(z)} (93)

for all γ ∈ I. It is apparent thatS ∈ K. Let us further suppose thatQ : P(2× I) −→ I
is defined by(83) and thatX ∈ P̃(2× I) is the fuzzy subset defined by(89). Then
sQ,X = s.

In order to define quantification results based onsQ,X1,...,Xn , we need an aggregation
mappingω : L −→ I. The corresponding QFMFω is defined in the usual way.

Definition 120
Let a mappingω : L −→ I be given. ByFω we denote the QFM defined by

Fω(Q)(X1, . . . , Xn) = ω(sQ,X1,...,Xn) ,

for all semi-fuzzy quantifiersQ : P(E)n −→ I and allX1, . . . , Xn ∈ P̃(E).

9.5 The classes of Fω-models and FΩ-models coincide

It is obvious from the definition ofsQ,X1,...,Xn in terms ofSQ,X1,...,Xn that allFω-
QFMs areFΩ-QFMs, using the apparent choice ofΩ : K −→ I,

Ω(S) = ω(s) (94)
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wheres(z) = inf{γ ∈ I : z ∈ S(γ)}, see Def. 113. It is then clear from Def. 114 and
Def. 120 that

FΩ = Fω . (95)

The converse is not true, i.e. it is not the case that allFΩ-QFMs areFω-QFMs. How-
ever, if anFΩ-QFMs is sufficiently ‘well-behaved’, then it is also anFω-QFM. In
particular, this is the case for anFΩ-DFS.

Theorem 163

a. If Ω : K −→ I satisfies(Ω-4), thenFΩ = Fω, provided we defineω : L −→ I
by

ω(s) = Ω(S) (96)

for all s ∈ L, where

S(γ) = {z ∈ I : γ ≥ s(z)} (97)

for all γ ∈ I.

b. If Ω : K −→ I does not satisfy(Ω-4), thenFΩ is not anFω-QFM.

Therefore anFΩ-QFM is anFω-QFM if and only if it satisfies (Ω-4). Let us recall that
by Th-157, (Ω-4) is necessary forFΩ to be a DFS. This means that we do not lose any
models of interest if we restrict attention to the class of thoseFΩ-QFMs which satisfy
(Ω-4), and can hence be expressed asFω-QFMs.

9.6 Characterisation of the Fω-models

It is then convenient to switch from (Ω-1)–(Ω-5) to corresponding conditions onω :
L −→ I. To accomplish this, I first define a preorderv ⊆ L × L, which is needed to
express a monotonicity condition.

Definition 121
For all s, s′ ∈ L, s v s′ if and only if the following two conditions hold:

a. for all z ∈ I, inf{s′(z′) : z′ ≥ z} ≤ s(z);

b. for all z′ ∈ I, inf{s(z) : z ≤ z′} ≤ s′(z′).

In the case ofFω-QFMs, I can express the conditions onω : L −→ I even more
succintly.
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Definition 122 We impose the following conditions onω : L −→ I. For all s ∈ L,

If s−1([0, 1)) = {a}, thenω(s) = a. (ω-1)

If s′(z) = s(1− z) for all z ∈ I, thenω(s′) = 1− ω(s). (ω-2)

If s(1) = 0 ands−1([0, 1)) ⊆ {0, 1}, thenω(s) = 1
2 + 1

2s(0). (ω-3)

If s′ ∈ L with s v s′, thenω(s) ≤ ω(s′). (ω-4)

Theorem 164
Let ω : L −→ I be given and suppose thatΩ : K −→ I is defined in terms ofω
according to(94). Then

a. Ω satisfies(Ω-1) if and only ifω satisfies(ω-1);

b. Ω satisfies(Ω-2) if and only ifω satisfies(ω-2);

c. Ω satisfies(Ω-3) if and only ifω satisfies(ω-3);

d. Ω satisfies(Ω-4);

e. Ω satisfies(Ω-5) if and only ifω satisfies(ω-4).

Due to these relationships, the following theorems are obvious from the corresponding
results forΩ.

Theorem 165
The conditions(ω-1)–(ω-4) are sufficient forFω to be a standard DFS.

Theorem 166
The conditions(ω-1)–(ω-4) are necessary forFω to be a DFS.

Theorem 167
The conditions(ω-1)–(ω-4) are independent.

To sum up,Fω-DFSes comprise allFΩ-DFSes, they are usually easier to define, and
simpler conditions (ω-1)–(ω-4) have to be checked. However, the monotonicity condi-
tion (ω-4) onω is somewhat more complicated compared to the monotonicity condition
(Ω-5) on Ω. In the following, I hence introduce a simpler preorderE for expressing
monotonicity, which when combined with an additional condition can replacev and
the corresponding monotonicity condition (ω-4).E is defined as follows.

Definition 123
For all s, s′ ∈ L, s E s′ if and only if the following two conditions hold:

a. for all z ∈ I, there existsz′ ≥ z with s′(z′) ≤ s(z);

b. for all z′ ∈ I, there existsz ≤ z with s(z) ≤ s′(z′).
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In order to state the additional condition, it is necessary to introduce a construction on
s ∈ L which corresponds to the gap-filling operationS‡ defined onS ∈ K.

Definition 124
For all s ∈ L, s‡ : I −→ I is defined by

s‡(z) = max(inf{s(z′) : z′ ≤ z}, inf{s(z′′) : z′′ ≥ z}) ,

for all z ∈ I.

Some basic properties of‡ are the following.

Theorem 168
Lets ∈ L be given. Then

a. s‡ ≤ s;

b. s‡ ∈ L;

c. s‡ is concave, i.e.s‡(z2) ≤ max(s‡(z1), s‡(z3)) wheneverz1 ≤ z2 ≤ z3.

I have needed this concavification construction for the proof thatω’s satisfying (ω-4)
entails thatΩ defined by (94) satisfies (Ω-5). However, it will also play its role in
defining examples ofFω models, see Def. 125 and Def. 128. The connection between
‡ and monotonic behaviour ofω becomes visible in the next theorem, which facilitates
the proof that a givenω satisfies (ω-4), by reducing it to the‡-invariance ofω, and its
monotonicity with respect to the simplified preorderE.

Theorem 169

For all ω : L −→ I, the monotonicity condition(ω-4) is equivalent to the conjunction
of the following two conditions:

a. for all s, s′ ∈ L with s E s′, it holds thatω(s) ≤ ω(s′);

b. for all s ∈ L, ω(s‡) = ω(s).

9.7 Examples of FΩ-models

I will now present four examples of ‘genuine’Fω-models, i.e. ofFω-DFSes which do
not belong to the class ofFξ-DFSes. To this end, it is necessary to introduce some
coefficients defined in terms of a givens ∈ L.
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Definition 125

For all s ∈ L, the coefficientss>,0∗ , s⊥,0∗ , ,>,∗1 ,⊥,∗1 s
≤ 1

2
∗ , s

≥ 1
2
∗ ∈ I are defined by

s>,0∗ = sup s‡
−1

(0) (98)

s⊥,0∗ = inf s‡
−1

(0) (99)

s>,∗1 = sup s−1([0, 1)) (100)

s⊥,∗1 = inf s−1([0, 1)) (101)

s
≤ 1

2
∗ = inf{s(z) : z ≤ 1

2} (102)

s
≥ 1

2
∗ = inf{s(z) : z ≥ 1

2} . (103)

Based on these coefficients, I now define the examples ofFω-models.

Definition 126
ByωM : L −→ I we denote the following mapping,

ωM (s) =


min(s⊥,0∗ , 1

2 + 1
2s
≤ 1

2
∗ ) : s⊥,0∗ > 1

2

max(s>,0∗ , 1
2 −

1
2s
≥ 1

2
∗ ) : s>,0∗ < 1

2
1
2 : else

for all s ∈ L. The QFMFM is defined in terms ofωM according to Def. 120, i.e.
FM = FωM .

Let us first notice that the QFMFM so defined is indeed a DFS.

Theorem 170
FM is a standard DFS.

Let me also remark thatFM is indeed a ‘genuine’Fω-DFS.

Theorem 171
FM is not anFξ-DFS, i.e. there exists noξ : T −→ I withFM = Fξ.

In particular, this proves that theFω-DFSes are really more general thanFξ-DFSes,
i.e. theFξ-DFSes form a proper subclass of theFω-DFSes.

Definition 127
ByωP : L −→ I we denote the mapping defined by

ωP (s) =


min(s>,∗1 , 1

2 + 1
2s
≤ 1

2
∗ ) : s⊥,0∗ > 1

2

max(s⊥,∗1 , 1
2 −

1
2s
≥ 1

2
∗ ) : s>,0∗ < 1

2
1
2 : else
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for all s ∈ L. We define the QFMFP in terms ofωP according to Def. 120, i.e.
FP = FωP .

Theorem 172
FP is a standard DFS.

Let us also observe thatFP is a genuineFω-DFS.

Theorem 173
FP is not anFξ-DFS, i.e. there exists noξ : T −→ I such thatFP = Fξ.

It is possible to obtain an even more specific DFS by slightly changing the definition
of FP .

Definition 128
ByωZ : L −→ I we denote the mapping defined by

ωZ(s) =


min(s>,∗1 , 1

2 + 1
2s
≤ 1

2
∗ ) : s‡

−1(0) ⊆ [ 1
2 , 1]

max(s⊥,∗1 , 1
2 −

1
2s
≥ 1

2
∗ ) : s‡

−1(0) ⊆ [0, 1
2 ]

1
2 : else

for all s ∈ L. We define the QFMFZ in terms ofωZ according to Def. 120, i.e.
FZ = FωZ .

Note. It has been shown in [51, p. 43+] thatωZ is well-defined.

Theorem 174
FZ is a standard DFS.

Again, it is easily shown thatFZ is a genuineFω-DFS.

Theorem 175
FZ is not anFξ-DFS, i.e. there exists noξ : T −→ I such thatFZ = Fξ.

Definition 129
ByωR : L −→ I we denote the mapping defined by

ωR(s) =


min(s⊥,0∗ , 1

2 + 1
2s(0)) : s⊥,0∗ > 1

2

max(s>,0∗ , 1
2 −

1
2s(1)) : s>,0∗ < 1

2
1
2 : else

for all s ∈ L. We define the QFMFR in terms ofωR according to Def. 120, i.e.
FR = FωR .
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Theorem 176
FR is a standard DFS.

Again, it can be asserted thatFR is a genuineFω-DFS.

Theorem 177
FR is not anFξ-DFS, i.e. there exists noξ : T −→ I withFR = Fξ.

9.8 Properties of FΩ-models

Now that the defining conditions ofFΩ-DFSes andFω-DFS have been established and
examples of the new classes of models have been given, I turn to additional properties
like propagation of fuzziness. Usually I state the corresponding conditions both for the
representation in terms ofFΩ and in terms ofFω. This provides maximum flexibility
in later proofs whether a model at hand does or does not possess these properties.

Definition 130
For all S, S′ ∈ K, we say thatS is fuzzier (less crisp) thanS′, in symbols:S �c S′, if
and only if the following conditions are satisfied for allγ ∈ I.

for all z′ ∈ S′(γ), there existsz ∈ S(γ) such thatz �c z′; (104)

for all z ∈ S(γ), there existsz′ ∈ S′(γ) such thatz �c z′. (105)

Definition 131
LetΩ : K −→ I be given. We say thatΩ propagates fuzzinessif and only if

Ω(S)�c Ω(S′)

wheneverS, S′ ∈ K satisfyS �c S′.

Theorem 178
For all Ω : K −→ I,FΩ propagates fuzziness in quantifiers if and only ifΩ propagates
fuzziness.

The following condition permits a simplified check if a givenΩ propagates fuzziness.

Theorem 179
SupposeΩ : K −→ I satisfies(Ω-1)–(Ω-5). ThenΩ propagates fuzziness if and only if

Ω(S) = Ω(S‡ ∩ [ 1
2 , 1]) ,

for all S ∈ K with S(0) ⊆ [ 1
2 , 1].

Definition 132
LetS, S′ ∈ K be given. We say thatS is less specific thanS′, in symbolsS b S′, if
and only if

S(γ) ⊇ S′(γ)

for all γ ∈ I.
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Definition 133
LetΩ : K −→ I be given. We say thatΩ propagates unspecificityif and only if

Ω(S)�c Ω(S′)

for every choice ofS, S′ ∈ K with S b S′.

Theorem 180
For all Ω : K −→ I,FΩ propagates fuzziness in arguments if and only ifΩ propagates
unspecificity.

The above criterion forΩ propagating unspecificity can be simplified as follows.

Theorem 181
SupposeΩ : K −→ I satisfies(Ω-1), (Ω-2), (Ω-4) and (Ω-5). Then the following
conditions are equivalent:

a. Ω propagates unspecificity;

b. for all s ∈ K with S(0) ⊆ [ 1
2 , 1], it holds thatΩ(S) = Ω(S′), whereS′ ∈ K is

defined by

S′(γ) =
{

[z∗, 1] : z∗ ∈ S(γ)
(z∗, 1] : z∗ /∈ S(γ) (106)

for all γ ∈ I, and wherez∗ = z∗(γ) abbreviates

z∗ = inf S(γ) . (107)

Definition 134
For all s, s′ ∈ L, we say thats is fuzzier (less crisp) thans′, in symbolss�c s′, if and
only if

for all z ∈ I, there existsz′ ∈ I with z �c z′ ands′(z′) ≤ s(z); (108)

for all z′ ∈ I, there existsz ∈ I with z �c z′ ands(z) ≤ s′(z′). (109)

Definition 135
A mappingω : L −→ I is said topropagate fuzzinessif and only ifω(s)�c ω(s′) for
all choices ofs, s′ ∈ L with s�c s′.

Theorem 182
Supposeω : L −→ I is ‡-invariant, i.e.ω(s‡) = ω(s) for all s ∈ L. ThenFω
propagates fuzziness in quantifiers if and only ifω propagates fuzziness.

If ω is well-behaved, then we can further simplify the condition that must be tested for
establishing or rejecting thatω propagate fuzziness.
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Theorem 183
Suppose thatω : L −→ I satisfies(ω-1)–(ω-4). ω propagates fuzziness if and only if
for all s ∈ L with s−1(0) ∩ [ 1

2 , 1] 6= ∅, it holds thatω(s) = ω(s′), where

s′(z) =

{
s‡(z) : z ≥ 1

2

1 : z < 1
2

(110)

for all z ∈ I.

Definition 136
A mappingω : L −→ I is said topropagate unspecificityif and only ifω(s) �c ω(s′)
whenevers, s′ ∈ L satisfys ≤ s′.

Theorem 184
Let ω : L −→ I be a given mapping. ThenFω propagates fuzziness in arguments if
and only ifω propagates unspecificity.

Again, it is possible to simplify the condition imposed onω.

Theorem 185
Supposeω : L −→ I satisfies(ω-1), (ω-2) and (ω-4). Then the following conditions
are equivalent.

a. ω propagates unspecificity;

b. for all s ∈ L with s−1 ∩ [ 1
2 , 1] 6= ∅, it holds thatω(s) = ω(s′), wheres′ ∈ L is

defined by

s′(z) = inf{s(z′) : z′ ≤ z} (111)

for all z ∈ I.

Now let us apply these criteria to the examples ofFω-models.

Theorem 186
FM propagates fuzziness in quantifiers.

Theorem 187
FM propagates fuzziness in arguments.

Let us recall from Th-171 thatFM is not anFξ-DFS, in particular not anMB-DFS.
Hence the class ofMB-DFSes, which propagate fuzziness in both arguments and quan-
tifiers, does not include all standard models with this property.FM is a counterexample
which demonstrates that the class of standard DFSes which propagate fuzziness both
in quantifiers and arguments is genuinely broader than the class ofMB-models.

Theorem 188
FP propagates fuzziness in quantifiers.
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Theorem 189
FP does not propagate fuzziness in arguments.

Theorem 190
FZ propagates fuzziness in quantifiers.

Theorem 191
FZ does not propagate fuzziness in arguments.

As concernsFR, we obtain the following results.

Theorem 192
FR does not propagate fuzziness in quantifiers.

Theorem 193
FR propagates fuzziness in arguments.

Hence there areFω-DFSes beyondFξ-DFSes that propagate fuzziness in quantifiers,
but not in arguments. In particular, the class of standard models that propagate fuzzi-
ness in quantifiers but not in arguments is genuinely broader than the class ofFξ-DFSes
with this property. I will show later that the class ofFω-DFSes with this property is
still specificity consistent and investigate its least upper specificity bound.

Definition 137
A collectionΩΩ of mappingsΩ ∈ ΩΩ, Ω : K −→ I is calledspecificity consistentif and
only if for all S ∈ K, either{Ω(S) : Ω ∈ K} ⊆ [ 1

2 , 1] or {Ω(S) : Ω ∈ K} ⊆ [0, 1
2 ].

Theorem 194
SupposeΩΩ is a collection of mappingsΩ ∈ ΩΩ, Ω : K −→ I and letF = {FΩ : Ω ∈
ΩΩ} be the corresponding collection of QFMs. ThenF is specificity consistent if and
only if ΩΩ is specificity consistent.

Theorem 195
SupposeΩΩ is a collection of mappingsΩ ∈ ΩΩ, Ω : K −→ I which satisfy(Ω-5), and
let F = {FΩ : Ω ∈ ΩΩ} be the corresponding collection of DFSes. Further suppose
that everyΩ ∈ ΩΩ has the additional property thatΩ(S) = 1

2 for all S ∈ K with
S(0) ∩ [ 1

2 , 1] 6= ∅ andS(0) ∩ [0, 1
2 ] 6= ∅. ThenF is specificity consistent.

Definition 138
We say thatΩ : K −→ I is fuzzier (less crisp) thanΩ′ : K −→ I, in symbols:Ω�c Ω′,
if and only ifΩ(S)�c Ω′(S) for all S ∈ K.

Theorem 196
Let Ω,Ω′ : K −→ I be given mappings and letFΩ, FΩ′ be the corresponding QFMs
defined by Def. 114. ThenFΩ �c FΩ′ if and only ifΩ�c Ω′.
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This criterion for comparing specificity can be further simplified in the frequent case
that some basic assumptions can be made onΩ,Ω′.

Theorem 197
LetΩ,Ω′ : K −→ I be given mappings which satisfy(Ω-2) and(Ω-5). Further suppose
thatΩ(S) = 1

2 = Ω′(S) wheneverS ∈ K hasS(0)∩[ 1
2 , 1] 6= ∅ andS(0)∩[0, 1

2 ] 6= ∅.
ThenΩ�c Ω′ if and only ifΩ(S) ≤ Ω′(S) for all S ∈ K with S(0) ⊆ [ 1

2 , 1].

Similar criteria can be established in the case of mappingsω : L −→ I.

Definition 139
A collectionωω of mappingsω ∈ ωω, ω : L −→ I is called specificity consistent if and
only if for all s ∈ L, either{ω(s) : ω ∈ L} ⊆ [ 1

2 , 1] or {ω(s) : ω ∈ L} ⊆ [0, 1
2 ].

Theorem 198
Supposeωω is a collection of mappingsω ∈ ωω, ω : L −→ I, and letF = {Fω : ω ∈ ωω}
be the corresponding collection of QFMs. ThenF is specificity consistent if and only if
ωω is specificity consistent.

Theorem 199
Supposeωω is a collection of mappingsω ∈ ωω, ω : L −→ I which satisfy(ω-1)–
(ω-4), and letF = {Fω : ω ∈ ωω} be the corresponding collection of DFSes. Further
suppose that everyω ∈ ωω has the additional property thatω(s) = 1

2 for all s ∈ L with
s−1(0) ∩ [ 1

2 , 1] 6= ∅ ands−1(0) ∩ [0, 1
2 ] 6= ∅. ThenF is specificity consistent.

The following theorems show that the above property is possessed both byFω-DFSes
that propagate fuzziness in quantifiers and by those that propagate fuzziness in argu-
ments:

Theorem 200
Letω : L −→ I be a given mapping which satisfies(ω-1)–(ω-4) and suppose that the
corresponding DFSFω propagates fuzziness in quantifiers. Thenω(s) = 1

2 for all
s ∈ L with s−1(0) ∩ [ 1

2 , 1] 6= ∅ ands−1(0) ∩ [0, 1
2 ] 6= ∅.

In particular,

Theorem 201
The collection ofFω-DFSes that propagate fuzziness in quantifiers is specificity con-
sistent.

Theorem 202
Let ω : L −→ I be a given mapping which satisfies(ω-1)–(ω-4) and suppose that
the corresponding DFSFω propagates fuzziness in arguments. Thenω(s) = 1

2 for all
s ∈ L with s−1(0) ∩ [ 1

2 , 1] 6= ∅ ands−1(0) ∩ [0, 1
2 ] 6= ∅.

Therefore
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Theorem 203
The collection ofFω-DFSes that propagate fuzziness in arguments is specificity con-
sistent.

Definition 140
We say thatω : L −→ I is fuzzier (less crisp) thanω′ : L −→ I, in symbols:ω �c ω′,
if and only ifω(s)�c ω′(s) for all s ∈ L.

Theorem 204
Letω, ω′ : L −→ I be given mappings and letFω, Fω′ be the corresponding QFMs
defined by Def. 120. ThenFω �c Fω′ if and only ifω �c ω′.

Again, it is possible to simplify the condition in typical situations.

Theorem 205
Letω, ω′ : L −→ I be given mappings which satisfy(ω-2) and(ω-4). Further suppose
thatω(s) = 1

2 = ω′(s) whenevers ∈ L satisfiess−1(0) ∩ [ 1
2 , 1] 6= ∅ ands−1(0) ∩

[0, 1
2 ] 6= ∅. Thenω �c ω′ if and only ifω(s) ≤ ω′(s) for all s ∈ L with s‡

−1(0) ⊆
[ 1
2 , 1].

The precondition of the theorem is e.g. satisfied by the models that propagate fuzzi-
ness. Based on this simplified criterion, it is now easy to prove the following results
concerning specificity bounds.

Theorem 206
FZ is the most specificFω-DFS that propagates fuzziness in quantifiers.

Theorem 207
FR is the most specificFω-DFS that propagates fuzziness in arguments.

Theorem 208
FM is the most specificFω-DFS that propagates fuzziness both in quantifiers and ar-
guments.

As concerns the issue of identifying the least specific model, we obtain the following
result which confirms the special role ofMU .

Theorem 209
MU is the least specificFω-DFS.

Finally let us consider continuity properties ofFΩ-models. This investigation will
help me to relate the new class of DFSes to its subclass ofFξ-models. To this end, I
introduce the following operation�.
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Definition 141
For all S ∈ K, S� ∈ K is defined by

S�(γ) = [inf S(γ), supS(γ)]

for all γ ∈ I.

Note. It is apparent from Def. 111 that indeedS� ∈ K.

Theorem 210
For all Ω : K −→ I, FΩ is anFξ-QFM if and only ifΩ is �-invariant, i.e.Ω(S) =
Ω(S�) for all S ∈ K.

Utilizing this relationship, the following theorem is straightforward.

Theorem 211
Let Ω : K −→ I be an‡-invariant mapping. IfFΩ is Q-continuous, then it is an
Fξ-QFM, i.e. there existsξ : T −→ I with FΩ = Fξ. In particular, the theorem is
applicable to allFΩ-models.

Hence allFΩ-models that are interesting from a practical perspective are already con-
tained in the class ofFξ-QFMs.

9.9 Chapter summary

Summarizing, this chapter was devoted to the search for a more general type of mod-
els. In order to ensure that the new models subsume the knownFξ-DFSes, which form
the broadest class of standard models developed in the previous chapters, it was con-
sidered best to start from the underlying mechanism that was used to defineξ, and to
pursue an apparent generalization. I hence observed that the mappings>Q,X1,...,Xn

and⊥Q,X1,...,Xn used to defineFξ can be decomposed into subsequent application of
the three-valued cut mechanism (which generates an ambiguity set of alternative inter-
pretations for each cut level) followed by an aggregation step based on the infimum or
supremum. In order to abstract from the concepts used to defineFξ, and to capture
the full class of standard models that depend on three-valued cuts, it was straightfor-
ward to drop thesup/inf-based aggregation step and to start an investigation of those
models that can be defined in terms of the ‘raw’ information obtained at the cut levels,
i.e. in terms of the result setsSQ,X1,...,Xn(γ) which represent the ambiguity range of
all possible interpretations ofQ given the three-valued cuts ofX1, . . . , Xn at the cut
levelsγ. This generalization results in a new class of models genuinely broader than
Fξ-DFSes, thefull class of models definable in terms of three-valued cuts.

In developing the theory of these models, I first identified the precise range of possi-
ble mappingsS = SQ,X1,...,Xn that can result from a choice of quantifierQ and fuzzy
argumentsX1, . . . , Xn. The resulting setK provides the proper domain to define ag-
gregation operatorsΩ : K −→ I, from which QFMs can then be constructed in the
apparent way, i.e.FΩ(Q)(X1, . . . , Xn) = Ω(SQ,X1,...,Xn).
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After introducingFΩ-QFMs, I developed all formal machinery required to express
the precise conditions onΩ that makeFΩ a DFS. In particular, I have characterised
the class ofFΩ-DFSes in terms of a set of necessary and sufficient conditions, and I
have shown that these conditions are independent. This analysis also reveals that all
FΩ-models are in fact standard DFSes, and hence fulfill the expectations on standard
models of fuzzy quantification. In addition, the known class ofFξ-QFMs has been
related to its apparent superclass ofFΩ-QFMs.
I then focused on an apparent subclass ofFΩ-QFMs, the class ofFω-QFMs. These are
obtained by defining coefficientssQ,X1,...,Xn(z) = inf{γ : z ∈ SQ,X1,...,Xn(γ) which
extract an important characteristic of the result setsSQ,X1,...,Xn(γ). Introducing this
construction offers the advantage that we no longer need to work withsetsof results,
as it was the case with theSQ,X1,...,Xn(γ), which are subsets of the unit interval. By
contrast, we can now focus on scalarssQ,X1,...,Xn in the unit range, and a subsequent
aggregation by applying the chosenω : L −→ I. Among other things, this greatly sim-
plifies the definition of models, and hence all examples ofFΩ-DFSes were presented
in this succinct format.
Noticing that the new coefficientssQ,X1,...,Xn are functions ofSQ,X1,...,Xn which sup-
press some of the original information, the question then arises if some of theFΩ-
models are lost under the new construction. To resolve this issue whether theFω-
DFSes form a subclass proper, and to gain some insight into their structure, I have
introduced the concepts required to characterise adequate choices ofω. Building on
these definitions, a set of independent conditions that precisely describe theFω-DFSes
in terms of necessary and sufficient criteria onω has been developed. In addition, the
Fω-QFMs have been related to their superclass ofFΩ-QFMs. This analysis revealed
that the move fromFΩ-QFMs toFω-QFMs does not result in any loss of intended
models, i.e. the classes ofFΩ-DFSes andFω-DFSes coincide.
Turning to examples ofFΩ-DFSes (or synonymously,Fω-DFSes), the simplified for-
mat was utilized to define the fourFω-modelsFM , FP , FZ andFR, all of which were
shown to be ‘genuine’ members which go beyond the class ofFξ-QFMs. In order to
gain more knowledge of these models, and to locate them precisely within the class of
Fω-DFSes, the full set of conditions onΩ andω was then developed, that are required
to investigate the characteristic properties of DFSes.

To this end, I first extended the specificity order to the case ofS �c S′ ands �c s′.
This allowed me to reduceFΩ’s propagating fuzziness in quantifiers to the requirement
thatΩ propagate fuzziness, i.e.S �c S′ entailsΩ(S) �c Ω(S′). Based on a different
relationS b S′ defined onK, it was then possible to define a condition of propagat-
ing unspecificity onΩ, and to prove thatFΩ propagates fuzziness in arguments if and
only if Ω propagates unspecificity. In addition, I have shown that both the condition
of propagating fuzziness and the condition of propagating unspecificity can be further
simplified if the consideredΩ is well-behaved (in particular ifFΩ is a DFS). In this
common case, a very elementary test onΩ is sufficient for detecting or rejecting these
properties. All of these results have also been transferred toFω-QFMs, and hence
turned into corresponding conditions onω. After developing the formal apparatus re-
quired to investigate propagation of fuzziness inFΩ- andFω-QFMs, the issue of most
specific and least specific models was then discussed in some depth. Acknowledging
its relevance to the existence of most specific models, I first extended the notion of
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specificity consistency to collectionsΩΩ of aggregation mappingsΩ and proved that
the resulting criterion onΩΩ precisely captures specificity consistency of the class of
QFMsF = {FΩ : Ω ∈ ΩΩ}. Hence the question whetherF has a least upper speci-
ficity bound can be decided by looking at the aggregation mappings inΩΩ. I have also
shown how the criterion can be simplified in common situations. Following this, the
question was addressed how a specificity comparisonFΩ �c FΩ′ can be reformulated
as a conditionΩ �c Ω′ imposed on the aggregation mappings. Again, the condition
for Ω �c Ω′ can be reduced to a very simple check in many typical situations. All of
the above concepts and theorems were then adapted toFω-QFMs, in order to provide
similar support for specificity comparison in those cases where the models of interest
are defined in terms of an aggregation mappingω.

Based on these preparations, it was easy to prove some results concerning prop-
agation of fuzziness that elucidate the structure of the class ofFω-DFSes, and that
relate the examples ofFω-DFSes to the class as a whole. First of all, the full class of
Fω-DFSes is not specificity consistent (because its subclass ofFξ-DFSes is known to
violate specificity consistency), and hence a ‘most specificFω-DFS’ ceases to exist.
However, the class of models that propagate fuzziness in quantifiers was shown to be
specificity consistent, and the most specificFω-DFS with this property was also identi-
fied, and turned out to beFZ . Recalling thatFZ is not anFξ-QFM, this demonstrates
that the class ofFω-DFSes which propagate fuzziness in quantifiers is an extension
proper of the class ofFξ-DFSes with the same behaviour. Turning to propagation of
fuzziness in quantifiers, it was possible to prove a similar result. The corresponding
class ofFω-models was shown to be specificity consistent, andFR was established
to be the most specificFω-DFS with this property. Again, I conclude from the fact
thatFR is a ‘genuine’Fω-DFS that theFω-DFSes contain models which propagate
fuzziness in arguments beyond those already known from the study ofFξ-DFSes. I
then investigated those standard models that propagate fuzziness both in quantifiers
and arguments. The modelFM was shown to be the most specificFω-DFS with these
properties. The class ofFξ-DFSes that fulfill both conditions is known to coincide
with the class ofMB-DFSes. BecauseFM is not anFξ-DFS, this proves that there are
standard models beyond theMB-type which propagate fuzziness both in quantifiers
and arguments.
The problem of identifying the greatest lower specificity bound has also been ad-
dressed. In fact, the least specificFω-DFS was proven to coincide with one of the
MB-models, namelyMU , which was already known to be the least specificMB- and
Fξ-DFS.

Finally, I have addressed the continuity issue. It is indispensible for applications that
the chosen QFM be robust against slight variations in the chosen quantifier and in its
arguments, which might e.g. result from noise. In addition, both continuity conditions
are desirable in order to account for imperfect knowledge of the precise interpreta-
tion of the involved NL quantifier and NL concepts in terms of numeric membership
grades. Based on an auxiliary filling constructionS�, it was then shown that everyFΩ-
QFM which is continuous in quantifiers is in fact anFξ-QFM. The class ofFω-DFSes
which are Q-continuous therefore collapses into the class ofQ-continuousFξ-DFSes,
and those Q-continuousFω-DFSes which propagate fuzziness in quantifiers and argu-
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ments collapse into the class ofMB-DFSes. This proves that allpractical models are
already contained in the class ofFξ-DFSes, and those practical models which prop-
agate fuzziness both in quantifiers and arguments are contained in the class ofMB-
DFSes. This justifies the development and thorough analysis of these simpler classes
in the previous chapters, because every model of practical interest will belong to one
of these classes. It can hence be expressed through constructions simpler than those
used to defineFΩ- andFω-QFMs, which in turn permit a simpler check of the relevant
formal properties, like being a DFS, propagation of fuzziness, specificity comparisons,
and continuity, and which suggest simple algorithms for implementing quantifiers in
the model.
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10 The class of models based on the extension principle

10.1 Motivation and chapter overview

In this chapter, an attempt is made to define models from independent considerations,
and to establish a new class of fuzzification mechanisms not constructed from three-
valued cuts. Starting from a straightforward definition of argument similarity, I first
introduce the full class of QFMs defined in terms of the similarity measure, the class
of Fψ-QFMs. It encloses the interesting subclass ofFϕ-QFMs, i.e. the class of models
defined through the standard extension principle (which serves to aggregate similar-
ity grades). The necessary and sufficient conditions are then developed, which the
aggregation mappings must satisfy in order to make the corresponding fuzzification
mechanism a DFS. Based on this analysis, it becomes possible to prove the main result
of this chapter, which states that the classes ofFω-DFSes andFψ-DFSes/Fϕ-DFSes
coincide. Because the same class of models is obtained from independent considera-
tions, this provides evidence that it indeed represents a natural class of standard models
of fuzzy quantification.

10.2 A similarity measure on fuzzy arguments

To begin with, the similarity gradeΞY1,...,Yn(X1, . . . , Xn) of the fuzzy arguments
(X1, . . . , Xn) to a choice of crisp arguments(Y1, . . . , Yn) can be defined as follows.

Definition 142
LetE 6= ∅ be some base set andY ∈ P(E). The mappingΞY : P̃(E) −→ I is defined
by

ΞY (X) = min(inf{µX(e) : e ∈ Y }, inf{1− µX(e) : e /∈ Y })

for all X ∈ P̃(E). Forn-tuples of argumentsY1, . . . , Yn ∈ P(E), we defineΞ(n)
Y1,...,Yn

:

P̃(E)
n
−→ I by

Ξ(n)
Y1,...,Yn

(X1, . . . , Xn) =
n
∧
i=1

ΞYi(Xi)

for all X1, . . . , Xn ∈ P̃(E). Whenevern is clear from context, we shall omit the

superscript and writeΞY1,...,Yn(X1, . . . , Xn) instead ofΞ(n)
Y1,...,Yn

(X1, . . . , Xn).

At times, it will be convenient to use the following abbreviation. Let us recall the fuzzy
equivalence connective↔ : I× I −→ I defined by

x↔ y = (x ∧ y) ∨ (¬x ∧ ¬y)

for all x, y ∈ I. In the case thaty ∈ {0, 1}, this apparently becomes

x↔ y =
{
x : y = 1
¬x : y = 0
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Now consider a base setE 6= ∅ and letX ∈ P̃(E), Y ∈ P(E). I make use of the
↔-connective to defineδX,Y : E −→ I by

δX,Y (e) = (µX(e)↔ χY (e)) =
{
µX(e) : e ∈ Y
1− µX(e) : e /∈ Y (112)

for all e ∈ E. In terms ofδY,E , we can now conveniently reformulateΞY (X). In
particular, we can expressΞY1,...,Yn(X1, . . . , Xn), whereX1, . . . , Xn ∈ P̃(E) and
Y1, . . . , Yn ∈ P(E), by

ΞY1,...,Yn(X1, . . . , Xn) = inf{δXi,Yi(e) : e ∈ E, i = 1, . . . , n} . (113)

In order to illustrate the proposed definition of argument similarity, let us now consider
an example, which also profits from the more succinct alternative notation. Hence let
a two-element base setE = {a, b} be given, and suppose thatX ∈ P̃(E) is defined by
µX(a) = 1

3 , µX(b) = 3
4 . Then

Ξ∅(X) = min{δX,∅(a), δX,∅(b)}
= min{1− µX(a), 1− µX(b)}
= min{ 2

3 ,
1
4}

= 1
4

Ξ{a}(X) = min{δX,{a}(a), δX,{a}(b)}
= min{µX(a), 1− µX(b)}
= min{ 1

3 ,
1
4}

= 1
4

Ξ{b}(X) = min{δX,{b}(a), δX,{b}(b)}
= min{1− µX(a), µX(b)}
= min{ 2

3 ,
3
4}

= 2
3

Ξ{a, b}(X) = min{δX,{a, b}(a), δX,{a, b}(b)}
= min{µX(a), µX(b)}
= min{ 1

3 ,
3
4}

= 1
3 .

Next I define the set of all compatibility grades which corresponds to a given choice of
fuzzy argumentsX1, . . . , Xn.

Definition 143
LetE 6= ∅ be a given base set andX1, . . . , Xn ∈ P̃(E), n ≥ 0. ThenD(n)

X1,...,Xn
∈

P(I) is defined by

D
(n)
X1,...,Xn

= {ΞY1,...,Yn(X1, . . . , Xn) : Y1, . . . , Yn ∈ P(E)} .

Whenever this causes no ambiguity, the superscript(n) will be omitted, thus abbrevi-

atingDX1,...,Xn = D
(n)
X1,...,Xn

.
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Note. The superscript is only needed to discernD
(0)
∅

(which corresponds to the empty

tuple) fromD(1)
∅

(which corresponds to the empty set).

Definition 144
ByD ⊆ P(P(I)) we denote the set of allD ∈ P(I) with the following properties:

1. D ∩ [ 1
2 , 1] = {r+} for somer+ = r+(D) ∈ [ 1

2 , 1];

2. for allD′ ⊆ D withD′ 6= ∅, inf D′ ∈ D;

3. if r+ > 1
2 , thensupD \ {r+} = 1− r+.

Theorem 212
SupposeE 6= ∅ is some base set andX1, . . . , Xn ∈ P̃(E) are fuzzy subsets ofE.
ThenDX1,...,Xn ∈ D.

HenceD is large enough to contain allDX1,...,Xn . As we shall see later in Th-215,D
is indeed the smallest possible subset ofP(P(I)) which contains allDX1,...,Xn . (The
theorem has been delayed because it then becomes a corollary).

10.3 The unrestricted class of Fψ-QFMs

In order to define the new class of fuzzification mechanisms, I now relate the similarity
information expressed byΞY1,...,Yn(X1, . . . , Xn) to the behaviour of a quantifier on
its arguments.

Definition 145
LetQ : P(E)n −→ I be a given semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E). Then

A
(n)
Q,X1,...,Xn

: I −→ P(I) is defined by

A
(n)
Q,X1,...,Xn

(z) = {ΞY1,...,Yn(X1, . . . , Xn) : (Y1, . . . , Yn) ∈ Q−1(z)}

for all z ∈ I. Whenn is clear from context, I usually omit the superscript(n), thus

abbreviatingAQ,X1,...,Xn = A
(n)
Q,X1,...,Xn

.

Note. Again, the superscript is only needed to eliminate the ambiguity betweenA
(0)
Q,∅,

whereQ is a nullary quantifier and∅ the empty tuple, andA(1)
Q,∅, whereQ is a one-

place quantifier and∅ is the empty argument set.
Next I will describe the range of all possibleAQ,X1,...,Xn .

Definition 146
ByA we denote the set of all mappingsA : I −→ P(I) with the following properties:

a. ∪{A(z) : z ∈ I} ∈ D;

b. for all z, z′ ∈ I, supA(z) > 1
2 andsupA(z′) > 1

2 entails thatz = z′.
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In the following,D(A) denotes the set

D(A) = ∪{A(z) : z ∈ I} . (114)

In addition,r+ abbreviatesr+(A) = r+(D(A)). It is then apparent from Def. 146.a
and Def. 144 that there existsz+ = z+(A) ∈ I with

r+ ∈ A(z+) . (115)

In the following,z+ is assumed to be an arbitrary but fixed choice ofz+ ∈ I which
satisfies (115) for a consideredA ∈ A.

Theorem 213
SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E). Then
AQ,X1,...,Xn ∈ A.

HenceA contains allAQ,X1,...,Xn .

Theorem 214
LetA ∈ A be given andD(A) = ∪{A(z) : z ∈ I}.

a. If D(A) = {1}, thenA = A
(0)
Q,∅, whereQ : P({∗})0 −→ I is the constant

quantifierQ(∅) = z+.

b. IfD(A) 6= {1}, then we can choose some mappingζ : D(A) −→ I with

r ∈ A(ζ(r)) (116)

for all r ∈ D(A). If r+ = r+(A) equals1
2 , thenr+ ∈ D(A) ∩ [0, 1 − r+]. If

r+ > 1
2 , then we recall from Def. 146 thatsupD(A) \ {r+} = 1− r+. Because

D(A) 6= {1} by assumption, we hence know that there exists

r− ∈ D(A) ∩ [0, 1− r+] (117)

and we shall assume an arbitrary choice ofr− with this property. Based onr−,
we defineX ∈ P̃(I× I) by

µX(z, r) =


r : r ∈ A(z) \ {r+}
r− : r /∈ A(z) ∨ r = r+ > 1

2
1
2 : r = r+ = 1

2

(118)

for all z, r ∈ I. For all Y ∈ P(I× I), we abbreviate

r′ = r′(Y ) = ΞY (X) (119)

z′ = z′(Y ) = inf{z ∈ I : (z, r′) ∈ Y andr′ = r′(Y ) ∈ A(z)} . (120)

Based onζ, we defineQ : P(I× I) −→ I by

Q(Y ) =
{
z′ : r′ ∈ A(z′)
ζ(r′) : r′ /∈ A(z′) (121)

for all Y ∈ P(I× I).
ThenA = AQ,X .
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We also obtain the following corollary concerningD:

Theorem 215
For all D ∈ D,

a. IfD = {1}, thenD = D
(0)
∅

, where∅ is the empty tuple∅ ∈ P({∗})0.

b. IfD 6= {1}, then there existsX ∈ P̃(I× I) such thatD = DX .

HenceD is indeed the smallest subset ofP(P(I)) which contains allDX1,...,Xn .
In order to carry out the desired aggregation, which will turn the compatibility grades
into a fuzzification mechanism, I now deploy mappingsψ : A −→ I. These can be
used to define a QFM in the apparent way, by composing with theAQ,X1,...,Xn ’s:

Definition 147
Letψ : A −→ I be given. The QFMFψ is defined by

Fψ(Q)(X1, . . . , Xn) = ψ(AQ,X1,...,Xn)

for all semi-fuzzy quantifiersQ : P(E)n −→ I and allX1, . . . , Xn ∈ P̃(E).

This definition spans the full class of QFMs definable in terms of argument similarity,
and I will now investigate its well-behaved models.

10.4 Characterisation of the Fψ-models

Let us now tackle the goal of characterising the class ofFψ-DFSes, by making ex-
plicit the structure of all plausible models. To this end, we need some more notation,
for expressing the properties expected from legal choices ofψ. As usual, the goal is
that of characterising the new class of models in terms of the necessary and sufficient
conditions on the aggregation mapping. In order to describe the desired monotonicity
properties, I first define a suitable preorder onA.

Definition 148
For all A,A′ ∈ A, we say thatA v A′ if and only if the following conditions are
satisfied byA,A′.

a. for all z ∈ I and all r ∈ A(z), there existsz′ ≥ z with r ∈ A′(z′);

b. for all z′ ∈ I and all r ∈ A′(z′), there existsz ≤ z′ with r ∈ A(z).

Next I introduce a ‘cut/fill operator’� onA. The invariance ofψ with respect to�
turned out to be essential forψ to satisfy (Z-4).

Definition 149
For all A ∈ A,�A ∈ A is defined by

�A(z) = [0, �̂A(z)] , (122)
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where

�̂A(z) = min(supA(z), 1
2 ) (123)

for all z ∈ I.

Notes

• It is immediate from the definition of�A that�A ∈ A, see Def. 146.

• For every semi-fuzzy quantifierQ : P(E)n −→ I and allX1, . . . , Xn ∈ P̃(E),
I abbreviate

�Q,X1,...,Xn = �AQ,X1,...,Xn (124)

�̂Q,X1,...,Xn = �̂AQ,X1,...,Xn . (125)

• In the above definition,̂� has been used to express�. In fact, both are definable
in terms of each other, because conversely

�̂A(z) = sup�A(z) , (126)

for all A ∈ A andz ∈ I.

The cut/fill operator� is of special relevance to the characterisation ofFψ-DFSes
because�-invariance ensures that (Z-6) be valid.
In order to define the conditions onψ succinctly and to support the corresponding
proofs, it is useful to introduce some additional abbreviations. For allA ∈ A,

NV(A) = {z ∈ I : A(z) 6= ∅} (127)

VL(A) = {z ∈ I : A(z) \ {0} 6= ∅} = {z ∈ I : A(z) ∩ (0, 1] 6= ∅} . (128)

I have now introduced all notation required to express the conditions on admissible
choices ofψ.

Definition 150 Letψ : A −→ I be given. The conditions(ψ-1)–(ψ-5) are defined as
follows. For allA,A′ ∈ A,

If D(A) = {1}, thenψ(A) = z+. (ψ-1)

If A(z) = A′(1− z) for all z ∈ I, thenψ(A) = 1− ψ(A′). (ψ-2)

If NV(A) ⊆ {0, 1} andr+ ∈ A(1),
thenψ(A) = 1− supA(0). (ψ-3)

If A v A′, thenψ(A) ≤ ψ(A′). (ψ-4)

ψ(�A) = ψ(A). (ψ-5)

274



Let us first notice that the above set of conditions indeed captures the essential require-
ments onψ which ensure thatFψ be a DFS. This is straightforward from the following
observation on the behaviour ofψ on two-valued quantifiers.

Theorem 216
If ψ : A −→ I satisfies(ψ-2) and (ψ-3), thenFψ coincides with all standard DFSes
on two-valued quantifiers, i.e. for every standard DFSF and two-valued quantifier
Q : P(E)n −→ {0, 1}, it holds thatFψ(Q) = F(Q).

Based on this theorem, it is then easy to prove the following result.

Theorem 217
The conditions(ψ-1)–(ψ-5) onψ : A −→ I are sufficient forFψ to be a standard DFS.

The converse claim is also true, i.e. it can be shown that the underlying mappingψ :
A −→ I satisfies (ψ-1)–(ψ-5) wheneverFψ is a DFS.

Theorem 218
The conditions(ψ-1)–(ψ-5) onψ : A −→ I are necessary forFψ to be a DFS.

In addition, the system of conditions (ψ-1)–(ψ-5) is known to be minimal in the sense
that none of the conditions can be expressed in terms of the remaining ones:

Theorem 219
The conditions(ψ-1)–(ψ-5) are independent.

This condition warrants that there is no redundant effort in proofs that a considered
ψ : A −→ I makesFψ a standard DFS.

10.5 The classes of Fψ-models and Fω-models coincide

Let us now establish the central result of this chapter, that the new class ofFψ-DFSes
coincides with the full class of models definable in terms of three-valued cuts, i.e. the
class ofFΩ- or synonymously,Fω-DFSes. It is here that we need the construction
of Fω-QFMs, which provides the link between the models defined in terms of three-
valued cuts and those defined in terms of argument similarity. To this end, let us now
see howAQ,X1,...,Xn relates to the coefficientsQ,X1,...,Xn that was used to defineFω-
QFMs.

Theorem 220
LetQ : P(E)n −→ I be a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E). Then for all
z ∈ I,

sQ,X1,...,Xn(z) = s(AQ,X1,...,Xn)(z) ,

275



wheres(A) ∈ L,A ∈ A is defined by

s(A)(z) = max(0, 1− 2 · supA(z)) (129)

for all z ∈ I.

As a by-product of this result, we now discover that allFω-QFMs are in factFψ-
QFMs. In particular, allFΩ- andFω-DFSes constitute a subclass of the new class of
Fψ-models.

Theorem 221
EveryFω-QFM is anFψ-QFM, i.e. for allω : L −→ I, there existsψ : A −→ I with
Fω = Fψ. ψ is defined by

ψ(A) = ω(s(A)) (130)

for all A ∈ A.

As to the converse subsumption, let us recall from Th-218 that every choice ofψ which
makesFψ a DFS satisfies (ψ-5). As I will now show, this entails that the unrestricted
class ofFψ-QFMS, although considerably broader than the class ofFω-QFMs, does
not introduce any new DFSes compared to those that already belong to the class of
Fω-DFSes. To see this, let us notice the following relationship betweens(A) and�̂A.

Theorem 222
LetA ∈ A be given. Then

�̂A(z) = 1
2 −

1
2s(A)(z) (131)

and

s(A)(z) = 1− 2�̂A(z) , (132)

for all z ∈ I.

Based on this relationship, it is then apparent that all�-invariantFψ-QFMs are in fact
Fω-QFMs.

Theorem 223
Suppose thatψ : A −→ I satisfies(ψ-5). ThenFψ is anFω-QFM, i.e.

Fψ = Fω

provided we define

ω(s) = ψ(As), (133)

for all s ∈ L, where

As(z) = [0, 1
2 −

1
2s(z)] (134)

for all z ∈ I. In particular, allFψ-DFSes areFω-DFSes.
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The next theorem characterizes the precise subclass ofFψ-QFMs that can be repre-
sented asFω-QFMs.

Theorem 224
TheFω-QFMs are exactly thoseFψ-QFMs that depend on a mappingψ : A −→ I
which satisfies(ψ-5).

Note. Compared to the previous theorem, this demonstrates thatonly thoseFψ-QFMs
can be represented asFω-QFMs, that are defined from�-invariant choices ofψ.
In the following, I will hence assume that (ψ-5) be valid. It is then easily shown how
the conditions (ω-1)–(ω-4) imposed onω relate to the conditions (ψ-1)–(ψ-5) imposed
on the correspondingψ. These dependencies are made explicit in the next theorem.

Theorem 225
Letω : L −→ I be given and suppose thatψ : A −→ I is defined by(130). Then

a. ω satisfies(ω-1) if and only ifψ satisfies(ψ-1)

b. ω satisfies(ω-2) if and only ifψ satisfies(ψ-2);

c. ω satisfies(ω-3) if and only ifψ satisfies(ψ-3);

d. ω satisfies(ω-4) if and only ifψ satisfies(ψ-4);

e. ψ satisfies(ψ-5).

Note. The theorem was of invaluable help for proving Th-219, by reducing the inde-
pendence proof of the new set of ‘ψ-conditions’ to the known theorem on the indepen-
dence of the ‘ω-conditions’.

10.6 The unrestricted class of Fϕ-QFMs

In the following, I will discuss a slight reformulation of the aggregation mechanism
which shows that theFψ-DFSes coincide with the models defined in terms of the stan-
dard extension principle. The discovered class of models is hence theoretically appeal-
ing, because it evolves from the fundamental principle that underlies fuzzy set theory.
In order to define the class of those QFMs that depend on the extension principle, let
us consider the following basic construction.

Definition 151
For all A ∈ A, we denote byfA : I −→ I the mapping defined by

fA(z) = supA(z)

for all z ∈ I.
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It is apparent from (123) that

�̂A(z) = min(fA(z), 1
2 ) , (135)

for all A ∈ A andz ∈ I. In addition, it is obvious from Def. 149 that�A can be
defined in terms offA, i.e. there existsg such that�A = g(fA) for all A ∈ A. In turn,
I conclude that everyψ which makesFψ a DFS, can be defined in terms offA because
every suchψ is �-invariant by Th-218, and henceψ(A) = ψ(�A) = ψ(g(fA)). In
other words, we do not lose any models of interest if we restrict attention to those
QFMs that are a function offA. (The precise relationship between the resulting classes
of models will later be described in Th-228 and Th-229).
I now introduce the constructions necessary to define the new class of QFMs.

Definition 152
Consider a semi-fuzzy quantifierQ : P(E)n −→ I and a choice of fuzzy argument sets

X1, . . . , Xn ∈ P̃(E). ByfQ,X1,...,Xn = f
(n)
Q,X1,...,Xn

: I −→ I we denote the mapping
defined by

fQ,X1,...,Xn = fAQ,X1,...,Xn
,

i.e.

fQ,X1,...,Xn(z) = supAQ,X1,...,Xn(z)

for all z ∈ I.

Notes

• Again, the superscript(n) in f (n)
Q,X1,...,Xn

is usually omitted when no ambiguity
arises.

• fQ,X1,...,Xn(z) expresses a measure of the maximal similarity of(X1, . . . , Xn)
to those(Y1, . . . , Yn) ∈ P(E)n which are mapped toQ(Y1, . . . , Yn) = z.

Next I describe the range of all possiblefA.

Definition 153
By X ∈ P(II) we denote the set of all mappingsf : I −→ I with the following
properties:

a. Im f ∩ [ 1
2 , 1] = {r+} for somer+ = r+(f) ≥ 1

2 ;

b. If z+ = z+(f) ∈ I is chosen such thatf(z+) = r+, thenf(z) ≤ 1− r+ for all
z 6= z+.

Theorem 226
For all A ∈ A, fA ∈ X. In particular, if Q : P(E)n is a semi-fuzzy quantifier and
X1, . . . , Xn ∈ P̃(E), thenfQ,X1,...,Xn ∈ X.
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Theorem 227
For all f ∈ X, there existsA ∈ A with f = fA. In particular, there existQ :
P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) with f = fQ,X1,...,Xn .

HenceX is indeed the range of all possiblefA andfQ,X1,...,Xn . We can therefore define
the class of QFMs computable fromfQ,X1,...,Xn , calledFϕ-QFMs, in the apparent
way.

Definition 154
Letϕ : X −→ I be given. The QFMFϕ is defined by

Fϕ(Q)(X1, . . . , Xn) = ϕ(fQ,X1,...,Xn) ,

for all semi-fuzzy quantifiersQ : P(E)n −→ I and all fuzzy argumentsX1, . . . , Xn ∈
P̃(E).

TheFϕ-QFMs comprise the class of those fuzzification mechanisms which can be de-
fined from the argument similarity grades by applying the extension principle. This is
becausefQ,X1,...,Xn is obtained from the standard extension principle in the following
way. We start from a semi-fuzzy quantifierQ : P(E)n −→ I. By applying the exten-

sion principle, we obtain̂̂Q : P̃(P(E)) −→ P̃(I). Hence for a givenV ∈ P̃(P(E)),
ˆ̂
Q(V ) ∈ P̃(I) is the fuzzy subset defined by

µ ˆ̂
Q(V )

(z) = sup{µV (Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Q−1(z)}

for all z ∈ I, see Def. 21. Given a choice of fuzzy argumentsX1, . . . , Xn ∈ P̃(E), we
now expressV = VX1,...,Xn in terms of argument similarity, viz

µV (Y1, . . . , Yn) = ΞY1,...,Yn(X1, . . . , Xn) ,

for all Y1, . . . , Yn ∈ P(E). It is then apparent from Def. 152 that

fQ,X1,...,Xn(z) = µ ˆ̂
Q(V )

(z)

for all z ∈ I. BecauseV = VX1,...,Xn represents argument similarity,̂̂Q is obtained
from Q by applying the standard extension principle,fQ,X1,...,Xn is defined by com-

posing ˆ̂
Q andVX1,...,Xn , andFϕ(Q)(X1, . . . , Xn) = ϕ(fQ,X1,...,Xn) is a function of

fQ,X1,...,Xn , this proves the claim that everyFϕ is defined from the argument similar-
ity grades by applying the extension principle. Noticing that no additional assumptions
were made in definingfQ,X1,...,Xn , which merely composes similarity assessment and

the extended̂̂Q, this demonstrates that theFϕ-QFMs are precisely the QFMs definable
in terms of argument similarity and the standard extension principle. TheFϕ-QFMs
hence constitute an interesting class of fuzzification mechanisms.
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10.7 The classes of Fϕ-models and Fψ-models coincide

Before going into the details of the new class of models, and disclosing the structure of
its well-behaved models, let us first make two observations, which establish the precise
relationship betweenFϕ-QFMs and their apparent superclass ofFψ-QFMs.

Theorem 228
All Fϕ-QFMs areFψ-QFMs, i.e.Fϕ = Fψ, provided thatψ : A −→ I is defined in
dependence onϕ : X −→ I by

ψ(A) = ϕ(fA) , (136)

for all A ∈ A.

Conversely,

Theorem 229
Suppose thatψ : A −→ I satisfies(ψ-5). ThenFψ = Fϕ, whereϕ : X −→ I is
defined by

ϕ(f) = ψ(Af ) , (137)

for all f ∈ X, and

Af (z) =

{
[0, f(z)] : f(z) ≤ 1

2

[0, 1− f(z)] ∪ {f(z)} : f(z) > 1
2

(138)

for all z ∈ I.

These relationships are straightforward from the structure of the involved base con-
structions, and my earlier remark on equality (135). Recalling that from Th-218 that
the condition (ψ-5) is necessary forFψ to be a DFS, this substantiates that the two
classes ofFϕ-DFSes andFψ-DFSes indeed coincide, and merely provide different
views on the models definable in terms of the extension principle.

10.8 Characterisation of the Fϕ-models

I now impose a number of conditions on admissable choices ofϕ. Firstly let us define
a pre-eorder onX, again needed to express a monotonicity condition.

Definition 155
For all f, f ′ ∈ X, we writef v f ′ if and only if the following conditions are satisfied
for f, f ′.

a. for all z ∈ I, sup{f ′(z′) : z′ ≥ z} ≥ f(z);

b. for all z′ ∈ I, sup{f(z) : z ≤ z′} ≥ f ′(z′).
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We can now state the conditions that must be obeyed byϕ in order to makeFϕ a DFS.

Definition 156 Letϕ : X −→ I be given. The conditions(ϕ-1)–(ϕ-5) are defined as
follows. For allf, f ′ ∈ X,

If f−1((0, 1]) = {z+} andf(z+) = 1, then thenϕ(f) = z+. (ϕ-1)

If f ′(z) = f(1− z) for all z ∈ I, thenϕ(f ′) = 1− ϕ(f). (ϕ-2)

If f−1((0, 1]) ⊆ {0, 1} andf(1) ≥ 1
2 ,

thenϕ(f) = 1− f(0). (ϕ-3)

If f v f ′, thenϕ(f) ≤ ϕ(f ′). (ϕ-4)

If f ′(z) = min(f(z), 1
2 ) for all z ∈ I, thenϕ(f ′) = ϕ(f). (ϕ-5)

The proof that these conditions describe precisely the intended class of models, be-
comes feasible once we notice the close relationship between the ‘ϕ-conditions’ and
corresponding ‘ψ-conditions’.

Theorem 230
Letϕ : X −→ I be given and suppose thatψ : A −→ I is defined by(136). Then

a. ϕ satisfies(ϕ-1) if and only ifψ satisfies(ψ-1);

b. ϕ satisfies(ϕ-2) if and only ifψ satisfies(ψ-2);

c. ϕ satisfies(ϕ-3) if and only ifψ satisfies(ψ-3);

d. ϕ satisfies(ϕ-4) if and only ifψ satisfies(ψ-4);

e. ϕ satisfies(ϕ-5) if and only ifψ satisfies(ψ-5).

The following theorems are then straightforward from the previous results onFψ-
QFMs:

Theorem 231
If ϕ : X −→ I satisfies(ϕ-1)–(ϕ-5), thenFϕ is a standard DFS.

Theorem 232
Considerϕ : X −→ I. If Fϕ is a DFS, thenϕ satisfies(ϕ-1)–(ϕ-5).

Theorem 233
The conditions(ϕ-1)–(ϕ-5) are independent.

10.9 An alternative measure of argument similarity

In [46, pp. 66-78], I have made a first attempt to define DFSes in terms of the extension
principle. The construction of these models was motivated by the fuzzification mech-
anism which Gaines [44] proposed as a ‘foundation of fuzzy reasoning’. This basic
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mechanism was then fitted to the purpose of defining DFSes. Because the resulting
approach also relies on the extension principle, but utilizes a different notion of ar-
gument compatibility, the question arises how this ‘Gainesian approach’ relates to the
Fϕ-QFMs defined in terms of the extension principle. In order to answer this question,
I recall some concepts needed to define the new models.
First let us define the compatibilityθ(x, y) of a gradual truth valuex ∈ I with a crisp
truth valuey ∈ 2 = {0, 1}.

Definition 157
θ : I× 2 −→ I is defined by

θ(x, y) =


2x : x ≤ 1

2 , y = 1
2− 2x : x ≥ 1

2 , y = 0
1 : else

for all x ∈ I, y ∈ {0, 1}.

Hence a gradual truth valuex ≤ 1
2 is considered fully compatible with ‘false’ (y = 0),

but only gradually compatible with ‘true’ (y = 1), and a gradual truth valuex′ ≥ 1
2

is considered fully compatible with ‘true’ (y = 1), but only gradually compatible with
‘false’ (y = 0). θ can be applied to compare membership gradesµX(e) (X ∈ P̃(E) a
fuzzy subset ofE) with ‘crisp’ membership valuesχY (e) (i.e. ‘Is e ∈ Y ?’, Y ∈ P(E)
crisp), wheree ∈ E is some element of the universe. This suggests the following
definition of the compatibilityΘ(X, Y ) of a fuzzy subsetX ∈ P̃(E) with a crisp
subsetY ∈ P(E).

Definition 158
LetE be a nonempty set. The mappingΘ = ΘE : P̃(E)× P(E) −→ I is defined by

Θ(X, Y ) = inf{θ(µX(e), χY (e)) : e ∈ E} ,

for all X ∈ P̃(E), Y ∈ P(E).

Notes

• The compatibilityΘ(X, Y ) of a fuzzy setX ∈ P̃(E) with a crisp setY ∈ P(E)
is therefore the minimal degree of element-wise compatibility of the membership
function ofX and the characteristic function ofY .

• To present an example, let us reconsider the two-element base setE = {a, b},
and again suppose thatX ∈ P̃(E) is defined byµX(a) = 1

3 , µX(b) = 3
4 . In this
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case, the compatibility grades become

Θ(X, ∅) = min{θ(µX(a), χ∅(a)), θ(µX(b), χ∅(b))}
= min{θ( 1

3 , 0), θ( 3
4 , 0)}

= min{1, 1
2}

= 1
2

Θ(X, {a}) = min{θ( 1
3 , 1), θ( 3

4 , 0)}
= min{1, 1

2}
= 1

2

Θ(X, {b}) = min{θ( 1
3 , 0), θ( 3

4 , 1)}
= min{1, 1}
= 1

Θ(X, {a, b}) = min{θ( 1
3 , 1), θ( 3

4 , 1)}
= min{ 2

3 , 1}
= 2

3 .

Based onΘ(X, Y ), I now defineQ̃z(X1, . . . , Xn), the compatibility ofQ : P(E)n −→
I to the gradual truth valuez ∈ I, given a choice(X1, . . . , Xn) ∈ P̃(E)

n
of fuzzy ar-

gument sets.

Definition 159
SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier andz ∈ I. The fuzzy quantifier

Q̃z : P̃(E)
n
−→ I is defined by

Q̃z(X1, . . . , Xn) = sup{
n

min
i=1

Θ(Xi, Yi) : Y = (Y1, . . . , Yn) ∈ Q−1(z)} ,

for all (X1, . . . , Xn) ∈ P̃(E)
n
.

In [46, p. 71], I have argued that the fuzzification mechanism proposed by Gaines can
naturally be expressed in terms of̃Qz. In addition, three examples were developed
which illustrate how DFSes can be defined from(Q̃z(X1, . . . , Xn))z∈I. However,
these models have subsequently been shown to beMB-DFSes. The next theorem es-
tablishes that all such models, which are defined as a function of(Q̃z(X1, . . . , Xn))z∈I,
are in factFϕ-DFSes:

Theorem 234
Consider a QFMF . Then the following statements are equivalent:

a. F is anFϕ-QFM which satisfies(ϕ-5);

b. F is a function of the coefficients̃Qz(X1, . . . , Xn).

283



Hence the QFMs defined in terms ofQ̃z are exactly theFϕ-QFMs which satisfy (ϕ-5).
I conclude from Th-232 that the ‘Gainesian’ models defined in terms ofQ̃z coincide
with the models defined in terms of the extension principle, i.e. with theFϕ-DFSes.

10.10 Chapter summary

To sum up, this chapter has introduced a different construction of QFMs and developed
the corresponding theory, in order to span a new class of models which is interesting
for theoretical investigation because of its motivation from independent considerations.
This departure from the three-valued cut scheme was necessary because this scheme
has now been fully exploited by the introduction ofFΩ-QFMs. The modelsG, G∗
andG∗ defined in a previous publication on DFS theory [46] represent an earlier effort
to accomplish the intended departure, which was inspired by the fuzzification mecha-
nism proposed by Gaines [44]. These models, though, were subsequently shown to be
MB-DFSes, and no systematic attempt was made to extract the mechanism underlying
these models and to develop a general class of models. In principle, the ‘Gainesian’
fuzzification mechanism is a good point of departure, due to its foundation in the ex-
tension principle of fuzzy set theory. However, the assumed compatibility measure (of
a gradual to a crisp truth value; of a fuzzy subset to a crisp set) was considered some-
what awkward, and raised some concerns that the required definitions and theorems
would become more complicated than necessary, to capture the target class of stan-
dard models. Consequently, I started by defining a simpler measure which quantizes
the similarity of fuzzy subsets to given crisp setsΞY (X), and corresponding tuples of
argumentsΞY1,...,Yn(X1, . . . , Xn). It was then necessary to introduce the set of simi-
larity gradesDX1,...,Xn that are generated from a choice of fuzzy subsetsX1, . . . , Xn

under the similarity measure, and to characterize its range of possible values,D. After
that, the key construction was introduced, which to each potential quantification re-
sult assigns the set of similarity gradesAQ,X1,...,Xn(z), which are generated by those
choices of crispY1, . . . , Yn with Q(Y1, . . . , Yn) = z. After characterising the rangeA
of possibleAQ,X1,...,Xn , the class of QFMs definable in terms of argument similarity
was introduced in the apparent way, based on aggregation mappingsψ : A −→ I.
In order to express properties of the mappingsψ that are of relevance to the resulting
QFMsFψ, the required concepts were then developed, and subsequently applied to
analyse the precise conditions onψ under which the resulting QFMFψ becomes a
DFS. The proposed system of conditions (ψ-1)–(ψ-5) was shown to be necessary and
sufficient forFψ to be a DFS, and allFψ-DFSes were proven to be standard models.
In addition the independence of the criteria was established. Next I turned to the issue
of relating the new class ofFψ-DFSes to the known class ofFΩ/Fω-DFSes. It came
as a surprise that everyFψ-DFS is in fact anFω-DFS (and vice versa), i.e. the class
of Fψ-DFSes coincides with the class ofFω-DFSes. Noticing that the two classes of
models arose from constructions which are conceptually very different and motivated
independently, this finding confirms that theFω-DFSes (or synonymously,Fψ-DFSes)
form a natural class of standard models of fuzzy quantification, that might even com-
prise the full class of standard DFSes. The latter hypothesis calls for the development
of analytic tools for a deeper investigation of these models, in order to locate their
precise place within the standard models.
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The remainder of the chapter was concerned with the class of models defined in
terms of the extension principle. To this end, a mappingfA was derived from each
A ∈ A. By composing these mappings withAQ,X1,...,Xn I defined the new base con-
struction, that offQ,X1,...,Xn . For each potential quantification resultz, fQ,X1,...,Xn(z)
expressed the maximum similarity of the fuzzy argumentsX1, . . . , Xn to a choice of
crisp argumentsY1, . . . , Yn ∈ P̃(E) subject to the condition thatQ(Y1, . . . , Yn) = z.
Next the setX was introduced and shown to describe precisely the set of those map-
pingsf that occur asf = fQ,X1,...,Xn for a choice ofQ andX1, . . . , Xn. HenceX
is the proper domain of aggregation operatorsϕ : X −→ I which span the new class
of Fϕ-QFMs in the usual way, i.e.Fϕ(Q)(X1, . . . , Xn) = ϕ(fQ,X1,...,Xn). I have
explained that the resulting fuzzification mechanisms are exactly the QFMs definable
in terms of the standard extension principle, which is applied to the similarity grades
obtained for the arguments of the quantifier. The move from the base construction
AQ,X1,...,Xn to the new constructionfQ,X1,...,Xn means a great simplification because
we now deal with a single scalarfQ,X1,...,Xn(z) in the unit range, rather than sets of
such scalarsAQ,X1,...,Xn(z). It is hence worthwhile studying this subclass of models
and elucidating their structure, although no new DFSes are introduced compared to the
full class ofFψ-DFSes. Interestingly, the converse is also true, and in fact no mod-
els arelost when restricting attention to the subclass ofFϕ-DFSes. This is because
everyFψ-DFS is known to satisfy (ψ-5), which entails thatψ(A) can be computed
from fA, which underlies the definition ofFϕ-QFMs. It is hence of particular interest
to develop conditions that fit this simpler presentation ofFψ-DFSes, which is offered
by fQ,X1,...,Xn and aggregation mappingsϕ. Due to the close relationship between
AQ,X1,...,Xn and the derivedfQ,X1,...,Xn , the precise conditions onϕ which makeFϕ
a DFS are apparent from the corresponding conditions (ψ-1)–(ψ-5) imposed onψ. By
adapting these conditions, it was easy to obtain a set of necessary and sufficient condi-
tions (ϕ-1)–(ϕ-5) imposed onϕ, and to prove that these conditions are independent.

Finally I have reviewed the fuzzification mechanism proposed by Gaines [44] and its
reformulation as a base construction for QFMs proposed in [46]. In the course of this
investigation, it was proven that all of the resulting QFMs areFϕ-QFMs and hence
definable in terms of argument similarity and the extension principle. Conversely, all
‘reasonable’ choices ofFϕ whereϕ satisfies at least (ϕ-5), can be expressed as ‘Gaine-
sian’ QFMs, and hence be reduced to a mechanism claimed to provide a ‘foundation
of fuzzy reasoning’ [44].

285



286



11 Implementation of quantifiers in the models

11.1 Motivation and chapter overview

The theory of fuzzy quantification presented in this sequel rests on a strict separation
of semantical aspects and computational considerations. In the previous chapters, this
strategy has proven itself invaluable for developing a general interpretation framework
and formalizing the notion of plausible models. A subsequent investigation of various
constructive principles then resulted in the identification of concrete classes of such
models. These theoretical advances will only be useful in practice, if we succeed in
implementing the resulting models. In order to close the gap between the proposed
formal analysis and practical applications, I will now describe the required algorithms
for evaluating expressionsF(Q)(X1, . . . , Xn), whereF is the model of fuzzy quan-
tification,Q : P(E)n −→ I is the quantifier of interest, andX1, . . . , Xn ∈ P̃(E) is a
choice of fuzzy arguments. I will focus only on models suited for real-world use; there
is no point covering models of mere theoretical interest. Specifically, every practical
model will be supposed to show a certain insensitivity against small changes in the
data. In formal terms, then, the model must be both Q-continuous and arg-continuous,
see Def. 63 and Def. 64. Some of the models introduced in Chap. 7-10 fall short of
these robustness criteria, i.e. these models do not qualify as candidates for implemen-
tation. In particular, we need not consider any models beyond theFξ-type, recalling
from Th-211 that it includes all known ‘practical’ models. In this chapter, we will
hence be concerned with the implementation ofFξ-DFSes only. Due to the diversity
of this type of models, it is not possible to devise a ‘generic’ implementation which fits
all examples. By contrast, I will present various techniques which are useful building-
blocks for implementing arbitraryFξ-models. These techniques are concerned with
common patterns found in allFξ-DFSes. For example, consider the joint constructive
principle underlying these models, i.e. the quantification result is always computed by
applying an aggregation mappingξ to the upper and lower bounds>Q,X1,...,Xn and
⊥Q,X1,...,Xn . The development of algorithms for computing these upper and lower
bounds, then, is of obvious utility to the implementation of arbitraryFξ-models. Due
to its focus on implementation, efficiency considerations will play an important part in
this chapter. Quite frequently, the description of a general solution will be followed
by discussions of special cases which aim at performance improvements in the most
relevant situations. In particular, I will present variants of the algorithms optimized for
floating-point and integer arithmetics, in order to suit the demands of different types of
applications. The prototypical modelsFCh,M andMCX will serve to demonstrate
the utility of the proposed methods. They will also be used to explain how the available
components can be combined into complete implementations.

The chapter is organized as follows. I start with a discussion of simple two-valued
quantifiers, which share the same interpretation across all standard models. These
quantifiers can be expressed in terms of the membership grades of the arguments and
the connectivesmin, max and¬. I will also consider a few quantifiers of mathemati-
cal rather than linguistic interest, which compare two fuzzy sets by cardinality, which
assess their degree of being equal, etc. Another interesting type are unary quanti-
fiers on finite base sets (no longer required to be two-valued). My discussion of these
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quantifiers will reveal an important relationship between quantitativity and cardinality
assessments. A similar analysis is then pursued for the modelMCX , which reduces
fuzzy one-place quantification to calculations based on a measure of fuzzy cardinal-
ity. This analysis will be useful, among other things, to establish the interpretation of
quantifiers like “between ten and twenty” or “exactly five” in the standard models.
Having considered these basic examples, I then set out to develop algorithms for more
complex quantifiers, in order to cover all cases of linguistic significance. To this end, I
first show how the mappings>Q,X1,...,Xn and⊥Q,X1,...,Xn , on which everyFξ-DFS is
based, can be given a finite representation. This is necessary because in practice, one
can consider only a limited number of cutting levels, rather than the infinite range of all
γ ∈ I. I will show that the desired reduction is always possible if the base set is finite,
i.e. everyFξ-DFS can be reformulated in such a way that it operates on the proposed
finite representation. The prototypical models will serve to demonstrate this reformula-
tion, which results in the basic computational procedures for implementing quantifiers
in these models. These ‘raw’ procedures are not yet optimized in any way, and some
further improvements are necessary in order to make them applicable to domains of re-
alistic size. To this end, I first show that>Q,X1,...,Xn and⊥Q,X1,...,Xn can be computed
from cardinality coefficients sampled fromX1, . . . , Xn and their Boolean combina-
tions. Subsequently, I then show how these coefficients can be efficiently computed
from histogram information. By combining these techniques, I finally obtain practical
algorithms for implementing quantifiers in the chosen models. These algorithms are
surprisingly simple, but sufficiently powerful to cover absolute quantifiers like “at least
ten”, quantifiers of exception like “all except ten”, proportional quantifiers like “most”
and cardinal comparatives like “more than”. Some examples are also presented along
with measured processing times, which demonstrate that these algorithms are pretty
fast, and ready for use in practical applications.

11.2 ‘Simple’ quantifiers

Before turning to more complex cases, let us first consider the standard quantifiers.
The following results are straightforward from the representation of the universal and
existential quantifiers developed in Th-30 and Th-32. It is sufficient to notice that
the considered quantifiers are constructed from the logical ones in terms of negation,
antonym, or unions/intersections of arguments, to which every model is known to con-
form by Th-12, Th-11, (Z-4) and Th-14, respectively.

Theorem 235
In every standard DFSF and for allE 6= ∅,

F(∃)(X) = sup{µX(e) : e ∈ E}
F(∀)(X) = inf{µX(e) : e ∈ E}
F(all)(X1, X2) = inf{max(1− µX1(e), µX2(e)) : e ∈ E}
F(some )(X1, X2) = sup{min(µX1(e), µX2(e)) : e ∈ E}
F(no)(X1, X2) = inf{max(1− µX1(e), 1− µX2(e)) : e ∈ E}

for all X,X1, X2 ∈ P̃(E).
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These interpretations of the elementary quantifiers are quite satisfactory. Next we shall
discuss the NL quantifier “at least k” and its variants. It is convenient to start with the
unrestricted version of the quantifier, and to transfer these results in a subsequent step
to the (slightly) more complicated case of restricted quantification, which involves two
arguments. Hence let us focus on this type of quantifiers:

Definition 160
SupposeE 6= ∅ is a base set andk ∈ N. The quantifier[≥ k] : P(E) −→ 2 is defined
by

[≥ k](Y ) =
{

1 : |Y | ≥ k
0 : else

for all Y ∈ P(E).

[≥ k] is a standard quantifier because in the crisp case, it can be expressed as a Boolean
combination of the existential and universal quantifiers. As to the interpretation of
[≥ k] in the models, I will first establish generic bounds on the possible quantification
results, which are valid in arbitrary DFSes, i.e. not limited in scope to the standard
models. Based on the coefficientsµ[j](X) stipulated in Def. 99, which denote thej-th
largest membership grade of the fuzzy subsetX, these upper and lower bounds on the
interpretation of[≥ k] can be expressed as follows.

Theorem 236
LetE 6= ∅ be a given finite base set andk ∈ N. Then in every DFSF ,

µ[1](X) ∧̃ . . . ∧̃ µ[k](X) ≤ F([≥k])(X) ≤ µ[k](X) ∨̃ . . . ∨̃ µ[m](X) ,

for all X ∈ P̃(E), wherem = |E|.

In the case of a standard model, the upper and lower bounds coincide, because∧̃ and
∨̃ then becomemin andmax, respectively. Consequently, the above theorem uniquely
determines the interpretation of[≥ k] in the common models (this is apparent from
the fact that theµ[j](X) form a non-increasing sequence). In addition, it is a rather
straightforward task to extend this analysis to base sets of infinite cardinality as well.
Summing up, the following result can then be proven for the regular models.

Theorem 237
Suppose thatF is a standard DFS,E 6= ∅ is a nonempty base set andk ∈ N. Then

F([≥k])(X) = sup{α ∈ I : |X≥α| ≥ k} ,

for all X ∈ P̃(E). In particular, ifE is finite, then

F([≥k])(X) = µ[k](X) .
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Note. Recalling the notion of FG-count [188], the theorem hence asserts that

F([≥k])(X) = µFG-count(X)(k) .

My analysis of[≥k] also reveals how some derived NL quantifiers are interpreted in
the models. By decomposing the two-place quantifier “at least k” intoat least k =
[≥k]∩, and by further utilizing that all models are compatible with intersections of
argument sets, we can now deduce that

F(at least k )(X1, X2) = sup{α ∈ I : |(X1 ∩X2)≥α| ≥ k} ,

for all X1, X2 ∈ P̃(E), which in the finite case again becomes

F(at least k )(X1, X2) = µ[k](X1 ∩X2) .

Next we consider some apparent derivations of “at least k”: the quantifiers “more than
k”, “less than k” and “at most k”. In terms of the known construction ofexternal
negation, all of these quantifiers can be reduced to “at least k”, i.e.

more than k = at least k+1

less than k = 1− at least k

at most k = 1−more than k

(this is immediate from the definition of these quantifiers, see Def. 2). Owing to Th-12,
these quantifiers can hence be computed from the above interpretation of “at least k”
in the apparent ways.

Finally let us consider some examples of ‘simple’ quantifiers which are not directly
available in NL, but still useful to express relationships between fuzzy subsets and to
compare these by cardinality. The following definition introduces these quantifiers and
also stipulates the corresponding notation.

Definition 161
LetE 6= ∅ be some base set. For finiteE, we define quantifiers[card ≥], [card >],
[card =] : P(E)2 −→ 2 by

[card ≥](Y1, Y2) =
{

1 : |Y1| ≥ |Y2|
0 : else

(139)

[card >](Y1, Y2) =
{

1 : |Y1| > |Y2|
0 : else

(140)

[card =](Y1, Y2) =
{

1 : |Y1| = |Y2|
0 : else

(141)

for all Y1, Y2 ∈ P(E). In addition, we define the quantifiereq : P(E)2 −→ I by

eq(Y1, Y2) =
{

1 : Y1 = Y2

0 : Y1 6= Y2
(142)

for all Y1, Y2 ∈ P(E). (In this case, no assumptions on the finiteness ofE are neces-
sary).
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Notes

• These quantifiers serve the following purposes:[card ≥](Y1, Y2) checks if the
cardinality ofY1 is at least as large as the cardinality ofY2; [card >](Y1, Y2)
checks if the cardinality ofY1 exceeds that ofY2; [card =](Y1, Y2) checks if
Y1 andY2 have the same cardinality; andeq(Y1, Y2) checks ifY1 andY2 are
identical.

• Some further quantifiers which capture set-theoretic notions have already been
introduced without mentioning their set-theoretic counterparts. In particular, the
quantifierall(Y1, Y2) checks ‘subsethood’ (inclusion) ofY1 in Y2; no(Y1, Y2)
checksY1 andY2 for being disjoint; andπe(Y ) checks membership of the ele-
mente in a setY . As pointed out by W.V. Quine, this close relationship between
the universal quantifier and subsethood has long been known in logic, and ‘fig-
ured already in Peirce’s 1870 algebra of absolute and relative terms, thus even
antedating any coherent logic of the variable itself’ [63, p. 355].

It is interesting to consider the corresponding fuzzy quantifiers, which generalize these
kinds of comparisons to fuzzy sets:

Theorem 238 LetE 6= ∅ be some finite base set andX1, X2 ∈ P̃(E). Then in every
standard DFSF ,

a. F([card ≥])(X1, X2) = max{min(µ[k](X1), 1−µ[k+1](X2)) : 0 ≤ k ≤ |E|};

b. F([card >])(X1, X2) = max{min(µk(X1), 1− µk(X2)) : 1 ≤ k ≤ |E|};

c. F([card =])(X1, X2) = max{min{µ[k](X1), 1 − µ[k+1](X1), µ[k](X2), 1 −
µ[k+1](X2)} : 0 ≤ k ≤ |E|}.

(Proof: D.4, p.443+)

Among other things, the resulting fuzzy quantifiers are useful for evaluating statements
like “The number ofX1’s which areX2’s is larger than the number ofX3’s which are
X4’s”. The interpretation of this statement can now be calculated thus,

F([card >])(X1 ∩X2, X3 ∩X4) .

This is straightforward from Th-238 and Th-14, Th-9.

Theorem 239 LetE 6= ∅ be some base set andX1, X2 ∈ P̃(E). In every standard
DFSF ,

F(eq)(X1, X2) = min(inf{min(µX1(e), µX2(e)) :
min(µX1(e), µX2(e)) ≥ 1−max(µX1(e), µX2(e))},

inf{1−max(µX1(e), µX2(e)) :
1−max(µX1(e), µX2(e)) > min(µX1(e), µX2(e))}) .

(Proof: D.5, p.452+)
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We shall see shortly how further examples of simple quantifiers, like “between r and
s”, can be implemented in the standard models. This analysis rests on some general
observations, which we will now make.

11.3 Direct implementation of special quantifiers in MCX

In this section we shall take a closer look at quantitative (automorphism-invariant) one-
place quantifiers. We notice that the quantitative unary quantifiers on finite base sets
are exactly those quantifiers that only depend on cardinality information:

Theorem 240
A one-place semi-fuzzy quantifierQ : P(E) −→ I on a finite base setE 6= ∅ is
quantitative if and only if there exists a mappingq : {0, . . . , |E|} −→ I such that
Q(Y ) = q(|Y |), for all Y ∈ P(E). q is defined by

q(j) = Q(Yj) (143)

for j ∈ {0, . . . , |E|}, whereYj ∈ P(E) is an arbitrary subset of cardinality|Yj | = j.

Notes

• In particular, if the quantifier has extension, then there existsµQ : N −→ I such
that for all finite base setsE 6= ∅, q(j) = µQ(j) for all j ∈ {0, . . . , |E|}.

• The above result can also be likened to Mostowski’s analysis of two-valued
automorphism-invariant quantifiers, which can be expressed asQ(Y ) = T (ξ0, ξ1),
whereξ0 = |E \Y | andξ1 = |Y |, see Mostowski [108, p. 13]. Assuming a fixed
choice of base set (i.e. ‘quantifiers restricted toE’ in Mostowski’s terminology),
ξ0 can obviously be eliminated noticing thatξ0 = |E| − ξ1.

A similar analysis is also possible for fuzzy quantifiers.

Theorem 241
Let Q̃ : P̃(E) −→ I be a unary fuzzy quantifier on a base set of finite cardinality
|E| = m.
Then the following are equivalent.

a. Q̃ is quantitative;

b. There exists a mappingg : Im −→ I such that

Q̃(X) = g(µ[1](X), µ[2](X), . . . , µ[m](X)) (144)

for all X ∈ P̃(E).

(Proof: D.6, p.454+)
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In particular, every quantitative unary fuzzy quantifier can be expressed in terms of
FG-count(X), see (4).

Returning to semi-fuzzy quantifiers, let us now consider the properties of the map-
ping q : {0, . . . , |E|} −→ I for some special types of quantifiers.

Theorem 242
A quantitative one-place semi-fuzzy quantifierQ : P(E) −→ I on a finite base set
is convex if and only if there existsjpk ∈ {0, . . . ,m} such thatq(`) ≤ q(u) for all
` ≤ u ≤ jpk, andq(`) ≥ q(u) for all jpk ≤ ` ≤ u, whereq : {0, . . . , |E|} −→ I is the
mapping defined by(143).

Theorem 243
A quantitative one-place semi-fuzzy quantifierQ : P(E) −→ I on a finite base set is
nondecreasing (nonincreasing) if and only if the mappingq defined by(143) is nonde-
creasing (nonincreasing).

Let us now simplify the formulas for⊥Q,X(γ) and>Q,X(γ) in the case of quantitative
Q, which is also useful for the median-based models because

Qγ(X) = med 1
2

(>Q,X(γ),⊥Q,X(γ))

by Th-111. To this end, we define

qmin(`, u) = min{q(k) : ` ≤ k ≤ u} (145)

qmax(`, u) = max{q(k) : ` ≤ k ≤ u} (146)

for all 0 ≤ ` ≤ u ≤ |E|. We can then assert the following.

Theorem 244
For every quantitative one-place semi-fuzzy quantifierQ : P(E) −→ I on a finite base
set, allX ∈ P̃(E) andγ ∈ I,

⊥Q,X(γ) = qmin(`, u)
>Q,X(γ) = qmax(`, u)

Qγ(X) = med 1
2

(qmin(`, u), qmax(`, u)) ,

abbreviating̀ = |Xmin
γ | andu = |Xmax

γ |.

In view of Th-242 and Th-243, some simplifications can be made. In the case thatQ
is convex, the formulas for computingqmin andqmax reduce to

qmin(`, u) = min(q(`), q(u)) , qmax(`, u) =

 q(`) : ` > jpk

q(u) : u < jpk

q(jpk) : ` ≤ jpk ≤ u
(147)
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In the frequent situation thatQ is monotonic, these expressions can be further simpli-
fied to

qmin(`, u) = q(`), qmax(`, u) = q(u) if Q nondecreasing (148)

qmin(`, u) = q(u), qmax(`, u) = q(`) if Q nonincreasing. (149)

Up to this point, I have investigated some properties of semi-fuzzy quantifiers on finite
base sets, assuming quantitativity and only one argument for simplicity. Next we con-
sider how fuzzy quantification involving these quantifiers can be effected in practice. It
must hence be shown how expressions of the formF(Q)(X), whereQ is a quantitative
one-place quantifier on some finite base setE 6= ∅ andX ∈ P̃(E) is a fuzzy argument,
can be implemented in a given modelF . In the case ofMCX , it is possible to state
an explicit formula with fixed structure, which directly computes quantification results
for such expressions. Specifically, the interpretation of the considered quantifiers is
reduced to a calculation involving only the usual fuzzy propositional connectivesmin,
max, 1− x, which are applied to cardinality coefficients determined by the following
new notion offuzzy interval cardinality:

Definition 162
For every fuzzy subsetX ∈ P̃(E), thefuzzy interval cardinality‖X‖iv ∈ P̃(N× N) is
defined by

µ‖X‖iv(`, u) =
{

min(µ[`](X), 1− µ[u+1](X)) : ` ≤ u
0 : else

for all `, u ∈ N.

(150)

Notes

• Intuitively, µ‖X‖iv(`, u) expresses the degree to whichX has betweeǹ and
u elements. Consequently, it is dubbed a ‘fuzzy interval cardinality’ because
it assigns a membership grade to eachinterval of integers, i.e. to every closed
range` ≤ k ≤ u of numbersk ∈ N, where` ≤ u. Existing fuzzy cardinality
measures, by contrast, assign a membership grade to each individual integer, but
not to ranges of integers.

• It is apparent from (150) that‖X‖iv can be expressed in terms of the FG-count,
noticing thatµ[j](X) = µFG-count(X)(j). Obviously, this does not mean that a
proposal for fuzzy quantification based on‖X‖iv is just a variant of the FG-
count approach.

The relevance of the proposed fuzzy interval cardinality toMCX is revealed by the
following theorem.

Theorem 245
For every quantitative one-place quantifierQ : P(E) −→ I on a finite base set and all
X ∈ P̃(E),

MCX(Q)(X) = max{min(µ‖X‖iv(`, u), qmin(`, u)) : 0 ≤ ` ≤ u ≤ |E|}
= min{max(1− µ‖X‖iv(`, u), qmax(`, u)) : 0 ≤ ` ≤ u ≤ |E|} .
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Notes

• Among other things, the theorem shows that the cardinality-based approach to
fuzzy quantification can be recovered in the case of quantitative one-place quan-
tifiers on finite domains, if we rely onMCX for modelling fuzzy quantification
(which is foremost among the models anyway). Let me emphasize that abso-
lutely no assumptions regarding monotonicity or other properties ofQ are neces-
sary; the obtained results are guaranteed to be plausible (in the sense formalized
by the theory) for arbitrary and totally unrestricted choices of quantifiers as long
asQ is quantitative. The fuzzy interval cardinality stipulated above therefore
achieves the first formalization of fuzzy cardinality for fuzzy sets, which gives a
provably satisfying account of fuzzy quantification. In particular, my approach
fully covers Zadeh’s quantifiers of the first kind, including all non-monotonic
examples.

• As has been remarked above,‖X‖iv can be expressed in terms of FG-count(X).
However, the converse claim is equally true. Specifically, it is instructive to
notice that

µFG-count(X)(j) = µ‖X‖iv(j, |E|) , µFE-count(X)(j) = µ‖X‖iv(j, j) .

This explains why with general quantifiersµQ, the FG-count approach and the
FE-count approach yield reasonable results in some cases (i.e. those in which
they coincide withMCX ) but fail at others.

Further results on the interpretation of two-valued quantifiers in standard models are
easily proven from this representation ofMCX , recalling the earlier Th-46. For exam-
ple, consider the unary convex quantifier[≥r : ≤s] defined as follows.

Definition 163
LetE 6= ∅ be some base set andr, s ∈ N, r ≤ s. The quantifier[≥r : ≤s] : P(E) −→
2 is defined by

[≥r : ≤s](Y ) =
{

1 : r ≤ |Y | ≤ s
0 : else

for all Y ∈ P(E).

The quantifier is apparently useful for interpreting statements like “Between ten and
twenty of the married persons have children”. Let us now make explicit the concrete
interpretation of[≥r : ≤s] in the standard models. The following theorem is rather
straightforward from the achieved representation ofMCX , and the known fact that all
standard models coincide on two-valued quantifiers:

Theorem 246
LetE 6= ∅ be a finite base set andr, s ∈ N, wherer ≤ s. Further suppose thatF is
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a given standard DFS. ThenF([≥r : ≤s]) : P̃(E) −→ I is the fuzzy quantifier defined
by

F([≥r : ≤s])(X) = µ‖X‖iv(r, s) = min(µ[r](X), 1− µ[s+1](X))

for all X ∈ P̃(E).
(Proof: D.7, p.456+)

This analysis ofF([≥r : ≤s]) is readily extended to the convex natural language quan-
tifiers “between r and s” that were introduced in Def. 2. Recalling the operation of
intersecting arguments defined in Def. 33, the two-place quantifier “between r and s”
becomesbetween r and s = [≥r : ≤s]∩, i.e.

between r and s (Y1, Y2) = [≥r : ≤s](Y1 ∩ Y2)

for all Y1, Y2 ∈ P(E). Now applying Th-14, we directly obtain from the above Th-246
that in every standard DFS,

between r and s (X1, X2) = µ‖X1∩X2‖iv(r, s)
= min(µ[r](X1 ∩X2), 1− µ[s+1](X1 ∩X2)) ,

for all X1, X2 ∈ P̃(E), whereE 6= ∅ is again assumed to be finite. The latter re-
sult also covers the quantifier “exactly k”, which can be expressed asexactly k =
between k and k . Therefore

F(exactly k )(X1, X2) = µ‖X1∩X2‖iv(k, k)
= min(µ[k](X1 ∩X2), 1− µ[k+1](X1 ∩X2))
= µFE-count(X1∩X2)(k)

in all standard models.

11.4 The core algorithms for general quantifiers

In the previous section, it was shown thatMCX(Q)(X) can be reduced to a fuzzy
propositional formula, which is built from constantsqmin(`, u), qmax(`, u) ∈ I sam-
pled from the quantifier, and from cardinality coefficientsµ‖X‖iv(`, u) ∈ I obtained
from the argument.

For the important proportional kind and other two-place quantifiers, however, there
is no known reduction ofMCX(Q)(X1, X2) to a closed-form expression involving
some (relative) notion of fuzzy cardinality. This makes it necessary to develop a more
general, iterative procedure for computing quantification results. The need for such a
general procedure is even more obvious in the case of the other models. For example,
there is no apparent method of directly computingM(Q)(X) or FCh(Q)(X) from a
formula of fixed structure like that presented in Th-245, even in the simplest case of a
quantitative one-place quantifier on a finite domain.
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In the course of implementing quantifiers in such generalFξ-DFSes, the first hin-
drance that we face is this. According to Def. 102, these models are defined by

Fξ(Q)(X1, . . . , Xn) = ξ(>,⊥) ,

where> = >Q,X1,...,Xn and⊥ = ⊥Q,X1,...,Xn are obtained from the three-valued
cuts of the argument sets atall cutting levelsγ ∈ I. The point at issue is that the
cutting parameterγ takes its values in acontinuous range. An implementation on
digital computers, however, can only consider a finite sample of relevant cut levels
Γ = {γ0, . . . , γm}, along with the corresponding results of> and⊥ at these levels.
In order to overcome this problem, I will now take a closer look at the specific shape
of > and⊥ for a certain type of fuzzy sets, which includes all fuzzy arguments on
finite base sets and important classes of fuzzy sets defined on base sets of transfinite
cardinality. I will show that in this case, the desired reduction to a finite sample of>(γ)
and⊥(γ) is always possible. Moreover, I will spell out the fundamental computational
procedures forFCh, M andMCX , by reformulating these prototypical models in
such a way that they operate on the chosen finite sample only. In this way, it becomes
possible to compute quantification results of arbitrary quantifiers on finite base sets in
the prototype models.

In order to develop the desired finite representation of> and⊥, we need some further
notation. Hence let some base setE 6= ∅ be given (not required to be finite) and
further letX1, . . . , Xn ∈ P̃(E). We shall denote byA(X1, . . . , Xn) ∈ P(I) the set of
membership grades assumed by one of theXi’s. Hence

A(X1, . . . , Xn) = ∪{ImµXi : i ∈ {1, . . . , n}} , (151)

i.e. A(X1, . . . , Xn) = {µXi(e) : e ∈ E, i ∈ {1, . . . , n}}. In dependence on
A(X1, . . . , Xn), we can further define the corresponding set of three-valued cut levels
Γ(X1, . . . , Xn) ∈ P(I) according to

Γ(X1, . . . , Xn) = {2α− 1 : α ∈ A(X1, . . . , Xn) ∩ [ 1
2 , 1]}

∪{1− 2α : α ∈ A(X1, . . . , Xn) ∩ [0, 1
2 )}

∪{0, 1} .
(152)

Notes

• It is obvious that for finite base sets,Γ(X1, . . . , Xn) is always finite as well.

• It should be pointed out thatΓ(X1, . . . , Xn) always includes the boundary cases
γ = 0 andγ = 1, which I enforced by an explicit union with{0, 1} in the
defining equation forΓ(X1, . . . , Xn). I decided to incorporate these bound-
ary cases intoΓ(X1, . . . , Xn) because knowing that0 ∈ Γ(X1, . . . , Xn) and
1 ∈ Γ(X1, . . . , Xn) will considerably simplify the presentation of the later al-
gorithms which operate onΓ(X1, . . . , Xn).

• Obviously,Γ(X1, . . . , Xn) can always be decomposed into a union of the com-
ponentsΓ(Xi), i.e.

Γ(X1, . . . , Xn) = Γ(X1) ∪ · · · ∪ Γ(Xn) . (153)
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The following observation on the behaviour ofΓ(•) for Boolean combinations will
later prove useful when implementing proportional quantifiers:

Theorem 247
LetE 6= ∅ be a given base set. Then

a. for allX ∈ P̃(E), Γ(¬X) = Γ(X);

b. for allX1, X2 ∈ P̃(E),

Γ(X1 ∩X2) ⊆ Γ(X1, X2)

and

Γ(X1 ∪X2) ⊆ Γ(X1, X2) .

(Proof: D.8, p.458+)

Now suppose thatΓ(X1, . . . , Xn) is finite and thatΓ ⊇ Γ(X1, . . . , Xn) is a finite
superset ofΓ(X1, . . . , Xn).39 Knowing that{0, 1} ⊆ Γ(X1, . . . , Xn), Γ can then
be written asΓ = {γ0, . . . , γm} where0 = γ0 < γ1 < · · · < γm−1 < γm =
1. In dependence onγ0, . . . , γm, we shall define derived coefficientsγ0, . . . , γm−1

according to

γj = γj+γj+1
2 (154)

for all j ∈ {0, . . . ,m−1}. In the following, it will be convenient to introduce a succinct
notation for the results of>Q,X1,...,Xn(γj) and⊥Q,X1,...,Xn(γj) that are observed at
eachγj . Let us hence stipulate that

>j = >Q,X1,...,Xn(γj) (155)

⊥j = ⊥Q,X1,...,Xn(γj) (156)

for j ∈ {0, . . . ,m− 1}. When discussingMB-models, it will also be useful to have a
shorthand notation forQγj (X1, . . . , Xn). I therefore abbreviate

Cj = Qγj (X1, . . . , Xn) = med 1
2

(>j ,⊥j) (157)

for all j ∈ {0, . . . ,m−1}, where the equalities are immediate from Th-111, (155) and
(156).

Theorem 248
LetQ : P(E)n −→ I be a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E) a choice of
fuzzy arguments such thatΓ(X1, . . . , Xn) is finite. Further let0 = γ0 < γ1 < · · · <

39The use of the finite supersetΓ ⊇ Γ(X1, . . . , Xn), rather thanΓ(X1, . . . , Xn), has shown itself more
convenient for proving the subsequent theorems.
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γm−1 < γm = 1 be given such thatΓ = {γ0, . . . , γm} ⊇ Γ(X1, . . . , Xn). Then for
all j ∈ {0, . . . ,m− 1} and allγ ∈ (γj , γj+1),

>Q,X1,...,Xn(γ) = >j
⊥Q,X1,...,Xn(γ) = ⊥j
Qγ(X1, . . . , Xn) = Cj .

(Proof: D.9, p.460+)

In other words,>Q,X1,...,Xn ,⊥Q,X1,...,Xn : I −→ I reduce to simple step func-
tions (with a finite number of steps), which are locally constant in the open intervals
(γj , γj+1), j = 0, . . . ,m− 1. In turn, the mappingQγ(X1, . . . , Xn) which underlies
the construction ofMB-QFMs also reduces to a simple step function. The relevance
of these observations manifests itself in the next theorem.

Theorem 249
LetQ : P(E)n −→ I be a semi-fuzzy quantifier and(γj)j∈{0,...,m} a finite I-valued
sequence such that

0 = γ0 < γ1 < · · · < γm−1 < γm = 1 .

Further suppose that(>,⊥), (>′,⊥′) ∈ T satisfy

>(γ) = >′(γ′)
⊥(γ) = ⊥′(γ′)

for all j ∈ {0, . . . ,m− 1} andγ, γ′ ∈ (γj , γj+1).40 Then

ξ(>,⊥) = ξ(>′,⊥′)

for every choice ofξ : T −→ I which satisfies(X-2), (X-4) and (X-5).
(Proof: D.10, p.462+)

Note. The theorem states that the results of the step functions> and⊥ at the finite
number of interval boundaries are inessential, provided thatξ satisfies (X-2), (X-4)
and (X-5). In other words,ξ(>,⊥) is fully determined by the finite sample ofγj ,
>j = >(γj) and⊥j = ⊥(γj), because any choice of(>′,⊥′) ∈ T with >′(γ) = >j
and⊥′(γ) = ⊥j for all j ∈ {0, . . . ,m − 1} andγ ∈ (γj , γj+1) will reproduce the
desired resultξ(>′,⊥′) = ξ(>,⊥).

Let us now put this result into context in order to highlight its significance to the
models of fuzzy quantification. We know from Th-110 that everyFξ-DFS is con-
structed from a choice ofξ : T −→ I which satisfies the critical conditions (X-2),
(X-4) and (X-5). Now suppose thatQ : P(E)n −→ I is a semi-fuzzy quantifier and
X1, . . . , Xn ∈ P̃(E) are chosen such thatΓ(X1, . . . , Xn) is finite. By combining the

40Hence>,>′ and⊥,⊥′ are pairs of step functions which are allowed to differ only at the boundaries
{γj : j ∈ {0, . . . ,m}} of the steps, and which are required to coincide everywhere else.
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above theorems Th-248 and Th-249, it then becomes apparent thatFξ(Q)(X1, . . . , Xn)
can be computed from the finite number of 3-tuples

(γj ,>j ,⊥j),

which are obtained from an arbitrary sample0 = γ0 < γ1 < · · · < γm−1 <
γm = 1 with {γ0, . . . , γm} ⊃ Γ(X1, . . . , Xn). Recalling thatQγ(X1, . . . , Xn) =
med 1

2
(>Q,X1,...,Xn(γ),⊥Q,X1,...,Xn(γ)) andCj = med 1

2
(>j ,⊥j), this demonstrates

in particular thatQγ(X1, . . . , Xn) can be specified with sufficient detail by listing the
finite number of pairs(γj , Cj), which carry all necessary information to compute the
quantification results in a givenMB-DFS.

Based on the improved analysis of>Q,X1,...,Xn and⊥Q,X1,...,Xn achieved in the
above theorems, the modelFCh can now be expressed in a form which lends itself
better to computation.

Theorem 250
Let Q : P(E)n −→ I be a given semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E) a
choice of fuzzy arguments such thatΓ(X1, . . . , Xn) is finite. Further suppose that
Γ = {γ0, . . . , γm} ⊇ Γ(X1, . . . , Xn) is given, where0 = γ0 < γ1 < · · · < γm−1 <
γm = 1. Then

FCh(Q)(X1, . . . , Xn) = 1
2

m−1∑
j=0

(γj+1 − γj)(>j +⊥j) . (158)

(Proof: D.11, p.464+)

Next we will consider the prototypical examples ofMB-DFSes that were chosen for
implementation, i.e.M andMCX . In order to exploit Th-248 for a more compu-
tational description of these models as well, we first need some observations on the
possible shapes ofCj and corresponding quantification results in theMB-type mod-
els.

Theorem 251
LetQ : P(E)n −→ I be a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E) a choice of
fuzzy arguments such thatΓ(X1, . . . , Xn) is finite. Further letΓ = {γ0, . . . , γm} ⊇
Γ(X1, . . . , Xn) be given with0 = γ0 < γ1 < · · · < γm−1 < γm = 1. If C0 = 1

2 , then

MB(Q)(X1, . . . , Xn) = 1
2

in everyMB-DFS.
(Proof: D.12, p.464+)

In order to achieve a further simplification, let us introduce additional abbreviations

J∗ = {j ∈ {0, . . . ,m− 1} : Cj = 1
2} (159)

j∗ =
{

min J∗ : J∗ 6= ∅

m : J∗ = ∅
(160)
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It is obvious from Def. 85 that for allf ∈ B, γ′ ≥ γ results inf(γ′) �c f(γ). Hence
f(γ) = 1

2 for someγ ∈ I entails thatf(γ′) = 1
2 for all γ′ > γ as well. Recalling from

Th-64 that(Qγ(X1, . . . , Xn))γ∈I ∈ B, we conclude that in fact

Cj = 1
2 (161)

for all j ≥ j∗. Combining this with some apparent observations on the fuzzy median
med 1

2
, we can now assert the following.

Theorem 252
Suppose thatQ : P(E)n −→ I is a given semi-fuzzy quantifier, andX1, . . . , Xn ∈
P̃(E) are given fuzzy arguments such thatΓ(X1, . . . , Xn) is a finite subset ofI. Fur-
ther assume a choice ofΓ = {γ0, . . . , γm} ⊇ Γ(X1, . . . , Xn) with 0 = γ0 < γ1 <
· · · < γm−1 < γm = 1.

a. If⊥0 >
1
2 , then

Cj =

{
⊥j : j < j∗

1
2 : j ≥ j∗

for all j ∈ {0, . . . ,m− 1}.

b. If>0 <
1
2 , then

Cj =

{
>j : j < j∗

1
2 : j ≥ j∗

for all j ∈ {0, . . . ,m− 1}.

(Proof: D.13, p.464+)

Based on these preparations, it is now rather easy to decomposeM(Q)(X1, . . . , Xn)
into a simple weighted summation:

Theorem 253
Let a semi-fuzzy quantifierQ : P(E)n −→ I and fuzzy argumentsX1, . . . , Xn ∈ P̃(E)
be given, and suppose thatΓ(X1, . . . , Xn) is finite. Further assume a choice ofΓ =
{γ0, . . . , γm} ⊇ Γ(X1, . . . , Xn) with 0 = γ0 < γ1 < · · · < γm−1 < γm = 1. Then

M(Q)(X1, . . . , Xn) =



(
j∗−1∑
j=0

(γj+1 − γj)⊥j

)
+ 1

2 (1− γj∗) : ⊥0 >
1
2

1
2 : ⊥0 ≤ 1

2 ≤ >0(
j∗−1∑
j=0

(γj+1 − γj)>j

)
+ 1

2 (1− γj∗) : >0 <
1
2

(Proof: D.14, p.466+)
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The computation ofMCX is even simpler compared toFCh andM, which require
a summation in order to determine the final outcome of quantification from the re-
sults obtained at the individualj’s. In fact, it is sufficient for calculating the quan-
tification resultMCX(Q)(X1, . . . , Xn), to simply determine the minimal choice of
j ∈ {0, . . . ,m− 1} which satisfies a certain inequality.

Theorem 254
LetQ : P(E)n −→ I be a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E) a choice of
fuzzy arguments such thatΓ(X1, . . . , Xn) is finite. Further letΓ = {γ0, . . . , γm} ⊇
Γ(X1, . . . , Xn) be a subset ofI with 0 = γ0 < γ1 < · · · < γm−1 < γm = 1. In the
case thatC0 >

1
2 , let us abbreviate

Bj = 2⊥j − 1 , (162)

while in the case thatC0 <
1
2 , we stipulate

Bj = 1− 2>j (163)

for all j ∈ {0, . . . ,m− 1}. Let us further abbreviate

Ĵ = {j ∈ {0, . . . ,m− 1} : Bj ≤ γj+1} (164)

̂ = min Ĵ . (165)

Then

MCX(Q)(X1, . . . , Xn) =


1
2 + 1

2 max(γ̂, B̂) : ⊥0 >
1
2

1
2 : ⊥0 ≤ 1

2 ≤ >0

1
2 −

1
2 max(γ̂, B̂) : >0 <

1
2 .

(Proof: D.15, p.467+)

To sum up,⊥Q,X1,...,Xn , >Q,X1,...,Xn andQγ(X1, . . . , Xn) can be specified with
sufficient detail by a finite number ofγj , >j , ⊥j , from which the quantification re-
sultsFξ(Q)(X1, . . . , Xn) of arbitraryFξ-DFSes can be computed. For discussing the
MB-type, it proved convenient to utilize a derived coefficientCj = med 1

2
(>j ,⊥j)

instead of>j and⊥j . The representation of theseCj ’s was further simplified based
on the known monotonicity properties of(Qγ(X1, . . . , Xn))γ∈I ∈ B. My analysis
of >Q,X1,...,Xn , ⊥Q,X1,...,Xn andQγ(X1, . . . , Xn) made it possible to develop more
explicit formulations of the prototypical modelsFCh,M andMCX , which lend them-
selves directly to implementation.

In the remainder of the chapter, I will describe further refinements which improve
the efficiency of the raw algorithms presented so far. These efficiency improvements
will not require any changes to the computation procedures themselves. By contrast,
they rest on the observation that the analysis achieved in theorems Th-250, Th-253 and
Th-254 still depends on>j ,⊥j and/orCj , and it is these coefficients which now receive
careful attention. This will also provide the necessary support for implementing further
models of theFξ- andMB types, which are all known to be expressible in terms of>j
and⊥j by Th-249.
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11.5 Refinement for quantitative quantifiers

In this section, we will be concerned with the issue of computing>j = >Q,X1,...,Xn(γj)
and⊥j = ⊥Q,X1,...,Xn(γj) efficiently, whereQ : P(E)n −→ I is assumed to have a
finite domainE 6= ∅.

In principle, Def. 100 permits the direct computation of>j and⊥j based on an ex-
haustive search of the maximum and minimum41 of SQ,X1,...,Xn(γj), i.e.>j = maxSj
and⊥j = minSj , where

Sj = SQ,X1,...,Xn(γj) = {Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγj (X1, . . . , Xn)} .

However, the exhaustive search of the minimum and maximum becomes impractical
for domains of realistic size. In the worst case, the number of elements inSj can be
exponential in the size of the domain. Therefore the effort for computing the minimum
and maximum directly soon becomes prohibitive.
In some cases, it is possible to shortcut the exhaustive search. For example, consider
a quantifierQ : P(E)n −→ I which is nondecreasing in all arguments. The co-
efficients>j and⊥j can then be expressed as>j = Q((X1)max

γj
, . . . , (Xn)max

γj
) and

⊥j = Q((X1)min
γj

, . . . , (Xn)min
γj

). It is hence sufficient to consider a single choice of

Yi ∈ Tγj (Xi), and all other choices ofYi are known to be irrelevant. In particular,
this approach will work forn = 1, i.e. in the case of nondecreasing unary quantifiers
Q : P(E) −→ I. It therefore renders possible the efficient evaluation offuzzy measures
in the models of interest. In the remaining cases where this a priori simplification of
>j and⊥j is not applicable, a careful analysis of other regularities of NL quantifiers is
necessary in order to identify possible simplifications, from which an efficient imple-
mentation of>j and⊥j can be derived. The particular regularity that will be assumed
in the following, is that ofquantitativity, see Def. 38. Consequently, I will restrict at-
tention to those semi-fuzzy quantifiersQ : P(E)n −→ I on a finite domainE 6= ∅

which also exhibit automorphism-invariance, i.e.

Q(Y1, . . . , Yn) = Q(β̂(Y1), . . . , β̂(Yn))

for all automorphismsβ of E andY1, . . . , Yn ∈ P(E). How can we exploit this
regularity in order to simplify the computation of>j and⊥j? To this end, let us ob-
serve that>j and⊥j are computed fromSj , which in turn is computed from the set
Tγj (X1, . . . , Xn) ⊆ P(E)n defined by Def. 82. This suggests that we can spare unnec-
essary work, if we manage to define an equivalence relation onP(E)n which identifies
argument tuples(Y1, . . . , Yn), (Y ′1 , . . . , Y

′
n) ∈ Tγj (X1, . . . , Xn) with

Q(Y1, . . . , Yn) = Q(Y ′1 , . . . , Y
′
n) .

Hence let∼ ⊆ P(E)n × P(E)n denote the following relation,

(Y1, . . . , Yn) ∼ (Y ′1 , . . . , Y
′
n) ⇔

there exists an automorphismβ of E s.th.(Y ′1 , . . . , Y
′
n) = (β̂(Y1), . . . , β̂(Yn)) .

41The use ofmin andmax rather thaninf andsup is possible becauseSQ,X1,...,Xn (γj) is finite. This
is immediate from Def. 110 and the finiteness of the base set.
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It is apparent that∼ is indeed an equivalence relation onP(E)n. In addition, we can
conclude from(Y1, . . . , Yn) ∼ (Y ′1 , . . . , Y

′
n) thatQ(Y1, . . . , Yn) = Q(Y ′1 , . . . , Y

′
n),

becauseQ is assumed to be automorphism-invariant. This suggests that we can avoid
redundant effort in computing>j and⊥j in the following way. For each(Y1, . . . , Yn) ∈
P(E)n, let (Y1, . . . , Yn)∗ denote a representative under∼, which is linked to the given
(Y1, . . . , Yn) by (Y1, . . . , Yn) ∼ (Y1, . . . , Yn)∗. Due to the fact thatQ is automorphism
invariant, we then know thatQ(Y1, . . . , Yn) = Q(Y1, . . . , Yn)∗. Now let T ∗ denote
the set of all representatives for argument tuples inTγj (X1, . . . , Xn), i.e.

T ∗ = {(Y1, . . . , Yn)∗ : (Y1, . . . , Yn) ∈ Tγj (X1, . . . , Xn)} .

Clearly

Sj = {Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγj (X1, . . . , Xn)}
= {Q(Y1, . . . , Yn)∗ : (Y1, . . . , Yn) ∈ Tγj (X1, . . . , Xn)}
= {Q(Z1, . . . , Zn) : (Z1, . . . , Zn) ∈ T ∗}

(166)

and

|T ∗| ≤ |Tγj (X1, . . . , Xn)| .

Consequently, the search of the maximum and minimum can now be restricted to the
small(er) number of representatives inT ∗, and need not exhaust the total collection of
alternatives inTγj (X1, . . . , Xn).

In practice, it is advisable to advance yet another step and eliminate these repre-
sentatives as well, in favour of a purely numerical scheme which rests on cardinality
information only. The promise of such a scheme is that of avoiding any reference to
set-based information (likeTγj (X1, . . . , Xn) or T ∗), which might be hard to repre-
sent in a uniform way, and awkward for processing purposes. By contrast, the cardinal
numbers on which the numerical scheme will operate, are easy to represent and permit
very fast processing on digital computers. For the development of such a scheme, we
can utilize a special regularity observed with all quantitative quantifiers, which estab-
lishes a link between quantitativity (automorphism-invariance) and definability of the
quantifier in terms of cardinalities sampled from the arguments. For example, consider
the quantitative unary quantifiers anticipated in section 11.3. It was shown there that
every quantifier of the considered type can be expressed in terms of cardinality infor-
mation, i.e. there is a choice ofq : {0, . . . , |E|} −→ I such thatQ(Y ) = q(|Y |) for
all Y ∈ P(E). Based on this representation, I was able to develop efficient reformu-
lations of>j = >Q,X(γj) and⊥j = ⊥Q,X(γj), which reduce to simple coefficients
qmax(`, u) andqmin(`, u), respectively.

The goal of the present section is to abstract from this special case and develop a sim-
ilar representation for arbitrary quantifiers, which are only assumed to be quantitative,
and declared on a finite base set. I will show that the previous analysis of unary quan-
tifiers can be broadened to a fully general result concerning quantitative quantifiers
on finite base sets. In particular, the computation of>j , ⊥j andCj from cardinality
information is always possible ifQ belongs to this type of quantifier, which obviates
the need to operate on the original set-based data inTγj (X1, . . . , Xn). For the main
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class of NL quantifiers, which are two-place and conservative (like the absolute and
proportional kinds), this basic approach will then be further refined, in order to achieve
optimal performance for all quantifiers of relevance to applications.

To begin with, it is well-known from TGQ that the quantitative two-valued quan-
tifiers on finite base sets are exactly those quantifiers which can be computed from
the cardinalities of the arguments and their Boolean combinations [8, p. 471]. As I
will now show, this characterisation of quantitative quantifiers on finite base sets gen-
eralizes to semi-fuzzy quantifiers, i.e. the quantitative semi-fuzzy quantifiers on finite
domains are precisely those semi-fuzzy quantifiers which solely depend on the car-
dinality of their arguments (or Boolean combinations thereof). In order to state the
theorem, I need some more notation. Hence let a finite base setE 6= ∅ andn ∈ N
be given. For every choice of`1, . . . , `n ∈ {0, 1}, we define the Boolean combination
Φ`1,...,`n by

Φ`1,...,`n(Y1, . . . , Yn) = Y
(`1)
1 ∩ · · · ∩ Y (`n)

n (167)

for all Y1, . . . , Yn ∈ P(E), where

Y (`) =
{
Y : ` = 1
¬Y : ` = 0 (168)

for Y ∈ P(E) and` ∈ {0, 1}. Based on these abbreviations, we can now assert the
following.

Theorem 255
A semi-fuzzy quantifierQ : P(E)n −→ I on a finite base setE 6= ∅ is quantitative if
and only ifQ can be computed from the cardinalities of its arguments and their Boolean
combinations, i.e. there exist Boolean expressionsΦ1(Y1, . . . , Yn), . . . ,ΦK(Y1, . . . , Yn)
for someK ∈ N, and a mappingq : {0, . . . , |E|}K −→ I such that

Q(Y1, . . . , Yn) = q(|Φ1(Y1, . . . , Yn)|, . . . , |ΦK(Y1, . . . , Yn)|) , (169)

for all Y1, . . . , Yn ∈ P(E). In particular, Q can be expressed asQ(Y1, . . . , Yn) =
q(c), wherec : {0, 1}n −→ {0, . . . , |E|} is defined by

c`1,...,`n = |Φ`1,...,`n(Y1, . . . , Yn)|

for all `1, . . . , `n ∈ {0, 1}, see(167).
(Proof: D.16, p.470+)

Notes

• For convenience, I will assume that the Boolean expressionsΦi(Y1, . . . , Yn) are
constructed from the argumentsY1, . . . , Yn by forming unions∪, intersections
∩ and complementation¬; of course, a minimal set of operationsop ∈ {∩,¬}
would be sufficient as well. It is not required that all variablesY1, . . . , Yn ac-
tually participate in every consideredΦi. In particular, trivial combinations like
Φ1(Y1, Y2, Y3) = Y2 and more complex ones likeΦ2(Y1, Y2, Y3) = (Y1∩¬Y2)∪
Y3 are equally admissible.
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• The second part of the theorem establishes a worst-case analysis in terms of
complexity. It asserts that for unrestricted quantifiers, the number of Boolean
combinations required to expressQ in terms of cardinalities, is bounded by2n,
wheren is the arity of the quantifier.

It is instructive to compare the general result of Th-255 to the earlier analysis of quan-
titative one-place quantifiers that was given in section 11.3. In the new notation, the
special case covered there can now be represented in terms ofK = 1, Φ(Y ) = Y ,
c = |Φ(Y )| = |Y | andq : {0, . . . , |E|} −→ I. It is then guaranteed by Th-240 that
indeedQ(Y ) = q(c) = q(|Y |), provided thatq is defined according to (143).

Obviously, things will not remain that simple once we consider a more general type
of quantifiers. However, most NL quantifiers will not require the worst-case analysis
presented in Th-255. These quantifiers are far from being ‘unrestricted’, and they
often permit considerable simplifications due to their regular structure. In particular,
most NL quantifiers are known to be two-place and conservative, so it is worthwhile
studying this type of quantifiers. Hence let us start by discussing general two-place
quantifiers, and subsequently taylor this analysis to the conservative type. It is well-
known from TGQ that every quantitative two-valued quantifierQ : P(E)2 −→ 2 on a
finite base set can be computed froma = |Y1 \ Y2|, b = |Y2 \ Y1|, c = |Y1 ∩ Y2| and
d = |E \ (Y1 ∪ Y2)|, whereY1, Y2 ∈ P(E) are the arguments ofQ, c.f. [9, p. 457].
This result obviously transfers to the more general situation of semi-fuzzy quantifiers:

Theorem 256 Let Q : P(E)n −→ I be a two-place quantifier on a finite base set
E 6= ∅. If Q is quantitative, thenQ(Y1, Y2) can be expressed in terms ofa = |Y1 \Y2|,
b = |Y2 \Y1|, c = |Y1∩Y2| andd = |E \ (Y1∪Y2)|, for any choice of crisp arguments
Y1, Y2 ∈ P(E).
(Proof: D.17, p.476+)

Note. The theorem merely instantiates the general framework introduced above for
n = 2 (actually, it is an apparent corollary to Th-255). Its sole purpose is that of
stipulating symbolsa, b, c, d which refer to the cardinality coefficients sampled from
Φ1(Y1, Y2) = Y1 \Y2, Φ2(Y1, Y2) = Y2 \Y1, Φ3(Y1, Y2) = Y1∩Y2, andΦ4(Y1, Y2) =
E \ (Y1 ∪ Y2). Things become more interesting once additional assumptions are
imposed onQ. In fact, it has been shown by van Benthem [8, p. 446], [9, p. 458] that in
the case of a conservative two-valued quantifier, the coefficientsa andc are sufficient
for determining the quantification resultQ(Y1, Y2), which then becomes independent
of b andd. Again, this result generalizes to semi-fuzzy quantifiers.

Theorem 257 LetQ : P(E)n −→ I be a quantitative two-place quantifier on a finite
base setE 6= ∅. If Q is conservative, thenQ(Y1, Y2) is fully determined bya =
|Y1 \ Y2| andc = |Y1 ∩ Y2|, i.e. there existsq : {0, . . . , |E|}2 −→ I such that

Q(Y1, Y2) = q(a, c)

for all Y1, Y2 ∈ P(E).
(Proof: D.18, p.476+)
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In other words, we can dispense with the coefficientsb andd in practice, and limit our-
selves to determininga andc. For my purposes, it is beneficial to slightly reformulate
this result, and replace the relevant cardinality coefficientsa andc by another choice of
coefficientsc1 = |Y1| andc2 = |Y1 ∩ Y2|. We can then assert the following corollary
to the previous theorem.

Theorem 258
LetQ : P(E)n −→ I be a quantitative two-place quantifier on a finite base setE 6= ∅.
If Q is conservative, thenQ(Y1, Y2) is fully determined by|Y1| and |Y1 ∩ Y2|, for all
Y1, Y2 ∈ P(E).
(Proof: D.19, p.477+)

Notes

• Hence every quantitative and conservative quantifierQ : P(E)2 −→ I on a finite
base set can be represented in terms ofK = 2, Φ1(Y1, Y2) = Y1, Φ2(Y1, Y2) =
Y1 ∩ Y2, c1 = |Φ1(Y1, Y2)| = |Y1| andc2 = |Φ2(Y1, Y2)| = |Y1 ∩ Y2|, based on
a suitable choice ofq : {0, . . . , |E|}K −→ I with

Q(Y1, Y2) = q(c1, c2) (170)

for all Y1, Y2 ∈ P(E).

• In particular, every proportional quantifier belongs to this general class. For ex-
ample, the proposed definition of the proportional quantifier “almost all” already
conforms to the above scheme, cf. (12) and (170). In this case, the mappingq
becomes

q(c1, c2) =
{
µalmost all(c2/c1) : c1 > 0
1 : else

for all c1, c2 ∈ {0, . . . , |E|}. Based on this choice ofq, the quantifier can then
be rewrittenalmost all (Y1, Y2) = q(c1, c2).

The proposed representation of quantifiers by a mappingq : {0, . . . , |E|}K −→
I, which is possible for every quantitativeQ on a finite base set, provides a suit-
able point of departure for developing the required algorithms that will implement
>j and⊥j more efficiently. Based on these preparations, I will now consider the set
SQ,X1,...,Xn(γ) defined by Def. 110, from which the coefficients>Q,X1,...,Xn(γ) =
supSQ,X1,...,Xn(γ) and⊥Q,X1,...,Xn(γ) = inf SQ,X1,...,Xn(γ) are calculated, see (81)
and (82). Due to these dependencies, a faster method for computingSQ,X1,...,Xn(γ)
will also speed up the implementation of>Q,X1,...,Xn(γ) and⊥Q,X1,...,Xn(γ). In order
to achieve this improvement, let us observe thatSQ,X1,...,Xn(γ) can now be computed
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from q (rather thanQ):

SQ,X1,...,Xn(γ)
= {Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)} by Def. 82

= {q(c1, . . . , cK) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn),
c1 = |Φ1(Y1, . . . , Yn)|, . . . , cK = |ΦK(Y1, . . . , Yn)|} by Th-255

= {q(c1, . . . , cK) : (c1, . . . , cK) ∈ {(|Φ1(Y1, . . . , Yn)|, . . . ,
|ΦK(Y1, . . . , Yn)|) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)} ,

i.e.

SQ,X1,...,Xn(γ) = {q(c1, . . . , cK) : (c1, . . . , cK) ∈ Rγ(X1, . . . , Xn)} , (171)

whereRγ(X1, . . . , Xn) = RΦ1,...,ΦK
γ (X1, . . . , Xn) ⊆ {0, . . . , |E|}K is defined by

Rγ(X1, . . . , Xn) = {(|Φ1(Y1, . . . , Yn)|, . . . , |ΦK(Y1, . . . , Yn)|) :
(Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)} . (172)

This is quite obvious. By replacing the instances of quantificationQ(Y1, . . . , Yn) with
instances ofq(c1, . . . , cK), a similar gain in performance is achieved as in (166),
where I resorted to equivalence classes. Conceptually, we can view the move to
q(c1, . . . , cK), cr = |Φr(Y1, . . . , Yn)|, as involving the obvious equivalence relation

(Y1, . . . , Yn) ≈ (Y ′1 , . . . , Y
′
n)⇔ |Φr(Y1, . . . , Yn)| = |Φr(Y ′1 , . . . , Y ′n)|

for all r ∈ {1, . . . ,K}.

Clearly(Y1, . . . , Yn) ≈ (Y ′1 , . . . , Y
′
n) entails that

Q(Y1, . . . , Yn) = q(c1, . . . , ck) = Q(Y ′1 , . . . , Y
′
n)

for all (Y1, . . . , Yn), (Y ′1 , . . . , Y
′
n) ∈ Tγ(X1, . . . , Xn), because in this case,

|Φr(Y1, . . . , Yn)| = cr = |Φr(Y ′1 , . . . , Y ′n)|

for all r = 1, . . . ,K. Due to the fact thatSQ,X1,...,Xn(γ) is now computed from
Rγ(X1, . . . , Xn), it is ensured that only one instance ofq(c1, . . . , cK) must be com-
puted in this case, rather than treatingQ(Y1, . . . , Yn) andQ(Y ′1 , . . . , Y

′
n) separately.

Compared to the earlier approach based on representatives under∼, the new method
has the benefit of replacing the set-based information (i.e., equivalence classes and their
representatives) altogether, and reducing the computation of the setSQ,X1,...,Xn(γ) and
of the derived coefficients>Q,X1,...,Xn(γ), ⊥Q,X1,...,Xn(γ) andQγ(X1, . . . , Xn) to
simple computations on cardinal numbers. Specifically, these quantities now become

>Q,X1,...,Xn(γ) = max{q(c1, . . . , cK) : (c1, . . . , cK) ∈ Rγ(X1, . . . , Xn)} ,
(173)

⊥Q,X1,...,Xn(γ) = min{q(c1, . . . , cK) : (c1, . . . , cK) ∈ Rγ(X1, . . . , Xn)} (174)
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and

Qγ(X1, . . . , Xn) = m 1
2
{q(c1, . . . , cK) : (c1, . . . , cK) ∈ Rγ(X1, . . . , Xn)} (175)

which is straightforward from (171), (81), (82) and Def. 83. In the above expressions,
min and max have been used, rather than the infimum and supremum required by
(81) and (82). This is again possible because the base setE, and consequently the set
SQ,X1,...,Xn(γ), is known to be finite.
Usually it will be sufficient to consider those choices ofγ = γj only, that are derived
from a given setΓ = {γ0, . . . , γm} ⊇ Γ(X1, . . . , Xn) according to (154). The associ-
ated coefficients>j ,⊥j andCj , which are indexed byj ∈ {0, . . . ,m− 1} rather than
γj , now become

>j = max{q(c1, . . . , cK) : (c1, . . . , cK) ∈ Rj}
⊥j = min{q(c1, . . . , cK) : (c1, . . . , cK) ∈ Rj}
Cj = med 1

2
(>j ,⊥j) = m 1

2
{q(c1, . . . , cK) : (c1, . . . , cK) ∈ Rj} ,

where

Rj = Rγj (X1, . . . , Xn) .

This is apparent from (155) and (81); (156) and (82); and finally (157) and (64).
Notes

• As indicated by the superscripts, the relationRΦ1,...,ΦK
γ depends on the assumed

choice of Boolean combinationsΦ1, . . . ,ΦK from which the cardinality coeffi-
cientscj = |Φj(Y1, . . . , Yn)| are sampled. For the sake of readability, though,
the superscript will generally be suppressed wheneverΦ1, . . . ,ΦK are clear
from the context.

• At this point, it is instructive to return to the simple example of unary quantifiers,
i.e.K = 1, Φ(Y ) = Y , c = |Φ(Y )| = |Y | under the proposed analysis. In this
case, the relationRγ(X) and the associatedRj become

Rγ(X) = {k : |Xmin
γ | ≤ k ≤ |Xmax

γ |}
Rj = {k : `(j) ≤ k ≤ u(j)} ,

where`(j) = |Xmin
γj
| andu(j) = |Xmax

γj
|.

• I should remark in advance that it is often not necessary to unfold all tuples in
the relationRj and hence consider all quantification results. Quite the reverse,
the monotonicity properties of the quantifiers of interest usually permit the re-
striction to a small number of coefficients derived fromRj . Usually, these co-
efficients can be directly computed from cardinality data, which achieves an ad-
ditional cut in processing times compared to an approach which does not utilize
such a priori knowledge. An example of the possible simplifications has already
been given in section 11.3. To be specific, eq. (147) illustrates how the computa-
tion of>Q,X and⊥Q,X can be simplified in the case of a convex quantifier; it is

309



then sufficient to inspect only three cases, i.e.q(`), q(u) andq(jpk), rather than
the full range{`, `+ 1, . . . , u− 1, u}. A further simplification has been demon-
strated for monotonic quantifiers. In this case, the computation of the quantities
of interest can even be reduced to only two instances,q(`) andq(u), that must be
evaluated. Comparable savings in effort can be achieved when analysing more
complex quantifiers (e.g. proportional) in this way, see 11.9 below.

In the following, I will show that the relationRγ(X1, . . . , Xn) can always be computed
from the upper and lower cardinality boundsur = |(Zr)max

γ | and`r = |(Zr)min
γ | of

Boolean combinationsZ1 = Ψ1(X1, . . . , Xn), . . . , ZL = ΨL(X1, . . . , Xn) of the
argumentsX1, . . . , Xn. In order to state this as a theorem and develop the formal
machinery for carrying out the proofs, we need some further notation. Hence suppose
thatE 6= ∅ is some base set,X ∈ P̃(E) a fuzzy subset ofE andv ∈ {0, 1}. We then
define the fuzzy subsetX〈v〉 ∈ P̃(E) by

X〈v〉 =
{
X : v = 1
¬X : v = 0 , (176)

where¬X is the standard fuzzy complement ofX. Using this notationX〈v〉, we can
conveniently write polynomials of negated and non-negated fuzzy sets, e.g. min-terms
like X〈v1〉

1 ∩ · · · ∩ X〈vn〉n wherev0, . . . , vn ∈ {0, 1}. However, min-terms involving
a fixed number of variables are not sufficient for our current purposes, because we are
now dealing with fuzzy sets rather than crisp sets, and consequently it is no longer
the case that every Boolean combination can be reduced to a disjunction of min-terms
(i.e., to disjunctive normal form). Therefore we will consider Boolean expressions of
the following form,

X
〈v1〉
i1
∩ · · · ∩X〈vm〉im

where0 ≤ i1 < · · · < im ≤ n andvj ∈ {0, 1} for all j ∈ {1, . . . ,m}. Compared to
the earlier fixed-length min-terms, it has now been made possible that only a selection
of theXi participate in the conjunction, while others are omitted. In the following, I
will develop a more compact notation for these expressions. Hence letV denote the
set of mappings,

V = {V : A −→ {0, 1}|A ⊆ {1, . . . , n}} . (177)

Abusing notation, I will identify eachV ∈ V and its graph, i.e.V will be written as
V = {(i1, v1), . . . , (im, vm)}, where1 ≤ i1 < i2 < · · · < im ≤ n andvj = V (ij) ∈
{0, 1} for all j ∈ {1, . . . ,m}. Based on this representation ofV , we can define a
corresponding Boolean combination of the fuzzy subsetsX1, . . . , Xn ∈ P̃(E) by

ZV = ΨV (X1, . . . , Xn) = X
〈v1〉
i1
∩ · · · ∩X〈vm〉im

. (178)

In dependence onV , we further abbreviate

`V = |(ZV )min
γ | (179)

uV = |(ZV )max
γ | (180)
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for all V ∈ V, whereγ ∈ I is a given choice of the cutting parameter. It is these
Boolean combinationsZV = ΨV (X1, . . . , Xn) from which the cardinality informa-
tion expressed by the upper and lower cardinality boundsuV and`V will be sampled.
However, it is not a trivial task to express the relationRγ(X1, . . . , Xn) in terms of the
cardinality coefficients̀V anduV , V ∈ V. I therefore take an intermediate step, and
first show how the cardinalities of arbitrary Boolean combinations of the(Xi)

min
γ and

(Xi)
max
γ can be computed from the known coefficients`V anduV , V ∈ V.

Hence letE 6= ∅ be some base set andX ∈ P̃(E) be a fuzzy subset ofE. For
p ∈ {0, ∗, 1,+,−}, we define

X [p] =



¬(Xmax
γ ) : p = 0

Xmax
γ ∩ ¬Xmin

γ : p = ∗
Xmin
γ : p = 1

Xmax
γ : p = +
¬(Xmin

γ ) : p = −

(181)

In order to express the relationRγ(X1, . . . , Xn), it is sufficient to know the cardinality
of all Boolean combinationsX1

[p1] ∩ · · · ∩Xn
[pn] wherep ∈ {0, ∗, 1}. This will first

be ascertained for the most fine-grained choice ofRγ(X1, . . . , Xn), which is sampled
from all min-terms of the variablesY1, . . . , Yn:

Theorem 259
LetE 6= ∅ be a finite base set andX1, . . . , Xn ∈ P̃(E). Further letγ ∈ I be given.
For all p = (p1, . . . , pn) ∈ {0, ∗, 1}n, we abbreviate

D(p) = {d ∈ {0, 1}n : (d1, p1), . . . , (dn, pn) ∈ {(0, 0), (1, 1), (∗, 0), (∗, 1)}} (182)

S(p) = X
[p1]
i1
∩ · · · ∩X [pn]

in
(183)

c(p) = |S(p)| = |X [p1]
i1
∩ · · · ∩X [pn]

in
| (184)

We further define

Λ = {(λp)p∈{0,∗,1}n | for all p ∈ {0, ∗, 1}n, λp : {0, 1}n −→ {0, . . . , |E|}
satisfies

∑
d∈{0,1}n

λp(d) = c(p) andλp(d) = 0 for all d /∈ D(p)} . (185)

The relationR = R
Φ0,...,0,...,Φ1,...,1
γ (X1, . . . , Xn) generated by all min-terms

Φd1,...,dn(Y1, . . . , Yn) = Y
(d1)
i1
∩ · · · ∩ Y (dn)

in

and corresponding cardinality coefficientscd1,...,dn = |Φd1,...,dn(Y1, . . . , Yn)| accord-
ing to (172), can then be expressed as

R = {c : {0, 1}n −→ {0, . . . , |E|} | there exists(λp)p∈{0,∗,1}n ∈ Λ
such that for alld ∈ {0, 1}n, cd =

∑
p∈{0,∗,1}n

λp(d)} . (186)

(Proof: D.20, p.478+)
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In other words,R can be computed from the cardinalities of the setsX
[p1]
i1
∩ · · · ∩

X
[pn]
in

, wherep = (p1, . . . , pn) ∈ {0, ∗, 1}n. This result is important becauseR
is the ‘universal’ relation assumed in the worst-case analysis of Th-255, which can
express every quantitativeQ. As shown in the next theorem, the above reduction to the
universal relationR is sufficient to compute every other relationRγ(X1, . . . , Xn) =
RΦ1,...,ΦK
γ (X1, . . . , Xn) as well, which results from a choice of Boolean combinations

Φ1(Y1, . . . , Yn), . . . ,ΦK(Y1, . . . , Yn):

Theorem 260
LetE 6= ∅ be a finite base set,X1, . . . , Xn ∈ P̃(E), and suppose thatΦ′1(Y1, . . . , Yn),
. . . , Φ′K(Y1, . . . , Yn) are Boolean combinations of the crisp variablesY1, . . . , Yn ∈
P(E). We shall further abbreviate

R = RΦ0,...,0,...,Φ1,...,1
γ (X1, . . . , Xn) (187)

R′ = R
Φ′1,...,Φ

′
K

γ (X1, . . . , Xn) (188)

whereΦd1,...,dn(Y1, . . . , Yn) = Y
(d1)
i1
∩ · · · ∩ Y (dn)

in
, see(168). In addition, I will use

cardinality coefficientscd1,...,dn = |Φd1,...,dn(Y1, . . . , Yn)|.
Then

R′ = {(c′1, . . . , c′K) : (c0,...,0, . . . , c1,...,1) ∈ R, c′j =
∑
d∈Dj

cd, j = 1, . . . ,K} ,

(189)

where

Dj = {d = (d1, . . . , dn) ∈ {0, 1}n : Φ′j(Y1, . . . , Yn) ∩ Φd(Y1, . . . , Yn) 6= ∅}
(190)

for all j ∈ {1, . . . ,K}.
(Proof: D.21, p.482+)

Hence>j and⊥j can be computed from some choice ofR′, andR′ can be computed
from the most fine-grained, or ‘universal’ relationR, which in turn can be computed
from the cardinalities|X [p1]

i1
∩ · · · ∩ X [pn]

in
|, pi ∈ {0, ∗, 1}. The next goal is that of

computing the cardinality ofX1
[p1] ∩ · · · ∩ Xn

[pn] from the cardinality coefficients
uV and`V , V ∈ V. In order to accomplish this, I need additional intermediate rep-
resentations. Rather than fixed-length Boolean combinations of the above type, i.e.
X1

[p1]∩· · ·∩Xn
[pn], I therefore introduce more flexible Boolean combinations which

take the following form,

X
[p1]
i1
∩ · · · ∩X [pm]

im

where1 ≤ i1 < i2 < · · · < im ≤ n andpj ∈ {0, 1, ∗,+,−} for all j ∈ {1, . . . ,m}.
The relevant argument positionsij and correspondingpj can again be viewed as the
graphP = {(i1, p1), . . . , (im, pm)} of a mappingP : A −→ {0, 1, ∗,+,−}, where
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A ⊆ {1, . . . , n} = {ij : j = 1, . . . ,m} andP (ij) = pj . We can therefore cap-
ture all intended combinations of the arguments by lettingP range over the following
collection,

P
∗ = {P : A −→ {0, 1, ∗,+,−}|A ⊆ {1, . . . , n}} . (191)

Based on a givenP ∈ P∗ and its graph representationP = {(i1, p1), . . . , (im, pm)},
we can now define the associated crisp setS(P ) ∈ P(E) and its cardinalityc(P ) by

S(P ) = X
[p1]
i1
∩ · · · ∩X [pm]

im
(192)

c(P ) = |S(P )| = |X [p1]
i1
∩ · · · ∩X [pm]

im
| . (193)

For reasons that will soon become clear, I also define the following restricted rangeP,
in whichP is allowed to assume values in{0, 1,+,−} only:

P = {P : A −→ {0, 1,+,−}|A ⊆ {1, . . . , n}} . (194)

Compared toP∗, P hence comprises those mappingsP ∈ P∗ which satisfyP (i) 6=
∗ for all i ∈ DomP . The following theorem asserts that the restricted rangeP is
sufficient for computingc(P∗) for all P∗ ∈ P∗, by presenting a suitable reduction:

Theorem 261
LetE 6= ∅ be a finite base set andX1, . . . , Xn ∈ P̃(E). Then for allP∗ ∈ P∗,

c(P∗) =
∑
P∈P

σ(P ) · c(P ) , (195)

where the integer-valued mappingσ = σP∗ : P −→ Z is inductively defined as follows.
GivenP∗ ∈ P, let

i∗ = max{i ∈ DomP∗ : P∗(i) = ∗} . (196)

In dependence oni∗, we stipulate

a. If i∗ = 0, then

σP∗(P ) =
{

1 : P = P∗
0 : P 6= P∗

(197)

for all P ∈ P.

b. If i∗ > 0, then

σP∗(P ) = σP ′(P )− σP ′′(P ) (198)

for all P ∈ P, where

P ′ = (P \ {(i∗, ∗)}) ∪ {(i∗,+)} (199)

P ′′ = (P \ {(i∗, ∗)}) ∪ {(i∗, 1)} . (200)
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(Proof: D.22, p.483+)

Hencec(P∗) can indeed be computed from the cardinalitiesc(P ), P ∈ P. Having
shown that the casep = ∗ can be eliminated, we shall assume in the following that
p ∈ {0, 1,+,−} only, and correspondingly focus on the case thatP ∈ P. It remains
to be shown that the cardinalitiesc(P ) = |X [p1]

i1
∩ · · · ∩ X [pm]

im
| can be computed

from the quantitiesuV and`V , V ∈ V sampled fromX1, . . . , Xn. In the following,
I will introduce some new concepts which simplify the description of the necessary
calculations. Forp ∈ {0, 1,+,−}, we define its ‘polarity’pol(p) ∈ {0, 1} and its
‘type’, type(p) ∈ {max,min}, by

pol(p) =
{

1 : p ∈ {1,+}
0 : p ∈ {0,−} (201)

type(p) =
{

max : p ∈ {+,−}
min : p ∈ {0, 1} (202)

The polarity ofp is 0 if X [p] is negated, i.e. in the casesX [0] = ¬(Xmax
γ ) andX [−] =

¬(Xmin
γ ), while the polarity is one in the non-negated casesX [1] = Xmin

γ andX [+] =
Xmax
γ . The type ofp is ‘max’ if X [p] = (X〈pol(p)〉)

max

γ i.e. in the casesX [+] =
Xmax
γ andX [−] = ¬(Xmin

γ ) = (¬X)max
γ , see Th-61. The type ofp is ‘min’ if

X [p] = (X〈pol(p)〉)
min

γ and hence in the casesX [0] = ¬(Xmax
γ ) = (¬X)min

γ and

X [1] = Xmin
γ . Combining the results for the individual cases, we hence obtain that

X [p] = (X〈pol(p)〉)
type(p)

γ (203)

for all p ∈ {0, 1,+,−}. The following theorem completes the intended reduction, by
showing howc(P ), P ∈ P can be computed from the cardinality coefficients`V and
uV , V ∈ V.

Theorem 262
LetE 6= ∅ be a finite base set,X1, . . . , Xn ∈ P̃(E) andγ ∈ I. Then for allP ∈ P,

c(P ) =
∑
V ∈V

ζP (V,min) · `V +
∑
V ∈V

ζP (V,max) · uV , (204)

where the integer-valued mappingζ = ζP : V × {min,max} −→ Z is inductively
defined as follows. Recalling the graph representationP = {(i1, p1), . . . , (im, pm)}
of P , wherepj = P (ij), let

i∗ = max{i ∈ DomP : type(P (i)) 6= type(pm)} . (205)

In dependence oni∗, we stipulate

a. If i∗ = 0, then

ζP (V, y) =
{

1 : V = {(i1,pol(p1)), . . . , (im,pol(pm))}, y = type(pm)
0 : else

(206)

for all V ∈ V andy ∈ {min,max}.
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b. If i∗ > 0, then

ζP (V, y) = ζP ′(V, y)− ζP ′′(V, y) (207)

for all V ∈ V andy ∈ {min,max}, where

P ′ = P \ {(i∗, p∗)} (208)

P ′′ = P ′ ∪ {(i∗, p′)} (209)

p∗ = P (i∗) (210)

and

p′ =


0 : p∗ = +
1 : p∗ = −
+ : p∗ = 0
− : p∗ = 1 .

(211)

(Proof: D.23, p.486+)

By subsequently applying Th-259 to Th-262, every relationRγ(X1, . . . , Xn) can be
computed from a choice of cardinality coefficients`r = |(Zr)min

γ | andur = |(Zr)max
γ |,

which are sampled from suitable Boolean combinationsZr = Ψr(X1, . . . , Xn) of the
arguments. All of the theorems are constructive in style, i.e. they also present a specific
choice of Boolean combinations and show how the relationRγ(X1, . . . , Xn) can be
computed from the resulting quantities`r andur.

In order to spell out a procedure which covers all possibleRγ(X1, . . . , Xn) in full
generality, it was of course necessary to make worst-case assumptions in terms of
complexity of the quantifiers to be modelled. In other words, the number of Boolean
combinations required for the fully general analysis amounts to|V | = 3n. Although
the arityn of NL quantifiers is very small in practice (usuallyn = 2 or n = 3), this
indicates that the generic solution might not be optimal from the performance point
of view, and should rather be viewed as a proof of concept, and as a suitable point
of departure for developing highly efficient, dedicated solutions for typical classes of
quantifiers.

The potential for simplification can be demonstrated nicely for conservative quan-
tifiers, which I will now analyse in some more depth. My goal is to develop a sim-
ple and efficient way of computingRγ(X1, X2). Hence letQ : P(E)2 −→ I be
a two-place quantifier on a finite base set which is both quantitative and conserva-
tive. As has been shown in Th-258 above, we can describe the quantifier in terms
of a mappingq : {0, . . . , |E|}2 −→ I, based on an analysis in terms ofK = 2,
Φ1(Y1, Y2) = Y1, Φ2(Y1, Y2) = Y1 ∩ Y2, c1 = |Y1| and c2 = |Y1 ∩ Y2| for all
Y1, Y2 ∈ P(E). The corresponding relationRγ(X1, X2), X1, X2 ∈ P̃(E), can then
be determined fromZ1 = Ψ1(X1, X2) = X1, Z2 = Ψ2(X1, X2) = X1 ∩ X2 and
Z3 = Ψ3(X1, X2) = X1 ∩ ¬X2 in the following way.
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Theorem 263
LetE 6= ∅ be a finite base set and suppose thatX1, X2 ∈ P̃(E) are fuzzy subsets of
E. Further letγ ∈ I, and suppose thatRγ(X1, X2) ⊆ {0, . . . , |E|}× {0, . . . , |E|}, is
the relation defined by

Rγ(X1, X2) = {(|Y1|, |Y1 ∩ Y2|) : Y1 ∈ Tγ(X1), Y2 ∈ Tγ(X2)} .

ThenRγ(X1, X2) can be computed from̀1 = |(X1)min
γ |, `2 = |(X1 ∩X2)min

γ |, `3 =
|(X1 ∩ ¬X2)min

γ |, u1 = |(X1)max
γ |, u2 = |(X1 ∩X2)max

γ |, andu3 = |(X1 ∩ ¬X2)max
γ |,

viz

Rγ(X1, X2) = {(c1, c2) : `1 ≤ c1 ≤ u1,max(`2, c1 − u3) ≤ c2 ≤ min(u2, c1 − `3)} .

(Proof: D.24, p.490+)

Note. In this case, the ‘worst-case analysis’ forn = 2 results in32 = 9 combinations
of X1, X2 that must possibly be considered for computingR, i.e.X1 ∩ X2, X1 ∩
¬X2, ¬X1 ∩X2, ¬X1 ∩ ¬X2, X1, ¬X1, X2, ¬X2, andE. Of these,¬X1 and¬X2

are obviously redundant, because their cardinality bounds can be computed from the
cardinality bounds ofX1 andX2. The full domainE can also be eliminated, because
it bears no information aboutX1 andX2. This leaves a total of 6 combinations which
are potentially necessary for computingRγ(X1, X2). Hence the conservativity ofQ
shrinks down this set of required combinations by one half, i.e. only the combinations
X1, X1 ∩ X2 andX1 ∩ ¬X2 must actually be considered. Let us now put this
theorem into context. Its significance becomes clear once we recall the earlier Th-
258, which states that a conservative quantifier can be computed from the cardinality
of Φ1(Y1, Y2) = Y1 and Φ2(Y1, Y2) = Y1 ∩ Y2. Hence>Q,X1,X2 and⊥Q,X1,X2

can be computed from that choice ofRγ(X1, X2) specified in the above theorem.
The theorem therefore ensures that ifQ is conservative, then there exist mappings
qmin, qmax : {0, . . . , |E|}4 −→ I such that

>Q,X1,X2(γ) = qmax(`1, `2, `3, u1, u2, u3) (212)

⊥Q,X1,X2(γ) = qmin(`1, `2, `3, u1, u2, u3) (213)

for all X1, X2 ∈ P̃(E) andγ ∈ I, where the coefficients̀1, `2, `3, u1, u2 andu3 are
defined as above. This is obvious from the Th-263 if we define these mappings as
follows,

qmax(`1, `2, `3, u1, u2, u3) = max{q(c1, c2) : (c1, c2) ∈ R}
qmin(`1, `2, `3, u1, u2, u3) = min{q(c1, c2) : (c1, c2) ∈ R} ,

whereR ⊆ {0, . . . , |E|} × {0, . . . , |E|} is the relation

R = {(c1, c2) : `1 ≤ c1 ≤ u1,max(`2, c1 − u3) ≤ c2 ≤ min(u2, c1 − `3)} .

We shall see below in section 11.9 how this analysis of conservative quantifiers can be
incorporated into an efficient implementation of proportional quantifiers in the models.
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Other classes of quantifiers can be analysed in a similar way. This will be demon-
strated below in section 11.10, where the method is extended to cardinal comparatives
like “more . . . than”. The proposed scheme of analysing quantitative quantifiers on
finite base sets therefore enables me to implement the relevant NL quantifiers in all
models of interest. As witnessed by Th-263, for example, the proposed solution of
computing>j and⊥j from a relationRj = Rγj on cardinals achieves a very simple
description which is also computationally straightforward. In the next section, I will
be concerned with the remaining issue of computing the quantities`r = |(Zr)min

γj
|

andur = |(Zr)max
γj
| efficiently, to which the computation ofRj has been reduced.

Upon solving this problem, all necessary ingredients will then be available for imple-
menting quantifiers in the models. As a courtesy to the reader, I will then put all the
pieces together and restate the complete algorithms in pseudo-code. In particular, this
self-contained presentation is intended as a point of departure for concrete implemen-
tations.

11.6 Computation of cardinality bounds

GivenQ andX1, . . . , Xn, we are now able to compute>Q,X1,...,Xn , ⊥Q,X1,...,Xn

andQγ(X1, . . . , Xn) from the upper cardinality boundsur = |(Zr)max
γ | and lower

cardinality bounds̀r = |(Zr)min
γ | of Boolean combinationsZ1, . . . , ZL of the argu-

ments. I have therefore succeeded in reformulating the computation of>Q,X1,...,Xn ,
⊥Q,X1,...,Xn andQγ(X1, . . . , Xn) in such a way that it depends only on cardinality
information expressed by the tuple of coefficients(`1, . . . , `L, u1, . . . , uL), see Th-
259 to Th-262 and eqns. (173), (174), (175), respectively. Once the cardinality bounds
`1, . . . , `L, u1, . . . , uL are known, the subsequent computations can dispense with any
direct reference to the fuzzy setsX1, . . . , Xn, which might be too large and awkward
to operate upon. The definition of the cardinality coefficients`r andur, however, still
depends onX1, . . . , Xn, which means that up to this point, I have merely shifted the
burden of dealing with theX1, . . . , Xn into the computation of these coefficients.

When computing quantification results, it is necessary to calculate theur and`r for
every considered choice of the cutting parameterγ that controls the three-valued cuts.
Due to the fact that these coefficients must be computed repeatedly, their computation
should be implemented as efficiently as possible. Consequently, my above strategy
will now be re-iterated, in order to ban any direct reference toX1, . . . , Xn from the
computation of the cardinality bounds`r andur. Basically, a pre-processing step will
be applied which extracts the relevant information from the given fuzzy subsets, and
the extracted cardinality information will then be represented in a way which lends
itself to efficient processing of thèr andur.

In order to discuss the intermediate representation extracted from the fuzzy sets, and
in order to construct a computation procedure which operates upon this representation,
it is possible to consider eachZr in isolation. I will hence focus on one fuzzy set
at a time, which for simplicity I denote byX, and which is supposed to be chosen
from {Z1, . . . , ZL}. In addition, I will assume that a sample of cutting levelsΓ =
{γ0, . . . , γm} be given, equipped with the usual properties, i.e.0 = γ0 < γ1 < · · · <
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γm = 1 andΓ(X) ⊆ Γ. It is then convenient to index the results of the cardinality
bounds for eachγj by j. I will hence denote bỳ(j) andu(j) the lower and upper

cardinality bounds of the considered fuzzy setX ∈ P̃(E) in thej-th iteration, i.e.

`(j) = |Xmin
γj
| (214)

u(j) = |Xmax
γj
| (215)

for j ∈ {0, . . . ,m− 1}. Rather than computing the coefficients`(j) andu(j) in each
iterationj = 0, . . . ,m−1 from scratch, it would be advantageous to devise a procedure
which computes the values of these coefficients in the current iteration, i.e.`(j) and
u(j), from their respective values in the previous iteration, i.e. from`(j − 1) and
u(j−1). This re-use of earlier computations promises a cut in processing times due to
the elimination of redundant effort. For the sake of efficiency, this procedure should not
refer directly to the fuzzy setX from which the coefficients̀(j) andu(j) are sampled.
By contrast, all computations should rest on cardinality information only. A suitable
mechanism which extracts exactly those aspects of a fuzzy subset that characterize its
cardinality, is provided by the histogram.42

Definition 164 By thehistogramof a fuzzy subsetX ∈ P̃(E) (whereE is some finite
set), I denote the mapping HistX : I −→ N defined by

HistX(z) = |µ−1
X (z)| = |{e ∈ E : µX(e) = z}| (216)

for all z ∈ I.

Notes

• It is apparent from the assumed finiteness ofE that HistX is well-defined, i.e.
the term|µ−1

X (z)| always refers to a finite cardinality.

• The proposed histogram representation can be likened to Rescher’struth status
statisticsξz, which it generalizes from them-valued to the continuous valued
case, see [128, p. 201].

Let us now recall the notation

A(X) = {µX(e) : e ∈ E}

introduced in (151). The finiteness ofE obviously entails thatA(X) be a finite set as
well. In addition, it is quite clear thatA(X) is the support of HistX , i.e.

A(X) = {z ∈ I : HistX(z) 6= 0} .
42This is apparent because two fuzzy subsetsX ∈ P(E), X′ ∈ P(E′) of finite base setsE,E′ 6= ∅

have the same histograms, i.e. HistX = HistX′ , if and only if there exists a bijectionβ : E −→ E′ such

thatX′ =
ˆ̂
β(X) (and hence alsoX =

ˆ̂
β−1(X)). Consequently, histograms capture exactly the cardinality

aspect of fuzzy sets, because two finite sets have the same cardinality if and only if there exists a bijection
between them.
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In particular, HistX has finite support. This is important because having finite support,
HistX can be uniquely determined from a finite representation. To see this, consider
a finite setA ⊇ A(X); becauseA(X) is finite, such sets are known to exist. We can
then restrict HistX to the finite sample ofz ∈ A, by defining a corresponding mapping
HA : A −→ N according to

HA(z) = HistX(z)

for all z ∈ A. It is obvious that HistX can be recovered fromHA, becauseA ⊇ A(X)
grants that the support of HistX is contained inA. Thereforez ∈ I \ A entails that
HistX(z) = 0. This proves that knowingHA is sufficient to determine HistX(z) in the
full range of allz ∈ I, because HistX(z) can be expressed in terms ofHA according
to the obvious rule

HistX(z) =
{
HA(z) : z ∈ A
0 : else

(217)

for all z ∈ I. The benefit gained by this representation is that the ‘generating’ mapping
HA : A −→ N is declared on a finite domain. ThereforeHA can be specified by listing
the finite number of pairs in its graph, i.e. as a finite list which comprises all pairs in
{(z,HistX(z)) : z ∈ A}. In particular, this demonstrates that the histogram ofX
has a finite specification, and is hence suitable for representation on digital computers
(modulo the finite precision of floating point numbers, of course).

Having introduced the histogram-based representation of the considered fuzzy subset
X, I will now connect this representation to the given set of three-valued cut levelsΓ ⊇
Γ(X), in order to achieve an incremental computation of the cardinality coefficients.
Hence suppose thatΓ = {γ0, . . . , γm} ⊇ Γ(X1, . . . , Xn) is given, where0 = γ0 <
γ1 < · · · < γm−1 < γm = 1. Let us defineAΓ ∈ P(I) by

AΓ = { 1
2 + 1

2γ : γ ∈ Γ} ∪ { 1
2 −

1
2γ : γ ∈ Γ} . (218)

It is apparent from the finiteness ofΓ thatAΓ has finite cardinality as well. Further-
more,AΓ clearly satisfies the desired condition that

AΓ ⊇ AΓ(X) ⊇ A(X) . (219)

This is obvious fromΓ ⊇ Γ(X), (151), (152) and (218). By the above reasoning, we
hence know that the support of HistX is contained inAΓ, i.e. the histogram ofX can
be represented byHAΓ : AΓ −→ N, see (217). For notational convenience, I will not
refer toHAΓ directly. It will be advantageous to splitHAΓ into two mappingsH+ and
H−, which let us access the histogram information in terms ofj rather thanγj . These
mappingsH+,H− : {0, . . . ,m} −→ I are defined by

H+(j) = HistX( 1
2 + 1

2γj) = |{e ∈ E : µX(e) = 1
2 + 1

2γj}| (220)

H−(j) = HistX( 1
2 −

1
2γj) = |{e ∈ E : µX(e) = 1

2 −
1
2γj}| (221)

This is just a convenient representation ofHAΓ , becauseH+ andH− are apparently
sampled fromHAΓ , and because the original mappingHAΓ can be recovered fromH+
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andH− as follows,

HAΓ(z) =

{
H+(j) : z = 1

2 + 1
2γj

H−(j) : z = 1
2 −

1
2γj

for all z ∈ AΓ. Based on the mappingsH+ andH−, which must be computed from
X in a preprocessing step, it is now possible to formulate an incremental procedure,
which computes the current cardinality bounds`(j) andu(j) in thej-th iteration from
the cardinality bounds̀(j − 1) andu(j − 1) computed in the previous iteration, and
from the cardinality information stored inH+(j) andH−(j).

Theorem 264
LetE 6= ∅ be a finite base set andX ∈ P̃(E) a fuzzy subset ofE. Further letΓ =
{γ0, . . . , γm} ⊇ Γ(X) be given such that0 = γ0 < γ1 < · · · < γm−1 < γm = 1.
Then

`(0) =
m∑
k=1

H+(k)

u(0) = `(0) +H+(0) ,

and

`(j) = `(j − 1)−H+(j)

u(j) = u(j − 1) +H−(j)

for all j ∈ {1, . . . ,m− 1}.
(Proof: D.25, p.498+)

Obviously, neither the formulas for initialisation nor those for updating refer to the
original fuzzy set; it is only the histogram ofX that must be known for computing the
cardinality bounds. I have therefore succeeded in eliminating the fuzzy setX from
the algorithm for computing̀(j) andu(j). Unlike the fuzzy sets themselves, their
histograms all look alike. This greatly facilitates processing, because the histograms
of arbitrary fuzzy sets can easily be represented in a uniform way. By storing the
histogram in an array, its data can be accessed very efficiently. Due to the fact that the
update rules described in Th-264 only involve this lookup operation, i.e. one access
to the histogram data inH+(j) or H−(j), and one additional arithmetic operation
(sum), the proposed method results in a very fast implementation. The presentation of
a histogram-based update rule in Th-264 completes my analysis of fuzzy quantification
in Fξ-DFSes and the subsequent discussion of possible efficiency improvements.

From a more general perspective, what I have shown is thatFξ(Q)(X1, . . . , Xn) can
always be expressed as a function

Fξ(Q)(X1, . . . , Xn) = Ξ(HistZ1 , . . . ,HistZL)

which depends only on the histograms of Boolean combinationsZ1, . . . , ZL of the
arguments. However, this should not lure us intodefiningfuzzy quantifiers as functions
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of histograms in the spirit of Rescher’s treatment of quantifiers in many-valued logic,
see [127] and [128, pp. 197-206]. This is because the histogram-based analysis rests
on the assumption of automorphism-invariance, a property shared by most, but not all,
NL quantifiers. When attempting to define linguistic quantifiers directly in terms of
Ξ(HistZ1 , . . . ,HistZL), the correspondence problem discussed in Chap. 2 returns with
full force. Consequently, the analysis of certain quantifiers in terms of histograms is
only possible in special cases, and clearly too narrow for a comprehensive treatment of
fuzzy NL quantification. In addition, it makes no provisions as to the systematicity of
interpretation.

11.7 Implementation of unary quantifiers

In this section, I finally present the complete algorithms for quantitative one-place
quantifiers on finite base sets. It is true that all the necessary techniques for imple-
menting these quantifiers in the prototypical modelsFCh,M andMCX have already
been described. Nevertheless, it is presumably helpful to collect the results scattered
across the previous sections, and show how the different parts of the implementation
work in concert.
Hence letE 6= ∅ be a finite base set and suppose thatQ : P(E) −→ I is quantitative.
Further letX ∈ P̃(E) be a given fuzzy argument. We then know from Th-250, Th-253
and Th-254 thatFCh(Q)(X), M(Q)(X) andMCX(Q)(X) can be computed from
quantities>j , ⊥j sampled from some choice ofΓ = {γ0, . . . , γm} ⊇ Γ(X), where
0 = γ0 < γ1 < · · · < γm = 1. For convenience, I will assume in the following that
Γ = Γ(X). Recalling (152), (220) and (221), it is then apparent howH+,H− as well
asγj , j = 0, . . . ,m can be computed from the fuzzy setX. I will write H+[j] and
H−[j] to denoteH+(j) andH−(j), respectively. An(m + 1)-dimensional arrayG
will be used to access theγj ’s, i.e. G[j] must be set toγj , j = 0, . . . ,m. In partic-
ular, this means thatG[0] = 0 andG[m] = 1, cf. (152). The resulting algorithms
which computeFCh(Q)(X),M(Q)(X) andMCX(Q)(X) from these data, are de-
picted in tables 4, 5 and 6, respectively. Starting withj = 0, each of the algorithms
enters a main loop which incrementsj in each iteration. This lets me compute the cur-
rent value of the cardinality bounds` = |Xmin

γj
| andu = |Xmax

γj
| in thej-th iteration

from their values in the previous iteration and from the histogram information stored
in H+ andH− as described in Th-264. The update of these coefficients takes place in
the code fragment with the heading ‘update clauses’. The quantities>j = >Q,X(γj),
⊥j = ⊥Q,X(γj) andCj = med 1

2
(>j ,⊥j) can then be computed fromqmin(`, u) and

qmax(`, u), as described in Th-244. Apart from incorporating the update of the cardi-
nality coefficients̀ andu, the algorithms merely reflect the earlier analysis in Th-250,
Th-253 and Th-254.
In these algorithms, I decided to supply the fuzzy setX ∈ P̃(E) as the input parame-
ter, which directly reflects the expected input-output behaviour (i.e.X is the input, and
F(Q)(X) is the returned output). The histogram information in H+ and H− and the
arrayG which collects theγj ’s, must then be computed fromX in the obvious way.
However, it also makes sense to consider a variant of these algorithms where the algo-
rithms expect H+, H− andGas their inputs, rather than the fuzzy setX from which
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Algorithm for computing FCh(Q)(X)
(floating-point arithmetics)
INPUT: X
Compute G, H +, H−and m; // see text
// initialize `, u

` :=
m∑
j=1

H+[j];

u := ` + H+[0];
sum = G[1] * ( qmin( `, u) + qmax( `, u));
for( j := 1; j <m; j := j + 1 ) {

// update clauses for ` and u
` := ` - H +[j];
u := u + H−[j];
sum := sum + (G[j+1] - G[j])

* ( qmin( `, u) + qmax( `, u));
}

return sum / 2;
END

Table 4: Algorithm for evaluating quantitative one-place quantifiers inFCh (based on
floating-point arithmetics)

Algorithm for computing M(Q)(X)
(floating-point arithmetics)
INPUT: X
Compute G, H +, H−and m; // see text
// initialize `, u

` :=
m∑
j=1

H+[j];

u := ` + H+[0];
> := qmax( `, u);
⊥ := qmin( `, u);
if( ⊥ > 1

2 ) {
sum := G[1] * ⊥;
for( j := 1; j <m; j := j + 1 ) {

// update clauses for ` and u
` := ` - H +[j];
u := u + H−[j];
⊥ := qmin( `, u);
if( ⊥ ≤ 1

2 )
break;

sum := sum + (G[j+1] - G[j]) * ⊥;
}

}
else if( > < 1

2 ) {
sum := G[1] * >;
for( j := 1; j <m; j := j + 1 ) {

// update clauses for ` and u
` := ` - H +[j];
u := u + H−[j];
> := qmax( `, u);
if( > ≥ 1

2 )
break;

sum := sum + (G[j+1] - G[j]) * >;
}

}
else
{ return 1

2 ; }
return sum + 1

2 * (1 - G[j]);
END

Table 5: Algorithm for evaluating quantitative one-place quantifiers inM (based on
floating-point arithmetics)
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Algorithm for computing MCX(Q)(X)
(floating-point arithmetics)
INPUT: X
Compute G, H +, H−and m; // see text
// initialize `, u

` :=
m∑
j=1

H+[j];

u := ` + H+[0];
> := qmax( `, u);
⊥ := qmin( `, u);
j := 0;
if( ⊥ > 1

2 ) {
B := 2 * ⊥ - 1;
while( B > G[j+1] ) {

j := j + 1;
// update clauses for ` and u
` := ` - H +[j];
u := u + H−[j];
B := 2 * qmin( `, u) - 1;
}

return 1
2 + 1

2 max(B, G[j]);
}

else if( > < 1
2 ) {

B := 1 - 2 * >;
while( B > G[j+1] ) {

j := j + 1;
// update clauses for ` and u
` := ` - H +[j];
u := u + H−[j];
B := 1 - 2 * qmax( `, u);
}

return 1
2 - 1

2 max(B, G[j]);
}

return 1
2 ;

END

Table 6: Algorithm for evaluating quantitative one-place quantifiers inMCX (based
on floating-point arithmetics)

these coefficients have been sampled. This separation of the histogram extraction from
the core algorithms, will abstract from any specifics concerning the representation of
the fuzzy setX. This is because the resulting histograms can be represented in a uni-
form way, which need not be the case for different types of fuzzy subsets and hetero-
geneous domains. By separating the histogram extraction from the main algorithms, it
becomes possible to develop a generic solution which proves useful for implementing
quantifiers in arbitrary domains.

The three algorithms presented so far resort to floating-point arithmetics, i.e. the
membership gradesµX(e) and consequently theγj ’s, are allowed to assume arbitrary
values in the unit interval. In some cases, however, it can be advantageous to depart
from this scheme, and rather profit from a reformulation in terms of integer arithmetics.
Roughly speaking, the integer-based solution will be beneficial if the size of the domain
is large compared to the number of supported membership grades. This will be the case
e.g. in fuzzy image processing, where the size of the domain (number of image pixels)
easily reaches one million and more; and where a coarse discernment of intensities is
often sufficient (e.g., one byte or 256 intensity grades per pixel).
Now let us inquire how the basic algorithms can be fitted to integer arithmetics. In this
case,X ∈ P̃(E) is no longer allowed to assume arbitrary membership gradesµX(e) ∈
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I. By contrast, there is a fixed choice ofm′ ∈ N \ {0} such that all membership values
of the fuzzy argument setX satisfy

µX(e) ∈ Um′ (222)

for all e ∈ E, where

Um′ =
{

0,
1
m′
, . . . ,

m′ − 1
m′

, 1
}
. (223)

If X ∈ P̃(E) satisfies (222), i.e.X is admissible for the chosenm′, then we can repre-
sent the histogram ofX as an(m′+1)-dimensional array HistX : {0, . . . ,m′} −→ N,
defined by

HistX [k] =
∣∣{e ∈ E : µX(e) =

k

m′
}
∣∣

for all k = 0, . . . ,m′. For simplicity, we shall further assume thatm′ is even, (i.e.
m′ = 2m for a givenm ∈ N \ {0}). Then HistX can be represented by the following
choices of the arraysH+ andH−,

H+(j) = 1
2 + j/m′

H−(j) = 1
2 − j/m

′

for j = 0, . . . ,m. The integer-based implementation therefore rests on the choice of

Γ = {j/m : j = 0, . . . ,m} , (224)

which is known from (222) to includeΓ(X). Starting fromj ∈ {0, . . . ,m}, we can
now computeγj according toγj = j/m. Unlike the floating-point implementation,
the integer-based reformulation can therefore dispense with an arrayGwhich explicitly
stores the relevant values ofγj . The integer-based algorithms for implementing unary
quantifiers inFCh,M andMCX are shown in tables 7, 8 and 9, respectively. In fact,
these algorithms are rather similar to their floating-point equivalents, because they are
also based on Th-250, Th-253 and Th-254; and because they also profit from the incre-
mental update of̀ andu as described in Th-264. However, some slight optimizations
have been made which reflect thatΓ is now defined by (224). Unlike the floating-point
case, this choice ofΓ makes it possible that bothH+[j] = 0 andH−[j] = 0 in
the current iterationj, which entails that no update of`, u, qmin(`, u) andqmax(`, u)
is necessary (see Th-264 for justification). In order to avoid the vacuous recompu-
tation of ` andu in this situation, it pays off to check if the above criterion applies,
and consequently to perform an update ofqmin(`, u) andqmax(`, u) only when it is
known to be necessary. The variablesch (‘change’) ornc (‘no change’) are used to
recognize this situation.ch is set to ‘true’ only if at least one of̀, u has changed in
the current iteration, which forcesqmin(`, u) andqmax(`, u) to be recomputed. The
flagnc is set to true only if none of the coefficients` andu has changed in the current
iteration, which can be used to control the updating ofqmin(`, u) andqmax(`, u) in a
similar way. Apart from these modifications which aim at performance optimization,
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Algorithm for computing FCh(Q)(X)
(integer arithmetics)
INPUT: X
// initialise H, `, u
H := Hist X ;

` :=
m∑
j=1

H[m+j];

u := ` + H[m];
Q := qmin( `, u) + qmax( `, u);
sum := Q;
for( j := 1; j <m; j := j + 1 ) {

ch := false; // "change"
// update clauses for ` and u
if( H[m+j] 6= 0 )
{ ` := ` - H[m+j]; ch := true; }

if( H[m-j] 6= 0 )
{ u := u + H[m-j]; ch := true; }

if( ch )
// one of ` or u has changed
{ Q := qmin( `, u) + qmax( `, u); }

sum := sum + Q;
}

return sum / m’; // where m’ = 2*m
END

Table 7: Algorithm for evaluating quantitative one-place quantifiers inFCh (based on
integer arithmetics)

the algorithm forMCX has undergone some further changes. Compared to Th-254, I
have altered the recognition of the ‘stop condition’, which is replaced with a simpler
criterion in the final algorithm (see table 9). This modification is apparent from the use
of integer arithmetics, because the possible membership grades are now tied to the set
of all k/m′, k ∈ {0, . . . ,m′}, see (222). The reduced number of arithmetic operations
necessary to check the modified stopping condition, results in a further speed-up of the
algorithm for computingMCX(Q)(X).
A further simplification of the algorithms forM(Q)(X) andMCX(Q)(X) is pos-
sible in the frequent case thatQ is monotonic. For example, ifQ is nondecreasing,
thenqmin(`, u) = q(`) andqmax(`, u) = q(u), see (148). We can therefore omit the
updating ofu in the first for-loop and likewise omit the updating of` in the second
for-loop of the algorithms, because only the remaining coefficient is actually needed
for computingqmin(`, u) or qmax(`, u) in these cases.

11.8 Implementation of absolute quantifiers and quantifiers of excep-
tion

Unary quantifiers, like those discussed in the previous section, usually do not express
directly at the NL surface. Nevertheless, the modelling and implementation of these
quantifiers proves invaluable for treating important classes of quantifiers in NL: those
which depend on an absolute count (i.e.,absolute quantifiers), and those which specify
the admissible exceptions to a general rule (i.e.,quantifiers of exception).

Definition 165 For every two-place semi-fuzzy quantifierQ : P(E)2 −→ I,

• Q is called absoluteif there exists a quantitative one-place quantifierQ′ :
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Algorithm for computing M(Q)(X)
(integer arithmetics)
INPUT: X
// initialise H, `, u
H := Hist X ;

` :=
m∑
j=1

H[m+j];

u := ` + H[m];
> := qmax( `, u);
⊥ := qmin( `, u);
if( ⊥ > 1

2 ) {
sum := ⊥;
for( j := 1; j <m; j := j + 1 ) {

nc:= true; // "no change"
// update clauses for ` and u
if( H[m+j] 6= 0 )
{ ` := ` - H[m+j]; nc:= false; }

if( H[m-j] 6= 0 )
{ u := u + H[m-j]; nc:= false; }

if( nc)
{ sum := sum + ⊥; continue; }

// one of ` or u has changed
⊥ := qmin( `, u);
if( ⊥ ≤ 1

2 )
break;

sum := sum + ⊥;
}

}
else if( > < 1

2 ) {
sum := >;
for( j := 1; j <m; j := j + 1 ) {

nc:= true;
if( H[m+j] 6= 0 )
{ ` := ` - H[m+j]; nc:= false; }

if( H[m-j] 6= 0 )
{ u := u + H[m-j]; nc:= false; }

if( nc)
{ sum := sum + >; continue; }

// one of ` or u has changed
> := qmax( `, u);
if( > ≥ 1

2 )
break;

sum := sum + >;
}

}
else
{ return 1

2 ; }
return (sum + 1

2 *(m-j)) / m;
END

Table 8: Algorithm for evaluating quantitative one-place quantifiers inM (based on
integer arithmetics)

P(E) −→ I such thatQ = Q′∩, i.e. Q(Y1, Y2) = Q′(X1 ∩ X2) for all
Y1, Y2 ∈ P(E).

• Q is called aquantifier of exceptionif there exists an absolute quantifierQ′′ :
P(E)2 −→ I such thatQ = Q′′¬, i.e. Q(Y1, Y2) = Q′′(X1,¬X2) for all
Y1, Y2 ∈ P(E).

Notes

• Absolute quantifiers are of course well-known both in fuzzy set theory and in
TGQ; the above definition only serves to describe more precisely the class of
quantifiers handled by the algorithms to follow. As already mentioned in the in-
troduction, absolute quantifiers are called ‘quantifiers of the first kind’ in Zadeh’s
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Algorithm for computing MCX(Q)(X)
(integer arithmetics)
INPUT: X
// initialise H, `, u
H := Hist X ;

` :=
m∑
j=1

H[m+j];

u := ` + H[m];
> := qmax( `, u);
⊥ := qmin( `, u);
if( ⊥ > 1

2 ) {
for( j := 1; j <m; j := j + 1 ) {

ch := false; // "change"
// update clauses for ` and u
if( H[m+j] 6= 0 )
{ ` := ` - H[m+j]; ch := true; }

if( H[m-j] 6= 0 )
{ u := u + H[m-j]; ch := true; }

if( ch )
// one of ` or u has changed
{ ⊥ := qmin( `, u); }

if( ⊥ ≤ m+j )
{ return (m+j)/m’; }

}
return 1;
}

else if( > < 1
2 ) {

for( j := 1; j <m; j := j + 1 ) {
ch := false;
// update clauses for ` and u
if( H[m+j] 6= 0 )
{ ` := ` - H[m+j]; ch := true; }

if( H[m-j] 6= 0 )
{ u := u + H[m-j]; ch := true; }

if( ch )
// one of ` or u has changed
{ > := qmax( `, u); }

if( > ≥ m-j )
{ return (m-j)/m’; }

}
return 0;
} return 1

2 ;
END

Table 9: Algorithm for evaluating quantitative one-place quantifiers inMCX (based
on integer arithmetics)

publications on fuzzy quantifiers, e.g. [188, p. 149]. In TGQ, these quantifiers
are normally called ‘absolute’, but Keenan and Moss [81, p. 98] also use the term
‘cardinal determiner’.

• Quantifiers of exception are not mentioned in the literature on fuzzy quantifiers,
but these quantifiers are well-known to TGQ, see e.g. [82]. The term ‘exception
determiner’ is also common [81, p. 123].

To give one more example of the first type, the two-place quantifier “about 50” is an
absolute quantifier. Some examples of quantifiers of exception are presented in Table
10. The DFS axioms ensure that

F(Q)(X1, X2) = F(Q′)(X1 ∩X2) , (225)
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Quantifier Antonym (absolute)
all no
all except exactly k exactly k
all except about k about k
all except at most k at most k

Table 10: Examples of quantifiers of exception

wheneverQ = Q′∩ is an absolute quantifier andX1, X2 ∈ P̃(E). Similarly if Q =
Q′∩¬ is a quantifier of exception, then

F(Q)(X1, X2) = F(Q′)(X1 ∩ ¬X2) , (226)

for all X1, X2 ∈ P̃(E), whereQ′ : P(E) −→ I is the quantitative base quantifier from
whichQ is constructed. Owing to these reductions, we can therefore use the algorithms
for computingF(Q′)(X),F ∈ {MCX ,M,FCh} to evaluate absolute quantifiers and
quantifiers of exception.

For example, consider the absolute quantifierabout 50 : P(E)2 −→ I. According
to the above definition, we can then reduce the absolute quantifier to an intersection

about 50 = [∼50]∩ ,

where[∼50] : P(E) −→ I is a suitable unary quantifier. A possible choice of[∼50] is
the following.

[∼50](Y ) = SZ(|Y |, 35, 45, 55, 85)

for all Y ∈ P(E), where ‘SZ’ is Zadeh’s SZ-function [188, p. 184] (which has roughly
the shape of a smoothened trapezoid), supposed to be nonzero in the range 35..85 and
to reach full membership in the range 45..55. Owing to (225), we can then use the
fuzzy quantifierF([∼50]) : P̃(E) −→ I in order to interpret “about 50” in the chosen
model, e.g. forF =MCX ,

MCX(about 50 )(X1, X2) =MCX([∼50])(X1 ∩X2) ,

for all X1, X2 ∈ P̃(E). On the other hand, consider the quantifier of exception “all
except k”, which can be defined by

all except k (Y1, Y2) = [≤ k](Y1 ∩ ¬Y2)

for all Y1, Y2 ∈ P(E), i.e.all except k = [≤ k]∩¬. Let us now see howMCX([≤ k])
can be used for implementingMCX(all except k ). Following the generic solution
presented in (226), the computation ofMCX(all except k )(X1, X2) then reduces to

MCX(all except k )(X1, X2) =MCX([≤ k])(X1 ∩ ¬X2)
= 1− µ[k+1](X1 ∩ ¬X2) ,

for all X1, X2 ∈ P̃(E). Similar examples of practical relevance can be treated along
the same lines. Noticing that the assumptions which my analysis makes onF are valid
in every DFS, this reduction to the unary case is possible in arbitrary models.
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11.9 Implementation of proportional quantifiers

Proportional quantifiers like “almost all”, “most” or “many” are probably the most rel-
evant from an application point of view: in many cases, it is not the absolute numbers,
but rather some proportion or ratio of quantities, that raises interest. Hence let me
define this basic type of quantifiers formally, which lets us communicate about such
proportions:

Definition 166
A two-place semi-fuzzy quantifierQ : P(E)2 −→ I on a finite base set is called
proportionalif there existv0 ∈ I, f : I −→ I such that

Q(Y1, Y2) = q(c1, c2) =
{
f(c2/c1) : c1 6= 0
v0 : else

for all Y1, Y2 ∈ P(E), wherec1 = |Y1| andc2 = |Y1 ∩ Y2|.

Notes

• For example, the proposed definition of “almost all” in terms of equality (12) fits
into this scheme, wheref(z) = S(x, 0.7, 0.9) andv0 = 1.

• Usually f andv0 can be chosen independently ofE, i.e.Q has extension; see
section 4.14.

• Let us also observe that all proportional quantifiers are conservative by defini-
tion, because they can be expressed in terms of|Y1| and|Y1 ∩ Y2|; see Th-258.

Due to the fact that all proportional quantifiers are conservative, we already knowin
principle how >Q,X1,X2 and⊥Q,X1,X2 can be computed fromq andX1, X2. The
earlier theorem Th-263 elucidates the precise shape of the relationRγ(X1, X2), from
which we obtain

>Q,X1,X2(γ) = max{q(c1, c2) : (c1, c2) ∈ Rγ(X1, X2)}
⊥Q,X1,X2(γ) = min{q(c1, c2) : (c1, c2) ∈ Rγ(X1, X2)} .

In particular, the theorem explains howRγ(X1, X2) can be computed from coeffi-
cients`1, `2, `3, u1, u2, u3 which denote the cardinality of(X1)min

γ , (X1 ∩X2)min
γ ,

(X1 ∩ ¬X2)min
γ , (X1)max

γ , (X1 ∩X2)max
γ and(X1 ∩ ¬X2)max

γ , respectively. Based
on this analysis, I have already shown in (212) and (213) that

>Q,X1,X2(γ) = qmax(`1, `2, `3, u1, u2, u3)

and

⊥Q,X1,X2(γ) = qmin(`1, `2, `3, u1, u2, u3) ,

329



whereqmin, qmax : {0, . . . , |E|}6 −→ I are defined by

qmax(`1, `2, `3, u1, u2, u3) =
max{q(c1, c2) : `1 ≤ c1 ≤ u1,max(c1 − u3, `2) ≤ c2 ≤ min(c1 − `3, u2)}

(227)

and

qmin(`1, `2, `3, u1, u2, u3) =
min{q(c1, c2) : `1 ≤ c1 ≤ u1,max(c1 − u3, `2) ≤ c2 ≤ min(c1 − `3, u2)} .

(228)

In practice, we must specify a choice ofΓ = {γ0, . . . , γm} ⊇ Γ(X1, X2) with
0 = γ0 < γ1 < · · · < γm = 1, which makes the formulas for computing quantification
results inFCh,M andMCX applicable (see Th-250, Th-253 and Th-254). Based on
the above analysis, we are then prepared to compute the quantities>j = >Q,X1,X2(γj)
and⊥j = ⊥Q,X1,X2(γj) from the coefficients̀k anduk obtained at a given cut level
γj , j ∈ {0, . . . ,m − 1}. This results in the basic computation procedure for propor-
tional quantifiers (or more generally, all conservative quantifiers). The method is not
necessarily optimal in terms of efficiency, however. This is because for typical quan-
tifiers, it is not necessary to systematically inspect all pairs(c1, c2) ∈ Rj in order to
compute>j and⊥j . By contrast, it is often possible to compute>j and⊥j directly
from f , v0 and the given cardinality coefficients.

In the following, I will consider the typical case of a proportional quantifier which is
nondecreasing in its second argument. Examples comprise “more than half”, “at least
10 percent”, “almost all”, “many” etc. For these quantifiers, I show howqmin andqmax

can be computed more efficiently if one circumvents the explicit computation of the
set

{q(c1, c2) : `1 ≤ c1 ≤ c2,max(c1 − u3, `2) ≤ c2 ≤ min(c1 − `3, u2)} .

By avoiding the direct maximisation/minimisation over allq(c1, c2), I shortcut an op-
eration which can become computationally costly. Apart from simplifying the compu-
tation of>j and⊥j , I also show that some of the coefficients`1, `2, `3, u1, u2 andu3

are superfluous for nondecreasingf , i.e. whenq, and in turnQ, are nondecreasing in
their second argument. This permits a further simplification of the algorithms in some
cases, because we need not keep track of the irrelevant coefficients.

Theorem 265 LetE 6= ∅ be a finite base set andQ : P(E)2 −→ I a proportional
quantifier onE, i.e.

Q(Y1, Y2) = q(c1, c2) =
{
f(c2/c1) : c1 6= 0
v0 : c1 = 0

for all Y1, Y2 ∈ P(E), wherec1 = |Y1|, c2 = |Y1∩Y2|, f : I −→ I andv0 ∈ I. Further
suppose thatf is nondecreasing, i.e.Q is nondecreasing in its second argument. Then

>Q,X1,X2(γ) = qmax(`1, `3, u1, u2)
⊥Q,X1,X2(γ) = qmin(`1, `2, u1, u3)
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for all X1, X2 ∈ P̃(E) andγ ∈ I, where the cardinality coefficients`1, `2, `3, u1, u2, u3

are defined as in Th-263, andqmin, qmax : {0, . . . , |E|}4 −→ I are piecewise defined
as follows.

1. `1 > 0. Thenqmin(`1, `2, u1, u3) = f(`2/(`2 + u3)).

2. `1 = 0.

a. `2 + u3 > 0.
Thenqmin(`1, `2, u1, u3) = min(v0, f(`2/(`2 + u3))).

b. `2 + u3 = 0.

i. u1 > 0.
Thenqmin(`1, `2, u1, u3) = min(v0, f(1)).

ii. u1 = 0. Thenqmin(`1, `2, u1, u3) = v0.

For qmax(`1, `3, u1, u2), we have:

1. `1 > 0. Thenqmax(`1, `3, u1, u2) = f(u2/(u2 + `3)).

2. `1 = 0.

a. u2 + `3 > 0.
Thenqmax(`1, `3, u1, u2) = max(v0, f(u2/(u2 + `3))).

b. u2 + `3 = 0.

i. u1 > 0.
Thenqmax(`1, `3, u1, u2) = max(v0, f(0)).

ii. u1 = 0. Thenqmax(`1, `3, u1, u2) = v0.

(Proof: D.26, p.502+)

Notes

• If v0 ≤ f(1), thenmin(v0, f(1)) = v0, i.e. we need not distinguish 2.b.i and
2.b.ii in the computation ofqmin.

• If f(0) ≤ v0, then 2.b.i and 2.b.ii need not be distinguished in the computation
of qmax.

I will now develop the above analysis into complete algorithms for computing pro-
portional quantifiers inFCh,M andMCX . Hence let a proportional quantifierQ be
given, and suppose thatQ is specified in terms of the mappingf : I −→ I and constant
v0 ∈ I. In order to demonstrate the intended optimizations, I will assume thatf is non-
decreasing. Further letX1, X2 ∈ P̃(E) be a given choice of fuzzy arguments. In order
to put the framework into action and implementQ in the prototypical models, we must
choose someΓ = {γ0, . . . , γm} ⊇ Γ(X1, X2) with 0 = γ0 < γ1 < · · · < γm = 1,
m ∈ N \ {0}. For developing the solution based on floating-point arithmetics, it is
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Algorithm for computing FCh(Q)(X1, X2)
(floating-point arithmetics)
INPUT: X1, X2
Compute G, m, H +

1 , H +
2 ,H +

3 ,H−1 , H−2 , H−3 ; // see text
// initialize `, u:
for( k := 1; k ≤ 3; k := k+1 )

{ `k :=
m∑
j=1

H+
k [j]; uk := `k + H+

k [0]; }

sum := G[1] * ( qmin(`1, `2, u1, u3) + qmax(`1, `3, u1, u2));
for( j := 1; j <m; j := j + 1 ) {

// update clauses for `1, `2, `3, u1, u2, u3
for( k := 1; k ≤ 3; k := k+1 )
{ `k := `k - H +

k [j]; uk := uk + H−k [j]; }
sum := sum + (G[j+1] - G[j])

* ( qmin(`1, `2, u1, u3) + qmax(`1, `3, u1, u2));
}

return sum / 2;
END

Table 11: Algorithm for evaluating two-place proportional quantifiers inFCh (based
on floating-point arithmetics)

again convenient to assume the minimal choice ofΓ, i.e. Γ = Γ(X1, X2). The above
rule for computingqmin(`1, `2, u1, u3) andqmax(`1, `3, u1, u2) reduces>j and⊥j to a
function of coefficients̀k, uk, k ∈ {1, 2, 3} sampled fromZ1 = Ψ1(X1, X2) = X1,
Z2 = Ψ2(X1, X2) = X1 ∩ X2 andZ3 = Ψ3(X1, X2) = X1 ∩ ¬X2. Noticing
thatΓ(X1 ∩ X2) ⊆ Γ(X1, X2) andΓ(X1 ∩ ¬X2) ⊆ Γ(X1, X2) by Th-247, we can
represent the histograms HistZk , k ∈ {1, 2, 3} by (m + 1)-dimensional arraysH+

k

andH−k defined in accordance with (220) and (221). Currently, my implementation of
proportional quantifiers refers to inputsX1 andX2, in order to make the algorithms
self-contained. Again, it might be advantageous to separate the computation of the
histogramsH+

k andH−k from the main algorithms.43 In a practical implementation,
the assumed fuzzy sets input can easily be exchanged with the resulting histograms if
so desired. Apart from the histogram arraysH+

k andH−k , we must further compute
the arrayG of cut levelsG[j] = γj , j ∈ {0, . . . ,m}, and the cardinalm, which
specifies the number ofγj ’s. Based on these preparations, the earlier theorem Th-264
then permits an incremental computation of the quantities`k anduk, k ∈ {1, 2, 3}.
In turn, the above theorem Th-265 lets us compute>j = qmax(`1, `3, u1, u2) and
⊥j = qmin(`1, `2, u1, u3) from the current values of thèk anduk in the j-th iter-
ation. Finally theorems Th-250, Th-253 and Th-254 show how to compute the final
outcome of quantification inFCh,M andMCX from the given data. The resulting
algorithms which implement proportional quantification in the modelsFCh, M and
MCX are presented in tables 11, 12 and 13, respectively.

Let me point the reader’s attention to the organization of the algorithms forM and
MCX . First of all, both algorithms have been split into two main cases, and asso-
ciated main loops, in order to restrict computation to eitherqmin(`1, `2, u1, u3) or to
qmax(`1, `3, u1, u2). Of course, it is assumed thatqmin andqmax be computed effi-

43In this case, the extraction of the histogram data fromX1 andX2 is delegated to a preprocessing step,
and it isH+

k andH−k that serve as the input of the algorithms, rather than the fuzzy setsX1 andX2. The
histograms then provide a uniform representation suited for arbitrary fuzzy sets, which obviates the need for
the algorithms to operate on heterogeneous data.
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Algorithm for computing M(Q)(X1, X2)
(floating-point arithmetics)
INPUT: X1, X2
Compute G, m, H +

1 , H +
2 ,H +

3 ,H−1 , H−2 , H−3 ; // see text
// initialize `, u:
for( k := 1; k ≤ 3; k := k+1 )

{ `k :=
m∑
j=1

H+
k [j]; uk := `k + H+

k [0]; }

> := qmax(`1, `3, u1, u2);
⊥ := qmin(`1, `2, u1, u3);
if( cq > 1

2 ) {
sum := G[1] * ⊥;
for( j := 1; j <m; j := j + 1 ) {

// update clauses for `1, `2, u1, u3
`1 := `1 - H +

1 [j];
`2 := `2 - H +

2 [j];
u1 := u1 + H−1 [j];
u3 := u3 + H−3 [j];
⊥ := qmin(`1, `2, u1, u3);
if( ⊥ ≤ 1

2 )
break;

sum := sum + (G[j+1] - G[j]) * ⊥;
}

}
else if( > < 1

2 ) {
sum := G[1] * >;
for( j := 1; j <m; j := j + 1 ) {

// update clauses for `1, `3, u1, u2
`1 := `1 - H +

1 [j];
`3 := `3 - H +

3 [j];
u1 := u1 + H−1 [j];
u2 := u2 + H−2 [j];
> := qmax(`1, `3, u1, u2);
if( > ≥ 1

2 )
break;

sum := sum + (G[j+1] - G[j]) * >;
}

}
else
{ return 1

2 ; }
return sum + 1

2 * (1 - G[j]);
END

Table 12: Algorithm for evaluating two-place proportional quantifiers inM (based on
floating-point arithmetics)

ciently, following theorem Th-265. Due to the fact that the quantitiesqmin andqmax

need not be computed simultaneously, some simplifications are possible, i.e. the so-
called ‘update clauses’ which keep track of the`k anduk can be restricted to those
coefficients that are actually needed for computingqmin (in the first main loop) or
qmax (in the alternative main loop). For example, consider the first main loop in the
algorithm forMCX shown in table 12. In this case, the quantification result solely
depends onqmin(`1, `2, u1, u3), which in turn can be computed from the current val-
ues of`1, `2, u1 andu3 in the j-th iteration. It is therefore sufficient to update the
coefficients̀ 1, `2, u1 andu3 only; while the updating of̀3 andu2, and also the com-
putation ofqmax(`1, `3, u1, u2), can be omitted. It is also instructive to compare these
algorithms to their counterparts for unary quantifiers. In fact, the basic organisation
of the algorithms is identical in both cases; all differences are confined to the update
clauses which keep track of different sets of coefficients`k anduk.
It should be apparent how the basic algorithms can be fitted to nonincreasing propor-
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Algorithm for computing MCX(Q)(X1, X2)
(floating-point arithmetics)
INPUT: X1, X2
Compute G, m, H +

1 , H +
2 ,H +

3 ,H−1 , H−2 , H−3 ; // see text
// initialize `, u:
for( k := 1; k ≤ 3; k := k+1 )

{ `k :=
m∑
j=1

H+
k [j]; uk := `k + H+

k [0]; }

> := qmax(`1, `3, u1, u2);
⊥ := qmin(`1, `2, u1, u3);
j := 0;
if( ⊥ > 1

2 ) {
B := 2 * ⊥ - 1;
while( B > G[j+1] ) {

j := j + 1;
// update clauses for `1, `2, u1, u3
`1 := `1 - H +

1 [j];
`2 := `2 - H +

2 [j];
u1 := u1 + H−1 [j];
u3 := u3 + H−3 [j];
B := 2 * qmin(`1, `2, u1, u3) - 1;
}

return 1
2 + 1

2 max(B, G[j]);
}

else if( > < 1
2 ) {

B := 1 - 2 * >;
while( B > G[j+1] ) {

j := j + 1;
// update clauses for `1, `3, u1, u2
`1 := `1 - H +

1 [j];
`3 := `3 - H +

3 [j];
u1 := u1 + H−1 [j];
u2 := u2 + H−2 [j];
B := 1 - 2 * qmax(`1, `3, u1, u2);
}

return 1
2 - 1

2 max(B, G[j]);
}

return 1
2 ;

END

Table 13: Algorithm for evaluating two-place proportional quantifiers inMCX (based
on floating-point arithmetics)

tional quantifiers like “less than 60 percent” as well; suffice it to observe that ifQ (and
hencef ) is nonincreasing, thenQ′ = ¬Q is also a proportional quantifier, which can
be described in terms off ′ = ¬f andv′0 = ¬v0. Noticing that the resulting mappingf ′

is nondecreasing, the above algorithms can be used to computeF(Q′)(X1, X2), where
F is the model of interest. According to Th-12, the computation ofF(Q)(X1, X2) can
therefore be reduced toF(Q)(X1, X2) = ¬F(Q′)(X1, X2).

I have stated the above algorithms for a special case often met in practice, in order
to demonstrate the potential for optimization. However, these algorithms are easily
adapted to general proportional quantifiers, which need not fulfill any monotonicity re-
quirements. To this end, it is sufficient to replace all occurrences ofqmax(`1, `3, u1, u2)
and qmin(`1, `2, u1, u3) in the above algorithms with their generic counterparts, i.e.
qmax(`1, `2, `3, u1, u2, u3) andqmin(`1, `2, `3, u1, u2, u3) defined by (227) and (228).
Additional update clauses must then be added, because it is now necessary to keep
track of all coefficients̀1, `2, `3, u1, u2 andu3.
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Algorithm for computing FCh(Q)(X1, X2)
(integer arithmetics)
INPUT: X1, X2
// initialise Hk, `, u
H1 := Hist X1 ;
H2 := Hist X1∩X2 ;
H3 := Hist X1∩¬X2 ;
for( k := 1; k ≤ 3; k := k+1 )

{ `k :=
m∑
j=1

Hk[m+j]; uk := `k + Hk[m]; }

Q := qmin(`1, `2, u1, u3) + qmax(`1, `3, u1, u2);
sum := Q;
for( j := 1; j <m; j := j + 1 ) {

ch := false; // "change"
// update clauses for `1, `2, `3, u1, u2, u3
if( H1[m+j] 6= 0 )
{ `1 := `1 - H1[m+j]; ch := true; }

if( H2[m+j] 6= 0 )
{ `2 := `2 - H2[m+j]; ch := true; }

if( H3[m+j] 6= 0 )
{ `3 := `3 - H3[m+j]; ch := true; }

if( H1[m-j] 6= 0 )
{ u1 := u1 + H1[m-j]; ch := true; }

if( H2[m-j] 6= 0 )
{ u2 := u2 + H2[m-j]; ch := true; }

if( H3[m-j] 6= 0 )
{ u3 := u3 + H3[m-j]; ch := true; }

if( ch )
// one of the `k or uk has changed
{ Q := qmin(`1, `2, u1, u3) + qmax(`1, `3, u1, u2); }

sum := sum + Q;
}

return sum / m’; // where m’ = 2*m
END

Table 14: Algorithm for evaluating two-place proportional quantifiers inFCh (based
on integer arithmetics)

As in the case of unary quantifiers, it also makes sense to develop special versions of
the algorithms, which are optimized for integer arithmetics. Hence letQ be a propor-
tional quantifier and suppose thatX1, X2 ∈ P̃(E) are given fuzzy arguments. Further
let m′ ∈ N \ {0} be given, which specifies the available range of integers. Once
m′ is chosen, admissible fuzzy arguments are no longer allowed to assume arbitrary
membership grades inI = [0, 1]. By contrast, we again require that

µXi(e) ∈ Um′

for all e ∈ E and i ∈ {1, 2}, whereUm′ is defined as in the unary case, cf. (223).
Under these assumptions on legal choices of fuzzy arguments, the above algorithms
which implement proportional quantifiers inFCh,M andMCX can now be adapted
in complete analogy to the earlier changes for unary quantifiers, see pp. 323-325. The
resulting algorithms for proportional quantification based on integer arithmetics are
shown in table 14 (FCh), table 15 (M), and table 16 (forMCX ). Specifically, the
algorithms have again been augmented with flagsch (‘change’) ornc (‘no change’),
which keep track of any changes of the`k or uk in the current iteration. Only ifch
is set to true (ornc to false), a recomputation ofqmin or qmax becomes necessary;
otherwise, the algorithms will directly skip forward to the next iteration.
In practice, the use of these integer-based algorithms should again be considered when
processing speed is more important than accuracy, i.e. the domain of quantification is
very large, and the loss of precision due to a small choice ofm′ is acceptable. The final
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Algorithm for computing M(Q)(X1, X2)
(integer arithmetics)
INPUT: X1, X2
// initialise Hk, `, u
H1 := Hist X1 ;
H2 := Hist X1∩X2 ;
H3 := Hist X1∩¬X2 ;
for( k := 1; k ≤ 3; k := k+1 )

{ `k :=
m∑
j=1

Hk[m+j]; uk := `k + Hk[m]; }

> := qmax(`1, `3, u1, u2);
⊥ := qmin(`1, `2, u1, u3);
if( ⊥ > 1

2 ) {
sum := ⊥;
for( j := 1; j <m; j := j + 1 ) {

nc:= true; // "no change"
// update clauses for `1, `2, u1, u3
if( H1[m+j] 6= 0 )
{ `1 := `1 - H1[m+j]; nc:= false; }

if( H2[m+j] 6= 0 )
{ `2 := `2 - H2[m+j]; nc:= false; }

if( H1[m-j] 6= 0 )
{ u1 := u1 + H1[m-j]; nc:= false; }

if( H3[m-j] 6= 0 )
{ u3 := u3 + H3[m-j]; nc:= false; }

if( nc)
{ sum := sum + ⊥; continue; }

// one of `1, `2, u1, u3 has changed
⊥ := qmin(`1, `2, u1, u3);
if( ⊥ ≤ 1

2 ) break;
sum := sum + ⊥;
}

}
else if( > < 1

2 ) {
sum := >;
for( j := 1; j <m; j := j + 1 ) {

nc:= true;
// update clauses for `1, `3, u1, u2
if( H1[m+j] 6= 0 )
{ `1 := `1 - H1[m+j]; nc:= false; }

if( H3[m+j] 6= 0 )
{ `3 := `3 - H3[m+j]; nc:= false; }

if( H1[m-j] 6= 0 )
{ u1 := u1 + H1[m-j]; nc:= false; }

if( H2[m-j] 6= 0 )
{ u2 := u2 + H2[m-j]; nc:= false; }

if( nc)
{ sum := sum + >; continue; }

// one of `1, `3, u1, u2 has changed
> := qmax(`1, `3, u1, u2);
if( > ≥ 1

2 ) break;
sum := sum + >;
}

}
else
{ return 1

2 ; }
return (sum + 1

2 *(m-j)) / m;
END

Table 15: Algorithm for evaluating two-place proportional quantifiers inM (based on
integer arithmetics)

decision between the floating-point and integer-based variants should then be based on
practical tests, which assess the processing times for typical instances of quantification.

The presented algorithms permit an efficient implementation which will be fast enough
for most applications. Due to the inherent complexity of proportional quantification
compared to the unary case, the algorithms are necessarily more complicated and
computationally demanding than those for simple one-place quantifiers. In some situa-
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Algorithm for computing MCX(Q)(X1, X2)
(integer arithmetics)
INPUT: X1, X2
// initialise Hk, `, u
H1 := Hist X1 ;
H2 := Hist X1∩X2 ;
H3 := Hist X1∩¬X2 ;
for( k := 1; k ≤ 3; k := k+1 )

{ `k :=
m∑
j=1

Hk[m+j]; uk := `k + Hk[m]; }

> := qmax(`1, `3, u1, u2);
⊥ := qmin(`1, `2, u1, u3);
if( ⊥ > 1

2 ) {
for( j := 1; j <m; j := j + 1 ) {

ch := false; // "change"
// update clauses for `1, `2, u1, u3
if( H1[m+j] 6= 0 )
{ `1 := `1 - H1[m+j]; ch := true; }

if( H2[m+j] 6= 0 )
{ `2 := `2 - H2[m+j]; ch := true; }

if( H1[m-j] 6= 0 )
{ u1 := u1 + H1[m-j]; ch := true; }

if( H3[m-j] 6= 0 )
{ u3 := u3 + H3[m-j]; ch := true; }

if( ch )
// one of `1, `2, u1, u3 has changed
{ ⊥ := qmin(`1, `2, u1, u3); }

if( ⊥ ≤ m+j )
{ return (m+j)/m’; }

}
return 1;
}

else if( > < 1
2 ) {

for( j := 1; j <m; j := j + 1 ) {
ch := false;
// update clauses for `1, `3, u1, u2
if( H1[m+j] 6= 0 )
{ `1 := `1 - H1[m+j]; ch := true; }

if( H3[m+j] 6= 0 )
{ `3 := `3 - H3[m+j]; ch := true; }

if( H1[m-j] 6= 0 )
{ u1 := u1 + H1[m-j]; ch := true; }

if( H2[m-j] 6= 0 )
{ u2 := u2 + H2[m-j]; ch := true; }

if( ch )
// one of `1, `3, u1, u2 has changed
{ > := qmax(`1, `3, u1, u2); }

if( > ≥ m-j )
{ return (m-j)/m’; }

}
return 0;
}

return 1
2 ;

END

Table 16: Algorithm for evaluating two-place proportional quantifiers inMCX (based
on integer arithmetics)

tions, however, it is possible to shortcut the general solution and delegate proportional
quantification to the fast algorithms for unary quantifiers. Specifically, this simplifi-
cation is possible when the first argument, i.e. the restriction of the quantifier, hap-
pens to be a crisp set, as in “Most married men are bald”. In this case, the restriction
married men ∈ P(E) can serve as the domain of a derived unary quantifier, as shown
by the following theorem.

Theorem 266 LetE 6= ∅ be a finite base set and suppose thatQ : P(E)2 −→ I is a
proportional quantifier onE. Further letf denote the associated mappingf : I −→ I
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andv0 the associated constant, see Def. 166. In the following, we will consider a crisp
setV ∈ P(E), V 6= ∅. Then in every DFSF ,

F(Q)(V,X) = F(Q′)(X ′)

for all X ∈ P̃(E), whereX ′ ∈ P̃(V ) is the restriction ofX to V , i.e.

µX′(e) = µX(e) (229)

for all e ∈ V ; and whereQ′ : P(V ) −→ I is the quantitative unary quantifier defined
from q′ : {0, . . . , |V |} −→ I,

q′(c) = f(c/|V |) (230)

for all c ∈ {0, . . . , |V |}, according toQ′(Y ) = q′(|Y |) for all Y ∈ P(V ).
(Proof: D.27, p.510+)

In other words, the theorem presents a reduction of two-place proportional quantifi-
cation on the full domain to simple one-place quantification on a restricted domain,
which is supplied by the first argument. The reduction is possible whenever the first
argument qualifies as a proper domain, i.e. it must be crisp and nonempty. Recognizing
this situation promises a boost in performance, because the algorithms for unary quan-
tification become applicable, which are much simpler (and consequently, faster) than
the generic algorithms for proportional quantification. Apart from efficiency consid-
erations, the theorem is also interesting from a theoretical perspective because it links
unrestricted proportional to unrestricted absolute quantification.

For purposes of illustration, let me briefly discuss the above example “Most married
men are bald” in the context of the theorem. Hence suppose that “most” is defined
in terms off : I −→ I andv0 ∈ I according to Def. 166; a possible choice off
andv0 is: f(x) = 1 if x > 1

2 andf(x) = 0 otherwise; andv0 = 1. The mapping
q′ : {0, . . . , |married men |} −→ I then becomes

q′(c) = f(c/|married men |)

for all c ∈ {0, . . . , |married men |}. For example, if there are ten married men in the
considered domain, then

q′(c) =
{

1 : c > 5
0 : c ≤ 5 (231)

for all c ∈ {0, . . . , 10}. Consequently, the derived quantifierQ′ : P(married men ) −→
I becomes

Q′(Y ) = q′(|Y |) =
{

1 : |Y | > 5
0 : |Y | ≤ 5

for all Y ∈ P(E). In other words,Q′ is the one-place quantifier[≥ 6] defined in
Def. 160. Under the assumption thatmarried men has ten members, the propor-
tional quantification in “Most married men are bald” therefore reduces to the simpler
statement,

F(most )(married men ,bald ) = F([≥ 6])(bald ′) ,
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wherebald ′ is the restriction of the fuzzy setbald to the new domainmarried men .
Finally we utilize the earlier theorem Th-237 and conclude that

F(most )(married men ,bald ) = µ[6](bald ′)

in every standard model.

This example completes my discussion of proportional quantification. We are now
prepared to evaluate proportional quantifiers efficiently, either based on floating-point
or integer arithmetics. The proposed algorithms for proportional quantification inFCh,
M andMCX cover the ‘hard’ case of proportional two-place quantification, i.e. the
aggregation can be weighted by importances, which are specified by the first argument
of the quantifier. In Th-265, I further improved the earlier analysis of conservative
quantifiers given in Th-263, and hence achieved a more efficient computation in the
frequent case of those proportional quantifiers which are also known to be monotonic.
Finally, I considered the special case of unrestricted proportional quantification, i.e.
one-place proportional quantification, or proportional quantification restricted by crisp
importances. In this case, I described an apparent reduction which renders applicable
the algorithms for one-place quantifiers. In those applications which do not need im-
portance qualification, this reduction will result in an additional boost of processing
speed.

11.10 Implementation of cardinal comparatives

In this section I will discuss a natural class of quantifiers which has received little at-
tention in the literature on fuzzy quantifiers: that ofcardinal comparatives[82, p. 305]
or comparative determiners[81, p. 123]. This class comprises all NL quantifiers that
express a comparison of two cardinalities, which are sampled from two restriction
arguments (linguistically realized by two noun phrasesA, B) and a common scope
argumentC (linguistically realized by the verb phrase). For example, the quantifier
“more than”, which underlies the pattern “MoreA’s thanB’s areC ’s”, is a cardinal
comparative. Formally, I define cardinal comparatives as follows.

Definition 167
LetE 6= ∅ be a finite base set. A three-place quantifierQ : P(E)3 −→ I is called
a cardinal comparativeif Q(Y1, Y2, Y3) depends on|Y1 ∩ Y3| and |Y2 ∩ Y3| only, i.e.
there existsq : {0, . . . , |E|}2 −→ I such that

Q(Y1, Y2, Y3) = q(c1, c2) (232)

for all Y1, Y2, Y3 ∈ P(E), wherec1 = |Y1 ∩ Y3| andc2 = |Y2 ∩ Y3|.

For example, “more than” can be defined as

more than (Y1, Y2, Y3) =
{

1 : |Y1 ∩ Y3| − |Y2 ∩ Y3| > 0
0 : else

(233)
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for all Y1, Y2, Y3 ∈ P(E). The quantifier can be used to interpret statements like “More
men than women own a car”, which becomes

more than (men ,women ,own a car ) .

We can also model quantifiers of the type “exactly k more than”, i.e.

exactly k more than (Y1, Y2, Y3) =
{

1 : |Y1 ∩ Y3| − |Y2 ∩ Y3| = k
0 : else

and “at least k more than”, i.e.

at least k more than (Y1, Y2, Y3) =
{

1 : |Y1 ∩ Y3| − |Y2 ∩ Y3| ≥ k
0 : else

for all Y1, Y2, Y3 ∈ P(E), wherek ∈ N. Special cases include “more than” and “same
number of”, which can be expressed as

more than = at least 1 more than

same number of = exactly 0 more than .

In particular, a statement like “The same number of men and women are married” now
translates into the quantifying expressionsame number of (men ,women ,married ).
Further examples of cardinal comparatives comprise “less than”, “twice as many”, “at
least twice as many”, “many more than”, etc. Resorting to (232), the comparatives
“(exactly) twice as many” and “at least twice as many” can be expressed in terms of
the following mappingsq1 andq2, respectively:

q1(c1, c2) =
{

1 : c1 = 2 c2
0 : else

for “twice as many”

q2(c1, c2) =
{

1 : c1 ≥ 2 c2
0 : else

for “at least twice as many”

A conceivable definition of “many more than” is

many more than (Y1, Y2, Y3) = q(c1, c2)

for all Y1, Y2, Y3 ∈ P(E), where

q(c1, c2) =

 0 : c1 ≤ c2 + α
(c1 − c2 − α) · β : c2 + α < c1 ≤ c2 + α+ 1/β
1 : c2 > c2 + α+ 1/β

for c1, c2 ∈ {0, . . . , |E|}. Obviously, suitable choices ofα, β ∈ R+ can only be made
from the context. However, the rough shape of the resulting quantifier is easily grasped
from q, so it should usually not pose problems to select a quantifier which suits the task
at hand.
Now that we are able to define the cardinal comparatives of NL in terms of semi-fuzzy
quantifiers, let us consider the relationRΦ1,Φ2

γ (X1, X2, X3), whereΦ1(Y1, Y2, Y3) =
Y1 ∩ Y3 andΦ2(Y1, Y2, Y3) = Y2 ∩ Y3. Specifically, it must be shown how to express
this relation in terms of quantities̀r, ur sampled from Boolean combinations of the
fuzzy argumentsX1, X2, X3 ∈ P̃(E). The simple description of this target relation in
terms of four Boolean combinations that are required, is set forth in the next theorem.
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Theorem 267
LetE 6= ∅ be a finite base set andX1, X2, X3 ∈ P̃(E). Further letΦ1,Φ2 denote
the Boolean combinationsΦ1(Y1, Y2, Y3) = Y1 ∩ Y3 andΦ2(Y1, Y2, Y3) = Y2 ∩ Y3

of the crisp variablesY1, Y2, Y3 ∈ P(E). Then the relationR = RΦ1,Φ2
γ (X1, X2, X3)

defined by(172) can be computed from the cardinality coefficients`r = |(Zr)min
γ |

and ur = |(Zr)max
γ | sampled fromZ1 = Ψ1(X1, X2, X3) = X1 ∩ X3, Z2 =

Ψ2(X1, X2, X3) = X2 ∩ X3, Z3 = Ψ3(X1, X2, X3) = X1 ∩ ¬X2 ∩ X3 and
Z4 = Ψ4(X1, X2, X3) = ¬X1 ∩X2 ∩X3. In terms of̀ 1, `2, `3, `4, u1, u2, u3, u4 ∈
{0, . . . , |E|},R then becomes

R = {(c1, c2) : `1 ≤ c1 ≤ u1,max(c1 − u3 + `4, `2) ≤ c2 ≤ min(c1 − `3 + u4, u2)}} .

(234)

(Proof: D.28, p.511+)

In practice, it is not necessary to consider all pairs(c1, c2) ∈ R, because those cardinal
comparatives actually found in NL conform to simple monotonicity patterns. For ex-
ample, “MoreY1’s thanY2’s areY3’s” is nondecreasing in the first and nonincreasing
in the second argument, and the quantifier in “LessY1’s thanY2’s areY3’s” is non-
increasing in the first and nondecreasing in the second argument. Here I will restrict
to the first of these monotonicity patterns, and study the corresponding quantifiers in
some more depth; all results of this investigation are readily transfered to the second
monotonicity pattern and I will omit the obvious modifications for the sake of brevity.
Let me first link the monotonicity of a cardinal comparativeQ to the monotonicity of
the mappingq on cardinals.

Theorem 268
LetQ : P(E)3 −→ I be a cardinal comparative on a finite base setE 6= ∅. Fur-
ther let q : {0, . . . , |E|}2 −→ I be the corresponding mapping defined by(232), i.e.
Q(Y1, Y2, Y3) = q(|Y1 ∩ Y3|, |Y2 ∩ Y3|) for all Y1, Y2, Y3 ∈ P(E). Then the following
are equivalent:

a. Q is nondecreasing in the first and nonincreasing in its second argument;

b. q is nondecreasing in its first and nonincreasing in its second argument.

(Proof: D.29, p.525+)

Hence the considered monotonicity pattern of cardinal comparatives reflects in a very
simple pattern of the mappingq. In turn, knowing these monotonicity properties per-
mits a simplified description of>Q,X1,X2,X3 and⊥Q,X1,X2,X3 , because the minimum
and maximum must then be assumed at the ‘extreme poles’. Consequently, we obtain
the following corollary to Th-267 and Th-268.

Theorem 269
LetQ : P(E)3 −→ I be a cardinal comparative on a finite base setE 6= ∅, and letq
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be the corresponding mappingq : {0, . . . , |E|}2 −→ I. If Q is nondecreasing in the
first and nonincreasing in its second argument, then

>Q,X1,X2,X3(γ) = max{q(c1,max(c1 − u3 + `4, `2)) : `1 ≤ c1 ≤ u1}
⊥Q,X1,X2,X3(γ) = min{q(c1,min(c1 − `3 + u4, u2)) : `1 ≤ c1 ≤ u1}

for all X1, X2, X3 ∈ P̃(E) andγ ∈ I, referring to the cardinality coefficients̀r and
ur, r ∈ {1, 2, 3, 4} defined in Th-267.
(Proof: D.30, p.527+)

The particular algorithms which implement cardinal comparatives inFCh,M and
MCX can easily be developed from this analysis of the considered variety of quanti-
fiers, again utilizing the basic results that were proven for these models in Th-250, Th-
253 and Th-254, respectively. In fact, we can proceed in total analogy to the strategy
used for absolute and proportional quantifiers. In the general case of unrestricted car-
dinal comparatives, we can express>Q,X1,X2,X3 and⊥Q,X1,X2,X3 , for a given choice
of γ ∈ I, as

>Q,X1,X2,X3(γ) = qmax(`1, `2, `3, `4, u1, u2, u3, u4)
⊥Q,X1,X2,X3(γ) = qmin(`1, `2, `3, `4, u1, u2, u3, u4) ,

where

qmax(`1, `2, `3, `4, u1, u2, u3, u4) = max{q(c1, c2) : (c1, c2) ∈ Rγ(X1, X2, X3)}
qmin(`1, `2, `3, `4, u1, u2, u3, u4) = min{q(c1, c2) : (c1, c2) ∈ Rγ(X1, X2, X3)} .

These coefficients can readily be computed, because we know the explicit representa-
tion ofRγ(X1, X2, X3), which was established in Th-267. In the typical case that the
quantifier of interest belongs to the monotonicity pattern assumed in Th-269 (or the re-
verse pattern), a considerable cut in processing times becomes possible. In particular,
>Q,X1,X2,X3 and⊥Q,X1,X2,X3 can then be expressed in the following simplified way,

>Q,X1,X2,X3(γ) = qmax(`1, `2, `4, u1, u3)
⊥Q,X1,X2,X3(γ) = qmin(`1, `3, u1, u2, u4) ,

whereqmax andqmin now read

qmax(`1, `2, `4, u1, u3) = max{q(c1,max(c1 − u3 + `4, `2)) : `1 ≤ c1 ≤ u1}
qmin(`1, `3, u1, u2, u4) = min{q(c1,min(c1 − `3 + u4, u2)) : `1 ≤ c1 ≤ u1} ,

see Th-269.

In the algorithms to be presented now, I will consider both the typical monotonic and
the general quantifiers, in order to optimally account for both cases. Hence let us recall
the analysis of the three prototypical models achieved in theorems Th-250, Th-253 and
Th-254, which will now be elaborated into a complete and practical implementation
of cardinal comparatives. In order to instantiate the core formulas stated in these the-
orems, it is again necessary to fix the set of relevant cutting parameters, i.e. to choose

342



Algorithm for computing FCh(Q)(X1, X2, X3)
(floating-point arithmetics)
INPUT: X1, X2, X3
Compute G, m, H +

1 , H +
2 ,H +

3 ,H +
4 ,H−1 , H−2 , H−3 ,H−4 ; // see text

// initialize `, u:
for( r := 1; r ≤ 4; r := r+1 )

{ `r :=
m∑
j=1

H+
r [j]; ur := `r + H+

r [0]; }

sum := G[1] * ( qmin(`1, `2, `3, `4, u1, u2, u3, u4) + qmax(`1, `2, `3, `4, u1, u2, u3, u4));
for( j := 1; j <m; j := j + 1 ) {

// update clauses for `1, `2, `3, `4, u1, u2, u3, u4
for( r := 1; r ≤ 4; r := r+1 )
{ `r := `r - H +

r [j]; ur := ur + H−r [j]; }
sum := sum + (G[j+1] - G[j])

* ( qmin(`1, `2, `3, u4, u1, u2, u3, u4) + qmax(`1, `2, `3, `4, u1, u2, u3, u4));
}

return sum / 2;
END

Table 17: Algorithm for evaluating cardinal comparatives inFCh (based on floating-
point arithmetics)

someΓ = {γ0, . . . , γm} such that0 = γ0 < γ1 < · · · < γm−1 < γm = 1 and
Γ ⊇ Γ(X1, X2, X3).

When working with floating-point arithmetics, it is advantageous to minimize the set
Γ, and hence haveΓ = Γ(X1, X2, X3). Owing to Th-247, we then know that

Γ(Z1) = Γ(X1 ∩X3) ⊆ Γ
Γ(Z2) = Γ(X2 ∩X3) ⊆ Γ
Γ(Z3) = Γ(X1 ∩ ¬X2 ∩X3) ⊆ Γ
Γ(Z4) = Γ(¬X1 ∩X2 ∩X3) ⊆ Γ ,

where

Z1 = Φ1(X1, X2, X3) = X1 ∩X3

Z2 = Φ2(X1, X2, X3) = X2 ∩X3

Z3 = Φ3(X1, X2, X3) = X1 ∩ ¬X2 ∩X3

Z4 = Φ4(X1, X2, X3) = ¬X1 ∩X2 ∩X3 ,

as stipulated in Th-267. Consequently the histograms HistZr , r ∈ {1, 2, 3, 4}, can
be represented by(m + 1)-dimensional arraysH+

r andH−r defined in accordance
with (220) and (221). Recalling that the cardinality coefficients`r, ur are defined by
`r = `r(j) = |(Zr)min

γj
| andur = ur(j) = |(Zr)max

γj
| for j ∈ {0, . . . ,m − 1}, we

can now utilize the incremental rule presented in Th-264 in order to compute these
coefficients efficiently. The particular algorithms so obtained, that implement cardinal
comparatives based on floating-point arithmetics in the three prototype models, are
shown in table 17 (FCh), table 18 (M) and table 19 (forMCX ), respectively.

These algorithms provide a generic solution for arbitrary cardinal comparatives, be-
cause they implement the full variety of these quantifiers without any special require-
ments on monotonicity properties. However, some tags have been included into the
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Algorithm for computing M(Q)(X1, X2, X3)
(floating-point arithmetics)
INPUT: X1, X2, X3
Compute G, m, H +

1 , H +
2 ,H +

3 ,H +
4 ,H−1 , H−2 , H−3 , H−4 ; // see text

// initialize `, u:
for( r := 1; r ≤ 4; r := r+1 )

{ `r :=
m∑
j=1

H+
r [j]; ur := `r + H+

r [0]; }

> := qmax(`1, `2, `3, `4, u1, u2, u3, u4);
⊥ := qmin(`1, `2, `3, `4, u1, u2, u3, u4);
if( cq > 1

2 ) {
sum := G[1] * ⊥;
for( j := 1; j <m; j := j + 1 ) {

// update clauses for ` and u:
`1 := `1 - H +

1 [j];
`2 := `2 - H +

2 [j]; // [*]
`3 := `3 - H +

3 [j];
`4 := `4 - H +

4 [j]; // [*]
u1 := u1 + H−1 [j];
u2 := u2 + H−2 [j];
u3 := u3 + H−3 [j]; // [*]
u4 := u4 + H−4 [j];
⊥ := qmin(`1, `2, `3, `4, u1, u2, u3, u4); // [1]
// ⊥ := qmin(`1, `3, u1, u2, u4); // [2]
if( ⊥ ≤ 1

2 )
break;

sum := sum + (G[j+1] - G[j]) * ⊥;
}

}
else if( > < 1

2 ) {
sum := G[1] * >;
for( j := 1; j <m; j := j + 1 ) {

// update clauses for ` and u:
`1 := `1 - H +

1 [j];
`2 := `2 - H +

2 [j];
`3 := `3 - H +

3 [j]; // [+]
`4 := `4 - H +

4 [j];
u1 := u1 + H−1 [j];
u2 := u2 + H−2 [j]; // [*]
u3 := u3 + H−3 [j];
u4 := u4 + H−4 [j]; // [*]
> := qmax(`1, `2, `3, u4, u1, u2, u3, u4); // [1]
// > := qmax(`1, `2, u4, u1, u3); // [2]
if( > ≥ 1

2 )
break;

sum := sum + (G[j+1] - G[j]) * >;
}

}
else
{ return 1

2 ; }
return sum + 1

2 * (1 - G[j]);
END

Table 18: Algorithm for evaluating cardinal comparatives inM (based on floating-
point arithmetics)
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Algorithm for computing MCX(Q)(X1, X2, X3)
(floating-point arithmetics)
INPUT: X1, X2, X3
Compute G, m, H +

1 , H +
2 ,H +

3 ,H +
4 ,H−1 , H−2 , H−3 ,H−4 ; // see text

// initialize `, u:
for( r := 1; r ≤ 4; r := r+1 )

{ `r :=
m∑
j=1

H+
r [j]; ur := `r + H+

r [0]; }

> := qmax(`1, `2, `3, `4, u1, u2, u3, u4);
⊥ := qmin(`1, `2, `3, `4, u1, u2, u3, u4);
j := 0;
if( ⊥ > 1

2 ) {
B := 2 * ⊥ - 1;
while( B > G[j+1] ) {

j := j + 1;
// update clauses for `, u:
`1 := `1 - H +

1 [j];
`2 := `2 - H +

2 [j]; // [*]
`3 := `3 - H +

3 [j];
`4 := `4 - H +

4 [j]; // [*]
u1 := u1 + H−1 [j];
u2 := u2 + H−2 [j];
u3 := u3 + H−3 [j]; // [*]
u4 := u4 + H−4 [j];
B := 2 * qmin(`1, `2, `3, `4, u1, u2, u3, u4) - 1; // [1]
// B := 2 * qmin(`1, `3, u1, u2, u4) - 1; // [2]
}

return 1
2 + 1

2 max(B, G[j]);
}

else if( > < 1
2 ) {

B := 1 - 2 * >;
while( B > G[j+1] ) {

j := j + 1;
// update clauses for `, u:
`1 := `1 - H +

1 [j];
`2 := `2 - H +

2 [j];
`3 := `3 - H +

3 [j]; // [*]
`4 := `4 - H +

4 [j];
u1 := u1 + H−1 [j];
u2 := u2 + H−2 [j]; // [*]
u3 := u3 + H−3 [j];
u4 := u4 + H−4 [j]; // [*]
B := 1 - 2 * qmax(`1, `2, `3, `4, u1, u2, u3, u4); // [1]
// B := 1 - 2 * qmax(`1, `2, `4, u1, u3); // [2]
}

return 1
2 - 1

2 max(B, G[j]);
}

return 1
2 ;

END

Table 19: Algorithm for evaluating cardinal comparatives inMCX (based on floating-
point arithmetics)
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pseudo-code, which indicate how the algorithms can be taylored to the prominent
monotonicity type that was considered in Th-269. In this typical case of a natural lan-
guage comparative, a more efficient implementation is possible due to the simplified
description ofqmin andqmax presented above. Consequently, some of the coefficients
`r andur need not be tracked, because they take no effect onqmin or qmax. In turn, this
means that the corresponding ‘update clauses’ for these quantities can be dropped; i.e.
the lines with a trailing[*] can be eliminated. In addition, the lines marked with[1]
should be replaced with those labelled[2] , which refer to the simplified formulas for
computingqmin and qmax in the monotonic case. These simple changes will boost
performance for virtually all cardinal comparatives in natural languages (noticing that
quantifiers of the reverse monotonicity type, like “less than”, can be treated along the
same lines), and result in a practical implementation of cardinal comparatives which is
ready for use in the targeted applications of fuzzy quantifiers.

Having presented a solution for floating-point arithmetics, I will now add variants of
the above algorithms for integer arithmetics. Hence letQ be a cardinal comparative
(not required to be monotonic) and letX1, X2, X3 ∈ P̃(E) be given fuzzy arguments.
Further suppose thatm′ ∈ N \ {0} is given, which specifies the available range of
integers. The given choice ofm′ again restricts admissible fuzzy arguments to a fi-
nite set of equidistant membership grades in the unit interval, i.e. all legal choices of
arguments must satisfy

µXi(e) ∈ Um′

for all e ∈ E andi ∈ {1, 2, 3}, whereUm′ is defined as before, see (223). By pursuing
the same strategy that already proved useful for deriving the integer-based implementa-
tion of unary quantifiers (see pp. 323-325) and also of proportional quantifiers, I have
also developed the corresponding solutions which implement cardinal comparatives
based on integer arithmetics. The resulting variants of the above algorithms are shown
in table 20 (FCh), table 21 (M), and table 22 (forMCX ). The listings are again an-
notated by tags[*] , [1] , [2] , in order to indicate the possible optimizations for
monotonic quantifiers. In this case, the update clauses annotated by[*] can again be
deleted, and the lines marked with[1] should be replaced by their simplified variants
[2] .

Finally I would like to draw the reader’s attention to a special case of compara-
tive quantifiers which permits additional simplifications. In many cases, a cardinal
comparativeQ(Y1, Y2, Y3) can be expressed in terms of the differencec1 − c2 =
|Y1 ∩ Y3| − |Y2 ∩ Y3|. For example, this is the case with “more than”, cf. (233) above.
The simplicity of these quantifiers translates into rules of computation that are equally
simple. In particular, we need not know the complete relation

RΦ1,Φ2
γ (X1, X2, X3) = {(|Y1 ∩ Y3|, |Y2 ∩ Y3|) : (Y1, Y2, Y3) ∈ Tγ(X1, X2, X3)}

in order to compute>Q,X1,X2,X3 and⊥Q,X1,X2,X3 . By contrast, it is sufficient to
know the set of differences

{|Y1 ∩ Y3| − |Y2 ∩ Y3| : (Y1, Y2, Y3) ∈ Tγ(X1, X2, X3)} .
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Algorithm for computing FCh(Q)(X1, X2, X3)
(integer arithmetics)
INPUT: X1, X2, X3
// initialise Hr , `, u
H1 := Hist X1∩X3 ;
H2 := Hist X2∩X3 ;
H3 := Hist X1∩¬X2∩X3 ;
H4 := Hist ¬X1∩X2∩X3 ;
for( r := 1; r ≤ 4; r := r+1 )

{ `r :=
m∑
j=1

Hr [m+j]; ur := `r + Hr [m]; }

Q := qmin(`1, `2, `3, `4, u1, u2, u3, u4) + qmax(`1, `2, `3, `4, u1, u2, u3, u4);
sum := Q;
for( j := 1; j <m; j := j + 1 ) {

ch := false; // "change"
// update clauses for ` and u:
for( r := 1; r ≤ 4; r := r+1 ) {

if( Hr [m+j] 6= 0 )
{ `r := `r - Hr [m+j]; ch := true; }

if( Hr [m-j] 6= 0 )
{ ur := ur + Hr [m-j]; ch := true; }

}
if( ch )

// one of the `r or ur has changed
{ Q := qmin(`1, `2, `3, `4, u1, u2, u3, u4) + qmax(`1, `2, `3, `4, u1, u2, u3, u4); }

sum := sum + Q;
}

return sum / m’; // where m’ = 2*m
END

Table 20: Algorithm for evaluating cardinal comparatives inFCh (based on integer
arithmetics)

Hence let us describe the latter set directly, which might pay off from the efficiency
point of view because all choices of arguments

(Y1, Y2, Y3), (Y ′1 , Y
′
2 , Y

′
3) ∈ Tγ(X1, X2, X3)

with

|Y1 ∩ Y3| − |Y2 ∩ Y3| = |Y ′1 ∩ Y ′3 | − |Y ′2 ∩ Y ′3 |

now become identified, i.e. it is sufficient to consider one representative only. The new
format therefore lets me eliminate some computational redundancy. The next theorem
shows how to compute the set of differences:

Theorem 270
LetE 6= ∅ be a finite base set,X1, X2, X3 ∈ P̃(E) andγ ∈ I. Then

{c1 − c2 : (Y1, Y2, Y3) ∈ Tγ(X1, X2, X3), c1 = |Y1 ∩ Y3|, c2 = |Y2 ∩ Y3|}
= {d : `3 − u4 ≤ d ≤ u3 − `4} ,

referring to the cardinality coefficients̀3, `4, u3 andu4 introduced in Th-267.
(Proof: D.31, p.528+)

The latter theorem has some obvious applications. For example, consider the quantifier
“more than” defined by (233). We now observe that the quantifier can be expressed
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Algorithm for computing M(Q)(X1, X2, X3)
(integer arithmetics)
INPUT: X1, X2, X3
// initialise Hr , `, u
H1 := Hist X1∩X3 ;
H2 := Hist X2∩X3 ;
H3 := Hist X1∩¬X2∩X3 ;
H4 := Hist ¬X1∩X2∩X3 ;
for( r := 1; r ≤ 4; r := r+1 )

{ `r :=
m∑
j=1

Hr [m+j]; ur := `r + Hr [m]; }

> := qmax(`1, `2, `3, `4, u1, u2, u3, u4);
⊥ := qmin(`1, `2, `3, `4, u1, u2, u3, u4);
if( ⊥ > 1

2 ) {
sum := ⊥;
for( j := 1; j <m; j := j + 1 ) {

nc:= true; // "no change"
// update clauses for `, u:
if( H1[m+j] 6= 0 )
{ `1 := `1 - H1[m+j]; nc:= false; }

if( H2[m+j] 6= 0 ) // [*]
{ `2 := `2 - H2[m+j]; nc:= false; } // [*]

if( H3[m+j] 6= 0 )
{ `3 := `3 - H3[m+j]; nc:= false; }

if( H4[m+j] 6= 0 ) // [*]
{ `4 := `4 - H4[m+j]; nc:= false; } // [*]

if( H1[m-j] 6= 0 )
{ u1 := u1 + H1[m-j]; nc:= false; }

if( H2[m-j] 6= 0 )
{ u2 := u2 + H2[m-j]; nc:= false; }

if( H3[m-j] 6= 0 ) // [*]
{ u3 := u3 + H3[m-j]; nc:= false; } // [*]

if( H4[m-j] 6= 0 )
{ u4 := u4 + H4[m-j]; nc:= false; }

if( nc)
{ sum := sum + ⊥; continue; }

// one of the `r , ur has changed
⊥ := qmin(`1, `2, `3, `4, u1, u2, u3, u4); // [1]
// ⊥ := qmin(`1, `3, u1, u2, u4); // [2]
if( ⊥ ≤ 1

2 ) break;
sum := sum + ⊥;
}

}
else if( > < 1

2 ) {
sum := >;
for( j := 1; j <m; j := j + 1 ) {

nc:= true;
// update clauses for ` and u:
if( H1[m+j] 6= 0 )
{ `1 := `1 - H1[m+j]; nc:= false; }

if( H2[m+j] 6= 0 )
{ `2 := `2 - H2[m+j]; nc:= false; }

if( H3[m+j] 6= 0 ) // [*]
{ `3 := `3 - H3[m+j]; nc:= false; } // [*]

if( H4[m+j] 6= 0 )
{ `4 := `4 - H4[m+j]; nc:= false; }

if( H1[m-j] 6= 0 )
{ u1 := u1 + H1[m-j]; nc:= false; }

if( H2[m-j] 6= 0 ) // [*]
{ u2 := u2 + H2[m-j]; nc:= false; } // [*]

if( H3[m-j] 6= 0 )
{ u3 := u3 + H3[m-j]; nc:= false; }

if( H4[m-j] 6= 0 ) // [*]
{ u4 := u4 + H4[m-j]; nc:= false; } // [*]

if( nc)
{ sum := sum + >; continue; }

// one of the `r, ur has changed
> := qmax(`1, `2, `3, `4, u1, u2, u3, u4); // [1]
// > := qmax(`1, `2, `4, u1, u3); // [2]
if( > ≥ 1

2 ) break;
sum := sum + >;
}

}
else
{ return 1

2 ; }
return (sum + 1

2 *(m-j)) / m;
END

Table 21: Algorithm for evaluating cardinal comparatives inM (based on integer arith-
metics)
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Algorithm for computing MCX(Q)(X1, X2, X3)
(integer arithmetics)
INPUT: X1, X2, X3
// initialise Hr , `, u
H1 := Hist X1∩X3 ;
H2 := Hist X2∩X3 ;
H3 := Hist X1∩¬X2∩X3 ;
H4 := Hist ¬X1∩X2∩X3 ;
for( r := 1; r ≤ 4; r := r+1 )

{ `r :=
m∑
j=1

Hr [m+j]; ur := `r + Hr [m]; }

> := qmax(`1, `2, `3, `4, u1, u2, u3, u4);
⊥ := qmin(`1, `2, `3, `4, u1, u2, u3, u4);
if( ⊥ > 1

2 ) {
for( j := 1; j <m; j := j + 1 ) {

ch := false; // "change"
// update clauses for ` and u:
if( H1[m+j] 6= 0 )
{ `1 := `1 - H1[m+j]; ch := true; }

if( H2[m+j] 6= 0 ) // [*]
{ `2 := `2 - H2[m+j]; ch := true; } // [*]

if( H3[m+j] 6= 0 )
{ `3 := `3 - H3[m+j]; ch := true; }

if( H4[m+j] 6= 0 ) // [*]
{ `4 := `4 - H4[m+j]; ch := true; } // [*]

if( H1[m-j] 6= 0 )
{ u1 := u1 + H1[m-j]; ch := true; }

if( H2[m-j] 6= 0 )
{ u2 := u2 + H2[m-j]; ch := true; }

if( H3[m-j] 6= 0 ) // [*]
{ u3 := u3 + H3[m-j]; ch := true; } // [*]

if( H4[m-j] 6= 0 )
{ u4 := u4 + H4[m-j]; ch := true; }

if( ch )
// one of the `r, ur has changed
{ ⊥ := qmin(`1, `2, `3, `4, u1, u2, u3, u4); } // [1]
// { ⊥ := qmin(`1, `3, u1, u2, u4); } // [2]

if( ⊥ ≤ m+j )
{ return (m+j)/m’; }

}
return 1;
}

else if( > < 1
2 ) {

for( j := 1; j <m; j := j + 1 ) {
ch := false;
// update clauses for ` and u:
if( H1[m+j] 6= 0 )
{ `1 := `1 - H1[m+j]; ch := true; }

if( H2[m+j] 6= 0 )
{ `2 := `2 - H2[m+j]; ch := true; }

if( H3[m+j] 6= 0 ) // [*]
{ `3 := `3 - H3[m+j]; ch := true; } // [*]

if( H4[m+j] 6= 0 )
{ `4 := `4 - H4[m+j]; ch := true; }

if( H1[m-j] 6= 0 )
{ u1 := u1 + H1[m-j]; ch := true; }

if( H2[m-j] 6= 0 ) // [*]
{ u2 := u2 + H2[m-j]; ch := true; } // [*]

if( H3[m-j] 6= 0 )
{ u3 := u3 + H3[m-j]; ch := true; }

if( H4[m-j] 6= 0 ) // [*]
{ u4 := u4 + H4[m-j]; ch := true; } // [*]

if( ch )
// one of the `r, ur has changed
{ > := qmax(`1, `2, `3, `4, u1, u2, u3, u4); } // [1]
// { > := qmax(`1, `2, `4, u1, u3); } // [2]

if( > ≥ m-j )
{ return (m-j)/m’; }

}
return 0;
}

return 1
2 ;

END

Table 22: Algorithm for evaluating cardinal comparatives inMCX (based on integer
arithmetics)
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directly in terms ofd = c1 − c2, i.e.

more than (Y1, Y2, Y3) = q(d) ,

whereq : Z −→ {0, 1} is the mapping

q(d) =
{

1 : d > 0
0 : d ≤ 0

for all d ∈ Z. Let us further notice thatq is nondecreasing ind. We therefore conclude
from the above theorem that the upper and lower bound mappings>more than ,X1,X2,X3

and⊥more than ,X1,X2,X3
reduce to the following simple form,

>more than ,X1,X2,X3
(γ) = q(u3 − `4) =

{
1 : u3 − `4 > 0
0 : u3 − `4 ≤ 0

⊥more than ,X1,X2,X3
(γ) = q(`3 − u4) =

{
1 : `3 − u4 > 0
0 : `3 − u4 ≤ 0

for all γ ∈ I. Substituting these expressions forqmax andqmin in the above algorithms
will speed up the implementation of the comparative “more than”. Other cardinal
comparatives like “less than”, “at least k more than” and “exactly k more than” can be
treated analogously.

This completes my discussion of cardinal comparatives. I have presented a formal
definition of these quantifiers which abstracts from the NL examples, and I have shown
how the resulting quantifiers can be implemented in the proposed framework. Some
possible optimizations of the algorithms have also been described, which become ad-
missible when the quantifier exhibits the typical monotonicity pattern.

In presenting the formal definition of cardinal comparatives, and showing how they
can be implemented, I have augmented the classes of fuzzy quantifiers known to fuzzy
set theory. The new class is an interesting one, because comparisons of cardinalities
are not only frequently seen in NL, but also of obvious relevance to applications.

11.11 Chapter summary and application examples

In this chapter, I have shown that the new, ‘nice’ models put forth in this sequel, can
also compete with the old, semantically imperfect ones when it comes to efficient im-
plementation. In order to provide the theory with the required computational backing,
I have developed the basic techniques for implementing quantifiers in arbitrary mod-
els of theFξ-type.44 Among the models, I have chosen three prototypical examples
which serve to demonstrate these techniques. The modelMCX is particularly im-
portant due to its outstanding formal properties and its relationships with the ‘basic’
FG-count approach and the Sugeno integral. The modelFCh is mainly interesting be-
cause it extends the ‘basic’ OWA approach and the Choquet integral; in addition, it is a
typical representative of a genuineFξ-DFS which does not share the properties of the

44The possible extension toFΩ-DFSes would be pointless due to their discontinuous behaviour.
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MB-models. The modelM was chosen because its behaviour is somewhat in between
FCh andMCX : the former model also uses integration to abstract from the cut levels,
however based on simple averaging rather than fuzzy median aggregation, while the
latter model does not rely on integration, but also uses the median-based aggregation
scheme ofMB-DFSes. In addition,M is the model used in the experimental retrieval
system for weather documents, from which the examples in the present work are taken
[46, 52]. All of the prototype models are particularly robust, which further recom-
mends them for applications. By presenting the complete algorithms for implement-
ing the relevant kinds of quantifiers in these models, I therefore provided a solution
for fuzzy quantification, which is ready for integration into applications. Despite the
complexity of the prototype models and the aggregation mechanisms ofFξ- andMB-
DFSes, the resulting algorithms are remarkably simple and clearly structured. This
nourishes my trust that the examples will also provide a blueprint for implementing
further models if so desired. In particular, the transfer of the prototypical algorithms
to novel models is greatly facilitated by the modular design of my solution, which is
organized in a number of individual components, from which I then built the imple-
mentations.

The first component which contributes to these implementations is concerned with
the continuous range of the cutting parameter: it is practically impossible to consider
all choices ofγ in the unit interval when computing a quantification result. Fortunately,
I was able to prove that in the relevant cases, it is possible to restrict to a finite sample
of cutting levels, which fully determines the outcome of quantification. In particular,
such a restriction is always possible for finite base sets, and the sample of cut-levels
then assumes a very simple form. Having eliminated the first hindrance of continuous
cut ranges, I reconsidered the prototypical models and solved the subsequent prob-
lem of computing quantification results in these models from the finite representation.
Obviously, this step must be re-iterated for all models to be implemented. Indeed, ex-
pressing a model of interest in terms of the finite representation is the chief task when
adapting the above algorithms. However, we know in advance from Th-249 that such a
reformulation is always possible, so this should usually not cause problems in practice.

As soon as the models are expressed in terms of the finite sample of>j ’s and⊥j ’s,
this new description can be used to compute quantification results (because everything
has now turned finite). However, some further refinements are necessary in order to
turn these ‘raw’ solutions into efficient algorithms which not only compute the correct
results, but are also useful in practice. Specifically, the reformulation of the models in
terms of>j and⊥j will only achieve sufficient performance if the quantities>j and⊥j
can also be calculated efficiently. Computing these in a direct or ‘brute force’ way from
the three-valued cuts, thus paralleling the definition of>Q,X1,...,Xn and⊥Q,X1,...,Xn

in Def. 100, is not a viable approach, because the total cut rangeTγ(X1, . . . , Xn) will
grow beyond computational limits for domains of realistic size. Since my reformula-
tion of the models makes intensive use of>j and⊥j , I therefore decided to replace the
direct computation of>j and⊥j from the three-valued cuts with a smarter technique
based on cardinality information.

The three-valued cutting mechanism, which is essentially supervaluationist, consid-
ers all possible alternatives and thus involves a large number of calculations at each
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cut level. The actual quantification result, however, usually depends only on a small
sample of these alternatives. In order to eliminate these redundant computations, I took
a closer look at the quantitative variety of quantifiers, which comprise almost all exam-
ples of relevance to technical applications. I first reviewed a well-known result of TGQ
which states that every quantitative two-valued quantifier can be expressed in terms of
the cardinalities of its arguments and their Boolean combinations. I then observed that
a corresponding claim can be proven for semi-fuzzy quantifiers: these are also quanti-
tative if and only if they are reducible to cardinalities of Boolean combinations, which
are supplied to the defining mappingq : {0, . . . , |E|}K −→ I of the quantifier, see
Th-255. Starting from the apparent equality (171), I then showed in the sequence of
theorems Th-259 to Th-262 that the quantification resultFξ(Q)(X1, . . . , Xn) of an
Fξ-model can always be computed from pairs of upper and lower cardinality indices
ur and`r, which are sampled from Boolean combinations of the arguments. In other
words, my analysis of a quantitative semi-fuzzy quantifierQ can be generalized to
the corresponding fuzzy quantifierFξ(Q) in a constructive fashion, which precisely
reveals how>j = >Q,X1,...,Xn(γj) and⊥j = ⊥Q,X1,...,Xn(γj) can be calculated
from the defining mappingq : {0, . . . , |E|}K −→ I and from the known cardinality
coefficientsur and`r. Some optimizations have then been added in order to speed
up processing of the important types of quantifiers. In Th-263, I first improved the
analysis of conservative quantifiers, which also covers the proportional type. In the
later Th-267, I then refined the general analysis for cardinal comparatives, which are
the prime case of three-place quantifiers. Taken together, these improvements in the
analysis of quantitative quantifiers establish the second component needed for effi-
cient implementation. In particular, the novel representation of quantitative quantifiers
which circumvents the direct computation of the three-valued cuts, makes it possible
to calculate quantification results from cardinality information represented by pairs of
coefficients̀ r andur, and it is no longer necessary to check all alternatives in the total
cut rangeTγ(X1, . . . , Xn).

Finally I identified another matter worthy of optimization: having reduced the com-
putation of>j and⊥j to cardinality indicesur and`r, it now became essential that
these coefficients be computed as efficiently as possible. I therefore had to develop a
fast mechanism for calculating the required cardinality information, in order to com-
bine the other performance improvements to a complete solution. In technical terms,
it remained to be shown how the upper and lower cardinality indicesur = ur(j) =
|(Zr)max

γ | and`r = `r(j) = |(Zr)min
γ | can be calculated with the least computational

effort, given a choice ofγ = γj , i.e. in thej-th iteration (in the following, I will
drop the subscriptr for simplicity). The obvious goal was that of avoiding the ex-
plicit computation of the setsZmin

γ andZmax
γ , as well as the subsequent computation

of their element counts|Zmin
γ | and |Zmax

γ |, which determine the current coefficients
`(j) andu(j). In order to shortcut this process and eliminate the redundancy of re-
peated element counting, I pursued the idea of precomputing the cardinalities of the
layers{e ∈ E : µZ(e) = α} for all relevant choices of the membership gradeα. The
resulting pairs of membership grades and associated cardinalities can then be neatly
organized in the histogram ofZ. Starting from these data, it was a straightforward task
to develop incremental update rules for the coefficientsu and`, which compute the
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upper and lower cardinalities associated with the three-valued cut from the histogram
of the involved fuzzy subset. Surprisingly, it is sufficient to look up two coefficients
from the given histogram, in order to keep track of` andu and compute their new
values in the current iteration from their known values in the previous iteration.

These basic techniques for implementing quantifiers inFξ-DFSes have then been
combined into complete algorithms for implementing the relevant types of NL quan-
tifiers in the prototype models. Due to my extensive preparations, it was rather easy
to compose these algorithms from the available components, i.e. the reformulation of
the models in terms of>j and⊥j ; the reformulation of>j and⊥j in terms of the
defining mappingq and the relevant cardinality indices; and finally the computation of
the cardinality coefficients from precomputed histograms. Specifically, I presented the
complete algorithms for implementing absolute and proportional quantifiers in the pro-
totype models. Beyond these familiar types of quantifiers, I also covered quantifiers of
exception like “all except k” and cardinal comparatives like “much more than”, which
received few attention in the existing literature on fuzzy quantifiers, in spite of their
apparent utility to applications. It is worth noticing that the proposed algorithms for
cardinal comparatives comprise the first systematic and complete implementation of
an important class of quantifiers ‘of the third kind’ in the sense of Zadeh [190, p. 757].

The successful implementation of such diverse types of quantifiers in the chosen
models demonstrates that the proposed approach to fuzzy quantification is not only
theoretically appealing, but also viable in practice. In particular, I have shown that
the featured modelsFCh, M andMCX are computational, by describing efficient
algorithms which implement the relevant types of quantifiers in these models. In each
case, I presented two variants of the algorithms: the default version which uses floating-
point arithmetics, and an alternative version taylored to integer arithmetics. The latter
version should be considered for application when a substantial gain in performance
outweighs the resulting loss of accuracy. Roughly speaking, the integer-based solution
will yield the maximum benefit if the considered integer range is small compared to the
size of the domain. Operations on intensity images with millions of pixels and a limit
to eight bit accuracy are a prime example. Due to their clear structure, the proposed
algorithms are easily fitted to additional classes of quantifiers, although the prominent
cases should be covered by the examples. In addition, the algorithms can also provide
a paradigm for implementing other types of models.

In closing this chapter, I would like to discuss two examples of fuzzy quantification.
These examples are mainly intended to provide some first evidence that the proposed
algorithms are indeed useful and efficient. In addition, it is hoped that these examples
will also be of interest as such, and point attention to some promising areas for the use
of fuzzy quantifiers in future applications.

The first example highlights the benefits of fuzzy quantifiers for the weighted query-
ing of retrieval systems. In information retrieval, one is typically faced with a large
number of unstructured documents or document representatives (database records). In
order to better visualize the search results, it can be helpful to rank the documents
according to some meaningful criterion, and to present them sorted by their ranking.
Apart from separating the relevant documents (which are shown first) from the irrel-
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evant documents (which are shown very late or even cut off), this ranking procedure
can also highlight the degree to which the filtering criterion applies, i.e. beyond the
computed order, the numerical relevance grades themselves and their distribution can
also be of interest. In this process, fuzzy quantification comes to the fore in at least two
ways. First of all, fuzzy quantifiers are valuable aggregation operators, which naturally
incorporate importance qualification. In this case, we have a number of subcriteria;
these comprise the domain of quantification,E. Each criterione ∈ E has an asso-
ciated importanceµW (e) ∈ I and an associated grade of applicabilityµA,d(e) with
respect to the considered documentd. These grades of importance can be organized
into fuzzy subsetsW,Ad ∈ P̃(E). Based on a semi-fuzzy quantifierQ : P(E)2 −→ I,
e.g.Q = almost all , we can now express the aggregation score%d, which corresponds
to the NL statement

“Q important criteria apply to the documentd”.

The ranking criterion then becomes

%d = Q̃(W,Ad) ,

whereQ̃ = F(Q) for the chosen DFSF . The documentsd ∈ D of the document base
D are then sorted according to their relevance grade%d and presented in decreasing or-
der of relevance (most relevant first). For example, we might determine the documents
to which most relevant criteriae ∈ E apply, by computing the ranking according to

%d = m̃ost (W,Ad) .

In this case, the fuzzy quantifier̃most = F(most ) is independent of the assumed
standard model, see (6) and Th-46.

This basic approach has been utilized for improving retrieval performance in a meta-
search engine for bibliographic databases, the ‘retrieval assistant’ [58]. In this system,
the possible combinations of search terms are no longer limited to Boolean operators;
apart from the Boolean connectives, the retrieval assistant also supports the approxi-
mate quantifiers “almost all”, “many”, “a few” and others. In addition, all terms can
be weighted by their importance with respect to the aggregation.

Similar techniques have been employed by Bordogna & Pasi [18], in order to support
more powerful queries to information retrieval systems which also include fuzzy quan-
tification. Further examples which demonstrate the benefits of fuzzy quantification
to the querying of information systems are [22, 74, 76, 126]. It should be empha-
sized, however, that all of these existing applications resort to theΣ-count or OWA
approaches, and therefore do not profit from the improvements of fuzzy quantification
achieved in this report.

The proposed method for weighted aggregation with fuzzy quantifiers is not re-
stricted to textual documents and classical information retrieval, though. The following
example starts from a meaningful query to an image database, which involves the use
of fuzzy quantification. When executing the query, the processing of the quantifier is
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delegated to the modelM presented in Chap. 7. The document base assumed in the
example again consists of digitized satellite images, from which corresponding images
of cloudiness situations have been extracted. The goal is to rank these cloudiness sit-
uations according to a criterion like “Q of Southern Germany is cloudy”, whereQ is
a quantifier like “more than 20 percent” or “as much as possible”. In the example, we
have a uniform criterion, i.e. the fuzzy predicate “cloudy”, which is applied repeatedly
and evaluated for all pixels in the image of cloudiness grades. The global criterion
therefore expresses some kind of accumulation, which ranges over the spatial region
of Southern Germany (see Fig. 2). The criterion results in a single scalar evaluation
for each image. Consequently, the accumulation process totally eliminates the spatial
dimension; it results in the numerical score%d which determines the relevance of each
image under the query.

Specifically, I will now consider the case thatQ = as much as possible , which
results in the ranking criterion

“As much as possible of Southern Germany is cloudy”.

Of course, a suitable interpretation of the quantifier must be supplied in order to deter-
mine a meaningful ranking. Because we are working with discrete, digitized images
throughout, it is first necessary to translate the original criterion into a corresponding
condition on discrete pixels in the digitized image, viz

“As many pixels as possible that belong to Southern Germany

are classified as cloudy”.

The ranking is then computed by determining the document score%d of each imaged
in the database, and by presenting the images in decreasing order of their associated
scores. Based on the modelM, the score%d achieved by a given imaged can readily
be computed as

%d =M(as many as possible )(Southern Germany , cloudy d) ,

whereas many as possible is the quantifier defined by (13), which denotes the
relative share, whilecloudy d is the fuzzy region of cloudiness grades depicted in
imaged.

In order to illustrate this approach to query processing with fuzzy quantifiers, the
example query was run on twelve images, a random sample of the images in the docu-
ment base. The resulting ranking of cloudiness situations under the criterion “As much
as possible of Southern Germany is cloudy” is presented in Fig. 12. The computed
ordering appears to be in good conformance with our expectations, i.e. the resulting
image sequence indeed shows a steady decrease of cloudiness in Southern Germany.
This experimental evidence in favour of the chosen interpretation of fuzzy quantifiers
is not surprising, of course, because the essential aspects of linguistic adequacy have
been encoded in the axiom system for fuzzy quantification, which I devised in the first
part of the report.

Apart from its illustrative value, the example also provides some first experimental
data on typical processing times. Due to the extent of the domain of quantification,
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Figure 12: Ranking computed for query “As much as possible of Southern Germany is
cloudy”. Most relevant results in top left corner, quality of match decreases from left
to right and from top to bottom.

which comprises the full set of pixel positions in the images, and also due to the modest
demands on accuracy, I decided to apply the algorithm based on integer arithmetics
using 8 bit accuracy (see table 15). In order to compute the ranking, a quantification
result had to be calculated for each image, based on the domain of 219063 (411x533)
pixel coordinates. This took approx. 0.03 seconds processing time per image on an
AMD Athlon 600 MHz PC running Linux, assuming that the image is already loaded
into the working memory.

Up to this point, I have emphasized the utility of fuzzy quantifiers for weighted
aggregation and importance qualification. However, an implementation of fuzzy quan-
tifiers offers further benefits to applications. Today, it is often not the lack of data, but
rather their abundance that hinders decisions. It therefore becomes vitally important
to develop methods which extract the interesting features or regularities from a large
stock of data, thus elucidating the global ‘shape’ of the given collection. Due to the
massive amounts of raw data, those techniques come into focus that automatically gen-
erate summaries of the given data sets, in order to make them intelligible and reveal
the hidden characteristics. It is natural and often favourable to express these summaries
linguistically (rather than using descriptive statistics). In particular, this is the case if
the database comprises fuzzy attributes; if the data items can vary with respect to their
importance to the summarisation; and finally if the observable regularities, too, are
only a matter of tendency. Following Yager [163], the linguistic summary is usually
constructed from a linguistic quantifier, which represents thequantity in agreement,
and from a natural language predicate, which functions as thesummarizer. For pur-
poses of illustration, consider the following linguistic summary cited from Kacprzyk
and Strykowski [73, p. 31], who detail a system for generating summaries of sales data
at a computer retailer:

“Much sales of components is with a high commission”.
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In this case, the summary can be split into the domain ‘sales of components’, the quan-
tity in agreement ‘much’ and finally the summarizer, ‘[sales] with a high commission’.
We can therefore represent the summary in terms of the following quantifying expres-
sion,

m̃uch (sales with a high commission ) ,

wherem̃uch must be a suitable fuzzy quantifier defined on the universe of component
sales. Of course, it is also possible to use two-place quantifiers, which let us relativize
summaries to fuzzily defined special circumstances, and which also make it possible
to incorporate importances. For example, imagine a summary

“Much recent sales of components is with a high commission”.

In this case, we have an additional summarizer ‘recent [sales of components]’ which
expresses a soft constraint on those sales of components covered by the summary. Such
relative summaries can be modelled by a quantifying expression built from a two-place
quantifier, viz

m̃uch (recent sales of components , sales with a high commission ) .

Some experimental systems for linguistic data summarization which fit into this gen-
eral framework are described in [72, 73, 126, 193].

All of these systems rely on structured, relational representations, and are therefore
taylored to classical database applications.

Data summarization with fuzzy quantifiers is not restricted to relational data, though.
In particular, the same techniques can also improve our understanding of images and
image sequences. In order to illustrate this, I will again resort to the familiar example
domain.

We start from a large collection of intensity images (each also annotated by a ‘time
stamp’), which represent cloudiness situations at certain points of time. For simplic-
ity, I will assume that these images are periodically sampled at equidistant time inter-
vals. Obviously, users of the weather information system do not care about the specific
points of time at which the images were shot, which is considered a purely techni-
cal matter. By contrast, these users are interested in the weather in certain ‘natural’
geographic areas and the distribution and flow of weather in certain ‘natural’ time in-
tervals. By ‘natural’ I mean that these regions of interest have an associated cognitive
representation, and can therefore beexpressed linguistically.

For purposes of illustration, consider some user interested in characteristics of the
recent weather situation. Let us further assume that the user expresses the time of
interest in a linguistic way, by specifying the temporal summarizer “in the last days”.
The chosen term “in the last days” then imposes a soft constraint on those images in the
database which must be considered in the summary. For purposes of demonstration,
we shall limit ourselves to a small sequence of cloudiness situations, which is depicted
in the upper row of Fig. 13; the relevance of these images with respect to the criterion
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“in the last days” is also shown. Obviously, the sequence of interest will grow much
larger in a real-world application, and the system is therefore supposed to condense the
individual pieces of information by generating image summaries. This summarization
will effectively eliminate the temporal dimension, i.e. the summarizing image is no
longer anchored at a certain point of time. Fuzzy two-place quantifiers are suitable
operators for performing this abstraction, because they are capable of summarizing
the data and simultaneously incorporating the importances expressed by “in the last
days”. The resulting criteria for generating the summarizing images then assume the
following form,

“Q-times cloudy in the last days”,

whereQ is the chosen quantifier. In order to describe the data from several perspec-
tives, the system is supposed to apply several distinct quantifiersQ, each of which
highlights a certain characteristic of the images.

Let me now detail the mechanism which will be used for generating the summary
images. The domain of quantificationE consists of the given set of images, which
represent cloudiness situations. It is understood that all of these images are defined
on the same set of pixel coordinates, i.e. all images share the same dimensions. The
images are also annotated with a time stamp. The time stamp can be used to define
a fuzzy setX1 ∈ P̃(E), which judges membership of the images in the fuzzy time
interval “in the last days”. In order to generate a summarizing image from the given
data, we first choose someQ : P(E)2 −→ I which represents the quantifier of interest.
The target image is defined on the same set of pixel coordinates as the original images.
It is generated by pixel-wise application of the following procedure. We have already
fixed the quantifierQ and the restrictionX1 ∈ P̃(E) which encodes the importances.
In dependence on the given pixelp, we now define a second fuzzy subsetX2,p ∈ P̃(E)
of the set of images, whereµX2,p(e) is the degree of cloudiness observed in cloudiness
situatione at the location ofp, i.e. the degree to whichp is classified as ‘cloudy’. By
applying the quantifier to the restrictionX1 and scopeX2,p, we finally compute the
intensity of the considered pixel in the result image, which is the score of the criterion

“Q-times cloudy in pixelp in the last days”.

In other words, the resulting imageR has pixel intensities

Rp = F(Q)(X1, X2,p) ,

for all pixels p, whereF is the chosen model of fuzzy quantification, in this case
F = M. In the example, I have usedF = M, which was the only known DFS at
the time the experiments were carried out, but the other modelsFCh andMCX are
also conceivable choices. As has already been remarked, it is advantageous to build
more than one image summary. Noticing that every quantifier will accentuate a cer-
tain regularity observed in the images, it is advisable to use more than one quantifier,
in order to achieve a richer description of the data. In practice, I decided to use the
universal quantifier for modelling “always”; the existential quantifier for modelling
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“at least once”; and some ‘intermediate’ quantifiers for modelling “sometimes” (i.e.,
at least a few times), “often” (assumed to increase linearly with frequency) and “al-
most always”. The latter quantifiers were all derived from a trapezoidal proportional
quantifiertrp a,b,c : P(E)2 −→ I defined by

trp a,b,c(Y1, Y2) =
{
ta,b(|Y1 ∩ Y2|/|Y1|) : Y1 6= ∅

c : Y1 = ∅

ta,b(z) =


0 : z < a
z−a
b−a : a ≤ z ≤ b
1 : z > b

whereY1, Y2 ∈ P(E), a, b, c, z ∈ I, a < b. The precise definition of the derived quan-
tifiers in terms of the parametersa, b, c ∈ I as well as the corresponding summaries
are shown in Fig. 13. Now considering the summary images, one immediately recog-
nizes those areas that were sunny all of the time (those depicted black in the leftmost
summary), those areas that were overcast all of the time (those shown white in the
rightmost image) and the exact graduation of the areas in between (center images). In
the crisp case, it would be possible to display all of this information in one single im-
age, which depicts frequency. However, this cannot be done in the fuzzy case, because
the importances of the summarized images (specified by “in the last days”) and also
the cloudiness grades are both a matter of tendency. It is therefore invaluable to have
a more general technique at our disposal, which also accounts for the gradual nature
of the data. This is particularly true if one moves to collections of realistic size, which
can no longer be judged by looking at the individual data items.

When working with such large collections, processing times become a critical factor.
Hence let us also consider some performance data. In the example shown in Fig. 13,
a total number of 219063 quantification results involving a domain of 8 images had
to be computed for each result image (i.e. one quantifying expression for each of the
411x533 pixels). Due to the emphasis on processing speed rather than accuracy, it was
again decided to use the integer-based implementation of proportional quantifiers inM
with 8 bit accuracy. The summarisation process then took a total of about 5 seconds per
result image on the same computer platform as above. These numbers suggest that the
proposed algorithms are indeed very efficient, and not likely to create a performance
bottleneck in applications.
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Data:

0.2 0.4 0.6 0.7 0.8 0.9 1.0 1.0

Results:

at least once sometimes often almost always always
some trp 0,0.4,0 trp 0,1,0.5 trp 0.6,1,1 all

Figure 13: Image sequence and summarization results for various choices of the cri-
terion “Q-times cloudy in the last days”. Regions that meet the criterion are depicted
white.
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12 Multiple variable binding and branching quantification

12.1 Motivation and chapter overview

The framework for fuzzy quantification which I proposed in Chap. 2 and then elabo-
rated in the later chapters, was motivated by the failure of earlier work to cover the
variety of individual quantifiers found in natural languages. Thus, Zadeh’s traditional
framework was judged much too limited in scope, while my improved framework was
specifically designed to capture a substantial class of linguistic quantifiers (although
not all of them). The main part of the report was then concerned with the development
of a complete and useful theory of fuzzy quantification within the proposed skeleton:
by demarcating the range of intended models, by devising constructions for such mod-
els, and finally by implementing quantifiers in these models. It is important to notice
at this point that all of these efforts were directed at the modelling of individual quan-
tifiers. However, it is not only the diversity of possible quantifiers in NL which poses
difficulties to a systematic and comprehensive modelling of linguistic quantification.
Further peculiarities become visible when the quantifiers are no longer treated in iso-
lation. Even in simple cases like “most”, the ways in which these quantifiers interact
when combined in meaningful propositions can be complex and sometimes even puz-
zling. Consider the quantifying proposition “Most men and most women admire each
other”, for example, in which we find a reciprocal predicate, “admire each other”. Bar-
wise [5] argues that so-called branching quantification is needed to capture the mean-
ing of propositions involving reciprocal predicates. Without branching quantifiers, the
above example must be linearly phrased as either a. or b.,

a. [mostx : men(x)][most y : women(y)] adm(x, y)
b. [most y : women(y)][mostx : men(x)] adm(x, y) .

(Obviously, we need a logic which supports generalized quantifiers in order for these
expressions to make sense. For a suitable system of first-order logic with fuzzy quanti-
fiers see Barwise and Feferman [7, Ch. 2]). Neither interpretation captures the expected
symmetry with respect to the men and women involved. Surely the Boolean conjunc-
tion of a. and b. will be symmetric, but it does not capture the expected meaning either.
In fact, we need a construction like

[Q1 x : men(x)]
[Q2 y : women(y)]

〉
adm(x, y)

where the quantifiersQ1 = Q2 = most operate in parallel and independently of
each other. This branching use of quantifiers can be analysed in terms of Lindström
quantifiers [97], i.e. multi-place quantifiers capable of binding several variables. In
this case, we have three arguments, and the quantifier should bindx in men(x), y in
women(y) and both variables inadm(x, y). Thus anticipating the use of Lindström
quantifiers which will be formally defined in the next section, the above branching
expression can be modelled by a Lindström quantifierQ of type〈1, 1, 2〉:

Qx,y,xy(men(x),women(y), adm(x, y))
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(For details on the logical language and the definition of its semantics, see Lindström’s
original presentation [97]). Let us now consider the problem of assigning an interpre-
tation to such quantifiers. Obviously,Q depends on the meaning of “most”. Given a
fixed choice of base set or ‘universe’E 6= ∅ over which the quantification ranges, the
quantifier “most” in its precise sense (majority of) can be expressed as

most (Y1, Y2) =
{

1 : |Y1 ∩ Y2| > 1
2 |Y1|

0 : else

for all crisp subsetsY1, Y2 ofE (provided thatE be finite), see (6). This lets us evaluate
“most men are married” by calculatingmost (men ,married ), wheremen ,married
are the sets of men and of married people, respectively. The definition can be extended
to base sets of infinite cardinality if so desired. A possible interpretation of “most” in
this case is

most (Y1, Y2) =
{

1 : Y1 ∩ Y2 ∩ β̂(Y1 ∩ Y2) 6= ∅ for all bijectionsβ : Y1 −→ Y1

0 : else

whereY1, Y2 ∈ P(E).

Let us now attempt a similar analysis of the above quantifierQ. We first notice
that the quantifier must accept three arguments, i.e. the setsA,B ∈ P(E) of men and
women, and the binary relationR ∈ P(E2) of people admiring each other, assumed
to be crisp for simplicity. The quantifier then determines a two-valued quantification
resultQ(A,B,R) ∈ {0, 1} from these data. Barwise [5, p. 63] showed how to define
Q in a special case; here I adopt Westerståhl’s reformulation for binary quantifiers
[158, p. 274, (D1)]. Hence consider a choice ofQ1, Q2 : P(E)2 −→ {0, 1}. Let us
further assume that theQi’s, like “most”, are nondecreasing in their second argument,
i.e.Qi(Y1, Y2) ≤ Qi(Y1, Y

′
2) wheneverY2 ⊆ Y ′2 . In this case, the complex quantifier

Q becomes:

Q(A,B,R) =
{

1 : ∃U × V ⊆ R : Q1(A,U) = 1 ∧Q2(B, V ) = 1
0 : else

(235)

Hence “Most men and most women admire each other” means that there exists a mutual
admiration groupU × V ⊆ adm such that most men and most women belong to that
group. In my view, this analysis is correct and expresses the intended meaning of the
example. It should be remarked at this point that Westerståhl, unlike Barwise, is only
concerned with conservative quantifiers, thus assuming thatQi(Y1, Y2) = Qi(Y1, Y1∩
Y2). This permits him to restrict attention toU × V ⊆ R ∩ (A × B) rather thanU ×
V ⊆ R without changing the interpretation. Westerståhl also extends this analysis to
a generic construction which admits non-monotonic quantifiers (p. 281, Def. 3.1). But,
how can we incorporate approximate quantifiers and fuzzy arguments, as in “Many
young and most old people respect each other”?

The goal of the present chapter is devising a method which assigns meaningful in-
terpretations to such cases. To this end, I first incorporate Lindström-like quantifiers
capable of binding several variables into the QFM framework. Following this, the
axiom system for ordinary models of fuzzy quantification is adapted to the new cases.
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This extension is modelled closely after the DFS solution and thus permits to re-use the
models presented so far. I will also initiate research into more specialized conditions
which might further constrain the plausible models of fuzzy quantification in the more
general sense. Specifically, I will connect Lindström-like quantifications and the analy-
sis of branching constructions to the formation of quantifier nestings. Finally I explain
how the above analysis of reciprocal constructions in terms of branching quantifiers
and its generalization due to Westerståhl can be extended towards fuzzy branching
quantification. The proposed analysis is of special importance to linguistic data sum-
marization because the full meaning of reciprocal summarizers, which describe factors
being “correlated” or “associated” with each other, can only be captured by branching
quantification.

12.2 Lindstr öm quantifiers

Let us start from the notion of crisp quantifiers which incorporate multiple-variable
binding. A suitable semantical concept which achieves this is defined as follows.

Definition 168
A Lindström quantifieris a classQ of (relational) structures of some common type
t = 〈t1, . . . , tn〉, such thatQ is closed under isomorphism [97, p. 186].

The cardinaln ∈ N specifies the number of arguments; the individual components
ti ∈ N specify the number of variables that the quantifier binds in itsi-th argument po-
sition. For example, the existential quantifier, which accepts one argument and binds
one variable, has typet = 〈1〉. The corresponding classE comprises all structures
〈E,A〉 whereE 6= ∅ is a base set andA is a nonempty subset ofE. In the intro-
duction to this chapter, we have already met with a more complex quantifierQ of type
〈1, 1, 2〉 given by (235). In this case,Q is the class of all structures〈E,A,B,R〉 with
Q(A,B,R) = 1, whereE 6= ∅ is the base set andA,B ∈ P(E), R ∈ P(E2).
As shown by Lindstr̈om, such quantifiers can be used to assign an interpretation to
quantifying expressions likeQx,y,xy(ϕ(x), ψ(y), χ(x, y)) whereQ bindsx in ϕ(x),
y in ψ(y), and bothx, y in χ(x, y). Thus,Q is capable of binding multiple vari-
ables in its third argument position. Informally, the semantical interpretation ofϕ(x)
results in the setA = {x : ϕ(x)} of all things which satisfyϕ(x); ψ will result
in the setB of all things which satisfyψ(y); andχ(x, y) will result in the relation
R = {(x, y) : χ(x, y)} ∈ P(E2). The resulting sets (or more precisely,ti-ary rela-
tions) can then be used to determine the truth status of the quantifying sentence, by
checking whether(A,B,R) ∈ Q or not. The formal definition of the logical system
and its semantics are described in [97].

To sum up, Lindstr̈om quantifiers introduce a very powerful notion of quantifiers.
However, as already pointed out in the introduction, the condition thatQ be closed
under isomorphism, which is useful for describing logical or mathematical quantifiers,
is too restrictive when we turn to the modelling of natural language. In order to express
non-quantitative examples of quantifiers, e.g. proper names “Ronald” or constructions
involving proper names like “all except Lotfi” which depend on specific individuals, it
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is therefore necessary to drop invariance under isomorphisms. The following definition
of a generalized Lindström quantifier accounts for these considerations.

Definition 169
A generalized Lindstr̈om quantifieris a classQ of relational structures of a common
typet = 〈t1, . . . , tn〉.

Again, the arityn ∈ N specifies the number of arguments, and the componentsti ∈ N
specify the number of variables that the quantifier binds in itsi-th argument position.
In principle, we have now arrived at the two-valued concept which I would like to
generalize to the fuzzy case, by incorporating approximate quantification and fuzzy
arguments.

In order to avoid the introduction of a ‘fuzzy class of relational structures’, it is
convenient to organize the information gathered in the total classQ into more localized
representations. In order to accomplish this, I will follow the same basic strategy that
I pursued in the case of ordinary two-valued, semi-fuzzy and fuzzy quantifiers, which
were all defined relative to a given domain,E. Hence let us introduce a notion of two-
valued L-quantifiers (where ‘L’ signifies Lindström) which are no longer concerned
with all base sets at the same time, but rather relativized to a single choice ofE.

Definition 170
A two-valued L-quantifierof typet = 〈t1, . . . , tn〉 on a base setE 6= ∅ is a mapping

Q :
n
×
i=1
P(Eti) −→ 2. HenceQ assigns a crisp quantification resultQ(Y1, . . . , Yn) ∈

{0, 1} to each choice of crisp argumentsYi ∈ P(Eti), i ∈ {1, . . . , n}. A full two-
valued L-quantifierQ of typet assigns a two-valued L-quantifierQE of typet onE to
each base setE 6= ∅.

Let me briefly explain how the full two-valued L-quantifiersQ so defined are related
to generalized Lindström quantifiersQ. Starting from a Lindstr̈om quantifierQ, we
can define a full two-valued L-quantifier by

QE(Y1, . . . , Yn) = 1⇔ (E, Y1, . . . , Yn) ∈ Q

for all base setsE 6= ∅ and all crisp argumentsYi ∈ P(Eti), i = 1, . . . , n. Start-
ing from a full two-valued L-quantifierQ, on the other hand, we can define a cor-
responding generalized Lindström quantifier as the classQ of all relational structures
(E, Y1, . . . , Yn) of typetwhich satisfy the conditionQE(Y1, . . . , Yn) = 1. These con-
structions are obvious inverses of each other, i.e. we can always switch from a general-
ized Lindstr̈om quantifier to the corresponding full L-quantifier and vice versa. Conse-
quently, both concepts express basically the same thing, and are thus interchangeable.
Here I will opt for the latter concept of two-valued L-quantifiers, which is better suited
for my purposes. In addition, it is convenient to keep the base setE fixed. I will there-
fore focus on the relativized notion of two-valued L-quantifiers of typet onE (rather
than ‘full’ ones). These provide the point of departure for my generalizations to be pre-
sented in the next section. It should be obvious how to develop unrelativized notions
like the above ‘full two-valued L-quantifiers’ from these concepts, but such extensions
are irrelevant for my current purposes.
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12.3 (Semi-)fuzzy L-quantifiers and a suitable notion of QFMs

Now that the basic issues concerning two-valued Lindström quantifiers have been clar-
ified, we can turn to the problem of introducing the intended support for fuzziness.
The basic strategy that proved itself useful for developing the ordinary framework
then guides us to introducing suitable definitions of semi-fuzzy L-quantifiers, fuzzy
L-quantifiers and L-QFMs.

Definition 171
A semi-fuzzy L-quantifierof typet = 〈t1, . . . , tn〉 on a base setE 6= ∅ is a mapping

Q :
n
×
i=1
P(Eti) −→ I which assigns a gradual quantification resultQ(Y1, . . . , Yn) ∈

[0, 1] to each choice of crisp argumentsYi ∈ P(Eti), i ∈ {1, . . . , n}.

Thus,Q accepts crisp arguments of the indicated types, but it can express approximate
quantifications. ‘Ordinary’ semi-fuzzy quantifiersQ : P(E)n −→ I can be viewed
as a special case of semi-fuzzy L-quantifiers; they roughly correspond ton-ary semi-
fuzzy L-quantifiers of typet = 〈1, . . . , 1〉 on the given base set,E. However, I must be
particular about the point that semi-fuzzy L-quantifiers are not literallyidenticalto this
special case of semi-fuzzy L-quantifiers; we only have a one-to-one correspondence
(see below).

Semi-fuzzy L-quantifiers are proposed as a uniform specification medium for arbi-
trary quantifiers suitable to express multiple variable binding. Again, we also need
operational quantifiers, which are not restricted to crisp inputs:

Definition 172
A fuzzy L-quantifier of typet on a base-setE 6= ∅ is a mappingQ̃ :

n
×
i=1
P̃(Eti) −→ I

which assigns a gradual quantification resultQ̃(X1, . . . , Xn) ∈ [0, 1] to each choice
of fuzzy argumentsXi ∈ P̃(Eti), i ∈ {1, . . . , n}.

Fuzzy quantifiers̃Q : P̃(E)
n
−→ I again correspond to the special case of ann-ary

fuzzy L-quantifier of type〈1, . . . , 1〉 onE, but they are not literally identical to these
quantifiers, and only related by a one-to-one correspondence.

A suitable fuzzification mechanism must be used for associating specifications to
target quantifiers. The notion of an L-QFM can be developed in total analogy to the
earlier proposal of QFMs for ordinary quantifiers.

Definition 173
An L-quantifier fuzzification mechanism(L-QFM) F assigns to each semi-fuzzy L-
quantifierQ a corresponding fuzzy L-quantifierF(Q) of the same typet = 〈t1, . . . , tn〉
and on the same base setE 6= ∅.

These definitions give birth to a new framework for fuzzy quantification which encom-
passes Lindström quantifiers and hence, multiple variable binding (provided a suit-
able definition of a logic on top of such quantifiers. Such a system of logic might be
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modelled closely after Lindström’s original stipulations in [97]). The models for ‘L-
quantification’, i.e. L-QFMs, are totally unconstrained, though, and again we need to
make provisions in order to guarantee plausible interpretations and shrink down the
totality of possible L-QFMs to the intended choices.

12.4 Constructions on L-quantifiers

It is possible to develop plausibility criteria for L-QFMs in total analogy to those for
ordinary QFMs. However, some preparations are necessary.

The notion of an underlying semi-fuzzy L-quantifier of a given fuzzy L-quantifier is
defined pretty much the same way as in the ordinary case:

Definition 174
Let Q̃ be a fuzzy L-quantifier of typet = 〈t1, . . . , tn〉 on a base setE. Theunderlying

semi-fuzzy quantifierU(Q̃) :
n
×
i=1
P(Eti) −→ I is the semi-fuzzy quantifier of typet on

E defined by

U(Q̃)(Y1, . . . , Yn) = Q̃(Y1, . . . , Yn) ,

for all Y1 ∈ P(Et1), . . . , Yn ∈ P(Etn).

Hence again,U(Q̃) ‘forgets’ thatQ̃ can be applied to fuzzy arguments, and only con-
siders its behaviour on crisp arguments. This notion will prove useful to express that
an L-QFM properly generalizes the semi-fuzzy quantifiers it is applied to, in analogy
to (Z-1).

Recalling the constructions defined for ordinary semi-fuzzy quantifiers in Chap. 3,
I further needed projection quantifiersπe : P(E) −→ 2 and fuzzy projection quan-
tifiers π̃e : P̃(E) −→ 2 in order to describe membership assessments as a special
kind of quantification; the corresponding condition imposed on ordinary models was
(Z-2). However, I will not introduce a special notation for two-valued projection L-
quantifiers and fuzzy projection L-quantifiers. To see why, consider a two-valued pro-
jection quantifierQe of type〈1〉 on some base setE, e ∈ E. Generalizing the definition
of ordinary projection quantifiers,Qe is the mappingQe : P(E1) −→ 2 defined by
Qe(Y ) = χY ((e)) for all Y ∈ P(E1). It is then apparent thatQe can be expressed as
Qe = π(e), whereπ(e) : P(E1) −→ I is an ordinary projection quantifier defined by
Def. 9. Hence two-valued projection L-quantifiers are special cases of ordinary projec-
tion quantifiers, and we need not introduce a new symbol to signify them. By similar
reasoning, a fuzzy projection quantifier̃Qe of type 〈1〉 on a base setE 6= ∅ is the
mappingQ̃e : P̃(E1) −→ I defined byQ̃e(X) = µX((e)) for all X ∈ P̃(E1). Hence
Q̃e can be viewed as a special case of ‘ordinary’ fuzzy projection quantifierQ̃e = π̃(e),

whereπ̃(e) : P̃(E) −→ I is defined by Def. 10. Again, there is no need to introduce a
new notation because every fuzzy projection L-quantifier can be expressed asπ̃(e) for
somee ∈ E.
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As noted above, semi-fuzzy quantifiers and fuzzy quantifiers can be viewed as spe-
cial cases of semi-fuzzy L-quantifiers and fuzzy L-quantifiers by means of a suitable
embedding. This correspondence is important because the formal machinery intro-
duced so far, in particular the construction of induced truth functions and the definition
of the induced extension principle, is developed in terms of ordinary quantifiers. This
suggests that we might utilize this correspondence in order to define the induced truth
functions and induced extension principle of an L-QFM in terms of the definitions
which are already available for ordinary QFMs.

Hence let us make this correspondence explicit. We first consider a semi-fuzzy
quantifierQ : P(E)n −→ I. As already remarked above, a matching semi-fuzzy
L-quantifierQ′ has arityn, typet = 〈1, . . . , 1〉, and is also defined onE. HenceQ′

is a mappingQ′ : P(E1)n −→ I. This demonstrates whyQ′ andQ are in general
not identical: it is true that the semi-fuzzy L-quantifierQ′ is a also an ordinaryn-ary
semi-fuzzy quantifier, but it is defined on a different base set, i.e.E1 rather thanE.
Here,E1 is the set of all one-tuplesE1 = {(e) : e ∈ E}, i.e. the set of all mappings
f : {1} −→ E, which is usually different from the setE = {e : e ∈ E}. A similar
situation occurs when we turn attention to fuzzy quantifiers vs. fuzzy L-quantifiers.
In this case, a fuzzy quantifier̃Q : P̃(E)

n
−→ I is also different from its possible

counterpartsQ̃′ : P̃(E1)
n
−→ I, essentially for the same reason. Let me now de-

scribe the obvious one-to-one correspondence between the elements of these sets. Let
β : E −→ E1 denote the mapping which maps the elementse ∈ E to one-tuples

β(e) = (e) (236)

The mapping which maps the one-tuples(e) ∈ E to their first component(e)1 = e
will be denotedϑ : E1 −→ E, i.e.

ϑ((e)) = e (237)

for all (e) ∈ E1. Obviously,β andϑ are isomorphisms, andϑ is the inverse mapping
of β. Based onβ andϑ, I am now able to express the correspondence between ordinary
(semi-)fuzzy quantifiers and their generalized counterparts in formal terms. Hence let
Q : P(E)n −→ I be a semi-fuzzy quantifier. The semi-fuzzy L-quantifierQ′ of type
〈1, . . . , 1〉 ∈ Nn onE which corresponds toQ can be expressed as

Q′ = Q ◦
n
×
i=1

ϑ̂, (238)

i.e.

Q′(Y1, . . . , Yn) = Q(ϑ̂(Y1), . . . , ϑ̂(Yn)) (239)

for all Y1, . . . , Yn ∈ P(E). The inverse ofϑ, i.e. β, can be used in a similar way to
translate back from semi-fuzzy L-quantifiers of arityn and type〈1, . . . , 1〉 to cor-
responding ordinary semi-fuzzy quantifiers, i.e. assuming crisp arguments. In the
fuzzy case, we can also proceed analogously. In order to translate a fuzzy quantifier
Q̃ : P̃(E)

n
−→ I into ann-ary fuzzy L-quantifier of type〈1, . . . , 1〉 onE, we can pro-

ceed as in (238); but now, the arguments range over fuzzy sets, so we will replace the
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crisp powerset mappinĝϑ with the fuzzy image mappinĝ̂ϑ obtained from the standard
extension principle. Again, we can also relate a fuzzy L-quantifierQ̃ of arity n and
type〈1, . . . , 1〉 onE to a corresponding ordinary fuzzy quantifierQ̃′ : P̃(E)

n
−→ I,

which then becomes

Q̃′ = Q̃ ◦
n
×
i=1

ˆ̂
β

i.e.

Q̃′(X1, . . . , Xn) = Q̃( ˆ̂
β(X1), . . . , ˆ̂

β(Xn))

for all X1, . . . , Xn ∈ P̃(E). In the following definition, I combine these constructions
in order to accomplish an interpretation of ordinary quantifiers in L-QFMs.

Definition 175
LetF be an L-QFM. The corresponding ordinary QFMFR is defined by

FR(Q) = F(Q ◦
n
×
i=1

ϑ̂) ◦
n
×
i=1

ˆ̂
β ,

for all semi-fuzzy quantifiersQ : P(E)n −→ I.

The construction of a corresponding ‘ordinary’ QFMFR for a given L-QFMF permits
us to define the induced truth functions and the induced extension principle of an L-
DFSF as the fuzzy truth functions and the extension principle, respectively, which are
induced by the ordinary DFSFR:

Definition 176
LetF be an L-QFM andf : 2n −→ I be a given mapping (i.e. a ‘semi-fuzzy truth
function’) of arityn ∈ N. The induced fuzzy truth functioñF(f) : In −→ I is defined
by

F̃(f) = F̃R(f),

whereFR is the ordinary QFM defined by Def. 175.

Notes

• wheneverF is clear from context, I will again use abreviations¬̃ = F̃(¬),
∨̃ = F̃(∨) etc.

• The definition of induced truth functions is extended to the induced fuzzy set
operations of complementatioñ¬, intersection∩̃ and ∪̃ in the obvious ways,
i.e. again by elementwise application of the induced negation, conjunction and
disjunction on membership grades.
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Based on the induced fuzzy truth functions and fuzzy set operations of an L-QFM, I
can now develop constructions on semi-fuzzy and fuzzy L-quantifiers which parallel
my definitions of antonyms, negation and duals for ordinary quantifiers. Here, I will
confine myself to exemplifying the definition of dualization, which I need for general-
izing (Z-3) to L-QFMs; the other concepts can be developed in a similar way but will
not be significant in the following.

Definition 177
Given a semi-fuzzy L-quantifierQ of typet = 〈t1, . . . , tn〉, n > 0 on some base set
E 6= ∅, the semi-fuzzy L-quantifierQ�̃ of typet onE is defined by

Q�̃(Y1, . . . , Yn) = ¬̃Q(Y1, . . . , Yn−1,¬Yn)

for all Y1 ∈ P(Et1), . . . , Yn ∈ P(Etn). Q�̃ is called the dual ofQ. The dual of a
fuzzy L-quantifier̃Q of typet onE is defined analogously.

In order to express a condition constraining the behaviour ofF for unions of argu-
ment sets which parallels (Z-4), I must also generalize the construction of quantifiers
from such unions. The definition of semi-fuzzy and fuzzy L-quantifiers resulting from
unions should be apparent:

Definition 178
Given a semi-fuzzy L-quantifierQ of typet = 〈t1, . . . , tn〉, n > 0 on some base set
E 6= ∅, the semi-fuzzy L-quantifierQ∪ of arityn+ 1 and type〈t1, . . . , tn, tn〉 onE is
defined by

Q∪(Y1, . . . , Yn+1) = Q(Y1, . . . , Yn−1, Yn ∪ Yn+1)

for all Y1 ∈ P(Et1), . . . , Yn ∈ P(Etn) andYn+1 ∈ P(Etn). For fuzzy L-quantifiers̃Q
of typet onE, the(n + 1)-ary fuzzy L-quantifier̃Q∪̃ of type〈t1, . . . , tn, tn〉 onE is
defined analogously.

Monotonicity of semi-fuzzy and fuzzy L-quantifiers is defined as in the ordinary case.
We only need to make sure that all arguments involved are chosen from their appro-
priate rangesYi ∈ P(Eti) for semi-fuzzy L-quantifiers, andXi ∈ P̃(Eti) in the fuzzy
case:

Definition 179
A semi-fuzzy L-quantifierQ of typet = 〈t1, . . . , tn〉, n > 0 on some base setE is
nondecreasing in itsi-th argument, i ∈ {1, . . . , n}, if

Q(Y1, . . . , Yn) ≤ Q(Y1, . . . , Yi−1, Y
′
i , Yi+1, . . . , Yn)

for all Y1 ∈ P(Et1), . . . , Yn ∈ P(Etn) andY ′i ∈ P(Eti) with Yi ⊆ Y ′i . Q is said to
benonincreasing in itsi-th argumentif under the same conditions, it always holds that

Q(Y1, . . . , Yn) ≥ Q(Y1, . . . , Yi−1, Y
′
i , Yi+1, . . . , Yn) .

The corresponding definitions for fuzzy quantifiersQ̃ of typet onE are analogous. In
this case, the arguments range overP̃(Eti), and ‘⊆’ is the fuzzy inclusion relation.
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Based on semi-fuzzy L-quantifiers which are nonincreasing in their last argument, I
will be able to express a condition on L-QFMs which parallels (Z-5).

Finally, I would also like to extend the condition thatF be compatible with func-
tional composition (Z-6) towards the new type of fuzzification mechanisms. I will
resort to the ordinary QFMFR associated withF in order to define the induced exten-
sion principle of an L-QFM.

Definition 180
Theinduced extension principlêF of an L-QFMF is defined bŷF = F̂R, i.e.F̂ is the
induced extension principle of the QFMFR defined by Def. 175.

12.5 The class of plausible L-models

Based on the above constructions, I can now define my axiom system for a class of
plausible L-QFMs, called ‘L-DFSes’ or ‘L-models’ of fuzzy quantification. It should
be obvious from the earlier characterization of DFSes and the generalization of the rel-
evant constructions how the criteria for L-DFSes which support Lindström-like quan-
tifiers can be expressed:

Definition 181
An L-QFMF is called anL-DFS if the following conditions are satisfied for all semi-

fuzzy L-quantifiersQ :
n
×
i=1
P(Eti) −→ I of arbitrary typest = 〈t1, . . . , tn〉 and on

arbitrary base setsE 6= ∅:

Correct generalisation U(F(Q)) = Q if t ∈ {〈〉, 〈1〉} (L-1)

Projection quantifiers F(Q) = π̃(e) if Q = π(e) for somee ∈ E (L-2)

Dualisation F(Q�̃) = F(Q)�̃ n > 0 (L-3)

Internal joins F(Q∪) = F(Q)∪̃ n > 0 (L-4)

Preservation of monotonicity IfQ is nonincreasing in then-th arg, then (L-5)

F(Q) is nonincreasing in then-th arg,n > 0

Functional application F(Q ◦
n
×
i=1

f̂i) = F(Q) ◦
n
×
i=1
F̂(fi) (L-6)

wherefi : E′t
′
i −→ Eti , t′ ∈ Nn (samen), E′ 6= ∅.

The axiom system is constructed in total analogy to my basic system for ordinary
QFMs. Thus it is not surprising that the generalized L-models are also suitable for
carrying out ‘ordinary’ quantification, i.e. the modelFR associated withF is indeed a
DFS:

Theorem 271 LetF be an L-QFM andFR the corresponding QFM defined by Def. 175.
If F is an L-DFS, thenFR is a DFS.
(Proof: D.32, p.531+)
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I will not comment further on the axioms because they are so closely modelled after my
conditions (Z-1)–(Z-6) imposed on plausible choices of QFMs. For these I gave ample
motivation in Chap. 3, and there is no point repeating these arguments here. However,
another issue needs clarification. As witnessed by the previous chapters, the compre-
hensive discussion of ordinary DFSes, the development of constructive principles for
useful models, and finally the implementation of such models, required considerable
effort. Obviously, there would be a lot to gain if we could reuse these results on ordi-
nary models. Ideally, it would be possible to express all L-DFSes in terms of suitable
ordinary DFSes. In this case, my results on properties of the models, constructive
classes of plausible models and finally the techniques developed for implementation
would directly translate into corresponding results on the new L-models.

In order to effect the desired reduction, we need a generic method which lets us con-
struct a ‘suitable’ L-QFMFL from a givenF . Here ‘suitable’ means that: (a)FL
properly extendsF , i.e.F = FLR; and (b)FL is an L-DFS wheneverF is a DFS,
i.e. the construction ‘works’. In addition, the new construction should be compatible
with the earlier construction ofFR from a given L-QFM. Hence we should also have
(c) F = FRL for all L-DFSesF , i.e.F can be recovered fromFR. A generic con-
struction of L-models which answers these requirements, will eliminate the problem
of establishing classes of L-DFSes altogether, because every L-DFSF ′ can then be
expressed asF ′ = FL for an ordinary DFSF . I propose the following construction to
accomplish this.

Let F be an ordinary QFM and letQ be a semi-fuzzy L-quantifier of typet =
〈t1, . . . , tn〉 on some base setE. I will abbreviate

m = max{t1, . . . , tn} , (240)

in particularti ≤ m for all i ∈ {1, . . . , n}. I can therefore introduce injections
ζi : Eti −→ Em which embedEti into a common extended domainEm. These are
defined by

ζi(e1, . . . , eti) = (e1, . . . , eti , eti , . . . , eti︸ ︷︷ ︸
(m− ti) times

) (241)

for all (e1, . . . , eti) ∈ Eti , i ∈ {1, . . . , n}. Henceζi fills in the (m − ti) missing
components by repeatingeti . It should be apparent thatζi is indeed an injection. We
also need mappings in the reverse direction. These will be writtenκi : Em −→ Eti ,
i ∈ {1, . . . , n}. The definition is as follows,

κ(e1, . . . , em) = (e1, . . . , eti) (242)

for all (e1, . . . , em) ∈ Em, i ∈ {1, . . . , n}. Henceκi is the projection on the first
ti components of(e1, . . . , em), i.e. it simply drops the final(m − ti) components. In
particular, theκi’s are onto (surjective). It should be apparent from (241) and (242) that
subsequent application ofζi (which addsm−ti components) andκi (which drops these
components) will take us back to the originalti-tuple. Hence for alli ∈ {1, . . . , n},

κi ◦ ζi = idEti . (243)
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In dependence on the given semi-fuzzy L-quantifierQ, I now define a mappingQ′ :
P(Em)n −→ I by

Q′(Y1, . . . , Yn) = Q(κ̂1(Y1 ∩ Im ζ1), . . . , κ̂n(Yn ∩ Im ζn)) , (244)

for all Y1, . . . , Yn ∈ P(Em). It is instructive to observe thatQ′ is, at the same time,
ann-ary semi-fuzzy L-quantifier of type〈m, . . .m〉 onE, and an ordinary semi-fuzzy
quantifierQ : P(Em)n −→ I on a different base set,Em. In fact, this is the basic idea
underlying the following construction of L-QFMs from ordinary QFMs.

Definition 182
The L-QFMFL associated with a given QFMF is defined as follows. For all semi-
fuzzy L-quantifiersQ of some typet = 〈t1, . . . , tn〉, on a base setE 6= ∅,

FL(Q) = F(Q′) ◦
n
×
i=1

ˆ̂
ζi

whereQ′ is the semi-fuzzy quantifier defined by(244), and theζi’s given by(241)are

extended to mappingŝ̂ζi : P̃(Eti) −→ P̃(Em) by applying the standard extension
principle.

Now let us consider the above criteria (a)–(c) for a successful reduction of L-DFSes to
ordinary DFSes in turn.

Theorem 272 If F is a DFS, thenFLR = F .
(Proof: D.33, p.539+)

(FL properly generalizes the original modelF .)

Theorem 273 If F is a DFS, then the corresponding L-QFMFL is an L-DFS.
(Proof: D.34, p.543+)

(The proposed construction results in plausible models.)

Theorem 274 If F is an L-DFS, thenFRL = F .
(Proof: D.35, p.553+)

The latter theorem is of particular relevance because it eliminates the problem of estab-
lishing classes of L-DFSes altogether. To sum up, my criteria (a)–(c) are all valid and
by the above reasoning, we need not be concerned with developing classes of L-DFSes
any longer. The ordinary modelsF that have already been studied in some depth are
sufficient to represent every L-DFSF ′ asF ′ = FL, given a suitable choice ofF . This
is of invaluable help because the investigation of constructive principles for plausible
models, like those presented in in Chap. 3, turned out to be a rather complex matter.
The canonical construction ofFL, then, permits the use of the proven modelsM,
MCX andFCh to handle the new cases of fuzzy L-quantification. In the following,
I will identify these models with their extensions for simplicity, thus writingMCX

rather than(MCX)L etc.
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12.6 Nesting of quantifiers

The axioms for L-DFSes are directly modelled after the corresponding axioms for or-
dinary DFSes; they do not refer to details of multiple variable binding (on the syntactic
level), or handlingti-ary (fuzzy) relations which occur as arguments of L-quantifiers
(i.e. on the level of modelling devices). It is an interesting question if additional ax-
ioms specifically concerned with L-quantifiers might prove useful for identifying those
L-DFSes best suited for modelling branching quantification.

A construction that comes to mind isquantifier nesting. ConsiderQ′xQ′′yϕ(x, y),
for example. It should be apparent how to develop a semantical interpretation of such
formulas in the proposed framework. Based on semi-fuzzy L-quantifiers, we can either
analyze this in terms of two quantifiers of typet1 = t2 = 〈1〉 applied in succession.
Alternatively, we can look at the whole blockQxy = Q′xQ′′y, which corresponds
to a single semi-fuzzy L-quantifier of typet = 〈2〉. Now let R ∈ P̃(E2) be the
interpretation ofϕ(x, y) as a fuzzy relation. The analysis in terms of two separate
quantifiers will result in an interpretationF(Q′)(Z), whereµZ(e) = F(Q′′)(eR) and
µeR(e′) = µR(e, e′) for all e, e′ ∈ E. This analysis thus corresponds to a fuzzy
L-quantifierF(Q′) @ F(Q′′) of type〈2〉 defined by

F(Q′) @ F(Q′′)(R) = F(Q′)(Z)

for all fuzzy relationsR ∈ P(E2). The quantifier blockQxy, on the other hand,
corresponds to a semi-fuzzy L-quantifierQ′ @̃Q′′ of type〈2〉 defined by

Q′ @̃Q′′(S) = F(Q′)(Z) ,

µZ(e) = Q′′(eS), eS = {e′ : (e, e′) ∈ S} for all crisp relationsS ∈ P(E2), and it
results in a second interpretation,F(Q′ @̃ Q′′)(R). (I am using the ‘tilde’-notatioñ@
here to signify thatQ′ @̃ Q′′ depends on the chosen L-QFM). It is natural to require
that the two interpretations coincide, i.e.

F(Q′ @̃Q′′) = F(Q′) @ F(Q′′) .

More generally, we can define a nesting operation for semi-fuzzy L-quantifiers and
fuzzy L-quantifiers of arbitrary types (the quantifierQ′ must offer an argument slot to
nest in, though, and thus needs positive arityn > 0).

Definition 183
Let E 6= ∅ be a given base set andQ′ a semi-fuzzy L-quantifier onE of typet =
〈t1, . . . , tn〉, n > 0. Further letQ′′ be a semi-fuzzy L-quantifier onE of arbitrary
typet′ = 〈t′1, . . . , t′n′〉, n′ ∈ N. The semi-fuzzy L-quantifierQ′ @̃ Q′′ onE of type
t∗ = 〈t1, . . . , tn−1, tn + t′1, . . . , tn + t′n′〉 which results from the nesting ofQ′′ into the
last argument ofQ′ is defined by

Q′ @̃Q′′(Y1, . . . , Yn−1, S1, . . . , Sn′) = F(Q′)(Y1, . . . , Yn−1, Z)
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for all Yi ∈ Eti , i ∈ {1, . . . , n − 1} and Sj ∈ Etn+t′j , j ∈ {1, . . . , n′}, where
Z ∈ P̃(Etn) is defined by

µZ(e1, . . . , etn) = F(Q′′)((e1, . . . , etn)S1, . . . , (e1, . . . , etn)Sn′) (245)

for all e1, . . . , etn ∈ E, and where thet′j-ary relation (e1, . . . , etn)Sj ∈ P(Et
′
j ) is

given by

(e1, . . . , etn)Sj = {(e′1, . . . , e′t′j ) : (e1, . . . , etn , e
′
1, . . . , e

′
t′j

) ∈ Sj} (246)

for j ∈ {1, . . . , n′}.

A similar construction is possible for fuzzy L-quantifiers:

Definition 184
LetE 6= ∅ be a given base set and̃Q′ a fuzzy L-quantifier onE of typet = 〈t1, . . . , tn〉,
n > 0. Further letQ̃′′ be a fuzzy L-quantifier onE of arbitrary typet′ = 〈t′1, . . . , t′n′〉,
n′ ∈ N. The fuzzy L-quantifier̃Q′@̃Q̃′′ of typet∗ = 〈t1, . . . , tn−1, tn+t′1, . . . , tn+t′n′〉
onE is defined by

Q̃′ @ Q̃′′(X1, . . . , Xn−1, R1, . . . , Rn′) = Q̃′(X1, . . . , Xn−1, Z)

for all Xi ∈ P̃(Eti), i ∈ {1, . . . , n− 1} andRj ∈ P̃(Etn+t′j ), j ∈ {1, . . . , n′}, where
Z ∈ P̃(Etn) is defined by

µZ(e1, . . . , etn) = Q̃′′((e1, . . . , etn)R1, . . . , (e1, . . . , etn)Rn′) (247)

for all e1, . . . , etn ∈ E, and where(e1, . . . , etn)Rj ∈ P̃(Et
′
j ), j ∈ {1, . . . , n′}, is the

fuzzy relation defined by

µ(e1,...,etn )Rj (e
′
1, . . . , e

′
t′j

) = µRj (e1, . . . , etn , e
′
1, . . . , e

′
t′j

) (248)

for all e′1, . . . , e
′
t′j
∈ E.

In this general case, too, we would expect that plausible choices ofF comply with the
nesting operation.

Definition 185
An L-QFMF is said to be compatible withquantifier nesting(in the last argument) if
the equality

F(Q′ @̃Q′′) = F(Q′) @ F(Q′′) (QN)

is valid for all semi-fuzzy L-quantifiersQ′ of typet = 〈t1, . . . , tn〉, n > 0 andQ′′ of
arbitrary typet′ = 〈t′1, . . . , t′n′〉, n′ ∈ N defined on the same base setE 6= ∅.

Judging from some first tests, it appears that quantifier nesting expresses a very restric-
tive condition and excludes many useful models. In fact, I have the following result on
general quantifier nestings:
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Theorem 275 Suppose that an L-DFSF is compatible with quantifier nesting. Then
FR is compatible with fuzzy argument insertion.
(Proof: D.36, p.554+)

In other words, the only standard model which potentially admits the nesting of quan-
tifiers isMCX , as shown by Th-97 and Th-98. I have not yet established whether
MCX validates the criterion but I would rather guess this is not the case. It is per-
fectly possible – as in the case of conservativity Def. 70 or convexity Def. 67 – that the
unrestricted or ‘strong’ requirement of compatibility with quantifier nestings conflicts
with other reasonable criteria and must thus be weakened to a compatible ‘core’ re-
quirement. Obviously, further research should be directed into these issues in order to
determine the status ofMCX and develop suitable weakenings of the nesting criterion
if necessary.

Let me further comment on the limitation of (QN) to nestings in the last argument of
the quantifierQ′. Nestings in another argument positionk can be reduced to this case
by flipping argument positionsk andn, performing the nesting in the last argument,
and then reordering the arguments again into their intended target positions. But, ev-
ery DFS is known to be compatible with such permutations of argument positions, a
property which apparently generalizes to the L-models. Thus the compatibility of a
DFS with nestings in the last argument position is sufficient to ensure that it also com-
ply with nestings in other argument positions. By repeating this process, (QN) even
ensures the compatibility of conforming L-DFSes with multiple nestings of arbitrary
depths. Thus, the condition is sufficient to cover general nestings involving quantifiers
of arbitrary types with an arbitrary number of embedded quantifiers.

It would be useful however, to relate the proposed general nestings in the last argu-
ment to the simple nesting of unary quantifiers considered earlier, or to other simplified
nesting criteria. This might facilitate the check that a model of interest (not necessary
a standard model likeMCX ) comply with the nesting condition, and also eliminate
some redundancy from the axiom system. I expect that the general nestings described
by (QN) can be reduced to a simpler criterion, but further research is necessary to
clarify this matter. Should a substantial weakening of the original requirement be nec-
essary, the investigation of simplified criteria might also guide us to a useful weakening
which still covers the nestings of linguistic relevance.

12.7 Application to the modelling of branching quantification

Let me now explain how the motivating example, “Many young and most old people
respect each other” can be interpreted in the proposed framework. In this case, we have
semi-fuzzy quantifiersQ1 = many , defined bymany (Y1, Y2) = |Y1 ∩ Y2|/|Y1|, say,
andQ2 = most , defined as above. Both quantifiers are nondecreasing in their second
argument, i.e. we can adopt the analysis proposed by Barwise. The modification of
equality (235) towards gradual truth values will be accomplished in the usual way, i.e.
by replacing existential quantifiers withsup and conjunctions withmin (non-standard
connectives are not possible here). The semi-fuzzy L-quantifierQ of type 〈1, 1, 2〉
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constructed fromQ1, Q2 then becomes

Q(A,B,R) = sup{min(Q1(A,U), Q2(B, V )) : U × V ⊆ R}

for all A,B ∈ P(E) andR ∈ P(E2). Hence “Many men and many women are
relatives of each other”, for example, which rests on crisp arguments, is now taken to
denote the maximum degree to which many men and many women belong to a group
U × V ⊆ R of mutual relatives. In my experience, this is a conclusive analysis; but
we still need to extend it to fuzzy arguments. To this end, it is sufficient to apply the
chosen L-DFSF . We then obtain the fuzzy L-quantifierF(Q) of type〈1, 1, 2〉 suited
to handle this case. Returning to the original example involving young and old people,
we have fuzzy subsetsyoung ,old ∈ P̃(E) of young and old persons, respectively, and
a fuzzy relationrsp ∈ P̃(E2) of persons who respect each other. Thus, a meaningful
interpretation of “Many young and most old people respect each other” is now given
byF(Q)(young ,old , rsp ).

In the event that eitherQ1 or Q2 fail to be increasing in the second argument,
we must adopt Westerståhl’s generic method for interpreting branching quantifiers.
Hence let me describe how the method can be applied in the fuzzy case. Suppose
thatQ1, Q2 are arbitrary semi-fuzzy quantifiers of arityn = 2 on some base setE.
Following Westerst̊ahl, I introduce nondecreasing and nonincreasing approximations
of theQi’s, defined byQ+

i (Y1, Y2) = sup{Qi(Y1, L) : L ⊆ Y2} andQ−i (Y1, Y2) =
sup{Qi(Y1, U) : U ⊇ Y2}, respectively. With the usual replacement of existential
quantification withsup and conjunction withmin, Westerst̊ahls interpretation formula
[158, p. 281, Def. 3.1] becomes:

Q(A,B,R) = sup{min{Q+
1 (A,U1), Q+

2 (B, V1), Q−1 (A,U2), Q−2 (B, V2)} :
(U1 ∩A)× (V1 ∩B) ⊆ R ∩ (A×B) ⊆ (U2 ∩A)× (V2 ∩B)}

for all A,B ∈ P(E) andR ∈ P(E2). Application of an L-DFS then determines the
corresponding fuzzy L-quantifierF(Q) of type〈1, 1, 2〉 suitable for interpretation.

As shown by Westerståhl [158, p.284], his method results in meaningful interpreta-
tions provided that (a) theQi’s are ‘logical’, i.e.Q1(Y1, Y2) andQ2(Y1, Y2) can be ex-
pressed as a function of|Y1| and|Y1∩Y2|, see van Benthem [8, p. 446] and [9, p. 458];
and (b), theQi’s areconvexin their second argument, or ‘CONT’ in Westerståhl’s ter-
minology, i.e.Qi(Y1, Y2) ≥ min(Qi(Y1, L), Qi(Y1, U) for all L ⊆ Y2 ⊆ U according
to Def. 67. The latter condition ensures thatQ1 andQ2 can be recovered from their
nondecreasing approximationsQ+

i and their nonincreasing approximationsQ−i , i.e.
Qi = min(Q+

i , Q
−
i ). This is generally the case whenQ1 andQ2 are either nonde-

creasing in their second argument (“many”), nonincreasing (“few”), or of unimodal
shape (“about ten”, “about one third”). An example of branching quantification with
unimodal quantifiers, which demand the generic method, is “About fifty young and
about sixty old persons respect each other”.

12.8 Chapter summary

Recognizing the utility of branching quantifiers to linguistic modelling, I have pro-
posed an extension of the DFS theory of fuzzy quantification which incorporates these
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cases. Specifically, I introduced fuzzy L-quantifiers (generalizations of Lindström
quantifiers to approximate quantifiers and fuzzy arguments), semi-fuzzy L-quantifiers
(uniform specifications of such quantifiers) and plausible models of fuzzy quantifica-
tion involving these quantifiers, called L-DFSes. The criteria for plausible L-models
of fuzzy quantification parallel my requirements on QFMs, and the rationale for these
conditions is the same as in the case of ordinary QFMs. I have further shown that the
issue of identifying useful L-DFSes can be reduced to the known analysis of classes of
ordinary models. Thus

(a) every plausible model of ‘ordinary’ fuzzy quantification (DFS) can be extended
to a unique L-DFS for quantifiers with multiple variable binding;

(b) no other L-DFSes exist beyond those obtained from (a).

Westerst̊ahl’s analysis of branching NL quantification in terms of Lindström quantifiers
is easily generalized to semi-fuzzy L-quantifiers and thus, branching type III quantifi-
cations. By applying the chosen model of fuzzy quantification, one then obtains a
meaningful interpretation for branching type IV quantifications, thus admitting both
approximate quantifiers and fuzzy arguments. At this point, it should be remarked that
Westerst̊ahl also extends his method to other types of branching quantification in NL,
which in general can span more than two quantifiers. However, the formulas he pro-
poses to cope with these cases can be adapted to my analysis in terms of (semi-)fuzzy
L-quantifiers in total analogy to the example chosen for demonstration. Thus, the meth-
ods must be extended to semi-fuzzy L-quantifiers in the apparent ways; applying the
L-QFM F then lets us fetch the final interpretation.

The identification of those L-DFSes specifically suited for modelling branching quan-
tification in NL is an advanced topic that should be tackled by future research. I have
already hinted at a possible strengthening of the system based on quantifier nesting.
The nesting construction is linked to branching quantification in the following way: in
the motivating example of this chapter, the introduction of the complex quantifierQ of
type〈1, 1, 2〉 rests on the grouping of several (independent) quantifiers into a block of
quantifiers, which is then treated as an integral, singular quantifier. Applying the same
idea to a linear sequence of quantifiers takes us to the construction of nested quantifiers
discussed in section 12.6. Naturally, a model suited for branching quantification, which
rests on the grouping of quantifiers into blocks, should also be compatible with such
nestings of linear quantifiers. However, the resulting criterion appears to be extremely
restrictive and it cannot be adopted without sacrificing useful models likeM andFCh.
It is not even clear if the full compatibility with quantifier nestings is consistent with
the basic axioms at all, and it might hence be necessary to weaken the criterion to
typical classes of linguistic quantifiers, like the quantitative variety. Obviously a more
thorough discussion of quantifier nestings will be necessary to clarify these issues.

The proposed analysis of reciprocal constructions in terms of fuzzy branching quan-
tifiers is of particular relevance to linguistic data summarization [73, 173]. Many
summarizers of interest express mutual (or symmetric) relationships and can there-
fore be verbalized by a reciprocal construction. (Asymmetrical relationsR′ can also
be used in reciprocal constructions after symmetrization, i.e. they must be replaced
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with R = R′ ∩ R′op). An ordinary summary like “Q1 X1’s are strongly correlated
with Q2 X2’s” does not capture the symmetrical nature of correlations, and it neglects
the resulting groups of mutually correlated objects. The proposed modelling in terms
of branching quantifiers, by contrast, permits me to support a novel type of linguistic
summaries specifically suited for describing groups of interrelated objects. Branching
quantification, in this sense, is a natural language technique for detecting such groups
in the data. A possible summary involving a reciprocal predicate is “The intake of most
vegetables and many health-related indicators are strongly associated with each other”.
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13 Discussion

13.1 The fundamentals of fuzzy quantification

Natural language is pervaded with fuzziness, but the fuzziness of language does not
normally interfere with our daily communication. In typical situations there is simply
no need for guessing in order to grasp the meaning of everyday language. Thus, the
fuzziness observed in NL cannot be totally random and uncontrolled in nature. By
contrast, there must be some hidden regularities underlying linguistic fuzziness which
explain the apparent possibility of systematical interpretation. It is this methodologi-
cal assumption on which I based my research into fuzzy quantifiers. These linguistic
constructions, too, are frequently used in language and normally do not result in misun-
derstanding. This suggests that the hidden structures necessary for understanding these
quantifiers might be uncovered and made available for the automatic interpretation of
these expressions on computer systems.

To achieve this, it was first necessary to identify the typical characteristics of lin-
guistic quantifiers. In addition, the total range of quantifying phenomena in language
had to be ascertained. Knowing these peculiarities was necessary to judge whether the
existing account of quantifiers in logic and fuzzy set theory already achieved the goal
of a plausible and comprehensive analysis, an issue which was resolved to the negative.
Specifically, my comparison of logical versus linguistic quantifiers revealed some clear
structural differences, which demonstrate that linguistic quantifiers call for a rather dif-
ferent kind of modelling. As opposed to logical quantifiers, the quantifiers found in NL
are typically restricted by a qualifying argument and thus accept more than one argu-
ment; they are often not logical symbols; they are often not quantitative (i.e. definable
in terms of cardinalities), and they are often not definable in first-order predicate logic.
This structural mismatch can already be demonstrated for precise linguistic quantifiers;
it is not necessary to resort to approximate examples. The above criteria have some-
thing to say about the proper modelling of linguistic quantifiers in general. But, an
adequate modelling should not only match the internal structure of natural language
quantifiers; it is further necessary to account for the fuzziness of language. For that
purpose I explained the analysis of vague predicates common to the theory of vague-
ness, which clearly demonstrates that natural languages are paradigmatically vague.
It even appears that vagueness serves an important purpose in NL because it offers
ways of expressing ourselves when there is only imprecise knowledge. In addition, the
support for vagueness increases robustness and effects a complexity reduction. Hence
the modelling of language on computer systems should not deny the phenomenon of
vagueness but rather utilize it in a similar way that NL profits from vagueness. Having
demonstrated the necessity and practical utility of modelling vagueness, I then turned
to fuzzy set theory which I introduced as a mathematical model of vague NL expres-
sions. In the terminology of fuzzy set theory, vague predicates are of course called
‘fuzzy’, and vagueness now becomes ‘fuzziness’. I then explained the two independent
sources of fuzziness which affect quantification, i.e. fuzziness in the quantifiers them-
selves versus the fuzziness of linguistic terms that occur in their arguments. Noticing
that these types of fuzziness can occur in combination, it is necessary to support type
IV quantifications [99], i.e. quantifications which admit both approximate quantifiers

379



and fuzzy arguments. The traditional framework for fuzzy quantification proposed by
Zadeh [188, 190] permits an interpretation of type IV quantifications for the consid-
ered types of quantifiers – i.e. the absolute and proportional kinds only. Compared to
the wealth of linguistic quantifier types routinely treated in linguistics [61, 82, 83], the
traditional framework and the approaches to fuzzy quantification derived from it are
clearly too narrow and fall below the standards that have long been set. The traditional
framework not only shows a lack of coverage, though. It also adopts a representation of
linguistic quantifiers which does not square up with the established linguistic analysis.
To be sure, Zadeh himself is aware of this problem, pointing out that his own approach
be ‘different’ from the linguistic analysis of quantification [188, p. 149]. However, it
appears that few people have contemplated the consequences of this departure from
the competent scientific discipline. Not surprisingly, then, there is negative evidence
against existing approaches to fuzzy quantification as to their linguistic plausibility
(see also discussion in sections 1.10 to 1.15, and the evaluation of existing approaches
detailed in appendix A). To sum up, there are precursors to the present work both in
linguistics and fuzzy set theory. However, the linguistic analysis is only concerned with
crisp quantifications. And research in fuzzy set theory has focused on the treatment of
linguistic vagueness in the first place, and it was not that successful yet in devising
interpretations that are linguistically conclusive. What is missing, then, is a unifying
perspective which incorporates both the linguistic considerations and the benefits of a
fuzzy-sets modelling of vagueness.

It was the goal of this work to develop a novel theory of fuzzy quantification which
appeals both to the linguist and the fuzzy set theorist. In the report, I presented the
fundamentals of such a theory of fuzzy quantification. The theory comprises the fol-
lowing components, which correspond to the subordinate tasks into which the overall
problem can be organized:

• a conceptual framework for analysing fuzzy quantification with the desired com-
prehensiveness and precision;

• a system of formal postulates which effectively characterize those models which
are linguistically plausible;

• a thorough evaluation of the class of these models under various semantical cri-
teria;

• the description of concrete models derived from a given constructive principle,
and the identification of models of special significance within the total class of
such models;

• the development of efficient algorithms for implementing the main types of
quantifiers in the dedicated models.

Let us now discuss these parts of the proposed theory in turn. The new framework for
fuzzy quantification, to begin with, was expected to embed both traditions of analysing
linguistic quantification and thus had to establish a joint perspective on these differ-
ent conceptions. In order to achieve the required coverage of linguistic phenomena,
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I decided to start from the linguistic analysis, i.e. from the Theory of Generalized
Quantifiers [6, 8, 9]. The concept of a two-valued generalized quantifier known from
TGQ was considered a suitable starting point for developing a similar notion for fuzzy
quantifications, which can involve fuzziness both in quantifiers and arguments. The
basic purpose of my framework is that of permitting the formal analysis of such fuzzy
quantifications, thus making the expressive power controllable which results from the
incorporation of fuzziness.

In order to cope with the notorious modelling problem of explaining the relationship
between linguistic quantifiers and the available modelling devices, I embarked on the
general strategy of separating the specification of a quantifier from its operational form,
which can be applied to fuzzy arguments for the purpose of quantification. The spec-
ification medium will be chosen such as to best support the description of target NL
quantifiers, which needs only fix the essential aspects of the quantifier. Given the spec-
ification of a linguistic quantifier, it is then the responsibility of fuzzy quantification
theory to establish the matching operational quantifier. This relationship is analyzed in
terms of an interpretation mechanism. Pursuing this general strategy, I first introduced
the representational foundations of the framework. The novel concept of a semi-fuzzy
quantifier, to begin with, serves as a compact description of the linguistic quantifiers
of interest. It thus plays a similar part as membership functionsµQ in the earlier ap-
proaches. My proposed notion of semi-fuzzy quantifiers rests on the observation that
the modelling of approximate quantifiers like “almost all” can be isolated from the
problem of dealing with fuzzy arguments. Thus semi-fuzzy quantifiers are capable of
expressing approximate quantification, but they only accept crisp arguments. They can
hence be considered simplified representations of NL quantifiers taylored to the type III
quantifications of Liu and Kerre [99]. Semi-fuzzy quantifiers are sufficiently powerful
to embed all crisp generalized quantifiers known to the linguistic theory. Specifically,
the phenomena of linguistic significance that were previously studied in TGQ can all
be discussed in the context of semi-fuzzy quantifiers as well. Hence it is possible to
express all issues of linguistic interest on the proposed level of specifications. Due to
the restriction to crisp arguments, it is usually easy to grasp the meaning of a given
semi-fuzzy quantifier. In particular semi-fuzzy quantifiers can be conveniently defined
in terms of the usual cardinality for crisp sets. In this way, the restriction to crisp ar-
guments makes it easy to define the desired specification in most cases. For the same
reason, however, semi-fuzzy quantifiers are only suited as a specification medium be-
cause fuzzy arguments cannot be handled. We therefore need a complementary oper-
ational medium which permits the interpretation of arbitrary quantifications. For that
purpose I introduced a general notion of fuzzy quantifiers which adopts Zadeh’s view
of fuzzy quantifiers as fuzzy second-order predicates. Unlike semi-fuzzy quantifiers
these operations now account both for approximate quantifiers and fuzzy arguments,
and are hence suited for modelling arbitrary type IV quantifications. Due to their am-
ple expressiveness, which forbids a rendering in terms of the usual crisp cardinalities,
a suitable choice of fuzzy quantifier for a given linguistic prototype is typically hard to
establish, i.e. we really need separate specifications like those offered by semi-fuzzy
quantifiers. The expressiveness of fuzzy quantifiers is necessary, on the other hand, to
fully describe the linguistic target operations, which demand the processing of fuzzy
arguments and thus call for a model of type IV quantifications.
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By connecting the specification of a linguistic quantifier and its associated opera-
tional interpretation, the notion of a QFM completes the theoretical skeleton in which
fuzzy quantification can be discussed with the desired generality and formal rigor. Not
all QFMs will result in plausible and coherent interpretations, though. The proposed
notion merely avails us with a class of ‘raw’ models, from which the plausible exam-
ples must now be distilled. In other words, QFMs render possible the formalization of
semantical criteria which can then be used to identify the intended models.

The structuring into specifications and interpretations, which is fundamental to my
proposed framework, also separates the modelling problem into application-dependent
and independent parts. The domain-specific task consists of selecting the precise
interpretation that best fits the meaning of an approximate quantifier in a given ap-
plication context. The problems that arise on this level are encapsulated by the as-
sumed base descriptions in terms of semi-fuzzy quantifiers, which must be fixed in the
course of building an application. The core problem of fuzzy quantification, which is
application-independent, then consists of explaining how the description of the target
operator in terms of a semi-fuzzy quantifier should be extended to the general case
of fuzzy arguments. In other words, we must establish a coherent selection of fuzzy
quantifiers which extrapolate the given specifications in the intended way. It is the pro-
posed QFMs which assume responsibility for the generic issues centered around the
processing of fuzzy arguments. To sum up, I tackle the modelling problem by isolating
a certain core competence. In this way, part of the complexity of the original problem
is effectively delegated to the QFM. This splitting into generic and application specific
factors allows me to analyse the core aspects of fuzzy quantification without getting
stuck in discussions which particular interpretation should be assigned to a given lin-
guistic quantifier. From the perspective of applications, this division of labour is also
of obvious interest, because we can now confine ourselves to simplified specifications
of the intended quantifiers and need no longer be concerned with the intricacies of
processing fuzzy arguments.

The particular choice of a semi-fuzzy quantifier suited for modelling a given lin-
guistic quantifier can apparently depend on the context. To be sure, this is not that
surprising because the precise meaning of quantifiers like “many” or “almost all” is
obviously context-dependent as well and determined by contextual factors like an as-
sumed standard of comparison, which is not explicitly given. Thus, the problem of
context dependence it is not an artifact of my proposed modelling devices, but sim-
ply reflects a characteristic of language itself. Specifically, the problem will not go
away if we switch to the familiarµQ-based representations. The notion of semi-fuzzy
quantifiers has been designed such that all contextual factors fall into the realm of
specification. Hence when describing the quantifiers of interest, the users must re-
solve these factors and commit to a single, unambiguous interpretation. In this way,
the context-dependent factors are effectively isolated from the core problems of fuzzy
quantification, i.e. from those factors that can be subjected to a general solution. This
organization of fuzzy quantification permits me to develop the theory of fuzzy quan-
tification independently of the intricacies of context dependence. From a practical
perspective, though, it makes sense to assist the user or application designer who must
decide on the precise meaning of these context-dependent quantifiers. This problem
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of determining a suitable choice of quantifiers is actually a special case of knowledge
acquisition, and can hence be solved by suitable methods for the construction of mem-
bership functions. In the future, it might be possible to integrate some experimental
findings on the effects of external factors like size or shape on the denotation of quanti-
fiers that depend on the context [114, 113]. However, these ideas have not yet reached
practical significance.

In order to make the basic framework useful in practice, it was necessary to further
constrain the admissible mechanisms for interpretation to those choices which let us
build reliable applications based on fuzzy quantifiers. QFMs, however, merely serve
as a placeholder which lets us talk about models of fuzzy quantifications on a formal
level. They do not account for any considerations regarding the linguistic quality of
interpretations. Having introduced the QFM framework, I hence focused on the pretty
complex problem how plausible choices of QFMs can be ascertained, i.e. models of
fuzzy quantification which determine coherent interpretations and which best answer
the linguistic expectations. To achieve this, it was necessary to state explicitly which
choices of QFMs should be regarded plausible. Consequently, I investigated the char-
acteristic properties of the intended models. Some of the concepts necessary to express
these regularities were already known from TGQ, e.g. the constructions of antonym and
dual, which only needed to be generalized to the fuzzy case. Some other criteria take
care of the coherence of interpretations and the proper treatment of fuzziness. By turn-
ing these criteria into postulates for admissible models of fuzzy quantification, we can
ensure that the ‘essential’ properties of quantifiers and their relationships be preserved
when applying the fuzzification mechanism. This can be likened to the familiar mathe-
matical concept of a homomorphism, i.e. of a structure-preserving mapping compatible
with a number of relevant constructions. By compiling a system of such desiderata, we
can encircle the envisioned class of plausible models. These requirements then com-
prise a catalogue of formal criteria against which every model of interest can be tested.
In order to avoid redundant effort in proofs, the catalogue should further condensed
into a succinct description of the admissible models in terms of an independent (and
hence, minimal) system of axioms. In Chap. 3, I presented a complete system of such
criteria, which also exhibits the desired minimality.

The semantical postulates (Z-1) to (Z-6) which I imposed on the intended models
account for a number of very elementary requirements on plausible and coherent in-
terpretations. The first criterion, (Z-1), requires the models to correctly generalize the
original specification for a special case of quantifiers. The second criterion (Z-2) as-
serts that the models be compatible with membership assessments. Based on a canon-
ical construction of induced fuzzy connectives, (Z-3) requires the compatibility of the
interpretations with dualisation. The criterion (Z-4) in turn, makes sure that the mod-
els comply with unions of arguments. The requirement (Z-5) accounts for the desired
monotonicity of interpretations, which is enforced for a special case. Finally (Z-6)
links the interpretations obtained for different universes of quantification, by requiring
the compatibility of the model with its matching choice of extension principle. As
mentioned above, these axioms are known to be minimal, i.e. they capture indepen-
dent aspects of linguistic adequacy. Taken together these axioms establish a type of
plausible model for which I coined the term ‘determiner fuzzification scheme’, or DFS
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for short. In pretty much the same way thatt-norms have proven a useful abstraction
from the possible fuzzy conjunctions, my postulates for admissible interpretations are
intended to identify a useful class of models for fuzzy quantification, which shows just
the right degree of permissiveness. Hence the axioms should be broad enough to admit
an interesting variety of models, but also sufficiently restrictive to to ensure that the
computed interpretations be linguistically conclusive.

In order to judge if my semantical postulates (Z-1)–(Z-6) reach the goal of iden-
tifying a useful class of plausible models, it was necessary to consider various addi-
tional desiderata that can legitimately be expected of interpretations of fuzzy quanti-
fiers. Specifically, I first showed that the models correctly generalize arbitrary spec-
ifications for crisp arguments, and that all of these models induce a plausible set of
fuzzy connectives. I then showed that the models are compatible with a considerable
number of operations on the arguments, thus preserving the essential argument struc-
ture of a given quantifier. In particular every DFS admits permutations of arguments,
cylindrical extensions (augmentation with vacuous arguments), complementation (for-
mation of antonyms), but also external negation and the formation of duals. In addition
it admits intersections of arguments, their symmetrical difference, and the insertion of
crisp arguments. The models further exhibit desirable monotonicity properties includ-
ing the preservation of ‘local’ monotonicity for restricted ranges of arguments. The
induced extension principle as well as the induced fuzzy inverse images are also rea-
sonable. The models will plausibly interpret both quantitative and non-quantitative
cases of quantifiers, and they will also preserve the property of ‘having extension’,
which is shared by most linguistic quantifiers. In addition, the models are ‘contextual’,
i.e. insensitive to the behaviour of a quantifier outside the context given by the fuzzy
arguments. Finally the standard quantifiers will be interpreted plausibly in all of my
models, judging from Thiele’s characterization of fuzzy universal and existential quan-
tifiers in terms of T- and S-quantifiers, respectively. The validity of these semantical
requirements provides evidence that my core axioms are indeed useful because they
entail the essential conditions. An investigation of these semantical criteria is also in-
teresting in its own right. In the long run, these conditions will capture the intuitive
expectations on plausible interpretations which should be answered by arbitrary mod-
els of fuzzy quantification, i.e. not only by a DFS. Specifically, I showed that catalog is
also useful for evaluating the existing methods for fuzzy quantification, see appendix
A. In this case, the criteria served to explain the covert inconsistencies of the traditional
approaches.

To sum up, there is a variety of semantical properties shared by arbitrary choices of
plausible models. Apart from studying such general characteristics of the models, it is
also instructive to research into the structure of natural subclasses, i.e. collections of
models grouped some property that they have in common. Due to the relative homo-
geneity of members in the same subclass, this strategy allowed me to define interesting
constructions on these models. First of all I grouped the models by their induced nega-
tion, and I developed a model translation scheme which demonstrates that without loss
of generality, we can focus on those models which induce the standard negation. Now
grouping these¬-DFSes by their induced disjunction, I further refined the class of
these models. The resulting̃∨-DFSes are sufficiently homogeneous to permit model
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aggregations. For example, these classes are closed under symmetric sums, convex
combinations etc. Next I assessed the structure of these classes by investigating a a
natural order defined on these models. Due to the symmetry of a DFS with respect
to negation, there is nothing like a ‘least’ or ‘greatest’∨̃-DFS. However, the models
are partially ordered by specificity, i.e. under the usual fuzziness order introduced by
Mukaidono [110]. I showed that for non-empty collections of∨̃-models, a greatest
lower bound in terms of specificity will always exist, which can be expressed in terms
of the generalized fuzzy median. I further introduced the criterion of specificity con-
sistency and proved that a non-empty collection of∨̃-DFSes has a least upper bound
in terms of specificity exactly if it is specificity consistent. Again it is possible to give
an explicit description of the resulting model. Finally I considered the class of stan-
dard DFSes, which induce the usual set of fuzzy connectives and thus comprise the
standard models of fuzzy quantification. I presented an axiomatic description of this
class of models and further ascertained various characteristics of its members. For ex-
ample, I proved that for two-valued quantifiers, all standard models coincide with the
fuzzification mechanism proposed by Gaines [44].

Few is known about non-standard models which depend on a different choice of
fuzzy connectives. In an effort to keep open the possibility of non-standard models, I
expressed the criteria (Z-1)–(Z-5) for plausible models in terms of the canonical con-
struction of induced connectives, rather than resorting to the standard choices. For
similar reasons, equality (Z-6) avoids the use of the standard extension principle, in
favour of the natural extension principle induced by the given model. However, the
research into these general (non-standard) models is still in its infant stage, and it is
not clear at this point if the axioms really admit plausible models which induce a dis-
junction different from the standard choice, ‘max’.

Having considered the essential properties shared by all models, as well as some nat-
ural subclasses of the models as well as constructions on such homogeneous models, I
then discussed complementary properties of linguistic or practical interest. First of all,
I formalized two distinct aspects of continuity, which ensure a certain stability of quan-
tifications against changes in the quantifier and in its arguments. It also seems natural to
assume that plausible models will ‘propagate fuzziness’, i.e. less specific input (quan-
tifier or arguments) should not result in more specific interpretations. A suitable notion
of specificity for quantifiers and their arguments can be derived from Mukaidono’s
fuzziness order. I further investigated the theoretical limits on the total catalogue of
semantical properties that can simultaneously be verified by a QFM. Conjunctions and
disjunctions of quantifiers, as well as the identification of several variables, are exam-
ples of constructions to which a QFM cannot be fully compatible even under much
weaker conditions than the DFS axioms. The existence of such critical cases is not
surprising, though, due to the known impossibility of satisfying all axioms of Boolean
algebra in the continuous-valued case. It would be interesting to ascertain whether the
identification of variables will result in more specific results under the fuzziness order
�c. I would expect this kind of behaviour if a model propagates fuzziness, but this
conjecture has not been proven yet. Two other semantical criteria must also be formu-
lated very carefully, notably the preservation of convexity (which applies to quantifiers
of unimodal shape), and the preservation of conservativity. In both cases, the original
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‘naive’ rendering of the criterion for fuzzy sets turns out too strong. However, it is
possible to give weaker definitions consistent with the core axioms, which still cover
most cases of linguistic interest. These ‘realistic’ formalizations are validated by all of
my plausible models. Finally I discussed the construction of fuzzy argument insertion,
which is necessary for a compositional treatment of quantifiers like “many young” in
“Many youngA’s areB’s”. As I proved later on, there is only one standard model,
MCX , which is compatible with this linguistic construction.

Due to the postulates for admissible mechanisms for interpretation, we know how the
plausible models behave. However, we do not know at this point how actual instances
of such models look like. In order to populate the abstract space of interpretations
so defined with concrete models, I turned to the issue of developing prototypical ex-
amples. Knowing such models is essential from a practical perspective because it is
impossible to evaluate actual quantifications in an application without committing to a
particular model of fuzzy quantification. In order to avail us with an interesting range
of examples, I investigated general constructions capable of expressing a diversity of
models. In other words I was concerned with developing explicit classes of models,
which are based on a common constructive principle. Two examples of such prin-
ciples that come to mind areα-cutting and the resolution principle. However, these
constructions cannot express the intended models due to their lack of symmetry with
respect to negation. I therefore propose the use of three-valued cuts, which exhibit
the desired symmetry. The three-valued subsets obtained from these cuts are in turn
expanded into a range of crisp sets. By considering all choices of arguments in these
cut ranges, we obtain the setSQ,X1,...,Xn(γ) of possible quantifications at the cut-level
γ ∈ I. Thus my approach determines a set of alternatives which must then be ag-
gregated into the final quantification result. This basic approach I refined into three
classes of constructive models. My proposal ofMB-DFSes is obtained from a simple
aggregation method based on the generalized fuzzy medianm 1

2
. The median-based

aggregation rests on a principle of ‘cautiousness’ or ‘least specificity’, and thus gen-
eralizes the basic strategy of supervaluationism [80, p. 24]. This method generates a
class of pretty regular models with appealing formal properties. For example, less spe-
cific input cannot result in more specific outputs in these models, i.e. everyMB-DFS
is known to propagate fuzziness. I further identified a modelMCX distinguished by
its semantical properties, e.g. compatibility with fuzzy argument insertion and fuzzy
adjectival restriction, weak preservation of convexity etc. The model can be shown to
consistently generalize the Sugeno integral and hence the basic FG-count approach.
My second class ofFξ-models replaces the median-based aggregation scheme with a
more general construction based on upper and lower bounds> = supSQ,X1,...,Xn and
⊥ = inf SQ,X1,...,Xn on the alternatives inSQ,X1,...,Xn . The resulting models, which
include theMB-type, are less regularly structured. For example, they need not prop-
agate fuzziness, i.e. less specific input can result in more specific interpretations. The
class contains a modelFCh of particular interest, which consistently generalizes the
Choquet integral and hence the core OWA approach to fuzzy quantification. Finally
I discussed an even broader class ofFΩ-models which admits arbitrary constructions
that operate onSQ,X1,...,Xn . The class is of minor practical relevance because all of its
‘robust’ members already belong to theFξ-type. However, theseFΩ-models coincide
with theFψ-DFSes, i.e. with the natural class of models defined in terms of the stan-
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dard extension principle. Thus, the broadest class that I described in this work is mainly
of theoretical interest. It is an issue of future research to relate theFΩ/Fψ-models to
the full class of standard DFSes, and to develop even more general constructions if
necessary to catch hold of all standard models. Moreover, it would be worthwhile find-
ing constructions which give us a grip on non-standard models. This might eventually
decide the issue if such non-standard models exist at all, which is currently unresolved.
For practical purposes it is also important to identify those examples of models which
are likely most useful in applications. In the report, the modelsMCX andFCh as well
as a third exampleM, which is some kind of compromise betweenMCX andFCh,
were chosen as prototypes which serve as the candidates for practical implementation.

The level of abstraction achieved by my theoretical skeleton and the clear separation
of responsibilities, specification versus interpretation and model versus implementa-
tion, permitted me to develop the theoretical basis of fuzzy quantification at a fast pace.
It was even possible to identify specific classes of prototypical models without getting
involved into the practical concern how these models can eventually be implemented.
This strict separation of theoretical analysis and computational aspects allowed me to
resolve the semantical issues into a more elegant solution compared to previous ap-
proaches. However, it remained to be shown that the new ‘nice’ models also measure
up with the well-known and semantically imperfect ones when it comes to efficient
implementation. I hence had to solve the problem how actual quantifications can be
carried out in the candidate models. In particular, it had to be shown how the involved
calculations can be organized into efficient computational procedures. Only this will
make a practical advance from what appears nice judging from the formulas. In order
to provide the theory with sufficient computational backing, I hence developed effi-
cient algorithms for implementing the main types of quantifiers in the new models.
Specifically, I proved that for finiteE, the computation of quantification results inFξ-
models can always be based on coefficients>j , ⊥j ∈ I obtained from a finite sample
of cut levelsγj , i.e. there is no need to consider all choices ofγ in the unit range. I
presented an analysis of ‘quantitative’ quantifiers in terms of cardinality information
sampled from the arguments, and I went on explaining how the computation of>j and
⊥j can be optimized based on this analysis. I also showed how the required cardi-
nality information can be computed efficiently from histograms of the involved fuzzy
arguments and their Boolean combinations. The practical utility of this methodology
was illustrated by deriving algorithms for implementing the main types of quantifiers
in the prototypical models mentioned above, i.e.M,MCX andFCh. The issue which
of these models should be preferred in a given application like information retrieval
and database querying, multi-criteria decisionmaking, data summarization etc., should
now be decided by practical experiments and applications in prototypical systems. In
particular, it will be instructive to compareMCX , which generalizes the Sugeno in-
tegral, andFCh, which abstracts from the Choquet integral, and to substantiate which
type of model is perceived more natural by the users.
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13.2 Comparison to earlier work on fuzzy quantification

Let me now compare my own results to existing work on fuzzy quantication, in order
to highlight the main contributions. Roughly speaking, my proposed solution offers
the following conceptual advantages. The novel theory of fuzzy quantification is

• a compatible extension of the Theory of Generalized Quantifiers [6, 8];

• not limited to absolute and proportional quantifiers;

• a genuine theory of fuzzy multi-place quantification;

• not limited to finite universes of discourse;

• not limited to quantitative (automorphism-invariant) examples of quantifiers;

• based on a rigid axiomatic foundation which enforces plausible and coherent
interpretations;

• fully compatible to the formation of negation, antonyms, duals, and other con-
structions of linguistic relevance.

These achievements will now be explained at some more length. First of all, the
novel approach improves upon existing work as to the coverage of linguistic phenom-
ena related to fuzzy quantification. The traditional framework is essentially limited to
absolute and proportional quantifiers. However, the quantifiers found in NL are by no
means restricted to the absolute and proportional types. Quite the reverse, the compre-
hensive classification of natural language quantifiers by Keenan & Stavi [82, pp. 253-
256] distinguishes 16 main classes of quantifiers (among other things, quantifiers of ex-
ception like “all except one”, definites like “the ten”, bounding quantifiers like “only”,
etc). The wealth of these heterogeneous quantifiers is covered by TGQ, assuming crisp
quantifications. My own theory embeds these cases as well as their generalization
to type IV quantifications. It is true that in the report, I confined myself to formally
defining and implementing the four main types of quantifiers, i.e. absolute quantifiers,
proportional quantifiers, quantifiers of exception and cardinal comparatives. These
classes are significant from the linguistic perspective and their implementations which
I detailed in Chap. 11, are of obvious utility to the envisioned applications. Further
types of quantifiers, like proportional comparatives, are described in the literature on
TGQ, e.g. Keenan and Moss [81], Keenan and Stavi [82], or Keenan and Westerståhl
[83]. The classification of (semi-)fuzzy quantifiers into categories of linguistic and
practical value can be developed in total analogy to the existing classification of TGQ
for precise quantifications. An implementation of these types in the prototypical mod-
els is straightforward from the general analysis expounded in Chap. 11. To sum up, the
novel framework easily incorporates arbitrary types of NL quantifiers, while existing
approaches which are closely intertwined with the specifics of absolute and propor-
tional quantifiers, lack the desired coverage and extensibility.

In particular, these approaches do not avail us with uniform specifications suited
for all quantifiers: It is different kinds of membership functionsµQ : R+ −→ I vs.
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µQ : I −→ I that they postulate for representing absolute and proportional quantifiers.
An extension to additional types of quantifiers will necessitate the introduction of fur-
ther representation formats and corresponding membership functions. The assumed
first-order representations merely depict the intended behaviour of the quantifier in
graphical form. In particular, they fail to make explicit the quantificational structure,
i.e. the precise way in which the arguments of the quantifier enter into the quantifi-
cation results. The responsibility to account for argument structure is therefore dele-
gated to the model of quantification: for each type of quantifier, there must be some
part of the model which takes care of the particular kind of quantificational structure
and the specific way in which the arguments must be combined to calculate the final
quantification results. It is this structuring of fuzzy quantification which forces the tra-
ditional approaches to introduce one specification format per quantifier type. The lack
of a uniform representation results in the scattering of traditional methods into several
submodels, i.e. one rule for two-place proportional quantifiers, another rule for unary
absolute quantifiers etc. Internal coherence then becomes a critical issue, due to the
separate definitions for each type of quantifiers. Consequently, existing approaches to
fuzzy quantification do not offer a good starting point for developing general models
of NL quantification. The delegation of quantificational structure to the model (rather
than treating it as part of the specification) obstructs the formalization of universal
models which are capable of interpreting arbitrary quantifiers, including future, unex-
pected examples. As witnessed by the new framework for fuzzy quantification that I
proposed in the report, these intricacies of existing approaches can be easily avoided,
if quantificational structure is alloted its proper place, and viewed as part of the spec-
ification of a quantifier. The proposed semi-fuzzy quantifiers which underly my own
analysis account for these considerations. In this case irregular details like the specifics
of argument structure will now be encoded in the basic specifications of quantifiers.
Without any need to alter the chosen representation medium, it hence remains possi-
ble to incorporate novel cases of quantifiers at any time, even if these do not match
the known patterns of argument structure. In this way, semi-fuzzy quantifiers estab-
lish a uniform representation for arbitrary quantifiers. These uniform representations
no longer permit any details of quantifiers to be hard-coded in the model. This frees
the model from any idiosyncratic aspects of NL quantifiers, and lets it focus on the
problem of incorporating fuzzy arguments. By isolating the core issues of fuzzy quan-
tification from idiosyncratic aspects, the proposed uniform specifications in terms of
semi-fuzzy quantifiers rendered possible the development of universal models. Unlike
the specialized methods for interpreting fuzzy quantifiers previously described in the
literature, the generic models which I discussed in this report accept arbitrary types of
quantifiers and also support arbitrary ways of combining the arguments into resulting
interpretations. Specifically, the uniform representation facilitates the development of
models which also show the desired coherence across quantifiers types.

Let us now return to the issue of possible quantifier interpretations. Among other
things, it is surely worth noticing that certain types of quantifiers can be three-place,
e.g. “more than” in the quantifying proposition “More men than women are smokers”
(n = 3). Such quantifications cannot be interpreted in terms of the absolute and pro-
portional quantifiers supported by the traditional models, simply because “more than”
and similar cases are known to be irreducible to two-place quantifiers, see Hamm [61,
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pp. 23+]. Composite quantifiers like “MostY1’s or Y2’s areY3’s andY4’s” can involve
an even higher number of arguments, which is potentially unbounded. It is therefore
important to know that all of these cases be covered by my proposed analysis, which
avails us with a general theory of fuzzy multiplace quantification. In particular the
new models of fuzzy quantification achieve an adequate treatment of restricted quan-
tification or ‘importance qualification’. To existing approaches, however, the complex-
ity of restricted quantification has been prohibitive, and the counterexamples listed in
Chap. 1 clearly demonstrate the failure of the cardinality-based methods. An extension
of these approaches to ternary quantifiers has been suggested by Zadeh, who mentions
the “third kind” of quantifiers in [188, p. 149] and [190, p. 757]. However, it appears
that nobody pursued this direction further due to the difficulties of existing approaches
with proportional quantifiers which involve only two (rather than three or more) ar-
guments. My novel analysis does away with Zadeh’s idea of using some measure of
‘relative cardinality’ to evaluate proportional quantification, and it also avoids ad-hoc
devices like the ‘degree of orness’ used in [156, 170, 174]. In my theory, the notorious
problem of proportional quantification weighted by importances is now solved in pass-
ing, because it offers a general solution for arbitrary two-place, and even for arbitrary
multi-place quantifiers, which includes importance qualification as a special case.

Existing approaches to fuzzy quantification usually assume that the base set be fi-
nite.45 My own analysis, by contrast, permits quantifiers on infinite domains, and
every interpretation mechanism (QFM) must be well-defined in this case as well. It
is true that the universes of quantification are typically finite in practical applications.
Nevertheless the mastery of quantifications over infinite collections is of great practical
value, because it lays the foundation for a modelling of fuzzy mass quantification. The
examples of quantifiers which I focussed on in this work usually involved count nouns
(“men”, “patients”, “Swedes”,. . . ) and were thus concerned with concrete objects.
Mass nouns like “water” or “wine” however, call for a different kind of quantifica-
tion which ranges over continuous, possibly atomless masses like “some water” or
“much wine”. An adequate modelling of quantification over such masses will neces-
sarily involve infinite sets, of which masses are special instances. The proposed notion
of QFMs and the plausible models (DFSes) developed from it, which support infinite
universes of quantification, hence provide a good starting point for approaching fuzzy
mass quantification. In practice, it might be necessary to add some more structure in
order to deal with mass quantification. For example, it might be convenient to assume
thatE be a measurement space with a measureP defined on it. We can then define a
proportional quantifierQ, intended to model “more than 30 percent” onE, by

Q(Y1, Y2) =
{

1 : P (Y1 ∩ Y2) ≥ 0.3P (Y1)
0 : else

assuming thatY1, Y2 ⊆ E be measurable subsets. In the case thatY1 or Y2 are not
measurable, it is most natural to declareQ(Y1, Y2) undefined. This suggests that quan-
tification over masses will involve an extension to partial (rather than total) semi-fuzzy
quantifiers, and a suitable notion of QFMs that map these to fuzzy quantifiers. Hence

45The Σ-Count approach can be generalised to measurable fuzzy subsets of sets of infinite cardinality
by replacing summation with integration [184, p. 167]. However, as we have seen in Chap. 1, theΣ-count
approach does not offer a suitable departure for developing plausible models of fuzzy NL quantification.
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the support for quantifiers on infinite base sets, which is already available in my current
proposal, is an important prerequisite of treating mass quantification but it needs to be
enhanced with a model of partial quantifiers and basic concepts of measure theory.

Unlike the approaches to fuzzy quantification described in the literature, the pro-
posed theory also achieves an adequate account of non-quantitative quantifiers. By
Th-25, every model of the DFS axioms maps quantitative semi-fuzzy quantifiers to
quantitative fuzzy quantifiers (e.g. “almost all”). But the theorem also states thatF
maps non-quantitative semi-fuzzy quantifiers to correspondingnon-quantitativefuzzy
quantifiers. Some examples are proper names likejohn = πJohn, and non-quantitative
composite quantifiers like “AllX ’s except the men areY ’s” or “All male X ’s areY ’s”.
Existing approaches to fuzzy quantification, however, are defined in terms of absolute
or relative cardinality measures for fuzzy sets, which must be invariant under automor-
phisms in order to adequately capture the notion of ‘cardinality’. Consequently, the
traditional modelsalwaysresult in quantitative quantifiers and are thus unable to model
any non-quantitative cases. This failure of existing approaches gains some weight as
soon as infinite base sets are admitted (e.g. in mass quantification). In this case most
important quantifiers including e.g., “most”, become non-quantitative in the sense of
automorphism invariance, see van Benthem [8, p.473+].

Taken together, these observations demonstrate that from the perspective of cov-
erage, only my new proposal conforms to the linguistic data, because it embeds the
established Theory of Generalized Quantifiers. The traditional approaches to fuzzy
quantification, by contrast, are too narrow from a linguistic perspective and for struc-
tural reasons, they bear the risk of producing incoherent results. The coverage of my
new theory with respect to quantificational phenomena compared to that of TGQ and
of existing approaches to fuzzy quantification, is summarized in Fig. 14.

Having explained the difference in scope, I would now like to discuss the issue of
linguistic plausibility. With the notable exception of H. Thiele’s analysis of special-
ized classes of quantifiers [149, 150], existing approaches to fuzzy quantification were
mainly concerned with the development of new rules for interpreting fuzzy quantifiers,
the linguistic plausibility of which was ‘proven’ with a few positive examples. My
novel theory of fuzzy quantification, however, is based on a rigid axiomatic foundation
which ensures the intended behaviour of the resulting models. Due to the consider-
able effort which I spent on the discovery and formalization of the intuitive criteria for
plausible interpretations of quantifiers, these criteria will indeed ensure that reasonable
and coherent results be obtained. The desired quality of interpretations can also be
guaranteed across quantifier types, because of my uniform representations which fit
arbitrary quantifiers. Concerning specific constructions of linguistic relevance, it the
proposed models are fully compatible with Aristotelian squares, i.e. they admit the for-
mation of external negation, antonyms, and duals. This property is offered bynoneof
the earlier approaches. Furthermore, every DFS is compatible to the Piaget group of
transformations, the significance of which stems from empirical findings in develop-
mental psychology. For a note on the importance of the Piaget group of transformations
to fuzzy logic, see Dubois & Prade [36, p. 158+]. In Chap. 4, various properties have
been discussed which clearly distinguish the novel approach from ad-hoc interpretation
rules. For example, the DFS models are known to ‘preserve extension’ by Th-26 and
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Figure 14: Coverage of linguistic quantifiers: DFS (outer rectange) vs. TGQ (left half)
and existing approaches (circles)

hence reproduce the insensitivity of NL against the precise choice of domain. It should
also be pointed out that by committing to a model of fuzzy quantification, a unique
definition of all fuzzy connectives is induced. For example, every DFS is compatible
with exactly one choice of conjunction, disjunction, implication, etc – there is no de-
gree of freedom left in the definition of these connectives. Every DFS also induces a
unique choice of extension principle and of fuzzy inverse images. Thus, the proposed
models are not only capable of interpreting arbitrary quantifiers in the sense of TGQ
and their generalizations to type IV quantifications. By fixing a coherent choice of
fuzzy connectives and other basic constructs of fuzzy set theory, they also establish a
consistent view of fuzzy set theory. The approaches described in the literature by con-
trast, are essentially limited compared to TGQ, and struggling with internal difficulties
that stem from their lack of an axiomatic foundation.

13.3 Future perspectives

To sum up, the proposed theoretical framework is much more complete and linguis-
tically faithful compared to earlier work. The axiomatic procedure in particular, i.e.
the formalization of semantical postulates to constrain the admissible models, allowed
me to investigate fuzzy quantification with unparalleled formal rigor, that has previ-
ously only been achieved for ‘special cases’ like the T- and S-quantifiers of Thiele
[149] and his median quantifiers [150]. As to the coverage of possible quantifica-
tions, the proposed framework accounts for the majority of quantificational phenom-
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ena in natural language. But there remain a few cases not treated yet, that future re-
search efforts should be directed into. I already mentioned the issue of quantification
over masses (e.g. “much wine”), which necessitates an extension of my basic frame-
work with measure-theoretic notions. Another topic that deserves more attention is
fuzzy branching quantification. I have made some first steps towards the modelling
of branching quantification in Chap. 12, where I introduced Lindström-like quantifiers
into the fuzzy sets framework, which are capable of binding several variables. How-
ever it is not yet clear how branching quantifications can be implemented efficiently
in the proposed models. In addition it is necessary to gain a better understanding of
these powerful quantifications and develop additional criteria for plausibility to control
them. The postulate of compatibility with nestings of quantifiers I consider a natural
choice, but it appears to be extremely restrictive (possibly even conflicting with my
core axioms). I therefore suggested that the criterion be restricted to cases of special
linguistic relevance if necessary, thus assuming quantitativity, conservativity, mono-
tonic or convex shape, etc. In order to achieve unrestricted compatibility with the
nesting of quantifiers, it would also be possible to explore some alternatives to the
core axioms. Specifically, the following criterion ofcompatibility with inverse images
might be useful in this context, viz

F(Q ◦
n
×
i=1

f−1
i ) = F(Q) ◦

n
×
i=1
F̂−1(fi)

for all semi-fuzzy quantifiersQ : P(E)n −→ I and all mappingsfi : E −→ E′, i ∈
{1, . . . , n}, see Def. 47. Like ‘functional application’ (Z-6), this criterion will ensure
the systematicity ofF across domains. Thus, it would be instructive investigating an
alternative axiom system where (Z-6) is replaced with the novel postulate (and further
criteria if necessary).

Another topic worth investigating is concerned with the epistemic difficulty of as-
certaining the precise values of attributes like height, age, temperature etc. Rather than
assuming exact knowledge of these attributes and thus infinite precision, a more real-
istic approach would admit imperfect knowledge of attribute values. The research into
fuzzy quantification under these weaker assumptions has been initiated by H. Prade
[118, 119], who approaches the problem in the setting of possibility theory. It would
likely be useful to incorporate similar ideas into my core framework and consider its
possible extensions to interval-valued quantifications.

Due to the open-endedness of language, which also shows up in its wealth of quan-
tifiers, I was only able to develop the fundamentals of a theory of fuzzy NL quantifi-
cation, and certain phenomena like intensional quantifiers had to be omitted to keep
things manageable. Still the proposed analysis achieves a greater coverage than ear-
lier work, and it also demonstrates a clear and rigorous treatment of its subject. In
particular each of the criteria (Z-1) to (Z-6) for linguistic plausibility gives us a grip
on an independent aspect of fuzzy quantification. Future research into such criteria
will elucidate more and more dimensions of fuzzy quantification in natural language.
If the basic analysis proposed in this work will be pursued further, we might eventu-
ally be able to fully reproduce the semantics of natural language quantifiers. And, we
might also gain some insights into the linguistic regularities which elucidate the role
of vagueness in human language and our daily problem solving. In this connection the
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understanding of fuzzy quantification marks a small but important step into the great
wide open of human cognition.
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Appendix

A An evaluation framework for approaches to fuzzy quan-
tification

A.1 Motivation and chapter overview

Fuzzy quantifiers will not unfold their full potential for applications unless the models
used in implementations are linguistically adequate and catch the intended meaning
of NL quantifiers. For example, if an operator is labelled ‘most’, it is essential that
it behave like the NL quantifier “most”, in order to avoid misunderstandings. In the
introductory chapter to the report, I already sketched some examples of implausible
interpretations for the ‘traditional’ models. Here, I will reconsider these examples and
elaborate them in full detail. These observations on the existing approaches (as well as
further evidence) will then be discussed from the perspective of linguistic plausibility.
This is important because up to now, there are only sporadic results on this issue, e.g.
in [3, 37, 124, 125, 175]. In particular, the traditional approaches have never been
confronted with that analysis of NL quantifiers, which is now common in linguistics.
An evaluation from a linguistic perspective is somewhat peculiar due to the different
representations chosen by fuzzy set theory and linguistics (i.e., membership functions
µQ vs. generalized quantifiers in the sense of TGQ). Accordingly, Zadeh [188] confines
himself to mentioning TGQ, but does not attempt any cross-comparison; and there is
no mutual influence between these research areas.

Based on the framework for fuzzy quantification presented in the main part of the re-
port, it now becomes possible to conduct this evaluation of the traditional approaches to
fuzzy quantification with respect to linguistic plausibility criteria. However, these ap-
proaches must first be fitted into the QFM format, i.e. some explicit means are needed
to make the formal apparatus developed for QFMs applicable. To this end, I will
present a canonical construction which associates with each ‘traditional’ approach a
corresponding partial QFM. The construction is always possible if a natural condi-
tion is satisfied, which will be made precise in the so-called Evaluation Framework
Assumption (EFA). The canonical construction will spare us any individual correspon-
dence assertions: In dependence on the given traditional model, it will automatically
determine a matching fuzzy quantifier for the semi-fuzzy quantifiers of interest. How-
ever, such manual assertions are also possible and can indeed be useful in some cases,
e.g. if the EFA is violated, or if one wants to improve upon the standard construc-
tion. The case-by-case procedure, which then acts as a substitute for the canonical
construction, still makes applicable the linguistic criteria developed in the report. It
might therefore disclose some results concerning plausibility which would otherwise
have remained unaccessible.

Having set up the evaluation framework, I will then discuss the main approaches
to fuzzy quantification with the desired formal rigor. In particular, the conspicious
example images shown in the introduction will now be analyzed in some more depth.
Usually I will also add ‘minimal’ examples, which reproduce the critical behaviour for
a handful of participating objects, and thus can be examined using paper and pencil.
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All examples will be analyzed carefully, in order to unveil the precise causes of failure,
which can usually be traced to a violation of the proposed adequacy criteria for QFMs.
Because of these explanatory merits, I hope that my analysis will also be of interest to
those who take sides with the traditional view of fuzzy quantification.

Note. The central results of this evaluation have been anticipated in Chap. 1, so there
is some inevitable overlap of the introduction and the present chapter. For the sake of
legibility, I have decided to accept an occasional repetition of concepts already men-
tioned in the introduction. In particular, the counter-examples will now be developed
from scratch and presented in full detail, without any reference to their summaries in
the first chapter.

A.2 The evaluation framework

In this section, I will introduce the formal framework suited for evaluating the existing
approaches to fuzzy quantification. Specifically, the framework is taylored to those
‘traditional’ interpretation mechanisms which rest on Zadeh’s representation of fuzzy
linguistic quantifiers in terms of fuzzy subsets of the non-negative reals or of the unit
interval. In order to make a uniform framework possible, it is convenient to fit these
approaches in the following general structure.

The approach of interest, which will be symbolized byZ, must be defined both for
absolute quantifiersµQ : R+ −→ I (Zadeh’s quantifiers of the first kind) and rela-
tive/proportional quantifiersµQ : I −→ I (Zadeh’s quantifiers of the second kind).46

In each case, it is necessary to model both the unrestricted use of the quantifier, where
the quantification involves only one explicit and possibly fuzzy argument (“Most things
are tall”), and the two-place use, where the quantification can be fuzzily restricted, as
in “Most young are poor”. Labelling the absolute and proportional cases byabsand
prp, respectively, and also marking the unrestriced and restricted uses by superscripts
(1) and(2), a ‘full’ approachZ to fuzzy quantification in Zadeh’s setting can then be
specified by defining the following interpretation mechanisms for all choices of finite
domainsE:

• Z(1)
abs, which mapsµQ : R+ −→ I to Z(1)

abs(µQ) : P̃(E) −→ I, for modelling
unrestricted absolute quantification;

• Z(2)
abs, which mapsµQ : R+ −→ I to Z(2)

abs(µQ) : P̃(E)
2
−→ I, for modelling

restricted absolute quantification;

• Z(1)
prp, which mapsµQ : I −→ I to Z(1)

prp(µQ) : P̃(E) −→ I, for modelling
unrestricted proportional quantification;

• Z(2)
prp, which mapsµQ : I −→ I to Z(2)

prp(µQ) : P̃(E)
2
−→ I, for modelling

restricted proportional quantification.
46See Zadeh [188, p. 149] for the distinction of quantifiers of the first kind (based on absolute counts) and

those of the second kind (based on relative counts).
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The approaches described in the literature do not always define the complete scheme,
and I will therefore allow that certain cases be omitted. In addition, the definition of

Z(2)
abs(µQ)(X1, X2) = Z(1)

abs(µQ)(X1 ∩X2) (249)

is usually assumed without mention, and the two-place use of absolute quantifiers only
shows up in examples which demonstrate the application of these approaches. Among
other things, the above equality will reduce “About fifteen children cry” to “About
fifteen ‘things’ are children and cry”, because

Z(2)
abs(µabout 15 )(children , cry ) = Z(1)

abs(µabout 15 )(children ∩ cry )

Finally, Z(1)
prp can be expressed in terms ofZ(2)

prp whenever the latter mechanism is
available, and then becomes

Z(1)
prp(µQ)(X) = Z(2)

prp(µQ)(E,X) .

For example, “Most things are expensive” can be interpreted thus,

Z(1)
prp(µmost )(expensive ) = Z(2)

prp(µmost )(E,expensive )

whereµmost (x) = 1 for x > 0.5 and0 otherwise, andX ∈ expensive ∈ P̃(E).

Now that we have a uniform notation for the approaches of interest, we can turn to
the issue of developing the evaluation framework. The basic problem to be solved is
that the concepts developed in the main part of the report are not directly applicable to
existing approaches. The point is that approaches based on fuzzy linguistic quantifiers
are not defined in terms of a quantifier fuzzification mechanism, and hence fail to
establish a direct interpretation of semi-fuzzy quantifiers. We have to bridge the gap
between semi-fuzzy quantifiers and fuzzy linguistic quantifiers in a systematic way. To
this end, I recall the notion of anunderlying semi-fuzzy quantifierU(Q̃) : P(E)n −→
I, which is nothing but the restriction of the given fuzzy quantifierQ̃ : P̃(E)

n
−→ I

to crisp arguments, see Def. 7. Now let us consider one of the approachesZ based
on fuzzy linguistic quantifiers. We cannot expect thatZ give rise to a ‘full’ (totally
defined) quantifier fuzzification mechanism. Compared to the scope of a QFM, which
aims at NL quantification in general, the quantificational phenomena addressed by
existing approaches are simply too limited, and cover only a fraction of the possible
cases. In other words,Z is not sufficient to determine a total QFM defined for arbitrary
quantifiers. However, it is often possible to reconstruct apartially definedquantifier
fuzzification mechanismF based onZ as follows. Given the membership functionµQ
of a fuzzy linguistic quantifier, we first obtain the corresponding semi-fuzzy quantifier
relative toZ asQ = U(Z(µQ)), and use this to defineF(Q) = Z(µQ). Obviously,
the construction ofF succeeds only ifU(Z(µQ)) 7→ Z(µQ) is functional, but this is a
plausible requirement anyway. It will be called theevaluation framework assumption
(EFA).

• The EFA is very closely related to the QFA, which underlies the quantification
framework described in the main part of the report, see section 2.7. To be spe-
cific, the QFA states that every base quantifierQ̃ of interest is uniquely deter-
mined by its behaviour on crisp arguments. By contrast, the EFA requires that
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those quantifiers̃Q = Z(µQ) which result from the considered interpretation
mechanismZ are fully specified by their quantification results for crisp argu-
ments. If we assume that the mechanismZ is linguisticially plausible, i.e. all
Q̃ = Z(µQ) are potential denotations of NL quantifiers, then the EFA demands
that the QFA be valid for all quantifiers in the responsibility ofZ, and hence
comes out as the QFA in disguise.

• In case the EFA holds unconditionally forZ, we can use the constructed partial
fuzzification mechanismF to establish or reject the preservation and homomor-
phism properties of interest. We only need to take care of the fact that we now
have a partial QFM, rather than a totally defined QFM, and adapt the adequacy
conditions accordingly, which were originally developed for total QFMs. For ex-
ample, a partial QFMF is said to preserve negation ifF(Q) is defined exactly
if F(¬Q) is defined; and in case both are defined, we haveF(¬Q) = ¬F(Q).
As we shall see below, the required modifications to these criteria are only too
obvious, and will not cause any kind of difficulty.
When evaluating the existing approaches, it will be beneficial not to insist on
the induced connectives, which were needed to set up the generic quantifica-
tion framework. in the case of the generic quantification framework. With the
traditional approaches, I consider the standard connectives more appropriate, be-
cause the literature on these approaches generally assumes this particular choice
of connectives. In addition, it is not always unambiguously clear how to de-
fine the induced connectives from these approaches, and the decision to refer to
the standard choices helped me to keep things simple, and consistent with com-
mon practice. Consequently, I will generally assume the standard truth functions
(negation1 − x, conjunctionmin, disjunctionmax etc.) in this chapter, and it
is understood that all constructions on (semi-) fuzzy quantifiers like dualisation
etc. be defined in terms of these connectives.

• If the EFA is violated byZ, the concepts developed for QFMs can still be useful
to assess certain properties ofZ. In this case, the EFA can always be enforced
by restricting the set of considered membership functionsµQ, thus eliminating
the conflicting cases. To see this, supposeE 6= ∅ is a base set,Q : P(E)n −→ I
is a semi-fuzzy quantifier, and let us abbreviate

Ch(Q) = {Q̃ : P̃(E)
n
−→ I : U(Q̃) = Q ∧ existsµQ s.th.Q̃ = Z(µQ)} .

If the EFA holds, thenCh(Q) is either empty, in which caseF(Q) is unde-
fined, or it is a singleton setCh(Q) = {Q̃}, in which caseF(Q) is defined and
F(Q) = Q̃. If the EFA does not hold, thenCh(Q) has more than one element
in some cases. By reducing the set of consideredµQ, we can always obtain a
reduced system in which allCh(Q) – now determined from the restricted set of
µQ – are singleton or empty. We can hence viewCh(Q) as providing a number
of choices forF(Q) ∈ Ch(Q).
It therefore makes sense to say thatZ can representa semi-fuzzy quantifier
Q : P(E)n −→ I if there exists someµQ such thatQ = U(Z(µQ)). We can
then refute a property of interest by proving thatZ cannot representQ without
violating the property.
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Now that the basic framework has been installed, it will be applied in order to assess the
plausibility of the main approaches to fuzzy quantification, viz theΣ-count, FG-count,
OWA- and FE-count models. When presenting counter-examples in the evaluation to
follow, I will generally prefer precise quantifiers like “all” or[rate ≥ r], because I as-
sume that there are strong intuitions about the intended behaviour of these quantifiers,
and my claims that certain results are counter-intuitive should be uncontroversial. Of
course, this does not mean that I am only interested in two-valued quantifiers.

A.3 The Sigma-count approach

Let us first consider theΣ-count approach already mentioned in the introduction. The
model rests on the notion of aΣ-count47 [31], which is is defined as the sum of the
membership values of a given fuzzy setX ∈ P̃(E) (E finite), thus

Σ-Count(X) =
∑
e∈E

µX(e) .

TheΣ-count is claimed to provide a (coarse) summary of the cardinality of the fuzzy
setX, expressed as a non-negative real number. A corresponding scalar definition of
fuzzy proportion, therelativeΣ-countor relative cardinality[180], is defined by

Σ-Count(X2/X1) = Σ-Count(X1 ∩X2)/Σ-Count(X1) .

The Σ-count approach to fuzzy quantification, introduced by Zadeh [184, 188], uses
Σ-Count(X) andΣ-Count(X2/X1) to model the absolute and proportional kinds of
fuzzy linguistic quantifiers. The two types of quantifiers are hence treated differently.
As explained above, the unrestricted and restricted interpretations of both types of
quantifiers must be discerned, i.e. quantification relative to the domain as a whole, or
relative to an explicitly given, and possibly fuzzy, restriction. Referring to my notation
for the mechanismZ = SC (‘Sigma Count’), the definition of theΣ-count approach
can now be stated as:

SC(1)
abs(µQ)(X) = µQ (Σ-Count(X))

SC(2)
abs(µQ)(X1, X2) = SC(1)

abs(µQ)(X1 ∩X2)

SC(1)
prp(µQ)(X) = SC(2)

prp(µQ)(E,X)

SC(2)
prp(µQ)(X1, X2) = µQ (Σ-Count(X2/X1))

Note. The split definition in terms of four separate formulas simply instantiates the
generic scheme for a given mechanismZ that was presented above. In particular, the
‘abs’-versions apply to the absolute kind whereµQ : R+ −→ I, and the ‘prp’-versions
to the proportional kindµQ : I −→ I. Furthermore, the superscripts(1) and(2) denote
unrestricted and restricted quantification, respectively.

Now that the definition of theΣ-count approach has been presented in the assumed
format, we can set out to investigate the linguistic plausibility of the approach. To

47also known as the ‘power’ of a fuzzy set
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begin with, theΣ-count approach is somewhat peculiar because (unlike the other ap-
proaches), it does not comply with the EFA. This is most apparent with absolute fuzzy
linguistic quantifiersµQ : R+ −→ I: The assumption is then violated by any pair
of membership functionsµQ, µQ′ : R+ −→ I with µQ|N = µQ′ |N but µQ 6= µQ′ .
The trouble is that with absolute quantifiers, theΣ-count approach requires the speci-
fication of quantification resultµQ(x) in the case that the computedΣ-countx is not
a cardinal number. The decision on which quantification results to assign for suchx
affects the results obtained, but intuitions are scarce in this unfamiliar case.

Next I will recast Yager’s example [175, p.257] on counter-intuitive behaviour of the
Σ-count approach in my setting. Hence suppose thatE = {Hans,Maria,Anton} is
a set of persons, and using Zadeh’s notation, that the fuzzy subsetblond ∈ P̃(E) is
defined byblond = 1

3/Hans+ 1
3/Maria+ 1

3/Anton, i.e. all three are blond to a degree
of 1

3 . Now consider the quantifying statement “There is exactly one blond person”. Its

interpretation in theΣ-count approach is SC(1)
abs(µQ)(blond ), whereQ is a quantifier

suited to model (the unrestricted use of) “exactly one”. In order for the condition of
correct generalisationto be respected, we are forced to haveµQ(1) = 1. It follows
that the above statement evaluates to1 (fully true), although there is clearlynotexactly
one blond person in the base set (which one should that be?) but rathera total amount
of blondnessof one, as one might say, i.e. nothing of linguistic significance.48

A similar example from the image domain is presented in Fig. 15. In this case, the

Southern Germany (a)SC:1 (OK) (b) SC:1 (implausible)

Figure 15:About10 percent of Southern Germany are cloudy (Sigma-Count)

Σ-count approach is used to evaluate the condition that “About 10 percent of Southern
Germany are cloudy”; and it is assumed thatµQ : I −→ I is chosen such that, say,
µQ(x) = 1 in the rangex ∈ [0.08, 0.12], and thatµQ decays to zero outside this range
(the precise shape ofµQ in latter case is inessential to the example). As shown in
Fig. 15, both cloudiness situations (a) and (b) are considered cloudy to a degree of one
(fully true) if the Σ-count approach is used to evaluate “About 10 percent of Southern
Germany are cloudy”. While a result of1 is plausible in case (a), this is not the case in
situation (b), in whichall of Southern Germany is cloudy to a very low degree (viz. one
tenth), which certainly does not mean that one tenth of Southern Germany is cloudy.

48Zadeh [188] proposes to apply some threshold onX in these cases, in order to prevent accumulative
effects of small membership grades, but I consider this an ad-hoc device because there is no obvious way in
which any particular choice of threshold can be justified.
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‘Trivial’ or ‘degenerate’ cases often require particular attention. One such case is
that of a quantifier supplied with an argument tuple of empty sets. As I will now show,
the Σ-count approach does not treat this case consistently. To see this, let us choose
0 < r2 < r1 < 1 and consider the two-valued proportional quantifiersQ1 = [rate ≥
r1], Q2 = [rate > r2] : P(E)2 −→ 2 (see Def. 3), which haveQ1(∅,∅) = 1,
but Q2(∅,∅) = 0. The problem is that Zadeh does not specify the denotation of
Σ-Count(∅/∅). So let us assume thatΣ-Count(∅/∅) = c ∈ I; further suppose that
µQ1 , µQ2 : I −→ I are used to modelQ1 andQ2, respectively. By not satisfying
the EFA, theΣ-count approach leaves us with some choices whichµQ1 , µQ2 to use
as a model ofQ1 andQ2. However, every reasonable choice ofµQ1 should have
µQ1(x) = 1 only if x ≥ r1, andµQ2(x) = 0 only if x ≤ r2.49 Correct generalization
then demands thatµQ1(c) = 1, i.e.c ≥ r1, but also thatµQ2(c) = 0, i.e.c ≤ r2, which
contradicts the assumption thatr2 < r1.

Let me further remark that theΣ-count approach yields potentially satisfying results
only if µQ is genuinely fuzzy, because a two-valued quantifier (with corresponding

two-valued membership functionµQ) is mapped to a fuzzy quantifier̃Q : P̃(E)
n
−→

2, the results of which arealways crisp.50 One might object that, although a two-valued
quantifierQ : P(E)2 −→ 2 is to be modelled, an adequate choice ofµQ should be
continuous-valued. For example, ifE = {a, b}, can’t we model the universal quantifier
∀ by

µQ(x) =
{

0 : x ≤ 1
2

2x− 1 : x > 1
2

rather than using the two-valued membership functionµ∀ : I −→ I,

µ∀(x) =
{

0 : x < 1
1 : x = 1

which results in a crisp operator when applying SC(1)
prp? To see that this objection is

invalid, let us assume that the two-valued quantifierQ to be ‘fuzzified’ is of the propor-
tional type; I will utilize the fact that such quantifiers have extension.51 Now suppose
thatµQ : I −→ I is a proper choice for interpretingQ, andq ∈ Q ∩ I is some rational
number inI. Firstly, we can chooseX1, X2 ∈ P̃(E) such thatΣ-Count(X2/X1) = q.
Becauseq is rational and nonnegative, there existz,m ∈ N s.th.q = z/m; we may also
require thatm ≥ |E|. We extendE by arbitrary elements to some supersetE′ ⊇ E
with |E′| = m, and choose an arbitrarycrispsubsetZ ∈ P(E′) with |Z| = z. Correct
generalisationthen yields

µQE′ (q) = µQE′ (Σ-Count(Z/E)) = QE′(E,Z) ∈ 2 .

49it will be shown below that in order to have theΣ-count preserve extension, these conditions onµQ1 (x)
andµQ2 (x) must hold for allx ∈ I ∩ Q. If we also require that monotonicity properties be preserved, this
result extends to the full rangex ∈ I.

50This problem has been obscured by Zadeh’s use of the quantifiermost , which he views as being
genuinely fuzzy.

51i.e.f , v0 in Def. 166 can be chosen independently ofE. This is apparent from equality (23).
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In order to avoid a violation of the semantic requirement ofextensionality(see Def. 40),
which would disqualify theΣ-count approach anyway, we are then justified to assume
that

µQE (Σ-Count(X2/X1)) = µQE′ (Σ-Count(X2/X1)) = µQE′ (q) ∈ 2 .

The membership functions suited for modelling two-valued proportional quantifiers are
therefore restricted to{0, 1} onI∩Q. The option of selecting intermediate membership
grades in the open interval(0, 1) for the remaining ‘definition gaps’ onI \ Q has few
practical relevance. In particular, theΣ-count approach produces two-valued results,
and thus cannot determine usefulgradual evaluations, in the case of frequently used
quantifiers like “all” and[rate ≥ r]. This peculiarity of theΣ-count approach is
undesirable in at least two ways.

Firstly, there is a well-known relationship between conjunction and universal quan-
tification, which I already mentioned in section 4.16: a conjunctionc1 ∧ · · · ∧ cm of m
two-valued criteriac1, . . . , cm ∈ 2 corresponds to the quantified statement “All criteria
c1, . . . , cm are true”, i.e.

c1 ∧ · · · ∧ cm = ∀E(C)

whereE = {1, . . . ,m} andC = {j : cj = 1}. We should expect this relationship
between conjunction and universal quantification to be preserved in the fuzzy case. (As
it is in all models of DFS theory – see theorem Th-30). The point is thatµ∀ : I −→ I,
defined byµ∀(1) = 1, µ∀(x) = 0 otherwise, results in

SC(1)
prp(µ∀)(X) =

{
1 : X = E
0 : else

In particular, ifE = {1, 2}, we obtain the induced conjunction operatorc : I×I −→ I
defined byc(x1, x2) = SC(1)

prp(µ∀)(X), whereX = x1/1 + x2/2, i.e.

c(x1, x2) =
{

1 : c1 = c2 = 1
0 : else

This is certainly not a reasonable fuzzy conjunction operator (in particular, it is not a
t-norm).

Apart from this observation that theΣ-count approach assigns an implausible inter-
pretation to the universal quantifier, there is another undesirable consequence of the
fact that two-valuedµQ are mapped to fuzzy quantifiersSC(µQ) which always return
crisp results: such quantifiers are discontinuous, i.e. very slight changes in the mem-
bership grades of their arguments can drastically change the quantification result. More
generally, we observe that wheneverµQ is discontinuous, then the corresponding fuzzy
quantifier under theΣ-count approach is also a discontinuous function of the member-
ship grades of its argument sets. In practical applications, there is almost always some
amount of noise (e.g. due to the finite precision of floating point operations), which
can have drastic effects when using theΣ-count approach for modelling this kind of
quantifiers.
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An example which demonstrates this sensitivity to noise is presented in Fig. 16. In
this case, image (b) is a slightly modified version of image (a) – all pixels with a
cloudiness grade of0 have been set to a slightly higher grade. Although the difference
is small and hardly perceptible, theΣ-count approach ‘jumps’ from0 to 1 when we
move from the cloudiness situation (a) to the slightly modified situation depicted in
(b).

Southern Germany (a)Result:0 (b) Result:1

Figure 16:At least60 percent of Southern Germany are cloudy (Sigma-Count)

Finally, theΣ-count is not compatible with antonyms, as pointed out by Zadeh [188,
p. 167]. Noticing that theΣ-count method admits external negation, we conclude that
the approach is also not compatible with dualisation (which can be decomposed into
the antonym of the negation).

A.4 The OWA approach

In this section, we shall review Yager’s [170, 175] approach to fuzzy quantification,
which is named after its use of ordered weighted averaging (OWA) operators. Only
the proportional typeµQ : I −→ I of fuzzy linguistic quantifiers is considered. In
addition,µQ is assumed to beregular nondecreasing, i.e.µQ(0) = 0, µQ(1) = 1, and
µQ(x) ≤ µQ(y) for all x, y ∈ I such thatx ≤ y. In order to define the OWA approach,
some more notation must be introduced. Given a finite base setE 6= ∅, m = |E| and
µQ : I −→ I, let us defineµQ,E : {0, . . . ,m} −→ I by

µQ,E(j) = µQ( jm )

for j = 0, . . . ,m. Let us also recall the coefficientµ[j](X) ∈ I introduced in Def. 99,
which denotes thej-th largest membership value ofX (including duplicates). We can
then define the OWA approach for unrestricted proportional quantification by

OWA(1)
prp(µQ)(X) =

m∑
j=1

(µQ,E(j)− µQ,E(j − 1)) · µ[j](X) ,

whereµQ : I −→ I is regular nondecreasing, andX ∈ P̃(E). In order to model two-
place quantifiers, Yager introduces a weighting formula parametrised by the so-called
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degree of ornessof the considered operator, which is defined by

orness(µQ,E) =
1

m− 1

m∑
j=1

(m− j)(µQ,E(j)− µQ,E(j − 1)) (250)

(adapted to my notation). In other words,

orness(µQ,E) =
1

m− 1

m−1∑
j=1

µQ,E(j) .

In addition, a weight functiongα : I× I −→ I is needed, which depends on the degree
of ornessα = orness(µQ,E) of the givenµQ. This weight function is defined by

gα(x1, x2) = (x1 ∨ (1− α)) · x2
x1∨α ,

for all x1, x2 ∈ I.52 The weighting function must now be extended to fuzzy arguments:
for fuzzy setsX1, X2 ∈ P̃(E), we definegα(X1, X2) ∈ P̃(E) pointwise by

µgα(X1,X2)(e) = gα(µX1(e), µX2(e)) ,

for all e ∈ E. Based on these concepts, we can now succinctly state the formula
for two-place quantification in the OWA framework proposed in [170]. The fuzzy

quantifier OWA(2)
prp(µQ) : P̃(E)

2
−→ I determined by the OWA approach can then be

expressed as

OWA(2)
prp(µQ) = OWA(1)

prp(µQ)(gα(X1, X2)) ,

for all X1, X2 ∈ P̃(E), whereµQ is regular nondecreasing andα = orness(µQ,E).

Let me note in passing that the degree of orness isundefinedwhen the cardinality
of the base set is|E| = 1. Consequently the OWA approach is unable to provide an
interpretation of two-place quantifiers in the case of singleton base sets.

On the positive side, it is easily observed that the OWA approach fulfills the EFA.
But there is negative evidence as regards its adequacy. Firstly,orness(µQ,E) typi-
cally depends on the cardinality ofE. It follows that most two-place fuzzy quantifiers
Q̃ = OWA(2)

prp(µQ) do not have extension.53 To provide an example, let us consider
µ[rate>0.5] : I −→ I, defined byµ[rate>0.5](x) = 1 if x > 0.5, and0 otherwise. Fur-
ther supposeE = {Joan, Clarissa} is a set of persons,men = ∅ is the set of those
persons inE which are men (this happens to be empty), andrich = E is the fuzzy set
of persons inE which are rich (this happens to be crisp and coincide withE). Then,
becauseµ[rate>0.5],E = µ∀,E ,

OWA(2)
prp(µ[rate>0.5])(men , rich ) = OWA(2)

prp(µ∀)(∅, E) = 1 .

Let us now extendE to the larger setE′ = {Joan,Clarissa,Mary}, and let us suppose
that the extensions of ‘men’ and ‘rich’ remain unchanged inE′, i.e.Mary /∈ men and

52We shall assume that00 = 1, i.e.g0(0, 0) = 1.
53The effect is of practical relevance only if|E| is small.
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Mary /∈ rich . We should then expect, because the quantifier “more than half” has
extension, that the quantification result does not change when we replaceE with the
larger base setE′. However, application of OWA in the extended domainE′ yields

OWA(2)
prp(µ[rate>0.5])(men , rich )

= OWA(1)
prp(µ[rate>0.5])(0.5/Joan + 0.5/Clarissa + 0/Mary)

= 0.5 .

The observed change in OWA(2)
prp(µ[rate>0.5]) is clearly implausible. It is caused by

the change in the degree of orness ofµ[rate>0.5] from α = 0 (in E) to α = 0.5 (in
E′). Similar effects are observed with most otherµQ : I −→ I, which also result in a
failure of OWA with respect to the property of having extension.

This is not the only flaw of this approach, though. Another defect of OWA(2)
prp, which

I consider even more serious, can be demonstrated for all quantifiers with ‘intermedi-
ate’ degrees of orness, i.e.α = orness(µQ,E) ∈ (0, 1).54 In this case

OWA(2)
prp(µQ)(∅,∅) = 0 6= (1− α) = OWA(2)

prp(µQ)(∅, E) , (251)

which shows that, except “all” and “some”, no semi-fuzzy quantifierQ : P(E)2 −→
I which can be represented by OWA is conservative. In particular,the OWA ap-
proach cannot represent any proportional semi-fuzzy quantifiers except for “all” and
“some”.55,56 But this is exactly the type of quantifiers OWA is intended to model.

Southern Germany (a)desired:1, OWA: 0.1 (b) desired:0, OWA: 0.6

Figure 17:At least60 percent of Southern Germany are cloudy

If we still try to use OWA for interpreting proportional quantifiers, implausible results
must be expected. The canonical construction ofF , which has been presented in sec-
tion A.2 above, is then replaced with direct assertions that a given semi-fuzzy quantifier

54In other words, the quantifier must be distinct from∀ and∃.
55all proportional quantifiers are conservative by Def. 166.
56It is rather questionable anyway that “all” and “some” are considered proportional in Yager’s setting. For

example, “all” and “some” are easily defined for infinite domains, which is in clear opposition to the situation
with proportional quantifiers. In my view, “some” should rather be considered an absolute quantifier, and
“all” should be considered a special case of quantifier of exception (i.e., “all except 0”, which permits no
exceptions at all).
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Q should be mapped to a certain fuzzy quantifierF(Q) under the OWA approach. The
property of correct generalisation, which was enforced by the canonical construction,
is not necessarily guaranteed by such ad hoc correspondences. Nevertheless, part of
the evaluation framework remains applicable, because we can still use the semanti-
cal postulates for plausible approaches in order to judge the adequacy of the resulting
model. For example, let us consider the fuzzy linguistic quantifierµ[rate≥0.6], defined
by

µ[rate≥0.6](x) =
{

1 : x ≥ 0.6
0 : else

and make the explicit assertion that[rate ≥ r1] be interpreted by the fuzzy quantifier
F([rate ≥ r1]) = OWA(2)

prp(µ[rate≥0.6]). In fact, this is the common choice for “at
least 60 percent” when using the OWA approach. Now let us consider the suitability of
the resulting fuzzy quantifier for interpreting “At least 60 percent of Southern Germany
are cloudy”, given the cloudiness situation displayed in Fig. 17. In case (a), we expect
the result of1, because so many pixels which fully belong to Southern Germany (I) are
classified as fully cloudy that, regardless of whether we view the intermediate cases
(II) as belonging to Southern Germany or not, its cloud coverage is always larger than
60 percent. Likewise in (b), we expect a result of0 because regardless of whether
the pixels in (II) are viewed as belonging to Southern Germany, its cloud coverage is
always smaller than 60 percent. OWA, however, ranks image (b) much higher than
image (a). This counter-intuitive result is explained by OWA’s lack of conservativity:
the cloudiness grades of pixels in areas (III) and (IV), which do not belong to Southern
Germany at all, still have a strong (and undesirable) impact on the computed results.

To see that this failure of OWA is caused by the lack of conservativity (in the weak
sense of Def. 71) of the quantifier OWA(2)

prp(µ[rate≥0.6]) let us consider the synthetic
examples depicted in Fig. 18. In images (a) and (b), Southern Germany is fully covered
by clouds in the sense that each pixel in the support of Southern Germany57 has a
cloudiness grade of 1. We hence expect that in both (a) and (b), the condition “More
than 60 percent of Southern Germany are cloudy” is fully satisfied. In particular, image
(b) is the intersection of image (a) and the support of Southern Germany. Because
“more than 60 percent” is conservative, we should expect that the results for image (a)
and (b) coincide.

In images (c) and (d), there is no cloudiness at all in Southern Germany in the sense
that each pixel in the support of Southern Germany has a cloudiness grade of 0. We
should therefore expect that in both cases, the condition “More than 60 percent of
Southern Germany are cloudy” fails completely (i.e. the result should be 0). In partic-
ular, the results of (c) and (d) should coincide because (d) is the intersection of (c) with
the support of Southern Germany, and “more than 60 percent” is conservative.
As shown in Fig. 18, the OWA approach neither computes the same results for (a) and
(b), nor for (c) and (d). Even worse, its lack of weak conservativity causes OWA not
to produce the intended order of results, which is (a) and (b) best, (c) and (d) worst.
By contrast, image (c), which shows no cloudiness at all in Southern Germany, and

57i.e. each pixel which belongs to Southern Germany to a degree larger than 0
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(a) desired:1, OWA: 0.6 (b) desired:1, OWA: 0

(c) desired:0, OWA: 0.6 (d) desired:0, OWA: 0

Figure 18: More than 60 percent of southern germany are cloudy. Synthetic examples:
desired results vs. results computed by OWA(2)

prp(µ[rate≥0.6])

image (a), in which Southern Germany is totally covered by clouds, are both assigned
the same (rather high) score of0.6; while image (b), in which Southern Germany is
totally covered by clouds, and image (d), showing now clouds at all, both receive the
lowest possible score of 0.

Apart from these negative findings concerning OWA’s ability to represent conserva-
tive proportional quantifiers in the case of restricted (two-place) quantification, there
are some further pecularities of the OWA approach that also deserve attention. It has
already been mentioned that the ‘core’ OWA approach is limited to the regular non-
decreasing type ofµQ : I −→ I. Yager [165] proposes a quantifier synthesis method
to handle the remaining quantifiers of the proportional kind, i.e. those choices ofµQ
that are not regular nondecreasing. This construction can be rephrased as follows. For
each consideredµQ, we defineµantQ : I −→ I by µantQ(x) = µQ(1 − x). µantQ

is intended to model the antonym ofµQ [188]. Let us callµQ : I −→ I regular non-
increasingif µantQ is regular nondecreasing. Yager [175] suggests to interpret such
quantifiers in terms of their antonyms, i.e. to define

OWA(1)
prp(µQ)(X) = OWA(1)

prp(µantQ)(¬X) ,

for all X ∈ P̃(E), provided thatµQ is regular nonincreasing. Of course, we could
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also have used the negation, defined byµ¬Q(x) = 1 − µQ(x), to state an alternative
definition

OWA(1)
prp

′
(µQ)(X) = 1−OWA(1)

prp(µ¬Q)(X) .

However, both alternatives coincide because OWA(1)
prp preserves the duality between

the quantifiers which correspond toµantQ andµ¬Q.

In the general case whereµQ : I −→ I is neither regular nondecreasing nor non-
increasing, Yager suggests to decomposeµQ into a conjunction (or possibly other
Boolean combination) of regular nondecreasing and nonincreasing quantifiers. For
example, ifµQ = µQ1 ∧ µQ2 , whereµQ1 is regular nondecreasing andµQ2 is regular
nonincreasing, the quantifier synthesis method yields

OWA(1)
prp(µQ)(X) = OWA(1)

prp(µQ1)(X) ∧OWA(1)
prp(µantQ2)(¬X) ,

for all X ∈ P̃(E). Unfortunately, the obtained results depend on the decomposition of
µQ chosen, as I will now show. For example, consider

µQ(x) =

 0 : x ∈ [0, 0.25)
0.3 : x ∈ [0.25, 0.75]
0 : x ∈ (0.75, 1]

(252)

which can be decomposed into a conjunction of

µQ1(x) =

 0 : x ∈ [0, 0.25)
0.3 : x ∈ [0.25, 0.75]
1 : x ∈ (0.75, 1]

µQ2(x) =

 1 : x ∈ [0, 0.25)
0.3 : x ∈ [0.25, 0.75]
0 : x ∈ (0.75, 1]

but also into a conjunction of

µQ′1(x) =

 0 : x ∈ [0, 0.25)
0.3 : x ∈ [0.25, 0.5)
1 : x ∈ [0.5, 1]

µQ′2(x) =

 1 : x ∈ [0, 0.5)
0.3 : x ∈ [0.5, 0.75]
0 : x ∈ (0.75, 1]

If we interpret the regular nondecreasingµQ2 andµQ′2 by means ofµant Q2 andµant Q′2
,

as suggested by Yager, and chooseE = {a, b, c, d}, andX ∈ P̃(E) with X =
0/a+ 0.5/b+ 0.5/c+ 1/d, then

OWA(1)
prp(µQ1)(X) ∧OWA(1)

prp(µantQ2)(¬X) = 0.3

OWA(1)
prp(µQ′1)(X) ∧OWA(1)

prp(µantQ′2
)(¬X) = 0.65

i.e. the quantifier synthesis method depends on the decomposition chosen, and is hence
ill-defined. These problems carry over to two-place quantification based on OWA(2)

prp.
We then have

OWA(2)
prp(µQ)(E,X) = OWA(1)

prp(µQ)(X) .

This demonstrates that OWA(2)
prp embeds all counter-examples for one-place quantifi-

cation.
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In the two-place case, however, there are some additional problems because OWA(2)
prp,

unlike OWA(1)
prp, does not preserve duals. Suppose we wish to evaluate the criterion

“Less than 60 percent of Southern Germany are cloudy”. Noticing that the quantifier is
not of the regular nondecreasing type, we must resort to one of the following equivalent
statements:

i. “It is not the case that at least 60 percent of Southern Germany are cloudy”, i.e.
use negation and compute¬OWA(2)

prp(µ[rate≥0.6])(X1, X2);

ii. “More than 40 percent of Southern Germany are not cloudy”, i.e. use the antonym
and compute OWA(2)

prp(µ[rate>0.4])(X1,¬X2).

Unlike in NL, however, these statements are not equivalent under the OWA approach.
When applied to the images in Fig. 17, we obtain different results as shown in Table
23. In this case, both i. and ii. compute the same (wrong) ranking58, which demon-
strates that neither alternative is correct; in other cases, their rankings can differ. The
problem is that OWA, which cannot model “less than 60 percent” directly, forces us
to choose one of i., ii.; but due to their expected equivalence, there is no preference
for either choice. In an appropriate model, the computed results coincide in both cases
and the chosen alternative for computing the result becomes inessential. The OWA
approach, however, fails to preserve the duality of “at least 60 percent” vs. “more than
40 percent”.

Quantifier Fig. 17(a) Fig. 17(b)

¬OWA(2)
prp(µ[rate≥0.6]) 0.9 0.4

OWA(2)
prp(µ[rate>0.4])¬ 0.4 0

(desired result) 0 1

Table 23:Less than 60 percent of Southern Germany are cloudy

A.5 The FG-count approach

Apart from theΣ-count approach, Zadeh [188] also introduces a second approach to
fuzzy quantification. The FG-count approach rests on the idea that the cardinality of
a fuzzy set cannot be fully described by a single scalar number (as in theΣ-count ap-
proach). By contrast, the cardinality of a fuzzy set should rather be be viewed as a fuzzy
subset of the non-negative integers. IfE is a finite base set, andX ∈ P̃(E) a fuzzy sub-
set ofE, then the FG-count ofX [188, p.156,p.157], denoted FG-count(X) ∈ P̃(N),
is defined by

µFG-count(X)(j) = sup{α ∈ I : |X≥α| ≥ j}
= µ[j](X) ,

58i.e. result order with respect to≥

409



for all j ∈ N, recalling in particular thatµ[0](X) = 1 andµ[j](X) = 0 for all j > |E|,
see Def. 99. Intuitively, the FG-count expresses the degree to whichX ∈ P̃(E) has
at leastj elements. The FG-count can then be used to interpret absolute quantifiers
µQ : R+ −→ I as follows [165]:

FG(1)
abs(µQ) = max

j=0,...,m
µQ(j) ∧ µ[j](X)

Following the canonical strategy (249) for defining the restricted use of absolute quan-
tifiers,FG(2)

abs can be modelled by

FG(2)
abs(µQ)(X1, X2) = FG(1)

abs(µQ)(X1 ∩X2) .

Yager [165] proposes a method for interpreting proportional quantifiersµQ : I −→ I,
which is obviously related to Zadeh’s FG-count approach.FG(1)

prp then becomes

FG(1)
prp(µQ)(X) = FG(1)

abs(µQ,E)(X) ,

(adapted to my notation), whereµQ,E(j) = µQ(j/m), m = |E|, as in the case of
the OWA approach. As concerns the restricted use of proportional quantifiers, Zadeh
proposes therelativeFG-count for pairs of fuzzy setsX1, X2 ∈ P̃(E), defined by

FG-Count(X2/X1) =
∑

α∈[0,1]

α/
|X1≥α∩X2≥α|
|X1≥α|

and emphasises“that the right-hand member” [of the defining equation] “should be
treated as a fuzzy multiset, which implies that terms of the formα1/u andα2/u should
not be combined into a single term(α1 ∨ α2)/u, as they would be in the case of a
fuzzy set”[188, p.157]. However, if the right-hand member of the equation is a fuzzy
multiset, then obviously FG-Count(X2/X1) is a fuzzy multiset as well. It is therefore
not possible to formulateFG(2)

prp(µQ) in analogy to the definition ofFG(1)
abs(µQ), i.e.

the following proposal isnot licensed by Zadeh’s definition:

FG(2)
prp(µQ)(X1, X2) = sup{µQ(r) ∧ µFG-Count(X2/X1)(r) : r ∈ I}

(This definition would be ill-formed because it identifies the cases which Zadeh ex-
plicitly wants to be kept separate). To the best of my knowledge, no attempt has been
made to provide a definition ofFG(2)

prp(µQ) in terms of the above FG-Count(X2/X1).
In particular, Zadeh’s examples on the application of the FG-count approach in [188]
only demonstrate its application in the unrestricted case, and can thus be handled by
FG(1)

prp.

As in the OWA case, it is easily shown that the FG-count approach complies with the
EFA. However, the range of fuzzy quantifiers which can be handled by the FG-count
approach is essentially limited, because the two-place use of proportional quantifiers
cannot be modelled, which is of obvious relevance to most applications.

Another limitation of the model becomes visible once we investigate the monotonic-
ity properties of the fuzzy quantifiers̃Q = FG(µQ) obtained from the FG-count ap-
proach. It can be observed that, regardless ofµQ, the resulting fuzzy quantifiers are
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always monotonically nondecreasingin their arguments. Consequently the FG-count
approach is unable to represent any quantifiers except for those which are nondecreas-
ing.59 In analogy to the solution proposed for OWA, we might reduce monotonically
nonincreasing quantifiers to their antonym or their negation, and consider more com-
plex quantifiers as Boolean combinations of such monotonic quantifiers. However, the
very same example already used to discuss the OWA approach reveals that the quanti-
fier synthesis method fails in the FG-count case, too. Using the same abbreviations as
in (252), we have

FG(1)
abs(µQ1)(X) ∧ FG(1)

abs(µantQ2)(¬X) = 0.3

FG(1)
abs(µQ′1)(X) ∧ FG(1)

abs(µantQ′2
)(¬X) = 0.5 ,

i.e. we obtain different results for different decompositions ofµQ.

Yager [171, p.72] proposes a weighting formula, which can be conceived of as pro-
viding a definition ofFG(2)

prp(µQ), however not based on Zadeh’s definition of relative
FG-count. It is defined by

FG(2)
prp(µQ)(X1, X2) = max

{
min

(
µQ

(∑
e∈S µX1(e)∑
e∈E µX1(e)

)
,HS

)
: S ∈ P(E)

}
whereHS = min{max(1− µX1(e), µX2(e)) : e ∈ S}.
To see that this formula is related to the FG-count approach, suffice it to observe that

FG(2)
prp(µQ)(E,X) = FG(1)

prp(µQ)(X) (253)

for all µQ : I −→ I andX ∈ P̃(E), provided thatFG(2)
prp(µQ)(E,X) is defined in

terms of the above formula.

Before turning to the issue of plausibility, let us observe that

FG(2)
prp(µQ)(∅, X2)

is undefined, regardless ofµQ : I −→ I, E, andX2 ∈ P̃(E). Strictly speaking,
FG(2)

prp(µQ) is not a fuzzy quantifier according to my definition, it is only a partial

mapping fromP̃(E)
2

to I which is defined wheneverX1 6= ∅. As we have seen in
the case of theΣ-Count approach, extending the approach in such a way as to provide
reasonable results in this case can be rather difficult (perhaps impossible). However,
for the sake of making the framework applicable toFG(2)

prp, we shall assume that each

FG(2)
prp(µQ) is completed to a total mappingFG(2)

prp(µQ) : P̃(E)
2
−→ I in some

(arbitrary) way, and we shall not consider the results obtained in the caseX1 = ∅

further.

As regards the plausibility ofFG(2)
prp, we should first notice that the EFA is violated.

This is apparent when we consider a pair of nondecreasingµQ, µQ′ : I −→ I and a
59Yager [165] therefore explicitly restricts application of the FG-count approach to monotonically nonde-

creasingµQ. His approach is criticized by Ralescu [124], however based on an invalid exampleµa few of
a quantifier which fails to be nondecreasing.
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base setE,m = |E| ≥ 2 such that

µQ(pq ) = µQ(pq ) (254)

for all q ∈ {1, . . . ,m}, p ∈ {0, . . . , q}, butµQ(z) 6= µQ′(z) for some other choice
of z ∈ I. In particular, we then know from (254) thatz 6= 1 and hence1 − z 6= 0,
which will be needed below. For purpose of demonstration, we shall further assume
that z ≤ 1

2 . As concerns the results ofFG(2)
prp in this case, we first observe that

U(FG(2)
prp(µQ)) = U(FG(2)

prp(µQ′)), because for all crispY1, Y2 ∈ P(E),

FG(2)
prp(µQ)(Y1, Y2) = µQ(pq ) = µQ′(pq ) = FG(2)

prp(µQ′)(Y1, Y2)

by (254), wherep = |Y1 ∩ Y2| andq = |Y1|. Now pick an arbitrary but fixed pair of
elementse0, e1 ∈ E, e0 6= e1, and abbreviateλ = 1−min(µQ(z), µQ′(z)). Defining
X1 ∈ P̃(E) by

µX1(e) =


λz

1−z : e = e0

λ : e = e1

0 : else

and lettingX2 = {e0} then results in

FG(2)
prp(µQ)(X1, X2) = µQ(z) 6= µQ′(z) = FG(2)

prp(µQ′)(X1, X2) .

HenceFG(2)
prp(µQ) andFG(2)

prp(µQ) agree for all crisp arguments, but they can disagree
for certain choices of fuzzy arguments. This demonstrates that the EFA is indeed
violated.

Beyond this failure of the EFA, there are some further undesirable properties. Let us
consider the quantifier[rate > p

q ], whereq ∈ N \ {0}, p ∈ {1, . . . , q − 1}. Due to the

fact thatFG(2)
prp does not fulfill the EFA, we have some choices whichµQ : I −→ I to

use as a model of[rate > p
q ]. µ[rate> p

q ] is a proper choice for interpreting[rate > p
q ]

usingFG(2)
prp because

U(FG(2)
prp(µ[rate> p

q ])) = [rate > p
q ]

(assuming a proper completion in the caseX1 = ∅), but otherµQ can also fulfill
this property. As in the case of theΣ-count approach, one can show that in order to
preventFG(2)

prp from violating the extensionality criterion (in the sense of Def. 40),
every reasonable choice ofµQ must satisfyµQ(x) = µ[rate> p

q ](x) for all x ∈ I ∩ Q.
In the following, I will useµ[rate> p

q ], but the effects demonstrated will also occur for
other possible choices ofµQ.

Now suppose thatE is a base set such thatm = |E| > q. ThenE can be written
asE = {e1, . . . , em}, where theei are pairwise distinct elements ofE. Let us define
X

(λ)
1 ∈ P̃(E),X2 ∈ P(E) by

X
(λ)
1 = 1/e1 + · · ·+ 1/eq + λ/eq+1

X2 = {e1, . . . , ep}
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for all λ ∈ I. We should expect thatFG(2)
prp(µ[rate> p

q ])(X
(λ)
1 , X2) = 0, because

[rate > p
q ] is constantly zero in the range(U, V ), where

U = ({e1, . . . , eq}, X2) = (X(0)
1 , X2) ,

V = ({e1, . . . , eq+1}, X2) = (X(1)
1 , X2) .

However, instead of the desired result stated above, what we really get is the following,

FG(2)
prp(µ[rate> p

q ])(X
(λ)
1 , X2) =

{
0 : λ = 0
1− λ : λ > 0 (255)

In fact, the example reveals thatFG(2)
prp does not preserve local monotonicity proper-

ties, because the resulting fuzzy quantifier fails to be locally nondecreasing in(U, V ).
Moreover, it is not contextual (see Def. 42 for the definition of contextuality): its re-
sult 1 − λ in the considered range is nonzero, although the original quantifier, i.e. the
specification for crisp sets, is constantly zero in(U, V ).

Apart from the failure ofFG(2)
prp to preserve local monotonicity, equation (255) also

points at another weakness ofFG(2)
prp: if µQ is discontinuous (in particular if it is two-

valued), thenFG(2)
prp(µQ)(X1, X2) can be discontinuous in the membership grades of

X1 as well. In the example, a very slight change ofX
(λ)
1 (from λ = 0 to λ′ = ε > 0)

can result in a drastic change ofFG(2)
prp(µ[rate> p

q ])(X
(λ)
1 , X2). This is not acceptable

in practical applications due to the inevitable presence of noise: a very slight change
in X1, X2 might cause totally different results ofFG(2)

prp(µQ)(X1, X2).

In order to demonstrate these effects in the image ranking task, let us consider the
quantifier[rate ≥ 0.05], i.e. at least five percent . Some results ofFG(2)

prp for the
chosen quantifier are shown in Fig. 19. Let us first consider the case thatX1 is the

(a) Southern Germany#1 (b) Southern Germany#2 (c) cloudy
Result for Southern Germany#1:0.55
Result for Southern Germany#2:0.95
Desired result: 0

Figure 19:At least5 percent of Southern Germany are cloudy (FG-Count)

standard choice for interpreting Southern Germany depicted in 19(a), and whereX2 is
the cloudiness situation depicted in (c). We expect a result of zero in this case because
there are no clouds in the support ofX1. The FG-count approach, however, returns a
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score of0.55. One might subject that, as in the case of OWA, this implausible result
could be caused by a lack of conservativity – after all, there are some clouds in the
upper part of image (c). However, it is easily verified that all fuzzy quantifiers obtained
from FG(2)

prp are conservative. It is the failure ofFG(2)
prp to preserve local monotonicity

properties which causes the implausible behaviour.

The sensitivity ofFG(2)
prp to slight changes inX1 becomes apparent when the stan-

dard definition of the fuzzy region ‘Southern Germany’ (a) is replaced with the slightly
modified Southern Germany#2 depicted in 19(b). The image has been generated from
(a) by replacing black pixels (µX(e) = 0) in the lower two thirds of (a) with a slightly
lighter black,µX(e) = 0.05. Because the upper third of the image is unchanged, i.e.
the clouds in the northern part of (c) are still outside the support of Southern Ger-
many#2, we expect a result of0 in this case, too. The FG-count approach, however,
results in a score of0.95, again because local monotonicity is not preserved. The large
change in the result, although we have modified the representation of Southern Ger-
many in terms ofX1 only very slightly, demonstrates that the operators obtained from
the FG-count approach can indeed be very brittle.

We have already seen thatFG(1)
prp is essentially limited to nondecreasing quantifiers.

Owing to (253), then, the proposed extension to restricted quantification is subject to
the same limitations, i.e.FG(2)

prp will behave reasonably only ifµQ is nondecreasing.
In particular, the failure of the ‘quantifier synthesis’ method to extend the coverage
of FG(1)

abs and FG(1)
prp directly carries over toFG(2)

prp (in this case,E must be used
for the first argument, whileX becomes the second argument. Here I will present
an additional example, which shows that in the case of two-place quantification, the
decomposition can also fail becauseFG(2)

prp is not compatible with dualisation. Hence
let us consider

µQ(x) =

{
1 : x ≥ 1

6

0 : x < 1
6

µQ′(x) =

{
1 : x > 5

6

0 : x ≤ 5
6

representing[rate ≥ 1
6 ] and its dual[rate > 5

6 ], respectively, and chooseE =
{e1, e2},X1 = X2 = 1

3/e1 + 1
3/e2. We then have

FG(2)
prp(µQ)(X1, X2) = 2

3 6=
1
3 = 1− 2

3 = 1− FG(2)
prp(µQ′)(X1,¬X2) .

As in the case of OWA(2)
prp, the failure ofFG(2)

prp to preserve duals is of particular im-

portance becauseFG(2)
prp cannot provide a reasonable interpretation of quantifiers like

“less than 30 percent” directly. In order to evaluate this quantifier, we either have to use
the negation “at least 30 percent”, or the antonym “more than 70 percent”, which are
duals of each other. However, because duality is not preserved byFG(2)

prp, both choices
produce different results as depicted in Fig. 20.

A.6 The FE-count approach

Apart from introducing the FG-count and suggesting its use for the modelling of fuzzy
quantification, Zadeh [188] proposes yet another definition of fuzzy cardinality. The
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Southern Germany (a) (b)
Quantifier Image (a) Image (b)
not at least 30 percent 0.72 0
more than 70 percent not1 0.29

Figure 20: Less than thirty percent of Southern Germany are cloudy (FG-count ap-
proach)

FE-countof X ∈ P(E) is defined by

µFE-count(X)(j) = µ[j](X) ∧ ¬µ[j+1](X) .

Unlike FG-count(X), which expresses the degree to whichX ∈ P̃(E) has at least
j elements, the FE-count is intended to express the degree to whichX has exactlyj
elements. The adequacy of the FE-count as a measure of fuzzy cardinality has been
questioned by Dubois & Prade [37].

Ralescu [124] suggests that the interpretation of fuzzy quantifiers be based on the
computation of FE-counts. He only considers the unrestricted use of absolute quanti-
fiersµQ : R+ −→ I. In this case, the FE-count model is defined thus,

FE(1)
abs(µQ)(X) = max

j=0,...,m
µQ(j) ∧ µ[j](X) ∧ ¬µ[j+1](X) ,

for all X ∈ P̃(E). The model complies with the EFA, but the phenomenon treated
(only one-place absolute quantifiers) is of course very limited. Nevertheless, the FE-
count approach explicitly targets at an improvement upon the FG-count model, so we
should be curious about its score on the plausibility scale.

Given a domainE with |E| = m andµQ : R+ −→ I, we can conveniently restrict
attention toµQ,E : {0, . . . ,m} −→ I (as we have already done in the case of OWA),
which for absolute quantifiers becomesµQ,E(j) = µQ(j) for all j = 0, . . . ,m. We

can then viewFE(1)
abs(µQ) as a function ofµQ,E . In the case of a two-element domain,

sayE = {a, b}, the existential and universal quantifiers are modelled thus,

µ∃,E(j) =
{

0 : j = 0
1 : else

µ∀,E(j) =
{

0 : j < 2
1 : j = 2

for j ∈ {0, 1, 2}. LettingX = 1/a + 0/b andY = 1/a + 0.5/b, we observe that
FE(1)

abs(µ∃,E)(X) = 1, but FE(1)
abs(µ∃,E)(Y ) = 0.5, althoughX ⊆ Y (in the sense
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of inclusion of fuzzy sets). It follows that the FE-count approach does not preserve
monotonicity properties of quantifiers. In addition, the example shows that the FE-
count does not generate a reasonable interpretation of the existential quantifier, which
should be expressable in terms of ans-norm.60 The example further demonstrates
that the FE-count approach does not preserve duality, becauseµ∀,E is mapped to the
intended

FE(1)
abs(µ∀,E)(Z) = min(µZ(a), µZ(b)) ,

rather than the dual ofFE(1)
abs(µ∃,E). Finally, the FE-count approach also does not

preserve negation.

The failure of the FE-count approach to preserve monotonicity can also be demon-
strated in my example scenario of fuzzy image regions. Hence let us consider the
statement that a fuzzy image regionX is nonempty.61 The condition corresponds to
existential quantification, and the FE-count formula is hence applied toµ∃ : R+ −→ I
defined byµ∃(0) = 0, µ∃(j) = 1 else. Now consider the results shown in Fig. 21.
The result in case (a) is satisfactory becauseX is a crisp nonempty subset of the set

(a) desired:1, FE:1 (b) desired:1, FE:0.5

Figure 21:X is not empty (FE-count approach)

of pixel coordinatesE. The fuzzy image regionX ′ depicted in (b) is much larger and
containsX. Due to the monotonicity of the existential quantifier, we should expect
that the fuzzy image regionX ′ depicted in (b) is nonempty, too. However, due to the
presence of fuzziness, the FE-count approach results in a score of0.5, which is clearly
implausible.

To sum up, the FE-count is limited in applicability and even in the (simplest) case of
unrestricted absolute quantifiers, it generates inacceptable interpretations.

A.7 Chapter summary

The traditional approaches to fuzzy quantification rest on the very simple representa-
tion offered by membership functionsµQ : I −→ I andµQ : R+ −→ I. Conceptually

60see section 4.16 on the intended interpretation of fuzzy existential and universal quantification, which
reviews Thiele’s analysis of T- and S-quantifiers.

61Note that I cannot use the examples of two-place proportional quantifiers here because the FE-count
approach is unable to model these.
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these approaches are clearly less developed compared to the theory expounded in this
report. However, these approaches are particularly easy to implement, which makes
them appealing to applications at first sight. This made it important to investigate if
these approaches perform well in those cases they intend to model, well knowing that
they have too few coverage for a general treatment of fuzzy NL quantification (see
section 1.15 above).

In order to assess the plausibility of the approaches described in the literature, I have
introduced a canonical construction which fits these approaches into the framework
pursued in this report, and hence assigns to each of these approaches an (incompletely
determined) QFMF .

The framework is directly applicable if its underlying assumption is satisfied, which
I made precise in terms of the ‘EFA’ (evaluation framework assumption). Basically,
the EFA requires that all fuzzy quantifiers obtained from the considered approach are
already discernable from their behaviour on crisp arguments. This simplification is
justified by the fundamental assumption of the quantification framework, i.e. the QFA
described in Chap. 2, which poses the related requirement that all base quantifiers of
interest can also be discerned on the level of crisp arguments. This suggests that beyond
its part in the construction of the canonical embedding, the EFA is also a plausibility
criterion which is interesting in its own right. Those approaches that violate the EFA
can still be discussed in the analysis framework; instead of a unique fuzzy quantifier
assigned by the construction, we then have a number of available choices. In this
case, we can still check if certain adequacy criteria can be fulfilled, by making an
appropriate selection from the available interpretations. If no verifying choice exists,
the considered approach to fuzzy quantification must be considered incompatible with
the criterion of interest.

The proposed method permits a rigorous evaluation of existing approaches under
their compliance with the known semantical postulates, which were originally intro-
duced for testing the plausibility of QFMs. Furthermore, the criteria formalized in
Chap. 3-6 can also guide the systematic search for critical examples which result in
implausible interpretations. The discovery of such counter-examples then raises the
new question of the causes of the unexpected behaviour. Obviously, similar effects
can only be avoided in improved approaches if we understand the defects of existing
approaches. It is the main merit of the proposed evaluation framework that it canex-
plain the failure of existing approaches, which now becomes a violation of elementary
adequacy requirements.

In the chapter, I have instantiated the framework for the main approaches to fuzzy
quantification, i.e. theΣ-count, FG-count, OWA and the FE-count models. Based on
the known plausibility criteria, these approaches were then checked against the in-
tended semantics of fuzzy NL quantification. This evaluation has substantiated my
doubts on the adequacy of the ‘traditional’ account to fuzzy quantification, which re-
duces everything to calculations on simple membership functionsµQ : R+ −→ I or
µQ : I −→ I. For each of the approaches in this tradition, I have presented several
counter-examples in which its results are inacceptable. It is true that the OWA- and
FG-count approaches have a reasonable ‘core’ for nondecreasing unary quantifiers.
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However, their extensions to non-monotonic quantifiers and importance qualification
are not conclusive. Despite the algorithmic simplicity of existing approaches, these
findings discourage the use of these models in practice, especially in those applica-
tions of fuzzy quantifiers which depend on their natural language meaning. In fact, it
was this massive evidence against the traditional view of fuzzy quantification which
forced me to abandon the common assumptions of these approaches, and develop a
theory fundamentally different, focussing on the notions of semi-fuzzy quantifiers and
QFMs. In conforming models likeMCX or FCh, then, faults comparable to those of
existing approaches become impossible on formal grounds.
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B A note on the fuzzification pattern

B.1 Motivation and chapter overview

The analysis of fuzzy quantification pursued in this report depends heavily on the
notion of a fuzzification mechanism. As I have argued in Chap. 2, where the QFM
framework for fuzzy quantification was introduced, the use of fuzzification mecha-
nisms makes a basic commitment, which I called the QFA (quantification framework
assumption). In order to shed some light on the abstract structure underlying the pro-
posed framework and further elucidate the precise contribution of the QFA, I will now
discuss general fuzzification mechanisms in some depth. Specifically, I will use the
term fuzzification patternto denote that proven strategy for solving problems in the
fuzzy sets framework, which rests on the use of fuzzification mechanisms. In order
to gain a better understanding of these mechanisms, we shall consider the necessary
components of the pattern, and make explicit the preconditions for its successful ap-
plication. The resulting analysis will be particularly helpful because it explains the
quantification framework assumption in a more general setting.

B.2 The basic problem

Abstracting from details, we will now be concerned with a rather typical situation in
the fuzzy sets framework, which can be described as follows. Suppose we would like
to solve a certain class of problemsP, which involve one or more variables that range
over fuzzy sets. Each problemp ∈ P is known to find its solutioñs = Ã(p) in a
collection of potential solutions̃S. In formal terms, we can describe the association
between problems and corresponding full solutions by a mappingÃ : P −→ S̃. Due to
the presence of fuzzy variables, though, the particular solutionÃ(p) of a given prob-
lem p ∈ P will typically be hard to ascertain, and we might find ourselves unable to
develop an explicit description of̃A. The problem is that precise outputs (e.g. numer-
ical membership grades) must be computed from imprecise, fuzzy inputs. Because in
many cases, the presence of fuzziness might blur our intuitions concerning a ‘good’
solution, we must consult auxiliary techniques in order to ascertain consistent outputs
Ã(p).

B.3 The reduction equality

One possible approach to solve the problem is a reduction to the crisp case: for the mo-
ment, we simply ‘forget’ that some of the variables range over fuzzy sets, and confine
ourselves to crisp instantiations only. In doing this, each full solutions̃ ∈ Ã is pruned
to an incomplete solutions = U(s̃), which sets aside certain fuzzy cases. Of course,
one will take pains to cut off those cases which comprise the major source of difficulty.
In formal terms, excluding part of the fuzzy cases means a passage from complete so-
lutionss̃ ∈ S̃ to simplified counterpartsU(s̃) in an intermediate domain, which will be
denotedS. The passage can then be modelled by a mappingU : S̃ −→ S, which ‘for-
gets’ part of a full solutioñs, and cuts it down to the underlying incomplete solution
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U(s̃). By composingÃ andU , we associate with each problemp the ‘incomplete’ or
‘simplified’ solutionU(Ã(p)), which is only concerned with that part of the problem
where everything looks neat and crisp. The resulting simplified answer mapping will
be denotedA : P −→ S. It is defined by the followingreduction equality,

A = U ◦ Ã . (256)

The dependencies between the full answer mappingÃ, the incomplete answer map-
pingA, and the mapping to underlying simplified solutionsU , are summarized in the
following diagram:

P
Ã -

S̃

@
@
@
@
@
@R

A
?

U

S

B.4 Fuzzification mechanisms and the fuzzification equality

Provided that the simplificationU be chosen carefully, describing the expected out-
come ofA(p) will be much easier than ascertaining̃A(p), because the intriguing fuzzy
cases are now left aside. By specifying the desired choice ofA(p), we take one im-
portant step towards the solution of the full problem – but of course, there still remains
a gap between the simplified solutionA(p) and the corresponding full solutioñA(p).
This is precisely where fuzzification mechanisms enter the scene. In order to bridge the
gap, we need a suitable mappingF : S −→ S̃, which takes each incomplete solution
s ∈ S to the associated complete solutions̃ = F(s), and thus surmounts the restriction
to ‘easy’ cases. It is this mappingF , which I will call a fuzzification mechanism.
When delegating part of the problem to a fuzzification mechanism, special care must
be taken to ensure the accuracy of the resulting model, i.e. for allp ∈ P, the final
solutionF(A(p)) calculated by the fuzzification mechanism must coincide with the
true solutionÃ(p). Consequently, the admissible choices ofF are constrained by the
following fuzzification equality:

Ã = F ◦ A . (257)

The current state of this analysis can be summarized by the following diagram, which
shows the dependencies between the full answer mappingÃ, the fuzzification mecha-
nismF , and finally the mappingA to provisional answers:
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P
Ã -

S̃

@
@
@
@
@
@R

A

6

F

S

B.5 The separation criterion

The proposed analysis of̃A depends heavily on the fuzzification mechanismF . How-
ever, it is not a matter of course that a conforming choice ofF will exist. In order to
develop this analysis further, we must therefore identify the precise conditions under
which the modelling ofÃ in terms of a fuzzification mechanism will succeed, i.e.when
exactlywill the existence of a fuzzification mechanism be granted, which validates the
fuzzification equality (257)? To see this, we start from the apparent observation that

∀p, p′ ∈ P, A(p) = A(p′) =⇒ F(A(p)) = F(A(p′)) .

We can then rewriteF(A(p)) = Ã(p) andF(A(p′)) = Ã(p′) in accordance with the
fuzzification equalityÃ = F ◦ A, thus

∀p, p′ ∈ P, A(p) = A(p′) =⇒ Ã(p) = Ã(p′) . (258)

Now utilizing the reductionA = U ◦ Ã, we finally obtain the following necessary
condition for the analysis of̃A in terms of a fuzzification mechanism, which I will call
theseparation criterion:

∀p, p′ ∈ P, U(Ã(p)) = U(Ã(p′)) =⇒ Ã(p) = Ã(p′) . (259)

The criterion asserts that those problems which are partially solved by a simplified
solutions, must all admit the same full solutioñs. The chosen name becomes clear
once we reformulate the separation criterion in terms of its contraposition,

∀p, p′ ∈ P, Ã(p) 6= Ã(p′) =⇒ U(Ã(p)) 6= U(Ã(p′)) . (260)

In other words, all problems which need different full solutions must be separated by
A, i.e. the difference must already show up in the provisional solutions.

As I will now prove, the separation criterion is not only necessary, but also sufficient
for achieving a decomposition of̃A in terms of a fuzzification mechanism. Let us say
that a potential solutions ∈ P is visible or indispensibleif it shows up as a solution
s = A(p) of some problemp ∈ P. Hences ∈ P is visible if and only ifA−1(s) 6=
∅ or equivalently,s ∈ ImA. A potential solutions ∈ S which is not visible is
calleddispensible; these solutions are characterized by the conditionA−1(s) = ∅ or
equivalently,s /∈ ImA. Due to the fact that the dispensible solutions are not visible to
the problems inP, the behaviour of the fuzzification mechanismF for such choices of
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s is also not visible judging fromP. Hence ifF ,F ′ : S −→ S̃ are two fuzzification
mechanisms withF|ImA = F ′|ImA, i.e.F andF ′ are identical for visible solutions,
then

F ◦ A = F ′ ◦ A , (261)

i.e. the mechanisms cannot be discerned under the perspective of interest. This obser-
vation demonstrates that the precise choice ofF(s) for dispensible solutions is inessen-
tial and does not affect the validity of the fuzzification equality. We can therefore define
a fuzzification mechanismF based onÃ andA in the following way:

F(s) =
{
Ã(p) : A−1(s) 6= ∅

s̃ : A−1(s) = ∅

wherep is an arbitrary elementp ∈ A−1(s) 6= ∅, ands̃ an arbitrary choice of̃s ∈ S̃.
Assuming that the separation criterion applies, it is now apparent from (261) that the
fuzzification mechanism so defined will indeed comply with the fuzzification equality,
and thus achieve the desired decompositionÃ = F ◦ A of the target mapping̃A.
Consequently, the separation criterion is both necessary and sufficient for a successful
modelling ofÃ in terms of a fuzzification mechanism.

B.6 Turning the analysis into a practical pattern

Building on the concepts developed so far, we can now discuss how the fuzzification
pattern will be applied in practice. In particular, we must account for the apparent
change in the configuration of dependent and independent variables (input and output
parameters). In the previous sections, it was convenient to assume thatÃ andU be
given, and the mappingA to incomplete solutions was then defined in terms of these
input parameters. HencẽA andU were treated as independent variables, andA =
U ◦ Ã was a dependent variable defined in terms of the reduction equality. When using
the pattern to solve real problems, though, there is a shift of responsibilities, and the
participants of the pattern then assume different roles.

In this case, the mapping̃A : P −→ S̃ is unknown in advance, and we would like
to avoid the complexity of directly specifying the correspondence between the given
problemsp ∈ P and their associated full solutions̃A(p) in the collectioñS. We will
hence try and set up an instance of the above decomposition in order to establish the
correspondence. The pattern then serves to identify a reasonable choice of the target
mappingÃ from problems to complete solutions. This can be accomplished by deriv-
ing Ã from the fuzzification equality, i.e. the mapping changes into a dependent vari-
able defined bỹA = F◦A. In order to achieve this rendering of̃A, it is mandatory that
the separation criterion described above be satisfied, which was shown to be necessary
for a successful decomposition in terms of the fuzzification equality. ThusÃ can only
be expressed in the desired form if admissible choices are made for the relevant par-
ticipants of the pattern: otherwise no proper instance of the fuzzification pattern will
result, but only some approximation of the ‘true’̃A. As shown by expression (259)
above, it isÃ and the input parameterU which constitute the separation criterion. Be-
fore specifying the remaining parameters, we should therefore make a suitable choice
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of the structural [input] parameterU , which admits a definition of the target mapping
in terms of a fuzzification mechanism defined onS. The question then arises how to
determine a good system of partial solutionsS and the ‘forgetful’ mappingU : S̃ −→ S

which connects the full solutions̃s ∈ S̃ with their reductionss = U(s̃).

B.7 The instantiation condition

The choice ofU and its codomainS is critical to the successful application of the fuzzi-
fication pattern: it decides upon the structure of the decomposition, and hence controls
the reduction of complexity at the level of incomplete solutions. In any event,U will
represent a trade-off between two contrary forces. First of all,U must suppress enough
detail in order to facilitate the specification ofA. Obviously, the more cases are elim-
inated, the easier we will arrive at the simplified solutions. However,U must discern
sufficient structure for the separation criterion to remain valid and should hence not
become too coarse-grained. Consequently, great care must be taken to make a good
choice of the forgetful mappingU and the associated range of partial solutionsS, in
order to create a firm basis for specifying the remaining components of the pattern. A
poor choice ofU , which violates the separation criterion (259), will spoil the applica-
tion of the pattern from the very beginning.

Unfortunately, it is not visible from the point of view of the pattern whetherU really
complies with the separation criterion (259), simply because the criterion also depends
on the unknown target mapping̃A. In order to decide upon this issue, we therefore
need the extrinsic perspective of the human expert who applies the pattern. The ex-
pert must have sufficient insight into the general characteristics ofÃ, to justify the
trust that the separation criterion is valid (of course, this does not mean that the target
mapping must be known in detail). This is a fundamental commitment on part of the
expert applying the pattern. Acknowledging that the use of fuzzification mechanisms
always presupposes the separation criterion to hold, one must subscribe to the validity
of the criterion whenever applying the pattern. In this sense, the separation criterion
now represents the basicinstantiation conditionof the fuzzification pattern, which is
absolutely mandatory for its successful application.

Provided that the pattern is applied correctly, i.e. the instantiation condition is veri-
fied by the chosenU , it is hence guaranteed that a specification of incomplete solutions
A : P −→ S and a fuzzification mechanismF : S −→ S̃ exist which solve the prob-
lem. Given such a collection of solution fragmentsS and their semantics ascribed by
U , it is then up to the expert to specify suitable choices of provisional solutionsA
and correspondence assertionsF . In principle, these input parameters must be fully
defined when applying the pattern. However, I envision that establishing an instance
A(p) of incomplete solution might still require considerable effort. Consequently, it
will greatly improve the practicality of the pattern, if we do not assume thatA be fully
known in advance. In order to make the pattern more generic and maximise its range of
applications, we should rather try and permit the user to specify only those instances
of A(p), which currently attract most interest. Avoiding the reference to the ‘full’
mappingA will be rewarding because it makes the fuzzification approach applicable
even when our knowledge ofA is incomplete, and consists only of a limited number
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of assertionss = A(p).

B.8 Relativized generalization

When unfolding the basic analysis in section B.4, I also took some steps to constrain
the admissible choices ofF . Specifically, it was the fuzzification equalitỹA = F ◦ A
which I introduced for this purpose. When applying the pattern in practice, though, the
fuzzification equality loses its constraining function. Hence suppose that a choice of
partial solutionss = A(p) and corresponding resultsF(s) of the fuzzification mecha-
nism are fixed. In this case, the fuzzification equality is used to fetch the full solutions
by applying the fuzzification mechanism toA(p). In other words, the fuzzification
equality (257) has now become the defining equation of the dependent variableÃ.
We must therefore develop other measures against poor examples, in order to ensure
a ‘good’ choice ofF and set up a valid instance of the underlying pattern. The basic
idea is that of imposing formal constraints on the admissible choices ofF , i.e. the de-
sired quality standards will be achieved by enforcing logical and application-specific
requirements. In general terms,F should be chosen such that plausible choices ofs
be mapped to plausible choices of full solutionss̃ = F(s). The precise choice of
such requirements is application-specific. In fact, systems which reach for high quality
standards can become rather specialized, as witnessed by the DFS axioms described in
Chap. 3, which further constrain the admissible models of fuzzy quantification. There
is one minimal requirement, however, which fits into this discussion of the generic
pattern, because it is structural in nature, and mandatory for a successful application
of fuzzification mechanisms in general. To wit, it is the former reduction equality
A = U ◦ Ã which gives us a grip on the legal choices ofF . BecauseA has now
become an input parameter, the reduction equality no longer serves a defining purpose,
but rather constrains the admissible fuzzification mechanisms. To see this, recall that
Ã has now become a dependent variable, defined byÃ = F ◦A. By substitutingF ◦A
for Ã, the reduction equalityA = U ◦ Ã expands as follows,

A = U ◦ F ◦ A . (262)

The former criterion then changes into the condition ofrelativized generalisation,
which constrainsF to those conforming choices that result in a valid reductionA =
U ◦ Ã. The chosen name becomes clear if we consider the following equivalent ren-
dering of relativized generalization,

∀s ∈ ImA, U(F(s)) = s . (263)

Hence relativized generalization expresses the requirement thatF(s) correctly gener-
alizess to the fuzzy case. When judging from the ‘easy’ cases only, and hence reducing
a full solution toU(F(s)) again, it will always coincide with the original base solu-
tion s. The condition is called ‘relativized’ because it only applies to visible solutions
s = A(p) ∈ ImA, which actually solve some problemp ∈ P.
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B.9 Correct generalization

At this point, we have managed to enforce the reduction equality. However, things
are not settled yet, because the proposed condition of relativized generalization still
assumes complete knowledge ofImA, i.e. we must be able to tell dispensible from in-
dispensible solutions. This dependency will now be eliminated in favour of the flexible
use of the pattern. In practice, the full definition ofA and the precise extent ofImA
will often be unknown in advance, because the user will usually elaborate only those
instances ofA(p), which relate to a problem of actual interest. In order to preserve
the validity of the reduction equality and simultaneously avoid any reference toImA,
we will simply to drop the relativization toImA, and strengthen the original condition
(263) to the unrestricted requirement that

∀s ∈ S, U(F(s)) = s . (264)

As a matter of caution, the resulting condition ofcorrect generalization, now catches
hold of arbitrary elements in the surrounding collectionS ⊇ ImA. Abstracting from
individual elements, it can be rewritten more succinctly,

U ◦ F = idS , (265)

whereidS is the identityidS(s) = s for all s ∈ S. The latter equality no longer depends
onA and hence makes a practical filtering criterion, which only admits those choices
of F that comply with the reduction equality.

The novel requirement also means a strengthening of the original system, though,
which might result in a loss of intended models. It is therefore important that we
analyse the precise assumptions made by introducing this criterion. We shall start
with an apparent observation: due to the fact that the identityidS is a bijection, the
compositionU ◦ F = idS reveals that the condition of correct generalization can only
be fulfilled if U is a surjection (onto). Hence let us check if the requirement thatU be
onto will limit the scope of the fuzzification pattern. Owing to the reduction equality,
we can expandA into A = U ◦ Ã. In particular,ImA = ImU ◦ Ã ⊆ ImU , which
shows that all visible solutions are also within reach ofU . In other words, the remaining
solutions outsideImU are all dispensible. Therefore no solutions of relevance (which
actually solve one of the problems inP) will be lost, if we replace the surrounding
collectionS of potential solutions with the smaller collectionS′ = ImU . This will
makeU : S̃ −→ S

′ a surjection. BecauseImA ⊆ S′ andImU ⊆ S′, A andU can
remain unchanged, i.e. the reduction equality will not be touched. The shift fromS to
S
′ ⊆ S makes it necessary to restrict the fuzzification mechanismF to F ′ = F|S′ .

This will not affect the fuzzification equalitỹA = F ◦A, though, becauseImA ⊆ S′.
Consequently, the requirement thatU be onto can always be fulfilled by restrictingS to
ImU . This modification will not result in a loss of generality, because the interesting
properties of the system are left intact. In the following, I will therefore assume thatU
be a surjection, in order to meet the liabilities of correct generalization.

Based on this finding, we can now show that correct generalization does not mean
a real strengthening compared to relativized generalization, because it still spans the
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range of possible models. Hence suppose thatU be onto. Starting from the givenF ,
we can then define a modified fuzzification mechanismF∗ by

F∗(s) =
{
F(s) : s ∈ ImA
s̃ : s /∈ ImA

for all s ∈ S, wheres̃ is an arbitrary choice of̃s ∈ U−1(s), which is known to exist
becauseU is surjective. ClearlyF∗◦A = F◦A, i.e. both mechanisms result in the same
target mappingÃ. In addition, the modified fuzzification mechanismF∗ now satisfies
correct generalization, provided thatF complies with the relativized criterion. For
proving this, we consider the following two cases. Ifs is indispensible, i.e.s ∈ ImA,
thenF∗(s) = F(s) and consequentlyU(F∗(s)) = U(F(s)) = s by (263). In the
remaining case thats is dispensible, we know thatF∗(s) = s̃ ∈ U−1(s) 6= ∅, i.e.
U(F∗(s)) = U(s̃) = s. This demonstrates thatF∗ indeed complies with correct
generalization. The remaining claim thatF∗ ◦ A = F ◦ A is apparent from the fact
thatF andF∗ coincide onImA by (261).

To sum up, the shift to correct generalization only means a superficial strengthen-
ing of the original system, and does not cause any loss of relevant models. In par-
ticular, we can always use the practical criterion of correct generalization in lieu of
relativized generalization, in order to avoid the requirement thatImA be known in
advance. Following common practice [91, 103], I will generally assume that the unre-
stricted condition of correct generalization be used, and hence made an integral part of
the fuzzification pattern62 Knowing that the target mapping̃A is obtained fromA by
applying the fuzzification mechanism, i.e.̃A = F ◦A, correct generalization will then
guarantee the desired reduction

A = idS ◦ A = U ◦ F ◦ A = U ◦ Ã .

Consequently, the constraint will ensure that all admissible choices ofF result in a
valid instantiation of the original system, which confirms the analysis in terms of the
fuzzification and reduction equality. Just like its relativized cousin, correct general-
ization should be viewed as a minimal requirement on plausible models, because it
filters out only those mechanisms which must be rejected for purely formal reasons. In
practice, the criterion should be backed with additional problem-specific requirements
which further specify the optimal choices ofF for the given application. It is then
understood that only the best mechanisms which comply with all requirements, will be
regarded valid instances of the fuzzification pattern.

B.10 Chapter summary

In this chapter, I have shed some light on the methodological origins of the proposed
framework, by analysing the generic pattern which underlies the use of fuzzification
mechanisms. The results of this investigation can now be summarized as follows. The
fuzzification pattern is a proven strategy for solving problems in the fuzzy sets frame-
work. The pattern is useful in situations where the presence of fuzziness makes it

62The criterion is called ‘Normalbedingung’ (normality condition) by Kreiser et al. [91]; Menhardt [103,
p. 4-11] uses the term ‘Minimalbedingung’ (minimal condition).
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prohibitively difficult to establish the solutions̃A(p) ∈ S̃ of a given class of problems
p ∈ P. Under these circumstances, it makes sense to try a reduction to the crisp case.
We hence introduce a collectionS of solution fragmentss ∈ S, which drop some of
the fuzzy cases. The relationship between the two types of solutions is established
by a mappingU : S̃ −→ S, which assigns to each full solutioñs ∈ S̃ its simplified
fraction s = U(s̃) ∈ S. Without loss of generality, we shall further assume thatU
be surjective (onto). The choice ofU andS is critical to the successful application of
the pattern. The expert who sets up the pattern must ensure thatU validate the instan-
tiation condition explained in section B.7. Under these circumstances, the existence
of a fuzzification mechanismF with the desired properties will be granted.F should
be chosen in accordance with the the condition of correct generalization. Apart from
this minimal requirement, application-specific criteria will usually also be considered.
OnceF is fixed, we are no longer forced to solve a given problemp ∈ P directly, and
elaborate each new solutioñA(p) from scratch. By contrast, we can now content our-
selves with establishing the incomplete solutionA(p), and delegate the responsibility
of completing this proposal to the fuzzification mechanism. Starting from a plausi-
ble choice ofs = A(p), we simply applyF in order to fetch the final interpretation
s̃ = F(s) = Ã(p), which now covers the full problem including all fuzzy cases.

It should be evident how the proposed framework can be mapped to this structure and
viewed as an instance of the fuzzification pattern. In this case,P comprises problems
p of the type

How can we model the NL quantifierQ?

A complete solutioñQ = Ã(p) to the problem must specify the quantifier in all de-
tail, including its behaviour for fuzzy arguments. In order to give a full solution, the
problem must hence be rephrased as follows,

What is the proper interpretation of the given NL quantifier in terms of a
fuzzy quantifier?

Obviously, this is the correspondence problem described in section 2.4, which con-
jures up the dilemma of fuzzy quantifiers. In order to eliminate part of this complexity
and better support the specification of fuzzy quantifiers in practice, I suggested to tem-
porarily focus on crisp arguments only. We hence content ourselves with providing
incomplete solutions, which no longer solvep in full, and only account for the follow-
ing subproblem:

What is the proper specification of the given NL quantifier in terms of a
semi-fuzzy quantifier?

This simplification now permits us to specify the target quantifier by supplying a
matching choice of semi-fuzzy quantifierQ : P(E)n −→ I, thus stipulating the corre-
spondenceA(p) = Q. The interpretation will be completed by applying a QFM. This
will take Q to the corresponding fuzzy quantifier̃Q = F(Q), which then represents
the solution of the original problem, i.e.̃Q = Ã(p).
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We know from the above general analysis that the chosen QFMF must at least sat-
isfy the condition of correct generalization. In addition, I have proposed the use of
application-specific criteria which further constrain the admissible choices. Of course,
this is precisely the strategy pursued in Chap. 3, where I investigated the intuitive ex-
pectations on plausible interpretations, which where then compiled into the axiomatic
description of intended models. A look back at the framework assumption now con-
firms that the QFA is really just a rendering of the separation criterion.63 The QFA
therefore makes sure that a successful interpretation in terms of a fuzzification mecha-
nismF will indeed be possible. In particular, the full solution (fuzzy quantifier)Q̃ of
the modelling problem can always be computed by applyingF to the semi-fuzzy quan-
tifiers (incomplete solutions), which I proposed as the base representations for fuzzy
NL quantification.

63To be precise, the condition of correct generalization has not been included into the definition of QFMs.
However, the proposed DFS axioms ensure that all conforming models comply with this criterion, see Th-2.
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D Proofs of the new theorems

Any proposition which occurs in the main text is called atheorem, and any proposition
which only occurs in the proofs alemma. Theorems are referred to as Th-n, where
n is the number of the theorem, while lemmata are referred to as L-n, wheren is the
number of the lemma. Equations which are embedded in proofs are referred to as(n),
wheren is the number of the equation.

D.1 Proof of Theorem 47

Lemma 1
Let a QFMF be given, and suppose thatF satisfies(S-2)and (S-6). ThenF induces
the standard fuzzy disjunction, i.e.̃F(∨) = ∨, wherex1 ∨ x2 = max(x1, x2).

Proof To see this, letx1, x2 ∈ I be given. Recalling the construction of induced
connectives,̃F(∨)(x1, x2) becomes

F̃(∨)(x1, x2) = F(Q∨)(η̃(x1, x2)) ,

whereQ∨ : P({1, 2}) −→ 2 is the following quantifier,

Q∨(Y ) =
{

1 : Y 6= ∅

0 : Y = ∅
(266)

for all Y ∈ P({1, 2}), see Def. 11. In other words,Q∨ = ∃{1,2}. Let us now notice
that∃{1,2} can be expressed as

∃{1,2} = π∅ ◦ !̂ ,

whereπ∅ is the projection quantifierπ∅ : P({)∅} −→ 2, and! : {1, 2} −→ {∅} is
the mapping defined by!(e) = ∅ for all e ∈ {1, 2}. (This rephrasing of the existential
quantifier has also been utilized in the earlier theorem Th-24). Combining these results,
we now obtain that

Q∨ = π∅ ◦ !̂ . (267)

Let us now consider̂̂! : P̃({1, 2}) −→ P̃(∅). By Def. 21, the fuzzy powerset mapping
becomes

µˆ̂
!(X)

(()∅) = sup{µX(e) : e ∈ !−1(∅)}

= sup{µX(e) : e ∈ {1, 2}}
= max(µX(1), µX(2)) ,

for all X ∈ P̃({1, 2}). In particular

µˆ̂
!(η̃(x1,x2))

(()∅) = max(x1, x2) (268)
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by the definition of̃η(x1, x2), see equation (16). We can hence proceed as follows.

F̃(∨)(x1, x2) = F(Q∨)(η̃(x1, x2)) by Def. 11

= F(π∅ ◦ !̂)(η̃(x1, x2)) by (267)

= π̃∅ (̂̂!(η̃(x1, x2))) by (S-2) and (S-6)

= µˆ̂
!(η̃(x1,x2))

(∅) by Def. 10

= max(x1, x2) , by (268)

as desired.

Lemma 2
Suppose a QFMF satisfies(S-2) and (S-6). ThenF induces the standard extension

principle, i.e.F̂ = ˆ̂(•).

Proof Consider some mappingf : E −→ E′ whereE,E′ 6= ∅. Further letX ∈
P̃(E) ande′ ∈ E′ be given. Then

µF̂(f)(X)(e
′) = F(χf̂(•)(e

′))(X) by Def. 22

= F(πe′ ◦ f̂)(X) apparent from Def. 8 and Def. 9

= π̃e′(
ˆ̂
f(X)) by (S-2), (S-6)

= µ ˆ̂
f(X)

(()e′) . by Def. 10

Recalling thate′ ∈ E′ was arbitrarily chosen, this proves thatF̂(f)(X) = ˆ̂
f(X). Now

observing that the choice off andX was arbitrary as well, we obtain the final result

that indeedF̂ = ˆ̂(•).

Lemma 3
Suppose thatQ : P(E)n −→ I is a semi-fuzzy quantifier of arityn > 1 andA ∈ P(E).
Further let a choice of̃¬ : I −→ I be given, which is assumed to be involutive. Then

Q/A = 〈Q〉 ◦ ĥ�̃ ◦ k̂�̃∪n−1 ◦
n−1
×
i=1

ı̂ n−1,E
i (269)

where

E′′ = En−1 ∪ {(e, n) : e ∈ A} , (270)

k : En−1 −→ E′′ is the inclusion

k(e, i) = (e, i) (271)

for all (e, i) ∈ En−1, andh : E′′ −→ En is the inclusion

h(e, i) = (e, i) (272)

for all (e, i) ∈ E′′.
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Proof See [48, L-16, p. 96].

Lemma 4
Consider a QFMF , and let us assume thatF satisfies(S-2), (S-3), (S-4) and (S-6).
ThenF induces the standard fuzzy negation¬x = 1− x, i.e. F̃(¬) = ¬.

Proof To see this, letx ∈ I be given. We further abbreviate

X = η̃(x) , (273)

i.e.X ∈ P̃({1}) is defined by

µX(1) = x . (274)

We shall further assume thatQ¬ : P({1}) −→ 2 is defined in accordance to Def. 11,
and hence validates

F̃(¬)(x) = F(Q¬)(X) . (275)

In order to prove the lemma, it is necessary to introduce another quantifierQ′ : P({1})2 −→
2, which is constructed from the projection quantifierπ1 : P({1}) −→ 2, viz

Q′ = π1∪� . (276)

In other words,

Q′(Y1, Y2) =
{

1 : Y1 = ∅ ∧ Y2 = {1}
0 : else

(277)

for all Y1, Y2 ∈ P({1}), which is apparent from Def. 9, Def. 14 and Def. 15. Let us
further observe thatQ¬ can be expressed in terms ofQ′ by utilizing the concept of
argument insertion.Q¬ then becomes

Q¬ = Q′/{1} . (278)

This is immediate from Def. 34 and (277).

It is here that we can profit from the previous lemma L-3. To this end, let us instan-
tiate the lemma by the base setE = {1}, the quantifierQ′ of arity n = 2 and the crisp
argumentA = {1}. The lemma then permits us to rewrite the quantifierQ′/{1} as
follows,

Q′/{1} = 〈Q′〉 ◦ ĥ� ◦ k̂�∪1 ◦
1
×
i=1

ı̂ 1,E
i (279)

wherek : E1 −→ E′′, h : E′′ −→ E2 andE′′ are defined by (271), (272) and (270),
respectively. Next we should simplify the above expression. Firstly, it is apparent
from the fact that the full domainA = {1} = E has been inserted into the quantifier,
thatE′′ collapse into the original domainE′′ = E2 = {(1, 1), (1, 2)}. We also need
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E1, which becomesE1 = {(1, 1)}. It is then obvious thatk is in fact the inclusion
k : {(1, 1)} −→ {(1, 1), (1, 2)}, and hence defined by

k(1, 1) = (1, 1) , (280)

see (271). In addition, the result onE′′ discloses thath is in fact the inclusionh :
{(1, 1), (1, 2)} −→ {(1, 1), (1, 2)}, i.e. defined byh(1, 1) = (1, 1), h(1, 2) = (1, 2),
see (272). In other words,h is the identityh = id{(1,1),(1,2)}. Consequently, the

fuzzy powerset mappinĝh = idP({(1,1),(1,2)}) is an identity as well, and can hence be
cancelled in the right-hand member of (279). By further eliminating trivial cartesian
products, the above equation can then be simplified into

Q′/{1} = 〈Q′〉� ◦ k̂� ◦ ı̂ 1,E
1 . (281)

In order to prove the claim of the lemma, we need a final preparation. Hence let us
show that

〈F(Q′)〉� ◦ ˆ̂
k� ◦ ˆ̂ı

1,E

1 (X) = ¬x . (282)

The proof of this equation is rather tedious but elementary.
Given a base setE′, a fuzzy setZ ∈ P̃(E′), and a crisp setA ∈ P(E′), let us define
A \ Z by

µA\Z(e) =
{
¬µZ(e) : e ∈ A
0 : e /∈ A (283)

for all e ∈ E′. In particular, we can express the fuzzy complement¬Z by¬Z = E′\Z.
In the following, I will prefer this notation of the fuzzy complement, because it makes
explicit the assumed choice of base set.
By expanding the operator-based notation for duals and functional application accord-
ing to Def. 14 and (20), the left-hand member of (282) becomes

〈F(Q′)〉� ◦ ˆ̂
k� ◦ ˆ̂ı

1,E

1 (X) = ¬¬〈F(Q′)〉({(1, 1), (1, 2)} \ ˆ̂
k({(1, 1)} \ ˆ̂ı

1,E

1 (X))) .
(284)

Let us now notice from Def. 21, (16) and (273) thatU = ı̂ 1,E
1 (X) ∈ P̃({(1, 1)}) is

the fuzzy subset defined byµU (1, 1) = x. By (283), then,

V = {(1, 1)} \ U = {(1, 1)} \ ˆ̂ı
1,E

1 (X) ∈ P̃({(1, 1)})

is the fuzzy subset defined byµV (1, 1) = ¬x. Let us now consider the fuzzy subset
W ∈ P̃({(1, 1), (1, 2)}) defined by

W = ˆ̂
k(V ) = ˆ̂

k({(1, 1)} \ ˆ̂ı
1,E

1 (X)) .

Recalling (280) and Def. 21, it is then immediate thatW is defined byµW (1, 1) = ¬x,
µW (1, 2) = 0. The complement

Z = {(1, 1), (1, 2)} \W = {(1, 1), (1, 2)} \ ˆ̂
k({(1, 1)} \ ˆ̂ı

1,E

1 (X)) (285)
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is hence the fuzzy subsetZ ∈ P̃({(1, 1), (1, 2)}) defined by

µZ(1, 1) = x, µZ(1, 2) = 1 . (286)

Let us now turn attention to〈F(Q′)〉. We first deduce from (276) thatF(Q′) = π̃1∪�,
which is justified by (S-2), (S-3) and (S-4). By expanding the operator-based notation
according to Def. 14, Def. 15, and Def. 10, it now comes out thatF(Q′) : P({1})2 −→
I is the fuzzy quantifier defined by

F(Q′)(X1, X2) = ¬(µX1(1) ∨ ¬µX2(1)) ,

for all X1, X2 ∈ P̃({1}). In turn, we obtain from Def. 50 that the fuzzy quantifier
〈F(Q′)〉 : P̃({(1, 1), (1, 2)}) −→ I is defined by

〈F(Q′)〉(Z ′) = ¬(µZ′((1, 1)) ∨ ¬µZ′((1, 2))) , (287)

for all Z ′ ∈ P̃({(1, 1), (1, 2)}). In particular, for the given choice ofZ,

〈F(Q′)〉({(1, 1), (1, 2)} \ ˆ̂
k({(1, 1)} \ ˆ̂ı

1,E

1 (X)))
= 〈F(Q′)〉(Z) by (285)

= ¬(µZ(1, 1) ∨ ¬µZ(1, 2)) by (287)

= ¬(x ∨ ¬1) by (286)

= ¬(x ∨ 0)
= ¬x .

This completes the proof of equation (282).
Building on these preparations, the proof of the lemma has now become straightfor-
ward:

F̃(¬)(x) = F(Q¬)(X) by (273), Def. 11

= F(Q′/{1})(X) by (278)

= F(〈Q′〉� ◦ k̂� ◦ ı̂ 1,E
1 )(X) by (281)

= F(〈Q′〉)� ◦ ˆ̂
k� ◦ ˆ̂ı

1,E

1 (X) by (S-3), (S-6)

= 〈F(Q′)〉� ◦ ˆ̂
k� ◦ ˆ̂ı

1,E

1 (X) by Th-37

= ¬x . by (282)

Noticing thatx ∈ I was arbitrarily chosen, this completes the proof thatF induces the
standard negatioñF(¬) = ¬.

Proof of Theorem 47

I will first prove that the conditions (S-1)–(S-6) are necessary forF to be a standard
DFS. Hence consider a standard modelF . By Def. 61 and Def. 59, then,F is known
to induce the standard negatioñF(¬) = ¬, ¬x = 1 − x, and the standard disjunction
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F̃(∨) = ∨, wherex1 ∨ x2 = max(x1, x2). We can now profit from Th-33 and deduce

thatF also induces the standard extension principleF̂ = ˆ̂(•). Hence the conditions
(S-3), (S-4) and (S-6) reduce to the original conditions (Z-3), (Z-4) and (Z-6). The
remaining conditions (S-1) and (S-5) coincide with the original choices (Z-1) and (Z-5)
anyway. To sum up, the special conditions (S-1)–(S-6) collapse into the original axiom
system (Z-1)–(Z-6). The latter system is validated by every model of the theory, and in
particular by the standard models. We hence conclude that the modelF also satisfies
the new system (S-1)–(S-6). Because no special assumptions have been made on the
choice of the standard DFSF , this proves that every standard model fulfills the novel
requirements (S-1)–(S-6). In particular, these conditions are necessary in order to make
M a standard DFS.

In order to show that the conditions are also sufficient forF to be a standard model,
suppose that the given QFMF satisfies (S-1)–(S-6). We can then apply L-1, L-2 and
L-4, which substantiate thatF induces the standard disjunction, the standard extension
principle, and the standard negation, respectively. In turn, the induced fuzzy union of
F is the standard fuzzy union. The DFS axioms (Z-1)–(Z-6), which are built from
the induced connectives and induced extension principle, hence collapse into the new
axioms (S-1)–(S-6), which are expressed in terms of the standard connectives and the
standard extension principle. Because the latter system of conditions is already known
to hold forF , and noticing that the givenF makes the original axioms (Z-1)–(Z-6)
coincide with this system, this completes the proof that (Z-1)–(Z-6) are satisfied by
the considered modelF . HenceF is a DFS. Recalling thatF induces the standard
negation and disjunction, we finally conclude from Def. 59 and Def. 61 thatF is a
standard DFS, as desired.

D.2 Proof of Theorem 61

LetE 6= ∅ be a given base set andX,X ′ ∈ P̃(E).

a.: In order to prove the claim on complementation, let us first observe that forγ = 0,

(¬X)min
0 = (¬X)

>
1
2

= ¬(X
≥ 1

2
) = ¬(Xmax

0 )

and

(¬X)max
0 = (¬X)

≥ 1
2

= ¬(X
>

1
2

) = ¬(Xmin
0 ) ,

which is apparent from Def. 82 and the known property ofα-cuts that¬X≥α =
¬X>1−α and¬X>α = ¬X≥1−α for all α ∈ I.
Forγ > 0, we obtain that

(¬X)min
γ = (¬X)

≥ 1
2 +

1
2γ

= ¬(X
>

1
2−

1
2γ

) = ¬(Xmax
γ )

(¬X)max
γ = (¬X)

>
1
2−

1
2γ

= ¬(X
≥ 1

2 +
1
2γ

) = ¬(Xmin
γ ) ,

again due to Def. 82 and the known behaviour ofα-cuts with respect to complementa-
tion.
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b.: The claim thatX ∩X ′min
γ = Xmin

γ ∩X ′min
γ andX ∩X ′max

γ = Xmax
γ ∩X ′max

γ

is apparent from Def. 82, which reduces(•)min
γ and(•)max

γ to α-cuts or strictα-cuts,
and the known compatibility ofα-cuts and strictα-cuts with respect to intersections.

c.: For similar reasons, it is clear thatX ∩X ′min
γ = Xmin

γ ∩X ′min
γ andX ∩X ′max

γ =
Xmax
γ ∩X ′max

γ , because Def. 82 reduces(•)min
γ and(•)max

γ to α-cuts or strictα-cuts,
and becauseα-cuts and strictα-cuts are known to be compatible with unions.

D.3 Proof of Theorem 99

In order to prove the theorem, it is sufficient to notice that (M-1)–(M-6) coincide with
the known conditions (S-1)–(S-6), respectively. Recalling theorem Th-47, we can then
conclude that the models of (M-1)–(M-6) are precisely the standard DFSes. Because
the remaining condition (M-7) merely requires the distinguishing property ofMCX

among the standard models which has been established in theorem Th-98, it is then
evident that the proposed axiom system indeed achieves a unique characterisation of
MCX , as claimed by the theorem.

D.4 Proof of Theorem 238

Lemma 5
LetE 6= ∅ be a given base set and suppose thatV = (V1, . . . , Vn),V ′ = (V ′1 , . . . , V

′
n),

W = (W1, . . . ,Wn),W ′ = (W ′1, . . . ,W
′
n) ∈ P(E)n satisfy

V ′i ⊆ Vi ⊆Wi ⊆W ′i (288)

for all i ∈ {1, . . . , n}. Then for allX1, . . . , Xn ∈ P̃(E),

ΞV,W (X1, . . . , Xn) ≤ ΞV ′,W ′(X1, . . . , Xn) .

Proof Apparent. We first notice that

inf{µXi(e) : e ∈ Vi}
= min(inf{µXi(e) : e ∈ V ′i },

inf{µXi(e) : e ∈ Vi \ V ′i }) becauseV ′i ⊆ Vi
≤ inf{µXi(e) : e ∈ V ′i } ,

i.e.

inf{µXi(e) : e ∈ Vi} ≤ inf{µXi(e) : e ∈ V ′i } (289)

for all i ∈ {1, . . . , n}. By similar reasoning,

inf{1− µXi(e) : e /∈Wi}
= min(inf{1− µXi(e) : e /∈W ′i},

inf{1− µXi(e) : e ∈W ′i \Wi}) becauseWi ⊆W ′i
≤ inf{1− µXi(e) : e /∈W ′i} ,
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i.e.

inf{1− µXi(e) : e /∈Wi} ≤ inf{1− µXi(e) : e /∈W ′i} (290)

for all i ∈ {1, . . . , n}. Therefore

Ξ̃V,W (X1, . . . , Xn)

=
n

min
i=1

min(inf{µXi(e) : e ∈ Vi}, inf{1− µXi(e) : e /∈Wi}) by (55)

≤
n

min
i=1

min(inf{µXi(e) : e ∈ V ′i }, inf{1− µXi(e) : e /∈W ′i}) by (289), (290)

= Ξ̃V ′,W ′(X1, . . . , Xn) .

Lemma 6
LetE 6= ∅ be a finite base set,X ∈ P̃(E) andk ∈ {0, . . . , |E|}. Then

a. max{min{µX(e) : e ∈ V } : |V | = k} = µ[k](X);

b. max{min{1− µX(e) : e /∈ V } : |V | = k} = 1− µ[k+1](X);

c. max{min(min{µX(e) : e ∈ V },min{1 − µX(e) : e /∈ V }) : |V | = k} =
min(µ[k](X), 1− µ[k+1](X).

Proof Due to the fact thatE is finite, we can rewrite it asE = {e1, . . . , e|E|},
where the elements are ordered such thatµX(e1) ≥ µX(e2) ≥ · · · ≥ µX(e|E|), i.e.
e1, . . . , e|E| are distinct elements with

µX(ej) = µ[j](X) . (291)

for all j ∈ {0, . . . , |E|}. Let us now consider the two claims made by the lemma.

a. For a given choice ofk ∈ {0, . . . , |E|}, letting V ′ = {e1, . . . , ek} apparently
results in the set of cardinality|V ′| = k which maximizesmin{µX(e) : e ∈ V },
|V | = k, becauseV ′ contains thosek elements which achieve the highest scores of
µX(e). Therefore

max{min{µX(e) : e ∈ V } : |V | = k} = min{µX(e) : e ∈ V ′} (292)

and in turn,

max{min{µX(e) : e ∈ V } : |V | = k}
= min{µX(e) : e ∈ V ′} by (292)

= min{µX(e1), . . . , µX(ek)} by definition ofV ′

= min{µ[1](X), . . . , µ[k](X)} . by (291)
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Recalling from Def. 99 thatµ[1](X) ≥ µ[2](X) ≥ · · · ≥ µ[|E|](X), we can therefore
conclude that

max{min{µX(e) : e ∈ V } : |V | = k} = µ[j](X) ,

as desired.

b. Next we considermax{min{1− µX(e) : e /∈ V } : |V | = k}. It is apparent from
the chosen order ofe1, . . . , e|E| that the same choice ofV ′ = {e1, . . . , ek} as in the
previous case maximizesmin{1 − µX(e) : e /∈ V } : |V | = k} as well, becauseV ′

contains thosek elements which result in the lowest scores of1−µX(e). Consequently,
the complement ofV ′ contains those|E| − k elements which result in the maximal
scores of1− µX(e). We can hence assert that

max{min{1− µX(e) : e /∈ V } : |V | = k} = min{1− µX(e) : e /∈ V ′} . (293)

In particular

max{min{1− µX(e) : e /∈ V } : |V | = k}
= min{1− µX(e) : e /∈ V ′} by (293)

= min{1− µX(ek+1), . . . , 1− µX(e|E|)} becauseV ′ = {e1, . . . , ek}
= min{1− µ[k+1](X), . . . , 1− µ[|E|](X)} by (291)

= 1−max{µ[k+1](X), . . . , µ[|E|](X)} . by De Morgan’s law

Again utilizing thatµ[1](X) ≥ µ[2](X) ≥ · · · ≥ µ[|E|](X) by Def. 99, we then obtain
that

max{min{1− µX(e) : e /∈ V } : |V | = k} = 1− µ[k+1](X) ,

which completes the proof of the second part of the lemma.

c. In order to prove the equality stated in partc., we again abbreviateV ′ = {e1, . . . , ek}.
Then

min(min{µX(e) : e ∈ V ′},min{1− µX(e) : e /∈ V ′})
≤ max{min(min{µX(e) : e ∈ V },

min{1− µX(e) : e /∈ V }) : |V | = k} because|V ′| = k

≤ min(max{min{µX(e) : e ∈ V } : |V | = k},
max{min{1− µX(e) : e /∈ V } : |V | = k})

= min(min{µX(e) : e ∈ V ′},min{1− µX(e) : e /∈ V ′}) . by (292), (293)

Hence indeed

max{min(min{µX(e) : e ∈ V },min{1− µX(e) : e /∈ V }) : |V | = k}
= min(min{µX(e) : e ∈ V ′},min{1− µX(e) : e /∈ V ′}) . (294)
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Let us now recall thatV ′ = {e1, . . . , ek} whereµX(ej) = µ[j](X). Therefore

min{µX(e) : e ∈ V } = min{µX(e1), . . . , µX(ek)} by definition ofV ′

= min{µ[1](X), . . . , µ[k](X)} by chosen order ofe1, . . . , e|E|

= µ[k](X) , by Def. 99

and similarly

min{1− µX(e) : e /∈ V }
= 1−max{µX(e) : e /∈ V } by De Morgan’s law

= 1−max{µX(ek+1), . . . , µX(e|E|)} becauseV ′ = {e1, . . . , ek}
= 1−max{µ[k+1](X), . . . , µ[|E|](X)} by chosen order ofe1, . . . , e|E|

= 1− µ[k+1](X) . by Def. 99

By utilizing these equalities, the former result (294) can be further simplified into the
desired

max{min(min{µX(e) : e ∈ V },min{1− µX(e) : e /∈ V }) : |V | = k}
= min(µ[k](X), 1− µ[k+1](X)) .

Lemma 7
LetE 6= ∅ be some finite base set andX1, X2 ∈ P̃(E). Then

MCX([card ≥])(X1, X2) = max{min(µ[k](X1), 1− µ[k+1](X2)) : 0 ≤ k ≤ |E|} .

Proof To see this, consider a finite base setE 6= ∅ and a choice of fuzzy arguments
X1, X2 ∈ P̃(E). Let us now consider the coefficientsL([card ≥], V,W ) defined by
(57). It is obvious from (139) that these coefficients become

L([card ≥], (V1, V2), (W1,W2)) =
{

1 : |V1| ≥ |W2|
0 : else.

In turn, we obtain from (51) that

˜[card ≥]
L

(V1,V2), (W1,W2)(X1, X2) =
{

Ξ̃(V1,V2),(W1,W2)(X1, X2) : |V1| ≥ |W2|
0 : else

(295)
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for all V1, V2,W1,W2 ∈ P(E) with V1 ⊆W1 andV2 ⊆W2. Hence

MCX([card ≥])(X1, X2)

= sup{ ˜[card ≥]
L

(V1,V2), (W1,W2)(X1, X2) :

V1, V2,W1,W2 ∈ P(E), V1 ⊆W1, V2 ⊆W2} by Th-102

= sup{Ξ̃(V1,V2),(W1,W2)(X1, X2) : V1 ⊆W1, V2 ⊆W2, |V1| ≥ |W2|} by (295)

= sup{Ξ̃(V1,∅),(E,W2)(X1, X2) : |V1| ≥ |W2|} by L-5

= sup{Ξ̃(V,∅),(E,W )(X1, X2) : |V | = |W |} by L-5

= sup{min(inf{µX1(e) : e ∈ V },
inf{1− µX2(e) : e /∈W}) : |V | = |W |} , by (55)

i.e.

MCX([card ≥])(X1, X2)
= max{min(min{µX1(e) : e ∈ V },min{1− µX2(e) : e /∈W}) : |V | = |W |}

becauseE is finite. From this we proceed in the following way,

MCX([card ≥])(X1, X2)
= max{min(min{µX1(e) : e ∈ V },min{1− µX2(e) : e /∈W}) :

|V | = k, |W | = k, 0 ≤ k ≤ |E|}
= max{max{min(min{µX1(e) : e ∈ V },

min{1− µX2(e) : e /∈W}) : |V | = k} :
|W | = k, 0 ≤ k ≤ |E|}

= max{min(max{min{µX1(e) : e ∈ V } : |V | = k},
min{1− µX2(e) : e /∈W}) :
|W | = k, 0 ≤ k ≤ |E|}

= max{max{min(max{min{µX1(e) : e ∈ V } : |V | = k},
min{1− µX2(e) : e /∈W}) :
|W | = k} : 0 ≤ k ≤ |E|}

= max{min(max{min{µX1(e) : e ∈ V } : |V | = k},
max{min{1− µX2(e) : e /∈W} : |W | = k}) :
0 ≤ k ≤ |E|}

= max{min(µ[k](X1), 1− µ[k+1](X2)) : 0 ≤ k ≤ |E|} , by L-6

as desired.

Lemma 8
Suppose thatE 6= ∅ is some finite base set andX1, X2 ∈ P̃(E). Then

MCX([card >])(X1, X2) = max{min(µk(X1), 1− µk(X2)) : 1 ≤ k ≤ |E|} .
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Proof Hence letE 6= ∅ be a given finite base set and suppose thatX1, X2 ∈ P̃(E)
are fuzzy subsets ofE. We first consider the coefficientsL([card >], (V1, V2), (W1,W2))
defined by (57). It is apparent from the defining equality (140) of[card >] that the co-
efficientL([card >], (V1, V2), (W1,W2)) becomes

L([card >], (V1, V2), (W1,W2)) =
{

1 : |V1| > |W2|
0 : else

for all V1, V2,W1,W2 ∈ P(E) with V1 ⊆ W1 andV2 ⊆ W2. In particular, we obtain
that

˜(V 1, V2)
L

(W1,W2), (X1, X2) =
{

Ξ̃(V1,V2),(W1,W2)(X1, X2) : |V1| > |W2|
0 : else

(296)

which is immediate from the former result and (51).
Now turning toMCX([card >])(X1, X2), we proceed as follows.

MCX([card >])(X1, X2)

= sup{Q̃L(V1,V2), (W1,W2)(X1, X2) :

V1, V2,W1,W2 ∈ P(E), V1 ⊆W1, V2 ⊆W2} by Th-102

= sup{Ξ̃(V1,V2),(W1,W2)(X1, X2) :
V1, V2,W1,W2 ∈ P(E), V1 ⊆W1, V2 ⊆W2, |V1| > |W2|} by (296)

= sup{Ξ̃(V,∅),(E,W )(X1, X2) : V,W ∈ P(E), |V | > |W |} by L-5

= sup{Ξ̃(V,∅),(E,W )(X1, X2) : V,W ∈ P(E), |W | = |V | − 1} by L-5

= sup{min(inf{µX1(e) : e ∈ V }, inf{1− µX2(e) : e /∈W}) :
V,W ∈ P(E), |W | = |V | − 1} , by (55)

i.e.

MCX([card >])(X1, X2)
= max{min(min{µX1(e) : e ∈ V },min{1− µX2(e) : e /∈W}) :

V,W ∈ P(E), |W | = |V | − 1}
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becauseE is finite. This rendering ofMCX([card >])(X1, X2) can be further sim-
plified based on the following considerations.

MCX([card >])(X1, X2)
= max{min(min{µX1(e) : e ∈ V },min{1− µX2(e) : e /∈W}) :

V,W ∈ P(E), |W | = |V | − 1}
= max{min(min{µX1(e) : e ∈ V },min{1− µX2(e) : e /∈W}) :

V,W ∈ P(E), |W | = k − 1, |V | = k, 1 ≤ k ≤ |E|}
= max{max{max{min(min{µX1(e) : e ∈ V },min{1− µX2(e) : e /∈W}) :

|V | = k} : |W | = k − 1} : 1 ≤ k ≤ |E|}
= max{max{min(max{min{µX1(e) : e ∈ V } : |V | = k},

min{1− µX2(e) : e /∈W}) :
|W | = k − 1} : 1 ≤ k ≤ |E|}

= max{min(max{min{µX1(e) : e ∈ V } : |V | = k},
max{min{1− µX2(e) : e ∈W} : |W | = k − 1}) : 1 ≤ k ≤ |E|} ,

which proves the desired

MCX([card >])(X1, X2)
= max{min(µ[k](X1), 1− µ[k](X2)) : 1 ≤ k ≤ |E|} ,

noticing that L-6 is now applicable.

Lemma 9
Consider a finite base setE 6= ∅ andX1, X2 ∈ P̃(E). Then

MCX([card =])(X1, X2)
= max{min{µ[k](X1), 1− µ[k+1](X1), µ[k](X2), 1− µ[k+1](X2)} : 0 ≤ k ≤ |E|} .

Proof In this case, the coefficientsL([card =], (V1, V2), (W1,W2)) defined by (57)
become

L([card =], (V1, V2), (W1,W2)) =
{

1 : V1 = W1, V2 = W2, |V1| = |V2|
0 : else

for all V1, V2,W1,W2 ∈ P(E), V1 ⊆ W1, V2 ⊆ W2, which is immediate from (141).

In particular, ˜[card =]
L

(V1,V2), (W1,W2)(X1, X2) becomes

˜[card =]
L

(V1,V2), (W1,W2)(X1, X2)

=
{

Ξ̃(V1,V2),(V1,V2)(X1, X2) : V1 = W1, V2 = W2, |V1| = |V2|
0 : else

(297)
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see (51). Building on these preparations, I can now proceed as follows. Firstly

MCX([card =])(X1, X2)

= sup{ ˜[card =]
L

(V1,V2), (W1,W2)(X1, X2) :

V1, V2,W1,W2 ∈ P(E), V1 ⊆W1, V2 ⊆W2} by Th-102

= sup{Ξ̃(A,B),(A,B)(X1, X2) :
A,B ∈ P(E), |A| = |B|} by (297)

= sup{min{inf{µX1(e) : e ∈ A},
inf{1− µX1(e) : e /∈ A},
inf{µX2(e) : e ∈ B},
inf{1− µX2(e) : e /∈ B}} : |A| = |B|} , by (55)

i.e.

MCX([card =])(X1, X2)
= max{min{min{µX1(e) : e ∈ A},

min{1− µX1(e) : e /∈ A},
min{µX2(e) : e ∈ B},
min{1− µX2(e) : e /∈ B}} : |A| = |B|}

becauseE is finite. This can be further simplified as follows.

MCX([card =])(X1, X2)
= max{min{min{µX1(e) : e ∈ A},

min{1− µX1(e) : e /∈ A},
min{µX2(e) : e ∈ B},
min{1− µX2(e) : e /∈ B}} : |A| = k, |B| = k, 0 ≤ k ≤ |E|}

= max{max{min(min(min{µX1(e) : e ∈ A},
min{1− µX1(e) : e /∈ A}),
min(min{µX2(e) : e ∈ B},
min{1− µX2(e) : e /∈ B})) : |A| = k} : |B| = k, 0 ≤ k ≤ |E|}

= max{min(max{min(min{µX1(e) : e ∈ A},
min{1− µX1(e) : e /∈ A}) : |A| = k},
min(min{µX2(e) : e ∈ B},
min{1− µX2(e) : e /∈ B})) : |B| = k, 0 ≤ k ≤ |E|}

= max{max{min(max{min(min{µX1(e) : e ∈ A},
min{1− µX1(e) : e /∈ A}) : |A| = k},
min(min{µX2(e) : e ∈ B},
min{1− µX2(e) : e /∈ B})) : |B| = k} : 0 ≤ k ≤ |E|}
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and consequently

MCX([card =])(X1, X2)
= max{min(max{min(min{µX1(e) : e ∈ A},

min{1− µX1(e) : e /∈ A}) : |A| = k},
max{min(min{µX2(e) : e ∈ B},
min{1− µX2(e) : e /∈ B}) : |B| = k}) : 0 ≤ k ≤ |E|} .

The right-hand member of the above equality can now be further simplified by utilizing
partc. of L-6. We then obtain the desired rendering ofMCX([card =]), viz

MCX([card =])(X1, X2)
= max{min(min(µk(X1), 1− µk+1(X1)),

min(µk(X2), 1− µk+1(X2))) : 0 ≤ k ≤ |E|}
= max{min{µk(X1), 1− µk+1(X1), µk(X2), 1− µk+1(X2)} : 0 ≤ k ≤ |E|} .

Proof of Theorem 238

Let E 6= ∅ be some finite base set andX1, X2 ∈ P̃(E). Further suppose thatF is a
given standard DFS. Now consider a choice of fuzzy subsetsX1, X2 ∈ P̃(E). We first
notice that

F([card ≥])(X1, X2)
=MCX([card ≥])(X1, X2) by Th-46, Th-77

= max{min(µ[k](X1), 1− µ[k+1](X2)) : 0 ≤ k ≤ |E|} . by L-7

By similar reasoning, we obtain that

F([card >])(X1, X2)
=MCX([card >])(X1, X2) by Th-46, Th-77

= max{min(µk(X1), 1− µk(X2)) : 1 ≤ k ≤ |E|} . by L-8

Finally, the quantifier[card =] can be handled in an analogous way,

F([card =])(X1, X2)
=MCX([card =])(X1, X2) by Th-46, Th-77

= max{min{µ[k](X1), 1− µ[k+1](X1),
µ[k](X2), 1− µ[k+1](X2)} : 0 ≤ k ≤ |E|} . by L-9
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D.5 Proof of Theorem 239

Lemma 10
LetE 6= ∅ be some base set. Further letX1, X2 ∈ P̃(E) be fuzzy subsets ofE. Then

MCX(eq)(X1, X2)
= min(inf{min(µX1(e), µX2(e)) :

min(µX1(e), µX2(e)) ≥ 1−max(µX1(e), µX2(e))},
inf{1−max(µX1(e), µX2(e)) :

1−max(µX1(e), µX2(e)) > min(µX1(e), µX2(e))}) .

Proof Suppose thatE 6= ∅ is some base set andX1, X2 ∈ P̃(E) are fuzzy subsets
of E. It is apparent from (142) and (57) that

L(eq, (V1, V2), (W1,W2)) =
{

1 : V1 = V2 = W1 = W2

0 : else

for all V1, V2,W1,W2 ∈ P(E) with V1 ⊆ V2,W1 ⊆ W2. In turn, we obtain from (51)
that

ẽq
L

(V1,V2), (W1,W2)(X1, X2) =
{

Ξ̃(V1,V1),(V1,V1)(X1, X2) : V1 = V2 = W1 = W2

0 : else,

for all V1, V2,W1,W2 ∈ P(E) with V1 ⊆W1, V2 ⊆W2, i.e.

ẽq
L

(V1,V2), (W1,W2)(X1, X2) (298)

=

 min(inf{min(µX1(e), µX2(e)) : e ∈ V1},
inf{1−max(µX1(e), µX2(e)) : e /∈ V1}) : V1 = V2 = W1 = W2

0 : else,
(299)

which is straightforward from (55). Consequently,

MCX(eq)(X1, X2)

= sup{ẽq
L

(V1,V2), (W1,W2)(X1, X2) : V1, V2,W1,W2 ∈ P(E),

V1 ⊆W1, V2 ⊆W2} by Th-102

= sup{min(inf{min(µX1(e), µX2(e)) : e ∈ Y },
inf{1−max(µX1(e), µX2(e)) : e /∈ Y }) : Y ∈ P(E)} , by (299)

i.e.

MCX(eq)(X1, X2)
= sup{min(inf{min(µX1(e), µX2(e)) : e ∈ Y },

inf{1−max(µX1(e), µX2(e)) : e /∈ Y }) : Y ∈ P(E)} .
(300)
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Now consider the following choice ofY ′ ∈ P(E),

Y ′ = {e ∈ E : min(µX1(e), µX2(e)) ≥ 1−max(µX1(e), µX2(e))} . (301)

It is immediate from the definition ofY ′ that for allY ∈ P(E),

inf{min(µX1(e), µX2(e)) : e ∈ Y \ Y ′}
≤ inf{1−max(µX1(e), µX2(e)) : e ∈ Y \ Y ′} (302)

and

inf{1−max(µX1(e), 1−max(µX2(e)) : e ∈ Y ′ \ Y }
≤ inf{min(µX1(e), µX2(e)) : e ∈ Y ′ \ Y } , (303)

because (301) ensures that these inequalities are valid for all considered elementse ∈
Y \ Y ′ ande ∈ Y ′ \ Y , respectively. Therefore

min(inf{min(µX1(e), µX2(e)) : e ∈ Y },
inf{1−max(µX1(e), µX2(e)) : e /∈ Y })

= min{inf{min(µX1(e), µX2(e)) : e ∈ Y ∩ Y ′},
inf{min(µX1(e), µX2(e)) : e ∈ Y \ Y ′},
inf{1−max(µX1(e), µX2(e)) : e ∈ Y ′ \ Y },
inf{1−max(µX1(e), µX2(e)) : e /∈ Y ∪ Y ′}}

≤ min{inf{min(µX1(e), µX2(e)) : e ∈ Y ∩ Y ′},
inf{1−max(µX1(e), µX2(e)) : e ∈ Y \ Y ′},
inf{min(µX1(e), µX2(e)) : e ∈ Y ′ \ Y },
inf{1−max(µX1(e), µX2(e)) : e /∈ Y ∪ Y ′}} by (302), (303)

= min(inf{min(µX1(e), µX2(e)) : e ∈ Y ′,
inf{1−max(µX1(e), µX2(e)) : e /∈ Y ′}) ,

i.e.

min(inf{min(µX1(e), µX2(e)) : e ∈ Y }, inf{1−max(µX1(e), µX2(e)) : e /∈ Y })
≤ min(inf{min(µX1(e), µX2(e)) : e ∈ Y ′, inf{1−max(µX1(e), µX2(e)) : e /∈ Y ′}) .

This demonstrates that the supremum in (300) is attained forY = Y ′. We can therefore
conclude from (300) and (301) that indeed

MCX(eq)(X1, X2)
= min(inf{min(µX1(e), µX2(e)) : e ∈ Y ′, inf{1−max(µX1(e), µX2(e)) : e /∈ Y ′})
= min(inf{min(µX1(e), µX2(e)) :

min(µX1(e), µX2(e)) ≥ 1−max(µX1(e), µX2(e))},
inf{1−max(µX1(e), µX2(e)) :

1−max(µX1(e), µX2(e)) > min(µX1(e), µX2(e))}) ,

which completes the proof of the theorem.

453



Proof of Theorem 239

LetE 6= ∅ be some base set andX1, X2 ∈ P̃(E). Further suppose thatF is a standard
DFS. The equality quantifiereq then becomes

F(eq)(X1, X2)
=MCX(eq)(X1, X2) by Th-46, Th-77

= min(inf{min(µX1(e), µX2(e)) :
min(µX1(e), µX2(e)) ≥ 1−max(µX1(e), µX2(e))},

inf{1−max(µX1(e), µX2(e)) :
1−max(µX1(e), µX2(e)) > min(µX1(e), µX2(e))}) . by L-10

D.6 Proof of Theorem 241

Lemma 11
LetE 6= ∅ be a set of finite cardinality|E| = m and letX ∈ P̃(E) be a fuzzy subset
ofE. Then for all automorphismsβ : E −→ E and all j ∈ {1, . . . ,m},

µ[j](
ˆ̂
β(X)) = µ[j](X) ,

i.e.µ[j](•) is automorphism-invariant.

Proof Let E 6= ∅ be the given base set of cardinality|E| = m andX ∈ P̃(E) a
fuzzy subset ofE. Further let an automorphismβ : E −→ E be given. By Def. 99,E
can then be writtenE = {e1, . . . , em} for pairwise distinct elementse1, . . . , em ∈ E
such that

µX(e1) ≥ µX(e2) ≥ · · · ≥ µX(em) (304)

and

µ[j](X) = µX(ej) (305)

for all j ∈ {1, . . . ,m}. Now definee′1, . . . , e
′
m ∈ E by

e′j = β(ej) (306)

for j = 1, . . . ,m. Recalling thatβ is a bijection, thee′j ’s are pairwise distinct because
theej ’s are. ThereforeE = {e′1, . . . , e′m}. In addition

µ ˆ̂
β(X)

(e′j) = µX(β−1(e′j)) by Def. 21

= µX(β−1(β(ej))) by (306)

= µX(ej) ,

i.e.

µ ˆ̂
β(X)

(e′j) = µX(ej) (307)
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for all j ∈ {1, . . . ,m}. Hence by (304),

µ ˆ̂
β(X)

(e′1) ≥ µ ˆ̂
β(X)

(e′2) ≥ · · · ≥ µ ˆ̂
β(X)

(e′m)

as well. By Def. 99, then, we conclude that

µj(
ˆ̂
β(X)) = µ ˆ̂

β(X)
(e′j) (308)

for j = 1, . . . ,m. Therefore

µ[j](
ˆ̂
β(X)) = µ ˆ̂

β(X)
(e′j) by (308)

= µX(ej) by (307)

= µ[j](X) , by (305)

which completes the proof of the lemma.

Proof of Theorem 241

Let Q̃ : P̃(E) −→ I be a unary fuzzy quantifier on a base set of finite cardinality
|E| = m.

To show thata. entailsb., suppose that̃Q is quantitative. Noticing that|E| = m, we
can choose pairwise distinct elementse1, . . . , em ∈ E such thatE = {e1, . . . , em}.
Forz1, . . . , zm ∈ I, letZ ∈ P̃(E) be the fuzzy subset defined by

µZ(ej) = zj (309)

for all ej ∈ E. In terms ofZ, let us now define the mappingg : Im −→ I by

g(z1, . . . , zm) = Q(Z) (310)

for all z1, . . . , zn ∈ I. Now letX ∈ P̃(E) be an arbitrary fuzzy subset ofE. Then the
elementse1, . . . , em of E can be reordered such thatE = {eρ(1), . . . , eρ(m)} (i.e. the
eρ(j) are pairwise distinct) and

µ[j](X) = µX(eρ(j)) (311)

for all j ∈ {1, . . . ,m}. Now define an automorphismβ : E −→ E by

β(eρ(j)) = β(ej) (312)

for all eρ(j) ∈ E. Abbreviating

Z = ˆ̂
β(X) , (313)

we then obtain that

µZ(ej) = µX(eρ(j)) by Def. 21, (312), (313)

= µ[j](X) by (311)

= µ[j](Z) by L-11, (313)
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Therefore

Q̃(X) = Q̃( ˆ̂
β(X)) by Def. 39

= Q̃(Z) by (313)

= g(µ[1](Z), . . . , µ[m](Z)) by (310)

= g(µ[1](X), . . . , µ[m](X)) , by L-11, (313)

as desired.

In order to prove thatb. entailsa., suppose that̃Q can be expressed in terms of (144),
based on a mappingg : Im −→ I. Now letβ : E −→ E be some automorphism and
X ∈ P̃(E). Then

Q̃( ˆ̂
β(X)) = g(µ[1](

ˆ̂
β(X)), . . . , µ[m](

ˆ̂
β(X))) by (144)

= g(µ[1](X), . . . , µ[m](X)) by L-11

= Q̃(X) , by (144)

i.e. Q̃ is indeed quantitative according to Def. 39.

D.7 Proof of Theorem 246

Lemma 12
LetX ∈ P̃(E) be some fuzzy subset and suppose that`′, `, u, u′ ∈ N are given integers
such that̀ ′ ≤ ` ≤ u ≤ u′. Thenµ‖X‖iv(`′, u′) ≥ µ‖X‖iv(`, u).

Proof To see this, we recall from Def. 99 that

µ[j](X) ≥ µ[k](X) (314)

wheneverj ≤ k, i.e. theµ[j](X) form a nonincreasing sequence. We may hence
conclude from̀ ′ ≤ ` that

µ[`′](X) ≥ µ[`](X) . (315)

Similarly, we obtain from (314) andu ≤ u′ thatµ[u+1](X) ≥ µ[u′+1](X). By means
of negation, the latter inequality becomes

1− µ[u′+1](X) ≥ 1− µ[u+1](X) . (316)

Therefore

µ‖X‖iv(`′, u′) = min(µ[`′](X), 1− µ[u′+1](X)) by Def. 162

≥ min(µ[`](X), 1− µ[u+1](X)) by (315) and (316)

= µ‖X‖iv(`, u) , by Def. 162

as desired.
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Lemma 13
LetE 6= ∅ be some finite base set andr, s ∈ N, r ≤ s. ThenMCX([≥r : ≤s]) :
P̃(E) −→ I is the fuzzy quantifier defined by

MCX([≥r : ≤s])(X) = µ‖X‖iv(r, s) = min(µ[r](X), 1− µ[s+1](X)) ,

for all X ∈ P̃(E).

Proof It is obvious from Def. 163 that[≥r : ≤s](Y ) can be expressed in terms of the
cardinality ofY , i.e.

[≥r : ≤s](Y ) = q(|Y |)

for all Y ∈ P(E), where the mappingq : {0, . . . , |E|} −→ 2 becomes

q(j) =
{

1 : r ≤ j ≤ s
0 : else

(317)

for all j ∈ {0, . . . , |E|}. In particular, we can apply Th-240 and conclude that[≥r : ≤s]
is quantitative. In turn, knowing this renders Th-245 applicable. For a given choice of
X ∈ P̃(E), this lets us deduce thatMCX([≥r : ≤s])(X) can be expressed as

MCX([≥r : ≤s])(X) = max{min(µ‖X‖iv(`, u), qmin(`, u)) : 0 ≤ ` ≤ u ≤ |E|}
(318)

for all X ∈ P̃(E), where the coefficientqmin(`, u) is sampled fromq according to
(145). Now taking a closer look at this coefficient, it quite obvious from (317) that

qmin(`, u) =
{

1 : r ≤ ` ≤ u ≤ s
0 : else

(319)

for all `, u ∈ {0, . . . , |E|}, ` ≤ u. For the givenX ∈ P̃(E), we can hence proceed as
follows.

MCX([≥r : ≤s])(X)

= max{min(µ‖X‖iv(`, u), qmin(`, u)) : 0 ≤ ` ≤ u ≤ |E|} by (318)

= max{µ‖X‖iv(`, u) : qmin(`, u) = 1} becauseqmin two-valued

= max{µ‖X‖iv(`, u) : r ≤ ` ≤ u ≤ s} by (319)

= µ‖X‖iv(r, s) . by L-12

Now recalling Def. 162, we finally obtain thatMCX([≥r : ≤s])(X) = µ‖X‖iv(r, s) =
min(µ[r](X), 1− µ[s+1](X)), which completes the proof of the lemma.

Proof of Theorem 246

In order to prove the main theorem, consider a finite base setE 6= ∅ and a choice
of r, s ∈ N with r ≤ s. Now let F be an arbitrary standard DFS. I prove that
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F([≥r : ≤s]) takes the desired form by considering a choice of fuzzy argumentX ∈
P̃(E). ThenF([≥r : ≤s])(X) = MCX([≥r : ≤s])(X) by Th-46, because the base
quantifier[≥r : ≤s] is two-valued. The above lemma L-13 lets us deduce the desired
F([≥r : ≤s])(X) = µ‖X‖iv(r, s) = min(µ[r](X), 1− µ[s+1](X)).

D.8 Proof of Theorem 247

Let a base setE 6= ∅ be given.

a.: In order to prove the first part of the theorem, we consider a fuzzy subsetX ∈
P̃(E). Clearly

A(¬X) = Imµ¬X by (151)

= {µ¬X(e) : e ∈ E}
= {1− µX(e) : e ∈ E}
= {1− α : α ∈ {µX(e) : e ∈ E}}
= {1− α : α ∈ ImµX}
= {1− α : α ∈ A(X)} , by (151)

i.e.

A(¬X) = {1− α : α ∈ A(X)} . (320)

Consequently

A(¬X) ∩ [ 1
2 , 1] = {α ∈ A(¬X) : α ∈ [ 1

2 , 1]}
= {1− α : α ∈ A(X), 1− α ∈ [ 1

2 , 1]} by (320)

= {1− α : α ∈ A(X), α ∈ [0, 1
2 ]} ,

i.e.

A(¬X) ∩ [ 1
2 , 1] = {1− α : α ∈ A(X) ∩ [0, 1

2 ]} . (321)

By similar reasoning,

A(¬X) ∩ [0, 1
2 ] = {α ∈ A(¬X) : α ∈ [0, 1

2 ]}
= {1− α : α ∈ A(X), 1− α ∈ [0, 1

2 ]} by (320)

= {1− α : α ∈ A(X), α ∈ [ 1
2 , 1]}

and hence

A(¬X) ∩ [0, 1
2 ] = {1− α : α ∈ A(X) ∩ [ 1

2 , 1]} . (322)
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Therefore

Γ(¬X) = {2α− 1 : α ∈ A(¬X) ∩ [ 1
2 , 1]}

∪ {1− 2α : α ∈ A(¬X) ∩ [0, 1
2 ]}

∪ {0, 1} by (152)

= {2(1− α)− 1 : α ∈ A(X) ∩ [0, 1
2 ]}

∪ {1− 2(1− α) : α ∈ A(X) ∩ [ 1
2 , 1]}

∪ {0, 1} by (321), (322)

= {1− 2α : α ∈ A(X) ∩ [0, 1
2 ]}

∪ {2α− 1 : α ∈ A(X) ∩ [ 1
2 , 1]}

∪ {0, 1}
= Γ(X) , by (152)

as desired.

b.: In order to see that the second part of the theorem is valid, considerX1, X2 ∈
P̃(E). We notice that for alle ∈ E,

µX1∩X2(e) = min(µX1(e), µX2(e))
∈ {µX1(e), µX2(e)}
⊆ ImµX1

∪ ImµX2

= A(X1, X2) , by (151)

i.e.

µX1∩X2(e) ∈ A(X1, X2) . (323)

Consequently

A(X1 ∩X2) = ImµX1∩X2 by (151)

= {µX1∩X2(e) : e ∈ E}
⊆ A(X1, X2) , by (323)

i.e.

A(X1 ∩X2) ⊆ A(X1, X2) . (324)

In turn,

Γ(X1 ∩X2) = {2α− 1 : α ∈ A(X1 ∩X2) ∩ [ 1
2 , 1]}

∪ {1− 2α : α ∈ A(X1 ∩X2) ∩ [0, 1
2 ]}

∪ {0, 1}
⊆ {2α− 1 : α ∈ A(X1, X2) ∩ [ 1

2 , 1]}
∪ {1− 2α : α ∈ A(X1, X2) ∩ [0, 1

2 ]}
∪ {0, 1} by (324)

= Γ(X1, X2) . by (152)
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This completes the proof for the fuzzy intersectionX1 ∩X2. The remaining claim on
the standard union ofX1 andX2 is then apparent from De Morgan’s law, i.e.

Γ(X1 ∪X2) = Γ(¬(¬X1 ∩ ¬X2)) by De Morgan’s law

= Γ(¬X1 ∩ ¬X2) by parta. of the theorem

⊆ Γ(¬X1,¬X2) by partb. on intersections

= Γ(¬X1) ∪ Γ(¬X2) by (153)

= Γ(X1) ∪ Γ(X2) by parta. of the theorem

= Γ(X1, X2) , by (153)

as desired.

D.9 Proof of Theorem 248

Lemma 14
Let X ∈ P̃(E) be some fuzzy subset such thatA(X) is finite, and further suppose
thatA = {α0, . . . , αm} ⊇ A(X) is chosen such thatα0 < · · · < αm. Then for all
j ∈ {0, . . . ,m− 1} andα ∈ (αj , αj+1),

X≥α = X≥αj
X>α = X>αj

whereα = (αj + αj+1)/2.

Proof Let j ∈ {0, . . . ,m − 1} be given and consider someα ∈ (αj , αj+1). Due to
the fact thatA(X) = ImµX ⊆ A = {α0, . . . , αm} and further noticing that theαk
form a strictly increasing sequence, it is apparent thatA ∩ (αj , αj+1) = ∅ and hence
A(X)∩ (αj , α+ j + 1) = ∅ as well. BecauseA(X) = {µX(e) : e ∈ E}, this proves
that for alle ∈ E, eitherµX(e) ≤ αj orµX(e) ≥ αj+1. Noticing thatαj < α < αj+1

andαj < αj < αj+1, the following equivalences are now straightforward. For all
e ∈ E,

µX(e) ≥ α ⇐⇒ µX(e) ≥ αj+1 ⇐⇒ µX(e) ≥ αj (325)

µX(e) > α ⇐⇒ µX(e) > αj ⇐⇒ µX(e) > αj . (326)

Therefore

X≥α = {e ∈ E : µX(e) ≥ α} by Def. 75

= {e ∈ E : µX(e) ≥ αj} by (325)

= X≥αj , by Def. 75

and

X>α = {e ∈ E : µX(e) > α} by Def. 76

= {e ∈ E : µX(e) > αj} by (326)

= X>αj , by Def. 76

as desired.
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Lemma 15
LetE 6= ∅ be some base set and suppose thatX ∈ P̃(E) is a choice of fuzzy subset
which makesΓ(X) a finite set. Further letΓ = {γ0, . . . , γm} ⊇ Γ(X) be chosen such
that 0 = γ0 < γ1 < · · · < γm−1 < γm. Then for allj ∈ {0, . . . ,m − 1} and all
γ ∈ (γj , γj+1),

Tγ(X) = Tγj (X) .

Proof To see this, letj ∈ {0, . . . ,m − 1} and consider a choice ofγ ∈ (γj , γj+1).
Then in particularγ > γj ≥ γ0 = 0, i.e.γ > 0. We hence obtain that

Xmin
γ = X

≥ 1
2 +

1
2γ

by Def. 82 becauseγ > 0

= X
≥ 1

2 +
1
2γj

by L-14

= Xmin
γj

, by Def. 82 becauseγj > 0

and

Xmax
γ = X

>
1
2−

1
2γ

by Def. 82 becauseγ > 0

= X
>

1
2−

1
2γj

by L-14

= Xmax
γj

. by Def. 82 becauseγj > 0

HenceXmin
γ = Xmin

γj
andXmax

γ = Xmax
γj

and in turn,

Tγ(X) = {Y : Xmin
γ ⊆ Y ⊆ Xmax

γ }
= {Y : Xmin

γj
⊆ Y ⊆ Xmax

γj
}

= Tγj (X) .

Proof of Theorem 248

Let Q : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) be given. We shall further sup-
pose thatΓ(X1, . . . , Xn) be finite. In addition, a choice ofΓ = {γ0, . . . , γm} ⊇
Γ(X1, . . . , Xn) will be assumed with0 = γ0 < γ1 < · · · < γm−1 < γm = 1. Now
let j ∈ {0, . . . ,m− 1} andγ ∈ (γj , γj+1). Then

>Q,X1,...,Xn(γ)
= sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(Xi), . . . , Yn ∈ Tγ(Xn)} by Def. 100

= sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγj (Xi), . . . , Yn ∈ Tγj (Xn)} by L-15

= >Q,(X1,...,Xn)(γj) by Def. 100

= >j , by (155)
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and similarly

⊥Q,X1,...,Xn(γ)
= inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(Xi), . . . , Yn ∈ Tγ(Xn)} by Def. 100

= inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγj (Xi), . . . , Yn ∈ Tγj (Xn)} by L-15

= ⊥Q,(X1,...,Xn)(γj) by Def. 100

= ⊥j , by (155)

as desired. From this , we conclude that

Qγ(X1, . . . , Xn) = med 1
2

(>Q,X1,...,Xn(γ),⊥Q,X1,...,Xn(γ)) = med 1
2

(>j ,⊥j) = Cj ,

recalling Th-111 and (157).

D.10 Proof of Theorem 249

Lemma 16
Suppose thatξ : T −→ I satisfies(X-2) and (X-4). Then

ξ(>],⊥]) = ξ(>[,⊥[)

for all (>,⊥) ∈ T.

Proof Trivial.

ξ(>],⊥]) = ξ(>[,⊥]) by (X-4)

= 1− ξ(1−⊥], 1−>[) by (X-2)

= 1− ξ((1−⊥)], (1−>)[) apparent from Def. 87

= 1− ξ((1−⊥)[, (1−>)[) by (X-4)

= 1− ξ(1−⊥[, 1−>[) apparent from Def. 87

= ξ(>[,⊥[) . by (X-2)

Lemma 17
Suppose thatξ : T −→ I satisfies(X-2), (X-4) and (X-5). Then

ξ(>,⊥) = ξ(>[,⊥) = ξ(>],⊥) = ξ(>,⊥]) = ξ(>,⊥[)

for all (>,⊥) ∈ T.

Proof It has already been shown by Glöckner [50, L-20, p. 58] that

ξ(>,⊥) = ξ(>[,⊥) = ξ(>],⊥) . (327)
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The remaining equalities are then apparent from

ξ(>,⊥) = 1− ξ(1−⊥, 1−>) by (X-2)

= 1− ξ((1−⊥)], 1−>) by (327)

= 1− ξ(1−⊥], 1−>) apparent from Def. 87

= ξ(>,⊥]) by (X-2) ,

and similarly,

ξ(>,⊥) = 1− ξ(1−⊥, 1−>) by (X-2)

= 1− ξ((1−⊥)[, 1−>) by (327)

= 1− ξ(1−⊥[, 1−>) apparent from Def. 87

= ξ(>,⊥[) by (X-2) .

Proof of Theorem 249

LetQ : P(E)n −→ I be given and suppose that(γj)j∈{0,...,m} is anI-valued sequence
such that

0 = γ0 < γ1 < · · · < γm−1 < γm = 1 .

Now consider a choice of(>,⊥), (>′,⊥′) ∈ T with

>(γ) = >′(γ′)
⊥(γ) = ⊥′(γ′)

for all j ∈ {0, . . . ,m − 1} andγ, γ′ ∈ (γj , γj+1). Further suppose thatξ : T −→ I
satisfies (X-2), (X-4) and (X-5). In order to establish the desired equalityξ(>,⊥) =
ξ(>′,⊥′), we simply notice that

(>[
]
,⊥[

]
) = (>′[

]
,⊥′[

]
) . (328)

Therefore

ξ(>,⊥) = ξ(>[
]
,⊥[

]
) by L-17

= ξ(>′[
]
,⊥′[

]
) by (328)

= ξ(>′,⊥′) , by L-17

as desired.
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D.11 Proof of Theorem 250

LetQ : P(E)n −→ I, X1, . . . , Xn ∈ P̃(E), andΓ = {γ0, . . . , γm} ∈ P(I) such that
Γ ⊇ Γ(X1, . . . , Xn) and0 = γ0 < γ1 < · · · < γm−1 < γm = 1. Then

FCh(Q)(X1, . . . , Xn)

= 1
2

∫ 1

0

>Q,(X1,...,Xn)(γ) dγ + 1
2

∫ 1

0

⊥Q,(X1,...,Xn)(γ) dγ by Def. 104, Def. 102

= 1
2

∫ 1

0

>Q,(X1,...,Xn)(γ) +⊥Q,(X1,...,Xn)(γ) dγ

= 1
2

m−1∑
j=0

(γj+1 − γj)(>j +⊥j) , by Th-248 and (155), (156)

where the last equality results from the usual definition of the Riemann integral for
step functions with a finite number of support points. The integrand>Q,X1,...,Xn(γ) +
⊥Q,X1,...,Xn(γ) is known to belong to this class of mappings from Th-248.

D.12 Proof of Theorem 251

Let Q : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) be given such thatΓ(X1, . . . , Xn)
is finite. Further let someΓ = {γ0, . . . , γm} ⊇ Γ(X1, . . . , Xn) be given with0 =
γ0 < γ1 < · · · < γm−1 < γm = 1. We are interested in the case thatC0 = 1

2 ,
i.e.Qγ0

(X1, . . . , Xn) = 1
2 by (157). By Th-248, then, we know thatQγ(X1, . . . , Xn) =

1
2 for all γ ∈ (γ0, γ1] = (0, γ1]. Recalling Th-62, we can now conclude that in fact,
Qγ(X1, . . . , Xn) = 1

2 for all γ ∈ (0, 1]. We then obtain from Def. 87 that

(Qγ(X1, . . . , Xn)γ∈I)
] = c 1

2
. (329)

In addition, it is apparent from the above analysis ofQγ(X1, . . . , Xn) that

(Qγ(X1, . . . , Xn)γ∈I)
[ = (Qγ(X1, . . . , Xn))γ∈I . (330)

Now consider a choice ofB : B −→ I such thatMB becomes a DFS. By Th-67, then,
we know thatB satisfies (B-4) and (B-3). Therefore

MB(Q)(X1, . . . , Xn) = B((Qγ(X1, . . . , Xn))γ∈I) by Def. 86

= B((Qγ(X1, . . . , Xn)γ∈I)
[) by (330)

= B((Qγ(X1, . . . , Xn)γ∈I)
]) by (B-4)

= B(c 1
2

) by (329)

= 1
2 . by (B-3)

D.13 Proof of Theorem 252

Let Q : P(E)n −→ I be given and suppose thatX1, . . . , Xn ∈ P̃(E) are fuzzy
arguments such thatΓ(X1, . . . , Xn) is a finite subset ofI. Further assume a choice of
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Γ = {γ0, . . . , γm} ⊇ Γ(X1, . . . , Xn) with 0 = γ0 < γ1 < · · · < γm−1 < γm = 1.

a.: ⊥0 >
1
2
.

In order to prove this case, we first observe that for allx ∈ [ 1
2 , 1] andy ∈ [0, x],

med 1
2

(x, y) = max( 1
2 , y) , (331)

which is apparent from Def. 56. Let us further notice that>j ≥ ⊥j by (155), (156)
and Th-107. In particular, we can conclude from⊥0 >

1
2 and>0 ≥ ⊥0 that>0 ≥ 1

2
as well. Now utilizing that>j ≥ >0 for all j ∈ {0, . . . ,m − 1} again by (155) and
Th-107, this proves that both>j ∈ [ 1

2 , 1] and⊥j ≤ >j for all j ∈ {0, . . . ,m − 1}.
Recalling from (157) thatCj = med 1

2
(>j ,⊥j), we can now apply (331) and conclude

thatCj = med 1
2

(>j ,⊥j) = max(⊥j , 1
2 ), i.e.

Cj =

{
⊥j : ⊥j > 1

2
1
2 : ⊥j ≤ 1

2 .
(332)

Let us further observe thatCj = 1
2 exactly if⊥j ≤ 1

2 , which is apparent from (332).
HenceJ∗ defined by (159) becomes

J∗ = {j ∈ {0, . . . ,m− 1} : Cj = 1
2} = {j ∈ {0, . . . ,m− 1} : ⊥j ≤ 1

2} . (333)

Next we utilize that⊥j is nonincreasing by (156) and Th-107. Hence⊥j′ ≤ 1
2 for

somej′ ∈ {0, . . . ,m − 1} entails that⊥j ≤ 1
2 for all j ≥ j′ as well. In the case that

J∗ is non-empty, we can substitutej∗ = min J∗ for j′, and conclude that⊥j > 1
2 for

all j < j∗,⊥j ≤ 1
2 for all j ≥ j∗. The above equation (332) then becomes

Cj =

{
⊥j : j < j∗

1
2 : j ≥ j∗ ,

(334)

for all j ∈ {0, . . . ,m − 1}, as desired. In the remaining case thatJ∗ = ∅, we know
from (333) thatCj 6= 1

2 and⊥j > 1
2 for all j ∈ {0, . . . ,m − 1}, i.e.Cj = ⊥j for

all j ∈ {0, . . . ,m − 1} by (332). Lettingj∗ = m, as proposed in (160), hence makes
(334) valid in the caseJ∗ = ∅ as well, because the latter case ‘j ≥ j∗’ then becomes
vacuous, while the former case ‘j < j∗’ in (334) ensures that we always get the desired
result ofCj = ⊥j . Hence the claimed equality is valid for allj ∈ {0, . . . ,m− 1} and
regardless ofJ∗, which completes the proof of parta. of the theorem.

b.: >0 <
1
2
.

The proof of caseb. is completely analogous to that of the former case. The above
equation (331) must then be replaced with

med 1
2

(x, y) = min(x, 1
2 ) ,

for all y ∈ [0, 1
2 ] andx ∈ [y, 1], which is again straightforward from Def. 56.
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D.14 Proof of Theorem 253

Hence letQ : P(E)n −→ I be a semi-fuzzy quantifier,X1, . . . , Xn ∈ P̃(E) a choice
of fuzzy arguments such thatΓ(X1, . . . , Xn) is finite, and andΓ = {γ0, . . . , γm} a
finite subset ofI with Γ ⊇ Γ(X1, . . . , Xn) and0 = γ0 < γ1 < · · · < γm−1 < γm =
1. By expanding the definition of the Riemann integral in the case of step functions,
we then obtain that

M(Q)(X1, . . . , Xn)

=
∫ 1

0

Qγ(X1, . . . , Xn) dγ by Def. 84

=
m−1∑
j=0

(γj+1 − γj)Cj by Th-248

=
j∗−1∑
j=0

(γj+1 − γj)Cj +
m−1∑
j=j∗

(γj+1 − γj)Cj by splitting the sum

=
j∗−1∑
j=0

(γj+1 − γj)Cj +
∑

+j = j∗m−1(γj+1 − γj) 1
2 , by (161)

i.e.

M(Q)(X1, . . . , Xn) =

j∗−1∑
j=0

(γj+1 − γj)Cj

+ 1
2 (1− γj∗) , (335)

where the last step is apparent recalling thatγm = 1. This can be further simplified if
we notice thatM is anMB-DFS by Th-63, and hence satisfies

M(Q)(X1, . . . , Xn) = 1
2 (336)

in the case that⊥0 ≤ 1
2 ≤ >0 or equivalentlyC0 = 1

2 , see Th-251. In the case that
⊥0 >

1
2 , we can profit from the rendering ofCj that was achieved in Th-252.a, and

hence rewrite (335) as

M(Q)(X1, . . . , Xn) =

j∗−1∑
j=0

(γj+1 − γj)⊥j

+ 1
2 (1− γj∗) . (337)

An analogous simplification is possible in the remaining case that>0 <
1
2 . We then

obtain the desired

M(Q)(X1, . . . , Xn) =

j∗−1∑
j=0

(γj+1 − γj)>j

+ 1
2 (1− γj∗) (338)

by replacingCj in (335) with>j , which is justified by part b. of Th-252. Having
considered all possible cases, we can finally synthesize (336)–(338) into the desired
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result, viz

M(Q)(X1, . . . , Xn) =


(∑j∗−1

j=0 (γj+1 − γj)⊥j
)

+ 1
2 (1− γj∗) : C0 >

1
2

1
2 : C0 = 1

2(∑j∗−1
j=0 (γj+1 − γj)>j

)
+ 1

2 (1− γj∗) : C0 <
1
2

.

D.15 Proof of Theorem 254

Lemma 18
For all f ∈ H,

B′CX(f) = the uniquex s.th.f(y) > y for all y < x andf(y) < y for all y > x .

Proof See Gl̈ockner [48, Th-94,p. 63].

Proof of Theorem 254

Let Q : P(E)n −→ I and a choice ofX1, . . . , Xn ∈ P̃(E) be given such that
Γ(X1, . . . , Xn) is finite. Further suppose thatΓ = {γ0, . . . , γm} ⊇ Γ(X1, . . . , Xn) is
a subset ofI with 0 = γ0 < γ1 < · · · < γm−1 < γm = 1. In the following, I will
use the abbreviations introduced in the body of the theorem. It is convenient to discern
three cases which parallel the case-wise rendering ofMCX(Q)(X1, . . . , Xn) in the
theorem.

a.: ⊥0 > 1
2
. In this case, we first utilize (45) and L-18, which lets us express the

quantification resultMCX(Q)(X1, . . . , Xn) as

MCX(Q)(X1, . . . , Xn) = 1
2 + 1

2 γ̂ , (339)

where

γ̂ = the uniqueγ s.th.Qγ′(X1, . . . , Xn) > 1
2 + 1

2γ
′ for all γ′ < γ and

Qγ′(X1, . . . , Xn) < 1
2 + 1

2γ
′ for all γ′ > γ.

(340)

It remains to be shown that

γ̂ = max(γ̂, B̂) . (341)

To this end, I first prove that

γ̂ ≥ γ̂ . (342)

Let us notice in advance that forj ∈ {0, . . . , ̂ − 1}, 2⊥j − 1 = Bj > γj+1 by (162)
(164) and (165). Therefore

⊥j > 1
2 + 1

2γj+1 (343)
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for all j ∈ {0, . . . , ̂− 1}.
In order to prove the desired inequality (342), consider someγ < γ̂. Then there
existsγ′ ≥ γ with γ′ ∈ (γ̂−1, γj). We notice thatQγ0

(X1, . . . , Xn) = C0 > 1
2

entails thatQ0(X1, . . . , Xn) > 0. In particular,(Qγ(X1, . . . , Xn))γ∈I is known to be
nonincreasing by Th-62. Therefore

Qγ(X1, . . . , Xn) ≥ Qγ′(X1, . . . , Xn) becauseγ′ ≥ γ
= Ĉ−1 by Th-248

≥ ⊥̂−1 by Th-252

> 1
2 + 1

2γ̂ by (343)

> 1
2 + 1

2γ ,

becauseγ < γ̂ by assumption. HenceQγ(X1, . . . , Xn) > 1
2 + 1

2γ, and by (340),
γ̂ > γ. Noticing thatγ < γ̂ was arbitrarily chosen, this proves thatγ̂ ≥ γ̂, i.e. (342)
is valid.

Now suppose thatB̂ < γ̂ and letγ > γ̂. We can then choose someγ′ ∈ (γ̂, γ̂+1)
with γ′ < γ. As concernsγ, we first observe that

1
2 + 1

2γ >
1
2 + 1

2γ̂ becauseγ > γ̂

> 1
2 + 1

2B̂ by assumption

= 1
2 + 1

2 (2⊥̂ − 1) by (162)

= ⊥̂ ,

i.e.

1
2 + 1

2γ > ⊥̂ (344)

We further conclude fromγ > γ̂ thatγ > 0 and hence

1
2 + 1

2γ >
1
2 . (345)

Therefore

1
2 + 1

2γ

> max( 1
2 ,⊥̂) by (344), (345)

= Ĉ by Th-252

= Qγ′(X1, . . . , Xn) by Th-248,γ′ ∈ (γ̂, γ̂+1)
≥ Qγ(X1, . . . , Xn) becauseγ ≥ γ′ andQγ(X1, . . . , Xn) nonincreasing,

i.e.Qγ(X1, . . . , Xn) < 1
2 + 1

2γ. We can then conclude from (340) thatγ̂ < γ. Noticing
thatγ > γ̂ was arbitrarily chosen, this substantiates thatγ̂ ≤ γ̂. However, we already
know from (342) that̂γ ≥ γ̂ as well. Under our previous assumption thatB̂ < γ̂,
we therefore obtain the desired

γ̂ = γ̂ = max(γ̂, B̂) . (346)
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It remains to be shown that this equality is also valid in the case thatB̂ ≥ γ̂. Hence
suppose that indeedB̂ ≥ γ̂. Recalling that̂ ∈ Ĵ by (165), we then obtain from (164)
thatB̂ ≤ γ̂+1 in particular. Hence in fact,

B̂ ∈ [γ̂, γ̂+1] .

In order to establish a lower bound onγ̂, we consider a choice ofγ ∈ [γ̂, B̂). Then
there existsγ′ ∈ (γ̂, γ̂+1) with γ′ ≥ γ. We now proceed as follows.

1
2 + 1

2γ

< 1
2 + 1

2B̂ becauseγ < B̂

= 1
2 + 1

2 (2⊥̂ − 1) by (162)

= ⊥̂
≤ Ĉ by Th-252

= Qγ′(X1, . . . , Xn) by Th-248,γ′ ∈ (γ̂, γ̂+1)
≤ Qγ(X1, . . . , Xn) ,

where the last step is valid becauseQγ(X1, . . . , Xn) is known to be nonincreasing and
γ′ ≥ γ. ThereforeQγ(X1, . . . , Xn) > 1

2 + 1
2γ and in turn,̂γ > γ by (340). Because

γ ∈ [γ̂, B̂) was arbitrarily chosen, we conclude that

γ̂ ≥ B̂ . (347)

Finally consider someγ ∈ (B̂, γ̂+1]. It is then possible to choose someγ′ ∈
(γ̂, γ̂+1) with γ′ ≤ γ. We now observe that

1
2 + 1

2γ >
1
2 + 1

2B̂ becauseγ > B̂

= 1
2 + 1

2 (2⊥̂ − 1) by (162)

= ⊥̂ ,

i.e.

1
2 + 1

2γ > ⊥̂ . (348)

In addition,γ > B̂ ≥ γ̂ entails thatγ > 0 and hence

1
2 + 1

2γ >
1
2 . (349)

Combining both inequalities, we finally obtain that

1
2 + 1

2γ > max( 1
2 ,⊥̂) by (348), (349)

= Cj by Th-252

= Qγ′(X1, . . . , Xn) by Th-248,γ′ ∈ (γ̂, γ̂+1)
≥ Qγ(X1, . . . , Xn) . becauseQγ(X1, . . . , Xn) nonincreasing andγ ≥ γ′
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HenceQγ(X1, . . . , Xn) < 1
2 + 1

2γ andγ̂ < γ by (340). Noticing thatγ ∈ (B̂, γ̂+1]
was arbitrarily chosen, this proves thatγ̂ ≤ B̂. Combining this with the converse
inequality (347), we conclude that

γ̂ = B̂ = max(γ̂, B̂) (350)

under the assumption thatB̂ ≥ γ̂. Recalling the earlier result (346) in the alternative
case thatB̂ < γ̂, it is now apparent that̂γ = max(γ̂, B̂) holds unconditionally
provided thatC0 > 1

2 . Substitutingmax(γ̂, B̂) into (339) then yields the desired
MCX(Q)(X1, . . . , Xn) = 1

2 + 1
2 max(γ̂, B̂).

b.: ⊥0 ≤ 1
2
≤ >0. ThenC0 = med 1

2
(⊥0,>0) = 1

2 and henceMCX(Q)(X1, . . . , Xn) =
1
2 by Th-77 and Th-251.

c.: >0 <
1
2
. Due to the symmetry ofMCX with respect to negation, the proof of this

case is entirely analogous to that of parta. of the theorem.

D.16 Proof of Theorem 255

Lemma 19
Letβ : E −→ E′ be some bijection. Then for allZ,Z ′ ∈ P(E),

a. β̂(¬Z) = ¬β̂(Z);

b. β̂(Z ∪ Z ′) = β̂(Z) ∪ β̂(Z ′);

c. β̂(Z ∩ Z ′) = β̂(Z) ∩ β̂(Z ′).

Proof Let us first notice that¬β̂(Z) ⊆ β̂(¬Z) becauseβ is surjective (onto), and
converselŷβ(¬Z) ⊆ ¬β̂(Z) becauseβ is injective (mono). Therefore

β̂(¬Z) = ¬β̂(Z) ,

which proves parta. of the lemma.
As tob., the claimed

β̂(Z ∪ Z ′) = β̂(Z) ∪ β̂(Z ′)

is a well-known properties of arbitrary powerset mappingsβ̂, see Def. 19, and does not
actually requireβ to be a bijection.
By De Morgan’s law, we finally obtain from partsa. andb. of the lemma that indeed

β̂(Z ∩ Z ′) = β̂(Z) ∩ β̂(Z ′)

in the case of intersections, i.e. partc. is valid as well.
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Lemma 20
LetQ : P(E)n −→ I be a semi-fuzzy quantifier on a finite base setE 6= ∅. If Q can
be computed from the cardinalities of its arguments and their Boolean combinations
thenQ is quantitative.

Proof Hence suppose thatQ : P(E)n −→ I is such a quantifier. Recalling (169),Q
can then be expressed as

Q(Y1, . . . , Yn) = q(|Φ1(Y1, . . . , Yn)|, . . . , |ΦK(Y1, . . . , Yn)|) (351)

for all Y1, . . . , Yn ∈ P̃(E), where theΦ1, . . . ,ΦK : P(E)n −→ P(E) are Boolean
combinations of the arguments, andq is a mappingq : {0, . . . , |E|} −→ I. In order to
prove thatQ is quantitative according to Def. 38, we consider an automorphism (bijec-
tion) β : E −→ E. Let us now recall from the previous lemma L-19 thatβ̂ commutes
with intersections, unions and negations. BecauseΦ1(Y1, . . . , Yn), . . . ,ΦK(Y1, . . . , Yn)
are constructed from the arguments of the quantifiers by applying these basic opera-
tions, we conclude that

Φ`(β̂(Y1), . . . , β̂(Yn)) = β̂(Φ`(Y1, . . . , Yn))

and in turn, Therefore

|Φ`(β̂(Y1), . . . , β̂(Yn))| = |β̂(Φ`(Y1, . . . , Yn))| = |Φ`(Y1, . . . , Yn)| (352)

for all ` ∈ {1, . . . ,K}, where the reduction|β̂(Z)| = |Z| is possible becauseβ is a
bijection. We conclude that

Q(β̂(Y1), . . . , β̂(Yn))

= q(|Φ1(β̂(Y1), . . . , β̂(Yn))|, . . . , |ΦK(β̂(Y1), . . . , β̂(Yn))|) by (351)

= q(|Φ1(Y1, . . . , Yn)|, . . . , |ΦK(Y1, . . . , Yn)|) by (352)

= Q(Y1, . . . , Yn) . by (351)

Due to the fact that the automorphismβ was arbitrarily chosen, this proves thatQ is
automorphism-invariant. HenceQ is indeed quantitative, as desired.

In order to prove the converse claim made by the theorem, that every quantitative
quantifier on a finite base set can be expressed in terms of the cardinalities of its argu-
ments and their Boolean combinations, we need a series of preparations.

Hence consider a semi-fuzzy quantifierQ : P(E)n −→ I on a finite base set
E 6= ∅. Let us recall the notation introduced in (167), i.e. the Boolean combina-
tion Φ`1,...,`n(Y1, . . . , Yn) of Y1, . . . , Yn ∈ P(E) for given`1, . . . , `n ∈ {0, 1}. For a
choice of argumentsY1, . . . , Yn ∈ P(E), it is then apparent that theΦ`1,...,`n(Y1, . . . , Yn)
form a partition ofE, viz

E = ∪̇{Φ`1,...,`n(Y1, . . . , Yn) : `1, . . . , `n ∈ {0, 1}} , (353)
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where∪̇ denotes the disjoint union. In addition, the individual argumentsY1, . . . , Yn
can be recovered from theΦ`1,...,`n ’s in the obvious way, i.e.

Yi = ∪̇{Φ`1,...,`n(Y1, . . . , Yn) : `i = 1} (354)

for all i ∈ {1, . . . , n}. In the following, it is useful to introduce a binary relation
∼ ⊆ P(E)n × P(E)n, defined by

(Y1, . . . , Yn) ∼ (Y ′1 , . . . , Y
′
n) ⇐⇒ |Φ`1,...,`n(Y1, . . . , Yn)| = |Φ`1,...,`n(Y ′1 , . . . , Y

′
n)|

for all `1, . . . , `n ∈ {0, 1} ,
(355)

where(Y1, . . . , Yn), (Y ′1 , . . . , Y
′
n) ∈ P(E)n. It is apparent from (355) that∼ is an

equivalence relation onP(E)n.
We further notice that given(Y1, . . . , Yn), (Y ′1 , . . . , Y

′
n) ∈ P(E)n with (Y1, . . . , Yn) ∼

(Y ′1 , . . . , Y
′
n), there always exists a bijectionβ : E −→ E which translates these argu-

ment tuples into each others. To see this, we first consider some choice of`1, . . . , `n ∈
{0, 1}. We can then conclude from (355) and(Y1, . . . , Yn) ∼ (Y ′1 , . . . , Y

′
n) that

|Φ`1,...,`n(Y1, . . . , Yn)| = |Φ`1,...,`n(Y ′1 , . . . , Y
′
n)|. In particular, there exists a bijec-

tion

β`1,...,`n : Φ`1,...,`n(Y1, . . . , Yn) −→ Φ`1,...,`n(Y ′1 , . . . , Y
′
n) .

Noticing that the domain of a givenβ`1,...,`n is

Domβ`1,...,`n = Φ`1,...,`n(Y1, . . . , Yn) , (356)

we then obtain from (353) that

E = ∪̇{Domβ`1,...,`n : `1, . . . , `n ∈ {0, 1}} .

In other words, the base setE is the disjoint union of the domains of the local bijections
β`1,...,`n . It is therefore possible to combine theβ`1,...,`n ’s into a piecewise definition
of a mappingβ : E −→ E, by stating

β(e) = β`1,...,`n(e) , (357)

wherè 1, . . . , `n ∈ {0, 1} is the unique choice of coefficients withe ∈ Domβ`1,...,`n =
Φ`1,...,`n(Y1, . . . , Yn). We now notice that

Imβ`1,...,`n = Φ`1,...,`n(Y ′1 , . . . , Y
′
n) .

Recalling from (353) thatE is the disjoint union of allΦ`1,...,`n , it is now obvious
thatE is the disjoint union of the images of allβ`1,...,`n . In particular, the mappingβ
defined by (357) is an injection (mono), because allβ`1,...,`n are injections and their
images are known not to overlap. However, the union of allImβ`1,...,`n also exhausts
E, which shows thatβ is surjective. In sum,β : E −→ E is known to be a bijection.
Let us now assert thatβ also achieves the desired transformation between the argument
tuples(Y1, . . . , Yn) and(Y ′1 , . . . , Y

′
n).
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Lemma 21
Let E 6= ∅ be some finite base set, consider a choice ofY1, . . . , Yn, Y

′
1 , . . . , Y

′
n ∈

P(E), n ∈ N, such thatY1, . . . , Yn ∼ Y ′1 , . . . , Y ′n. Then

(Y ′1 , . . . , Y
′
n) = (β̂(Y1), . . . , β̂(Yn))

whereβ : E −→ E is the bijection defined by(357).

Proof To see this, consider somei ∈ {1, . . . , n}. We first observe that for all
`1, . . . , `n ∈ {0, 1},

β̂(Φ`1,...,`n(Y1, . . . , Yn)) = β̂`1,...,`n(Φ`1,...,`n(Y1, . . . , Yn)) by (357)

= β̂`1,...,`n(Domβ`1,...,`n) by (356)

= Imβ`1,...,`n ,

i.e.

β̂(Φ`1,...,`n(Y1, . . . , Yn)) = Φ`1,...,`n(Y ′1 , . . . , Y
′
n) . (358)

Therefore

Y ′i

= ∪̇{Φ`1,...,`n(Y ′1 , . . . , Y
′
n) : `i = 1} by (354)

= ∪̇{β̂(Φ`1,...,`n(Y1, . . . , Yn)) : `i = 1} by (358)

= β̂(∪̇{Φ`1,...,`n(Y1, . . . , Yn)) : `i = 1} by L-19

= β̂(Yi) , by (354)

as desired.

Based on the previous lemma, we can now assert that every quantitative quantifier is
∼-invariant, i.e. insensitive against the concrete choice of arguments in a given equiv-
alence class under∼.

Lemma 22
LetQ : P(E)n −→ I be a quantitative semi-fuzzy quantifier on a finite base setE 6= ∅.
ThenQ is∼-invariant, i.e.

Q(Y1, . . . , Yn) = Q(Y ′1 , . . . , Y
′
n)

for all (Y1, . . . , Yn), (Y ′1 , . . . , Y
′
n) ∈ P(E)n with (Y1, . . . , Yn) ∼ (Y ′1 , . . . , Y

′
n).

Proof LetE 6= ∅ be a finite base set and suppose thatQ : P(E)n −→ I is quantita-
tive. Further consider a choice ofY1, . . . , Yn, Y

′
1 , . . . , Y

′
n ∈ P(E) with (Y1, . . . , Yn) ∼

(Y ′1 , . . . , Y
′
n). Now choosing the automorphismβ : E −→ E according to (357)

immediately yields

Q(Y1, . . . , Yn) = Q(β̂(Y1), . . . , β̂(Yn)) becauseQ quantitative, see Def. 38

= Q(Y ′1 , . . . , Y
′
n) , by L-21

which proves thatQ is indeed∼-invariant.
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Lemma 23
Let a semi-fuzzy quantifierQ : P(E)n −→ I on a finite base setE 6= ∅ be given. If
Q is quantitative, thenQ can be computed from the cardinalities of its arguments and
their Boolean combinations in the sense of(169).

Proof Consider a quantitative semi-fuzzy quantifierQ : P(E)n −→ I on a finite
base set. AbbreviatingK = 2n, we defineD ⊆ {0, . . . , |E|}K by

D = {d = (d1, . . . , dK) ∈ {0, . . . , |E|}K :
K∑
j=1

dj = |E|} .

In order to simplify the rendering of the proof, it is convenient to depart from the index-
ing of thedj by integersj and use their representation as binary numbers. In addition,
it will be convenient to reverse the bit sequence (starting with the least significant bit).
Thed’s will hence be indexed byn binary digits and listed in the following order:

d0,...,0, d1,0,...,0, d0,1,0,...,0, d1,1,0,...,0, . . . , d1,...,1,0, d1,...,1 .

Incorporating these notational conventions, the above definition ofD then becomes

D = {d = (d0,...,0, . . . , d1,...,1) ∈ {0, . . . , |E|}K :
∑

`1,...,`n∈{0,1}

d`1,...,`n = |E|} .

(359)

Now consider a choice ofY1, . . . , Yn ∈ P(E). Then∑
`1,...,`n∈{0,1}

|Φ`1,...,`n(Y1, . . . , Yn)|

= | ∪̇ {Φ`1,...,`n(Y1, . . . , Yn) : `1, . . . , `n ∈ {0, 1}}| because of disjoint union

= |E| . by (353)

It is therefore obvious from (359) that

d = (|Φ0,...,0(Y1, . . . , Yn)|, . . . , |Φ1,...,1(Y1, . . . , Yn)|) ∈ D . (360)

Conversely, it is obvious that for alld = (d0,...,0, . . . , d1,...,1) ∈ {0, . . . , |E|}K , there
exists a choice ofY d1 , . . . , Y

d
n ∈ P(E) with

d`1,...,`n = |Φ`1,...,`n(Y d1 , . . . , Y
d
n )| (361)

for all `1, . . . , `n ∈ {0, 1}. To this end, we simply splitE into a partition

E = ∪̇{Z`1,...,`n : `1, . . . , `n ∈ {0, 1}} ,

where theZ`1,...,`n ∈ P(E) are subsets with

|Z`1,...,`n | = d`1,...,`n .
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Letting

Y dj = ∪̇{Z`1,...,`n : `j = 1}

then results in a choice ofY d1 , . . . , Y
d
n ∈ P(E) which satisfies

Φ`1,...,`n(Y d1 , . . . , Y
d
n ) = Z`1,...,`n ,

and consequently elicits the desired property that

|Φ`1,...,`n(Y d1 , . . . , Y
d
n )| = |Z`1,...,`n | = d`1,...,`n

for all `1, . . . , `n ∈ {0, 1}.
In the following, we can hence assume an arbitrary but fixed choice of(Y d1 , . . . , Y

d
n ) ∈

P(E) for all d ∈ D, which satisfy condition (361).
Now consider a choice ofY1, . . . , Yn ∈ P̃(E). From (360), we know thatd =
(|Φ0,...,0(Y1, . . . , Yn)|, . . . , |Φ1,...,1(Y1, . . . , Yn)|) ∈ D. In turn, we conclude from
(361) that there exists a representative(Y d1 , . . . , Y

d
n ) ∈ P(E)n with

|Φ`1,...,`n(Y d1 , . . . , Y
d
n )| = d`1,...,`n = |Φ`1,...,`n(Y1, . . . , Yn)|

for all `1, . . . , `n ∈ {0, 1}. Recalling the defining criterion (355) of∼, it becomes
obvious that indeed

(Y1, . . . , Yn) ∼ (Y d1 , . . . , Y
d
n ) , (362)

whered ∈ D is obtained from (360). In other words, the(Y d1 , . . . , Y
d
n ) ∈ P(E)n,

d ∈ D form a system of representatives for the equivalence classes of∼.

Based on the given choice of representatives(Y d1 , . . . , Y
d
n ) ∈ P(E)n, d ∈ D, we

now define a mappingq : {0, . . . , |E|}K −→ I by

q(d) =
{
Q(Y d1 , . . . , Y

d
n ) : d ∈ D

0 : else
(363)

for all d = (d0,...,0, . . . , d1,...,1) ∈ {0, . . . , |E|}K , again assuming the above conven-
tions on the indexing ofd.

Let us now complete the proof and show that the original quantifierQ : P(E)n −→ I
can be expressed in terms of the mappingq, which is then applied to the cardinal-
ities of the Boolean combinationsΦ`1,...,`n . Hence consider a choice of arguments
Y1, . . . , Yn ∈ P(E). Let us further suppose thatd ∈ D is derived from the given
arguments according to (360). Then

Q(Y1, . . . , Yn)

= Q(Y d1 , . . . , Y
d
n ) by (362) and L-22

= q(d) by (363) and (361)

= q(|Φ0,...,0|(Y1, . . . , Yn), . . . , |Φ1,...,1(Y1, . . . , Yn)|) . by (360)

Noticing that the argumentsY1, . . . , Yn ∈ P(E) were chosen arbitrarily, this proves
that the quantifierQ can indeed be expressed as a functionq of the cardinalities of
Boolean combinationsΦ`1,...,`n(Y1, . . . , Yn) of its arguments, as desired.

The proof of the superordinate theorem now becomes a simple corollary of the above
lemmata L-20 and L-23:
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Proof of Theorem 255

LetQ : P(E)n −→ I be a semi-fuzzy quantifier on a finite base setE 6= ∅.

a. If Q can be expressed in terms of the cardinalities of Boolean combinations of
its arguments, then it is known to be quantitative from lemma L-20.

b. Conversely ifQ is quantitative, then we know from lemma L-23 thatQ can be
expressed in terms of the cardinalities of Boolean combinations of its arguments.

This completes the proof that the quantitative semi-fuzzy quantifiers on finite base
sets are exactly those quantifiers which solely depend on the cardinality of Boolean
combinations of their arguments.

D.17 Proof of Theorem 256

This is a simple corollary to Th-255 forn = 2. However, the direct proof is also
very simple. Hence letQ : P(E)n −→ I be a given two-place quantifier on a finite
base set, and further suppose thatQ is quantitative. We then know from Th-255 that
Q(Y1, Y2) can be expressed in terms of the cardinalities of Boolean combinations of
Y1 andY2. Now suppose thatΦ(Y1, Y2) is such a Boolean combination ofY1 andY2.
ThenΦ(Y1, Y2) can be reformulated into disjunctive normal form, and hence expressed
as a disjoint union of the min-termsΦ1(Y1, Y2) = Y1 ∩ Y2, Φ2(Y1, Y2) = Y1 ∩¬Y2 =
Y1\Y2, Φ3(Y1, Y2) = ¬Y1∩Y2 = Y2\Y1 andΦ4(Y1, Y2) = ¬Y1∩¬Y2 = E\(Y1∪Y2),
i.e.

Φ(Y1, Y2) = ∪̇{Φ` : ` ∈ L}

for some choice ofL ⊆ {1, 2, 3, 4}. Due to disjoint union, the corresponding cardinal-
ities of the involved subsets sum up to the total cardinality. Therefore

|Φ(Y1, Y2)| =
∑
`∈L

|Φ`(Y1, Y2)| , (364)

wherea = |Φ1(Y1, Y2)|, b = |Φ2(Y1, Y2)|, c = |Φ3(Y1, Y2)|, d = |Φ4(Y1, Y2)|. This
proves thatQ(Y1, Y2) can be computed froma, b, c andd, becauseQ(Y1, Y2) can be
expressed in terms of the cardinalities of certain Boolean combinations ofY1 andY2,
and because these cardinalities can be computed froma, b, c andd according to (364).

D.18 Proof of Theorem 257

LetQ : P(E)n −→ I be a conservative and quantitative two-place quantifier on a finite
base set. We already know from Th-256 that there existsq : {0, . . . , |E|}4 −→ I such
that

Q(Y1, Y2) = q(a, b, c, d) (365)
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for all Y1, Y2 ∈ P(E), wherea = |Y1 \ Y2|, b = |Y2 \ Y1|, c = |Y1 ∩ Y2| and
d = |E \ (Y1 ∪ Y2)|.
Now consider such a choice of argumentsY1, Y2 ∈ P(E). We abbreviateY ′2 = Y1∩Y2.
In terms of the modified second argument, the cardinality coefficients now become

a′ = |Y1 \ Y ′2 | = |Y1 \ (Y1 ∩ Y2)| = |Y1 \ Y2| = a (366)

b′ = |Y ′2 \ Y1| = |(Y1 ∩ Y2) \ Y1| = |∅| = 0 (367)

c′ = |Y1 ∩ (Y1 ∩ Y2)| = |Y1 ∩ Y2| = c (368)

and

d′ = |E \ (Y1 ∪ Y ′2)| = |E \ (Y1 ∪ (Y1 ∩ Y2))| = |E \ Y1|
= |E| − |Y1| = |E| − |(Y1 \ Y2) ∪̇ (Y1 ∩ Y2)|
= |E| − |Y1 \ Y2| − |Y1 ∩ Y2| = |E| − a− c .

(369)

Let us hence defineq′ : {0, . . . , |E|}2 −→ I by

q′(x, y) =
{
q(x, 0, y, |E| − x− y) : x+ y ≤ |E|
0 : x+ y > |E| (370)

for all x, y ∈ {0, . . . , |E|}. Then

Q(Y1, Y2) = Q(Y1, Y
′
2) by Def. 70

= q(a′, b′, c′, d′) by (365)

= q(a, 0, b, |E| − a− c) by (366)–(369)

= q′(a, c) . by (370)

HenceQ(Y1, Y2) can be expressed in terms ofa = |Y1 \ Y2| andc = |Y1 ∩ Y2|, as
desired.

D.19 Proof of Theorem 258

Consider a semi-fuzzy quantifierQ : P(E)n −→ I on a finite base set, and suppose
thatQ is both quantitative and conservative. By Th-257, there exists a mappingq :
{0, . . . , |E|}2 −→ I such that

Q(Y1, Y2) = q(a, c) (371)

for all Y1, Y2 ∈ P(E), wherea = |Y1 \ Y2| and c = |Y1 ∩ Y2|. We defineq′ :
{0, . . . , |E|}2 −→ I by

q′(x, y) =
{
q(x− y, y) : x ≥ y
0 : x < y

(372)

for all x, y ∈ {0, . . . , |E|}. Now letY1, Y2 ∈ P(E) be given. We abbreviatec1 = |Y1|
andc2 = |Y1 ∩ Y2|. Then apparently

a = c1 − c2 (373)

c = c2 . (374)
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Therefore

Q(Y1, Y2) = q(a, c) by (371)

= q(c1 − c2, c2) by (373), (374)

= q′(c1, c2) , by (372)

i.e.Q(Y1, Y2) = q′(c1, c2) for c1 = |Y1| andc2 = |Y1 ∩ Y2|, as desired.

D.20 Proof of Theorem 259

Let E 6= ∅ be a finite base set,X1, . . . , Xn ∈ P̃(E) andγ ∈ I. Let us denote by
R = R

Φ0,...,0,...,Φ1,...,1
γ (X1, . . . , Xn) the relationR ⊆ {0, . . . , |E|}(2n) defined by

(172). We shall further denote byR′ ⊆ {0, . . . , |E|}(2n) the relation defined by

R′ = {c : {0, 1}n −→ {0, . . . , |E|} | there exists(λp)p∈{0,∗,1}n ∈ Λ
such thatcd =

∑
p∈{0,∗,1}n

λp(d)} . (375)

The claimed equality (186) can therefore be proven by showing thatR = R′. I accom-
plish this by by considering both inclusionsR ⊆ R′ andR′ ⊆ R.

a.: Proof of the inclusion R ⊆ R′.
Hence suppose thatc ∈ R = R

Φ0,...,0,...,Φ1,...,1
γ (X1, . . . , Xn) for somec : {0, 1}n −→

{0, . . . , |E|}. By (172), then, there existY1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn) such that

cd = |Φd(Y1, . . . , Yn)| = |Y (d1)
i1
∩ · · · ∩ Y (dn)

in
| (376)

for all d = (d1, . . . , dn) ∈ {0, 1}n. Now consider the{0, ∗, 1}n-indexed family
(λp)p∈{0,∗,1}n of mappingsλp : {0, 1}n −→ {0, . . . , |E|} defined by

λp(d) = |S(p) ∩ Y (d1)
i1
∩ · · · ∩ Y (dn)

in
| (377)

for all p = (p1, . . . , pn) ∈ {0, ∗, 1}n andd ∈ {0, 1}n. In the following, I will prove
that (λp)p∈{0,∗,1}n ∈ Λ. According to (185), it must hence be shown that for all
p ∈ {0, ∗, 1}n,

i. λp(d) = 0 for all d ∈ {0, 1}n \D(p); and

ii. c(p) =
∑
d∈{0,1}n λp(d).

ad i.: Suppose thatd /∈ D(p). We then know from (182) that there existsj ∈
{1, . . . , n} such that

(pj , dj) ∈ {(1, 0), (0, 1)} .

In the first case thatpj = 1 anddj = 0, we recall thatYj ∈ Tγ(Xj) = {Y : (Xj)
min
γ ⊆

Y ⊆ (Xj)
max
γ }. In particular,(Xj)

min
γ ⊆ Yj and hence

(Xj)
min
γ ∩ ¬Yj = ∅ . (378)
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Consequently

X
[pj ]
ij
∩ Y (dj)

ij
= Xj

[1] ∩ Yj(0) becausepj = 1, dj = 0

= (Xj)
min
γ ∩ ¬Yj by (181), (168)

= ∅ . by (378)

In the remaining case thatpj = 0 anddj = 1, we observe thatYj ∈ Tγ(Xj) entails
Yj ⊆ (Xj)

max
γ ; in particular

¬(Xj)
max
γ ∩ Yj = ∅ . (379)

Therefore

X
[pj ]
ij
∩ Y (dj)

ij
= Xj

[0] ∩ Yj(1) becausepj = 0, dj = 1

= ¬(Xj)
max
γ ∩ Yj by (181), (168)

= ∅ . by (379)

This substantiates that in both cases,

X
[pj ]
ij
∩ Y (dj)

ij
= ∅ . (380)

Consequently

λp(d) = |S(p) ∩ Y (d1)
i1
∩ · · · ∩ Y (dn)

in
| by (377)

= |X [p1]
i1
∩ · · · ∩X [pn]

in
∩ Y (d1)

i1
∩ · · · ∩ Y (dn)

in
| by (183)

≤ |X [pj ]
ij
∩ Y (dj)

ij
|

= |∅| by (380)

= 0 ,

i.e.λp(d) = 0, as desired.

ad ii.: In order to prove that the second precondition is valid, we first notice that the
min-termsY (d1)

i1
∩ · · · ∩ Y (dn)

in
, d ∈ {0, 1}n, are mutually disjoint, and cover the total

domainE. Hence

E = ∪̇{Y (d1)
i1
∩ · · · ∩ Y (dn)

in
: d = (d1, . . . , dn) ∈ {0, 1}n} . (381)

Therefore

S(p) = ∪̇{S(p) ∩ Y (d1)
i1
∩ · · · ∩ Y (dn)

in
: d = (d1, . . . , dn) ∈ {0, 1}n} . (382)

The disjoint union permits us to compute the cardinality ofS(p) by summing up the
cardinalities of all sets which participate in the union. Consequently

c(p) = |S(p)| by (184)

=
∑

d∈{0,1}n
|S(p) ∩ Y (d1)

i1
∩ · · · ∩ Y (dn)

in
| by (382)

=
∑

d∈{0,1}n
λp(d) . by (377)
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This demonstrates that both conditions i. and ii. are satisfied, i.e.(λp)p∈{0,∗,1}n ∈ Λ.
It remains to be shown thatcd =

∑
p∈{0,∗,1}n λp(d). To this end, let us observe from

Def. 82 that for allZ ∈ P(E), Zmin
γ ⊆ Zmax

γ . Therefore

E = (¬Zmax
γ ) ∪̇ (Zmax

γ \ Zmin
γ ) ∪̇ Zmin

γ . (383)

Recalling from (181) thatZ [0] = ¬Zmax
γ , Z [∗] = Zmax

γ \ Zmin
γ andZ [1] = Zmin

γ , this
substantiates that

E = Z [0] ∪̇ Z [∗] ∪̇ Z [1] .

Consequently, the full domainE can be partitioned as follows,

E = ∪̇{X [p1]
i1
∩ · · · ∩X [pn]

in
: p ∈ {0, ∗, 1}n} = ∪̇{S(p) : p ∈ {0, ∗, 1}n} . (384)

Based on this decomposition ofE, it is now that for alld ∈ {0, 1}n,

cd = |Y (d1)
i1
∩ · · · ∩ Y (dn)

in
| by def. of cardinality coefficients

= | ∪̇
p∈{0,∗,1}n

S(p) ∩ Y (d1)
i1
∩ · · · ∩ Y (dn)

in
| by (384)

=
∑

p∈{0,∗,1}n
|S(p) ∩ Y (d1)

i1
∩ · · · ∩ Y (dn)

in
| due to disjoint union

=
∑

p∈{0,∗,1}n
λp(d) . by (377)

This completes the proof that indeedc ∈ R′. Noticing thatc ∈ R was arbitrarily
chosen, we conclude thatR ⊆ R′.

b.: Proof of the inclusion R′ ⊆ R.
Hence consider a choice ofc ∈ R′. We then know from (375) that there exists a choice
of (λp)p∈{0,∗,1}n ∈ Λ such that

cd =
∑

p∈{0,∗,1}n
λp(d) (385)

for all d ∈ {0, 1}n. Now consider somep ∈ {0, ∗, 1}n. We then know from (184) and
(185) that

|S(p)| = c(p) =
∑

d∈{0,1}n
λp(d) .

In particular, there exists a choice of subsetsSp,d ⊆ S(p), d ∈ {0, 1}n, such that

|Sp,d| = λp(d) (386)

and

S(p) = ∪̇{Sp,d : d ∈ {0, 1}n} (387)
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for all d ∈ {0, 1}n. We hence obtain that

E = ∪̇{S(p) : p ∈ {0, ∗, 1}n} by (384)

= ∪̇{∪̇{Sp,d : d ∈ {0, 1}n} : p ∈ {0, ∗, 1}} , by (387)

i.e.

E = ∪̇{Sp,d : p ∈ {0, ∗, 1}n, d ∈ {0, 1}n} . (388)

Let us now defineY1, . . . , Yn ∈ P(E) by

Yj = ∪̇{Sp,d′ : d′j = 1} (389)

for all j = 1, . . . , n. It is then apparent from (388) and (389) that the complement¬Yj
becomes

¬Yj = ∪̇{Sp,d′ : d′j = 0} . (390)

Recalling (168), we can also express (389) and (390) asYj
(1) = ∪̇{Sp,d′ : d′j = 1}

andYj
(0) = ∪̇{Sp,d′ : d′j = 0}, i.e.

Y
(dj)
ij

= ∪̇{Sp,d′ : d′j = dj} (391)

wheredj ∈ {0, 1}. Therefore

Y
(d1)
i1
∩ · · · ∩ Y (dn)

in

= ∪̇{Sp,d′ : d′1 = d1, . . . , d
′
n = dn} by (391)

= ∪̇{Sp,d : p ∈ {0, ∗, 1}n} .

Due to the fact thatY (d1)
i1
∩ · · · ∩ Y (dn)

in
is decomposed into a disjoint union, we can

compute its cardinality as the sum of component cardinalities. Hence for alld ∈
{0, 1}n,

|Y (d1)
i1
∩ · · · ∩ Y (dn)

in
|

=
∑

p∈{0,∗,1}n
|Sp,d| due to disjoint sum

=
∑

p∈{0,∗,1}n
λp(d) by (386)

= cd . by (385)

We conclude from (172) thatc ∈ R = R
Φ0,...,0,...,Φ1,...,1
γ (X1, . . . , Xn). Noticing that

c ∈ R′ was arbitrarily chosen, this shows thatR′ ⊆ R. When combined with the
previous result thatR ⊆ R′, this completes the proof thatR = R′, i.e. the claimed
equality (186) is indeed valid.
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D.21 Proof of Theorem 260

LetE 6= ∅ be a finite base set,X1, . . . , Xn ∈ P̃(E) andγ ∈ I. Further suppose that
Φ′1(Y1, . . . , Yn), . . . ,Φ′K(Y1, . . . , Yn) are Boolean combinations of the crisp variables

Y1, . . . , Yn, and letR′ = R
Φ′1,...,Φ

′
K

γ (X1, . . . , Xn) ⊆ {0, . . . , |E|}K be the associated
relation as defined by (172). I will further denote byΦd(Y1, . . . , Yn), d ∈ {0, 1}n, the
min-termY (d1)

i1
∩ · · ·∩Y (dn)

in
built from the variablesY1, . . . , Yn. In order to prove the

claimed equality (189), we first recall that each Boolean combinationΦ′j(Y1, . . . , Yn),
j ∈ {1, . . . ,K}, can be expressed in disjunctive normal form (DNF), i.e. as a union of
min-termsY (d1)

i1
∩ · · · ∩ Y (dn)

in
. In fact, it is quite obvious that

Φ′j(Y1, . . . , Yn) = ∪̇{Y (d1)
i1
∩ · · · ∩ Y (dn)

in
: d = (d1, . . . , dn) ∈ {0, 1}n,

Φ′j(Y1, . . . , Yn) ∩ Φd(Y1, . . . , Yn) 6= ∅}

= ∪̇{Y (d1)
i1
∩ · · · ∩ Y (dn)

in
: d ∈ Dj} , by (190)

and consequently

Φ′j(Y1, . . . , Yn) = ∪̇{Φd(Y1, . . . , Yn) : d ∈ Dj} (392)

for all j ∈ {1, . . . ,K}. The disjoint union in (392) permits us to compute the cardi-
nality of Φ′j(Y1, . . . , Yn) by adding up the cardinalities of all sets that participate in the
disjoint union. Therefore

|Φ′j(Y1, . . . , Yn)| =
∑
d∈Dj

|Φd(Y1, . . . , Yn)| .

Now referring to the abbreviationscd1,...,dn = |Φd1,...,dn(Y1, . . . , Yn)| for all d =
(d1, . . . , dn) ∈ {0, 1}n, andc′j = |Φ′j(Y1, . . . , Yn)| for all j ∈ {1, . . . ,K}, the above
result becomes

c′j =
∑
d∈Dj

cd , (393)

for all j ∈ {1, . . . ,K}. Consequently

R′ = {(c′1, . . . , c′K) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn),
c′j = |Φ′j(Y1, . . . , Yn)| for all j ∈ {1, . . . ,K}} by (172), (188)

= {(
∑
d∈D1

cd, . . . ,
∑
d∈DK

cd) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn),

cd = |Φd(Y1, . . . , Yn)| for all d ∈ {0, 1}n} by (393)

= {(
∑
d∈D1

cd, . . . ,
∑
d∈DK

cd) : c = (c0,...,0, . . . , c1,...,1) ∈ R} . by (172), (187)

In particular

R′ = {(c′1, . . . , c′K) : (c0,...,0, . . . , c1,...,1) ∈ R, c′j =
∑
d∈Dj

cd, j = 1, . . . ,K} ,

i.e. (189) is indeed valid.
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D.22 Proof of Theorem 261

LetE 6= ∅ be a finite base set,X1, . . . , Xn ∈ P̃(E) andγ ∈ I. Further suppose that
P∗ ∈ P∗ is given. The proof is by induction on the coefficienti∗ = i∗(P ) defined by
(196).

a.: i∗ = 0.
In this case, we know from (197) that

σP∗(P∗) = 1 (394)

and

σP∗(P ) = 0 (395)

for P ∈ P, P 6= P∗. In addition, we conclude from (196)i∗ = 0 that max{i ∈
DomP∗ : P∗(i) = ∗} = 0. Knowing thatDomP∗ ⊆ {1, . . . , n}, this entails that
{i ∈ DomP∗ : P∗(i) = ∗} = ∅, i.e.P∗(i) 6= ∗ for all i ∈ DomP∗. Hence indeed

P ∈ P , (396)

see (194). Consequently

c(P∗) = 1 · c(P∗) +
∑

P∈P\{P∗}

0 · c(P )

= σP∗(P∗) +
∑

P∈P\{P∗}

σP∗(P ) · c(P ) by (394), (395)

=
∑
P∈P

σP∗(P ) · c(P ) . by (396)

b.: i∗ > 0.
In this case, we shall assume by induction oni∗ that (195) has been shown for all
i′∗ < i∗. Due to the fact thati∗ = i∗(P∗) > 0, we know from (198) thatσP∗(P ) =
σP∗(P

′)− σP∗(P ′′), whereP ′, P ′′ ∈ P∗ are defined by (199) and (200), respectively.
Let us abbreviatei′∗ = i∗(P ′) and i′′∗ = i∗(P ′′). In order for the induction to be
well-founded, it must first be shown thati′∗ < i∗ andi′′∗ < i∗. Hence let

D− = {i ∈ DomP∗ : i < i∗} (397)

D+ = {i ∈ DomP∗ : i > i∗} . (398)

It is apparent from (199) and (200) that

DomP∗ = DomP ′ = DomP ′′ (399)

and

P∗(i) = P ′(i) = P ′′(i) (400)
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wheneveri ∈ D+ ∪D− = DomP∗ \ {i∗}. Now consideri∗ = max{i ∈ DomP∗ :
P∗(i) = ∗}. We first observe from (398) that

P∗(i) 6= ∗ (401)

for all i ∈ D+. Combining this with (400), we know thatP ′(i) 6= ∗ andP ′′(i) 6= ∗ for
all i ∈ D+ as well. In addition, we know from (199) and (200) thatP ′(i∗) = + 6= ∗
andP ′′(i∗) = 1 6= ∗. Noticing thatD+ ∪ {i∗} = DomP∗ \D− and recalling (399),
this proves that

{i ∈ DomP ′ : P ′(i) = ∗} = {i ∈ D− : P ′(i) = ∗} ⊆ D−

and

{i ∈ DomP ′′ : P ′′(i) = ∗} = {i ∈ D− : P ′′(i) = ∗} ⊆ D− .

Thereforei′∗ = max{i ∈ DomP ′ : P ′(i) = ∗} ≤ maxD− < i∗ andi′′∗ = max{i ∈
DomP ′′ : P ′′(i) = ∗} ≤ maxD− < i∗, which is apparent from (196) and (397). This
substantiates that indeedi′∗ < i∗ andi′′∗ < i∗, i.e. the induction is well-founded. We
can then conclude from the induction hypothesis, i.e. (195) being valid for alli < i∗,
that in fact

c(P ′) =
∑
P∈P

σP ′(P ) · c(P ) (402)

c(P ′′) =
∑
P∈P

σP ′′(P ) · c(P ) . (403)

Referring to the graph representationP = {(i1, p1), . . . , (im, pm)} where1 ≤ i1 <
i2 < · · · < im ≤ n andpj = P (ij) for all j ∈ {1, . . . ,m}, let j∗ denote the unique
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choice ofj∗ ∈ {1, . . . ,m} with i∗ = ij∗ . Then

S(P ′) = X
[p1]
i1
∩ · · · ∩X [pj∗−1]

ij∗−1

∩Xij∗
[+]

∩X [pj∗+1]
ij∗+1

∩ · · · ∩X [pm]
im

by (192), (199)

= X
[p1]
i1
∩ · · · ∩X [pj∗−1]

ij∗−1

∩Xij∗
max
γ

∩X [pj∗+1]
ij∗+1

∩ · · · ∩X [pm]
im

by (181)

= (X [p1]
i1
∩ · · · ∩X [pj∗−1]

ij∗−1

∩ (Xij∗ )max

γ
∩ (Xij∗ )min

γ

∩X [pj∗+1]
ij∗+1

∩ · · · ∩X [pm]
im

)

∪̇ (X [p1]
i1
∩ · · · ∩X [pj∗−1]

ij∗−1

∩ (Xij∗ )max

γ
∩ ¬(Xij∗ )min

γ

∩X [pj∗+1]
ij∗+1

∩ · · · ∩X [pm]
im

)

= (X [p1]
i1
∩ · · · ∩X [pj∗−1]

ij∗−1

∩ (Xij∗ )min

γ

∩X [pj∗+1]
ij∗+1

∩ · · · ∩X [pm]
im

)

∪̇ (X [p1]
i1
∩ · · · ∩X [pj∗−1]

ij∗−1

∩ (Xij∗ )max

γ
∩ ¬(Xij∗ )min

γ

∩X [pj∗+1]
ij∗+1

∩ · · · ∩X [pm]
im

) because(Xij∗ )min

γ
⊆ (Xij∗ )max

γ

= (X [p1]
i1
∩ · · · ∩X [pj∗−1]

ij∗−1

∩ (Xij∗ )[1]

∩X [pj∗+1]
ij∗+1

∩ · · · ∩X [pm]
im

)

∪̇ (X [p1]
i1
∩ · · · ∩X [pj∗−1]

ij∗−1

∩ (Xij∗ )[∗]

∩X [pj∗+1]
ij∗+1

∩ · · · ∩X [pm]
im

) by (181)

= S(P ′′) ∪̇ S(P ) . by (192), (199)

Thereforec(P ′) = |S(P ′)| = |S(P ′′)|+ |S(P )| = c(P ′′) + c(P ), i.e.

c(P ) = c(P ′)− c(P ′′) . (404)
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In particular

c(P ) = c(P ′)− c(P ′′) by (404)

=
∑
P∈P

σP ′(P ) · c(P )−
∑
P∈P

σP ′′(P ) · c(P ) by (402), (403)

=
∑
P∈P

(σP ′(P )− σP ′′(P )) · c(P )

=
∑
P∈P

σP∗(P ) · c(P ) . by (198)

This proves that (195) is valid forP∗, as desired.

D.23 Proof of Theorem 262

Lemma 24
LetU,W ∈ P(E), X ∈ P̃(E), γ ∈ I andp∗ ∈ {0, 1,+,−}. Further suppose thatp′

is defined in terms ofp∗ according to(211). Then

|U ∩X [p∗] ∩ V | = |U ∩ V | − |U ∩X [p′] ∩ V | .

Proof Let us first observe from (181) that

X [1] = Xmin
γ = ¬(¬Xmin

γ ) = ¬X [−] (405)

and

X [0] = ¬Xmax
γ = ¬X [+] . (406)

We further know from (211) that(p∗, p′) ∈ {(0,+), (1,−), (+, 0), (−, 1)}. This per-
mits us to deduce from (405) and (406) that

X [p′] = ¬X [p∗] , (407)

for all p∗ ∈ {0, 1,+,−} and the corresponding choice ofp′. Abbreviating

Y = X [p∗] , (408)

we now proceed as follows. Firstly

U ∩ V = (U ∩ Y ∩ V ) ∪̇ (U ∩ ¬Y ∩ V ) .

Due to the disjoint union, the corresponding cardinalities simply add up, i.e.

|U ∩ V | = |U ∩ Y ∩ V |+ |U ∩ ¬Y ∩ V | ,

which can be rewritten as

|U ∩ Y ∩ V | = |U ∩ V | − |U ∩ ¬Y ∩ V | .

486



Now expandingY according to (408), we conclude that

|U ∩X [p∗] ∩ V | = |U ∩ V | − |U ∩ ¬X [p∗] ∩ V | .

We then obtain from (407) that indeed

|U ∩X [p∗] ∩ V | = |U ∩ V | − |U ∩X [p′] ∩ V | ,

as desired.

The lemma will be useful in the following proof of the main theorem.

Proof of Theorem 262

LetE 6= ∅ be a finite base set,X1, . . . , Xn ∈ P̃(E) andγ ∈ I. I will prove (204) by
induction on the coefficienti∗ = i∗(P ), P ∈ P, as defined by (205).

a.: i∗ = 0.
Let P = {(i1, p1), . . . , (im, pm)} be the graph representation ofP , where1 ≤ i1 <
i2 < · · · < im ≤ n and pj = P (ij) for all j ∈ {1, . . . ,m}. Due to the fact
that DomP = {i1, . . . , im} ⊆ {1, . . . , n}, we can conclude fromi∗ = max{i ∈
DomP : type(P (i)) 6= type(pm)} = 0 by (205), that in fact

{i ∈ DomP : type(P (i)) 6= type(pm)} = ∅ .

In particular

type(pj) = y (409)

for all j ∈ {1, . . . ,m}, wherey = type(pm). Therefore

c(P )

= |X [p1]
i1
∩ · · · ∩X [pm]

im
| by (193)

= |(X〈pol(p1)〉
i1

)
type(p1)

γ
∩ · · · ∩ (X〈pol(pm)〉

i1
)
type(pm)

γ
| by (203)

= |(X〈pol(p1)〉
i1

)
y

γ
∩ · · · ∩ (X〈pol(pm)〉

i1
)
y

γ
| by (409)

= |(X〈pol(p1)〉
i1

∩ · · · ∩X〈pol(pm)〉
im

)
y

γ
| . by Th-61

Abbreviating

V = {(i1,pol(p1)), . . . , (im,pol(pm))} ∈ V , (410)

487



this proves that

c(P ) = |(X〈v1〉
i1
∩ · · · ∩X〈vm〉im

)
y

γ
| by (176), (410)

= |(ZV )yγ | by (178)

=

{
|(ZV )min

γ | : y = min
|(ZV )max

γ | : y = max

=
{
`V : y = min
uV : y = max by (179) and (180)

=
∑
V ∈V

ζP (V,min) · `V +
∑
V ∈V

ζP (V,max) · uV . by (206)

This substantiates that (204) is valid in the case thati∗ = i∗(P ) = 0.

b.: i∗ > 0.
In this case, we shall assume by induction oni∗ that (204) has been shown for all
i′∗ < i∗. Due to the fact thati∗ = i∗(P ) > 0, we know from (207) thatζP (V, y) =
ζP ′(V, y) − ζP ′′(V, y) for all V ∈ V andy ∈ {min,max}, whereP ′, P ′′ ∈ P are
defined by (208) and (209), respectively. In the following, leti′∗ = i∗(P ′) andi′′∗ =
i∗(P ′′). In order for the induction to be well-founded, I will first show thati′∗ < i∗ and
i′′∗ < i∗. To this end, it is convenient to refer to the representation ofP by in terms of
its graph, i.e.

P = {(i1, p1), . . . , (im, pm)} , (411)

where

1 ≤ i1 < i2 < · · · < im ≤ n , (412)

andpj = P (ij) for all j ∈ {1, . . . ,m}. Let us denote byj∗ the unique choice of
j∗ ∈ {1, . . . ,m} with

i∗ = ij∗ . (413)

According to (208) and (209), the graph representations ofP ′ andP ′′ then become

P ′ = {(i1, p1), . . . , (ij∗−1, pj∗−1), (ij∗+1, pj∗+1), . . . , (im, pm)} (414)

P ′′ = {(i1, p1), . . . , (ij∗−1, pj∗−1), (i∗, p′), (ij∗+1, pj∗+1), . . . , (im, pm)} , (415)

wherep′ is given by (211). Now let us reconsideri∗ = i∗(P ) > 0. In terms
of the graph representation, (205) becomesi∗ = i∗(P ) = max{ij : type(pj) 6=
type(pm), j ∈ {1, . . . ,m}}. We can therefore conclude from (411) and (412) that

type(pj) = type(pm) (416)
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for all j ∈ {j∗ + 1, . . . ,m}. Therefore

i′∗

= i∗(P ′)
= max{ij : type(pj) 6= type(pm),

j ∈ {1, . . . , j∗ − 1, j∗ + 1, . . . ,m}} by (205), (414)

= max{ij : type(pj) 6= type(pm), j ∈ {1, . . . , j∗ − 1}} by (416)

≤ ij∗−1 by (412)

< ij∗ by (412)

= i∗ , by (413)

i.e. i′∗ < i∗, as desired. As concernsi∗ = i∗(P ′′), let us first notice that

type(P ′′(i∗)) = type(p′) = type(pm) (417)

This is apparent becausetype(p∗) 6= type(pm) by (205) and (210). In addition, it
is easily verified from (202) and (211) thattype(p′) 6= type(∗). Due to the fact that
there are only two possible values oftype(pm), type(p∗) andtype(p′) ∈ {min,max},
type(p∗) 6= type(pm) andtype(p∗) 6= type(p′) implies thattype(p′) = type(pm),
i.e. (417) is indeed valid. Based on these preparations, we now obtain in the case of
i′′∗ = i∗(P ′′) that

i′′∗

= i∗(P ′′)
= max{i ∈ DomP ′′ : type(P ′′(i)) 6= type(pm)} by (205)

= max{i ∈ DomP ′′ \ {i∗} : type(P ′′(i)) 6= type(pm)} by (417)

= max{ij : type(pj) 6= type(pm),
j ∈ {1, . . . , j∗ − 1, j∗ + 1, . . . ,m}} by (412), (413)

= max{ij : type(pj) 6= type(pm), j ∈ {1, . . . , j∗ − 1}} by (416)

≤ ij∗−1 by (412)

< ij∗ by (412)

= i∗ , by (413)

which proves thati′′∗ < i∗ as well. Knowing thati∗(P ′) = i′∗ < i∗ = i∗(P ) and
i∗(P ′′) = i′′∗ < i∗ = i∗(P ), the induction oni∗ is indeed well-founded. In particular,
we can now conclude from the induction hypothesis, which asserts that (204) be valid
for all i′∗ < i∗, that in fact

c(P ′) =
∑
V ∈V

ζP ′(V,min) · `V +
∑
V ∈V

ζP ′(V,max) · uV (418)

c(P ′′) =
∑
V ∈V

ζP ′′(V,min) · `V +
∑
V ∈V

ζP ′′(V,max) · uV (419)
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for all V ∈ V andy ∈ {min,max}. Therefore

c(P )

|X [p1]
i1
∩ . . . X [pj∗−1]

ij∗−1
∩Xij∗

[p∗] ∩X [pj∗+1]
ij∗+1

∩ · · · ∩X [pm]
im
| by (210), (413)

= |X [p1]
i1
∩ . . . X [pj∗−1]

ij∗−1
∩X [pj∗+1]

ij∗+1
∩ · · · ∩X [pm]

im
|

− |X [p1]
i1
∩ . . . X [pj∗−1]

ij∗−1
∩Xij∗

[p′] ∩X [pj∗+1]
ij∗+1

∩ · · · ∩X [pm]
im
| by L-24

= c(P ′)− c(P ′′) by (193), (208), (209)

= (
∑
V ∈V

ζP ′(V,min) · `V +
∑
V ∈V

ζP ′(V,max) · uV )

− (
∑
V ∈V

ζP ′′(V,min) · `V +
∑
V ∈V

ζP ′′(V,max) · uV ) by (418) and (419)

=
∑
V ∈V

(ζP ′(V,min)− ζP ′′(V,min)) · `V

+
∑
V ∈V

(ζP ′(V,max)− ζP ′′(V,max)) · uV

=
∑
V ∈V

ζP (V,min) · `V +
∑
V ∈V

ζP (V,max) · uV . by (207)

This completes the proof that (204) is valid in the casei∗ > 0 as well.

D.24 Proof of Theorem 263

LetE 6= ∅ be a finite base set,X1, X2 ∈ P̃(E) andγ ∈ I. In order to make the proof
more readable, I will usually drop the subscriptγ, which is fixed during the proof. I will
therefore abbreviateXmin = Xmin

γ andXmax = Xmax
γ . It is further assumed through-

out this proof that¬Xmin = ¬(Xmin) and¬Xmax = ¬(Xmax), omitting brackets. In
addition, I will abbreviate|X|min

γ = |Xmin
γ | and|X|max

γ = |Xmax
γ |. Again dropping

the subscript, this becomes|X|min = |Xmin| and |X|max = |Xmax|. Exposing the
‘max’ and ‘min’ helps me to save brackets, for example I can then write|X1 ∩X2|min

rather than|(X1 ∩X2)min|. Finally, I will refer to the coefficients introduced in the
theorem, which now becomè1 = |X1|min, `2 = |X1 ∩X2|min

`3 = |X1 ∩ ¬X2|min,
u1 = |X1|max, u2 = |X1 ∩X2|max, andu3 = |X1 ∩ ¬X2|max.

Let us now consider some choice ofY1 ∈ Tγ(X1) andY2 ∈ Tγ(X2). We can then
define the following cardinality coefficients:

α = |Y1 ∩ ¬Xmin
1 ∩ ¬Xmax

2 | (420)

β = |Y1 ∩ ¬Xmin
1 ∩Xmin

2 | (421)

γ = |Y2 ∩Xmin
1 ∩ ¬Xmin

2 | (422)

δ = |Y1 ∩ Y2 ∩ ¬Xmin
1 ∩ ¬Xmin

2 | (423)

ε = |Y1 ∩ ¬Y2 ∩ ¬Xmin
1 ∩Xmax

2 | . (424)

490



Particularly, the sum of the last coefficientsδ + ε becomes

δ + ε = |Y1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 | . (425)

This is straightforward from (423) and (424) once we notice thatY1 ∩ Xmax
1 = Y1,

Y2 ∩Xmax
2 = Y2 and¬Y2 ∩ ¬Xmin

2 = ¬Y2.

As to the possible values of the coefficientsα, β, γ, δ, ε, it is obvious that by choos-
ing Y1 ∈ Tγ(X1) andY2 ∈ Tγ(X2) appropriately, all combinations of values in the
following ranges can be assumed (which also exhaust all possible options):

α ∈ {0, . . . , |Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 |} (426)

β ∈ {0, . . . , |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 |} (427)

γ ∈ {0, . . . , |Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 |} (428)

δ ∈ {0, . . . , |Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 |} (429)

ε ∈ {0, . . . , |Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 | − δ} . (430)

In the following, I will expressc1 = |Y1| andc2 = |Y1∩Y2| in terms of these cardinality
coefficients. To this end, let us notice thatXmax

1 can be decomposed into a disjoint
union of the following components,

Xmax
1 = (Xmin

1 ∩ ¬Xmax
2 )

∪̇(Xmin
1 ∩Xmin

2 )
∪̇(Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 )
∪̇(Xmax

1 ∩ ¬Xmin
1 ∩ ¬Xmax

2 )
∪̇(Xmax

1 ∩ ¬Xmin
1 ∩Xmin

2 )
∪̇(Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ) ,

(431)

which is possible becauseXmin
1 ⊆ Xmax

1 andXmin
2 ⊆ Xmax

2 . We now consider the
given choice ofY1 ∈ Tγ(X1). We then know from Def. 82 thatY1 ⊆ Xmax

1 . In
particularY1 = Y1 ∩ Xmax

1 . By expandingXmax
1 in Y1 ∩ Xmax

1 according to (431)
and then utilizing the law of distributivity in order to moveY1 into the members of the
disjoint union, we now obtain that

Y1 =(Y1 ∩Xmin
1 ∩ ¬Xmax

2 )

∪̇ (Y1 ∩Xmin
1 ∩Xmin

2 )

∪̇ (Y1 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 )

∪̇ (Y1 ∩Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 )

∪̇ (Y1 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 )

∪̇ (Y1 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ) .

Recalling thatXmin
1 ⊆ Y1 ⊆ Xmax

1 , some simplifications to this result become possi-
ble, becauseY1 ∩Xmin

1 = Xmin
1 andY1 ∩Xmax

1 = Y1. The above result then reduces
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to

Y1 =(Xmin
1 ∩ ¬Xmax

2 )

∪̇ (Xmin
1 ∩Xmin

2 )

∪̇ (Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 )

∪̇ (Y1 ∩ ¬Xmin
1 ∩ ¬Xmax

2 )

∪̇ (Y1 ∩ ¬Xmin
1 ∩Xmin

2 )

∪̇ (Y1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ) ,

i.e.

Y1 =Xmin
1

∪̇ (Y1 ∩ ¬Xmin
1 ∩ ¬Xmax

2 )

∪̇ (Y1 ∩ ¬Xmin
1 ∩Xmin

2 )

∪̇ (Y1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ) .

Due to the disjoint unions, the cardinalities of the components directly sum up to the
total cardinality ofY1, i.e.

|Y1| =|X1|min

+ |Y1 ∩ ¬Xmin
1 ∩ ¬Xmax

2 |
+ |Y1 ∩ ¬Xmin

1 ∩Xmin
2 |

+ |Y1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 | .

Now utilizing the coefficientsα, β, δ, ε introduced in (420), (421), (423) and (424), and
further utilizing (425), we therefore obtain that

c1 = |Y1| = `1 + α+ β + δ + ε . (432)

Next we considerc2 = |Y1∩Y2|. Again, we notice thatY1∩Y2 ⊆ Y1 ⊆ Xmax
1 . Hence

Y1∩Y2 = Y1∩Y2∩Xmax
1 . Therefore the same procedure as above can be applied. By

expandingXmax
1 according to (431) and then utilizing distributivity in order to move

Y1 ∩ Y2 into the members of the disjoint union, we first obtain that

Y1 ∩ Y2 =(Y1 ∩ Y2 ∩Xmin
1 ∩ ¬Xmax

2 )

∪̇ (Y1 ∩ Y2 ∩Xmin
1 ∩Xmin

2 )

∪̇ (Y1 ∩ Y2 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 )

∪̇ (Y1 ∩ Y2 ∩Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 )

∪̇ (Y1 ∩ Y2 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 )

∪̇ (Y1 ∩ Y2 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ) .

Again, some simplifications are possible becauseXmin
1 ⊆ Y1 ⊆ Xmax

1 andXmin
2 ⊆

Y2 ⊆ Xmax
2 , i.e. Y1 ∩ Xmin

1 = Xmin
1 , Y1 ∩ Xmax

1 = Y1, Y2 ∩ Xmin
2 = Xmin

2 ,
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Y2∩Xmax
2 = Y2 andY2∩¬Xmax

2 = ∅. The above rendering ofY1∩Y2 can therefore
be simplified into

Y1 ∩ Y2 =(Xmin
1 ∩Xmin

2 )

∪̇ (Y2 ∩Xmin
1 ∩ ¬Xmin

2 )

∪̇ (Y1 ∩ ¬Xmin
1 ∩Xmin

2 )

∪̇ (Y1 ∩ Y2 ∩ ¬Xmin
1 ∩ ¬Xmin

2 ) .

The representation in terms of a disjoint union again permits us to sum up constituent
cardinalities. Therefore

|Y1 ∩ Y2| =|X1 ∩X2|min

+ |Y2 ∩Xmin
1 ∩ ¬Xmin

2 |
+ |Y1 ∩ ¬Xmin

1 ∩Xmin
2 |

+ |Y1 ∩ Y2 ∩ ¬Xmin
1 ∩ ¬Xmin

2 | .

In terms of the cardinality coefficients, this can now be expressed in the following more
succint form,

c2 = |Y1 ∩ Y2| = `2 + β + γ + δ . (433)

Having expressedc1 andc2 in terms of the coefficientsα, β, γ, δ andε, it is now useful
to reconsider the ranges of these coefficients, which have been stated in (426)–(430). In
particular, I would like to show that the upper bounds on these ranges can be expressed
in terms of the given coefficients̀1, `2, `3, u1, u2 andu3 only.

Let us first consider the maximal choiceαmax α, i.e.αmax = |Xmax
1 ∩ ¬Xmin

1 ∩
¬Xmax

2 |. To this end, we notice thatXmax
1 can be split intoXmax

1 = (Xmax
1 ∩Xmax

2 )∪̇
(Xmax

1 ∩ ¬Xmax
2 ). The constituent cardinalities then add up to the total cardinality of

Xmax
1 , thus

|X1|max = |X1 ∩X2|max + |Xmax
1 ∩ ¬Xmax

2 |

by Th-61. In terms of the cardinality coefficients introduced above, we can also express
this asu1 = u2 + |Xmax

1 ∩ ¬Xmax
2 |, or equivalently,

|Xmax
1 ∩ ¬Xmax

2 | = u1 − u2 . (434)

Turning toαmax, we decomposeXmax
1 ∩ ¬Xmax

2 into a disjoint union

Xmax
1 ∩ ¬Xmax

2 = (Xmax
1 ∩Xmin

1 ∩ ¬Xmax
2 ) ∪̇ (Xmax

1 ∩ ¬Xmin
1 ∩ ¬Xmax

2 ) ,

i.e.Xmax
1 ∩ ¬Xmax

2 = (Xmin
1 ∩ ¬Xmax

2 ) ∪̇ (Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ). Recalling

Th-61, we can further refine this intoXmax
1 ∩ ¬Xmax

2 = X1 ∩X2
min ∪̇ (Xmax

1 ∩
¬Xmin

1 ∩ ¬Xmax
2 ). The corresponding cardinalities then become

|Xmax
1 ∩ ¬Xmax

2 | = |X1 ∩ ¬X2|min + |Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 | .

493



Building on (434), we can recast this in terms of the cardinality coefficients as follows,

u1 − u2 = `3 + αmax .

Thereforeαmax has the simple rendering,

αmax = |Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 | = u1 − u2 − `3 . (435)

Next we consider the maximum choice ofβ, i.e.βmax = |Xmax
1 ∩¬Xmin

1 ∩Xmin
2 | by

(427). We first decomposeXmax
1 intoXmax

1 = (Xmax
1 ∩Xmin

2 ) ∪̇ (Xmax
1 ∩¬Xmin

2 ) or
equivalently,Xmax

1 = (Xmax
1 ∩Xmin

2 )∪̇(X1 ∩ ¬X2)max, see Th-61. The correspond-
ing cardinalities then become|X1|max = |Xmax

1 ∩ Xmin
2 | + |X1 ∩ ¬X2|max, which

can be abbreviated asu1 = |Xmax
1 ∩Xmin

2 |+ u3. This proves that

|Xmax
1 ∩Xmin

2 | = u1 − u3 . (436)

In order to obtain the desired representation ofβmax, we now rewriteXmax
1 ∩Xmin

2 =
(Xmax

1 ∩Xmin
1 ∩Xmin

2 ) ∪̇ (Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ), i.e.Xmax

1 ∩Xmin
2 = (Xmin

1 ∩
Xmin

2 ) ∪̇ (Xmax
1 ∩ ¬Xmin

1 ∩ Xmin
2 ) becauseXmin

1 ⊆ Xmax
1 , and in turnXmax

1 ∩
Xmin

2 = X1 ∩X2
min ∪̇ (Xmax

1 ∩ ¬Xmin
1 ∩Xmin

2 ) by Th-61. We therefore obtain for
the corresponding cardinalities that

|Xmax
1 ∩Xmin

2 | = |X1 ∩X2|min + |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 | .

In terms of the cardinality coefficients, this can be abbreviated asu1−u3 = `2 +βmax,
recalling equation (436). In other words,

βmax = |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 | = u1 − `2 − u3 . (437)

Now we discuss the maximum choice of the coefficientγ, i.e.γmax = |Xmin
1 ∩Xmax

2 ∩
¬Xmin

2 | by (428). In order to prepare this investigation, I first splitXmin
1 into a disjoint

unionXmin
1 = (Xmin

1 ∩ Xmax
2 ) ∪̇ (Xmin

1 ∩ ¬Xmax
2 ). By utilizing Th-61, this can

be slighly modified intoXmin
1 = (Xmin

1 ∩ Xmax
2 ) ∪̇ (X1 ∩ ¬X2)min. Again, the

constituent cardinalities add up to the total cardinality|X1|min, i.e.

|X1|min = |Xmin
1 ∩Xmax

2 |+ |X1 ∩ ¬X2|min
.

In terms of the cardinality coefficients, we therefore have`1 = |Xmin
1 ∩Xmax

2 | + `3,
or equivalently,

|Xmin
1 ∩Xmax

2 | = `1 − `3 . (438)

Based on this preparations, we can now considerγmax. To this end, we rewriteXmin
1 ∩

Xmax
2 as follows,

Xmin
1 ∩Xmax

2

= (Xmin
1 ∩Xmax

2 ∩Xmin
2 ) ∪̇ (Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 )

= (Xmin
1 ∩Xmin

2 ) ∪̇ (Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ) becauseXmin

2 ⊆ Xmax
2

= X1 ∩X2
min ∪̇ (Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ) . by Th-61
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In particular, this proves that|Xmin
1 ∩ Xmax

2 | = |X1 ∩X2|min + |Xmin
1 ∩ Xmax

2 ∩
¬Xmin

2 |. Based on (438), we therefore obtain that`1 − `3 = `2 + γmax, i.e.

γmax = |Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 | = `1 − `2 − `3 . (439)

Finally we consider|Xmax
1 ∩¬Xmin

1 ∩Xmax
2 ∩¬Xmin

2 |, which constitutes the maximal
choice ofδ andε. In order to prepare this, I first decompose(X1 ∩X2)max, viz

(X1 ∩X2)max

= Xmax
1 ∩Xmax

2 by Th-61

= (Xmax
1 ∩Xmax

2 ∩Xmin
2 ) ∪̇ (Xmax

1 ∩Xmax
2 ∩ ¬Xmin

2 )

= (Xmax
1 ∩Xmin

2 ) ∪̇ (Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ) becauseXmin

2 ⊆ Xmax
2 .

The corresponding cardinalities then become

u2 = |X1 ∩X2|max

= |Xmax
1 ∩Xmin

2 |+ |Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 |

= u1 − u3 + |Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 | , by (436)

i.e.

|Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 | = −u1 + u2 + u3 . (440)

Based on this preparation, we can now proceed as follows. Firstly

Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2

= (Xmax
1 ∩Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 )

∪̇ (Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 )

= (Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 )

∪̇ (Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ) becauseXmin
1 ⊆ Xmax

1 .

In particular, this proves that

|Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 |

= |Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 |+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 | .

Now recalling (439) and (440), we can rewrite this as

−u1 + u2 + u3 = `1 − `2 − `3 + |Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 | ,

i.e.

|Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 | = −u1 + u2 + u3 − `1 + `2 + `3 . (441)

It is then apparent from (429) that the maximum choice ofδ is

δmax = −u1 + u2 + u3 − `1 + `2 + `3 . (442)
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In this case, (430) then tiesε to the minimal choiceε = 0. Conversely,ε can assume
the maximum value of

εmax = −u1 + u2 + u3 − `1 + `2 + `3 , (443)

but only if δ is tied toδ = 0, see (429) and (430). From a more general perspective,
(441) establishes an upper bound on thesumof δ andε, i.e.

(δ + ε)max = −u1 + u2 + u3 − `1 + `2 + `3 . (444)

This is apparent when combining (441) and (425).

To sum up, I have shown how the possible values of the cardinality coefficients
α, β, γ, δ andε can be expressed in terms of`1, `2, `3, u1, u2 andu3.

Based on these renderings of the cardinality coefficients, it is now a straightforward
task to identify the possible combinations ofc1 = |Y1| and c2 = |Y1 ∩ Y2| for all
Y1 ∈ Tγ(X1) andY2 ∈ Tγ(X2), which are gathered in the target relationR(X1, X2).

As to c1, we know from (432) thatc1 = |Y1| = `1 + α + β + δ + ε. Hence the
minimal choicecmin

1 is observed when all involved cardinality coefficients assume their
minimumα = β = δ = ε = 0. We then obtain

cmin
1 = `1 .

By similar reasoning, the maximumcmax
1 is observed when the involved coefficients

assume their maxima, which I have made explicit in (435), (437) and (444). By instan-
tiating the coefficients with their maximum values, (432) becomes

cmax
1 = `1 + u1 − u2 − `3 + u1 − `2 − u3 − u1 + u2 + u3 − `1 + `2 + `3 = u1 .

It is apparent from the fact thatTγ(Xi), i ∈ {1, 2}, is a closed rangeof crisp sets
Tγ(Xi) = {Y : Xmin

i ⊆ Y ⊆ Xmax
i }, that the cardinality coefficients also assume all

intermediate values between their minima and maxima. Thereforec1 = `1 + α+ β +
δ + ε also assumes all intermediate values betweencmin

1 = `1 andcmax
2 = u1, i.e.

{c1 = |Y1| : Y1 ∈ Tγ(X1)} = {c1 : `1 ≤ c1 ≤ u1} .

In the following, I will assume a choice ofc1 = |Y1| within its range of legal values.
In order to make explicit the target relation, it is now necessary to identify the possible
values ofc2 = |Y1 ∩ Y2|, givenc1. To this end, we first consider`1 + αmax + εmax.
By (435) and (443), this becomes`1 +αmax + εmax = `1 +u1−u2− `3−u1 +u2 +
u3 − `1 + `2 + `3, i.e.

`1 + αmax + εmax = `2 + u3 . (445)

It is convenient to discern the following two cases.

1. c1 ≤ `2 + u3.
It is then apparent from (432), (445) thatc1 can be expressed asc1 = `1 +α+ ε
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for a choice ofα ≤ αmax andε ≤ εmax andβ = γ = δ = 0. We then obtain
from (433) thatc2 = `2, which is apparently the minimal choice (because the
cardinality coefficients are always non-negative). Finally we notice thatc1 −
u3 ≤ `2 + u3 − u3 = `2 by the assumption of case 1. Thereforecmin

2 = `2 can
also be expressed ascmin

2 = max(c1 − u3, `2).

2. c1 > `2 + u3.
In this case, we know from (432) and (445) thatc1 exceeds̀ 1 + αmax + εmax.
Thereforec2 = `2 + β + γ + δ is minimized if we expressc1 asc1 = `1 +
αmax + β + εmax, where

β = c1 − `1 − αmax − εmax = c1 − `2 − u3 , (446)

and further chooseδ = γ = 0. By (433) and (446),c2 then assumes its minimum

c2 = `2 + β = `2 + c1 − `2 − u3 = c1 − u3 .

Due to the assumption of case 2. thatc1 > `2 + u3, this entails thatc1 − u3 >
`2 + u3 − u3 = `2. Hence the minimal choice ofc2 can also be expressed as
cmin
2 = max(c1 − u3, `2).

To sum up, I have shown that in both cases,

cmin
2 = max(c1 − u3, `2) . (447)

Finally we consider the maximum choice ofc2 = |Y1 ∩ Y2|, givenc1. It is now useful
to consider̀ 1 + βmax + δmax. By (437) and (442), this becomes`1 + βmax + δmax =
`1 + u1 − `2 − u3 − u1 + u2 + u3 − `1 + `2 + `3, i.e.

`1 + βmax + δmax = u2 + `3 . (448)

Again, it is convenient to separate two cases.

a. c1 ≤ u2 + `3.
We then conclude from (432) and (448) thatc1 can be expressed as

c1 = `1 + β + δ , (449)

whereβ ≤ βmax, δ ≤ δmax, andα = ε = 0. Further choosingγ = γmax then
maximisesc2, which becomes

c2 = `2 + β + γmax + δ by (433)

= `2 + β + δ + `1 − `2 − `3 by (439)

= `2 + c1 − `1 + `1 − `2 − `3 by (449)

= c1 − `3 .

Due to the assumption of case a. thatc1 ≤ u2 + `3, we know thatc1 − `3 ≤
u2 + `3 − `3 = u2. Thereforecmax

2 = c1 − `3 can also be expressed ascmax
2 =

min(c1 − `3, u2).
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b. c1 > u2 + `3.
In this case, we know from (432) and (448) thatc1 exceeds̀ 1 + βmax + δmax.
Consequently, in order to maximizec2, we choose

α = c1 − `1 − βmax − δmax = c1 − u2 − `3 ,

and further letβ = βmax, δ = δmax and henceε = 0 by (425), and finally
γ = γmax, which only affectsc2. The maximum value ofc2 then becomes

cmax
2 = `2 + βmax + γmax + δmax by (433)

= `2 + `1 − `2 − `3 + βmax + δmax by (439)

= `2 + `1 − `2 − `3 + u2 + `3 − `1 by (448)

= u2 .

The assumption of this case thatc1 > u2 + `3 then entails thatc1 − `3 >
u2 + `3 − `3 = u2. Therefore the maximal choice ofc2 can again be given the
renderingcmax

2 = min(c1 − `3, u2).

We therefore know that indeedcmax
2 = min(c1 − `3, u2), and it has also been shown

thatcmin
2 = max(c1 − u3, `2). Due to the fact that allc2 ∈ {cmin

2 , . . . , cmax
2 } can be

expressed as a sum of the cardinality coefficientsα, β, γ, δ andε, and because these
coefficients can assume all integers in their associated ranges (426)–(430), we conclude
that for each givenc1,

Rc1 = {(c1, |Y1 ∩ Y2|) : Y1 ∈ Tγ(X1), Y2 ∈ Tγ(X2), c1 = |Y1|}
= {(c1, `2 + β + γ + δ) : c1 = `1 + α+ β + δ + ε,all coefficients within ranges}
= {(c1, c2) : cmin

2 ≤ c2 ≤ cmax
2 }

= {(c1, c2) : max(c1 − u3, `2) ≤ c2 ≤ min(c1 − `3, u2)} .

This proves the claim of the theorem because the target relationR = R(X1, X2) can
be expressed as the union of allRc1 , for `1 = cmin

1 ≤ c1 ≤ cmax
1 = u1.

D.25 Proof of Theorem 264

Lemma 25
LetX ∈ P̃(E) be a fuzzy subset such thatΓ(X) is finite, and let0 = γ0 < γ1 <
· · · < γm−1 < γm = 1 be given such thatΓ = {γ0, . . . , γm} ⊇ Γ(X). Then for all
j ∈ {0, . . . ,m−1},A(X)∩ ( 1

2 + 1
2γj ,

1
2 + 1

2γj+1) = ∅ andA(X)∩ ( 1
2 −

1
2γj+1,

1
2 −

1
2γj) = ∅.

Proof By assumption, theγj ∈ [0, 1], j ∈ {0, . . . ,m} form a strictly increasing
sequence. Therefore

Γ ∩ (γj , γj+1) = ∅ (450)
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for all j ∈ {0, . . . ,m+ 1}. In order to prove thatA(X)∩ ( 1
2 + 1

2γj ,
1
2 + 1

2γj+1
) = ∅,

we consider the linear mappingf : R −→ R defined byf(γ) = 1
2 + 1

2γ. Noticing that
f is a strictly increasing bijection, (450) translates into

{ 1
2 + 1

2γk : k ∈ {0, . . . ,m}} ∩ ( 1
2 + 1

2γj ,
1
2 + 1

2γj+1)
= {f(γk) : γk ∈ Γ} ∩ (f(γj), f(γj+1))

= f̂(Γ) ∩ f̂((γj , γj+1))

= f̂(Γ ∩ (γj , γj+1))

= f̂(∅)
= ∅ .

Now recalling from (218) thatAΓ ∩ [ 1
2 , 1] = { 1

2 + 1
2γk : k ∈ {0, . . . ,m}}, this proves

that

(AΓ ∩ [ 1
2 , 1]) ∩ ( 1

2 + 1
2γj ,

1
2 + 1

2γj+1) = ∅ .

In addition, we apparently have(AΓ ∩ [0, 1
2 ))∩ ( 1

2 + 1
2γj ,

1
2 + 1

2γj+1) = ∅. Utilizing
the apparent decomposition ofAΓ intoAΓ = (AΓ ∩ [0, 1

2 )) ∪ (AΓ ∩ [ 1
2 , 1]), we hence

obtain that

AΓ ∩ ( 1
2 + 1

2γj ,
1
2 + 1

2γj+1)

= ((AΓ ∩ [0, 1
2 )) ∪ (AΓ ∩ [ 1

2 , 1])) ∩ ( 1
2 + 1

2γj ,
1
2 + 1

2γj+1)
= ∅ ∪∅
= ∅ .

Finally we recall that by (219),A(X) ⊆ AΓ provided thatΓ ⊇ Γ(X). Therefore
AΓ ∩ ( 1

2 + 1
2γj ,

1
2 + 1

2γj+1) = ∅ entails thatA(X) ∩ ( 1
2 + 1

2γj ,
1
2 + 1

2γj+1) = ∅ as
well.

The second claim of the lemma can be proven in an analogous way. In this case, we
utilize the linear mappingg : R −→ R defined byg(γ) = 1

2 −
1
2γ. Noticing thatg is a

strictly decreasing bijection, (450) then translates into

{ 1
2 −

1
2γk : k ∈ {0, . . . ,m}} ∩ ( 1

2 −
1
2γj+1,

1
2 −

1
2γj) = ∅ .

Recalling (218), this proves that(AΓ∩[0, 1
2 ])∩( 1

2−
1
2γj+1,

1
2−

1
2γj) = ∅. Combining

this with the apparent(Aγ ∩ ( 1
2 , 1])∩ ( 1

2 −
1
2γj+1,

1
2 −

1
2γj) = ∅, we then obtain that

AΓ ∩ ( 1
2 −

1
2γj+1,

1
2 −

1
2γj) = ∅. ButA(X) ⊆ AΓ, henceA(X) ∩ ( 1

2 −
1
2γj+1,

1
2 −

1
2γj) = ∅, as desired.

Lemma 26
Consider a fuzzy subsetX ∈ P̃(E) such thatΓ(X) is finite and further suppose that
Γ = {γ0, . . . , γm} ⊇ Γ(X) is chosen such that0 = γ0 < γ1 < · · · < γm−1 < γm =
1. Then for allj ∈ {0, . . . ,m− 1} and allγ ∈ (γj , γj+1),

Xmin
γ = X

>
1
2 +

1
2γj

= X
≥ 1

2 +
1
2γj+1

Xmax
γ = X

≥ 1
2−

1
2γj

= X
>

1
2−

1
2γj+1

.
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Proof Considerj ∈ {0, . . . ,m − 1} andγ ∈ (γj , γj+1). Then in particularγ > 0
and by Def. 82,

Xmin
γ = X

≥ 1
2

+ 1
2γ .

We now recall from L-25 thatA(X) ∩ ( 1
2 + 1

2γj ,
1
2 + 1

2γj+1) = ∅, i.e. µX(e) /∈
( 1

2 + 1
2γj ,

1
2 + 1

2γj+1 for all e ∈ E. It is therefore immediate fromγj < γj+1 and the
definition ofα-cuts and strictα-cuts that indeedXmin

γ = X
>

1
2 +

1
2γj

= X
≥ 1

2 +
1
2γj+1

,

see Def. 75 and Def. 76.

Let us now considerXmax
γ . Becauseγ > 0, we obtain from Def. 82 thatXmax

γ =
X
>

1
2−

1
2γ

. In addition, we know from L-25 thatA(X) ∩ ( 1
2 −

1
2γj+1,

1
2 −

1
2γj) =

∅. Again, the definition ofα-cuts and strictα-cuts lets us conclude thatXmax
γ =

X
≥ 1

2−
1
2γj

= X
>

1
2−

1
2γj+1

, knowing thatγj < γj+1.

Proof of Theorem 264

Consider a finite base setE 6= ∅ and a fuzzy subsetX ∈ P̃(E). Further let a choice of
Γ = {γ0, . . . , γm} ⊇ Γ(X) be given such that0 = γ0 < γ1 < · · · < γm−1 < γm = 1.
For j = 0, we first observe that

Xmin
γ0

= X
>

1
2

by L-26

= {e ∈ E : µX(e) > 1
2} by Def. 76

= {e ∈ E : µX(e) = 1
2 + 1

2γk for somek ∈ {1, . . . ,m}}

i.e.

Xmin
γ0

= ∪̇{µ−1
X ( 1

2 + 1
2γk) : k ∈ {1, . . . ,m}} , (451)

where ‘∪̇’ denotes the disjoint union; the last two steps are valid becauseA(X) ⊆ AΓ

by (219) and henceA(X) ∩ ( 1
2 , 1] ⊆ AΓ ∩ ( 1

2 , 1] = { 1
2 + 1

2γk : k ∈ {1, . . . ,m}}
by (218). Due to the fact thatXmin

γ0
resolves into the disjoint union of its subsets

µ−1
X ( 1

2 + 1
2γk), equation (451) permits us to compute the cardinality ofXmin

γ0
by simply

adding up the cardinalities of all subsets which participate in the disjoint union. Hence

`(0) = |Xmin
γ0
| =

m∑
k=1

|µ−1
X ( 1

2 + 1
2γk)| =

m∑
k=1

H+(k) (452)

by (214) and (220). Now turning toXmax
γ0

, it is easily shown that

Xmax
γ0

= X
≥ 1

2
by L-26

= X
>

1
2
∪̇ {e ∈ E : µX(e) = 1

2}
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where the last step is immediate from Def. 75 and Def. 76 becauseA(X) ∩ ( 1
2 ,

1
2 +

1
2γ1) ⊆ AΓ∩( 1

2 ,
1
2 + 1

2γ1) = ∅, see L-25. Gaining from L-26, we can further simplify
this into

Xmax
γ0

= Xmin
γ0
∪̇ {e ∈ E : µX(e) = 1

2} .

Again, the disjoint union renders it possible to compute the total number of elements
in Xmax

γ0
by summing up the constituent cardinalities. Utilizing (214) and (220), we

therefore obtain that

u(0) = |Xmax
γ0
| = `(0) +H+(0) . (453)

Next we consider the case thatj > 0. It is then apparent that

Xmax
γj

= X
≥ 1

2−
1
2γj

by L-26

= X
>

1
2−

1
2γj
∪̇ {e ∈ E : µX(e) = 1

2 −
1
2γj} by Def. 75, Def. 76

= Xmax
γj−1
∪̇ {e ∈ E : µX(e) = 1

2 −
1
2γj} , by L-26

i.e.

Xmax
γj

= Xmax
γj−1
∪̇ {e ∈ E : µX(e) = 1

2 −
1
2γj} .

Due to the disjoint union, we then obtain for the corresponding cardinalities that

|Xmax
γj
| = |Xmax

γj−1
|+ |{e ∈ E : µX(e) = 1

2 −
1
2γj}| .

Recalling the abbreviations introduced in (215) and (221), this proves the desired

u(j) = u(j − 1) +H−(j) .

By similar reasoning, we conclude that

Xmin
γj−1

= X
≥ 1

2 +
1
2γj

by L-26

= X
>

1
2 +

1
2γj
∪̇ {e ∈ E : µX(e) = 1

2 + 1
2γj} by Def. 75, Def. 76

= Xmin
γj ∪̇ {e ∈ E : µX(e) = 1

2 + 1
2γj} , by L-26

i.e.

Xmin
γj−1

= Xmin
γj ∪̇ {e ∈ E : µX(e) = 1

2 + 1
2γj} .

Turning to cardinalities, this shows that

|Xmin
γj−1
| = |Xmin

γj |+ |{e ∈ E : µX(e) = 1
2 + 1

2γj}|

or equivalently,

|Xmin
γj | = |X

min
γj−1
| − |{e ∈ E : µX(e) = 1

2 + 1
2γj}| .

Recalling abbreviations (214) and (220), this finally becomes

`(j) = `(j − 1)−H+(j) ,

as desired.
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D.26 Proof of Theorem 265

Lemma 27
Let `1, `2, `3, u1, u2, u3 ∈ N be given integers with̀1 ≤ u1, `2 ≤ u2, `3 ≤ u3,
`1 ≤ u2 + `3 ≤ u1 and`1 ≤ `2 + u3 ≤ u1. Further let

R = {(c1, c2) : `1 ≤ c1 ≤ u1,max(c1 − u3, `2) ≤ c2 ≤ min(c1 − `3, u2)} .

a. If u2 + `3 > 0, then

max{c2/c1 : (c1, c2) ∈ R, c1 > 0} = u2
u2+`3

.

b. If `2 + u3 > 0, then

min{c2/c1 : (c1, c2) ∈ R, c1 > 0} = `2
`2+u3

.

Proof Let us suppose that`1, `2, `3, u1, u2, u3 satisfy the requirements of the lemma.
We first consider parta. of the lemma which is concerned with the maximal proportion.
Hence let us assume thatu2 + `3 > 0. For a given choice ofc1 ∈ {`1, . . . , u1} with
c1 > 0, we first notice that

max{c2/c1 : max(c1 − u3, `2) ≤ c2 ≤ min(c1 − `3, u2)} = min(c1 − `3, u2)/c1 ,

which is apparent from the definition ofR. Becausec1 was arbitrary, this means that

max{c2/c1 : (c1, c2) ∈ R, c1 > 0}
= max{max{c2/c1 : max(c1 − u3, `2) ≤ c2 ≤ min(c1 − `3, u2)} :

max(`1, 1) ≤ c1 ≤ u1}

can be further simplified into

max{c2/c1 : (c1, c2) ∈ R, c1 > 0}
= max{min(c1 − `3, u2)/c1 : max(`1, 1) ≤ c1 ≤ u1} ,

(454)

Let us now consider a choice ofc1 ≤ u2+`3, c1 > 0. Thenc1−`3 ≤ u2+`3−`3 = u2,
i.e.min(c1 − `3, u2) = c1 − `3. Therefore

min(c1−`3,u2)
c1

= c1−`3
c1

≤ c1−`3+(u2+`3−c1)
c1+(u2+`3−c1) becauseu2 + `3 − c1 ≥ 0

= u2
u2+`3

,

i.e.

min(c1−`3,u2)
c1

≤ min((u2+`3)−`3,u2)
u2+`3

= u2
u2+`3

. (455)
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For c1 ≥ u2 + `3, we apparently havec1 − `3 ≥ u2 and in turn,

min(c1−`3,u2)
c1

= u2
c1

≤ u2
u2+`3

, becausec1 ≤ u2 + `3

i.e.

min(c1−`3,u2)
c1

≤ min((u2+`3)−`3,u2)
u2+`3

= u2
u2+`3

.

Combining this with the above (455), we obtain that

max{min(c1−`3,u2)
c1

: min(`1, 1) ≤ c1 ≤ u1} = u2
u2+`3

,

provided thatu2 + `3 > 0. Recalling (454), this completes the proof of parta.

Next we consider partb. of the lemma. Hence suppose that`2 + u3 > 0. We first
rewrite

min{c2/c1 : (c1, c2) ∈ R, c1 > 0}
= min{min{c2/c1 : max(c1 − u3, `2) ≤ c2 ≤ min(c1 − `3, u2)} :

max(`1, 1) ≤ c1 ≤ u1} .

Now we identify the embedded minima. These are obviously attained for the minimal
choice ofc2 givenc1, i.e. forc2 = max(c1−u3, `2). The above equation then becomes

min{c2/c1 : (c1, c2) ∈ R, c1 > 0} = min{max(c1 − u3, `2)/c1,min(`1, 1) ≤ c1 ≤ u1} .
(456)

Let us now considerc1 ≤ `2 + u3. Thenc1 − u3 ≤ `2 + u3 − u3 = `2, i.e.max(c1 −
u3, `2) = `2. Therefore

max(c1−u3,`2)
c1

= `2
c1

≥ `2
`2+u3

, becausec1 ≤ `2 + u3

i.e.

max(c1−u3,`2)
c1

≥ max((`2+u3)−u3,`2)
`2+u3

= `2
`2+u3

. (457)

In the remaining case thatc1 ≥ `2 + u3, we know thatc1 − u3 ≥ `2 + u3 − u3 = `2,
i.e.max(c1 − u3, `2) = c1 − u3. Therefore

max(c1−u3,`2)
c1

= c1−u3
c1

≥ c1−u3+(`2+u3−c1)
c1+(`2+u3−c1) becausè2 + u3 − c1 < 0 and`2 + u3 > 0

= `2
`2+u3

= max((`2+u3)−u3,`2)
`2+u3

.
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Combining this with (457) proves that

min{max(c1 − u3, `2)/c1 : max(`1, 1) ≤ c1 ≤ u1} = `2/(`2 + u3) .

The claim of partb. is therefore apparent from (456).

Lemma 28
Letf : I −→ I be a nondecreasing mapping and let`1, `2, `3, u1, u2, u3 ∈ N be given
integers with̀ 1 ≤ u1, `2 ≤ u2, `3 ≤ u3, `1 ≤ u2 + `3 ≤ u1 and`1 ≤ `2 + u3 ≤ u1.
Further let

R = {(c1, c2) : `1 ≤ c1 ≤ u1,max(c1 − u3, `2) ≤ c2 ≤ min(c1 − `3, u2)} .

a. If u2 + `3 > 0, then

max{f(c2/c1) : (c1, c2) ∈ R, c1 > 0} = f
(

u2
u2+`3

)
.

b. If `2 + u3 > 0, then

min{f(c2/c1) : (c1, c2) ∈ R, c1 > 0} = f
(

`2
`2+u3

)
.

Proof Both claims of the lemma are immediate from L-27, noting thatf is nonde-
creasing, and hence preserves minima and maxima.

Proof of Theorem 265

Let Q : P(E)2 −→ I be a given proportional quantifier on a finite base set. We then
know from Def. 166 thatQ can be expressed as

Q(Y1, Y2) = q(c1, c2) =
{
f(c2/c1) : c1 > 0
v0 : c1 = 0 (458)

for all Y1, Y2 ∈ P(E), wherec1 = |Y1|, c2 = |Y1 ∩ Y2|, f : I −→ I andv0 ∈ I. As al-
ready stated in the theorem, we shall also assume that the mappingf is nondecreasing.
In the following, I will again utilize the notational conventions introduced in the proof
of Th-263, i.e. the subscriptγ will usually be dropped, and I will often write|X|min

and|X|max rather than|Xmin| and|Xmax|, respectively.

Now consider a choice of fuzzy argumentsX1, X2 ∈ P̃(E) and a choice of the
cutting parameterγ ∈ I. We then know from Th-263 and Def. 100 that

>Q,X1,X2(γ) = max{q(c1, c2) : (c1, c2) ∈ R}

and

⊥Q,X1,X2(γ) = max{q(c1, c2) : (c1, c2) ∈ R}
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where

R = {(c1, c2) : `1 ≤ c1 ≤ u1,max(c1 − u3, `2) ≤ c2 ≤ min(c1 − `3, u2)} ,

and`1, `2, `3, u1, u2, u3 are defined as in Th-263. We notice thatc2 = |Y1 ∩ Y2| ≤
|Y1| = c1. Therefore(0, c2) ∈ R is possible only ifc2 = 0 as well. We can therefore
decomposeR into R′ = R \ {(0, 0)}, which is known to contain pairs(c1, c2) ∈ R′
with c1 > 0 only, and inR′′ = R ∩ {(0, 0)}. It is then apparent from (458) that

{q(c1, c2) : (c1, c2) ∈ R′} = {f(c2/c1) : (c1, c2) ∈ R′}

and

{q(c1, c2) : (c1, c2) ∈ R′′} = {v0 : (c1, c2) ∈ R′′} =
{
{v0} : R′′ 6= ∅ :
∅ : R′′ = ∅ .

Noticing thatR = R′ ∪̇ R′′, the above renderings of>Q,X1,X2(γ) and⊥Q,X1,X2(γ)
can then be split into

>Q,X1,X2(γ) = max(max{f(c2/c1) : (c1, c2) ∈ R′},max{v0 : (c1, c2) ∈ R′′})

=
{

max(max{f(c2/c1) : (c1, c2) ∈ R′}, v0) : R′′ 6= ∅

max{f(c2/c1) : (c1, c2) ∈ R′} : R′′ = ∅

(459)

⊥Q,X1,X2(γ) = min(min{f(c2/c1) : (c1, c2) ∈ R′},min{v0 : (c,c2) ∈ R′′})

=
{

min(min{f(c2/c1) : (c1, c2) ∈ R′}, v0) : R′′ 6= ∅

min{f(c2/c1) : (c1, c2) ∈ R′} : R′′ = ∅ .

(460)

Let us also make sure in advance that the preconditions of lemma L-28 are satisfied.
We clearly havèj = Xmin

j ≤ Xmax
j = uj for j ∈ {1, 2, 3} becauseXj

min
γ ⊆ Xj

max
γ .

In addition,

`1 = |X1|min

= |(Xmin
1 ∩Xmax

2 ) ∪̇ (Xmin
1 ∩ ¬Xmax

2 )|
= |Xmin

1 ∩Xmax
2 |+ |Xmin

1 ∩ ¬Xmax
2 |

= |Xmin
1 ∩Xmax

2 |+ |X1 ∩ ¬X2|min by Th-61

≤ |Xmax
1 ∩Xmax

2 |+ |X1 ∩ ¬X2|min becauseXmin
1 ⊆ Xmax

1

= |X1 ∩X2|max + |X1 ∩ ¬X2|min by Th-61

= u2 + `3 .
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Similarly,

u2 + `3 = |X1 ∩X2|max + |X1 ∩ ¬X2|min

= |Xmax
1 ∩Xmax

2 |+ |Xmin
1 ∩ ¬Xmax

2 | by Th-61

≤ |Xmax
1 ∩Xmax

2 |+ |Xmax
1 ∩ ¬Xmax

2 | becauseXmin
1 ⊆ Xmax

1

= |(Xmax
1 ∩Xmax

2 ) ∪̇ (Xmax
1 ∪̇ ¬Xmax

2 )|
= |X1|max

= u1 .

Hence

`1 ≤ u2 + `3 ≤ u1 , (461)

as desired. We further observe that

`1 = |X1|min

= |(Xmin
1 ∩Xmax

2 ) ∪̇ (Xmin
1 ∩ ¬Xmax

2 )|
= |Xmin

1 ∩Xmax
2 |+ |Xmin

1 ∩ ¬Xmax
2 |

≤ |Xmax
1 ∩Xmax

2 |+ |Xmin
1 ∩ ¬Xmax

2 | becauseXmin
1 ≤ Xmax

1

= |X1 ∩X2|max + |X1 ∩ ¬X2|min by Th-61

= u2 + `3

and

u2 + `3 = |X1 ∩X2|max + |X1 ∩ ¬X2|min

= |Xmax
1 ∩Xmax

2 |+ |Xmin
1 ∩ ¬Xmax

2 | by Th-61

≤ |Xmax
1 ∩Xmax

2 |+ |Xmax
1 ∩ ¬Xmax

2 | becauseXmin
1 ⊆ Xmax

1

= |(Xmax
1 ∩Xmax

2 ) ∪̇ (Xmax
1 ∩ ¬Xmax

2 )|
= |X1|max

= u1 ,

i.e. it also holds that

`1 ≤ `2 + u3 ≤ u1 , (462)

as required for applying L-28.
Based on these preparations, we can now consider the proposed formula forqmin.
Following the piecewise definition ofqmin given in the theorem, the following cases
must be discerned.

1. `1 > 0.
We then know from Th-263 thatc1 ≥ `1 > 0 for all (c1, c2) ∈ R, i.e.R′ = R
andR′′ = ∅. In addition, we know from (462) that`2 +u3 ≥ `1 > 0. Therefore

⊥Q,X1,X2(γ) = min{f(c2/c1) : (c1, c2) ∈ R′} by (460)

= f(`2/(`2 + u3)) by L-28

= qmin(`1, `2, u1, u3) ,
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as desired.

2. `1 = 0.
Then(0, 0) ∈ R andR′′ = {(0, 0)} 6= ∅.

a. In the case that̀2 + u3 > 0, L-28 is applicable. We then obtain

⊥Q,X1,X2(γ) = min(min{f(c2/c1) : (c1, c2) ∈ R′}, v0) by (460)

= min(f(`2/(`2 + u3)), v0) by L-28

= qmin(`1, `2, u1, u3) .

b. If `2 + u3 = 0, is is useful to discern two further subcases.

i. u1 > 0. In this case, we first notice that`2 + u3 = 0 entails that

u3 = |X1 ∩ ¬X2|max = 0 (463)

and

`2 = |X1 ∩X2|min = 0 . (464)

Therefore

|Xmax
1 ∩ ¬Xmax

2 | ≤ |Xmax
1 ∩ ¬Xmin

2 | becauseXmin
2 ⊆ Xmax

2

= |X1 ∩ ¬X2|max by Th-61

= 0 , by (463)

i.e.

|Xmax
1 ∩ ¬Xmax

2 | = 0 . (465)

In turn

u1 = |Xmax
1 |

= |(Xmax
1 ∩Xmax

2 ) ∪̇ (Xmax
1 ∩ ¬Xmax

2 )|
= |Xmax

1 ∩Xmax
2 |+ |Xmax

1 ∩ ¬Xmax
2 |

= |Xmax
1 ∩Xmax

2 | by (465)

= |X1 ∩X2|max by Th-61

= u2 ,

i.e.

u2 = u1 . (466)

We can further conclude from (463) and`3 ≤ u3 that

`3 = 0 (467)
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as well. Consequently, the relationR becomes

R = {(c1, c2) : `1 ≤ c1 ≤ u1,

max(c1 − u3, `2) ≤ c2 ≤ min(c1 − `3, u2)}
= {(c1, c2) : `1 ≤ c1 ≤ u1,

max(c1 − 0, 0) ≤ c2 ≤ min(c1 − 0, u1) by (463), (464),

(467) and (466)

= {(c1, c2) : `1 ≤ c1 ≤ u1, c1 ≤ c2 ≤ c1} , becausec1 ≤ u1

i.e.

R = {(c1, c1) : `1 ≤ c1 ≤ u1} . (468)

Due to the fact thatu1 > 0, we know that(u1, u1) ∈ R′, i.e.R′ 6= ∅.
Therefore

min{f(c2/c1) : (c1, c2) ∈ R′}
= min{f(c1/c1) : max(`1, 1) ≤ c1 ≤ u1} by (468)

= min{f(1)} ,

and hence

min{f(c2/c1) : (c1, c2) ∈ R′} = f(1) . (469)

Let us also recall that̀1 = 0 entails thatR′′ 6= ∅. Therefore

⊥Q,X1,X2(γ) = min(min{f(c1/c1) : (c1, c2) ∈ R′}, v0) by (460)

= min(f(1), v0) by (469)

= qmin(`1, `2, u1, u3) .

ii. Finally if u1 = 0, thenR = {(0, 0)} and in turn,

⊥Q,X1,X2(γ) = min{q(c1, c2) : (c1, c2) ∈ R} by Th-263

= min{q(0, 0)} becauseR = {(0, 0)}
= q(0, 0)
= v0 by (458)

= qmin(`1, `2, u1, u3) .

This completes the proof that indeed⊥Q,X1,X2(γ) = qmin(`1, `2, u1, u3), and we shall
address the additional claim of the theorem that>Q,X1,X2(γ) = qmax(`1, `3, u1, u2).
Again, it is convenient to follow the piecewise definition ofqmax presented in the
theorem, and consequently discern the following cases.

1. `1 > 0. Thenc1 ≥ `1 > 0 for all (c1, c2) ∈ R, i.e.R′ = R andR′′ = ∅.
Therefore

>Q,X1,X2(γ) = max{f(c2/c1) : (c1, c2) ∈ R′} by (459)

= f(u2/(u2 + `3)) by L-28

= qmax(`1, `3, u1, u2) .
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2. `1 = 0. Then in particular̀ 2 = |X1 ∩X2|min ≤ |X1|min = `1 = 0, i.e.`2 = 0
as well. This shows that(0, 0) ∈ R and thereforeR′′ = {(0, 0)} 6= ∅.

a. u2 + `3 > 0. In this case, we can profit from L-28, viz

>Q,X1,X2(γ) = max(max{f(c2/c1) : (c1, c2) ∈ R′, v0) by (459)

= max(f(u2/(u2 + `3)), v0) by L-28

= qmax(`1, `3, u1, u2) ,

as desired.

b. In the remaining case thatu2 + `3 = 0, we know that

u2 = |X1 ∩X2|max = 0 , (470)

in particular

`2 = 0 , (471)

becausè2 = |Y1 ∩ Y2|min ≤ |Y1 ∩ Y2|max = u2 = 0; and

`3 = 0 . (472)

We shall discern two more subcases.

i. u1 > 0. In this case we observe that|Xmax
1 ∩ Xmin

2 | ≤ |Xmax
1 ∩

Xmax
2 | = |X1 ∩X2|max = u2 = 0 by Th-61 and (470), in particular

|Xmax
1 ∩Xmin

2 | = 0 . (473)

In turn

u1 = |Xmax
1 |

= |(Xmax
1 ∩Xmin

2 ) ∪̇ (Xmax
1 ∩ ¬Xmin

2 )|
= |Xmax

1 ∩Xmin
2 |+ |Xmax

1 ∩ ¬Xmin
2 |

= |Xmax
1 ∩ ¬Xmin

2 | by (473)

= |X1 ∩ ¬X2|max by Th-61

= u3 ,

i.e.

u1 = u3 (474)

The relationR therefore becomes

R

= {(c1, c2) : `1 ≤ c1 ≤ u1,

max(c1 − u3, `2) ≤ c2 ≤ min(c1 − `3, u2)} by Th-263

= {(c1, c2) : `1 ≤ c1 ≤ u1,

max(c1 − u1, 0) ≤ c2 ≤ min(c1 − 0, 0)} by (474), (471), (472) and (470)

= {(c1, c2) : `1 ≤ c1 ≤ u1, 0 ≤ c2 ≤ 0} becausec1 − u1 ≤ u1 − u1 = 0
= {(c1, 0) : `1 ≤ c1 ≤ u1} .
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Therefore

max{f(c2/c1) : (c1, c2) ∈ R′} = max{f(0)} = f(0) , (475)

noticing thatR′ 6= ∅ because(u1, 0) ∈ R′. From this we obtain the
desired

>Q,X1,X2(γ) = max(max{q(c2/c1) : (c1, c2) ∈ R′, v0) by (459)

= max(f(0), v0) by (475)

= qmax(`1, `3, u1, u2) .

ii. u1 = 0. ThenR = {(0, 0)}, i.e.

>Q,X1,X2(γ) = max{q(c1, c2) : (c1, c2) ∈ R} by Th-263

= max{q(0, 0)} becauseR = {(0, 0)}
= max{v0} by (458)

= v0

qmax(`1, `3, u1, u2) .

This completes proof of the second claim of the theorem, i.e. the equality

>Q,X1,X2(γ) = qmax(`1, `3, u1, u2)

is indeed valid.

D.27 Proof of Theorem 266

Let Q : P(E)2 −→ I be the given proportional quantifier based onf : I −→ I and
v0 ∈ I. Further letV ∈ P(E), V 6= ∅ be a crisp subset ofE, andX ∈ P̃(E) be a
fuzzy subset ofE. In addition, letX ′ ∈ P̃(V ) be defined as stated in the theorem, i.e.

µX′(e) = µX(e) (476)

for all e ∈ V . Furthermore, we shall suppose thatq′ : {0, . . . , |V |} −→ I is defined
by q′(c) = f(c/|V |) for all c ∈ {0, . . . , |V |}. Based onq′, we can then defineQ′ :
P(V ) −→ I by Q′(Y ) = q′(|Y |) for all Y ∈ P(V ). In order to prove the claim of
the theorem, it is convenient to introduce an intermediate quantifierQ∗ : P(E) −→ I,
which I define as follows,

Q∗(Y ) = Q(V, Y ) (477)

for all Y ∈ P(E). In terms of the constructions introduced in Chap. 4, we can recast
this

Q∗ = Qτ1/V . (478)

It is also instructive to notice that

Q∗ = Q∗∩/V , (479)
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because

Q∗∩/V (Y ) = Q∗(Y ∩ V ) by Def. 33, Def. 34

= Q(V, Y ∩ V ) by (477)

= Q(V, Y ) becauseQ conservative, see Def. 166

= Q∗(Y ) , by (477)

for all Y ∈ P(E). In the following, leti denote the inclusioni : V −→ E, i.e.i(e) = e
for all e ∈ V . It is then apparent from (476) and Def. 21 that in fact,

ˆ̂ı(X ′) = X ∩ V . (480)

In addition,Q′ can be defined in terms ofQ∗ according to the obvious ruleQ′(Y ) =
Q(V, Y ) = Q∗(Y ) = Q∗(̂ı(Y )) for all Y ∈ P(V ), i.e.

Q′ = Q∗ ◦ ı̂ . (481)

Hence in every DFSF ,

F(Q)(V,X) = F(Q)τ1/V (X) by Def. 29, Def. 34

= F(Qτ1/V )(X) by Th-9, Th-15

= F(Q∗)(X) by (478)

= F(Q∗∩/V )(X) by (479)

= F(Q∗)∩̃/V (X) by Th-14, Th-15

= F(Q∗)(X ∩ V ) by Def. 33, Def. 34,V crisp

= F(Q∗)(̂̂ı(X ′)) by (480)

= F(Q∗ ◦ ı̂)(X ′) by (Z-6), Th-21

= F(Q′)(X ′) , by (481)

as desired.

D.28 Proof of Theorem 267

Lemma 29
LetE 6= ∅ be a finite base set,X ∈ P̃(E). Then

{|Y | : Y ∈ Tγ(X)} = {k : |Xmin
γ | ≤ k ≤ |Xmax

γ |} ,

for all γ ∈ I.

Proof See [48, L-82, p. 209]

Lemma 30
LetE 6= ∅ be a finite base set,X ∈ P̃(E) andγ ∈ I. Further letU, V ∈ P(E). Then
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a. |U ∩Xmin
γ ∩ V | = |U ∩ V | − |U ∩ ¬Xmin

γ ∩ V |;

b. |U ∩Xmax
γ ∩ V | = |U ∩ V | − |U ∩ ¬Xmax

γ ∩ V |;

c. |U ∩Xmax
γ ∩ ¬Xmin

γ ∩ V | = |U ∩Xmax
γ ∩ V | − |U ∩Xmin

γ ∩ V |.

Proof Let E be the given finite base set. In order to simplify notation, I will drop
the subscriptγ and abbreviateXmin = Xmin

γ , Xmax = Xmax
γ etc. Parta. andb. are

trivial: let Y ∈ {Xmin, Xmax}. Then

U ∩ V = (U ∩ Y ∩ V ) ∪̇ (U ∩ ¬Y ∩ V ) .

Due to the disjoint union, the total cardinality can be computed by a simple summation,
i.e.

|U ∩ V | = |U ∩ Y ∩ V |+ |U ∩ ¬Y ∩ V | .

In particular|U ∩ Y ∩ V | = |U ∩ V | − |U ∩ ¬Y ∩ V | for V ∈ {Xmin, Xmax}, i.e.
parta. andb. are indeed valid.
Part c. of the lemma is straightforward fromXmin ⊆ Xmax. ThereforeXmin =
Xmax ∩Xmin and in turn,

U ∩Xmax ∩ V = (U ∩Xmax ∩Xmin ∩ V ) ∪̇ (U ∩Xmax ∩ ¬Xmin ∩ V )

= (U ∩Xmin ∩ V ) ∪̇ (U ∩Xmax ∩ ¬Xmin ∩ V ) .

The corresponding cardinalities then become

|U ∩Xmax ∩ V | = |U ∩Xmin ∩ V |+ |U ∩Xmax ∩ ¬Xmin ∩ V | .

In particular|U ∩ Xmax ∩ ¬Xmin ∩ V | = |U ∩ Xmax ∩ V | − |U ∩ Xmin ∩ V |, as
desired.

Proof of Theorem 267

LetE 6= ∅ be a finite base set,X1, X2, X3 ∈ P̃(E) andγ ∈ I. Due to the fact thatγ
is fixed throughout the proof, I will seize the conventions made in the proof of Th-263
and drop the subscriptγ. In particular, I abbreviateXmin = Xmin

γ andXmax = Xmax
γ .

In order to improve readability of the proof, I will further abbreviate|X|min = |Xmin|
and|X|max = |Xmax|. The coefficients referenced in (234) then become:

`1 = |X1 ∩X3|min

`2 = |X2 ∩X3|min

`3 = |X1 ∩ ¬X2 ∩X3|min

`4 = |¬X1 ∩X2 ∩X3|min

u1 = |X1 ∩X3|max

u2 = |X2 ∩X3|max

u3 = |X1 ∩ ¬X2 ∩X3|max

u4 = |¬X1 ∩X2 ∩X3|max
.

512



Let us now consider some choice of(Y1, Y2, Y3) ∈ Tγ(X1, X2, X3). We can then
define the following cardinality coefficients:

a = |Y2 ∩ Y3 ∩ ¬Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 | (482)

b = |Y2 ∩ Y3 ∩ ¬Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 | (483)

c = |Y2 ∩ Y3 ∩ ¬Xmax
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 | (484)

d = |Y2 ∩ Y3 ∩ ¬Xmax
1 ∩Xmin

2 ∩Xmin
3 | = |¬Xmax

1 ∩Xmin
2 ∩Xmin

3 | (485)

e = |Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmax

3 ∩ ¬Xmin
3 | (486)

f = |Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmin

3 | (487)

g = |Y1 ∩ Y3 ∩Xmin
1 ∩ ¬Xmax

2 ∩Xmax
3 ∩ ¬Xmin

3 | (488)

h = |Y1 ∩ Y3 ∩Xmin
1 ∩ ¬Xmax

2 ∩Xmin
3 | = |Xmin

1 ∩ ¬Xmax
2 ∩Xmin

3 | (489)

i1 = |Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 | (490)

i2 = |Y2 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 | (491)

j1 = |Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 | (492)

j2 = |Y2 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 | . (493)

We further let

k1 = |Y1 ∩ Y2 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

= |Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 | (494)

k2 = |¬Y1 ∩ Y2 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

= |¬Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 | (495)

and

l = |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmin

3 | . (496)

In addition, we abbreviate

m1 = |Y1 ∩ ¬Y2 ∩ Y3 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

= |¬Y2 ∩ Y3 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 | (497)

m2 = |Y1 ∩ Y2 ∩ Y3 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

= |Y2 ∩ Y3 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 | (498)

and

n = |Y2 ∩ Y3 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 | . (499)

Finally, we abbreviate

o = |Y1 ∩ Y3 ∩Xmin
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
= |Y2 ∩ Y3 ∩Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 | , (500)

p = |Y1 ∩ Y3 ∩Xmin
1 ∩Xmin

2 ∩Xmin
3 |

= |Y2 ∩ Y3 ∩Xmin
1 ∩Xmin

2 ∩Xmin
3 |

= |Xmin
1 ∩Xmin

2 ∩Xmin
3 | ,

(501)
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for all (Y1, Y2, Y3) ∈ Tγ(X1, X2, X3), where the equality in (485) is valid because
X2

min ⊆ Y2 andX3
min ⊆ Y3. The equality in (489) is valid becauseX1

min ⊆ Y1 and
X3

min ⊆ Y3. The equalities in (494) and (495) are valid becauseXmin
2 ⊆ Y2. The

equalities in (497) and (498) are valid becauseXmin
1 ⊆ Y1. The equality (500) is valid

becauseXmin
1 ⊆ Y1 andXmin

2 ⊆ Y2. Finally, the equalities in (501) are valid because
Xmin

1 ⊆ Y1,Xmin
2 ⊆ Y2 andXmin

3 ⊆ Y3.

As to the possible values of the coefficientsa, b, c, d, e, f , g, h, i1, i2, j1, j2, k1, k2, l,
m1, m2, n, o andp, it is obvious that by choosing(Y1, Y2, Y3) ∈ Tγ(X1, X2, X3) ap-
propriately, all combinations of values in the following ranges can be assumed (which
also exhaust all possible options):

a ∈ {0, . . . , |¬Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |} (502)

b ∈ {0, . . . , |¬Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 |} (503)

c ∈ {0, . . . , |¬Xmax
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |} (504)

e ∈ {0, . . . , |Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmax

3 ∩ ¬Xmin
3 |} (505)

f ∈ {0, . . . , |Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmin

3 |} (506)

g ∈ {0, . . . , |Xmin
1 ∩ ¬Xmax

2 ∩Xmax
3 ∩ ¬Xmin

3 |} (507)

i1 ∈ {0, . . . , |Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |} (508)

i2 ∈ {0, . . . , |Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |} (509)

j1 ∈ {0, . . . , |Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |} (510)

j2 ∈ {0, . . . , |Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |} (511)

k1 ∈ {0, . . . , |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |} (512)

k2 ∈ {0, . . . , |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 | − k1} (513)

l ∈ {0, . . . , |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmin

3 |} (514)

m1 ∈ {0, . . . , |Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |} (515)

m2 ∈ {0, . . . , |Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 | −m1} (516)

n ∈ {0, . . . , |Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 |} (517)

o ∈ {0, . . . , |Xmin
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |} . (518)

Next I will expressc1 = |Y1 ∩ Y3| andc2 = |Y2 ∩ Y3| in terms of these cardinality
coefficients. For that purpose, let us first conclude fromXmin

i ⊆ Xmax
i thatXmax

i =
Xmin
i ∪̇(Xmax

i ∩¬Xmin
i ), i ∈ {1, 2, 3}. Further utilizing the apparentXmax

1 ∩Xmax
3 ∩

¬Xmax
1 = ∅ andXmax

1 ∩ Xmax
3 ∩ ¬Xmax

3 = ∅, I now resolve(X1 ∩X3)max =
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Xmax
1 ∩Xmax

2 into a disjoint union of the following components,

Xmax
1 ∩Xmax

3

= (Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmin

3 )

∪̇ (Xmin
1 ∩ ¬Xmax

2 ∩Xmax
3 ∩ ¬Xmin

3 )

∪̇ (Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 )

∪̇ (Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 )

∪̇ (Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmin

3 )

∪̇ (¬Y2 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (Y2 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (Xmin
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 )

∪̇ (Xmin
1 ∩Xmin

3 ) .

Next we observe thatY1 ∩ Y3 = (Y1 ∩ Y3) ∩ (Xmax
1 ∩ Xmax

2 ) becauseY1 ⊆ Xmax
1

andY3 ⊆ Xmax
3 . By expandingXmax

1 ∩ Xmax
3 into the above disjoint union, and by

utilizing the law of distributivity to moveY1∩Y3 into the disjoint union, we now obtain

Y1 ∩ Y3 = (Y1 ∩ Y3) ∩ (Xmax
1 ∩Xmax

3 )

= (Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmin

3 )

∪̇ (Y1 ∩ Y3 ∩Xmin
1 ∩ ¬Xmax

2 ∩Xmax
3 ∩ ¬Xmin

3 )

∪̇ (Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 )

∪̇ (Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 )

∪̇ (Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmin

3 )

∪̇ (Y1 ∩ ¬Y2 ∩ Y3 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (Y1 ∩ Y2 ∩ Y3 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (Y1 ∩ Y3 ∩Xmin
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 )

∪̇ (Y1 ∩ Y3 ∩Xmin
1 ∩Xmin

3 ) .

Due to the fact thatY1 ∩ Y3 is now resolved into a disjoint union of components,
we can compute the cardinality ofY1 ∩ Y3 by a summation of the cardinalities of all
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components, i.e.

c1 = |Y1 ∩ Y3|
= |Y1 ∩ Y3 ∩Xmax

1 ∩ ¬Xmin
1 ∩ ¬Xmax

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Y1 ∩ Y3 ∩Xmax

1 ∩ ¬Xmin
1 ∩ ¬Xmax

2 ∩Xmin
3 |

+ |Y1 ∩ Y3 ∩Xmin
1 ∩ ¬Xmax

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Y1 ∩ Y3 ∩Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+ |Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Y1 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmin

3 |
+ |Y1 ∩ ¬Y2 ∩ Y3 ∩Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Y1 ∩ Y2 ∩ Y3 ∩Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Y1 ∩ Y3 ∩Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Y1 ∩ Y3 ∩Xmin
1 ∩Xmin

3 | .

This can be further simplified if we notice thatXmin
1 ⊆ Y1 andXmin

3 ⊆ Y3, i.e.
Y1 ∩ Y3 ∩Xmin

1 ∩Xmin
3 = Xmin

1 ∩Xmin
3 = (X1 ∩X3)min, see Th-61. Now utilizing

the coefficientse, f, g, i1, j1, k1, l,m1,m2 ando defined by (486), (487), (488), (490),
(492), (494), (496), (497), (498) and (500), respectively, and referring to the coefficient
`1 = |X1 ∩X3|min, the above equality can now be rewritten as

c1 = e+ f + g + i1 + j1 + k1 + l +m1 +m2 + o+ `1 . (519)

In order to expressc2 = |Y2 ∩ Y3| in terms of the coefficients as well, we can proceed
in an analogous way. First we resolveXmax

2 ∩Xmax
3 into a disjoint union

Xmax
2 ∩Xmax

3

= (¬Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (¬Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 )

∪̇ (¬Xmax
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 )

∪̇ (Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 )

∪̇ (Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 )

∪̇ (Y1 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (¬Y1 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 )

∪̇ (Xmin
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 )

∪̇ (Xmin
2 ∩Xmin

3 ) .

In the next step, we notice thatY2 ∩ Y3 = (Y2 ∩ Y3) ∩ (Xmax
2 ∩ Xmax

3 ) because
Y2 ⊆ Xmax

2 andY3 ⊆ Xmax
3 . Utilizing distributivity, we hence obtain from the above
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representation ofXmax
2 ∩Xmax

3 that in fact

Y2 ∩ Y3 = (Y2 ∩ Y3) ∩ (Xmax
2 ∩Xmax

3 )

= (Y2 ∩ Y3 ∩ ¬Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (Y2 ∩ Y3 ∩ ¬Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 )

∪̇ (Y2 ∩ Y3 ∩ ¬Xmax
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 )

∪̇ (Y2 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 )

∪̇ (Y2 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 )

∪̇ (Y1 ∩ Y2 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (¬Y1 ∩ Y2 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (Y2 ∩ Y3 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 )

∪̇ (Y2 ∩ Y3 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 )

∪̇ (Y2 ∩ Y3 ∩Xmin
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 )

∪̇ (Y2 ∩ Y3 ∩Xmin
2 ∩Xmin

3 ) .

Due to the disjoint union, the cardinalities of all involved sets sum up to the total
cardinality ofY2 ∩ Y3, i.e.

c2 = |Y2 ∩ Y3|
= |Y2 ∩ Y3 ∩ ¬Xmax

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Y2 ∩ Y3 ∩ ¬Xmax

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+ |Y2 ∩ Y3 ∩ ¬Xmax
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Y2 ∩ Y3 ∩Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Y2 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+ |Y1 ∩ Y2 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |¬Y1 ∩ Y2 ∩ Y3 ∩Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Y2 ∩ Y3 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Y2 ∩ Y3 ∩Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 |
+ |Y2 ∩ Y3 ∩Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Y2 ∩ Y3 ∩Xmin
2 ∩Xmin

3 | .

Due to the fact thatXmin
2 ⊆ Y2 andXmin

3 ⊆ Y3, the last summand can be simplified
into |Xmin

2 ∩ Xmin
3 | = |X2 ∩X3|min = `2, see Th-61. Now utilizing the coeffi-

cientsa, b, c, i2, j2, k1, k2,m2, n, o defined by (482), (483), (484), (491), (493), (494),
(495), (498), (499) and (500), respectively, the above equality can be presented more
succintly, viz

c2 = |Y2 ∩ Y3| (520)

= a+ b+ c+ i2 + j2 + k1 + k2 +m2 + n+ o+ `2 . (521)
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In order to avoid dealing with the individual coefficients, which would be too awk-
ward and unnecessarily bloat the proof, I will now group these coefficients into certain
blocks, according to the following considerations. Comparing (519) and (521), we ob-
serve that the coefficientse, f, g, i1, j1,m1 and l only affectc1; that the coefficients
a, b, c, i2, j2, k2 andn only affect c2; and that the coefficientsk1, m2 and o affect
both c1 andc2. It is further worth noticing that according to (502)–(518), all coeffi-
cients except fork2 andm2 can be chosen independently. The range ofk2 andm2, by
contrast, depends on the choice ofk1 andm1, respectively. In order to discern those
coefficients that belong toc1; to c2; and to bothc1 andc2, and also to simplify compu-
tations involving the dependent coefficients, it is convenient to introduce these blocks
of coefficients:

A = e+ f + g + i1 + j1 + l (522)

B = k1 +m2 + o (523)

C = a+ b+ c+ i2 + j2 + n . (524)

In terms of the block coefficients, the former representation ofc1 achieved in (519) can
now be written as

c1 = `1 +A+m1 +B , (525)

and the representation ofc2 stated in (521) reduces to

c2 = `2 + C + k2 +B . (526)

Having expressedc1 andc2 in terms of the (block) coefficients, I will now identify the
possible choices of(c1, c2) and express these in terms of the`r andur, r ∈ {1, 2, 3, 4}.

Let us first consider the range ofc1. I will treat c1 as the independent coefficient
and express the possible choices ofc2 in dependence onc2. Due to the fact thatc1 can
be chosen unconditionally, the above lemma L-29 can be applied, which asserts that
|(X1 ∩X3)min

γ | ≤ c1 ≤ |(X1 ∩X3)max
γ |, or more succintly,

`1 ≤ c1 ≤ u1 . (527)

In the following, I will assume some choice ofc1 in the above range; I am now inter-
ested in identifying the range ofc2 in dependence on the chosenc1. Let us first consider
the minimal choicecmin

2 of c2, givenc1. It is apparent from (524) and the ranges of its
component coefficients (502), (503), (504), (509) and (511) and and (517) that we can
chooseC = 0. In addition, it is clear from (513) that we can further assumek2 = 0.
Consequently, (526) reduces to

cmin
2 = `2 +Bmin , (528)

whereBmin is the minimal choice ofB, givenc1. Recalling (525), it is apparent that

Bmin = max(c1 − `1 −Amax −mmax
1 , 0) , (529)
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whereAmax is the maximal choice ofA, andmmax
1 is the maximal choice ofm1

determined by (515). Let us now express

Γ = `1 +Amax +mmax
1 (530)

in terms of`r andur. By expanding̀ 1 = |X1 ∩X3|min into

`1 = |Xmin
1 ∩ ¬Xmax

2 ∩Xmin
3 |+ |Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+|Xmin
1 ∩Xmin

2 ∩Xmin
3 | ,

by further expandingAmax according to (522) and (505), (506), (507), (508), (510)
and (514) into the following sum,

Amax = |Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmin

3 |
+ |Xmin

1 ∩ ¬Xmax
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmin

2 ∩Xmin
3 | ,

and finally by expandingmmax
1 according to (515) intommax

1 = |Xmin
1 ∩ Xmax

2 ∩
¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |, Γ now becomes

Γ = |Xmin
1 ∩ ¬Xmax

2 ∩Xmin
3 |

+ |Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 |
+ |Xmin

1 ∩Xmin
2 ∩Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩ ¬Xmax

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩ ¬Xmax

2 ∩Xmin
3 |

+ |Xmin
1 ∩ ¬Xmax

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+ |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmin

3 |
+ |Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 | .

Let us now notice that

Xmax
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3

= Xmin
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 ∪̇Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3

and hence

|Xmin
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |+ |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

−|Xmax
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
= 0 .

(531)
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By substituting (531) into the former representation ofΓ and by re-ordering the sum-
mands, we now obtain

Γ = |Xmin
1 ∩Xmin

2 ∩Xmin
3 |

+ |Xmin
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+ |Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Xmin
1 ∩ ¬Xmax

2 ∩Xmin
3 |

+ |Xmin
1 ∩ ¬Xmax

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmin

2 ∩Xmin
3 |

+ |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+ |Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩ ¬Xmax

2 ∩Xmin
3 |

+ |Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmax

3 ∩ ¬Xmin
3 |

− |Xmax
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 | .

Recalling thatXmax = minX ∪̇ (Xmax ∩ ¬Xmin), andE = (¬Xmax) ∪̇ (Xmax ∩
¬Xmin) ∪̇Xmin for all X ∈ P̃(E), this can be simplified as follows,

Γ = |X1 ∩X3|max − |Xmax
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 | . (532)

In order to achieve a further simplification, let us consider the expression|Xmax
1 ∩

Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |, which is part of the right-hand member of (532):

|Xmax
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
= |Xmax

1 ∩Xmin
2 ∩Xmax

3 | − |Xmax
1 ∩Xmin

2 ∩Xmin
3 | by L-30.c

= |Xmax
1 ∩Xmax

3 | − |Xmax
1 ∩ ¬Xmin

2 ∩Xmax
3 |

− (|Xmin
2 ∩Xmin

3 | − |¬Xmax
1 ∩Xmin

2 ∩Xmin
3 |) by L-30.a+b

= |X1 ∩X3|max − |X1 ∩ ¬X2 ∩X3|max

− |X2 ∩X3|min + |¬X1 ∩X2 ∩X3|min
. by Th-61

By substituting this into (532),Γ now becomes

Γ = |X1 ∩X3|max − |X1 ∩X3|max

+ |X1 ∩ ¬X2 ∩X3|max + |X2 ∩X3|min − |¬X1 ∩X2 ∩X3|min

= |X2 ∩X3|min + |X1 ∩ ¬X2 ∩X3|max − |¬X1 ∩X2 ∩X3|min
,

or more succintly,

Γ = `2 + u3 − `4 . (533)
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Therefore

cmin
2 = `2 +Bmin by (528)

= `2 + max(c1 − `1 −Amax −mmax
1 , 0) by (529)

= max(c1 + `2 − `1 −Amax −mmax
1 , `2)

= max(c1 + `2 − Γ, `2) by (530)

= max(c1 + `2 − `2 − u3 + `4, `2) , by (533)

which proves the desired

cmin
2 = max(c1 − u3 + `4, `2) . (534)

Having expressedcmin
2 in terms of the cardinality coefficients̀r andur, I will now

identify the maximal choicecmax
2 of c2, givenc1 ∈ {`1, . . . , u1}. For this purpose, it

is convenient to split theB block of coefficients again. Hencec1 andc2 become

c1 = `1 +A+ k1 +m1 +m2 + o (535)

c2 = `2 + C + k1 + k2 +m2 + o , (536)

which is apparent from (523), (525) and (526). In order to maximizec2, we letC =
Cmax, whereCmax is the maximal choice ofC, which is determined by (524), (502),
(503), (504), (509), (511) and (517). In addition, we observe from (512) and (513) that
choosingk2 = |Xmax

1 ∩ ¬Xmin
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 | − k1 maximizesk1 + k2,
which then becomes

kmax = k1 + k2 = |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 | (537)

It is further apparent from (515), (516) and (535) that without loss of generality, we
can assume that

m1 = 0 .

This ensures thatm2 can be maximized in (536). These considerations can be summa-
rized as follows,

c1 = `1 +A+ k1 +m2 + o (538)

cmax
2 = `2 + Cmax + kmax +m2 + o . (539)

It is apparent from this representation thatm2 + o must be maximized in order forc2
to achieve its maximum. Recalling (522), and looking up the ranges of the involved
coefficients, we can always haveA = 0. Furthermore, (512) lets us choosek1 = 0 if
so desired, i.e.c1 = `1 +m2 +o orm2 +o = c1−`1. On the other hand, we know that
m2 + o ≤ mmax

2 + omax, wheremmax
2 andomax are the maximal choices ofm2 and

o according to (516) and (518), givenm1 = 0. This demonstrates that the maximum
choice ofm2 + o, givenc1, is

(m2 + o)max = min(c1 − `1,mmax
2 + omax)
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Substituting this into (539), we obtain

cmax
2 = `2 + Cmax + kmax + min(c1 − `1,mmax

2 + omax) ,

or equivalently,

cmax
2 = min(c1 − `1 + `2 + Cmax + kmax, `2 + Cmax + kmax +mmax

2 + omax) .
(540)

This can be further simplified and expressed in terms of the cardinality coefficients`r
andur only. Let us first considerc1−`1 +`2 +Cmax +kmax. By utilizing the apparent
E = (¬Xmax

2 ) ∪̇ (Xmax
2 ∩ ¬Xmin

2 ) ∪̇Xmin
2 , I first expand̀ 1 = |Xmin

1 ∩Xmin
3 | into

`1 = |Xmin
1 ∩ ¬Xmax

2 ∩Xmin
3 |+ |Xmin

1 ∩ (Xmax
2 ∩ ¬Xmin

2 ) ∩Xmin
3 |

+|Xmin
1 ∩Xmin

2 ∩Xmin
3 | . (541)

In a similar way, I then useE = (¬Xmax
1 ) ∪̇ (Xmax

1 ∩ ¬Xmin
1 ) ∪̇ Xmin

1 to expand
`2 = |Xmin

2 ∩Xmin
3 | into

`2 = |¬Xmax
1 ∩Xmin

2 ∩Xmin
3 |+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmin

2 ∩Xmin
3 |

+|Xmin
1 ∩Xmin

2 ∩Xmin
3 | . (542)

By further expandingCmax according to (524), and assuming the maximal choices of
a, b, c, i2, j2, andn asserted in (502), (503), (504), (509), (511) and (517), we now
obtain that

Cmax = |¬Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+|¬Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 |
+|¬Xmax

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+|Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+|Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 |
+|Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 | .

(543)
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Therefore

c1 − `1 + `2 + Cmax + kmax

= c1 − |Xmin
1 ∩ ¬Xmax

2 ∩Xmin
3 |

− |Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 |
− |Xmin

1 ∩Xmin
2 ∩Xmin

3 |
+ |¬Xmax

1 ∩Xmin
2 ∩Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmin

2 ∩Xmin
3 |

+ |Xmin
1 ∩Xmin

2 ∩Xmin
3 |

+ |¬Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |¬Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 |
+ |¬Xmax

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 |
+ |Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+ |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

by (541), (542), (543) and (537). By eliminating summands that cancel out, and by
re-ordering the remaining summands, this becomes

c1 − `1 + `2 + Cmax + kmax

= c1 − |Xmin
1 ∩ ¬Xmax

2 ∩Xmin
3 |

+ |¬Xmax
1 ∩Xmin

2 ∩Xmin
3 |

+ |¬Xmax
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |¬Xmax

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+ |¬Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 | .

Noticing that¬Xmin
1 = ¬Xmax

1 ∪̇(Xmax
1 ∩¬Xmin

1 ),Xmax
2 = Xmin

2 ∪̇(Xmax
2 ∩¬Xmin

2 )
andXmax

3 = Xmin
3 ∪̇(Xmax

3 ∩¬Xmin
3 ) the above expressions can be further simplified

into

c1 − `1 + `2 + Cmax + kmax

= c1 − |Xmin
1 ∩ ¬Xmax

2 ∩Xmin
3 |+ |¬Xmin

1 ∩Xmax
2 ∩Xmax

3 |

= c1 − |X1 ∩ ¬X2 ∩X3|min + |¬X1 ∩X2 ∩X3|max
, by Th-61
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or equivalently

c1 − `1 + `2 + Cmax + kmax = c1 − `3 + u4 . (544)

In order to expresscmax
2 in terms of the cardinality coefficients̀r andur, it remains

to be shown how the expression`2 + Cmax + kmax + mmax
2 + omax in (540) can be

reduced to these coefficients. To this end, I first expand`2, Cmax, kmax, mmax
2 and

omax according to (542), (543), (537); (516) givenm1 = 0; and (518), respectively.
We then obtain

`2 + Cmax + kmax +mmax
2 + omax

= |¬Xmax
1 ∩Xmin

2 ∩Xmin
3 |

+ |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmin

3 |
+ |Xmin

1 ∩Xmin
2 ∩Xmin

3 |
+ |¬Xmax

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |¬Xmax

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+ |¬Xmax
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+ |Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 | .

By re-ordering the summands, this becomes

`2 + Cmax + kmax +mmax
2 + omax

= |¬Xmax
1 ∩Xmin

2 ∩Xmin
3 |

+ |¬Xmax
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |¬Xmax

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+ |¬Xmax
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 |
+ |Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+ |Xmin
1 ∩Xmin

2 ∩Xmin
3 |

+ |Xmin
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+ |Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+ |Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 | .
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Noticing thatE = (¬Xmax
1 ) ∪̇ (Xmax

1 ∩¬Xmin
1 ) ∪̇Xmin

1 ,Xmax
2 = Xmin

2 ∪̇ (Xmax
2 ∩

¬Xmin
2 ) andXmax

3 = Xmin
3 ∪̇ (Xmax

3 ∩ ¬Xmin
3 ), it is therefore apparent that in fact,

`2 + Cmax + kmax +mmax
2 + omax = |Xmax

2 ∩Xmax
3 |

= |X2 ∩X3|max by Th-61

or equivalently,

`2 + Cmax + kmax +mmax
2 + omax = u2 . (545)

By substituting (544) and (545) into (540), we then obtain the desired

cmax
2 = min(c1 − `3 + u4, u2) . (546)

Apparently, all choices ofc ∈ {cmin
2 , . . . , cmax

2 } can be attained by combinations of
the coefficientsa to p in their respective ranges, and hence by corresponding choices
of Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn) in the three-valued cut ranges atγ. Combining
(527), (534) and (546), the possible choices of(c1, c2) therefore comprise the following
combinations,

R = {(c1, c2) : `1 ≤ c1 ≤ u1,max(c1 − u3 + `4, `2) ≤ c2 ≤ min(c1 − `3 + u4, u2)} ,

in conformance with (234). This substantiates that the equality claimed by the theorem
is indeed valid.

D.29 Proof of Theorem 268

Let Q : P(E)3 −→ I be a cardinal comparative on a finite base setE 6= ∅ and let
q : {0, . . . , |E|}2 −→ I be the mapping defined by (232). I will prove the equivalence
claimed in the theorem by showing that the following two implications are valid.

a. implies b.:
Suppose thatQ is nondecreasing in the first and nonincreasing in its second argument.
I will first show thatq is nondecreasing in its first argument. Hence letc1, c

′
1, c2 ∈

{0, . . . , |E|} be given withc1 ≤ c′1. I abbreviatep = max(c′1, c2). Due to the fact
thatE is finite, there exist pairwise distinct elementse1, . . . , em ∈ E, m = |E| such
thatE = {e1, . . . , em}. I now defineY1 = {e1, . . . , ec1}, Y ′1 = {e1, . . . , ec′1}, Y2 =
{e1, . . . , ec2} andY3 = {e1, . . . , ep}. ApparentlyY1 ⊆ Y3, Y ′1 ⊆ Y3 andY2 ⊆ Y3.
Therefore

Y1 ∩ Y3 = Y1 (547)

Y ′1 ∩ Y3 = Y ′1 (548)

Y2 ∩ Y3 = Y2 . (549)

In addition, the setsY1, Y ′1 andY2 obviously have the following cardinalities,

|Y1| = c1 (550)

|Y ′1 | = c′1 (551)

|Y2| = c2 . (552)
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Therefore

q(c′1, c2) = q(|Y ′1 |, |Y2|) by (551), (552)

= q(|Y ′1 ∩ Y3|, |Y2 ∩ Y3|) by (548), (549)

= Q(Y ′1 , Y2, Y3) by (232)

≥ Q(Y1, Y2, Y3) becauseY1 ⊆ Y ′1 and

Q nondec. in first arg

= q(|Y1 ∩ Y3|, |Y2 ∩ Y3|) by (232)

= q(|Y1|, |Y2|) by (547), (549)

= q(c1, c2) . by (550), (552)

This substantiates thatq is nondecreasing in its first argument. It remains to be shown
thatq is nonincreasing in its second argument. Hence letc1, c2, c

′
2 ∈ {0, . . . , |E|} with

c2 ≤ c′2. Based on the above choice ofe1, . . . , em ∈ E with E = {e1, . . . , em}, I now
defineY1, Y2, Y

′
2 , Y3 by Y1 = {e1, . . . , ec1}, Y2 = {e1, . . . , ec2}, Y ′2 = {e1, . . . , ec′2}

andY3 = {e1, . . . , ep}, wherep = max(c1, c′2). ClearlyY1 ⊆ Y3, Y2 ⊆ Y3 and
Y ′2 ⊆ Y3, i.e.

Y1 ∩ Y3 = Y1 (553)

Y2 ∩ Y3 = Y2 (554)

Y ′2 ∩ Y3 = Y ′2 . (555)

The cardinalities ofY1, Y2 andY ′2 are also obvious,

|Y1| = c1 (556)

|Y2| = c2 (557)

|Y ′2 | = c′2 . (558)

Consequently

q(c1, c′2) = q(|Y1|, |Y ′2 |) by (556), (558)

= q(|Y1 ∩ Y3|, |Y ′2 ∩ Y3|) by (553), (555)

= Q(Y1, Y
′
2 , Y3) by (232)

≤ Q(Y1, Y2, Y3) becauseY2 ⊆ Y ′2 and

Q noninc. in 2nd arg

= q(|Y1 ∩ Y3|, |Y2 ∩ Y3|) by (232)

= q(|Y1|, |Y2|) by (553), (554)

= q(c1, c2) . by (556), (557)

Henceq is both nondecreasing in the first argument and nonincreasing in the second
argument, i.e. conditionb. is indeed valid.

b. implies a.:
To see this, suppose thatq is nondecreasing in the first and nonincreasing in the second
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argument. Further letY1, Y
′
1 , Y2, Y

′
2 , Y3 ∈ P(E) such thatY1 ⊆ Y ′1 andY2 ⊆ Y ′2 .

Then

Q(Y ′1 , Y2, Y3) = q(|Y ′1 ∩ Y3|, |Y2 ∩ Y3|) by (232)

≥ q(|Y1 ∩ Y3|, |Y2 ∩ Y3|) because|Y ′1 ∩ Y3| ≥ |Y1 ∩ Y3|
= Q(Y1, Y2, Y3) , by (232)

i.e.Q is nondecreasing in its first argument. In addition,

Q(Y1, Y
′
2 , Y3) = q(|Y1 ∩ Y3|, |Y ′2 ∩ Y3|) by (232)

≤ q(|Y1 ∩ Y3|, |Y2 ∩ Y3|) because|Y ′2 ∩ Y3| ≥ |Y2 ∩ Y3|
= Q(Y1, Y2, Y3) . by (232)

HenceQ is both nondecreasing in its first argument and nonincreasing in its second,
which proves that conditiona. is indeed satisfied.

D.30 Proof of Theorem 269

Let Q : P(E)3 −→ I be a cardinal comparative on a finite base set and letq be the
mappingq : {0, . . . ,m}2 −→ I defined by (232), wherem = |E|. Further suppose
thatQ is nondecreasing in the first and nonincreasing in the second argument. We then
know from Th-268 thatq is also nondecreasing in the first argument and nonincreasing
in the second argument. Now letX1, X2, X3 ∈ P̃(E) andγ ∈ I be given. Then

>Q,X1,X2,X3(γ)
= max{Q(Y1, Y2, Y3) : (Y1, Y2, Y2) ∈ Tγ(X1, X2, X3)} by Def. 100,E finite

= max{q(Y1 ∩ Y3, Y2 ∩ Y3) : (Y1, Y2, Y2) ∈ Tγ(X1, X2, X3)} by (232)

= max{q(c1, c2) : `1 ≤ c1 ≤ u1,

max(c1 − u3 + `4, `2) ≤ c2 ≤ min(c1 − `3 + u4, u2)} by Th-267

= max{max{q(c1, c2)
: max(c1 − u3 + `4, `2) ≤ c2 ≤ min(c1 − `3 + u4, u2)}
: `1 ≤ c1 ≤ u1}

= max{q(c1,max(c1 − u3 + `4, `2)) : `1 ≤ c1 ≤ u1} ,

where the last equality is valid becauseq is nonincreasing in its second argument,
and hence achieves its maximum for the minimum choice ofc2. Now turning to
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⊥Q,X1,X2,X3(γ), we can proceed analogously:

⊥Q,X1,X2,X3(γ)
= min{Q(Y1, Y2, Y3) : (Y1, Y2, Y2) ∈ Tγ(X1, X2, X3)} by Def. 100,E finite

= min{q(Y1 ∩ Y3, Y2 ∩ Y3) : (Y1, Y2, Y2) ∈ Tγ(X1, X2, X3)} by (232)

= min{q(c1, c2) : `1 ≤ c1 ≤ u1,

max(c1 − u3 + `4, `2) ≤ c2 ≤ min(c1 − `3 + u4, u2)} by Th-267

= min{min{q(c1, c2)
: max(c1 − u3 + `4, `2) ≤ c2 ≤ min(c1 − `3 + u4, u2)}
: `1 ≤ c1 ≤ u1}

= min{q(c1,min(c1 − `3 + u4, u2)) : `1 ≤ c1 ≤ u1} .

In this case, the last equality is valid becauseq is nonincreasing in its second argument,
and hence achieves its minimum for the maximal choice ofc2, i.e. min(c1 − `3 +
u4, u2).

D.31 Proof of Theorem 270

LetE 6= ∅ be a finite base set,X1, X2, X3 ∈ P̃(E) andγ ∈ I. It is then known from
Th-267 that

{(c1, c2) : (Y1, Y2, Y3) ∈ Tγ(X1, X2, X3), c1 = |Y1 ∩ Y3|, c2 = |Y2 ∩ Y3|}
= {(c1, c2) : `1 ≤ c1 ≤ u1,max(c1 − u3 + `4, `2) ≤ c2 ≤ min(c1 − `3 + u4, u2)} .

(559)

Let us now consider somec1 ∈ {`1, . . . , u1}. Noticing that the differencec1 − c2 is
nonincreasing inc2, we first observe that

max{c1 − c2 : max(c1 − u3 + `4, `2) ≤ c2 ≤ min(c1 − `3 + u4, u2)}
= c1 −max(c1 − u3 + `4, `2) ,

i.e.

max{c1 − c2 : max(c1 − u3 + `4, `2) ≤ c2 ≤ min(c1 − `3 + u4, u2)}
= min(u3 − `4, c1 − `2) . (560)

Now abstracting from the choice ofc1 ∈ {`1, . . . , u1}, we obtain that

max{c1 − c2 : `1 ≤ c1 ≤ u1,max(c1 − u3 + `4, `2) ≤ c2 ≤ min(c1 − `3 + u4, u2)}
= min(u3 − `4, u1 − `2) ,

(561)

which is apparent from (560) becausemin(u3 − `4, c1 − `2) is nondecreasing inc1,
and becausec1 ∈ {`1, . . . , u1}. As I will now show, this can be further simplified into

max{c1 − c2 : `1 ≤ c1 ≤ u1,max(c1 − u3 + `4, `2) ≤ c2 ≤ min(c1 − `3 + u4, u2)}
= u3 − `4 .

(562)
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To this end, it must be shown thatu3 − `4 ≤ u1 − `2 or equivalently,

u1 − `2 − (u3 − `4) = u1 − `2 − u3 + `4 ≥ 0 . (563)

Hence let us expandu1, `2, u3, `4 according to their definition in Th-267, and further
utilize Th-61 to rewrite these coefficients asu1 = |X1 ∩X3|max = |Xmax

1 ∩Xmax
3 |,

`2 = |X2 ∩X3|min = |Xmin
2 ∩ Xmin

3 |, u3 = |X1 ∩ ¬X2 ∩X3|max = |Xmax
1 ∩

¬Xmin
2 ∩Xmax

3 | and`4 = |¬X1 ∩X2 ∩X3|min = |¬Xmax
1 ∩Xmin

2 ∩Xmin
3 |. These

expressions can be further decomposed into a sum of terms|Z1 ∩ Z2 ∩ Z3|, Zr ∈
{¬Xmax

r , (Xmax
r ∩ ¬Xmin

r ), Xmin
r } for r ∈ {1, 2, 3}, recalling thatE = ¬Xmax

r ∪̇
(Xmax

r ∩¬Xmin
r )∪̇Xmin

r ,Xmax
r = (Xmax

r ∩¬Xmin
r )∪̇Xmin

r and¬Xmin
r = ¬Xmax

r ∪̇
(Xmax

r ∩ ¬Xmin
r ). We then obtain foru1,

u1

= |Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+|Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmin

3 |
+|Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+|Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+|Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+|Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmin

3 |
+|Xmin

1 ∩ ¬Xmax
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+|Xmin
1 ∩ ¬Xmax

2 ∩Xmin
3 |

+|Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+|Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmin

3 |
+|Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+|Xmin
1 ∩Xmin

2 ∩Xmin
3 | .

(564)

Similarly, `2 becomes

`2
= |¬Xmax

1 ∩Xmin
2 ∩Xmin

3 |
+|Xmax

1 ∩ ¬Xmin
1 ∩Xmin

2 ∩Xmin
3 |

+|Xmin
1 ∩Xmin

2 ∩Xmin
3 | .

(565)

In the case ofu3,

u3

= |Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+|Xmax
1 ∩ ¬Xmin

1 ∩ ¬Xmax
2 ∩Xmin

3 |
+|Xmax

1 ∩ ¬Xmin
1 ∩Xmax

2 ∩ ¬Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |

+|Xmax
1 ∩ ¬Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 |

+|Xmin
1 ∩ ¬Xmax

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+|Xmin

1 ∩ ¬Xmax
2 ∩Xmin

3 |
+|Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
+|Xmin

1 ∩Xmax
2 ∩ ¬Xmin

2 ∩Xmin
3 | .

(566)

In the case of̀4, it is sufficient to recall the earlier result,

`4 = |¬Xmax
1 ∩Xmin

2 ∩Xmin
3 | . (567)
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Combining (564)–(567), I now obtain that

u1 − `2 − u3 + `4

= |Xmax
1 ∩ ¬Xmin

1 ∩Xmin
2 ∩Xmax

3 ∩ ¬Xmin
3 |+ |Xmin

1 ∩Xmin
3 ∩Xmax

3 ∩ ¬Xmin
3 |

= |Xmax
1 ∩Xmin

2 ∩Xmax
3 ∩ ¬Xmin

3 |
≥ 0 .

This proves that (563), and hence (562), is indeed valid. Recalling (559), I have there-
fore shown that the maximal difference is

max{c1 − c2 : (Y1, Y2, Y3) ∈ Tγ(X1, X2, X2), c1 = |Y1 ∩ Y3|, c2 = |Y2 ∩ Y3|}
= u3 − `4 .

(568)

Let us now consider the minimal difference. Hence letc1 ∈ {`1, . . . , u1}. Due to the
fact thatc1 − c2 is nonincreasing inc2, its minimum becomes

min{c1 − c2 : max(c1 − u3 + `4, `2) ≤ c2 ≤ min(c1 − `3 + u4, u2)}
= c1 −min(c1 − `3 + u4, u2)
= max(`3 − u4, c1 − u2) .

Let us notice that the resulting expressionmax(`3 − u4, c1 − u2) is nondecreasing
in c1, and hence becomes minimal whenc1 assumes its minimum, i.e. forc1 = `1.
Therefore

min{c1 − c2 : `1 ≤ c1 ≤ u1,max(c1 − u3 + `4, `2) ≤ c2 ≤ min(c1 − `3 + u4, u2)}
= max(`3 − u4, `1 − u2) .

As I will now show, this can be further simplified to

min{c1 − c2 : `1 ≤ c1 ≤ u1,max(c1 − u3 + `4, `2) ≤ c2 ≤ min(c1 − `3 + u4, u2)}
= `3 − u4 .

(569)

To this end, it is sufficient to show that`3 − u4 ≥ `1 − u2 or equivalently,`3 −
u4 − (`1 − u2) = `3 − u4 − `1 + u2 ≥ 0. Hence let us substituteX ′1 = X2,
X ′2 = X1 andX ′3 = X3. It is easily verified that the corresponding coefficients`′r, u

′
r,

r ∈ {1, 2, 3, 4} then becomè′1 = `2, `′2 = `1, `′3 = `4, `′4 = `3, u′1 = u2, u′2 = u1,
u′3 = u4 andu′4 = u3. Thereforè 3 − u4 − `1 + u2 = u′1 − `′2 − u′3 + `′4 ≥ 0, see
(563). This proves that (569) is valid. The minimal difference can hence be expressed
as

min{c1 − c2 : (Y1, Y2, Y3) ∈ Tγ(X1, X2, X3), c1 = |Y1 ∩ Y3|, c2 = |Y2 ∩ Y3|}
= `3 − u4 ,

(570)

see (559). It is further apparent from (559) that the range of possiblec1− c2 comprises
all integersd in between the minimal and the maximal difference, and hence between
`3 − u4 andu3 − `4, see (568) and (570). This completes the proof that the set of
possiblec1 − c2 coincides with{`3 − u4, . . . , u3 − `4}, as desired.
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D.32 Proof of Theorem 271

Lemma 31
If an L-QFMF satisfies(L-1), then the corresponding ordinary QFMFR defined by
Def. 175 satisfies(Z-1).

Proof Suppose thatF satisfies (L-1) and letQ : P(E)n −→ I be a semi-fuzzy
quantifier of arityn ∈ {0, 1} on some base setE 6= ∅. The two possible casesn = 0
andn = 1 will be considered in turn.

a.: n = 0. ThenQ is a nullary quantifierQ : P(E)0 −→ I, and we are interested in
the result of the construction described in Def. 175, i.e.

FR(Q) = F(Q ◦
0
×
i=1

ϑ̂) ◦
0
×
i=1

ˆ̂
β . (571)

Let us recall at this point that for a given setA, A0 denotes the set of all mappingsf :
∅ −→ A, i.e.A0 = {∅}, where ‘∅’ is the empty mapping (or empty ‘tuple’). Hence

P(E)0 = P(E1)0 = P̃(E1)
0

= P̃(E)
0

= {∅}, and the empty product mappings
0
×
i=1

ϑ̂

and
0
×
i=1

ˆ̂
β which occur in (571) reduce to the identities

0
×
i=1

ϑ̂ = id{∅} (572)

0
×
i=1

ˆ̂
β = id{∅} , (573)

simply because this is the only mapping available. Therefore

FR(Q) = F(Q ◦
0
×
i=1

ϑ̂) ◦
0
×
i=1

ˆ̂
β by (571)

= F(Q ◦ id{∅}) ◦ id{∅} by (572), (573)

= F(Q)
= Q , by (L-1)

as desired.
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b.: n = 1. In this case,Q is a unary quantifierQ : P(E) −→ I. Now consider a crisp
subsetY ∈ P(E). Then

FR(Q)(Y ) = F(Q ◦ ϑ̂)( ˆ̂
β(Y )) by Def. 175

= F(Q ◦ ϑ̂)(β̂(Y )) by Def. 21 becauseY crisp

= (Q ◦ ϑ̂)(β̂(Y )) by (L-1)

= Q(ϑ̂ ◦ β(Y )) by compositionality of̂(•)

= Q(îdE(Y )) becauseϑ = β−1

= Q(Y ) ,

where the last equality is apparent from the properties of crisp powerset mappings.
BecauseY ∈ P(E) was arbitrary, this proves that indeedU(FR(Q)) = Q.

Lemma 32
If an L-QFMF satisfies(L-2), then the corresponding ordinary QFMFR defined by
Def. 175 satisfies(Z-2).

Proof LetE 6= ∅ be some base set ande ∈ E. Then

FR(πe) = F(πe ◦ ϑ̂) ◦ ˆ̂
β by Def. 175

= F(π(e)) ◦
ˆ̂
β by Def. 9 andϑ bijection

= π̃(e) ◦
ˆ̂
β by (L-2)

= π̃e ,

where the last equality is apparent from Def. 10, Def. 21 and the fact thatβ is a bijec-
tion.

Lemma 33
If an L-QFMF satisfies(L-3) then the corresponding ordinary QFMFR defined by
Def. 175 satisfies(Z-3).

Proof Hence letF be an L-QFM which satisfies (L-3) and letFR be the correspond-
ing ordinary QFM defined by Def. 175. Let me remark in advance thatF andFR
induce the same fuzzy truth functions and fuzzy set operations; this is apparent from
Def. 176. Now consider a semi-fuzzy quantifierQ : P(E)n −→ I of arity n > 0.
Firstly let us notice that for allY1, . . . , Yn ∈ P(E),

¬ϑ̂(Yn) = ϑ̂(¬Yn) (574)
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becauseϑ is a bijection, and therefore

Q�̃(ϑ̂(Y1), . . . , ϑ̂(Yn))

= ¬̃Q(ϑ̂(Y1), . . . , ϑ̂(Yn−1),¬ϑ̂(Yn)) by Def. 14

= ¬̃Q(ϑ̂(Y1), . . . , ϑ̂(Yn−1), ϑ̂(¬Yn)) by (574)

= ¬̃(Q ◦
n
×
i=1

ϑ̂)(Y1, . . . , Yn−1,¬Yn)

= (Q ◦
n
×
i=1

ϑ̂)�̃(Y1, . . . , Yn) , by Def. 177

i.e.

Q�̃ ◦
n
×
i=1

ϑ̂ = Q ◦
n
×
i=1

ϑ̂�̃ . (575)

Secondly, we notice that forX1, . . . , Xn ∈ P̃(E),

F(Q ◦
n
×
i=1

ϑ̂)�̃( ˆ̂
β(X1), . . . , ˆ̂

β(Xn))

= ¬̃ F(Q ◦
n
×
i=1

ϑ̂)( ˆ̂
β(X1), . . . , ˆ̂

β(Xn−1), ¬̃ ˆ̂
β(Xn)) by Def. 177

= ¬̃ F(Q ◦
n
×
i=1

ϑ̂)( ˆ̂
β(X1), . . . , ˆ̂

β(Xn−1), ˆ̂
β(¬̃Xn)) by Def. 21 andβ bijection

= ¬̃(F(Q ◦
n
×
i=1

ϑ̂) ◦
n
×
i=1

ˆ̂
β)(X1, . . . , Xn−1, ¬̃Xn)

= (F(Q ◦
n
×
i=1

ϑ̂) ◦
n
×
i=1

ˆ̂
β)�̃(X1, . . . , Xn) , by Def. 14

i.e.

F(Q ◦
n
×
i=1

ϑ̂)�̃ ◦
n
×
i=1

ˆ̂
β = F(Q ◦

n
×
i=1

ϑ̂) ◦
n
×
i=1

ˆ̂
β�̃ . (576)

Then

FR(Q�̃)

= F(Q�̃ ◦
n
×
i=1

ϑ̂) ◦
n
×
i=1

ˆ̂
β by Def. 175

= F(Q ◦
n
×
i=1

ϑ̂�̃) ◦
n
×
i=1

ˆ̂
β by (575)

= F(Q ◦
n
×
i=1

ϑ̂)�̃ ◦
n
×
i=1

ˆ̂
β by (L-3)

= F(Q ◦
n
×
i=1

ϑ̂) ◦
n
×
i=1

ˆ̂
β�̃ by (576)

= FR(Q)�̃ , by Def. 175

as desired.
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Lemma 34
Let f : E −→ E′ be an injective mapping,E,E′ 6= ∅. Further suppose that a
mappingg : Im −→ I and fuzzy setsX1, . . . , Xm ∈ P̃(E) are given. Let us define a
fuzzy setZ ∈ P̃(E) by

µZ(e) = g(µX1(e), . . . , µXn(e))

for e ∈ E. Then for alle′ ∈ E′,

a. if e′ ∈ Im f , thenµ ˆ̂
f(Z)

(e′) = g(µ ˆ̂
f(X1)

(e′), . . . , µ ˆ̂
f(Xm)

(e′)).

b. if e′ /∈ Im f , thenµ ˆ̂
f(Z)

(e′) = 0 andg(µ ˆ̂
f(X1)

(e′), . . . , µ ˆ̂
f(Xn)

(e′)) = g(0, . . . , 0).

Proof I will consider the two cases in turn. Ife′ ∈ Im f , then there exists a unique
choice ofe = f−1(e′) with e′ = f(e) becausef is injective. From Def. 21, we know
that

µ ˆ̂
f(Xi)

(e′) = µXi(e)

and

µ ˆ̂
f(Z)

(e′) = µZ(e) = g(µX1(e), . . . , µXn(e))

Hence indeed

g(µ ˆ̂
f(X1)

(e′), . . . , µ ˆ̂
f(Xn)

(e′)) = g(µX1(e), . . . , µXn(e)) = µZ(e) = µ ˆ̂
f(Z)

(e) .

This proves case a. In the second case, it is apparent from Def. 21 thatµ ˆ̂
f(Xi)

(e′) = 0

for all i ∈ {1, . . . ,m}, i.e.g(µ ˆ̂
f(X1)

(e′), . . . , µ ˆ̂
f(Xn)

(e′)) = g(0, . . . , 0). The remain-

ing claim thatµ ˆ̂
f(Z)

(e′) = 0 is also apparent frome′ /∈ Im f and the definition of the

standard extension principle.

Lemma 35
If an L-QFMF satisfies(L-4), then the corresponding ordinary QFMFR defined by
Def. 175 satisfies(Z-4).

Proof Hence letF be an L-QFM which satisfies (L-4) and letFR be the correspond-
ing QFM defined by Def. 175. Again, we should notice thatF andFR induce the
same fuzzy truth functions and fuzzy set operations, see Def. 176. Now let us consider
a semi-fuzzy quantifierQ : P(E)n −→ I of arity n > 0. First of all, we notice that

Q∪ ◦
n+1
×
i=1

ϑ̂ = Q ◦
n
×
i=1

ϑ̂∪ . (577)

To see this, considerY1, . . . , Yn, Yn+1 ∈ P(E). Then

ϑ̂(Yn) ∪ ϑ̂(Yn+1) = ϑ̂(Yn ∪ Yn+1) , (578)
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which is apparent from the properties of powerset mappings, and in turn,

Q∪(ϑ̂(Y1), . . . , ϑ̂(Yn+1))

= Q(ϑ̂(Y1), . . . , ϑ̂(Yn−1), ϑ̂(Yn) ∪ ϑ̂(Yn+1)) by Def. 15

= Q(ϑ̂(Y1), . . . , ϑ̂(Yn−1), ϑ̂(Yn ∪ Yn+1)) by (578)

= (Q ◦
n
×
i=1

ϑ̂)(Y1, . . . , Yn−1, Yn ∪ Yn+1)

= (Q ◦
n
×
i=1

ϑ̂)∪(Y1, . . . , Yn+1) . by Def. 178

Now letX1, . . . , Xn+1 ∈ P̃(E) be given. Noticing from (236) thatβ is a bijection, we
first apply L-34.a and conclude that

ˆ̂
β(Xn ∪̃Xn+1) = ˆ̂

β(Xn) ∪̃ ˆ̂
β(Xn+1) . (579)

Therefore

FR(Q∪)(X1, . . . , Xn+1)

= F(Q∪ ◦
n+1
×
i=1

)( ˆ̂
β(X1), . . . , ˆ̂

β(Xn+1)) by Def. 175

= F(Q ◦
n
×
i=1

ϑ̂∪)( ˆ̂
β(X1), . . . , ˆ̂

β(Xn+1)) by (577)

= F(Q ◦
n
×
i=1

ϑ̂)( ˆ̂
β(X1), . . . , ˆ̂

β(Xn−1), ˆ̂
β(Xn) ∪̃ ˆ̂

β(Xn+1)) by (L-4)

= F(Q ◦
n
×
i=1

ϑ̂)( ˆ̂
β(X1), . . . , ˆ̂

β(Xn−1), ˆ̂
β(Xn ∪̃Xn+1)) by (579)

= FR(Q)(X1, . . . , Xn−1, Xn ∪̃Xn+1) by Def. 175

= FR(Q)∪̃(X1, . . . , Xn+1) , by Def. 15

i.e.FR indeed satisfies (Z-4).

Lemma 36
If an L-QFMF satisfies(L-5), then the corresponding ordinary QFMFR defined by
Def. 175 satisfies(Z-5).

Proof To see this, consider a semi-fuzzy quantifierQ : P(E)n −→ I which is non-
increasing in itsn-th argument,n > 0. According to Def. 175,FR(Q) is given by

FR(Q) = F(Q ◦
n
×
i=1

ϑ̂) ◦
n
×
i=1

β̂ . (580)

In order to ascertain thatFR(Q) is nonincreasing in its last argument, we first notice

that quantifierQ ◦
n
×
i=1

ϑ̂ is nonincreasing in its last argument. This is apparent if we

considerY1, . . . , Yn, Y
′
n ∈ P(E1) with Yn ⊆ Y ′n. By the monotonicity of powerset

mappings, then, we obtain

ϑ̂(Yn) ⊆ ϑ̂(Y ′n) .
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We can hence conclude from the fact thatQ is nonincreasing in its last argument that

Q(ϑ̂(Y1), . . . , ϑ̂(Yn)) ≥ Q(ϑ̂(Y1), . . . , ϑ̂(Yn−1), ϑ̂(Y ′n)) ,

i.e.Q ◦
n
×
i=1

ϑ̂ is indeed nonincreasing in its last argument. Now consider a choice of

fuzzy argumentsX1, . . . , Xn, X
′
n ∈ P̃(E) withXn ⊆ X ′n. By the monotonicity of the

standard extension principle, we have

ˆ̂
β(Xn) ⊆ ˆ̂

β(X ′n) . (581)

Therefore

FR(Q)(X1, . . . , Xn)

= F(Q ◦
n
×
i=1

ϑ̂)( ˆ̂
β(X1), . . . , ˆ̂

β(Xn)) by Def. 175

≥ F(Q ◦
n
×
i=1

ϑ̂)( ˆ̂
β(X1), . . . , ˆ̂

β(Xn−1), ˆ̂
β(X ′n)) by (L-5), (581)

= FR(Q)(X1, . . . , Xn−1, X
′
n) . by Def. 175

HenceFR(Q) is nonincreasing in itsn-th argument. BecauseQ was an arbitrary
quantifier nonincreasing in its last argument, this proves thatFR satisfies (Z-5).

Lemma 37
LetF be an L-QFM which satisfies(L-2), andf : E′ −→ E a bijection, whereE,E′

are nonempty sets. Then

F̂R(f) = ˆ̂
f .

Proof We already know from L-32 thatFR satisfies (Z-2). Now considerX ∈ P̃(E′).
Then

µF̂R(f)(X)(e) = FR(πe ◦ f̂)(X) by Def. 22

= FR(πf−1(e))(X) apparent from Def. 9 andf bijection

= π̃f−1(e)(X) by (Z-2)

= µX(f−1(e)) by Def. 10

= µ ˆ̂
f(X)

(e)

where the last equality is apparent from Def. 21 noticing thatf is a bijection.

Lemma 38
Let f : E −→ E′ andg : E′ −→ E′′ be mappings,E,E′, E′′ 6= ∅. Further letF be
an L-QFM which satisfies(L-2) and (L-6). Then

F̂(g ◦ f) = F̂(g) ◦ F̂(f) .
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Proof Let F be an L-QFM which satisfies (L-2) and (L-6), and suppose thatf :
E −→ E′, g : E′ −→ E′′ are given mappings, whereE,E′, E′′ are arbitrary
nonempty sets. Let me first clarify some notation: I will writeβ : E −→ E1,
ϑ : E1 −→ E for the mappings defined by (236) and (237) when referring to the
base setE; an I will use symbolsβ′ : E′ −→ E′

1, ϑ′ : E′1 −→ E′ when referring to
the base setE′.
Now letX ∈ P̃(E). I first prove an auxiliary equality

F̂(f) = ˆ̂
ϑ ◦ F̂(β′ ◦ f ◦ ϑ) ◦ ˆ̂

β . (582)

Hence lete′ ∈ E′. Then

µF̂(f)(X)(e
′) = µF̂R(f)(X)(e

′) by Def. 180

= FR(πe′ ◦ f̂)(X) by Def. 22

= F(πe′ ◦ f̂ ◦ ϑ̂)( ˆ̂
β(X)) by Def. 175

= F(πe′ ◦ ϑ̂′ ◦ β′ ◦ f̂ ◦ ϑ̂)( ˆ̂
β(X)) becauseϑ′ = β′

−1

= F(πe′ ◦ ϑ̂′ ◦ ̂β′ ◦ f ◦ ϑ)( ˆ̂
β(X)) by compositionality of̂(•)

= F(π(e′) ◦ ̂β′ ◦ f ◦ ϑ)( ˆ̂
β(X)) see Def. 9,ϑ′ bijection

= F(π(e′))(F̂(β′ ◦ f ◦ ϑ)( ˆ̂
β(X))) by (L-6)

= π̃(e′)(F̂(β′ ◦ f ◦ ϑ)( ˆ̂
β(X))) by (L-2)

= µ
F̂(β′◦f◦ϑ)(

ˆ̂
β(X))

((e′)) by Def. 10

= µ
F̂(β′◦f◦ϑ)(

ˆ̂
β(X))

(ϑ′−1(e′)) by (237)

= µ ˆ̂
ϑ
′
(F̂(β′◦f◦ϑ)(

ˆ̂
β(X)))

(e′) by Def. 21 andϑ′ bijection,
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i.e. (582) is indeed valid. Based on (582), we can now proceed as follows. Consider
somee′′ ∈ E′′. Then

µF̂(g◦f)(X)(e
′′)

= µF̂R(g◦f)(X)(e
′′) by Def. 180

= FR(πe′′ ◦ ĝ ◦ f)(X) by Def. 22

= FR(πe′′ ◦ ĝ ◦ f̂)(X) by compositionality of̂(•)

= F(πe′′ ◦ ĝ ◦ f̂ ◦ ϑ̂)( ˆ̂
β(X)) by Def. 175

= F(πe′′ ◦ ĝ ◦ ϑ̂′ ◦ β̂′ ◦ f̂ ◦ ϑ̂)( ˆ̂
β(X)) becauseϑ′ = β′

−1

= F(πe′′ ◦ ĝ ◦ ϑ̂′ ◦ ̂β′ ◦ f ◦ ϑ)( ˆ̂
β(X)) by compositionality of̂(•)

= F(πe′′ ◦ ĝ ◦ ϑ̂′)(F̂(β′ ◦ f ◦ ϑ)( ˆ̂
β(X))) by (L-6)

= F(πe′′ ◦ ĝ ◦ ϑ̂′)( ˆ̂
β
′
( ˆ̂
ϑ
′
(F̂(β′ ◦ f ◦ ϑ)( ˆ̂

β(X))))) becauseβ′ = ϑ′
−1

= F(πe′′ ◦ ĝ ◦ ϑ̂′)( ˆ̂
β
′
(F̂(f)(X))) by (582)

= FR(πe′′ ◦ ĝ)(F̂(f)(X)) by Def. 175

= µF̂R(g)(F̂(f)(X))(e
′′) by Def. 22

= µF̂(g)(F̂(f)(X))(e
′′) . by Def. 180

Becausee′′ ∈ E′′ was arbitrary, this proves that̂F(g ◦ f)(X) = F̂(g)(F̂(f)(X)).
Noticing thatX ∈ P̃(E) was also arbitrary, we hence obtain̂F(g ◦ f) = F̂(g)◦ F̂(f),
as desired.

Lemma 39
If an L-QFMF satisfies(L-2) and (L-6), then the corresponding ordinary QFMFR
defined by Def. 175 satisfies(Z-6).

Proof Consider a semi-fuzzy quantifierQ : P(E)n −→ I and letf1, . . . , fn : E′ −→
E be given mappings,E′ 6= ∅. I will use symbolsβ : E −→ E1, ϑ : E1 −→ E,
β′ : E′ −→ E′

1 andϑ′ : E′1 −→ E in order to distinguish the mappings obtained
from (236) and (237) for the two considered base sets,E andE′. We can then proceed
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as follows:

FR(Q ◦
n
×
i=1

f̂i)

= F(Q ◦
n
×
i=1

f̂i ◦
n
×
i=1

ϑ̂) ◦
n
×
i=1

ˆ̂
β by Def. 175

= F(Q ◦
n
×
i=1

f̂i ◦
n
×
i=1

ϑ̂) ◦
n
×
i=1

ˆ̂
β

= F(Q ◦
n
×
i=1

̂ϑ′ ◦ β′ ◦ fi ◦ ϑ) ◦
n
×
i=1

ˆ̂
β becauseϑ′ ◦ β′ = idE′

= F(Q ◦
n
×
i=1

ϑ̂′ ◦ ̂β′ ◦ fi ◦ ϑ) ◦
n
×
i=1

ˆ̂
β by compositionality of̂(•)

= F(Q ◦
n
×
i=1

ϑ̂′) ◦
n
×
i=1

(F̂(β′ ◦ fi ◦ ϑ) ◦ ˆ̂
β) by (L-6)

= F(Q ◦
n
×
i=1

ϑ̂′) ◦
n
×
i=1

(F̂(β′ ◦ fi ◦ ϑ) ◦ F̂(β)) see L-37,β bijection

= F(Q ◦
n
×
i=1

ϑ̂′) ◦
n
×
i=1
F̂(β′ ◦ fi ◦ ϑ ◦ β) by L-38

= F(Q ◦
n
×
i=1

ϑ̂′) ◦
n
×
i=1
F̂(β′ ◦ fi) becauseϑ = β−1

= F(Q ◦
n
×
i=1

ϑ̂′) ◦
n
×
i=1
F̂(β′) ◦

n
×
i=1
F̂(fi) by L-38

= F(Q ◦
n
×
i=1

ϑ̂′) ◦
n
×
i=1

ˆ̂
β
′
◦

n
×
i=1
F̂(fi) see L-37,β′ bijection

= FR(Q) ◦
n
×
i=1
F̂(fi) by Def. 175

= FR(Q) ◦
n
×
i=1
F̂R(fi) , by Def. 180

i.e.FR indeed satisfies (Z-6).

Proof of Theorem 271

Let F be an L-DFS andFR the corresponding ordinary QFM defined by Def. 175. It
has already been shown in the series of lemmata L-31, L-32, L-33, L-35, L-36 and
L-39 thatFR satisfies (Z-1), (Z-2), (Z-3), (Z-4), (Z-5) and (Z-6), respectively. Hence
FR is a DFS by Def. 24.

D.33 Proof of Theorem 272

Lemma 40
LetF be a QFM which satisfies(Z-2) and(Z-6). Then for all mappingsf : E −→ E′,
g : E′ −→ E′′ whereE,E′, E′′ are nonempty sets:

a. F̂(g ◦ f) = F̂(g) ◦ F̂(f);

b. if f is an injection, thenµF̂(f)(X)(e
′) = µ ˆ̂

f(X)
(e′) = µX(f−1(e′)) for all
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e′ ∈ Im f ;

c. if f is a bijection, thenF̂(f) = ˆ̂
f ;

d. in particular F̂(idE) = idP̃(E).

Proof Let us consider partsa.–d. in turn.

a.: Considerf : E −→ E′, g : E′ −→ E′′ whereE,E′, E′′ are arbitrary nonempty
sets. Then for alle′′ ∈ E′′ andX ∈ P̃(E),

µF̂(g◦f)(X)(e
′′) = F(πe′′ ◦ ĝ ◦ f)(X) by Def. 22 (583)

= F(πe′′ ◦ ĝ ◦ f̂)(X) by compositionality of̂(•) (584)

= F(πe′′ ◦ ĝ)(F̂(f)(X)) by (Z-6) (585)

= µF̂(g)(F̂(f)(X))(e
′′) . by Def. 22 (586)

Becausee′′ ∈ E′′ andX ∈ P̃(E) were arbitrarily chosen, this demonstrates that
F̂(g ◦ f) = F̂(g) ◦ F̂(f), as desired.

b.: Suppose thatf : E −→ E′, E,E′ 6= ∅, is an injection. Further lete′ ∈ Im f .
Then there exists a unique choice off−1(e′) ∈ E such thatf(f−1(e′)) = e′. In
addition,

πe′(f̂(Y ))

=
{

1 : e′ ∈ f̂(Y )
0 : else

by Def. 9

=
{

1 : f−1(e′) ∩ Y 6= ∅

0 : else
obvious from Def. 19;f−1 refers to the inverse
image mappingf−1 : P(E′) −→ P(E)

=
{

1 : f−1(e′) ∈ Y
0 : else

becausef is injective; here
f−1(e′) denotes the unique element
of E with f(f−1(e′)) = e′

= πf−1(e′)(Y ) by Def. 9

for all Y ∈ P(E), i.e.

πe′ ◦ f̂ = πf−1(e′) . (587)

Hence for allX ∈ P̃(E),

µF̂(f)(X)(e
′) = F(πe′ ◦ f̂)(X) by Def. 22

= F(πf−1(e′))(X) by (587)

= π̃f−1(e′)(X) by (Z-2)

= µX(f−1(e′)) by Def. 10

= µ ˆ̂
f(X)

(e′) ,
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where the last equality ist apparent from the definition of the standard extension prin-
ciple, Def. 21.

c.: This is only a special case ofb.: if f is a bijection, thenall e′ ∈ E′ are members
of Im f ; therefore caseb. applies unconditionally and results in

µF̂(f)(X)(e
′) = µ ˆ̂

f(X)
(e′)

for all e′ ∈ E′, i.e. F̂(f) = ˆ̂
f , as desired.

d.: This is apparent fromc. noticing thatidE is a bijection, which the standard ex-

tension principle maps tô̂idE = idP̃(E).

Lemma 41
LetQ be a semi-fuzzy L-quantifier of typet ∈ Nn, n ∈ N on some base setE 6= ∅. If
t = (m, . . . ,m) for somem ∈ N, then the mappingsζi andκi defined by(241)and
(242)reduce to identities

ζi = κi = idEm .

In particular

ζ̂i = κ̂i = idP(E1) and ˆ̂
ζi = ˆ̂κi = idP̃(E1)

for all i ∈ {1, . . . , n}.
The quantifierQ′ defined by(244)reduces to

Q′ = Q .

Proof In this case,Eti = Em; therefore

ζi(e1, . . . , em) = (e1, . . . , em) = idEm(e1, . . . , em)

for all (e1, . . . , em) ∈ Em by (241), i.e.ζi = idE1 for all i ∈ {1, . . . , n}. Similarly,
we obtain from (242) that

κi(e1, . . . , em) = (e1, . . . , em) = idEm(e1, . . . , em)

for all (e1, . . . , em) ∈ Em in this case, i.e.κi = idEm , i ∈ {1, . . . , n}. It is then
apparent from the known properties of crisp powerset mappings that indeedζ̂i = κ̂i =
idP(Em), see Def. 19. Similarly, it is obvious from properties of the standard extension

principle introduced in Def. 21 that̂̂ζi = ˆ̂κi = idP̃(Em). Now turning toQ′, we simply
observe that

Q′(Y1, . . . , Yn)
= Q(κ̂1(Y1 ∩ Im ζ1), . . . , κ̂n(Yn ∩ Im ζn)) by (244)

= Q(îdEm(Y1 ∩ Em), . . . , îdEm(Yn ∩ Em)) (as shown above)

= Q(idP(Em)(Y1), . . . , idP(Em)(Yn)) by Def. 19

= Q(Y1, . . . , Yn)
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for all Y1, . . . , Yn ∈ P(Em), i.e.Q′ = Q, which completes the proof of the lemma.

Lemma 42
If a QFMF satisfies(Z-2) and (Z-6), thenFLR = F .

Proof To see this, considerQ : P(E)n −→ I. Then

FLR(Q) = FL(Q ◦
n
×
i=1

ϑ̂) ◦
n
×
i=1

ˆ̂
β by Def. 175

= F(Q′) ◦
n
×
i=1

ˆ̂
ζi ◦

n
×
i=1

ˆ̂
β , by Def. 182

i.e.

FLR(Q) = F(Q′) ◦
n
×
i=1

ˆ̂
ζi ◦

n
×
i=1

ˆ̂
β , (588)

whereQ′ : P(E1)n −→ I is defined in terms ofQ◦
n
×
i=1

ϑ̂ according to (244). Noticing

thatQ ◦
n
×
i=1

ϑ̂ is a semi-fuzzy L-quantifier onE of typet = 〈1, . . . , 1〉, we can apply

L-41 and conclude thatζi : E1 −→ E1 andκi : E1 −→ E1 reduce to identities

ζi = κi = idE1 (589)

andQ′ reduces to

Q′ = Q ◦
n
×
i=1

ϑ̂ . (590)

Therefore

FLR(Q)

= F(Q′) ◦
n
×
i=1

ˆ̂
ζi ◦

n
×
i=1

ˆ̂
β by (588)

= F(Q′) ◦
n
×
i=1

idP̃(E1) ◦
n
×
i=1

ˆ̂
β by (589) and Def. 21

= F(Q′) ◦
n
×
i=1

ˆ̂
β

= F(Q′) ◦
n
×
i=1
F̂(β) by L-40.c andβ bijection

= F(Q ◦
n
×
i=1

ϑ̂ ◦
n
×
i=1

β̂) by (590) and (Z-6)

= F(Q ◦
n
×
i=1

ϑ̂ ◦ β̂) ,

due to the compositionality of product mappings. It is then apparent fromϑ ◦ β = idE
and the compositionality of powerset mappings thatϑ̂ ◦ β̂ = ϑ̂ ◦ β = îdE = idP(E).

542



We then obtain

FLR(Q) = F(Q ◦
n
×
i=1

ϑ̂ ◦ β̂)

= F(Q ◦
n
×
i=1

idP(E))

= F(Q) .

BecauseQ was arbitrary, this proves the desiredF = FLR.

Proof of Theorem 272

The theorem is a corollary to L-42, noticing that every DFSF satisfies (Z-2) and (Z-6)
by definition, see Def. 24.

D.34 Proof of Theorem 273

Lemma 43
If a QFMF satisfies(Z-1), then the corresponding L-QFMFL satisfies(L-1).

Proof Hence letF be a QFM which satisfies (Z-1) and letQ be a semi-fuzzy L-
quantifier of typet ∈ {〈〉, 〈1〉} on some base setE 6= ∅. I will treat the casest = 〈〉
andt = 〈1〉 separately.

Case a.: t = 〈〉, i.e.Q is a quantifier of arityn = 0. HenceQ is a mappingQ :
0
×
i=1
P(Eti) −→ I, i.e.Q : {∅} −→ I, recalling that{∅} represents the empty product.

But P(E)0 = {∅} as well; this demonstrates thatQ also qualifies as a nullary semi-
fuzzy quantifierQ : P(E)0 −→ I on E. Now turning toFL, we first notice that
the quantifierQ′ defined by (244) reduces toQ′ = Q in this case, because there are
no arguments, and becauseP(Em)n = P(E0)0 = P({∅})0 = {∅}, too. Hence by
Def. 182,

FL(Q) = F(Q′) ◦
0
×
i=1

ˆ̂
ζi = F(Q′) ◦ id{∅} = F(Q′) = F(Q) (591)

noticing that the empty product map is the identityid{∅} which maps the empty map-
ping∅ to itself. We conclude that

U(FL(Q)) = U(F(Q)) by (591)

= Q , by (Z-1)

as desired.
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Case b.: t = 〈1〉. Here we proceed as follows. We first observe that

FL(Q) = F(Q′) ◦ ˆ̂
ζ by (244)

= F(Q) ◦ idP̃(E1) . by L-41

From this it is now apparent thatU(FL(Q)) = U(F(Q)) = Q, becauseF satisfies
(Z-1) by assumption of the lemma.

Lemma 44
If a QFMF satisfies(Z-2), then the corresponding L-QFMFL satisfies(L-2)

Proof Let E 6= ∅ be some base set ande ∈ E. In order to verify that (L-2) holds,
we must show thatFL(π(e)) = π̃(e). To this end, we notice thatπ(e) has type〈1〉, i.e.
L-41 is applicable. Therefore

FL(π(e)) = F(Q′) ◦ ˆ̂
ζ by Def. 182 (592)

= F(π(e)) ◦ idP̃(E1) by L-41 (593)

= π̃(e) , by (Z-2) (594)

i.e.FL(π(e)) = π̃(e), as desired.

Next we shall turn to the conditions which involve the induced fuzzy set operations
of complementatioñ¬ and formation of unions̃∪. It is therefore necessary to establish
the conditions under which the induced fuzzy truth functions and fuzzy set operations
of the L-QFMFL coincide with those induced by the original QFMF .

Lemma 45
LetF be a QFM andFL the corresponding L-QFM defined by Def. 182. IfF satisfies
(Z-2) and (Z-6), thenF̃ = F̃L, i.e.F andFL induce the same fuzzy truth functions
and the same choice of fuzzy set operations.

Proof Trivial. Let f : 2n −→ I be a given mapping,n ∈ N. Then

F̃L(f) = F̃LR(f) by Def. 176

= FLR(Qf ) ◦ η̃ by Def. 11

= F(Qf ) ◦ η̃ by L-42

= F̃(f) , by Def. 11

i.e. F̃ = F̃L, as desired. Consequently,F andFL also induce the same fuzzy set
operations, which are defined in terms of elementwise combinations of membership
grades, and thus reduce to an application of the induced truth functions.

Lemma 46
If F is a DFS, then the corresponding L-QFMFL satisfies(L-3).
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Proof LetF be a DFS andQ a semi-fuzzy L-quantifier of typet = 〈t1, . . . , tn〉 ∈ Nn
on some base setE 6= ∅ wheren > 0. We first consider the induced fuzzy truth
functions. Here we can apply L-45 and conclude thatF̃L = F̃ , i.e. bothF andFL
induce the same fuzzy connectives. Correspondingly, I will not discern these in my
notation. In order to establish the desired (L-3), let us first consider the semi-fuzzy
L-quantifierQ�̃ of typet onE. Here, we obtain from Def. 182 that

FL(Q�̃) = F(Q′) ◦
n
×
i=1

ˆ̂
ζi (595)

referring to the mappingsζi : Eti −→ Em, i ∈ {1, . . . , n}, m = max{t1, . . . , tn}
defined by (241), and to the semi-fuzzy quantifierQ′ : P(Em)n −→ I constructed
fromQ�̃ and the mappings andκi : Em −→ Eti given by (242) according to (244),
i.e.Q′ becomes

Q′(Y1, . . . , Yn)

= (Q�̃)(κ̂1(Y1 ∩ Im ζ1), . . . , κ̂n(Yn ∩ Im ζn)) by (244)

for all Y1, . . . , Yn ∈ P(Em). By expanding the construction of dualisation according
to Def. 14, we then obtain

Q′(Y1, . . . , Yn)
= ¬̃Q(κ̂1(Y1 ∩ Im ζ1), . . . , κ̂n−1(Yn−1 ∩ Im ζn−1),¬κ̂n(Yn ∩ Im ζn)) . (596)

Let us now consider the expression¬κ̂n(Yn ∩ Im ζn) which appears in the last argu-
ment ofQ′ in (596); I would like to show that

¬κ̂n(Yn ∩ Im ζn) = κ̂n((¬Yn) ∩ Im ζn) . (597)

To this end, we observe that

κ̂n((¬Yn) ∩ Im ζn)
= {κn(a) : a /∈ Yn, a ∈ Im ζn} by Def. 19

= {κn(ζn(b)) : ζn(b) /∈ Yn} substitutinga = ζn(b) for a ∈ Im ζn

= {b : ζn(b) /∈ Yn} by (243)

= ¬{b : ζn(b) ∈ Yn} by definition of complementation

= ¬{κn(ζ(b)) : ζn(b) ∈ Yn} by (243)

= ¬{κn(a) : a ∈ Yn, a ∈ Im ζn} substitutinga = ζn(b) for a ∈ Im ζn

= ¬κ̂n(Yn ∩ Im ζn) . by Def. 19

This proves (597). Let us now return to the original quantifierQ. When applyingFL
toQ, we obtain

FL(Q) = F(Q′′) ◦
n
×
i=1

ˆ̂
ζi , (598)

see Def. 182. HereQ′′ : P(Em)n −→ I is the semi-fuzzy quantifier constructed from
Q according to (244), i.e.

Q′′(Y1, . . . , Yn) = Q(κ̂1(Y1 ∩ Im ζ1), . . . , κ̂n(Yn ∩ Im ζn)) (599)
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for all Y1, . . . , Yn ∈ P(Em). We now observe from (596), (597), (599) and Def. 14
that indeed

Q′ = Q′′�̃ . (600)

Now consider a choice of fuzzy argumentXi ∈ P̃(Eti), i ∈ {1, . . . , n}. I first prove
the equality

(¬̃ ˆ̂
ζn(Xn)) ∩̃ Im ζn = ˆ̂

ζn(¬̃Xn) ∩̃ Im ζn (601)

which I will need below. Hence considera ∈ Em. If a /∈ Im ζn, then

µ
(¬̃ ˆ̂
ζn(Xn))∩̃Im ζn

(a) = µ
¬̃ ˆ̂
ζn(Xn)

(a) ∧̃ χIm ζn(a) by pointwise definition of̃∩

= µ
¬̃ ˆ̂
ζn(Xn)

(a) ∧̃ 0 becausea /∈ Im ζn

= 0 by Th-5

= µ ˆ̂
ζn(¬̃Xn)

(a) ∧̃ 0 by Th-5

= µ ˆ̂
ζn(¬̃Xn)

(a) ∧̃ χIm ζn(a) becausea /∈ Im ζn

= µ ˆ̂
ζn(¬̃Xn)∩̃Im ζn

(a) by pointwise definition of̃∩ .

In the remaining case thata ∈ Im ζn, we know thata = ζn(b) for a uniqueb ∈ Etn ,
becauseζn is an injection. In this case

µ
(¬̃ ˆ̂
ζn(Xn))∩̃Im ζn

(a) = µ
¬̃ ˆ̂
ζn(Xn)

(a) ∧̃ χIm ζn(a) by pointwise definition of̃∩

= µ
¬̃ ˆ̂
ζn(Xn)

(a) ∧̃ 1 becausea ∈ Im ζn

= µ
¬̃ ˆ̂
ζn(Xn)

(a) by Th-5

= µ ˆ̂
ζn(¬̃Xn)

(a) by L-34

= µ ˆ̂
ζn(¬̃Xn)

(a) ∧̃ χIm ζn(a) becausea ∈ Im ζn

= µ ˆ̂
ζn(¬̃Xn)∩̃Im ζn

(a) by pointwise definition of̃∩ .
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This completes the proof of equality (601). Based on these preparations, we can now
proceed as follows.

FL(Q�̃)(X1, . . . , Xn)

= F(Q′)(ˆ̂
ζ1(X1), . . . , ˆ̂

ζn(Xn)) by (595)

= F(Q′′�̃)(ˆ̂
ζ1(X1), . . . , ˆ̂

ζn(Xn)) by (600)

= ¬̃ F(Q′′)(ˆ̂
ζ1(X1), . . . , ˆ̂

ζn−1(Xn−1), ¬̃ ˆ̂
ζn(Xn)) by (Z-3)

= ¬̃ F(Q ◦
n
×
i=1

)(ˆ̂
ζ1(X1) ∩̃ Im ζ1, . . . ,

ˆ̂
ζn−1(Xn−1) ∩̃ Im ζn−1,

(¬̃ ˆ̂
ζn(Xn)) ∩̃ Im ζn) by (599), Th-14, Th-9, Th-15

= ¬̃ F(Q ◦
n
×
i=1

)(ˆ̂
ζ1(X1) ∩̃ Im ζ1, . . . ,

ˆ̂
ζn−1(Xn−1) ∩̃ Im ζn−1,

ˆ̂
ζn(¬̃Xn) ∩̃ Im ζn) by (601)

= ¬̃ F(Q′′)(ˆ̂
ζ1(X1), . . . , ˆ̂

ζn−1(Xn−1), ˆ̂
ζn(¬̃Xn)) by (599), Th-14, Th-9, Th-15

= ¬̃ FL(Q)(X1, . . . , Xn−1, ¬̃Xn) by (598)

= FL(Q)�̃(X1, . . . , Xn) by Def. 177

Hence indeedFL(Q�̃) = FL(Q)�̃. Because the choice ofQwas arbitrary, this proves
thatFL satisfies (L-3), as desired.

Lemma 47
Let F be a QFM which satisfies(Z-1). Then for every semi-fuzzy truth functionf :
2n −→ I,

F̃L(f)(y1, . . . , yn) = f(y1, . . . , yn)

for all y1, . . . , yn ∈ 2.
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Proof Consider a QFMF which satisfies (Z-1) and letf : 2n −→ I be given. Further
suppose thaty1, . . . , yn ∈ 2 are two-valued arguments. Then

F̃L(f)(y1, . . . , yn)

= F̃LR(f)(y1, . . . , yn) by Def. 176

= FLR(Qf )(η̃(y1, . . . , yn)) by Def. 11

= FLR(Qf )(η(y1, . . . , yn)) by (15), (16),yi crisp

= F(Qf ◦ ϑ̂)( ˆ̂
β(η(y1, . . . , yn)))

= F(Qf ◦ ϑ̂)(β̂(η(y1, . . . , yn))) becauseη(y1, . . . , yn) crisp

= Qf (ϑ̂(β̂(η(y1, . . . , yn)))) by (Z-1)

= Qf (η(y1, . . . , yn)) becauseϑ ◦ β̂ = idE
= f(η−1(η(y1, . . . , yn))) by Def. 11

= f(y1, . . . , yn) ,

as desired.

Lemma 48
If F is a DFS, then the corresponding L-QFMFL satisfies(L-4).

Proof Hence letF be a DFS andQ a semi-fuzzy L-quantifier of typet ∈ Nn, n > 0
on some base setE. Let us notice in advance thatF andFL induce the same fuzzy truth
functions and fuzzy set operations, so that I need not separate these in the notation. In
order to show thatFL is compatible with the formation of unions in the arguments, let
us first consider the fuzzy L-quantifierFL(Q)∪̃ of typet′ = 〈t1, . . . , tn, tn〉 ∈ Nn+1.
In this case, we obtain from Def. 182 that

FL(Q)∪̃ = F(Q′) ◦
n
×
i=1

ˆ̂
ζi∪̃ (602)

whereQ′ is defined by (244). I will have to apply this construction twice; therefore
let me explain the exact notation I will use to describeQ′. In this case, I will write
ζi : Eti −→ Em, κi : Em −→ Eti , i ∈ {1, . . . , n}, for the mappings defined by
(241) and (242), respectively. The quantifierQ′ : P(Em)n −→ I then becomes

Q′(Y1, . . . , Yn) = Q(κ̂1(Y1 ∩ Im ζ1), . . . , κ̂n(Yn ∩ Im ζn)) (603)

for all Y1, . . . , Yn ∈ P(Em). Next we consider the semi-fuzzy L-quantifierQ∪ of type
t′ = 〈t1, . . . , tn, tn〉 ∈ Nn+1 onE. In this case, Def. 182 yields

FL(Q∪) = F(Q′′) ◦
n
×
i=1

ˆ̂
ζ
′

i (604)

and the construction now rests on mappings

ζ ′i = ζi (605)

κ′i = κi (606)
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for i ∈ {1, . . . , n}, and an additional pair of mappings

ζ ′n+1 = ζn (607)

κ′n+1 = κn (608)

for i = n+ 1. The semi-fuzzy quantifierQ′′ : P(Em)n+1 −→ I then becomes

Q′′(Y1, . . . , Yn)
= Q∪(κ̂′1(Y1 ∩ Im ζ ′1), . . . , κ̂′n+1(Yn+1 ∩ Im ζ ′n+1)) by (244)

= Q∪(κ̂1(Y1 ∩ Im ζ1), . . . ,
κ̂n(Yn ∩ Im ζn), κ̂n(Yn+1 ∩ Im ζn)) by (605), (606), (607), (608)

= Q(κ̂1(Y1 ∩ Im ζ1), . . . , κ̂n−1(Yn−1Im ζn−1),
κ̂n(Yn ∩ Im ζn) ∪ κ̂n(Yn+1 ∩ Im ζn)) , by Def. 15

= Q(κ̂1(Y1 ∩ Im ζ1), . . . , κ̂n−1(Yn−1Im ζn−1),
κ̂n((Yn ∪ Yn+1) ∩ Im ζn)) ,

for all Y1, . . . , Yn+1 ∈ P(Em), where the last step is justified by the known properties
of powerset mappings and of the familiar operations on crisp sets. We conclude from
(603) and Def. 15 that

Q′′ = Q′∪ . (609)

Hence for allX1, . . . , Xn+1 ∈ P̃(E),

FL(Q∪)(X1, . . . , Xn+1)

= F(Q′′)(ˆ̂
ζ
′

1(X1), . . . , ˆ̂
ζ
′

n+1(Xn+1)) by (604)

= F(Q′∪)(ˆ̂
ζ1(X1), . . . , ˆ̂

ζn(Xn), ˆ̂
ζn(Xn+1)) by (605), (607), (609)

= F(Q′)(ˆ̂
ζ1(X1), . . . , ˆ̂

ζn−1(Xn−1), ˆ̂
ζn(Xn) ∪̃ ˆ̂

ζn(Xn+1)) by (Z-4)

= F(Q′)(ˆ̂
ζ1(X1), . . . , ˆ̂

ζn−1(Xn−1), ˆ̂
ζn(Xn ∪̃Xn+1)) by L-47, L-34

= FL(Q)(X1, . . . , Xn−1, Xn ∪̃Xn+1) , by (602)

i.e.FL(Q∪) = FL(Q)∪̃, as desired.

Lemma 49
If a QFMF satisfies(Z-5), then the corresponding L-QFMFL satisfies(L-5).

Proof Suppose thatQ is a semi-fuzzy L-quantifier of typet ∈ Nn n > 0 on some
base setE 6= ∅, which is nonincreasing in itsn-th argument. As I will now show, the
semi-fuzzy quantifierQ′ : P(Em)n −→ I defined by (244) is also nonincreasing in
its last argument. To see this, let us considerY1, . . . , Yn, Y

′
n ∈ P(Em) with Yn ⊆ Y ′n.

Clearly Yn ∩ Im ζn ⊆ Y ′n ∩ Im ζn as well. And, due to the monotonicity of crisp
powerset mappings, we also have

κ̂n(Yn ∩ Im ζn) ⊆ κ̂n(Y ′n ∩ Im ζn) . (610)
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But,Q is nonincreasing in its last argument, hence

Q(κ1(Y1 ∩ Im ζ1), . . . , κn(Yn ∩ Im ζn))
≥ Q(κ1(Y1 ∩ Im ζ1), . . . , κn−1(Yn−1 ∩ Im ζn−1), κn(Y ′n ∩ Im ζn)) .

Recalling (244), then, we have

Q′(Y1, . . . , Yn) ≥ Q′(Y1, . . . , Yn−1, Y
′
n) ,

i.e.Q′ is indeed nonincreasing in its last argument. We can now proceed as follows.
Consider a choice of fuzzy argumentsXi ∈ P̃(Eti), i ∈ {1, . . . , n}. Further let
X ′n ∈ P̃(Etn) such thatXn ⊆ X ′n. Due to the monotonicity of the standard extension
principle, we then know that

ˆ̂
ζn(Xn) ⊆ ˆ̂

ζn(X ′n) . (611)

Therefore

FL(Q)(X1, . . . , Xn)

= F(Q′)(ˆ̂
ζ1(X1), . . . , ˆ̂

ζn(Xn)) by Def. 182

≥ F(Q′)(ˆ̂
ζ1(X1), . . . , ˆ̂

ζn−1(Xn−1), ζn(X ′n)) by (Z-5) and (611)

= FL(Q)(X1, . . . , Xn−1, X
′
n) ,

i.e.FL(Q) is indeed nonincreasing in itsn-th argument according to Def. 179.

Lemma 50
If F satisfies(Z-2) and (Z-6), thenF̂ = F̂L, i.e.F andFL induce the same extension
principle.

Proof Consider a mappingf : E −→ E′, E,E′ 6= ∅ and lete′ ∈ E′. Then

µF̂L(f)(e
′) = µF̂LR(f)(e

′) by Def. 180

= µF̂(f)(e
′) , by L-42

i.e. F̂L(f) = F̂(f), which completes the proof of the lemma.

Lemma 51
If F is a DFS, then the corresponding L-QFMFL satisfies(L-6).

Proof LetF be a DFS andFL the L-QFM defined by Def. 182. In order to prove the
lemma, we consider a semi-fuzzy L-quantifierQ of typet ∈ Nn, n ∈ N, another type
t′ ∈ Nn with the same number of components, a base setE′ 6= ∅ and some choice of

mappingsfi : E′t
′
i −→ Eti , i ∈ {1, . . . , n}. We need some preparations. Firstly we

know from Def. 182 that

FL(Q) = F(Q′) ◦
n
×
i=1

ˆ̂
ζi , (612)
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whereQ′ : P(Em)n −→ I is the semi-fuzzy quantifier constructed fromQ according
to by (244). Because we will need this construction twice here, let me state which
symbols I will use to describeQ′. In this case, we havem = max{t1, . . . , tn}; the
mappingsζi : Eti −→ Em andκi : Em −→ Eti , i ∈ {1, . . . , n} are defined by
(241) and (242), respectively; andQ′ hence becomes:

Q′(Y1, . . . , Yn) = Q(κ̂1(Y1 ∩ Im ζ1, . . . , κ̂n(Yn ∩ Im ζn)) (613)

for all Y1, . . . , Yn ∈ P(Em). In the following, it is also necessary to considerF(Q ◦
n
×
i=1

f̂i). In this case, we obtain from Def. 182 that

FL(Q ◦
n
×
i=1

f̂i) = F(Q′′) ◦
n
×
i=1

ˆ̂
ζ
′

i , (614)

whereQ′′ is the quantifier constructed fromQ ◦
n
×
i=1

f̂i according to (244). In this

case, we havem′ = max{t′1, . . . , t′n}; the mappingsζ ′i : E′t
′
i −→ Em

′
andκ′i :

E′
m′ −→ E′

t′i , i ∈ {1, . . . , n} are defined by (241) and (242), respectively; and

Q′′ : P(E′m
′
)
n
−→ I becomes

Q′′(Y1, . . . , Yn)

= (Q ◦
n
×
i=1

f̂i)(κ̂′1(Y1 ∩ Im ζ ′1), . . . , κ̂′n(Yn ∩ Im ζ ′n)) , by (244)

i.e.

Q′′(Y1, . . . , Yn) = Q(f̂1(κ̂′1(Y1 ∩ Im ζ ′1)), . . . , f̂n(κ̂′n(Yn ∩ Im ζ ′n))) (615)

for all Y1, . . . , Yn ∈ P(E′m
′
). Let us now consider a choice ofi ∈ {1, . . . , n}. Then

fi ◦ κ′i
= κi ◦ ζi ◦ fi ◦ κ′i

becauseκi ◦ ζi = idEti by (243). We conclude from the known properties of crisp
powerset mappings that

f̂i ◦ κ = κ̂i ◦ ̂ζi ◦ fi ◦ κ′i . (616)

Now consider someYi ∈ P(E′m
′
). We then have

̂ζi ◦ fi ◦ κ′i(Yi) ⊆ Im ζi ,

i.e.

̂ζi ◦ fi ◦ κ′i(Yi) ∩ Im ζi = ̂ζi ◦ fi ◦ κ′i(Yi) . (617)
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Hence for allY1, . . . , Yn ∈ P(E′m
′
),

Q′′(Y1, . . . , Yn)

= Q(f̂1 ◦ κ′1(Y1 ∩ Im ζ ′1)), . . . , f̂n ◦ κ′n(Yn ∩ Im ζ ′n))) by (615)

= Q(κ̂1( ̂ζ1 ◦ f1 ◦ κ′1(Y1 ∩ Im ζ ′1)), . . . , κ̂n( ̂ζn ◦ fn ◦ κ′n(Yn ∩ Im ζ ′n))) by (616)

= Q(κ̂1( ̂ζ1 ◦ f1 ◦ κ′1(Y1 ∩ Im ζ ′1) ∩ Im ζ1), . . . ,

κ̂n( ̂ζn ◦ fn ◦ κ′n(Yn ∩ Im ζ ′n) ∩ Im ζn)) by (617)

= Q′( ̂ζ1 ◦ f1 ◦ κ′1(Y1 ∩ Im ζ ′1), . . . , ̂ζn ◦ fn ◦ κ′n(Yn ∩ Im ζ ′n))

i.e.

Q′′(Y1, . . . , Yn) = Q′( ̂ζ1 ◦ f1 ◦ κ′1(Y1 ∩ Im ζ ′1), . . . , ̂ζn ◦ fn ◦ κ′n(Yn ∩ Im ζ ′n)) .
(618)

Now consider a choice of fuzzy argumentsXi ∈ P̃(E′t
′
i), i ∈ {1, . . . , n}. Then

FL(Q ◦
n
×
i=1

f̂i)(X1, . . . , Xn)

= F(Q′′)(ˆ̂
ζ
′

1(X1), . . . , ˆ̂
ζ
′

n(Xn)) by (614)

= F(Q′)(F̂(ζ1 ◦ f1 ◦ κ′1)(ˆ̂
ζ
′

1(X1) ∩ Im ζ ′1), . . . ,

F̂(ζn ◦ fn ◦ κ′n)(ˆ̂
ζ
′

n(Xn) ∩ Im ζ ′n)) by (618), (Z-6), Th-14,

Th-9 and Th-15

= F(Q′)(F̂(ζ1 ◦ f1 ◦ κ′1)(ˆ̂
ζ
′

1(X1)), . . . ,

F̂(ζn ◦ fn ◦ κ′n)(ˆ̂
ζ
′

n(Xn))) apparent from Def. 21

= F(Q′)(F̂(ζ1 ◦ f1 ◦ κ′1 ◦ ζ ′1)(X1), . . . ,

F̂(ζn ◦ fn ◦ κ′n ◦ ζ ′n)(Xn)) by Th-21, Th-20

= F(Q′)(F̂(ζ1 ◦ f1)(X1), . . . , F̂(ζn ◦ fn)(Xn)) by (243)

= F(Q′)(F̂(ζ1)(F̂(f1)(X1)), . . . ,

F̂(ζn)(F̂(fn)(Xn))) by Th-20

= F(Q′)(ˆ̂
ζ1(F̂(f1)(X1)), . . . , ˆ̂

ζn(F̂(fn)(Xn))) by Th-21

= FL(Q)(F̂(f1)(X1), . . . , F̂(fn)(Xn)) by (612)

= FL(Q)(F̂L(f1)(X1), . . . , F̂L(fn)(Xn)) by L-50.

Because the arguments were chosen arbitrarily, this demonstrates that indeed

FL(Q ◦
n
×
i=1

f̂i) = FL(Q) ◦
n
×
i=1
F̂L(fi) ,

i.e.FL satisfies (L-6), as desired.
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Proof of Theorem 273

LetF be a DFS. The claim of the theorem thatFL is an L-DFS is now apparent from
the series of lemmata L-43, L-44, L-46, L-48, L-49, L-51, which prove thatFL satisfies
(L-1), (L-2), (L-3), (L-4), (L-5) and (L-6), respectively.

D.35 Proof of Theorem 274

Let F be a given L-DFS. In order to show thatF = FRL, we consider an arbitrary
semi-fuzzy L-quantifierQ of some typet ∈ Nn, n ∈ N on a base setE 6= ∅. We
need some preparations. Fori ∈ {1, . . . , n}, let λi : Eti −→ (Em)1 denote the
composition

λi = β ◦ ζi (619)

i.e.

λi(e1, . . . , eti) = ((e1, . . . , eti , eti , . . . , eti︸ ︷︷ ︸
(m− ti) times

)) (620)

for all (e1, . . . , eti) ∈ Eti . Due to the compositionality of the standard extension
principle, we then have

ˆ̂
λi = ˆ̂

β ◦ ˆ̂
ζi . (621)

Next we observe from (620) that theλi’s are injections. And, the QFMFR constructed
from F according to Def. 175, is known to be a DFS from Th-271. Hence by Th-21,

F̂R(λi) = ˆ̂
λi. But F̂ = F̂R by Def. 180; we conclude that

F̂(λi) = ˆ̂
λi (622)

for all i ∈ {1, . . . , n}. Based on these preparations, we can now proceed as follows.
Consider a choice of fuzzy argumentsXi ∈ P̃(Eti), i ∈ {1, . . . , n}. Then

FRL(Q)(X1, . . . , Xn)

= FR(Q′)(ˆ̂
ζ1(X1), . . . , ˆ̂

ζn(Xn)) by Def. 182, (244)

= F(Q′ ◦
n
×
i=1

ϑ̂)( ˆ̂
β(ˆ̂
ζ1(X1)), . . . , ˆ̂

β(ˆ̂
ζn(Xn))) by Def. 175

= F(Q′ ◦
n
×
i=1

ϑ̂)(ˆ̂
λ1(X1), . . . , ˆ̂λn(Xn)) by (621)

= F(Q′ ◦
n
×
i=1

ϑ̂)(F̂(λ1)(X1), . . . , F̂(λn)(Xn)) by (622)

= F(Q′ ◦
n
×
i=1

ϑ̂ ◦
n
×
i=1

λ̂i)(X1, . . . , Xn) by (L-6)

= F(Q′ ◦
n
×
i=1

ϑ̂ ◦ β̂ ◦ ζ̂i)(X1, . . . , Xn) ,
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where the last equality is apparent from (619) and the compositionality of product
mappings. In order to prove the desiredFRL(Q)(X1, . . . , Xn) = F(Q)(X1, . . . , Xn),
it remains to be shown that

Q′ ◦
n
×
i=1

ϑ̂ ◦ β̂ ◦ ζ̂i = Q . (623)

To this end, we first observe that

ϑ̂ ◦ β̂ = ϑ̂ ◦ β = îdEm = idP(Em) ,

this is apparent from the fact thatϑ andβ are inverses of each others, and from the
known properties of crisp powerset mappings. Hence (623) reduces to

Q′ ◦
n
×
i=1

ζ̂i = Q . (624)

In order to prove this, we consider a choice of crisp argumentsYi ∈ P(Eti), i ∈
{1, . . . , n}. Then

Q′(ζ̂1(Y1), . . . , ζ̂n(Yn))

= Q(κ̂1(ζ̂1(Y1) ∩ Im ζ1), . . . ,

κ̂n(ζ̂n(Yn) ∩ Im ζn)) by (244)

= Q(κ̂1(ζ̂(Y1)), . . . , κ̂n(ζ̂n(Yn))) becausêζi(Yi) ⊆ ζ̂i(Eti) = Im ζi

= Q(κ̂1 ◦ ζ1(Y1), . . . , κ̂n ◦ ζn(Yn)) (compositionality of powerset mappings)

= Q(Y1, . . . , Yn) .

In the last step, I have utilized thatκi◦ζi = idEti by (243); thereforêκi ◦ ζi = îdEti =
idP(Eti ) by the known properties of crisp powerset mappings. Noticing that the choice
of argumentsY1, . . . , Yn was arbitrary, this demonstrates that (624) holds; in particular
F(Q) = FRL(Q). Because the semi-fuzzy L-quantifierQ was arbitrarily chosen, this
completes the proof thatF = FRL.

D.36 Proof of Theorem 275

Lemma 52
LetQ be ann-ary semi-fuzzy L-quantifier of typet = 〈m, . . . ,m〉 for somem ∈ N.
ThenFL(Q) = F(Q′) in every QFMF , whereQ′ : P(Em)n −→ I is the semi-fuzzy
quantifier defined by(244).

Proof Straightforward.

FL(Q) = F(Q′) ◦
n
×
i=1

ˆ̂
ζi by Def. 182

= F(Q) ◦
n
×
i=1

ˆ̂idEm by L-41

= F(Q) ◦
n
×
i=1

idP̃(Em) apparent from Def. 21

= F(Q) .
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Proof of Theorem 275

By Th-272, Th-273 and Th-274, it is sufficient to show that for every (ordinary) DFSF ,
FL is compatible with quantifier nesting only ifF is compatible with fuzzy argument
insertion according to Def. 74. The proof of this claim is by contraposition. Hence
let F be a DFS which does not verify fuzzy argument insertion. Then there exist
Q : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) such that

F(Q)(X1, . . . , Xn) 6= F(Q /̃ Xn)(X1, . . . , Xn−1) (625)

Let us define ann-ary semi-fuzzy L-quantifierQ∗of type〈1, . . . , 1〉 onE′ = E× I by

Q∗(Y1, . . . , Yn) = Q(β̂(Y1), . . . , β̂(Yn)) (626)

for all Y1, . . . , Yn ∈ P̃(E′1), whereβ : E′1 −→ E is the surjection

β((e, v)) = e (627)

for all ((e, v)) ∈ E′1. Further define an injectionθ : E −→ E′ by

θ(e) = ((e, µXn(e))) (628)

for all e ∈ E. Clearlyβ(θ(e)) = β((e, µXn(e))) = e for all e ∈ E, i.e.

β ◦ θ = idE . (629)

Therefore

Q(Y1, . . . , Yn) = Q(îdE(Y1), . . . , îdE(Yn)) apparent from Def. 19

= Q(β̂(θ̂(Y1)), . . . , β̂(θ̂(Yn))) by (629)

= Q∗(θ̂(Y1), . . . , θ̂(Yn)) by (626)

for all Y1, . . . , Yn ∈ P(E) and in turn,

F(Q)(X1, . . . , Xn) = F(Q∗ ◦
n
×
i=1

θ̂)(X1, . . . , Xn)

= F(Q∗)(ˆ̂
θ(X1), . . . , ˆ̂

θ(Xn))

by (Z-6) and Th-21. Hence by L-52,

F(Q)(X1, . . . , Xn) = FL(Q∗)(X ′1, . . . , X
′
n−1,

ˆ̂
θ(Xn)) , (630)

whereX ′1, . . . , X
′
n−1 ∈ P̃(E′1) abbreviate

X ′i = ˆ̂
θ(Xi) . (631)
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Now let us expresŝ̂θ(Xn) in terms of a nested quantifier. To this end, letQ′ be the
semi-fuzzy L-quantifier of type〈1〉 onE′ defined by

Q′(Y ) = sup{v : ((e, v)) ∈ Y } (632)

for all Y ∈ P(E′1), and letX ′n ∈ P̃(E′2) denote the collection

X ′n = {((e, µXn(e)), (e, µXn(e))) : e ∈ E} . (633)

In particular,X ′n is crisp. Now let us consider the fuzzy setZ ∈ P̃(E′1) determined
by (247), i.e.

µZ((e, v)) = FL(Q′)(((e, v))X ′n) (634)

for all ((e, v)) ∈ E′
1. Noticing from (633) thatX ′n is crisp,((e, v))X ′n defined by

(248) is also crisp and coincides with the relation defined by (246). By correct gener-
alization (L-1), then, the fuzzy setZ can also be described thus,

µZ((e, v)) = Q′(((e, v))X ′n) (635)

for all ((e, v)) ∈ E′1, where

((e, v))X ′n = {((e′, v′)) : ((e, v), (e′, v′)) ∈ X ′n} by (246)

=
{
{((e, v))} : v = µXn(e)
∅ : else

by (633). Hence

µZ((e, v)) =
{
v : v = µXn(e)
0 : else

(636)

by (632) and (635). On the other hand

µ ˆ̂
θ(Xn)

((e, v)) =
{
µθ−1((e,v))(Xn) : ((e, v)) ∈ Im θ
0 : else

apparent from Def. 21

=
{
v : v = µXn(e)
0 : else

by (628)

= µZ((e, v)) , by (636)

i.e. indeed

Z = ˆ̂
θ(Xn) . (637)

Therefore

F(Q)(X1, . . . , Xn) = FL(Q∗)(X ′1, . . . , X
′
n−1,

ˆ̂
θ(Xn)) by (630)

= FL(Q∗)(X ′1, . . . , X
′
n−1, Z) , by (637)
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from which we obtain

F(Q)(X1, . . . , Xn) = FL(Q∗) @ FL(Q′)(X ′1, . . . , X
′
n) (638)

by (634) and Def. 184. In order to complete the proof, I need some more observations.
Firstly

idP̃(E) = F̂(idE) by Th-20.b

= F̂(β ◦ θ) by (629)

= F̂(β) ◦ F̂(θ) by Th-20.a

= F̂(β) ◦ ˆ̂
θ , by Th-21

i.e.

idP̃(E) = F̂(β) ◦ ˆ̂
θ . (639)

Next we notice that for allY1, . . . , Y
′
n−1 ∈ P(E′1),

Q /̃ Xn(β̂(Y ′1), . . . , β̂(Y ′n−1))

= F(Q)(β̂(Y ′1), . . . , β̂(Y ′n−1), Xn) by Def. 73

= F(Q)(β̂(Y ′1), . . . , β̂(Y ′n−1), F̂(β)(ˆ̂
θ(Xn))) by (639)

= F(Q)(F̂(β)(Y ′1), . . . , F̂(β)(Y ′n−1), F̂(β)(ˆ̂
θ(Xn))) becauseY1, . . . , Yn−1 crisp

= F(Q ◦
n
×
i=1

β̂)(Y ′1 , . . . , Y
′
n−1,

ˆ̂
θ(Xn)) by (Z-6)

= F(Q∗)(Y ′1 , . . . , Y
′
n−1, Z) by (626), (637)

= FL(Q∗)(Y ′1 , . . . , Y
′
n−1, Z) by L-52

= Q∗ @̃Q′(Y1, . . . , Y
′
n−1, X

′
n) , by Def. 183, (245), (635)

i.e.

Q /̃ Xn ◦
n−1
×
i=1

β̂ = (Q∗ @̃Q′)/X ′n (640)

by Def. 34. Therefore

FL(Q∗) @ FL(Q′)(X ′1, . . . , X
′
n)

= F(Q)(X1, . . . , Xn) by (638)

6= F(Q /̃ Xn)(X1, . . . , Xn−1) by (625)

= F(Q /̃ Xn)(F̂(β)(ˆ̂
θ(X1)), . . . , F̂(β)(ˆ̂

θ(Xn−1))) by (639)

= F(Q /̃ Xn)(F̂(β)(X ′1), . . . , F̂(β)(X ′n−1)) by (631)

= F(Q /̃ Xn ◦
n−1
×
i=1

β̂)(X ′1, . . . , X
′
n−1) by (Z-6)

= F((Q∗ @̃Q′)/X ′n)(X ′1, . . . , X
′
n−1) by (640)

= FL((Q∗ @̃Q′)/X ′n)(X ′1, . . . , X
′
n−1) by L-52

= FL(Q∗ @̃Q′)(X ′1, . . . , X
′
n) .
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The last step is apparent from Th-15 and Def. 182 becauseX ′n is crisp.
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[69] P. Hájek and L. Kohout. Fuzzy implications and generalized quantifiers.In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
4(3):225–233, 1996.

[70] F. de Jongh and H. Verkuyl. Generalized quantifiers: The properness of their
strength. In J. van Benthem and A. ter Meulen, editors,Generalized Quantifiers
in Natural Language. Foris, Dordrecht, 1984.

[71] J. Kacprzyk.Multistage Decision-Making under Fuzziness. Verlag TÜV Rhein-
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