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Abstract

Quantifiers are at the heart of human language. A formalization of natural language
(NL) quantification and its subsequent computer implementation promises to enhance
a broad range of applications including NL interfaces, linguistic data summarisation,
multi-criteria decision making, database querying and others. However, the software
implementations available for NL quantifiers will remain insufficient and linguistically
implausible unless the inherent fuzziness of natural language is explicitly modelled. In
order to remedy this situation and to provide better support for applications that need
fuzzy quantifiers, the report presents an in-depth discussion of the standard models of
fuzzy quantification, which best comply with our linguistic expectations. After review-
ing the known classes of models that have already been identified in previous work on
the axiomatic theory of fuzzy quantification (DFS theory), it introduces a novel class of
models which embeds all of the previous classes. Two independent constructions are
developed and thoroughly investigated which both establish the target class of models,
and hence provide a justification of the resulting class from two perspectives:

• as an extension of the known class ofFξ-DFSes, it represents the full class
of models definable in terms of three-valued cuts. This style of presentation
lends itself to the development of algorithms which implement quantifiers in the
models;

• as an abstraction of the modelsG, G∗ andG∗ proposed in [7], which were in-
spired by the fuzzification mechanism proposed by Gaines, it captures the class
of models definable in terms of the extension principle, and hence links the anal-
ysis of fuzzy quantification to the fundamental principle underlying fuzzy set
theory.

The report also describes some typical examples of the new models. In addition, it
presents the exact conditions required to check if a model of interest obeys the ade-
quacy properties discovered by DFS theory. The report hence reaches an important
milestone in the superordinate endeavour of providing a solid theoretical foundation
for the use of fuzzy quantifiers in applications.
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1 The axiomatics of fuzzy quantification

Natural language (NL) is pervaded by fuzzy concepts liketall or rich which lack clear
boundaries. The fuzziness of language is not restricted to its concepts, though. Ap-
proximate quantifiers likealmost allor manyare very frequently used, and serve the
important purpose of abstracting from details, and summarising a large number of ob-
servations into a total view of the given situation. In order to make this expressive
power available to machines and enable computer programs to handle this important
aspect of natural language, the problem must be solved of how to assign a reasonable
interpretation to quantifying natural language expressions, which might involve fuzzi-
ness both in the quantifier and its arguments.
Following Zadeh’s pioneering ideas [23], a number of approaches have been developed
to model approximate quantification with fuzzily defined concepts in the framework of
fuzzy set theory [24, 15, 19, 20]. However, it was soon recognized that the resulting
interpretations can be counter-intuitive [1, 15, 21]. A systematic investigation of the
traditional approaches according to linguistic criteria produced negative findings in all
cases [8].
DFS theory [7, 9] is an attempt to solve the puzzles of fuzzy quantification by em-
barking on an axiomatic solution. The basic idea is that linguistically plausible results
can only be guaranteed if we succeed (a) to formalize the relevant aspects of linguistic
adequacy, and (b) to develop computational models of the resulting axiom system. The
natural starting point for putting this venture into action was considered thelinguistic
theory of natural language quantification, viz the Theory of Generalized Quantifiers
(TGQ), see e.g. [2, 3, 4]. DFS theory adopts the notion of a two-valued generalized
quantifier developed by TGQ, which is then extended to the key concepts of semi-
fuzzy quantifiers and fuzzy quantifiers. Fuzzy quantifiers form the class of operators
for approximate quantification with fuzzy arguments. However, these operators are too
complex to be defined directly. DFS theory hence proposes an intermediate layer of
semi-fuzzy quantifiers, which provide a more compact description of a fuzzy quanti-
fying operator. Semi-fuzzy quantifiers are able to represent approximate quantification
but avoid the intricacies caused by fuzziness in a quantifier’s arguments. This makes
it possible to define semi-fuzzy quantifiers conveniently in terms of the familiar cardi-
nality of crisp sets (which is not of direct use for defining fuzzy quantifiers that accept
fuzzy argument sets). Introducing semi-fuzzy quantifiers therefore greatly facilitates
the modelling of NL base quantifiers, i.e. of non-composite quantifiers likemanyand
a few, which cannot be reduced to combinations of other known quantifiers. The map-
ping from simplified descriptions, i.e. semi-fuzzy quantifiers, to corresponding fuzzy
quantifiers is established through a quantifier fuzzification mechanism (QFM). DFS
theory approaches the problem of reasonable interpretation by imposing formal condi-
tions on admissable choices of QFMs. These conditions ensure that the essential prop-
erties of quantifiers and their relationships are preserved when applying the fuzzifica-
tion mechanism. They can be likened to the well-known concept of a homomorphism
(a structure preserving mapping compatible with a number of given constructions).
In the following I sketch the core of DFS theory. The exposition is intended to give
a rough overview and to introduce all concepts required for the theorems and proofs
to follow. Most of the material has been compiled from [11]. A more thorough intro-
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duction and motivating examples of the constructions or axioms can be found in the
primary sources on DFS theory: the original presentation is [7]. The current termi-
nology and a simplified axiom system have been introduced in [9]. Further sources
of interest are [11], which develops a broad class of standard models, and [10], which
summarizes the current state of DFS theory.
In order to introduce DFS theory, we first define two-valued generalized quantifiers in
accordance with TGQ:

Definition 1 An n-ary two-valued quantifieris a mappingQ : P(E)n −→ 2, where
E 6= ∅ is a nonempy set (the base set or domain),P(E) is the powerset (set of subsets)
ofE, n ∈ N is the arity (number of arguments), and2 = {0, 1} denotes the set of two-
valued truth values.

A two-valued quantifier hence assigns a crisp interpretationQ(Y1, . . . , Yn) ∈ 2 to
each choice of crisp argumentsY1, . . . , Yn ∈ P(E). We allow for the case of nullary
quantifiers (n = 0), which can be identified with the constants0 and1. Some examples
of two-place quantifiers are

allE(Y1, Y2) = 1⇔ Y1 ⊂ Y2

someE(Y1, Y2) = 1⇔ Y1 ∩ Y2 6= ∅

noE(Y1, Y2) = 1⇔ Y1 ∩ Y2 = ∅

at least k E(Y1, Y2) = 1⇔ |Y1 ∩ Y2| ≥ k
more than k E(Y1, Y2) = 1⇔ |Y1 ∩ Y2| > k

for all Y1, Y2 ∈ P(E); |•| denotes cardinality. The subscriptE is dropped when the
base setE is understood. In order to cover the approximate variety of NL quantifiers
(e.g.about 10) and to be able to apply these quantifiers to arguments liketall andrich,
we need to enhance this concept of quantifiers and incorporate ideas from fuzzy set
theory. Afuzzy subsetX of a given setE assigns to each elemente ∈ E a membership
gradeµX(e) ∈ I, whereI = [0, 1] is the unit interval. A fuzzy subset is uniquely
characterised by its membership functionµX : E −→ I. For example, a fuzzy subset
tall of a setE of people can be defined by stipulating a membership gradeµtall (e)
for each persone ∈ E. We shall denote the fuzzy powerset, i.e. the collection of all
fuzzy subsets ofE, by P̃(E). It is convenient to assume thatP̃(E) is an ordinary set.
In particular, crisp subsets will be viewed as a special case of fuzzy subsets, and it is
understood thatP(E) ⊆ P̃(E).1 We are now ready to introduce fuzzy quantifiers:

Definition 2 An n-ary fuzzy quantifieron a base setE 6= ∅ is a mappingQ̃ :
P̃(E)

n
−→ I.

A fuzzy quantifier hence assigns to eachn-tuple of fuzzy argument setsX1, . . . , Xn ∈
P̃(E) an interpretationQ̃(X1, . . . , Xn) ∈ I, which is allowed to be gradual. As

1Note that this subsumption relationship does not hold if one identifies fuzzy subsets and their member-
ship functions, i.e. if one stipulates thatP̃(E) = IE , whereIE denotes the set of mappingsf : E −→ I.
I assume that the appropriate transformations (e.g. from a crisp subsetA ⊆ E to its characteristic function
χA ∈ 2E ⊆ IE ) are carried out and for the sake of readability, these will be omitted in the notation.

4



opposed to two-valued quantifiers, fuzzy quantifiers accept fuzzy input (we could
e.g. haveX1 = tall , X2 = rich ∈ P̃(E)). In addition, fuzzy quantifiers produce fuzzy
(gradual) output, thus providing a more natural account of approximate quantifiers like
about ten , almost all , many etc. However, fuzzy quantifiers pose a new problem.
Consider the expressionmore than 10 percent, for example. Given a finite base setE,
we can easily define a corresponding two-valued quantifiermore than 10 percent :
P(E)2 −→ 2, viz

more than 10 percent (Y1, Y2) =
{

1 : |Y1 ∩ Y2| > |Y1|/10
0 : else

for all Y1, Y2 ∈ P(E), utilizing the cardinality|•| of crisp sets. However, it is not
that easy to provide a straightforward definition of a corresponding fuzzy quantifier

˜more than 10 percent : P̃(E)
2
−→ I. This is becauseX1, X2 in

˜more than 10 percent (X1, X2)

are fuzzy subsetsX1, X2 ∈ P̃(E). The familiar cardinality of crisp sets is not applica-
ble to the fuzzy arguments, and it hence cannot be used to define the fuzzy quantifier.
There is no generally accepted notion of cardinality of fuzzy sets which could serve as
a substitute for|•| in the fuzzy case. In order to overcome this problem, DFS theory
introduces the intermediary concept of semi-fuzzy quantifiers.

Definition 3 An n-ary semi-fuzzy quantifieron a base setE 6= ∅ is a mappingQ :
P(E)n −→ I.

Q hence assigns to eachn-tuple of crisp subsetsY1, . . . , Yn ∈ P(E) a gradual inter-
pretationQ(Y1, . . . , Yn) ∈ I. Semi-fuzzy quantifiers share the expressiveness of fuzzy
quantifiers because they support fuzzy (gradual) quantification results. Like fuzzy
quantifiers, they are hence suited to model approximate quantification. On the other
hand, semi-fuzzy quantifiers are defined for crisp arguments only, thus alleviating the
need to provide a definition for arbitrary fuzzy arguments, which made it so hard to de-
fine fuzzy quantifiers and to justify a particular choice of their definition. Every semi-
fuzzy quantifier depends on crisp arguments only and can conveniently be defined in
terms of the crisp cardinality of its arguments and their Boolean combinations. In par-
ticular, every two-valued quantifier (like the above choice ofmore than 10 percent )
is a semi-fuzzy quantifier by definition.
Because of these benefits, semi-fuzzy quantifiers are considered a suitable base rep-
resentation for NL quantifiers, sufficiently expressive to capture all quantifiers in the
sense of TGQ as well as approximate quantifiers, and still sufficiently simple to allow
for a straightforward definition. But of course, semi-fuzzy quantifiers cannot be ap-
plied to fuzzy arguments liketall or rich . I hence suggest the use of a mechanism
which accepts a description of the target quantifier, stated as a semi-fuzzy quantifier,
and returns a corresponding fuzzy quantifier which properly generalises the semi-fuzzy
quantifier to the case of fuzzy arguments.

5



Definition 4 A quantifier fuzzification mechanism(QFM) F assigns to each semi-
fuzzy quantifierQ : P(E)n −→ I a corresponding fuzzy quantifierF(Q) : P̃(E)

n
−→

I of the same arityn ∈ N and on the same base setE.

There is an underlying assumption here, which I presupposed when introducing semi-
fuzzy quantifiers and quantifier fuzzification mechanisms. In fact, the QFM frame-
work can only be successully applied to model natural language quantification if the
considered NL quantifiers indeed permit a reduction to the simplified representation
format provided by semi-fuzzy quantifiers. Anticipating the construction of underly-
ing semi-fuzzy quantifiersU(Q̃) (defined below in Def. 5), which simply restricts the
fuzzy quantifierQ̃ to crisp arguments, we can then express the followingquantification
framework assumptionthat must be fulfilled:

Quantification framework assumption (QFA):
If two base quantifiers of interest (i.e. NL quantifiers to be defined directly)
have distinct interpretations̃Q 6= Q̃′ as fuzzy quantifiers, then they are
already distinct on crisp arguments, i.e.U(Q̃) 6= U(Q̃′).

This condition ensures the applicability of the QFM framework because we can then
represent̃Q, Q̃′ byQ = U(Q̃) andQ′ = U(Q̃′), without compromising the existence
of a QFMF which takesQ to Q̃ = F(Q) andQ′ to Q̃′ = F(Q′). If the QFA is
violated byQ̃ and Q̃′, however, then it is impossible for any QFM to separate the
quantifiers, becauseU(Q̃) = U(Q̃′) entails that the same interpretationF(U(Q̃)) =
F(U(Q̃′)) is assigned to both quantifiers. This fundamental assumption underlying
the quantification framework makes so elementary a requirement, that it is hard to
conceive how it could be violated in human language. In the following, I will hence
assume that the QFA holds, because it does not seem to exclude any phenomena of
interest, and also because the QFA is justified from the current linguistic standpoint
(the linguistic theory of quantification, TGQ, silently makes the same assumption by
restriction attention to two-valued arguments only).

The above definition of ‘raw’, totally unrestricted QFMs must now be taylored to a
class of ‘reasonable’ fuzzification mechanisms. We expect a fuzzification mechanism
to be ‘systematic’ or ‘well-behaved’ and in conformance to linguistic considerations.
In the following, I introduce the set of criteria adopted by DFS theory. For a more
comprehensive treatment and motivation, see [9].
Perhaps the most elementary condition on a fuzzification mechanism is that it properly
generalizes the original semi-fuzzy quantifier. We can express this succintly if we
introduce the following notion of underlying semi-fuzzy quantifiers.

Definition 5 Let Q̃ : P̃(E)
n
−→ I be a fuzzy quantifier. Theunderlying semi-fuzzy

quantifierU(Q̃) : P(E)n −→ I is defined by

U(Q̃)(Y1, . . . , Yn) = Q̃(Y1, . . . , Yn) ,

for all n-tuples ofcrispsubsetsY1, . . . , Yn ∈ P(E).
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It is natural to require thatU(F(Q)) = Q, i.e.F(Q) properly generalizesQ in the
sense thatF(Q)(Y1, . . . , Yn) = Q(Y1, . . . , Yn) when all arguments are crisp.

Another adequacy constraint is based on the relationship of crisp and fuzzy member-
ship assessments with quantification. We make this relationship explicit through the
following definitions of projection quantifiers:

Definition 6 SupposeE is a base set ande ∈ E. The projection quantifierπe :
P(E) −→ 2 is defined by

πe(Y ) = χY (e) ,

whereχY : E −→ 2 is the characteristic function ofY ∈ P(E), thus

χY (e) =
{

1 : e ∈ Y
0 : else

(1)

For example, we can use the crisp projection quantifierπJohn to evaluate crisp mem-
bership assessments likeIs John married?, which can be evaluated by computing
πJohn(married ), wheremarried ∈ P(E) is the crisp subset of married people in
E. A corresponding definition of fuzzy projection quantifiers is straightforward.

Definition 7 Let a base setE be given ande ∈ E. Thefuzzy projection quantifier
π̃e : P̃(E) −→ I is defined by

π̃e(X) = µX(e)

for all X ∈ P̃(E).

For example, we can evaluatẽπJohn(tall ) to assess the grade to which John is tall,
and we can computẽπJohn(rich ) to determineµrich (John), the degree to which John
is rich. Because crisp and fuzzy projection quantifiers play the same role, viz. that
of crisp/fuzzy membership assessment, we expect a reasonable choice of QFMF to
recognize this relationship and map each crisp projection quantifierπe to the corre-
sponding fuzzy projection quantifier, i.e.π̃e = F(πe).

We can also evaluate a QFM from the perspective of propositional fuzzy logic.
By a canonical construction, every QFM also gives rise to induced fuzzy truth func-
tions, i.e. to a unique choice of fuzzy conjunction, disjunction etc. In order to es-
tablish this link between logical connectives and quantifiers, we first observe that
2n ∼= P({1, . . . , n}), using the bijectionη : 2n −→ P({1, . . . , n}) defined by

η(x1, . . . , xn) = {k ∈ {1, . . . , n} : xk = 1} ,

for all x1, . . . , xn ∈ 2. We can use an analogous construction in the fuzzy case. We
then haveIn ∼= P̃({1, . . . , n}), based on the bijectioñη : In −→ P̃({1, . . . , n})
defined by

µη̃(x1,...,xn)(k) = xk ,
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for all x1, . . . , xn ∈ I andk ∈ {1, . . . , n}. These bijections can be utilized for a
translation between semi-fuzzy truth functionsf : 2n −→ I and corresponding semi-
fuzzy quantifiersQf : P({1, . . . , n}) −→ I, and similarly the translation from fuzzy
quantifiersQ̃ : P̃({1, . . . , n}) −→ I into fuzzy truth functions̃f : In −→ I.

Definition 8 Let a QFMF and a mapping (‘semi-fuzzy truth function’)f : 2n −→ I
of arity n > 0 be given. The semi-fuzzy quantifierQf : P({1, . . . , n}) −→ I is
defined by

Qf (Y ) = f(η−1(Y ))

for all Y ∈ P({1, . . . , n}). The induced fuzzy truth functioñF(f) : In −→ I is
defined by

F̃(f)(x1, . . . , xn) = F(Qf )(η̃(x1, . . . , xn)) ,

for all x1, . . . , xn ∈ I. If f : 20 −→ I is a nullary semi-fuzzy truth function (i.e.,
a constant), we shall definẽF(f) : I0 −→ I by F̃(f)(∅) = F(c)(∅), wherec :
P({∅})0 −→ I is the constantc(∅) = f(∅).2,3

We shall not impose restrictions on the induced connectives directly; these will be
entailed by the remaining axioms.
Induced operations on fuzzy sets like fuzzy complement¬̃ : P̃(E) −→ P̃(E), fuzzy

intersection∩̃ : P̃(E)
2
−→ P̃(E) and fuzzy union∪̃ : P̃(E)

2
−→ P̃(E), can

be defined element-wise in terms of the induced negation¬̃ : I −→ I, conjunction
∧̃ : I×I −→ I or disjunction∨̃ : I×I −→ I, respectively. For example, the induced
complement̃¬X ∈ P̃(E) of X ∈ P̃(E) is defined by

µ¬̃X(e) = ¬̃µX(e) ,

for all X ∈ P̃(E) ande ∈ E.
Based on the induced fuzzy negation and complement, we can express important con-
structions on quantifiers like negation, formation of antonyms, and dualisation.

Definition 9 The external negatioñ¬Q : P(E)n −→ I of a semi-fuzzy quantifier
Q : P(E)n −→ I is defined by

(¬̃Q)(Y1, . . . , Yn) = ¬̃(Q(Y1, . . . , Yn)) ,

for all Y1, . . . , Yn ∈ P(E). The definition of̃¬ Q̃ : P̃(E)
n
−→ I in the case of fuzzy

quantifiersQ̃ : P̃(E)
n
−→ I is analogous.

2The special treatment of nullary truth functions is necessary to avoid the use ofQf : P(∅) −→ I,
which is not a semi-fuzzy quantifier because the base set is empty. More information on the construction of
induced fuzzy truth functions may be found in [9].

3To facilitate understanding:P({∅})0 = {f |f : ∅ −→ P({∅})} = {∅}, i.e. ‘∅’ in c(∅) andf(∅)
denotes the empty tuple.
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For example,no is the negation ofsome .4

Definition 10 Let a semi-fuzzy quantifierQ : P(E)n −→ I of arity n > 0 be given.
TheantonymQ¬ : P(E)n −→ I ofQ is defined by

Q¬(Y1, . . . , Yn) = Q(Y1, . . . , Yn−1,¬Yn) ,

for all Y1, . . . , Yn ∈ P(E). The antonymQ̃¬̃ : P̃(E)
n
−→ I of a fuzzy quantifier

Q̃ : P̃(E)
n
−→ I is defined analogously, based on the given fuzzy complement¬̃.

For example,no is the antonym ofall . The dualQ�̃ of a quantifier is the negation of
the antonym, or equivalently, the antonym of the negation:

Definition 11 ThedualQ�̃ : P(E)n −→ I of a semi-fuzzy quantifierQ : P(E)n −→
I, n > 0 is defined by

Q�̃(Y1, . . . , Yn) = ¬̃Q(Y1, . . . , Yn−1,¬Yn) ,

for all Y1, . . . , Yn ∈ P(E). The dualQ̃�̃ = ¬̃ Q̃¬̃ of a fuzzy quantifier̃Q is defined
analogously.

For example,some is the dual ofall . We expect that a given QFMF be compati-
ble with these constructions on quantifiers. HenceF(no) should be the negation of
F(some ),F(no) should be the antonym ofF(all) andF(some ) should be the dual
of F(all).

Apart from negation/complementation, we can also form intersections and unions of
argument sets to construct new quantifiers from given ones.

Definition 12 Let a semi-fuzzy quantifierQ : P(E)n −→ I of arity n > 0 be given.
We define quantifiersQ∪, Q∩ : P(E)n+1 −→ I by

Q∪(Y1, . . . , Yn+1) = Q(Y1, . . . , Yn−1, Yn ∪ Yn+1)
Q∩(Y1, . . . , Yn+1) = Q(Y1, . . . , Yn−1, Yn ∩ Yn+1)

for all Y1, . . . , Yn+1 ∈ P(E). In the case of fuzzy quantifiers,Q̃∪̃ andQ̃∩̃ are defined
analogously, based on the given fuzzy set operations∪̃ and∩̃, resp.

In some proofs, I will also need another construction, that of permuting arguments of
a quantifier. Here I restrict to a special type of argument transpositions. It is apparent
that every permutation of the argument positions can be decomposed into a sequence
of the following simple transpositions:

Definition 13 For every semi-fuzzy quantifierQ : P(E)n −→ I of arity n > 0 and all
i ∈ {1, . . . , n}, the semi-fuzzy quantifierQτi : P(E)n −→ I is defined by

Qτi(Y1, . . . , Yn) = Q(Y1, . . . , Yi−1, Yn, Yi+1, . . . , Yn−1, Yi)

4assuming that̃¬ 0 = 1 and¬̃ 1 = 0, which will be assured by the axioms.
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for all Y1, . . . , Yn ∈ P(E). (In other words, thei-th argument is exchanged with the
last argument). The definition of̃Qτi for fuzzy quantifiers is analogous.

As we shall later see, every intended model is compatible with argument permutations.
This ensures e.g. that symmetries of a quantifier are preserved in the fuzzy case.
Another important characteristic of quantifiers expresses through their monotonicity
properties.

Definition 14 A semi-fuzzy quantifierQ : P(E)n −→ I is said to benonincreasing in
its i-th argument, i ∈ {1, . . . , n}, if

Q(Y1, . . . , Yn) ≥ Q(Y1, . . . , Yi−1, Y
′
i , Yi+1, . . . , Yn)

wheneverY1, . . . , Yn, Y
′
i ∈ P(E) such thatYi ⊆ Y ′i . Q is said to benondecreasing in

the i-th argumentif the reverse inequation holds. The definitions for fuzzy quantifiers
are analogous.

For example,all is nonincreasing in the first argument and nondecreasing in the second
argument. We expect each reasonable choice of QFMF to preserve such monotonicity
properties. HenceF(all) should be nonincreasing in the first and nondecreasing in the
second argument.

We can also utilize a QFM to construct fuzzy powerset mappings. Let us first recall
the concept of a powerset mapping in the crisp case.

Definition 15 To each mappingf : E −→ E′, we can associate a mappinĝf :
P(E) −→ P(E′) (the powerset mapping off ) which is defined by

f̂(Y ) = {f(e) : e ∈ Y } , (2)

for all Y ∈ P(E).5

In order to generalise this concept to the fuzzy case, we need a mechanism which
associates fuzzy powerset mappingsE(f) : P̃(E) −→ P̃(E′) to given mappings
f : E −→ E′. Such a mechanism is called anextension principle.6 The standard
extension principle, proposed by Zadeh [22], is defined by

µ ˆ
f̂(X)

(e′) = sup{µX(e) : e ∈ f−1(e′)} , (3)

for all f : E −→ E′, X ∈ P̃(E) ande′ ∈ E′. With each QFM, we can associate a
corresponding extension principle through a canonical construction.

Definition 16 Every QFMF induces an extension principlêF which to eachf :
E −→ E′ (whereE, E′ 6= ∅) assigns the mappinĝF(f) : P̃(E) −→ P̃(E′) de-
fined by

µF̂(f)(X)(e
′) = F(χf̂(•)(e

′))(X) ,

5Often the same symbol is used to denote both the original mapping and the powerset mapping.
6For our purposes, it will be convenient to assume thatE,E′ 6= ∅.
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for all X ∈ P̃(E), e′ ∈ E′.

We require that every ‘reasonable’ choice ofF be compatible with its induced exten-
sion principle in the following sense. SupposeQ : P(E)n −→ I is a semi-fuzzy
quantifier andf1, . . . , fn : E′ −→ E are given mappings,E′ 6= ∅. We can construct

the semi-fuzzy quantifierQ◦
n
×
i=1

f̂i : P(E′)n −→ I by composingQwith the powerset

mappingsf̂i, . . . , f̂n, i.e.

(Q ◦
n
×
i=1

f̂i)(Y1, . . . , Yn) = Q(f̂1(Y1), . . . , f̂n(Yn)) , (4)

for all Y1, . . . , Yn ∈ P(E′). By utilizing the induced extension principlêF of a
QFM, we can perform a similar construction on fuzzy quantifiers, thus composing

Q̃ : P̃(E)
n
−→ I with F̂(f1), . . . , F̂(fn) to form the fuzzy quantifier̃Q ◦

n
×
i=1
F̂(fi) :

P̃(E′)
n
−→ I defined by

(Q̃ ◦
n
×
i=1
F̂(fi))(X1, . . . , Xn) = Q̃(F̂(f1)(X1), . . . , F̂(fn)(Xn)) ,

for all X1, . . . , Xn ∈ P̃(E′). We require that a QFMF be compatible with this
construction, i.e.

F(Q ◦
n
×
i=1

f̂i) = F(Q) ◦
n
×
i=1
F̂(fi) .

This condition is of particular importance because it is the only criterion which relates
the results ofF for different base setsE,E′. It hence grants thatF behave consis-
tently across domains. We can combine the above conditions in order to capture our
expectations on plausible models of fuzzy quantification in a condensed set of axioms.

Definition 17 A QFMF is called adeterminer fuzzification scheme(DFS) if the fol-
lowing conditions are satisfied for all semi-fuzzy quantifiersQ : P(E)n −→ I.

Correct generalisation U(F(Q)) = Q if n ≤ 1 (Z-1)

Projection quantifiers F(Q) = π̃e if there existse ∈ E s.th.Q = πe
(Z-2)

Dualisation F(Q�̃) = F(Q)�̃ n > 0 (Z-3)

Internal joins F(Q∪) = F(Q)∪̃ n > 0 (Z-4)

Preservation of monotonicity IfQ is nonincreasing inn-th arg, then (Z-5)

F(Q) is nonincreasing inn-th arg,n > 0

Functional application F(Q ◦
n
×
i=1

f̂i) = F(Q) ◦
n
×
i=1
F̂(fi) (Z-6)

wheref1, . . . , fn : E′ −→ E, E′ 6= ∅.
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The original definition of DFSes in [7] was based on nine axioms. These were subse-
quently condensed into the equivalent axiom system presented above, and the indepen-
dence of the new axioms (Z-1) to (Z-6) has been proven [9].

The conditions (Z-1)–(Z-6) are intended to cover those adequacy criteria that are
essential from the perspective of linguistics and fuzzy logic, and to provide a formali-
sation of these criteria in terms of a system of independent axioms. Due to the goal of
obtaining an independent system, it was not possible to include all of these adequacy
criteria directly into the axiom set, thus compromising its independence. However, it
has been shown in [9] that DFSes comply with a large number of linguistic and logi-
cal adequacy criteria. The following excerpt is not intended to review these results on
adequacy properties of DFSes, which can be found in full detail in [9]. By contrast,
only those definitions and theorems are highlighted, that are necessary to understand
and prove the new theorems. Unless otherwise stated, the proofs of all theorems cited
can be found in [7, 9].

First we review some results on the fuzzy truth functions induced by a DFS. Let us
recall the definition of a strong negation (i.e. ‘reasonable’ fuzzy negation operator):

Definition 18 ¬̃ : I −→ I is called astrong negation operatoriff it satisfies

a. ¬̃ 0 = 1 (boundary condition)

b. ¬̃x1 ≥ ¬̃x2 for all x1, x2 ∈ I such thatx1 < x2 (i.e. ¬̃ is monotonically
decreasing)

c. ¬̃ ◦ ¬̃ = idI (i.e. ¬̃ is involutive).

Note. Whenever the standard negation¬x = 1 − x is being assumed, we shall drop
the ‘tilde’-notation. Hence the standard fuzzy complement is denoted¬X, where
µ¬X(e) = 1 − µX(e). Similarly, the external negation of a (semi-) fuzzy quanti-
fier with respect to the standard negation is written¬Q, and the antonym of a fuzzy
quantifier with respect to the standard fuzzy complement is written asQ̃¬.

We also need the concepts of at-norm (i.e. ‘reasonable’ fuzzy conjunction) ands-
norm (‘reasonable’ fuzzy disjunction), see [16]. The fuzzy truth functions induced by
a DFS are guaranteed to belong to the class of such reasonable operators:

Theorem 1 In every DFSF ,

a. F̃(id2) = idI is the identity truth function;

b. ¬̃ = F̃(¬) is a strong negation operator;

c. ∧̃ = F̃(∧) is a t-norm;

d. x1 ∨̃ x2 = ¬̃(¬̃x1 ∧̃ ¬̃x2), i.e. ∨̃ is the duals-norm of∧̃ under¬̃.

In the proofs to follow we also need the following theorem, which is a consequence of
Th-1, (Z-4) and (Z-3).
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Theorem 2 Every DFSF is compatible with the external negation of quantifiers,
i.e. for allQ : P(E)n −→ I, F(¬̃Q) = ¬̃ F(Q).

We further need a result on the monotonicity of DFSes. For semi-fuzzyQ,Q′ :
P(E)n −→ I, we say thatQ ≤ Q′ iff Q(Y1, . . . , Yn) ≤ Q′(Y1, . . . , Yn) for all
Y1, . . . , Yn ∈ P(E). For fuzzy quantifiersQ̃, Q̃′, we use an analogous definition,
i.e. Q̃ ≤ Q̃′ iff Q̃(X1, . . . , Xn) ≤ Q̃′(X1, . . . , Xn) for all X1, . . . , Xn ∈ P̃(E).

Theorem 3 Every DFSF is monotonic, i.e. ifQ,Q′ : P(E)n −→ I are given semi-
fuzzy quantifiers andQ ≤ Q′, thenF(Q) ≤ F(Q′).

Finally I cite a result concerning the preservation of symmetries in a quantifier’s argu-
ments.

Theorem 4 Every DFSF is compatible with argument transpositions, i.e.F(Qτi) =
F(Q)τi for all semi-fuzzy quantifiersQ : P(E)n −→ I of arity n > 0 and all i ∈
{1, . . . , n}.

This theorem establishes e.g. that the meanings of ‘some rich people are lucky’ and
‘some lucky people are rich’ coincide.
Next we turn to special subclasses of DFSes, in order to single out a class of standard
models for fuzzy quantification.

Definition 19 Supposẽ¬ : I −→ I is strong negation operator. A DFSF is called a
¬̃-DFS if its induced negation coincides with̃¬, i.e. F̃(¬) = ¬̃ . In particular, we will
call F a¬-DFS if it induces the standard negation¬x = 1− x.

As has been shown in [7, Th-28, p. 44], no models of interest are lost if we restrict
attention to¬-DFSes only (i.e. to DFSes which induce the standard negation). This is
because all other DFSes can be transformed into¬-DFSes and vice versa.
It is convenient to group the models by their induced disjunctions.

Definition 20 A¬-DFSF which induces a fuzzy disjunctioñ∨ is called a∨̃-DFS.

Definition 21 A DFSF is called astandard DFSif and only ifF is amax-DFS, i.e. a
DFS which induces the standard negation¬x = 1 − x and the standard disjunction
x ∨ y = max(x, y).

Note. It is then apparent from earlier work [9, Th-17.a, p. 20 and Th-25, p. 25] that
standard DFSes are exactly those¬-DFSes which induce the standard extension prin-

ciple F̂ = ˆ̂(•) and the standard connectives of fuzzy logic. It is hence suggested that
standard DFSes be considered the standard models of fuzzy quantification.
The following result that has been proven for standard DFSes will be needed in later
proofs.
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Theorem 5 All standard DFSes coincide on two-valued quantifiers. Hence ifF ,F ′
are standard DFSes andQ : P(E)n −→ 2 is a two-valued quantifier, thenF(Q) =
F ′(Q).

The¬-DFSes can be partially ordered by ‘specificity’ or ‘fuzziness’, in the sense of
closeness to12 . We define a partial order�c ⊆ I× I by

x�c y ⇔ y ≤ x ≤ 1
2 or 1

2 ≤ x ≤ y , (5)

for all x, y ∈ I. �c is Mukaidono’s ambiguity relation, see [14]. We extend this basic
definition of�c for scalars to the case of DFSes in the obvious way:

Definition 22 SupposeF ,F ′ are¬-DFSes. We say thatF is consistently less specific
thanF ′, in symbols:F �c F ′, iff for all semi-fuzzy quantifiersQ : P(E)n −→ I and
all X1, . . . , Xn ∈ P̃(E),

F(Q)(X1, . . . , Xn)�c F ′(Q)(X1, . . . , Xn) .

We now wish to establish the existence of consistently least specific∨̃-DFSes. As
it turns out, the greatest lower specificity bound of a collection of∨̃-DFSes can be
expressed using the fuzzy median [17, 5].

Definition 23 Thefuzzy medianmed 1
2

: I× I −→ I is defined by

med 1
2

(u1, u2) =


min(u1, u2) : min(u1, u2) > 1

2

max(u1, u2) : max(u1, u2) < 1
2

1
2 : else

The basic connective can be generalised to an operatorm 1
2

: P(I) −→ I which accepts
arbitrary subsets ofI as its arguments.

Definition 24 Thegeneralised fuzzy medianm 1
2

: P(I) −→ I is defined by

m 1
2
X = med 1

2
(inf X, supX) ,

for all X ∈ P(I).

Now we can state the desired theorem.

Theorem 6 Suppose that̃∨ is ans-normF a non-empty collection of̃∨-DFSesF ∈ F.
Then there exists a greatest lower specificity bound onF, i.e. a∨̃-DFSFglb such that
Fglb�cF for all F ∈ F (i.e.Fglb is a lower specificity bound), and for all other lower
specificity boundsF ′, F ′ �c Fglb.
Fglb is defined by

Fglb(Q)(X1, . . . , Xn) = m 1
2
{F(Q)(X1, . . . , Xn) : F ∈ F} ,

for all Q : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E).

14



In particular, the theorem asserts the existence of least specific∨̃-DFSes, i.e. whenever
∨̃ is ans-norm such that̃∨-DFSes exist, then there exists a least specific∨̃-DFS (just
apply the above theorem to the collection of all∨̃-DFSes).
As concerns the converse issue of most specific DFSes, i.e. least upper bounds with
respect to�c, the following definition of ‘specificity consistence’ turns out to provide
the key concept:

Definition 25 Supposẽ∨ is an s-norm andF is a non-empty collection of̃∨-DFSes
F ∈ F. F is calledspecificity consistentiff for all Q : P(E)n −→ I andX1, . . . , Xn ∈
P̃(E), eitherRQ,X1,...,Xn ⊆ [0, 1

2 ] or RQ,X1,...,Xn ⊆ [ 1
2 , 1], where

RQ,X1,...,Xn = {F(Q)(X1, . . . , Xn) : F ∈ F} .

We can now express the exact conditions under which a collection of∨̃-DFSes has a
least upper specificity bound.

Theorem 7 Supposẽ∨ is ans-norm andF is a non-empty collection of̃∨-DFSesF ∈
F.

a. F has upper specificity bounds exactly ifF is specificity consistent.

b. If F is specificity consistent, then its least upper specificity bound is the∨̃-DFS
Flub defined by

Flub(Q)(X1, . . . , Xn) =

{
supRQ,X1,...,Xn : RQ,X1,...,Xn ⊆ [ 1

2 , 1]
inf RQ,X1,...,Xn : RQ,X1,...,Xn ⊆ [0, 1

2 ]

whereRQ,X1,...,Xn = {F(Q)(X1, . . . , Xn) : F ∈ F}.

Let us now consider some additional adequacy criteria for approaches to fuzzy quan-
tification, which are not necessarily required for arbitrary DFSes. The first two criteria
are concerned with the ‘propagation of fuzziness’, i.e. the way in which the amount of
imprecision in the model’s inputs affects changes of the model’s outputs. To this end,
let us recall the partial order�c ⊆ I× I defined by equation (5). We can extend�c to
fuzzy setsX ∈ P̃(E), semi-fuzzy quantifiersQ : P(E)n −→ I and fuzzy quantifiers
Q̃ : P̃(E)

n
−→ I as follows:

X �c X
′ ⇐⇒ µX(e)�c µX′(e) for all e ∈ E;

Q�c Q
′ ⇐⇒ Q(Y1, . . . , Yn)�c Q

′(Y1, . . . , Yn) for all Y1, . . . , Yn ∈ P(E);

Q̃�c Q̃
′ ⇐⇒ Q̃(X1, . . . , Xn)�c Q̃

′(X1, . . . , Xn) for all X1, . . . , Xn ∈ P̃(E) .

Intuitively, we expect that the quantification results become less specific whenever the
quantifier or the argument sets become less specific: the fuzzier the input, the fuzzier
the output.

Definition 26 We say that a QFMF propagates fuzziness in argumentsif and only if
the following property is valid for allQ : P(E)n −→ I andX1, . . . , Xn, X

′
1, . . . , X

′
n:
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If Xi �c X ′i for all i = 1, . . . , n, thenF(Q)(X1, . . . , Xn)�c F(Q)(X ′1, . . . , X
′
n).

We say thatF propagates fuzziness in quantifiersif and only ifF(Q)�c F(Q′) when-
everQ�c Q′.

Both conditions are certainly natural to require, and I consider them as desirable but
optional. A more thorough discussion of propagation of fuzziness and its tradeoffs can
be found in [11].
Finally, I introduce two adequacy criteria concerned with distinct aspects of the ‘smooth-
ness’ or ‘continuity’ of a DFS. These conditions are essential for DFSes to bepractical
because it is extremely important for applications that the results of a DFS be stable
under slight changes in the inputs. These ‘changes’ can either occur in the fuzzy argu-
ment sets (e.g. due to noise), or they can affect the semi-fuzzy quantifier. For example,
if a person A has a slightly different interpretation of quantifierQ compared to person
B, then we still want them to understand each others, and the quantification results
obtained from the two models of the target quantifier should be very similar in such
cases.
In order to express the robustness criterion with respect to slight changes in the fuzzy
arguments, a metric on fuzzy subsets is needed, which serves as a numerical quantity
of the similarity of the arguments. For all base setsE 6= ∅ and alln ∈ N, we define
the metricd : P̃(E)

n
× P̃(E)

n
−→ I by

d((X1, . . . , Xn), (X ′1, . . . , X
′
n)) =

n
max
i=1

sup{|µXi(e)− µX′i(e)| : e ∈ E} , (6)

for all X1, . . . , Xn, X
′
1, . . . , X

′
n ∈ P̃(E). Based on this metric, we can now express

the desired criterion for continuityin arguments.

Definition 27 We say that a QFMF is arg-continuousif and only ifF maps allQ :
P(E)n −→ I to continuous fuzzy quantifiersF(Q), i.e. for allX1, . . . , Xn ∈ P̃(E)
andε > 0 there existsδ > 0 such thatd(F(Q)(X1, . . . , Xn),F(Q)(X ′1, . . . , X

′
n)) <

ε for all X ′1, . . . , X
′
n ∈ P̃(E) with d((X1, . . . , Xn), (X ′1, . . . , X

′
n)) < δ.

A second robustness criterion is intended to capture the idea that slight changes in a
semi-fuzzy quantifier should not cause the quantification results to change drastically.
To introduce this criterion, we must first define suitable distance measures for semi-
fuzzy quantifiers and for fuzzy quantifiers. Hence for all semi-fuzzy quantifiersQ,Q′ :
P(E)n −→ I,

d(Q,Q′) = sup{|Q(Y1, . . . , Yn)−Q′(Y1, . . . , Yn)| : Y1, . . . , Yn ∈ P(E)} , (7)

and similarly for all fuzzy quantifiers̃Q, Q̃′ : P̃(E)
n
−→ I,

d(Q̃, Q̃′) = sup{|Q̃(X1, . . . , Xn)− Q̃′(X1, . . . , Xn)| : X1, . . . , Xn ∈ P̃(E)} . (8)

Definition 28 We say that a QFMF is Q-continuousif and only if for each semi-
fuzzy quantifierQ : P(E)n −→ I and all ε > 0, there existsδ > 0 such that
d(F(Q),F(Q′)) < ε wheneverQ′ : P(E)n −→ I satisfiesd(Q,Q′) < δ.
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Both condition are crucial to the utility of a DFS and should be possessed by every
model employed in practical applications. They are not part of the DFS axioms because
I wanted to have DFSes for generalt-norms (including the discontinuous variety).

This completes the first chapter, which was intended to give a brief introduction into
DFS theory. After motivating the need for a formal analysis and computer modelling of
approximate quantification, I first reviewed existing approaches which try and embed
approximate quantification in the framework of fuzzy set theory, based on operators
called fuzzy linguistic quantifiers. In addition, some pointers to the literature were
given, which reveal that these approaches are not plausible from a linguistic perspec-
tive, and can produce unexpected results in important situations.
The DFS theory of fuzzy quantification, by contrast, starts from the linguistic theory of
quantification, TGQ, which is then extended to handle the inherent fuzziness, which is
observed both in a quantifier and in its arguments. As opposed to existing approaches
which only consider absolute quantifiers (likeabout ten) and proportional quantifiers
(like most), its anchoring into the linguistic framework permits DFS theory to cover the
complete range of NL quantification, which is known from linguistics. The concept of
a fuzzy quantifier was proposed, which embeds all quantifiers in the sense of TGQ and
constitutes the class of target operators for fuzzy NL quantification. These operators
pose a problem, though, because they live on fuzzy arguments and do not permit a di-
rect definition in terms of a cardinality measure. This makes it very hard to justify that
a particular choice of fuzzy quantifier be the proper model of a given NL quantifier.
In order to solve this problem of defining appropriate models of given NL quantifiers,
the novel concept of semi-fuzzy quantifiers was then introduced, which are (a) capable
of expressing approximate quantification, and (b) restricted to two-valued arguments,
i.e. definable in terms of the usual cardinality measure (whenever appropriate). Due
to their conceptual simplicity, semi-fuzzy quantifiers are good base representations of
NL quantifiers. However, they do not solve the problem of handling fuzzy arguments
(like in most rich people are bald). To provide a full account of fuzzy quantification
and support fuzziness both in quantifiers and their arguments, it is hence necessary to
translate semi-fuzzy quantifiers into corresponding fuzzy quantifiers, which can then
be applied to fuzzy arguments. This translation is accomplished by quantifier fuzzifi-
cation mechanisms (or QFMs for short). QFMs are one of the central concepts of DFS
theory, and span the class of ‘raw’, totally unrestricted fuzzification mechanisms.
In turn, a number of adequacy criteria were presented which shrink down the unre-
stricted class of QFMs to its subclass of plausible models, and thus ensure a systematic
transfer from semi-fuzzy quantifiersQ to corresponding target operators, i.e. fuzzy
quantifiersF(Q), which indeed extrapolate the meaning of the base quantifier. Most
of these criteria have either been adopted from TGQ or reflect logical considerations.
Taken together, they constitute the set of ‘DFS axioms’ (Z-1)–(Z-6), which provide
a characterisation of the intended models, dubbed DFSes (determiner fuzzification
schemes), in terms of an independent axiom system.
Finally I presented a small number of additional properties, which are either fulfilled by
arbitrary DFSes (like monotonicity), or limited to special cases of DFSes (like propaga-
tion of fuzziness). The most important property of practical models has also been for-
malized, which is certainly that ofstability, in order to absorb slight variations e.g. due
to noise, quantization errors etc., which are typical of real-world applications. In for-
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malizing this property, I recognized that it actually has two distinct faces, and conse-
quently developed separate criteria that capture (a) the robustness of the quantification
results under slight changes in the arguments (arg-continuity), and (b) the robustness
of the quantification results under slight changes in the quantifier (Q-continuity).
The chapter also introduces the class of standard DFSes, which is formed by those
models which conform to the standard operations of fuzzy set theory (min, max etc.).
Due to the comprehensive adequacy properties observed with these models, and due
to the natural embedding of the established core of fuzzy set theory (standard connec-
tives, standard extension principle etc.), the assumption is made in the report that it is
these models, i.e. the standard DFSes, which constitute the standard models of fuzzy
quantification.
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2 The class of MB-DFSes

In [7], the first three models of the DFS axioms have been presented. An investigation
of the common principle underlying these DFSes has led to the introduction ofMB-
DFSes in [9], the class of DFSes defined in terms of three-valued cuts of arguments
and subsequent aggregation based on the fuzzy median. Here I recall the definition
ofMB-QFMs and the characterisation ofMB-DFSes in terms of necessary and suf-
ficient conditions on the aggregation mappingB. Important models are also presented
and some interesting properties ofMB-DFSes are highlighted. Most of the mate-
rial is compiled from [11] and its exposition is mainly intended to introduce the basic
concepts that will be generalized lateron. Unless otherwise stated, the proofs of all
theorems cited in this chapter can be found in [9], which provides a comprehensive
discussion ofMB-DFSes.
I first define the unrestricted class ofMB-QFMs, which will then be shrunk to the
reasonable cases ofMB-DFSes by imposing conditions on the aggregation mapping.
To this end, we need some notation. We recall the concept ofα-cuts and strictα-cuts
of fuzzy subsets:

Definition 29 LetE be a given set,X ∈ P̃(E) a fuzzy subset ofE andα ∈ I. By
X≥α ∈ P(E) we denote theα-cut

X≥α = {e ∈ E : µX(e) ≥ α} .

Definition 30 LetX ∈ P̃(E) be given andα ∈ I. ByX>α ∈ P(E) we denote the
strict α-cut

X>α = {e ∈ E : µX(e) > α} .

In terms of theseα-cuts, we define the cut rangeTγ(X) ⊆ P(E), which repre-
sents a three-valued cut at the ‘cautiousness level’γ ∈ I by a set of alternatives
{Y : Xmin

γ ⊆ Y ⊆ Xmax
γ }. The reason for introducing three-valued cuts is that

we need a cutting mechanism compatible with complementation.α-cuts, however,
have(¬X)≥α 6= ¬(X≥α). The desired symmetry is easily obtained with three-valued
cuts, defined as follows:

Definition 31 SupposeE is some set,X ∈ P̃(E) andγ ∈ I. Xmin
γ , Xmax

γ ∈ P(E)
andTγ(X) ⊆ P(E) are defined by

Xmin
γ =

 X
>

1
2

: γ = 0

X
≥ 1

2 +
1
2γ

: γ > 0

Xmax
γ =

 X
≥ 1

2
: γ = 0

X
>

1
2−

1
2γ

: γ > 0

Tγ(X) = {Y : Xmin
γ ⊆ Y ⊆ Xmax

γ } .
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Note. The relationship of cut rangesTγ(X) and three-valued sets is discussed in [7,
p. 58+] and [9, p. 39+].

How can we use these cut ranges to evaluate fuzzy quantifiers? The basic idea is that
we can view the crisp rangeTγ(X) as providing a set of alternatives to be checked.
For example, in order to evaluate a quantifierQ at a certain cut levelγ, we have to
consider all choices ofQ(Y1, . . . , Yn), whereYi ∈ Tγ(Xi). The set of results obtained
in this way must then be aggregated to a single result in the unit interval, which we
denote asQγ(X1, . . . , Xn) ∈ I. The generalised fuzzy median (see Def. 24) is well-
suited to carry out this aggregation. The use of the fuzzy median for this purpose was
originally motivated by the observation that the resulting fuzzification mechanisms
embed Kleene’s three-valued logic. This is useful because the targeted class of models
(viz, standard DFSes) are known to embed Kleene’s logic, too.
Let us hence use the crisp rangesTγ(Xi) of the argument sets to define a family of
QFMs(•)γ , indexed by the cautiousness parameterγ ∈ I:

Definition 32 For everyγ ∈ I, we denote by(•)γ the QFM defined by

Qγ(X1, . . . , Xn) = m 1
2
{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} ,

for all semi-fuzzy quantifiersQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E).

None of the QFMs(•)γ is a DFS, because the required information is spread over
various cut levels. Hence in order to define DFSes based on these QFMs, we must
simultaneously consider the results obtained at all levels of cautiousnessγ, i.e. theγ-
index family(Qγ(X1, . . . , Xn))γ∈I. We can then apply various aggregation operators
on theseγ-indexed results to obtain new QFMs, which have a chance of being DFSes.
We now define the domain on which these aggregation operators can act.

Definition 33 B
+,B

1
2 ,B− andB ⊆ II are defined by

B
+ = {f ∈ II : f(0) > 1

2 andf(I) ⊆ [ 1
2 , 1] andf nonincreasing}

B

1
2 = {c 1

2
}

B
− = {f ∈ II : f(0) < 1

2 andf(I) ⊆ [0, 1
2 ] andf nondecreasing}

B = B
+ ∪ B

1
2 ∪ B− .

Note. In the definition ofB
1
2 , c 1

2
: I −→ I is the constantc 1

2
(x) = 1

2 for all x ∈ I.

More generally, we stipulate for alla ∈ I thatca : I −→ I be the constant mapping

ca(x) = a , (9)

for all x ∈ I.
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Theorem 8

a. SupposeQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) are given. Then

(Qγ(X1, . . . , Xn))γ∈I ∈


B

+ : Q0(X1, . . . , Xn) > 1
2

B

1
2 : Q0(X1, . . . , Xn) = 1

2

B
− : Q0(X1, . . . , Xn) < 1

2

b. For eachf ∈ B there existsQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) such
thatf = (Qγ(X1, . . . , Xn))γ∈I.

Given an aggregation operatorB : B −→ I, we define the corresponding QFMMB as
follows.

Definition 34 SupposeB : B −→ I is given. The QFMMB is defined by

MB(Q)(X1, . . . , Xn) = B((Qγ(X1, . . . , Xn))γ∈I) , (10)

for all semi-fuzzy quantifiersQ : P(E)n −→ I andX1 . . . , Xn ∈ P̃(E).

By the class ofMB-QFMs we mean the class of all QFMsMB defined in this way. It is
apparent that if we do not impose restrictions on admissible choices ofB, the resulting
QFMs will often fail to be DFSes. Hence let us state the necessary and sufficient
conditions thatBmust satisfy in order to makeMB a DFS. To express these conditions,
we first need some constructions onB.

Definition 35 Supposef : I −→ I is a monotonic mapping (i.e., nondecreasing or
nonincreasing). The mappingsf [, f ] : I −→ I are defined by:

f ] =

{
lim
y→x+

f(y) : x < 1

f(1) : x = 1

f [ =

{
lim
y→x−

f(y) : x > 0

f(0) : x = 0
for all f ∈ B, x ∈ I.

It is apparent that iff ∈ B, thenf ] ∈ B andf [ ∈ B. f ] andf [ are obviously very
‘similar’ to each others (and tof ) and every reasonableB should mapf [ andf ] to
the same aggregation result. This turns out to be essential forMB to satisfy (Z-6), be-
cause(Qγ(X1, . . . , Xn))γ∈I is not compatible with (Z-6) in a precise sense, but only
modulo]/[.
We shall further introduce several coefficients which describe certain aspects of a map-
pingf : I −→ I.
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Definition 36 For every monotonic mappingf : I −→ I (i.e., either nondecreasing or
nonincreasing), we define

f∗0 = lim
γ→0+

f(γ) (11)

f0
∗ = inf{γ ∈ I : f(γ) = 0} (12)

f
1
2
∗ = inf{γ ∈ I : f(γ) = 1

2} (13)

f∗1 = lim
γ→1−

f(γ) (14)

f1↑
∗ = sup{γ ∈ I : f(γ) = 1} (15)

f0↑
∗ = sup{γ ∈ I : f(γ) = 0} (16)

f1↓
∗ = inf{γ ∈ I : f(γ) = 1} . (17)

We only needf
1
2
∗ to define the desired conditions onB; it turns out to be essential

for ensuring a proper behaviour ofMB in the case of three-valued quantifiers, and
in particular to ensure the desired results for the two-valued projection quantifiers of
(Z-2). We will use the remaining coefficients later to define examples ofMB-DFSes.

Definition 37 SupposeB : B −→ I is given. For allf, g ∈ B, we define the following
conditions onB:

B(f) = f(0) if f is constant, i.e.f(x) = f(0) for all x ∈ I (B-1)

B(1− f) = 1− B(f) (B-2)

If f(I) ⊆ {0, 1
2 , 1}, then (B-3)

B(f) =


1
2 + 1

2f
1
2
∗ : f ∈ B+

1
2 : f ∈ B

1
2

1
2 −

1
2f

1
2
∗ : f ∈ B−

B(f ]) = B(f [) (B-4)

If f ≤ g, thenB(f) ≤ B(g) (B-5)

As witnessed by the next theorem, these conditions capture precisely the requirement
onB forMB to be a DFS.

Theorem 9

a. The conditions(B-1) to (B-5) are sufficient forMB to be a standard DFS.

b. The conditions(B-1) to (B-5) are necessary forMB to be a DFS.

c. The conditions(B-1) to (B-5) are independent.
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In particular,B(f) = 1 − B(1 − f) for all f ∈ B, andB(f) ≥ 1
2 wheneverf ∈ B+.

We can hence give a more concise description ofMB-DFSes, because it is sufficient
to consider their behaviour onB+ only:

Definition 38 ByH ⊆ II we denote the set of nonincreasingf : I −→ I, f 6= 0,

H = {f ∈ II : f nonincreasing andf(0) > 0 } .

We can associate with eachB′ : H −→ I aB : B −→ I as follows:

B(f) =


1
2 + 1

2B
′(2f − 1) : f ∈ B+

1
2 : f ∈ B

1
2

1
2 −

1
2B
′(1− 2f) : f ∈ B−

(18)

Theorem 10 IfMB is a DFS, thenB can be defined in terms of a mappingB′ : H −→
I according to equation(18). B′ is defined by

B′(f) = 2B( 1
2 + 1

2f)− 1 . (19)

We can hence focus on mappingsB′ : H −→ I without loosing any desired models.

Definition 39 SupposeB′ : H −→ I is given. For allf, g ∈ H, we define the following
conditions onB′:

B′(f) = f(0) if f is constant, i.e.f(x) = f(0) for all x ∈ I (C-1)

If f̂(I) ⊆ {0, 1}, thenB′(f) = f0
∗ , (C-2)

B′(f ]) = B′(f [) if f̂((0, 1]) 6= {0} (C-3)

If f ≤ g, thenB′(f) ≤ B′(g) (C-4)

A theorem analogous to Th-9 can be proven for (C-1) to (C-4):

Theorem 11

a. The conditions(C-1) to (C-4)are sufficient forMB to be a standard DFS.

b. The conditions(C-1) to (C-4)are necessary forMB to be a DFS.

c. The conditions(C-1) to (C-4)are independent.

Our introducing ofB′ is only a matter of convenience, because the definition ofB′
is usually shorter than the definition of the correspondingB. We now present some
examples ofMB-QFMs.

Definition 40 ByM we denote theMB-QFM defined by

B′∫ (f) =
∫ 1

0

f(x) dx , for all f ∈ H.
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Theorem 12 M is a standard DFS.

M is Q-continuous and arg-continuous and hence a good choice for applications.

Definition 41 ByMU we denote theMB-QFM defined by

B′U (f) = max(f1↑
∗ , f

∗
1 ) for all f ∈ H, see(14)and (15).

Theorem 13 Suppose⊕ : I2 −→ I is ans-norm andB′ : H −→ I is defined by

B′(f) = f1↑
∗ ⊕ f∗1 ,

for all f ∈ H. Further suppose thatMB is defined in terms ofB′ according to equa-
tions(10)and (18). ThenMB is a standard DFS.

In particular,MU is a standard DFS. It is neither Q-continuous nor arg-continuous and
hence not practical. However,MU is of theoretical interest because it represents an
extreme case ofMB-DFS in terms of specificity:

Theorem 14 MU is the least specificMB-DFS.

Let us now consider the issue of most specificMB-DFSes.

Definition 42 ByMS we denote theMB-QFM defined by

B′S(f) = min(f0
∗ , f

∗
0 ) for all f ∈ H; see(11)and (12).

Theorem 15 SupposeB′ : H −→ I is defined by

B′(f) = f0
∗ � f∗0

for all f ∈ H, where� : I2 −→ I is a t-norm. Further suppose that the QFMMB is
defined in terms ofB′ according to(10)and (18). ThenMB is a standard DFS.

In particular,MS is a standard DFS.MS fails on both continuity conditions, but:

Theorem 16 MS is the most specificMB-DFS.

Definition 43 ByMCX we denote theMB-QFM defined by

B′CX(f) = sup{min(x, f(x)) : x ∈ I} for all f ∈ H.

Theorem 17 Suppose� : I2 −→ I is a continuoust-norm andB′ : H −→ I is defined
by

B′(f) = sup{γ � f(γ) : γ ∈ I}

for all f ∈ H. Further suppose thatMB is defined in terms ofB′ according to(10)
and (18). ThenMB is a standard DFS.
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ThereforeMCX is a standard DFS. It is Q-continuous and arg-continuous and hence
a good choice for applications.
As has been shown in [9],MCX exhibits unique properties. In fact, it is the only stan-
dard DFS which is compatible with a construction called ‘fuzzy argument insertion’,
which ensures a compositional interpretation of adjectival restriction with fuzzy adjec-
tives.MCX can be shown to generalize the well-known Sugeno integral to the case
of multiplace and non-monotonic quantifiers. HenceMCX consistently generalises
the basic FG-count approach of [19, 24], which is restricted to quantitative and non-
decreasing one-place quantifiers. In addition,MCX can be shown to implement the
so-called ‘substitution approach’ to fuzzy quantification [18], i.e. the fuzzy quantifier is
modelled by constructing an equivalent logical formula (involving fuzzy connectives).
The reader interested in details is invited to consult [9].
Returning toMB-DFSes in general, we can state that:

Theorem 18

• AllMB-DFSes coincide on three-valued arguments, i.e. ifX1, . . . , Xn ∈ P̃(E)
satisfyµXi(e) ∈ {0, 1

2 , 1} for all e ∈ E;

• allMB-DFSes coincide on three-valued semi-fuzzy quantifiersQ : P(E)n −→
{0, 1

2 , 1}.

This is different from general standard DFSes, which are guaranteed to coincide only
for two-valued quantifiers. An issue first addressed in [11] is whether�c is a genuine
partial order:

Theorem 19 �c is not a total order onMB-DFSes.

In particular, the standard DFSes are only partially ordered by�c.
One of the characteristic properties ofMB-DFSes is that they propagate fuzziness.

Theorem 20

• EveryMB-DFS propagates fuzziness in quantifiers.

• EveryMB-DFS propagates fuzziness in arguments.

This important theorem completes the review ofMB-DFSes.

Summarizing, I have presented the required definitions of three-valued cuts and
of the median-based aggregation mechanism, and subsequently introduced the cor-
responding class ofMB-QFMs, which are built from these base constructions. In
addition, a sketch of those results onMB-DFSes was given, that are relevant for the
purposes of this report. In particular, I have presented an analysis of the precise condi-
tions which makeMB a DFS. I have also included prominent examples ofMB-DFSes.
Some of these models play a special role even to the broader classes of models which
will be introduced in the subsequent chapters. In addition, characteristic properties of
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MB-DFSes have been discussed. Here I want to capitalize on the last theorem that
everyMB-DFS propagates fuzziness in quantifiers as well as in arguments. I con-
sider this an important adequacy property because it appears implausible that the re-
sults should become more specific when the input (quantifier or argument) gets fuzzier.
Nevertheless, there seems to be a price one has to pay for the propagation of fuzziness:
as the input becomes less specific, the result of anMB-DFS is likely to attain the least
specific value of12 , see [11, Th-34/Th-40]. In some applications, it might be preferable
to sacrifice the propagation of fuzziness, in order to obtain specific results (e.g. a fine-
grained result ranking) even in those cases where the input is overly fuzzy. A suitable
class of models which embeds theMB-DFSes will be presented in the next chapter.
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3 The class of Fξ-DFSes

In order to show that standard DFSes exist which fail to propagate fuzziness in quanti-
fiers and/or arguments, the median-based aggregation mechanism used to defineMB-
DFSes was later replaced with a more general construction. This new construction,
which results in a broader class of models, theFξ-DFSes, provides the starting point
of a further generalization which will be made in this report.
The material presented in this chapter is mainly compiled from [11], which also con-
tains the proofs of all theorems cited, and a more detailled discussion of the structure
and properties of the new models.
I now introduce the constructions necessary to define the broader class of models. We
get an idea of how to abstract fromMB-QFMs if we simply expand the definition of
the generalized fuzzy median and rewrite(•)γ as

Qγ(X1, . . . , Xn) = med 1
2

(sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)},
inf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)}) .

(20)

This is apparent from Def. 24 and Def. 32. The fuzzy median can then be replaced with
other connectives, e.g. the arithmetic mean(x+y)/2. If we view sup{Q(Y1, . . . , Yn) :
Yi ∈ Tγ(Xi)} andinf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} as mappings that depend onγ,
then we can even eliminate the pointwise application of the connective and define more
‘holistic’ mechanisms.
Based on the definition of the crisp rangeTγ(X) of a three-valued cut, which provides
a set of alternative choices for crisp arguments, we define the upper and lower bounds
of the quantification results given these alternatives as follows:

Definition 44 Let a semi-fuzzy quantifierQ : P(E)n −→ I and fuzzy arguments
X1, . . . , Xn be given. We define the upper bound mapping>Q,X1,...,Xn : I −→ I and
the lower bound mapping⊥Q,X1,...,Xn : I −→ I by

>Q,X1,...,Xn(γ) = sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)}
⊥Q,X1,...,Xn(γ) = inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} .

The domainT of the aggregation operatorsξ : T −→ I which combine the results of
>Q,X1,...,Xn and⊥Q,X1,...,Xn can be defined as follows.

Definition 45 T ⊆ II × II is defined by

T = {(>,⊥) : > : I −→ I nondecreasing,⊥ : I −→ I nonincreasing,⊥ ≤ >} .

Theorem 21

a. Suppose thatQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) are given. Then
(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) ∈ T.

b. For all (>,⊥) ∈ T, there existsQ : P(2× I) −→ I andX ∈ P̃(2× I) such
that (>,⊥) = (>Q,X ,⊥Q,X).
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Based on the aggregation operatorξ : T −→ I, we define a corresponding QFMFξ in
the obvious way.

Definition 46 For every mappingξ : T −→ I, the QFMFξ is defined by

Fξ(Q)(X1, . . . , Xn) = ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) , (21)

for all semi-fuzzy quantifiersQ : P(E)n −→ I and all fuzzy subsetsX1, . . . , Xn ∈
P̃(E).

The class of QFMs defined in this way will be called the class ofFξ-QFMs. Obviously
it embeds the class ofMB-QFMs:

Theorem 22 SupposeB : B −→ I is a given aggregation mapping. ThenMB = Fξ,
whereξ : T −→ I is defined by

ξ(>,⊥) = B(med 1
2

(>,⊥)) (22)

for all (>,⊥) ∈ T, andmed 1
2

(>,⊥) abbreviates

med 1
2

(>,⊥)(γ) = med 1
2

(>(γ),⊥(γ)) ,

for all γ ∈ I.

Hence allMB-QFMs areFξ-QFMs, and allMB-DFSes areFξ-DFSes. The full class
of Fξ-QFMs contains a number of QFMs that do not fulfill the DFS axioms. We
hence impose five elementary conditions on the aggregation mappingξ, in order to
characterize the well-behaved models, i.e. the class ofFξ-DFSes.

Definition 47 For all (>,⊥) ∈ T, we impose the following conditions on aggregation
mappingsξ : T −→ I.

If > = ⊥, thenξ(>,⊥) = >(0) (X-1)

ξ(1−⊥, 1−>) = 1− ξ(>,⊥) (X-2)

If > = c1 and⊥(I) ⊆ {0, 1}, thenξ(>,⊥) = 1
2 + 1

2⊥
0
∗ (X-3)

ξ(>[,⊥) = ξ(>],⊥) (X-4)

If (>′,⊥′) ∈ T such that> ≤ >′ and⊥ ≤ ⊥′, thenξ(>,⊥) ≤ ξ(>′,⊥′) (X-5)

As stated in the following theorems, the conditions imposed onξ capture exactly the
requirements that makeFξ a DFS.

Theorem 23

a. The conditions(X-1) to (X-5) are sufficient forFξ to be a standard DFS.
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b. The conditions(X-1) to (X-5) are necessary forFξ to be a DFS.

c. The conditions(X-1) to (X-5) are independent.

Sometimes we should be aware of the relationship between the ‘B-conditions’ and the
‘X-conditions’ in the case ofMB-QFMs:

Theorem 24 SupposeB : B −→ I is given andξ : T −→ I is defined by equation
(22). Then

1. (B-1) is equivalent to(X-1);

2. (B-2) is equivalent to(X-2);

3. (a) (B-3) entails(X-3);

(b) the conjunction of(X-2) and (X-3) entails(B-3);

4. (a) (B-4) entails(X-4);

(b) the conjunction of(X-2) and (X-4) entails(B-4);

5. (B-5) is equivalent to(X-5).

The theorem is useful, e.g. to show that theMB-DFSes are exactly thoseFξ-DFSes
that propagate fuzziness in both quantifiers and arguments.

Theorem 25 Suppose anFξ-DFS propagates fuzziness in both quantifiers and argu-
ments. ThenFξ is anMB-DFS.

(The converse implication is already known from Th-20).
Let us now give examples of ‘genuine’Fξ-DFSes (i.e. models that go beyond the
special case ofMB-DFSes).

Definition 48 The QFMFCh = FξCh is defined in terms ofξCh : T −→ I by

ξCh(>,⊥) = 1
2

∫ 1

0

>(γ) dγ + 1
2

∫ 1

0

⊥(γ) dγ ,

for all (>,⊥) ∈ T.

Note. Both integrals are known to exist because> and⊥ are monotonic mappings.
HenceξCh is well-defined.

Theorem 26 FCh is a standard DFS.

The modelFCh is of special interest because it consistently generalizes the well-known
Choquet integral and hence the ‘basic’ OWA approach to general multi-place quanti-
fiers without any assumptions on monotonicity, see [11]. It is a practical model because
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it is Q-continuous and arg-continuous, which grants the desired robustness against
noise. Unlike the other models presented so far,FCh does not propagate fuzziness,
neither in quantifiers nor in arguments. HenceFCh is a ‘genuine’Fξ-DFS (i.e. not an
MB-DFS) by Th-20. In particular, this proves thatFξ-DFSes are indeed more general
thanMB-DFSes.
Let us now discuss some aspects related to the specificity order onFξ-DFSes.

Theorem 27 MU is the least specificFξ-DFS.

As concerns upper specificity bounds, it has been shown in [11, Th-60, p. 35] that the
‘full’ class of Fξ-QFMs is not specificity consistent. We hence know from Th-7 that
a ‘most specificFξ-DFS’ does not exist. However, we obtain a positive result if we
restrict attentionFξ-DFSes which propagate fuzziness. Both the class ofFξ-DFSes
that propagate fuzziness in quantifiers, and those that propagate fuzziness in arguments,
are specificity consistent and hence possess upper specificity bounds.

We shall now consider some more examples of models defined in terms of the new
construction, and locate them within the full class by specificity.

Definition 49 The QFMFS is defined in terms ofξS : T −→ I by

ξS(>,⊥) =


min(>∗1, 1

2 + 1
2⊥
≤ 1

2
∗ ) : ⊥(0) > 1

2

max(⊥∗1, 1
2 −

1
2>
≥ 1

2
∗ ) : >(0) < 1

2
1
2 : else

for all (>,⊥) ∈ T, where the coefficientsf
≤ 1

2
∗ , f

≥ 1
2

∗ ∈ I are defined by

f
≤ 1

2
∗ = inf{γ ∈ I : f(γ) ≤ 1

2} (23)

f
≥ 1

2
∗ = inf{γ ∈ I : f(γ) ≥ 1

2} , (24)

for all f : I −→ I.

Theorem 28 FS is a standard DFS.

The model propagates fuzziness in quantifiers, but not in arguments. HenceFS is a
‘genuine’Fξ-DFS as well, see Th-20. Its relevance stems from the following theorem:

Theorem 29 FS is the most specificFξ-DFS that propagates fuzziness in quantifiers.

HenceFS is of theoretical interest because it represents a boundary case ofFξ-DFSes.
However, the model is not suited for applications because it fails on both continuity
conditions.
Finally we consider the following QFMFA:
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Definition 50 The QFMFA is defined in terms ofξA : T −→ I by

ξA(>,⊥) =


min(⊥∗0, 1

2 + 1
2⊥

0
∗) : ⊥∗0 > 1

2

max(>∗0, 1
2 −

1
2>

1↓
∗ ) : >∗0 < 1

2
1
2 : else

for all (>,⊥) ∈ T.

Theorem 30 FA is a standard DFS.

The model fails to propagate fuzziness in quantifiers, but it does propagate fuzziness
in arguments. HenceFA is a genuineFξ-DFS as well, see Th-20. Recalling the sym-
metric situation withFS , the lack of both conditions withFCh and the presence of
both conditions in the case ofMB-DFSes, it is hence apparent that the conditions of
propagating fuzziness in quantifiers and arguments are independent forFξ-DFSes.
The relevance of the modelFA stems from the following observation.

Theorem 31 FA is the most specificFξ-DFS that propagates fuzziness in arguments.

ThereforeFA represents a boundary case ofFξ-QFMs. It is not suited for applications,
though, because it violates both continuity conditions.

To sum up, the chapter sketched an effort to extend the class of known models, and
to show that models exist which do not propagate fuzziness. The construction from
whichMB-QFMs were built, namely that ofQγ(X1, . . . , Xn), was therefore dropped
and replaced with a pair of mappings which represent the lower bound⊥Q,X1,...,Xn

and upper bound>Q,X1,...,Xn on the results obtained for the three-valued cuts. These
mappings capture some important aspects of the quantifier and its intended behaviour
for the considered fuzzy arguments. However, the important information is scattered
across the cut levels and hence a subsequent aggregation step is needed. We accom-
plish this by applying the mappingξ, which computes the final quantification result
Fξ(Q)(X1, . . . , Xn) = ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn). In order to identify the sub-
class of well-behaved models within the unrestricted class of resultingFξ-QFMs, an
independent set of criteria was developed which capture the necessary and sufficient
conditions onξ that makeFξ a DFS. In addition, some examples of ‘genuine’Fξ-
DFSes were given: firstlyFCh, which is important because of its affinity to the Cho-
quet integral/‘basic’ OWA approach; secondlyFS , the most specificFξ-DFS which
propagates fuzziness in quantifiers; and finallyFA, the most specificFξ-DFS which
propagates fuzziness in arguments. In addition, theMB-DFSes were located within
their apparent superclass ofFξ-DFSes, and characterised as precisely thoseFξ-DFSes
that propagate fuzziness both in quantifiers and arguments. Although it is not clear
at this stage whether the new models form a ‘natural’ class with certain distinguished
properties, the introduction ofFξ-DFSes clearly led to the discovery of some relevant
models, likeFCh, which can be expressed in terms of the new construction. In addition,
it turned out that the upper and lower bound mappings>Q,X1,...,Xn and⊥Q,X1,...,Xn

are easy to compute for common quantifiers. This is witnessed, for example, by a
successful implementation of absolute and proportional quantifiers based on the model
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FCh, which is described in [10, 12]. Apart from its theoretical merits, I hence consider
the class ofFξ-DFSes a fruitful source of practical models, which can prove useful in
future applications.

This brief discussion ofFξ-DFSes completes the review of known classes of stan-
dard DFSes, which included all definitions and theorems required to develop the novel
material. The remaining part of the report is devoted to the search of more general
types of models. In order to ensure that the new models subsume the knownFξ-
DFSes, which form the broadest class of standard models developed in previous work
on DFS theory, it was considered best to start from the underlying mechanism that
was used to defineξ, and to pursue an apparent generalization. As we shall see, this
generalization will result in a new class of models genuinely broader thanFξ-DFSes,
the full class of models definable in terms of three-valued cuts. After introducing this
class in the next chapter, and discussing its models and their properties to some depth,
the subsequent chapter then departs from the three-valued cut mechanism. It succeeds
in defining DFSes from a very different construction, which is theoretically appealing
because these models utilize the extension principle for the transfer from semi-fuzzy
to fuzzy quantifiers. Interestingly, both constructions span the same class of standard
models.
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4 The class of models defined in terms of three-valued cuts

In this chapter, a further step will be taken to extend the class of known DFSes. By
abstracting from the mechanism used to defineFξ-QFMs, I first introduce the full class
of QFMs definable in terms of three-valued cuts: the class ofFΩ-QFMs. UnlikeFξ-
QFMs, the definition of which is based on the upper and lower bounds on the results
obtained for the three-valued cuts and a subsequent aggregation step, the new models
are defined directly in terms of the ‘raw’ result set obtained for the cuts, to which an
aggregation mappingΩ is then applied. Hence the new approach captures all models
definable in terms of three-valued cuts, and promises to span a general class of models
worthwhile investigating. After introducing the surrounding class ofFΩ-QFMs, the
structure of its well-behaved members is then analysed, by making explicit the nec-
essary and sufficient conditions on the aggregation mappingΩ that makeFΩ a DFS.
In addition, the required theory will be developed that permits us to check interest-
ing properties ofFΩ-DFSes, e.g. whether a givenFΩ propagates fuzziness, and how
givenFΩ-QFMs are related by specificity. It is shown that the new class of DFSes is
genuinely broader thanFξ-DFSes. However, it does not introduce any new ‘practi-
cal’ models because thoseFΩ-DFSes which are Q-continuous, and hence potentially
suited for applications, are in factFξ-DFSes. These findings hence provide a justi-
fication forFξ-QFMs. It is also shown that the full class of standard models which
propagate fuzziness both in quantifiers and arguments, is genuinely broader than the
class ofMB-DFSes. But again, all models outside the known range of models fail to
be Q-continuous. Apart from investigating these properties, a subclass ofFΩ-QFMs
will also be introduced, the class ofFω-QFMs. These QFMs can be expressed in terms
of a simpler construction which excludes some of the ‘raw’FΩ-QFMs. I show how
this subclass is related to the full class ofFΩ-QFMs. Among others, this investigation
reveals that the considered subclass still contains all well-behaved models, and hence
theFΩ-DFSes andFω-DFSes coincide. The relevance ofFω-QFMs stems from the
fact that they can easily be linked to the alternative classes of models introduced lat-
eron. In other words,Fω-QFMs are needed to establish the link between the models
defined in terms of three-valued cuts and those defined in terms of the extension prin-
ciple. An investigation ofFω-QFMs is hence essential to the proof that these classes
coincide, which is one of the main contributions to DFS theory made in this report.

To begin with, I will now extend the class ofFξ-QFMs to the full class of QFMs
definable in terms of three-valued cuts of the argument sets. Hence let a semi-fuzzy
quantifierQ : P(E)n −→ I and a choice of fuzzy argumentsX1, . . . , Xn ∈ P̃(E) be
given. In order to spot a starting point for the desired generalization, we re-consider
the definition of>Q,X1,...,Xn and⊥Q,X1,...,Xn . Apparently, the upper and lower bound
mappings can be decomposed into (a) the three-valued cut mechanism, and (b) a sub-
sequentinf/sup-based aggregation:

>Q,X1,...,Xn(γ)
= sup{Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)}
= supSQ,X1,...,Xn(γ)

(25)
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and

⊥Q,X1,...,Xn(γ)
= inf{Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)}
= inf SQ,X1,...,Xn(γ)

(26)

for all γ ∈ I, provided we defineSQ,X1,...,Xn(γ) as follows.

Definition 51 For every semi-fuzzy quantifierQ : P(E)n −→ I and allX1, . . . , Xn ∈
P̃(E), the mappingSQ,X1,...,Xn : I −→ P(I) is defined by

SQ,X1,...,Xn(γ) = {Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)} ,

for all γ ∈ I.

Some basic properties ofSQ,X1,...,Xn are stated in this theorem.

Theorem 32 Consider a semi-fuzzy quantifierQ : P(E)n −→ I and choice of fuzzy
subsetsX1, . . . , Xn ∈ P̃(E). Then

a. SQ,X1,...,Xn(0) 6= ∅;

b. SQ,X1,...,Xn(γ) ⊆ SQ,X1,...,Xn(γ′) wheneverγ, γ′ ∈ I with γ ≤ γ′.

(Proof: A.1, p.77+)

It is hence apparent that all possible choices ofSQ,X1,...,Xn are contained in the fol-
lowing setK.

Definition 52 K ⊆ P(I)I is defined by

K = {S ∈ P(I)I : S(0) 6= ∅ andS(γ) ⊆ S(γ′) wheneverγ ≤ γ′} .

As we shall now prove,K is the minimal set which contains all possible choices for
SQ,X1,...,Xn . To this end, we first have to introduce coefficientss(z) ∈ I associated
with S ∈ K, which will play an essential role throughout the report.

Definition 53 ConsiderS ∈ K. We associate withS a mappings : I −→ I defined by

s(z) = inf{γ ∈ I : z ∈ S(γ)} ,

for all z ∈ I.

It is convenient to define a notation for thes(z)’s obtained from a given quantifier and
arguments.
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Definition 54 For every semi-fuzzy quantifierQ : P(E)n −→ I and allX1, . . . , Xn ∈
P̃(E), we denote the mappings obtained fromSQ,X1,...,Xn by applying Def. 53 by
sQ,X1,...,Xn : I −→ I. The resulting mapping is hence defined by

sQ,X1,...,Xn(z) = inf{γ ∈ I : z ∈ SQ,X1,...,Xn(γ)} ,

for all z ∈ I.

As we shall see later, allFΩ-DFSes can be defined in terms ofsQ,X1,...,Xn .

Theorem 33 LetS ∈ K be given and defineQ : P(2× I) −→ I by

Q(Y ) = Qinf Y ′(Y ′′) (27)

for all Y ∈ P(2× I), where

Y ′ = {y ∈ I : (0, y) ∈ Y } (28)

Y ′′ = {y ∈ I : (1, y) ∈ Y } (29)

and theQz : P(I) −→ I, z ∈ I are defined by

Qz(Y ′′) =
{
z : supY ′′ > s(z)
z0 : else

(30)

for all Y ′′ ∈ P(I) if z /∈ S(s(z)), and

Qz(Y ′′) =
{
z : supY ′′ ≥ s(z)
z0 : else

(31)

in the case thatz ∈ S(s(z)). z0 is an arbitrary element

z0 ∈ S(0) , (32)

which exists by Th-32. Further suppose thatX ∈ P̃(2× I) is defined by

µX(a, y) =

{
1
2 : a = 0
1
2 −

1
2y : a = 1

(33)

for all a ∈ 2, y ∈ I. ThenSQ,X = S.
(Proof: A.2, p.77+)

HenceK is exactly the set of allS = SQ,X1,...,Xn obtained for arbitrary choices of
quantifiers and arguments. In order to obtain a quantification result fromSQ,X1,...,Xn ,
we apply an aggregation operatorΩ : K −→ I in the obvious way.

Definition 55 Consider an aggregation operatorΩ : K −→ I. The corresponding
QFMFΩ is defined by

FΩ(Q)(X1, . . . , Xn) = Ω(SQ,X1,...,Xn) ,

for all semi-fuzzy quantifiersQ : P(E)n −→ I and fuzzy argumentsX1, . . . , Xn ∈
P̃(E).
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By the class ofFΩ-QFMs, we mean the collection of all QFMs defined in this way.
As usual, we must impose conditions to shrink the full class ofFΩ to its subclass of
FΩ-DFSes.

Definition 56 For all S ∈ K, we defineS], S[ ∈ K as follows.

S] =

{
∩

γ′>γ
S(γ′) : γ < 1

I : γ = 1
S[ =

{
S(0) : γ = 0
∪

γ′<γ
S(γ′) : γ > 0

for all γ ∈ I.

Note. The definition is slightly asymmetric; I have departed from the usual scheme of
definingS](1) = S(1) in this case because the present definition ofS](1) = I allows
for more compact conditions onΩ, and eventually for shorter proofs.
I further stipulate a definition ofS v S′ which will serve to express a monotonicity
condition onΩ.

Definition 57 For all S, S′ ∈ K, S v S′ if and only if the following two conditions
hold for all γ ∈ I:

1. for all z ∈ S(γ), there existsz′ ∈ S′(γ) with z′ ≥ z;

2. for all z′ ∈ S′(γ), there existsz ∈ S(γ) with z ≤ z′.

It is apparent from this definition thatv is reflexive and transitive, but not necessarily
antisymmetric (i.e.S v S′ andS′ v S does not imply thatS = S′). Hencev is a
preorder.
We are now ready to state the conditions on reasonable choices ofΩ : K −→ I, in
analogy to the conditions (B-1)–(B-5) forMB-DFSes and to the conditions (X-1)–
(X-5) for Fξ-DFSes:

Definition 58 ConsiderΩ : K −→ I. We impose the following conditions onΩ. For
all S ∈ K,

If there existsa ∈ I with S(γ) = {a} for all γ ∈ I, thenΩ(S) = a. (Ω-1)

If S′(γ) = {1− z : z ∈ S(γ)} for all γ ∈ I, thenΩ(S′) = 1− Ω(S). (Ω-2)

If 1 ∈ S(0) andS(γ) ⊆ {0, 1} for all γ ∈ I, thenΩ(S) = 1
2 + 1

2s(0). (Ω-3)

Ω(S) = Ω(S]) (Ω-4)

If S′ ∈ K satisfiesS v S′, thenΩ(S) ≤ Ω(S′). (Ω-5)

Note. The only condition which is slighly different from the usual scheme is (Ω-4).
The departure from requiringΩ(S]) = Ω(S[) turned out to shorten the proofs. The
latter equation is entailed by the above conditions, however.

Theorem 34 The conditions(Ω-1)–(Ω-5) onΩ : K −→ I are sufficient forFΩ to be a
standard DFS.
(Proof: A.3, p.78+)
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In the following, I introduce another construction which elucidates the exact properties
of S ∈ K that a conforming choice ofΩ can rely on.

Definition 59 For all S ∈ K, we defineS‡ ∈ K by

S‡(γ) = {z ∈ I : there existz′, z′′ ∈ S(γ) with z′ ≤ z ≤ z′′}

for all γ ∈ I.

Note. It is apparent that indeedS‡ ∈ K. The effect of applying‡ toS is that of “filling
the gaps” in the interior ofS. The resultingS‡ will be a closed, half-open, or open
interval.

The importance of this construction with respect toFΩ-QFMs stems from the invari-
ance of well-behavedFΩ-QFMs with respect to the gap-filling operation:

Theorem 35 SupposeΩ : K −→ I is a given mapping such thatFΩ satisfies(Z-5).
Then

Ω(S) = Ω(S‡) ,

for all S ∈ K.
(Proof: A.4, p.90+)

This means that a well-behaved choice ofΩ may only depend onsupS(γ), inf S(γ),
and the knowledge whethersupS(γ) ∈ S(γ) andinf S(γ) ∈ S(γ). Apart from this,
the ‘interior structure’ ofS(γ) is irrelevant to the determination ofΩ(S).
I have anticipated the discussion of the gap-filling operation because it facilitates the
proof that (Ω-5) is necessary forFΩ to satisfy (Z-5). The other ‘Ω-conditions’ are
easily shown to be necessary forFΩ to be a DFS, and require only minor adjustments
of the corresponding proofs forFξ-QFMs that were presented in [11].

Theorem 36 The conditions(Ω-1)–(Ω-5) on Ω : K −→ I are necessary forFΩ to be
a DFS.
(Proof: A.5, p.94+)

Hence the ‘Ω-conditions’ are necessary and sufficient forFΩ to be a DFS, and allFΩ-
DFSes are indeed standard DFSes. In order to prove that the criteria are independent,
we relateFξ-QFMs to their apparent superclass ofFΩ-QFMs.

Theorem 37 Consider an aggregation mappingξ : T −→ I. ThenFξ = FΩ, where
Ω : K −→ I is defined by

Ω(S) = ξ(>S ,⊥S) , (34)

for all S ∈ K, and(>S ,⊥S) ∈ T is defined by

>S(γ) = supS(γ) (35)

⊥S(γ) = inf S(γ) (36)
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for all γ ∈ I.
(Proof: A.6, p.109+)

This is apparent. Hence allFξ-QFMs areFΩ-QFMs and allFξ-DFSes areFΩ-DFSes.
The next theorem permits to reduce the independence proof of the conditions onΩ to
the independence proof of the conditions imposed onξ.

Theorem 38 Supposeξ : T −→ I is given andΩ : K −→ I is defined by(34). Then

a. (X-1) is equivalent to(Ω-1);

b. (X-2) is equivalent to(Ω-2);

c. (X-3) is equivalent to(Ω-3);

d. 1. the conjunction of(X-2), (X-4) and (X-5) implies(Ω-4);

2. (Ω-4) implies(X-4);

e. (X-5) is equivalent to(Ω-5).

(Proof: A.7, p.110+)

Based on this theorem and the known independence of the conditions (X-1)–(X-5), it
is now easy to prove the desired result concerning independence.

Theorem 39 The conditions(Ω-1)–(Ω-5) imposed onΩ : K −→ I are independent.
(Proof: A.8, p.125+)

As has been remarked above, everyFΩ-DFS can be defined in terms of the mapping
sQ,(X1,...,Xn) : I −→ I and this usually makes a simpler representation. It therefore
makes sense to introduce the class of QFMs definable in terms ofsQ,(X1,...,Xn) : I −→
I.

Theorem 40 SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier andX1, . . . , Xn ∈
P̃(E) a choice of fuzzy arguments. ThensQ,X1,...,Xn

−1(0) 6= ∅, i.e. there existsz0 ∈ I
with sQ,X1,...,Xn(z0) = 0.
(Proof: A.9, p.126+)

Hence all possible choices ofsQ,X1,...,Xn are contained of the following setL.

Definition 60 L ⊆ II is defined by

L = {s ∈ II : s−1(0) 6= ∅} .

The following theorem states thatL is the minimum subset ofII which contains all
possible mappingssQ,X1,...,Xn :
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Theorem 41 For all s ∈ L, let us defineS : I −→ P(I) by

S(γ) = {z ∈ I : γ ≥ s(z)} (37)

for all γ ∈ I. It is apparent thatS ∈ K. Let us further suppose thatQ : P(2× I) −→
I is defined by(27) and thatX ∈ P̃(2× I) is the fuzzy subset defined by(33). Then
sQ,X = s.
(Proof: A.10, p.126+)

In order to define quantification results based onsQ,X1,...,Xn , we need an aggregation
mappingω : L −→ I. The corresponding QFMFω is defined in the usual way.

Definition 61 Let a mappingω : L −→ I be given. ByFω we denote the QFM defined
by

Fω(Q)(X1, . . . , Xn) = ω(sQ,X1,...,Xn) ,

for all semi-fuzzy quantifiersQ : P(E)n −→ I and allX1, . . . , Xn ∈ P̃(E).

It is obvious from the definition ofsQ,X1,...,Xn in terms ofSQ,X1,...,Xn that allFω-
QFMs areFΩ-QFMs, using the apparent choice ofΩ : K −→ I,

Ω(S) = ω(s) (38)

wheres(z) = inf{γ ∈ I : z ∈ S(γ)}, see Def. 54. It is then clear from Def. 55 and
Def. 61 that

FΩ = Fω . (39)

The converse is not true, i.e. it is not the case that allFΩ-QFMs areFω-QFMs. How-
ever, if anFΩ-QFMs is sufficiently ‘well-behaved’, then it is also anFω-QFM. In
particular, this is the case forFΩ-DFSes.

Theorem 42

a. If Ω : K −→ I satisfies(Ω-4), thenFΩ = Fω, provided we defineω : L −→ I
by

ω(s) = Ω(S) (40)

for all s ∈ L, where

S(γ) = {z ∈ I : γ ≥ s(z)} (41)

for all γ ∈ I.

b. If Ω : K −→ I does not satisfy(Ω-4), thenFΩ is not anFω-QFM.

(Proof: A.11, p.127+)
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Therefore anFΩ-QFM is anFω-QFM if and only if it satisfies (Ω-4). Let us recall that
by Th-36, (Ω-4) is necessary forFΩ to be a DFS. This means that we do not loose any
models of interest if we restrict attention to the class of thoseFΩ-QFMs which satisfy
(Ω-4), and can hence be expressed asFω-QFMs.
It is then convenient to switch from (Ω-1)–(Ω-5) to corresponding conditions onω :
L −→ I. To accomplish this, we first define a preorderv ⊆ L × L, which is needed
to express a monotonicity condition.

Definition 62 For all s, s′ ∈ L, s v s′ if and only if the following two conditions hold:

a. for all z ∈ I, inf{s′(z′) : z′ ≥ z} ≤ s(z);

b. for all z′ ∈ I, inf{s(z) : z ≤ z′} ≤ s′(z′).

In the case ofFω-QFMs, we can express the conditions onω : L −→ I even more
succintly.

Definition 63 We impose the following conditions onω : L −→ I. For all s ∈ L,

If s−1([0, 1)) = {a}, thenω(s) = a. (ω-1)

If s′(z) = s(1− z) for all z ∈ I, thenω(s′) = 1− ω(s). (ω-2)

If s(1) = 0 ands−1([0, 1)) ⊆ {0, 1}, thenω(s) = 1
2 + 1

2s(0). (ω-3)

If s′ ∈ L with s v s′, thenω(s) ≤ ω(s′). (ω-4)

Theorem 43 Let ω : L −→ I be given and suppose thatΩ : K −→ I is defined in
terms ofω according to(38). Then

a. Ω satisfies(Ω-1) if and only ifω satisfies(ω-1);

b. Ω satisfies(Ω-2) if and only ifω satisfies(ω-2);

c. Ω satisfies(Ω-3) if and only ifω satisfies(ω-3);

d. Ω satisfies(Ω-4);

e. Ω satisfies(Ω-5) if and only ifω satisfies(ω-4).

(Proof: A.12, p.130+)

Due to these relationships, the following theorems are obvious from the corresponding
results forΩ.

Theorem 44 The conditions(ω-1)–(ω-4) are sufficient forFω to be a standard DFS.
(Proof: A.13, p.135+)

Theorem 45 The conditions(ω-1)–(ω-4) are necessary forFω to be a DFS.
(Proof: A.14, p.135+)
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Theorem 46 The conditions(ω-1)–(ω-4) are independent.
(Proof: A.15, p.135+)

To sum up,Fω-DFSes comprise allFΩ-DFSes, they are usually easier to define, and
simpler conditions (ω-1)–(ω-4) have to be checked. However, the monotonicity condi-
tion (ω-4) onω is somewhat more complicated compared to the monotonicity condition
(Ω-5) on Ω. In the following, I hence introduce a simpler preorderE for expressing
monotonicity, which when combined with an additional condition can replacev and
the corresponding monotonicity condition (ω-4).E is defined as follows.

Definition 64 For all s, s′ ∈ L, s E s′ if and only if the following two conditions hold:

a. for all z ∈ I, there existsz′ ≥ z with s′(z′) ≤ s(z);

b. for all z′ ∈ I, there existsz ≤ z with s(z) ≤ s′(z′).

In order to state the additional condition, it is necessary to introduce a construction on
s ∈ L which corresponds to the gap-filling operationS‡ defined onS ∈ K.

Definition 65 For all s ∈ L, s‡ : I −→ I is defined by

s‡(z) = max(inf{s(z′) : z′ ≤ z}, inf{s(z′′) : z′′ ≥ z}) ,

for all z ∈ I.

Some basic properties of‡ are the following.

Theorem 47 Lets ∈ L be given. Then

a. s‡ ≤ s;

b. s‡ ∈ L;

c. s‡ is concave, i.e.

s‡(z2) ≤ max(s‡(z1), s‡(z3)) .

wheneverz1 ≤ z2 ≤ z3.

(Proof: A.16, p.136+)

We will need this ‘concavication construction’ for the proof thatω’s satisfying (Ω-5)
entails thatΩ defined by (38) satisfies (Ω-5). The connection between‡ and monotonic
behaviour ofω becomes visible in the next theorem.

Theorem 48 Supposeω : L −→ I satisfies(ω-4). Thenω(s‡) = ω(s) for all s ∈ L.
(Proof: A.17, p.137+)
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The theorem proves useful for establishing the following result, which connects (ω-4)
to the simplified conditions.

Theorem 49 For all ω : L −→ I, the monotonicity condition(ω-4) is equivalent to
the conjunction of the following two conditions:

a. for all s, s′ ∈ L with s E s′, it holds thatω(s) ≤ ω(s′);

b. for all s ∈ L, ω(s) = ω(s‡).

(Proof: A.18, p.138+)

I will now present four examples of ‘genuine’Fω-DFSes, i.e. ofFω-DFSes which do
not belong to the class ofFξ-DFSes. To this end, it is necessary to introduce some
coefficients defined in terms of a givens ∈ L.

Definition 66 For all s ∈ L, the coefficientss>,0∗ , s⊥,0∗ , ,>,∗1 ,⊥,∗1 s
≤ 1

2
∗ , s

≥ 1
2
∗ ∈ I are

defined by

s>,0∗ = sup s‡
−1

(0) (42)

s⊥,0∗ = inf s‡
−1

(0) (43)

s>,∗1 = sup s−1([0, 1)) (44)

s⊥,∗1 = inf s−1([0, 1)) (45)

s
≤ 1

2
∗ = inf{s(z) : z ≤ 1

2} (46)

s
≥ 1

2
∗ = inf{s(z) : z ≥ 1

2} . (47)

Based on these coefficients, I now define the examples ofFω-DFSes.

Definition 67 ByωM : L −→ I we denote the following mapping,

ωM (s) =


min(s⊥,0∗ , 1

2 + 1
2s
≤ 1

2
∗ ) : s⊥,0∗ > 1

2

max(s>,0∗ , 1
2 −

1
2s
≥ 1

2
∗ ) : s>,0∗ < 1

2
1
2 : else

for all s ∈ L. The QFMFM is defined in terms ofωM according to Def. 61, i.e.FM =
FωM .

Let us first notice that the QFMFM so defined is indeed a DFS.

Theorem 50 FM is a standard DFS.
(Proof: A.19, p.142+)
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Let us also remark thatFM is indeed a ‘genuine’Fω-DFS.

Theorem 51 FM is not anFξ-DFS, i.e. there exists noξ : T −→ I withFM = Fξ.
(Proof: A.20, p.152+)

In particular, this proves that theFω-DFSes are really more general thanFξ-DFSes,
i.e. theFξ-DFSes form a proper subclass of theFω-DFSes.

Definition 68 ByωP : L −→ I we denote the mapping defined by

ωP (s) =


min(s>,∗1 , 1

2 + 1
2s
≤ 1

2
∗ ) : s⊥,0∗ > 1

2

max(s⊥,∗1 , 1
2 −

1
2s
≥ 1

2
∗ ) : s>,0∗ < 1

2
1
2 : else

for all s ∈ L. We define the QFMFP in terms ofωP according to Def. 61, i.e.FP =
FωP .

Theorem 52 FP is a standard DFS.
(Proof: A.21, p.154+)

Let us also observe thatFP is a genuineFω-DFS.

Theorem 53 FP is not anFξ-DFS, i.e. there exists noξ : T −→ I such thatFP = Fξ.
(Proof: A.22, p.159+)

It is possible to obtain an even more specific DFS by slightly changing the definition
of FP .

Definition 69 ByωZ : L −→ I we denote the mapping defined by

ωZ(s) =


min(s>,∗1 , 1

2 + 1
2s
≤ 1

2
∗ ) : s‡

−1(0) ⊆ [ 1
2 , 1]

max(s⊥,∗1 , 1
2 −

1
2s
≥ 1

2
∗ ) : s‡

−1(0) ⊆ [0, 1
2 ]

1
2 : else

for all s ∈ L. We define the QFMFZ in terms ofωZ according to Def. 61, i.e.FZ =
FωZ .

Note. To see thatωZ is well-defined, consider a choice ofs ∈ L such thats‡
−1(0) =

{ 1
2}. Thens−1(0) = { 1

2} as well becauses−1(0) 6= ∅ ands−1(0) ⊆ s‡
−1(0) by

Th-47. Hence

s>,∗1 = sup s−1([0, 1)) ≥ sup s−1(0) = sup{ 1
2} = 1

2 . (48)
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by (44). Similarly

s⊥,∗1 = inf s−1([0, 1)) ≤ inf s−1(0) = inf{ 1
2} = 1

2 . (49)

Noticing that

s
≤ 1

2
∗ = 0 (50)

s
≥ 1

2
∗ = 0 (51)

by (46) and (47) becauses( 1
2 ) = 0, we obtain the desired

min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) = min( 1

2 ,
1
2 + 1

2 · 0) by (48), (50)

= 1
2

= max(1
2 ,

1
2 −

1
2 · 0)

= max(s⊥,∗1 , 1
2 −

1
2s
≥ 1

2
∗ ) , by (49), (51)

i.e.ωZ is indeed well-defined.

Theorem 54 FZ is a standard DFS.
(Proof: A.23, p.160+)

Again, it is easily shown thatFZ is a genuineFω-DFS.

Theorem 55 FZ is not anFξ-DFS, i.e. there exists noξ : T −→ I such thatFZ =
Fξ.
(Proof: A.24, p.166+)

Definition 70 ByωR : L −→ I we denote the mapping defined by

ωR(s) =


min(s⊥,0∗ , 1

2 + 1
2s(0)) : s⊥,0∗ > 1

2

max(s>,0∗ , 1
2 −

1
2s(1)) : s>,0∗ < 1

2
1
2 : else

for all s ∈ L. We define the QFMFR in terms ofωR according to Def. 61, i.e.FR =
FωR .

Theorem 56 FR is a standard DFS.
(Proof: A.25, p.167+)

Again, we can assert thatFR is a genuineFω-DFS.

Theorem 57 FR is not anFξ-DFS, i.e. there exists noξ : T −→ I withFR = Fξ.
(Proof: A.26, p.171+)
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Now that the defining conditions ofFΩ-DFSes andFω-DFS have been established and
examples of the new classes of models have been given, we turn to additional properties
like propagation of fuzziness. Usually I state the corresponding conditions both for the
representation in terms ofFΩ and in terms ofFω. This provides maximum flexibility
in later proofs whether a model at hand does or does not possess these properties.

Definition 71 For all S, S′ ∈ K, we say thatS is fuzzier (less crisp) thanS′, in sym-
bols: S �c S′, if and only if the following conditions are satisfied for allγ ∈ I.

for all z′ ∈ S′(γ), there existsz ∈ S(γ) such thatz �c z′; (52)

for all z ∈ S(γ), there existsz′ ∈ S′(γ) such thatz �c z′. (53)

Definition 72 Let Ω : K −→ I be given. We say thatΩ propagates fuzzinessif and
only if

Ω(S)�c Ω(S′)

wheneverS, S′ ∈ K satisfyS �c S′.

Theorem 58 For all Ω : K −→ I, FΩ propagates fuzziness in quantifiers if and only
if Ω propagates fuzziness.
(Proof: A.27, p.173+)

The following condition permits a simplified check if a givenΩ propagates fuzziness.

Theorem 59 SupposeΩ : K −→ I satisfies(Ω-1)–(Ω-5). ThenΩ propagates fuzziness
if and only if

Ω(S) = Ω(S‡ ∩ [ 1
2 , 1]) ,

for all S ∈ K with S(0) ⊆ [ 1
2 , 1].

(Proof: A.28, p.178+)

Definition 73 LetS, S′ ∈ K be given. We say thatS is less specific thanS′, in symbols
S b S′, if and only if

S(γ) ⊇ S′(γ)

for all γ ∈ I.

Definition 74 LetΩ : K −→ I be given. We say thatΩ propagates unspecificityif and
only if

Ω(S)�c Ω(S′)

for every choice ofS, S′ ∈ K with S b S′.
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Theorem 60 For all Ω : K −→ I,FΩ propagates fuzziness in arguments if and only if
Ω propagates unspecificity.
(Proof: A.29, p.182+)

The above criterion forΩ propagating unspecificity can be simplified as follows.

Theorem 61 SupposeΩ : K −→ I satisfies(Ω-1), (Ω-2), (Ω-4) and (Ω-5). Then the
following conditions are equivalent:

a. Ω propagates unspecificity;

b. for all s ∈ K with S(0) ⊆ [ 1
2 , 1], it holds thatΩ(S) = Ω(S′), whereS′ ∈ K is

defined by

S′(γ) =
{

[z∗, 1] : z∗ ∈ S(γ)
(z∗, 1] : z∗ /∈ S(γ) (54)

for all γ ∈ I, and wherez∗ = z∗(γ) abbreviates

z∗ = inf S(γ) . (55)

(Proof: A.30, p.185+)

Definition 75 For all s, s′ ∈ L, we say thats is fuzzier (less crisp) thans′, in symbols
s�c s′, if and only if

for all z ∈ I, there existsz′ ∈ I with z �c z′ ands′(z′) ≤ s(z); (56)

for all z′ ∈ I, there existsz ∈ I with z �c z′ ands(z) ≤ s′(z′). (57)

Definition 76 A mappingω : L −→ I is said topropagate fuzzinessif and only if
ω(s)�c ω(s′) for all choices ofs, s′ ∈ L with s�c s′.

Theorem 62 Supposeω : L −→ I is ‡-invariant, i.e.ω(s‡) = ω(s) for all s ∈ L.
ThenFω propagates fuzziness in quantifiers if and only ifω propagates fuzziness.
(Proof: A.31, p.188+)

If ω is well-behaved, then we can further simplify the condition that must be tested for
establishing or rejecting thatω propagate fuzziness.

Theorem 63 Suppose thatω : L −→ I satisfies(ω-1)–(ω-4). ω propagates fuzziness
if and only if for alls ∈ L with s−1(0)∩ [ 1

2 , 1] 6= ∅, it holds thatω(s) = ω(s′), where

s′(z) =

{
s‡(z) : z ≥ 1

2

1 : z < 1
2

(58)

for all z ∈ I.
(Proof: A.32, p.196+)
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Definition 77 A mappingω : L −→ I is said topropagate unspecificityif and only if
ω(s)�c ω(s′) whenevers, s′ ∈ L satisfys ≤ s′.

Theorem 64 Letω : L −→ I be a given mapping. ThenFω propagates fuzziness in
arguments if and only ifω propagates unspecificity.
(Proof: A.33, p.201+)

Again, it is possible to simplify the condition imposed onω.

Theorem 65 Supposeω : L −→ I satisfies(ω-1), (ω-2) and(ω-4). Then the following
conditions are equivalent.

a. ω propagates unspecificity;

b. for all s ∈ L with s−1 ∩ [ 1
2 , 1] 6= ∅, it holds thatω(s) = ω(s′), wheres′ ∈ L is

defined by

s′(z) = inf{s(z′) : z′ ≤ z} (59)

for all z ∈ I.

(Proof: A.34, p.203+)

Now let us apply these criteria to the examples ofFω-DFSes.

Theorem 66 FM propagates fuzziness in quantifiers.
(Proof: A.35, p.205+)

Theorem 67 FM propagates fuzziness in arguments.
(Proof: A.36, p.209+)

Let us recall from Th-51 thatFM is not anFξ-DFS, in particular not anMB-DFS.
Hence the class ofMB-DFSes, which propagate fuzziness in both arguments and quan-
tifiers, does not include all standard DFSes with this property.FM is a counterexample
which demonstrates that the class of standard DFSes which propagate fuzziness both
in quantifiers and arguments is genuinely broader than the class ofMB-DFSes.

Theorem 68 FP propagates fuzziness in quantifiers.
(Proof: A.37, p.211+)

Theorem 69 FP does not propagate fuzziness in arguments.
(Proof: A.38, p.212+)

Theorem 70 FZ propagates fuzziness in quantifiers.
(Proof: A.39, p.213+)
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Theorem 71 FZ does not propagate fuzziness in arguments.
(Proof: A.40, p.214+)

As concernsFR, we have the following results.

Theorem 72 FR does not propagate fuzziness in quantifiers.
(Proof: A.41, p.214+)

Theorem 73 FR propagates fuzziness in arguments.
(Proof: A.42, p.215+)

Hence there areFω-DFSes beyondFξ-DFSes that propagate fuzziness in quantifiers,
but not in arguments. In particular, the class of standard DFSes that propagate fuzziness
in quantifiers but not in arguments is genuinely broader than the class ofFξ-DFSes
with this property. We shall check later that the class ofFω-DFSes with this property
is still specificity consistent and investigate its least upper specificity bound.

Definition 78 A collectionΩΩ of mappingsΩ ∈ ΩΩ, Ω : K −→ I is calledspecificity
consistentif and only if for all S ∈ K, either{Ω(S) : Ω ∈ K} ⊆ [ 1

2 , 1] or {Ω(S) :
Ω ∈ K} ⊆ [0, 1

2 ].

Theorem 74 SupposeΩΩ is a collection of mappingsΩ ∈ ΩΩ, Ω : K −→ I and let
F = {FΩ : Ω ∈ ΩΩ} be the corresponding collection of QFMs. ThenF is specificity
consistent if and only ifΩΩ is specificity consistent.
(Proof: A.43, p.216+)

Theorem 75 SupposeΩΩ is a collection of mappingsΩ ∈ ΩΩ, Ω : K −→ I which
satisfy(Ω-5), and letF = {FΩ : Ω ∈ ΩΩ} be the corresponding collection of DFSes.
Further suppose that everyΩ ∈ ΩΩ has the additional property thatΩ(S) = 1

2 for all
S ∈ K withS(0)∩ [ 1

2 , 1] 6= ∅ andS(0)∩ [0, 1
2 ] 6= ∅. ThenF is specificity consistent.

(Proof: A.44, p.217+)

Definition 79 We say thatΩ : K −→ I is fuzzier (less crisp) thanΩ′ : K −→ I, in
symbols:Ω�c Ω′, if and only ifΩ(S)�c Ω′(S) for all S ∈ K.

Theorem 76 Let Ω,Ω′ : K −→ I be given mappings and letFΩ, FΩ′ be the corre-
sponding QFMs defined by Def. 55. ThenFΩ �c FΩ′ if and only ifΩ�c Ω′.
(Proof: A.45, p.218+)

This criterion for comparing specificity can be further simplified in the frequent case
that some basic assumptions can be made onΩ,Ω′.

Theorem 77 Let Ω,Ω′ : K −→ I be given mappings which satisfy(Ω-2) and (Ω-5).
Further suppose thatΩ(S) = 1

2 = Ω′(S) wheneverS ∈ K hasS(0) ∩ [ 1
2 , 1] 6= ∅ and

S(0) ∩ [0, 1
2 ] 6= ∅. ThenΩ �c Ω′ if and only if Ω(S) ≤ Ω′(S) for all S ∈ K with

S(0) ⊆ [ 1
2 , 1].

(Proof: A.46, p.218+)
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Similar criteria can be established in the case of mappingsω : L −→ I.

Definition 80 A collectionωω of mappingsω ∈ ωω, ω : L −→ I is called specificity
consistent if and only if for alls ∈ L, either{ω(s) : ω ∈ L} ⊆ [ 1

2 , 1] or {ω(s) : ω ∈
L} ⊆ [0, 1

2 ].

Theorem 78 Supposeωω is a collection of mappingsω ∈ ωω, ω : L −→ I, and let
F = {Fω : ω ∈ ωω} be the corresponding collection of QFMs. ThenF is specificity
consistent if and only ifωω is specificity consistent.
(Proof: A.47, p.219+)

Theorem 79 Supposeωω is a collection of mappingsω ∈ ωω, ω : L −→ I which satisfy
(ω-1)–(ω-4), and letF = {Fω : ω ∈ ωω} be the corresponding collection of DFSes.
Further suppose that everyω ∈ ωω has the additional property thatω(s) = 1

2 for all
s ∈ L with s−1(0) ∩ [ 1

2 , 1] 6= ∅ and s−1(0) ∩ [0, 1
2 ] 6= ∅. ThenF is specificity

consistent.
(Proof: A.48, p.220+)

The following theorems show that the above property is possessed both byFω-DFSes
that propagate fuzziness in quantifiers and by those that propagate fuzziness in argu-
ments:

Theorem 80 Let ω : L −→ I be a given mapping which satisfies(ω-1)–(ω-4) and
suppose that the corresponding DFSFω propagates fuzziness in quantifiers. Then
ω(s) = 1

2 for all s ∈ L with s−1(0) ∩ [ 1
2 , 1] 6= ∅ ands−1(0) ∩ [0, 1

2 ] 6= ∅.
(Proof: A.49, p.221+)

In particular,

Theorem 81 The collection ofFω-DFSes that propagate fuzziness in quantifiers is
specificity consistent.
(Proof: A.50, p.222+)

Theorem 82 Let ω : L −→ I be a given mapping which satisfies(ω-1)–(ω-4) and
suppose that the corresponding DFSFω propagates fuzziness in arguments. Then
ω(s) = 1

2 for all s ∈ L with s−1(0) ∩ [ 1
2 , 1] 6= ∅ ands−1(0) ∩ [0, 1

2 ] 6= ∅.
(Proof: A.51, p.222+)

Therefore

Theorem 83 The collection ofFω-DFSes that propagate fuzziness in arguments is
specificity consistent.
(Proof: A.52, p.222+)

Definition 81 We say thatω : L −→ I is fuzzier (less crisp) thanω′ : L −→ I, in
symbols:ω �c ω′, if and only ifω(s)�c ω′(s) for all s ∈ L.
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Theorem 84 Let ω, ω′ : L −→ I be given mappings and letFω, Fω′ be the corre-
sponding QFMs defined by Def. 61. ThenFω �c Fω′ if and only ifω �c ω′.
(Proof: A.53, p.223+)

Again, it is possible to simplify the condition in typical situations.

Theorem 85 Let ω, ω′ : L −→ I be given mappings which satisfy(ω-2) and (ω-4).
Further suppose thatω(s) = 1

2 = ω′(s) whenevers ∈ L satisfiess−1(0)∩ [ 1
2 , 1] 6= ∅

ands−1(0) ∩ [0, 1
2 ] 6= ∅. Thenω �c ω′ if and only ifω(s) ≤ ω′(s) for all s ∈ L with

s‡
−1(0) ⊆ [ 1

2 , 1].
(Proof: A.54, p.223+)

The precondition of the theorem is e.g. satisfied by the models that propagate fuzzi-
ness. Based on this simplified criterion, it is now easy to prove the following results
concerning specificity bounds.

Theorem 86 FZ is the most specificFω-DFS that propagates fuzziness in quantifiers.
(Proof: A.55, p.224+)

Theorem 87 FR is the most specificFω-DFS that propagates fuzziness in arguments.
(Proof: A.56, p.226+)

Theorem 88 FM is the most specificFω-DFS that propagates fuzziness both in quan-
tifiers and arguments.
(Proof: A.57, p.228+)

As concerns the issue of identifying the least specific model, we obtain the following
result which confirms the special role ofMU .

Theorem 89 MU is the least specificFω-DFS.
(Proof: A.58, p.229+)

Finally let us consider continuity properties ofFΩ-DFSes. This investigation will help
us to relate the new class of DFSes to its subclass ofFξ-DFSes. To this end, we
introduce the following operation�.

Definition 82 For all S ∈ K, S� ∈ K is defined by

S�(γ) = [inf S(γ), supS(γ)]

for all γ ∈ I.

Note. It is apparent from Def. 52 that indeedS� ∈ K.

Theorem 90 For all Ω : K −→ I, FΩ is anFξ-QFM if and only ifΩ is �-invariant,
i.e.Ω(S) = Ω(S�) for all S ∈ K.
(Proof: A.59, p.240+)
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Utilizing this relationship, the following theorem is straightforward.

Theorem 91 LetΩ : K −→ I be an‡-invariant mapping. IfFΩ is Q-continuous, then
it is anFξ-QFM, i.e. there existsξ : T −→ I withFΩ = Fξ. In particular, the theorem
is applicable to allFΩ-DFSes.
(Proof: A.60, p.242+)

Hence allFΩ-DFSes that are interesting from a practical perspective are already con-
tained in the class ofFξ-QFMs.

Summarizing, this chapter was devoted to the definition and analysis of the full class
of QFMs definable in terms of three-valued cuts. In order to carry out this gener-
alisation, we first observed that the mappings>Q,X1,...,Xn and⊥Q,X1,...,Xn used to
defineFξ-QFMs can be decomposed into subsequent application of the three-valued
cut mechanism (which generates an ambiguity set of alternative interpretations for each
cut level) followed by an aggregation step based on the infimum or supremum. In order
to abstract from the concepts used to defineFξ, and to capture the full class of standard
models that depend on three-valued cuts, it was straightforward to drop thesup/inf-
based aggregation step and to start an investigation of those models that can be defined
in terms of the ‘raw’ information obtained at the cut levels, i.e. in terms of the result
setsSQ,X1,...,Xn(γ) which represent the ambiguity range of all possible interpretations
of Q given the three-valued cuts ofX1, . . . , Xn at the cut levelsγ. In order to develop
the theory of these models, I first identified the precise range of possible mappings
S = SQ,X1,...,Xn that can result from a choice of quantifierQ and fuzzy arguments
X1, . . . , Xn. The resulting setK provides the proper domain to define aggregation op-
eratorsΩ : K −→ I, from which QFMs can then be constructed in the apparent way,
i.e.FΩ(Q)(X1, . . . , Xn) = Ω(SQ,X1,...,Xn).
After introducingFΩ-QFMs, I developed all formal machinery required to express
the precise conditions onΩ that makeFΩ a DFS. In particular, I have characterised
the class ofFΩ-DFSes in terms of a set of necessary and sufficient conditions, and I
have shown that these conditions are independent. This analysis also reveals that all
FΩ-DFSes are in fact standard DFSes, and hence fulfill the expectations on standard
models of fuzzy quantification. In addition, the known class ofFξ-QFMs has been
related to its apparent superclass ofFΩ-QFMs.
I then focused on an apparent subclass ofFΩ-QFMs, the class ofFω-QFMs. These are
obtained by defining coefficientssQ,X1,...,Xn(z) = inf{γ : z ∈ SQ,X1,...,Xn(γ) which
extract an important characteristic of the result setsSQ,X1,...,Xn(γ). Introducing this
construction offers the advantage that we no longer need to work withsetsof results,
like it was the case with theSQ,X1,...,Xn(γ), which are subsets of the unit interval. By
contrast, we can now focus on scalarssQ,X1,...,Xn in the unit range, and a subsequent
aggregation by applying the chosenω : L −→ I. Among others, this greatly simplifies
the definition of models, and hence all examples ofFΩ-DFSes were presented in this
succint format.
Noticing that the new coefficientssQ,X1,...,Xn are functions ofSQ,X1,...,Xn which sup-
press some of the original information, the question then arises if some of theFΩ-
DFSes are lost under the new construction. To resolve this issue whether theFω-DFSes
are a subclass proper, and to gain some insight into their structure, I have introduced
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the concepts required to characterise adequate choices ofω. Building on these defini-
tions, a set of independent conditions that precisely describe theFω-DFSes in terms of
necessary and sufficient criteria onω has been developed. In addition, theFω-QFMs
have been related to their superclass ofFΩ-QFMs. This analysis revealed that the
move fromFΩ-QFMs toFω-QFMs does not result in any loss of intended models, i.e.
the classes ofFΩ-DFSes andFω-DFSes coincide.
Turning to examples ofFΩ-DFSes (or synonymously,Fω-DFSes), the simplified for-
mat was utilized to define the fourFω-DFSesFM , FP , FZ andFR, all of which were
shown to be ‘genuine’ members which go beyond the class ofFξ-QFMs. In order to
gain more knowledge of these models, and to locate them precisely within the class of
Fω-DFSes, the full set of conditions onΩ andω was then developed, that are required
to investigate the characteristic properties of DFSes.

To this end, I first extended the specificity order to the case ofS �c S′ ands �c s′.
This allowed me to reduceFΩ’s propagating fuzziness in quantifiers to the requirement
thatΩ propagate fuzziness, i.e.S �c S′ entailsΩ(S) �c Ω(S′). Based on a different
relationS b S′ defined onK, it was then possible to define a condition of propagat-
ing unspecificity onΩ, and to prove thatFΩ propagates fuzziness in arguments if and
only if Ω propagates unspecificity. In addition, I have shown that both the condition
of propagating fuzziness and the condition of propagating unspecificity can be further
simplified if the consideredΩ is well-behaved (in particular ifFΩ is a DFS). In this
common case, a very elementary test onΩ is sufficient for detecting or rejecting these
properties. All of these results have also been transferred toFω-QFMs, and hence
turned into corresponding conditions onω. After developing the formal apparatus re-
quired to investigate propagation of fuzziness inFΩ- andFω-QFMs, the issue of most
specific and least specific models was then discussed to some depth. Acknowledging
its relevance to the existence of most specific models, I first extended the notion of
specificity consistence to collectionsΩΩ of of aggregation mappingsΩ and proved that
the resulting criterion onΩΩ precisely captures specificity consistence of the class of
QFMsF = {FΩ : Ω ∈ ΩΩ}. Hence the question whetherF has a least upper speci-
ficity bound can be decided by looking at the aggregation mappings inΩΩ. I have also
shown how the criterion can be simplified in common situations. Following this, the
question was addressed how a specificity comparisonFΩ �c FΩ′ can be reformulated
into a conditionΩ �c Ω′ imposed on the aggregation mappings. Again, the condition
for Ω �c Ω′ can be reduced to a very simple check in many typical situations. All of
the above concepts and theorems were then adapted toFω-QFMs, in order to provide
similar support for specificity comparison in those cases where the models of interest
are defined in terms of an aggregation mappingω.

Based on these preparations, it was easy to prove some results concerning prop-
agation of fuzziness that elucidate the structure of the class ofFω-DFSes, and that
relate the examples ofFω-DFSes to the class as a whole. First of all, the full class
of Fω-DFSes is not specificity consistent (because its subclass ofFξ-DFSes is known
to violate specificity consistence), and hence a ‘most specificFω-DFS’ ceises to exist.
However, the class of models that propagate fuzziness in quantifiers was shown to be
specificity consistent, and the most specificFω-DFS with this property was also identi-
fied, and turned out to beFZ . Recalling thatFZ is not anFξ-QFM, this demonstrates
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that the class ofFω-DFSes which propagate fuzziness in quantifiers is an extension
proper of the class ofFξ-DFSes with the same behaviour. Turning to propagation of
fuzziness in quantifiers, it was possible to prove a similar result. The corresponding
class ofFω-DFSes was shown to be specificity consistent, andFR was established to
be the most specificFω-DFS with this property. Again, we conclude from the fact
thatFR is a ‘genuine’Fω-DFS that theFω-DFSes contain models which propagate
fuzziness in arguments beyond those already known from the study ofFξ-DFSes. We
then investigated those standard models that propagate fuzziness both in quantifiers
and arguments. The modelFM was shown to be the most specificFω-DFS with these
properties. The class ofFξ-DFSes that fulfill both conditions is known to coincide
with the class ofMB-DFSes. BecauseFM is not anFξ-DFS, this proves that there
are standard models beyondMB-DFSes which propagate fuzziness both in quantifiers
and arguments.
The problem of identifying the greatest lower specificity bound has also been ad-
dressed. In fact, the least specificFω-DFS was proven to coincide with one of the
MB-DFSes, namelyMU , which was already known to be the least specificMB- and
Fξ-DFS.

Finally, I have addressed the continuity issue. It is indispensible for applications that
the chosen QFM be robust against slight variations in the chosen quantifier and in its
arguments, which might e.g. result from noise. In addition, both continuity conditions
are desirable in order to account for imperfect knowledge of the precise interpreta-
tion of the involved NL quantifier and NL concepts in terms of numeric membership
grades. Based on an auxiliary fill constructionS�, it was then shown that everyFΩ-
QFM which is continuous in quantifiers is in fact anFξ-QFM. The class ofFω-DFSes
which are Q-continuous therefore collapses into the class ofQ-continuousFξ-DFSes,
and those Q-continuousFω-DFSes which propagate fuzziness in quantifiers and argu-
ments collapse into the class ofMB-DFSes. This proves that allpractical models are
already contained in the class ofFξ-DFSes, and those practical models which prop-
agate fuzziness both in quantifiers and arguments are contained in the class ofMB-
DFSes. This justifies the development and thorough analysis of these simpler classes
in [9] and [11], every model of practical interest will belong to one of these classes. It
can hence be expressed through constructions simpler than those used to defineFΩ-
andFω-QFMs, which in turn permit a simpler check of the relevant formal properties,
like being a DFS, propagation of fuzziness, specificity comparisons, and continuity,
and which suggest simple algorithms for implementing quantifiers in the model.
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5 The class of models based on the extension principle

In this chapter, an attempt is made to define DFSes from independent considerations,
and to establish a new class of fuzzification mechanisms not constructed from three-
valued cuts. Starting from a straightforward definition of argument similarity, we first
introduce the full class of QFMs defined in terms of the similarity measure, the class
of Fψ-QFMs. It encloses the interesting subclass ofFϕ-QFMs, i.e. the class of models
defined through the standard extension principle (which serves to aggregate similar-
ity grades). The necessary and sufficient conditions are then developed, which the
aggregation mappings must satisfy in order to make the corresponding fuzzification
mechanism a DFS. Based on this analysis, it becomes possible to prove the main result
of this chapter, which states that the classes ofFω-DFSes andFψ-DFSes/Fϕ-DFSes
coincide. Because the same class of models is obtained from independent considera-
tions, this provides evidence that it indeed represents a natural class of standard models
of fuzzy quantification.
To begin with, the similarity gradeΞY1,...,Yn(X1, . . . , Xn) of the fuzzy arguments
(X1, . . . , Xn) to a choice of crisp arguments(Y1, . . . , Yn) can be defined as follows.

Definition 83 Let E 6= ∅ be some base set andY ∈ P(E). The mappingΞY :
P̃(E) −→ I is defined by

ΞY (X) = min(inf{µX(e) : e ∈ Y }, inf{1− µX(e) : e /∈ Y })

for all X ∈ P̃(E). Forn-tuples of argumentsY1, . . . , Yn ∈ P(E), we defineΞ(n)
Y1,...,Yn

:

P̃(E)
n
−→ I by

Ξ(n)
Y1,...,Yn

(X1, . . . , Xn) =
n
∧
i=1

ΞYi(Xi)

for all X1, . . . , Xn ∈ P̃(E). Whenevern is clear from context, we shall omit the

superscript and writeΞY1,...,Yn(X1, . . . , Xn) instead ofΞ(n)
Y1,...,Yn

(X1, . . . , Xn).

At times, it will be convenient to use the following abbreviation. We recall the fuzzy
equivalence connective↔ : I× I −→ I defined by

x↔ y = (x ∧ y) ∨ (¬x ∧ ¬y)

for all x, y ∈ I. In the case thaty ∈ {0, 1}, this apparently becomes

x↔ y =
{
x : y = 1
¬x : y = 0

Now consider a base setE 6= ∅ and letX ∈ P̃(E), Y ∈ P(E). We make use of the
↔-connective to defineδX,Y : E −→ I by

δX,Y (e) = (µX(e)↔ χY (e)) =
{
µX(e) : e ∈ Y
1− µX(e) : e /∈ Y (60)
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for all e ∈ E. In terms ofδY,E , we can now conveniently reformulateΞY (X). In
particular, we can expressΞY1,...,Yn(X1, . . . , Xn), whereX1, . . . , Xn ∈ P̃(E) and
Y1, . . . , Yn ∈ P(E), by

ΞY1,...,Yn(X1, . . . , Xn) = inf{δXi,Yi(e) : e ∈ E, i = 1, . . . , n} . (61)

This succint notation will at times be used in the proofs. Next we define the set
of all compatibility grades which corresponds to a given choice of fuzzy arguments
X1, . . . , Xn.

Definition 84 LetE 6= ∅ be a given base set andX1, . . . , Xn ∈ P̃(E), n ≥ 0. Then

D
(n)
X1,...,Xn

∈ P(I) is defined by

D
(n)
X1,...,Xn

= {ΞY1,...,Yn(X1, . . . , Xn) : Y1, . . . , Yn ∈ P(E)} .

Whenever this causes no ambiguity, the superscript(n) will be omitted, thus abbrevi-

atingDX1,...,Xn = D
(n)
X1,...,Xn

.

Note. The superscript is only needed to discernD
(0)
∅

(which corresponds to the empty

tuple) fromD(1)
∅

(which corresponds to the empty set).

Definition 85 ByD ⊆ P(P(I)) we denote the set of allD ∈ P(I) with the following
properties:

1. D ∩ [ 1
2 , 1] = {r+} for somer+ = r+(D) ∈ [ 1

2 , 1];

2. for allD′ ⊆ D withD′ 6= ∅, inf D′ ∈ D;

3. if r+ > 1
2 , thensupD \ {r+} = 1− r+.

Theorem 92 SupposeE 6= ∅ is some base set andX1, . . . , Xn ∈ P̃(E) are fuzzy
subsets ofE. ThenDX1,...,Xn ∈ D.
(Proof: B.1, p.247+)

HenceD is large enough to contain allDX1,...,Xn . As we shall see later in Th-95,D
is indeed the smallest possible subset ofP(P(I)) which contains allDX1,...,Xn . (The
theorem has been delayed because it then becomes a corollary).
In order to define the new class of fuzzification mechanisms, we now relate the simi-
larity information expressed byΞY1,...,Yn(X1, . . . , Xn) to the behaviour of a quantifier
on its arguments.

Definition 86 LetQ : P(E)n −→ I be a given semi-fuzzy quantifier andX1, . . . , Xn ∈
P̃(E). ThenA(n)

Q,X1,...,Xn
: I −→ P(I) is defined by

A
(n)
Q,X1,...,Xn

(z) = {ΞY1,...,Yn(X1, . . . , Xn) : (Y1, . . . , Yn) ∈ Q−1(z)}

for all z ∈ I. Whenn is clear from context, I usually omit the superscript(n), thus

abbreviatingAQ,X1,...,Xn = A
(n)
Q,X1,...,Xn

.

56



Note. Again, the superscript is only needed to eliminate the ambiguity betweenA
(0)
Q,∅,

whereQ is a nullary quantifier and∅ the empty tuple, andA(1)
Q,∅, whereQ is a one-

place quantifier and∅ is the empty argument set.
Let us now describe the range of all possibleAQ,X1,...,Xn .

Definition 87 ByA we denote the set of all mappingsA : I −→ P(I) with the follow-
ing properties:

a. ∪{A(z) : z ∈ I} ∈ D;

b. for all z, z′ ∈ I, supA(z) > 1
2 andsupA(z′) > 1

2 entails thatz = z′.

In the following,D(A) denotes the set

D(A) = ∪{A(z) : z ∈ I} . (62)

In addition,r+ abbreviatesr+(A) = r+(D(A)). It is then apparent from Def. 87.a
and Def. 85 that there existsz+ = z+(A) ∈ I with

r+ ∈ A(z+) . (63)

In the following,z+ is assumed to be an arbitrary but fixed choice ofz+ ∈ I which
satisfies (63) for a consideredA ∈ A.

Theorem 93 SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier andX1, . . . , Xn ∈
P̃(E). ThenAQ,X1,...,Xn ∈ A.
(Proof: B.2, p.255+)

HenceA contains allAQ,X1,...,Xn .

Theorem 94 LetA ∈ A be given andD(A) = ∪{A(z) : z ∈ I}.

a. If D(A) = {1}, thenA = A
(0)
Q,∅, whereQ : P({∗})0 −→ I is the constant

quantifierQ(∅) = z+.

b. IfD(A) 6= {1}, then we can choose some mappingζ : D(A) −→ I with

r ∈ A(ζ(r)) (64)

for all r ∈ D(A). If r+ = r+(A) equals1
2 , thenr+ ∈ D(A) ∩ [0, 1 − r+]. If

r+ > 1
2 , then we recall from Def. 87 thatsupD(A) \ {r+} = 1− r+. Because

D(A) 6= {1} by assumption, we hence know that there exists

r− ∈ D(A) ∩ [0, 1− r+] (65)

and we shall assume an arbitrary choice ofr− with this property. Based onr−,
we defineX ∈ P̃(I× I) by

µX(z, r) =


r : r ∈ A(z) \ {r+}
r− : r /∈ A(z) ∨ r = r+ > 1

2
1
2 : r = r+ = 1

2

(66)
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for all z, r ∈ I. For all Y ∈ P(I× I), we abbreviate

r′ = r′(Y ) = ΞY (X) (67)

z′ = z′(Y ) = inf{z ∈ I : (z, r′) ∈ Y andr′ = r′(Y ) ∈ A(z)} . (68)

Based onζ, we defineQ : P(I× I) −→ I by

Q(Y ) =
{
z′ : r′ ∈ A(z′)
ζ(r′) : r′ /∈ A(z′) (69)

for all Y ∈ P(I× I).
ThenA = AQ,X .

(Proof: B.3, p.255+)

Let us also state the following corollary:

Theorem 95 For all D ∈ D,

a. IfD = {1}, thenD = D
(0)
∅

, where∅ is the empty tuple∅ ∈ P({∗})0.

b. IfD 6= {1}, then there existsX ∈ P̃(I× I) such thatD = DX .

(Proof: B.4, p.261+)

HenceD is indeed the smallest subset ofP(P(I)) which contains allDX1,...,Xn .
In order to carry out the desired aggregation, which will turn the compatibility grades
into a fuzzification mechanism, we now deploy mappingsψ : A −→ I. These can be
used to define a QFM in the apparent way, by composing with theAQ,X1,...,Xn ’s:

Definition 88 Letψ : A −→ I be given. The QFMFψ is defined by

Fψ(Q)(X1, . . . , Xn) = ψ(AQ,X1,...,Xn)

for all semi-fuzzy quantifiersQ : P(E)n −→ I and allX1, . . . , Xn ∈ P̃(E).

This definition spans the full class of QFMs definable in terms of argument similarity,
and we will now investigate its well-behaved models. To this end, we need some more
notation, for expressing the properties required from legal choices ofψ. As usual,
the goal is that of characterising the new class of DFSes in terms of the necessary
and sufficient conditions on the aggregation mapping. In order to describe the desired
monotonicity properties, I first define a suitable pre-order onA.

Definition 89 For all A,A′ ∈ A, we say thatA v A′ if and only if the following
conditions are satisfied byA,A′.

a. for all z ∈ I and all r ∈ A(z), there existsz′ ≥ z with r ∈ A′(z′);
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b. for all z′ ∈ I and all r ∈ A′(z′), there existsz ≤ z′ with r ∈ A(z).

Next I introduce a ‘cut/fill operator’� on A, which will be essential to ensure that
ψ satisfy (Z-4). In order to define this operator, I first describe its behaviour on the
A(z)’s. � : P(I) −→ P(I) is defined by

�B = {r ∈ [0, 1
2 ] : there existsr′ ≥ r with r′ ∈ B} (70)

for allB ∈ P(I). If B = A(z) for someA ∈ A, z ∈ I, then it is apparent from Def. 87
and Def. 85 that

�A(z) =
{

[0, s) : s /∈ A(z)
[0,min(s, 1

2 )] : s ∈ A(z) (71)

wheres = supA(z). Based on this definition of�A(z), we define�A element-wise
for all z ∈ I.

Definition 90 � : A −→ A assigns to eachA ∈ A the mapping�A ∈ A defined by

(�A)(z) = �(A(z))

for all z ∈ I.

Note. It is apparent from (71) and Def. 87 that indeed�A ∈ A. We shall use this
operator in some of the theorems to follow. An invariance condition with respect to
�A will not be imposed onψ, though. Instead, we require thatψ be invariant with
respect to a stronger cut/fill operator,�, which suppresses even more information:

Definition 91 For all A ∈ A,�A ∈ A is defined by

�A(z) = [0, �̂A(z)] , (72)

where

�̂A(z) = min(supA(z), 1
2 ) (73)

for all z ∈ I.

Notes

• It is immediate from the definition of�A that�A ∈ A, see Def. 87.

• For every semi-fuzzy quantifierQ : P(E)n −→ I and allX1, . . . , Xn ∈ P̃(E),
we abbreviate

�Q,X1,...,Xn = �AQ,X1,...,Xn (74)

�̂Q,X1,...,Xn = �̂AQ,X1,...,Xn . (75)
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• In the above definition,̂� has been used to express�. In fact, both are definable
in terms of each others, because conversely

�̂A(z) = sup�A(z) , (76)

for all A ∈ A andz ∈ I.

• It is immediate from Def. 90 that

�̂A(z) = sup�A(z) (77)

for all z ∈ I.

The cut/fill operator� is of special relevance to the characterisation ofFψ-DFSes be-
cause�-invariance ensures that (Z-6) be valid.
In order to define the conditions onψ succintly and to support the corresponding
proofs, it is useful to introduce some additional abbreviations. For allA ∈ A,

NV(A) = {z ∈ I : A(z) 6= ∅} (78)

VL(A) = {z ∈ I : A(z) \ {0} 6= ∅} = {z ∈ I : A(z) ∩ (0, 1] 6= ∅} . (79)

We have now introduced all notation required to express the conditions on admissible
choices ofψ.

Definition 92 Let ψ : A −→ I be given. The conditions(ψ-1)–(ψ-5) are defined as
follows. For allA,A′ ∈ A,

If D(A) = {1}, thenψ(A) = z+. (ψ-1)

If A(z) = A′(1− z) for all z ∈ I, thenψ(A) = 1− ψ(A′). (ψ-2)

If NV(A) ⊆ {0, 1} andr+ ∈ A(1),
thenψ(A) = 1− supA(0). (ψ-3)

If A v A′, thenψ(A) ≤ ψ(A′). (ψ-4)

ψ(�A) = ψ(A). (ψ-5)

The proof that these conditions are sufficient and necessary forFψ to be a (standard)
DFS has been split up into several theorems, in order to reveal the dependency structure
and some of the constructions that were useful in accomplishing this task.

Theorem 96 If ψ : A −→ I satisfies(ψ-1) and (ψ-5), thenFψ satisfies(Z-1).
(Proof: B.5, p.261+)

Next we consider the behaviour ofψ on two-valued quantifiers. To this end, it is
convenient to relateAQ,X1,...,Xn to the coefficientsQ,X1,...,Xn that was used to define
Fω-QFMs. As a by-product of these results, we will discover that allFω-QFMs are in
factFψ-QFMs. In particular, allFΩ andFω-DFSes constitute a subclass of our new
class ofFψ-DFSes.
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Theorem 97 Let Q : P(E)n −→ I be a semi-fuzzy quantifier andX1, . . . , Xn ∈
P̃(E). Then for allz ∈ I,

sQ,X1,...,Xn(z) = s(AQ,X1,...,Xn)(z) ,

wheres(A) ∈ L,A ∈ A is defined by

s(A)(z) = max(0, 1− 2 · supA(z)) (80)

for all z ∈ I.
(Proof: B.6, p.263+)

Theorem 98 EveryFω-QFM is anFψ-QFM, i.e. for all ω : L −→ I, there exists
ψ : A −→ I withFω = Fψ. ψ is defined by

ψ(A) = ω(s(A)) (81)

for all A ∈ A.
(Proof: B.7, p.269+)

Theorem 99 If ψ : A −→ I satisfies(ψ-2) and (ψ-3), thenFψ coincides with all
standard DFSes on two-valued quantifiers, i.e. for every standard DFSF and two-
valued quantifierQ : P(E)n −→ {0, 1}, it holds thatFψ(Q) = F(Q).
(Proof: B.8, p.269+)

Theorem 100 Supposeψ : A −→ I satisfies(ψ-2) and (ψ-3). ThenFψ satisfies
(Z-2).
(Proof: B.9, p.271+)

Theorem 101 If ψ : A −→ I satisfies(ψ-2) and (ψ-3), thenFψ satisfies(Z-3).
(Proof: B.10, p.271+)

Let us now utilize the operator� defined above. We first notice that�-invariance
implies� -invariance.

Theorem 102 Suppose thatψ : A −→ I satisfies(ψ-5). Thenψ is also� -invariant,
i.e. it holds that

ψ(�A) = ψ(A) , (ψ-5′)

for all A ∈ A. (Proof: B.11, p.273+)

Theorem 103 Supposeψ : A −→ I satisfies(ψ-2), (ψ-3) and (ψ-5′). ThenFψ satis-
fies(Z-4).
(Proof: B.12, p.273+)

As concerns the preservation of monotonicity properties of quantifiers in their argu-
ments, we firstly observe:

61



Theorem 104 If ψ : A −→ I satisfies(ψ-4), thenFψ is monotonic, i.e.Fψ(Q) ≤
Fψ(Q′) for all Q,Q′ : P(E)n −→ I withQ ≤ Q′.
(Proof: B.13, p.278+)

In the case that a few other conditions are valid forψ, monotonicity ofFψ can be
shown to entail the desired preservation of monotonicity in arguments (Z-5):

Theorem 105 If ψ : A −→ I satisfies(ψ-2), (ψ-3), (ψ-4) and(ψ-5′), thenFψ satisfies
(Z-5).
(Proof: B.14, p.278+)

Theorem 106 If ψ : A −→ I satisfies(ψ-2), (ψ-3) and(ψ-5), thenFψ satisfies(Z-6).
(Proof: B.15, p.280+)

These results can be summarized as follows.

Theorem 107 If ψ : A −→ I satisfies(ψ-1)–(ψ-5), thenFψ is a standard DFS.
(Proof: B.16, p.286+)

Next I prove that the conditions imposed onψ are necessary forFψ to be a DFS.

Theorem 108 If Fψ satisfies(Z-1). thenψ : A −→ I satisfies(ψ-1).
(Proof: B.17, p.286+)

Theorem 109 Letψ : A −→ I be a given mapping such thatFψ satisfies(Z-2). Then
Fψ induces the standard negation¬x = 1− x.
(Proof: B.18, p.287+)

Theorem 110 Letψ : A −→ I be given and suppose thatFψ satisfies(Z-1) and(Z-2).
If Fψ satisfies(Z-3), thenψ satisfies(ψ-2).
(Proof: B.19, p.289+)

Theorem 111 Let ψ : A −→ I be given and suppose thatFψ satisfies(Z-2). If
the induced disjunction is ans-norm, thenFψ induces the standard fuzzy disjunction
x ∨ y = max(x, y).
(Proof: B.20, p.290+)

Theorem 112 Let ψ : A −→ I be given and suppose thatFψ induces the standard
disjunction and the standard extension principle. Ifψ satisfies(Z-4) and (Z-6), then
ψ(�A) = ψ(A) for all A ∈ A. Henceψ satisfies(ψ-5′), i.e.ψ is� -invariant.
(Proof: B.21, p.293+)

This result can be extended to the case of invariance with respect to�:

Theorem 113 Let ψ : A −→ I be given and suppose thatFψ induces the standard
disjunction and the standard extension principle. IfFψ satisfies(Z-4) and (Z-6), then
ψ(�A) = ψ(A) for all A ∈ A. Hence(ψ-5) is valid, i.e.ψ is�-invariant.
(Proof: B.22, p.326+)
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Based on these interrelationships, we can now state a theorem concerned with the
necessity of condition (ψ-3).

Theorem 114 Suppose thatψ : A −→ I is �-invariant, i.e.ψ satisfies(ψ-5). If Fψ
satisfies(Z-2), thenψ satisfies(ψ-3).
(Proof: B.23, p.334+)

The next theorem unveils the core reason, why (ψ-4) is necessary forFψ to be a DFS.

Theorem 115 Suppose thatψ : A −→ I satisfies(ψ-5), i.e.ψ is�-invariant. IfFψ is
monotonic, i.e.Fψ(Q1) ≤ Fψ(Q2) for all semi-fuzzy quantifiersQ1, Q2 : P(E)n −→
I such thatQ1 ≤ Q2, thenψ satisfies(ψ-4).
(Proof: B.24, p.336+)

To sum up, it has been shown that the conditions (ψ-1)–(ψ-5) imposed onψ are neces-
sary forFψ to be a DFS, as stated in the next theorem (actually, a corollary):

Theorem 116 Letψ : A −→ I be a given mapping. IfFψ is a DFS, thenψ satisfies
(ψ-1)–(ψ-5).
(Proof: B.25, p.341+)

In particular, every choice ofψ which makesFψ a DFS satisfies (ψ-5). As I will now
show, this entails that the class ofFψ-QFMS, although considerably broader than the
class ofFω-QFMs, does not introduce any new DFSes compared to those that already
belong to the class ofFω-DFSes. To see this, we notice the following relationship
betweens(A) and�̂A.

Theorem 117 LetA ∈ A be given. Then

�̂A(z) = 1
2 −

1
2s(A)(z) (82)

and

s(A)(z) = 1− 2�̂A(z) , (83)

for all z ∈ I.
(Proof: B.26, p.342+)

Based on this relationship, it is then apparent that all�-invariantFψ-QFMs are in fact
Fω-QFMs.

Theorem 118 Suppose thatψ : A −→ I satisfies(ψ-5). ThenFψ is anFω-QFM, i.e.

Fψ = Fω

provided we define

ω(s) = ψ(As), (84)
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for all s ∈ L, where

As(z) = [0, 1
2 −

1
2s(z)] (85)

for all z ∈ I. In particular, allFψ-DFSes areFω-DFSes.
(Proof: B.27, p.343+)

We have already shown in Th-98 how to relate the known class ofFω-QFMs to the
new class ofFψ-QFMs. We shall now proceed and relate the conditions (ω-1)–(ω-4)
imposed onω to the conditions (ψ-1)–(ψ-5) imposed on the correspondingψ. This
will permit us to prove the independence of the new set of conditions in terms of the
known independence of theω-conditions. We first notice that

Theorem 119 TheFω-QFMs are exactly thoseFψ-QFMs that depend on a mapping
ψ : A −→ I which satisfies(ψ-5).
(Proof: B.28, p.344+)

In the following, we will hence assume that (ψ-5) be valid. Then

Theorem 120 Letω : L −→ I be given and suppose thatψ : A −→ I is defined by
(81). Then

a. ω satisfies(ω-1) if and only ifψ satisfies(ψ-1)

b. ω satisfies(ω-2) if and only ifψ satisfies(ψ-2);

c. ω satisfies(ω-3) if and only ifψ satisfies(ψ-3);

d. ω satisfies(ω-4) if and only ifψ satisfies(ψ-4);

e. ψ satisfies(ψ-5).

(Proof: B.29, p.345+)

Based on these results, it is now easy to prove a theorem concerning the independence
of the ‘ψ-conditions’.

Theorem 121 The conditions(ψ-1)–(ψ-5) are independent.
(Proof: B.30, p.358+)

In the following, I will discuss a slight reformulation of the aggregation mechanism
which shows that theFψ-DFSes coincide with the models defined in terms of the stan-
dard extension principle. The discovered class of models is hence theoretically appeal-
ing, because it evolves from the fundamental principle that underlies fuzzy set theory.
In order to define the class of those QFMs that depend on the extension principle, we
consider the following basic construction.
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Definition 93 For all A ∈ A, we denote byfA : I −→ I the mapping defined by

fA(z) = supA(z)

for all z ∈ I.

It is apparent from (73) that

�̂A(z) = min(fA(z), 1
2 ) , (86)

for all A ∈ A andz ∈ I.
It is then apparent from Def. 91 that�A can be defined in terms offA, i.e. there exists
g such that�A = g(fA) for all A ∈ A. In turn, we conclude that everyψ which
makesFψ a DFS, can be defined in terms offA because every suchψ is �-invariant
by Th-113, and henceψ(A) = ψ(�A) = ψ(g(fA)). In other words, we do not loose
any models of interest if we restrict attention to those QFMs that are a function offA.
I now introduce the constructions necessary to define the new class of QFMs.

Definition 94 Consider a semi-fuzzy quantifierQ : P(E)n −→ I and a choice of

fuzzy argument setsX1, . . . , Xn ∈ P̃(E). ByfQ,X1,...,Xn = f
(n)
Q,X1,...,Xn

: I −→ I we
denote the mapping defined by

fQ,X1,...,Xn = fAQ,X1,...,Xn
,

i.e.

fQ,X1,...,Xn(z) = supAQ,X1,...,Xn(z) .

for all z ∈ I.

Notes

• Again, the superscript(n) in f (n)
Q,X1,...,Xn

is usually omitted when no ambiguity
arises.

• fQ,X1,...,Xn(z) expresses a measure of the maximal similarity of(X1, . . . , Xn)
to those(Y1, . . . , Yn) ∈ P(E)n which are mapped toQ(Y1, . . . , Yn) = z.

Next let us describe the range of all possiblefA.

Definition 95 ByX ∈ P
(
II
)

we denote the set of all mappingsf : I −→ I with the
following properties:

a. Im f ∩ [ 1
2 , 1] = {r+} for somer+ = r+(f) ≥ 1

2 ;

b. If z+ = z+(f) ∈ I is chosen such thatf(z+) = r+, thenf(z) ≤ 1− r+ for all
z 6= z+.
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Theorem 122 For all A ∈ A, fA ∈ X. In particular, if Q : P(E)n is a semi-fuzzy
quantifier andX1, . . . , Xn ∈ P̃(E), thenfQ,X1,...,Xn ∈ X.
(Proof: B.31, p.369+)

Theorem 123 For all f ∈ X, there existsA ∈ A with f = fA. In particular, there
existQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) with f = fQ,X1,...,Xn .
(Proof: B.32, p.370+)

HenceX is indeed the range of all possiblefA andfQ,X1,...,Xn . We can therefore define
the class of QFMs computable fromfQ,X1,...,Xn , calledFϕ-QFMs, in the apparent
way.

Definition 96 Letϕ : X −→ I be given. The QFMFϕ is defined by

Fϕ(Q)(X1, . . . , Xn) = ϕ(fQ,X1,...,Xn) ,

for all semi-fuzzy quantifiersQ : P(E)n −→ I and all fuzzy argumentsX1, . . . , Xn ∈
P̃(E).

TheFϕ-QFMs comprise the class of those fuzzification mechanisms which can be de-
fined from the argument similarity grades by applying the extension principle. This is
becausefQ,X1,...,Xn is obtained from the standard extension principle in the following
way. We start from a semi-fuzzy quantifierQ : P(E)n −→ I. By applying the exten-

sion principle, we obtain̂̂Q : P̃(P(E)) −→ P̃(I). Hence for a givenV ∈ P̃(P(E)),
ˆ̂
Q(V ) ∈ P̃(I) is the fuzzy subset defined by

µ ˆ
Q̂(V )

(z) = sup{µV (Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Q−1(z)}

for all z ∈ I, see (3). Given a choice of fuzzy argumentsX1, . . . , Xn ∈ P̃(E), we
now expressV = VX1,...,Xn in terms of argument similarity, viz

µV (Y1, . . . , Yn) = ΞY1,...,Yn(X1, . . . , Xn) ,

for all Y1, . . . , Yn ∈ P(E). It is then apparent from Def. 94 that

fQ,X1,...,Xn(z) = µ ˆ
Q̂(V )

(z)

for all z ∈ I. BecauseV = VX1,...,Xn represents argument similarity,̂̂Q is obtained
from Q by applying the standard extension principle,fQ,X1,...,Xn is defined by com-

posing ˆ̂
Q andVX1,...,Xn , andFϕ(Q)(X1, . . . , Xn) = ϕ(fQ,X1,...,Xn) is a function of

fQ,X1,...,Xn , this proves our claim that everyFϕ is defined from the argument similar-
ity grades by applying the extension principle. Noticing that no additional assumptions
were made in definingfQ,X1,...,Xn , which merely composes similarity assessment and

the extended̂̂Q, this demonstrates that theFϕ-QFMs are precisely the QFMs definable
in terms of argument similarity and the standard extension principle. TheFϕ-QFMs
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hence constitute an interesting class of fuzzification mechanisms. In order to unveil
the structure of its well-behaved models, we first make two observations, which relate
Fϕ-QFMs and their apparent superclass ofFψ-QFMs.

Theorem 124 All Fϕ-QFMs areFψ-QFMs, i.e.Fϕ = Fψ, provided thatψ : A −→ I
is defined in dependence onϕ : X −→ I by

ψ(A) = ϕ(fA) , (87)

for all A ∈ A.
(Proof: B.33, p.371+)

Conversely,

Theorem 125 Suppose thatψ : A −→ I satisfies(ψ-5). ThenFψ = Fϕ, where
ϕ : X −→ I is defined by

ϕ(f) = ψ(Af ) , (88)

for all f ∈ X, and

Af (z) =

{
[0, f(z)] : f(z) ≤ 1

2

[0, 1− f(z)] ∪ {f(z)} : f(z) > 1
2

(89)

for all z ∈ I.
(Proof: B.34, p.371+)

We shall now impose a number of conditions on admissable choices ofϕ. Let us first
define a preorder onX, again needed to express a monotonicity condition.

Definition 97 For all f, f ′ ∈ X, we writef v f ′ if and only if the following conditions
are satisfied forf, f ′.

a. for all z ∈ I, sup{f ′(z′) : z′ ≥ z} ≥ f(z);

b. for all z′ ∈ I, sup{f(z) : z ≤ z′} ≥ f ′(z′).

We can now state the conditions that must be obeyed byϕ in order to makeFϕ a DFS.

Definition 98 Let ϕ : X −→ I be given. The conditions(ϕ-1)–(ϕ-5) are defined as
follows. For allf, f ′ ∈ X,

If f−1((0, 1]) = {z+} andf(z+) = 1, then thenϕ(f) = z+. (ϕ-1)

If f ′(z) = f(1− z) for all z ∈ I, thenϕ(f ′) = 1− ϕ(f). (ϕ-2)

If f−1((0, 1]) ⊆ {0, 1} andf(1) ≥ 1
2 ,

thenϕ(f) = 1− f(0). (ϕ-3)

If f v f ′, thenϕ(f) ≤ ϕ(f ′). (ϕ-4)

If f ′(z) = min(f(z), 1
2 ) for all z ∈ I, thenϕ(f ′) = ϕ(f). (ϕ-5)
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The proof that these conditions describe precisely the intended class of models, is
greatly facilitated if we notice the close relationship between the ‘ϕ-conditions’ and
corresponding ‘ψ-conditions’.

Theorem 126 Letϕ : X −→ I be given and suppose thatψ : A −→ I is defined by
(87). Then

a. ϕ satisfies(ϕ-1) if and only ifψ satisfies(ψ-1);

b. ϕ satisfies(ϕ-2) if and only ifψ satisfies(ψ-2);

c. ϕ satisfies(ϕ-3) if and only ifψ satisfies(ψ-3);

d. ϕ satisfies(ϕ-4) if and only ifψ satisfies(ψ-4);

e. ϕ satisfies(ϕ-5) if and only ifψ satisfies(ψ-5).

(Proof: B.35, p.372+)

The following theorems are then straightforward from the previous results onFψ-
QFMs:

Theorem 127 If ϕ : X −→ I satisfies(ϕ-1)–(ϕ-5), thenFϕ is a standard DFS.
(Proof: B.36, p.388+)

Theorem 128 Considerϕ : X −→ I. If Fϕ is a DFS, thenϕ satisfies(ϕ-1)–(ϕ-5).
(Proof: B.37, p.388+)

Theorem 129 The conditions(ϕ-1)–(ϕ-5) are independent.
(Proof: B.38, p.388+)

In [7, pp. 66-78], I have made a first attempt to define DFSes in terms of the exten-
sion principle. The construction of these models was motivated by the fuzzification
mechanism proposed by Gaines [6] as a ‘foundation of fuzzy reasoning’. This basic
mechanism was then fitted to the purpose of defining DFSes. Because the resulting
approach also relies on the extension principle, but utilizes a different notion of ar-
gument compatibility, the question arises how this ‘Gainesian approach’ relates to the
Fϕ-QFMs defined in terms of the extension principle. In order to answer this question,
I recall some concepts needed to define the new models.
First we define the compatibilityθ(x, y) of a gradual truth valuex ∈ I to a crisp truth
valuey ∈ 2 = {0, 1}.

Definition 99 θ : I× 2 −→ I is defined by

θ(x, y) =


2x : x ≤ 1

2 , y = 1
2− 2x : x ≥ 1

2 , y = 0
1 : else

for all x ∈ I, y ∈ {0, 1}.
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Hence a gradual truth valuex ≤ 1
2 is considered fully compatible with ‘false’ (y = 0),

but only gradually compatible with ‘true’ (y = 1), and a gradual truth valuex′ ≥ 1
2

is considered fully compatible with ‘true’ (y = 1), but only gradually compatible with
‘false’ (y = 0). θ can be applied to compare membership gradesµX(e) (X ∈ P̃(E) a
fuzzy subset ofE) with ‘crisp’ membership valuesχY (e) (i.e. “Is e ∈ Y ?”, Y ∈ P(E)
crisp), wheree ∈ E is some element of the universe. This suggests the following
definition of the compatibilityΘ(X, Y ) of a fuzzy subsetX ∈ P̃(E) to a crisp subset
Y ∈ P(E).

Definition 100 LetE be a nonempty set. The mappingΘ = ΘE : P̃(E)×P(E) −→ I
is defined by

Θ(X, Y ) = inf{θ(µX(e), χY (e)) : e ∈ E} ,

for all X ∈ P̃(E), Y ∈ P(E).

The compatibilityΘ(X, Y ) of a fuzzy setX ∈ P̃(E) to a crisp setY ∈ P(E) is
therefore the minimal degree of element-wise compatibility of the membership func-
tion of X and the characteristic function ofY . Based onΘ(X, Y ), I now define
Q̃z(X1, . . . , Xn), the compatibility ofQ : P(E)n −→ I to the gradual truth value
z ∈ I, given a choice(X1, . . . , Xn) ∈ P̃(E)

n
of fuzzy argument sets.

Definition 101 SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier andz ∈ I. The

fuzzy quantifier̃Qz : P̃(E)
n
−→ I is defined by

Q̃z(X1, . . . , Xn) = sup{
n

min
i=1

Θ(Xi, Yi) : Y = (Y1, . . . , Yn) ∈ Q−1(z)} ,

for all (X1, . . . , Xn) ∈ P̃(E)
n
.

In [7, p. 71], I have argued that the fuzzification mechanism proposed by Gaines can
naturally be expressed in terms of̃Qz. In addition, three examples were developed
which illustrate how DFSes can be defined from(Q̃z(X1, . . . , Xn))z∈I; these models
have subsequently been shown to beMB-DFSes, however. The next theorem estab-
lishes that all such models, which are defined as a function of(Q̃z(X1, . . . , Xn))z∈I,
are in factFϕ-DFSes:

Theorem 130 Consider a QFMF . Then the following statements are equivalent:

a. F is anFϕ-QFM which satisfies(ϕ-5);

b. F is a function of the coefficients̃Qz(X1, . . . , Xn).

(Proof: B.39, p.405+)
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Hence the QFMs defined in terms ofQ̃z are exactly theFϕ-QFMs which satisfy (ϕ-5).
We conclude from Th-128 that the ‘Gainesian’ DFSes defined in terms ofQ̃z coincide
with the models defined in terms of the extension principle, i.e. with theFϕ-DFSes.

To sum up, this chapter has introduced a different construction of QFMs and de-
veloped the corresponding theory, in order to span a new class of models which is
interesting for theoretical investigation because of its motivation from independent
considerations. This departure from the three-valued cut scheme was necessary be-
cause this scheme has now been fully exploited by the introduction ofFΩ-QFMs.
The modelsG, G∗ andG∗ defined in a previous publication on DFS theory [7] rep-
resent an earlier effort to accomplish the intended departure, which was inspired by
the fuzzification mechanism proposed by Gaines [6]. These models, though, were sub-
sequently shown to beMB-DFSes, and no systematic attempt was made to extract
the mechanism underlying these models and to develop a general class of models. In
principle, the ‘Gainesian’ fuzzification mechanism is a good point of departure, due
to its foundation in the extension principle of fuzzy set theory. However, the assumed
compatibility measure (of a gradual to a crisp truth value; of a fuzzy subset to a crisp
set) was considered somewhat awkward, and raised some concerns that the required
definitions and theorems would become more complicated than necessary, to capture
the target class of standard models. Consequently, I started by defining a simpler mea-
sure which quantizes the similarity of fuzzy subsets to given crisp setsΞY (X), and
corresponding tuples of argumentsΞY1,...,Yn(X1, . . . , Xn). It was then necessary to
introduce the set of similarity gradesDX1,...,Xn that are generated from a choice of
fuzzy subsetsX1, . . . , Xn under the similarity measure, and to characterize its range of
possible values,D. After that, the key construction was introduced, which to each po-
tential quantification result assigns the set of similarity gradesAQ,X1,...,Xn(z), which
are generated by those choices of crispY1, . . . , Yn with Q(Y1, . . . , Yn) = z. After
characterising the rangeA of possibleAQ,X1,...,Xn , the class of QFMs definable in
terms of argument similarity was introduced in the apparent way, based on aggregation
mappingsψ : A −→ I. In order to express properties of the mappingsψ that are of
relevance to the resulting QFMsFψ, the required concepts were then developed, and
subsequently applied to analyse the precise conditions onψ under which the resulting
QFMFψ becomes a DFS. The proposed system of conditions (ψ-1)–(ψ-5) was shown
to be necessary and sufficient forFψ to be a DFS, and allFψ-DFSes were proven to be
standard models. In addition the independence of the criteria was established. Next I
turned to the issue of relating the new class ofFψ-DFSes to the known class ofFΩ/Fω-
DFSes. It came as a surprise that everyFψ-DFS is in fact anFω-DFS (and vice versa),
i.e. the class ofFψ-DFSes coincides with the class ofFω-DFSes. Noticing that the two
classes of models arose from constructions which are conceptually very different and
motivated independently, this exciting finding confirms that theFω-DFSes (or synony-
mously,Fψ-DFSes) form a natural class of standard models of fuzzy quantification,
that might even comprise the full class of standard DFSes. The latter hypothesis calls
for the development of analytic tools for a deeper investigation of these models, in
order to locate their precise place within the standard models.

The remainder of the chapter was concerned with the class of models defined in
terms of the extension principle. To this end, a mappingfA was derived from each
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A ∈ A. By composing these mappings withAQ,X1,...,Xn I defined the new base con-
struction, that offQ,X1,...,Xn . For each potential quantification resultz, fQ,X1,...,Xn(z)
expressed the maximum similarity of the fuzzy argumentsX1, . . . , Xn to a choice of
crisp argumentsY1, . . . , Yn ∈ P̃(E) subject to the condition thatQ(Y1, . . . , Yn) = z.
Next the setX was introduced and shown to precisely describe the set of those map-
pingsf that occur asf = fQ,X1,...,Xn for a choice ofQ andX1, . . . , Xn. Hence
X is the proper domain of aggregation operatorsϕ : X −→ I which span the new
class ofFϕ-QFMs in the usual way, i.e.Fϕ(Q)(X1, . . . , Xn) = ϕ(fQ,X1,...,Xn). I
have explained that the resulting fuzzification mechanisms are exactly the QFMs de-
finable in terms of the standard extension principle, which is applied to the similarity
grades obtained for the quantifier’s arguments. The move from the base construction
AQ,X1,...,Xn to the new constructionfQ,X1,...,Xn means a great simplification because
we now deal with a single scalarfQ,X1,...,Xn(z) in the unit range, rather than sets of
such scalarsAQ,X1,...,Xn(z). It is hence worthwhile studying this subclass of models
and elucidating their structure, although no new DFSes are introduced compared to the
full class ofFψ-DFSes. Interestingly, the converse is also true, and in fact no mod-
els arelost when restricting attention to the subclass ofFϕ-DFSes. This is because
everyFψ-DFS is known to satisfy (ψ-5), which entails thatψ(A) can be computed
from fA, which underlies the definition ofFϕ-QFMs. It is hence of particular interest
to develop conditions that fit this simpler presentation ofFψ-DFSes, which is offered
by fQ,X1,...,Xn and aggregation mappingsϕ. Due to the close relationship between
AQ,X1,...,Xn and the derivedfQ,X1,...,Xn , the precise conditions onϕ which makeFϕ
a DFS are apparent from the corresponding conditions (ψ-1)–(ψ-5) imposed onψ. By
adapting these conditions, it was easy to obtain a set of necessary and sufficient condi-
tions (ϕ-1)–(ϕ-5) imposed onϕ, and to prove that these conditions are independent.

Finally I have reviewed the fuzzification mechanism proposed by Gaines [6] and its
reformulation into a base construction for QFMs proposed in [7]. In the course of this
investigation, it was proven that all of the resulting QFMs areFϕ-QFMs and hence
definable in terms of argument similarity and the extension principle. Conversely, all
‘reasonable’ choices ofFϕ whereϕ satisfies at least (ϕ-5), can be expressed as ‘Gaine-
sian’ QFMs, and hence be reduced to a mechanism claimed to provide a ‘foundation
of fuzzy reasoning’ [6].
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6 Conclusion

In this report, an effort was made to boost the research into standard models of fuzzy
quantification. The pivotal objective was to prospect new classes of such models within
the DFS theory of fuzzy quantification, i.e. to explore novel constructions of potential
models and to characterize the resulting classes and their relevant properties in terms
of the exact conditions that must be imposed on the underlying constructions. In order
to better understand the obtained classes and the structure of their models, it was hence
necessary to develop the full set of theorems for investigating propagation of fuzziness,
continuity and other adequacy properties. A related goal was to develop representative
examples and to identify boundary cases of models within the classes (e.g. with respect
to specificity). In the report, this basic strategy was implemented for two general con-
structions of fuzzification mechanisms and corresponding classes of models, which are
discussed in chapter 4 (FΩ-QFMs) and chapter 5 (Fψ-QFMs), respectively.

In chapter 4, the known construction ofFξ-QFMs, which form the broadest class of
standard models developed in previous work on DFS theory, was extended to the full
class of QFMs definable in terms of three-valued cuts of the argument sets, the class
of FΩ-QFMs. To this end, the underlying mechanism ofFξ-QFMs was decomposed
into two stages, (a) determination of the ‘raw’ set of results obtained from the three-
valued cut, and (b) subsequent computation of upper and lower bounds. By isolating
the first step, which simply determines the ambiguity setSQ,X1,...,Xn(γ) obtained from
the quantifier and arguments at the given cut-levelγ, we then got grip of a construc-
tion which captures the full class of QFMs definable in terms of three-valued cuts.
Embarking on the strategy outlined above, the structure ofFΩ-DFSes was exposed
by formalizing the necessary and sufficient conditions on the aggregation mappingΩ
that makeFΩ a DFS. In addition, a number of theorems have been proven which re-
duce the test whether a given modelFΩ fulfills additional adequacy properties (like
propagation of fuzziness), to an easy check on the underlying aggregation mappingΩ.
Subsequently the apparent subclass ofFω-QFMs was introduced, which are based on a
coefficientsQ,X1,...,Xn computed fromSQ,X1,...,Xn . Although the construction ofFω-
QFMs ignores part of the ‘raw’ data present inSQ,X1,...,Xn , a formal investigation of
Fω-DFSes confirmed that no models of interest are lost compared to the construction
based onΩ, i.e. the classes ofFΩ- andFω-DFSes coincide. The rationale for putting
effort intoFω-QFMs is that they connect the models defined in terms of three-valued
cuts to the alternative construction of models in terms of the extension principle that
was discussed later. In addition, the alternative format usually permits a simpler defi-
nition of models, as witnessed by the succint descriptions of the examples. The final
investigation ofFΩ/Fω-DFSes with respect to continuity properties also revealed an
interesting result, by substantiating that all ‘practical’ models in the new class in fact
belong to the known class ofFξ-DFSes. Noticing that the construction of this latter
class is conceptually much simpler than that ofFΩ-DFSes, because only bounds on
the quantification results in the cut ranges are considered, this justifies in retrospective
the introduction and study ofFξ-QFMs as a separate class.

The subsequent chapter 5 was concerned with the definition and structure ofFψ-
QFMs (fuzzification mechanisms definable in terms of argument similarity) and their
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subclass ofFϕ-QFMs (fuzzification mechanisms definable in terms of the extension
principle). An investigation into these models was considered auspicious because the
underlying construction is conceptually different from the three-valued cut mechanism
deployed in the known classes of DFSes and motivated by independent considerations.
The study of these models was therefore hoped to draw attention to some general char-
acteristics not idiosyncratic to the three-valued cut construction. In order to develop
this class of models, I first introduced a similarity measure on fuzzy arguments and
discussed some of its properties. After showing how the novelFψ-QFMs can be built
from this construction, the ‘intended models’ ofFψ-DFSes were then characterised by
stating the exact conditions on the aggregation mappingψ which makeFψ a DFS. In
turn, the subclass ofFϕ-QFMs definable in terms of the extension principle was intro-
duced, and it was shown that their simplified construction does not result in any loss of
intended models. Hence allFψ-DFSes areFϕ-DFSes and vice versa. Again, the refor-
mulation of the original class into the modified construction ofFϕ-DFSes is targeted at
permitting simpler descriptions of models. In addition, the anchoring of this class into
the extension principle is satisfying from a theoretical position, and acknowledges the
foundational role that the extension principle plays to fuzzy set theory. It has also been
remarked that the construction ofFϕ-QFMs embeds the ‘Gainesian’ approach which
extends the fuzzification mechanism first described in [6] into a base construction for
models of fuzzy quantification, see [7].

The main result of the report I consider the proof that the models definable in terms of
three-valued cuts coincide with those defined in terms of argument similarity and the
extension principle. This reveals that theFΩ-DFSes/Fω-DFSes andFψ-DFSes/Fϕ-
DFSes are merely different presentations of one and the same general class of target
models. Its distinct constructions elucidate two complementary faces of the identified
class of models:

• The presentation of this class in terms of the extension principle is theoretically
appealing because of the unique role of the extension principle to the foundation
of fuzzy logic. This reduces these DFSes to the fundamental principle underly-
ing fuzzy set theory, and hence provides a theoretical justification for the use of
three-valued cuts to model fuzzy quantification.

• Knowing that the considered class can be defined in terms of three-valued cuts
is of great practical interest because algorithms that implement quantifiers in the
models are easily derived from the cut-based presentation. Three-valued cuts
lend themselves to similar procedures as the familiar two-valued cuts because
every three-valued cut can be represented by a pair ofα-cuts. This renders it
possible to compute subresults on the few resulting layers, which are subse-
quently aggregated into the final interpretation of the quantifier. The utility of
this general strategy has been confirmed by the successful implementation of
common quantifiers inM,MCX andFCh described in [10, 12]. No principled
difficulty is expected in transferring these techniques to generalFΩ-DFSes as
well.

Noticing the twofold justification of the new class of models from different construc-
tions and motivated by independent considerations, there is evidence that it indeed
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forms anatural class of DFSes, which captures a broad range of standard models of
fuzzy quantification. Future research must decide if it even spans the full class ofall
standard models. In order to encourage this investigation, let me briefly draw attention
to a promising starting point for relating this class to the full class of standard DFSes,
which might be provided by an analysis of upper and lower bounds on quantification
results. Research into this topic has been initiated in [9, Chap. 8] and the techniques
developed from this analysis soon approved themselves invaluable for deriving inter-
esting results on DFSes. For example, it now became possible to substantiate the hy-
pothesis that all standard models coincide on two-valued quantifiers. I suggest the use
of these upper and lower bounds (or of straightforward variants) to introduce pairs of
FL,FU with FL�cF �cFU , for each considered standard DFSF . For example, one
could defineFL andFU by

FL(Q)(X1, . . . , Xn) = med 1
2

(Q̃L(X1, . . . , Xn), Q̃U (X1, . . . , Xn))

FU (Q)(X1, . . . , Xn) =


Q̃U (X1, . . . , Xn) : F(Q)(X1, . . . , Xn) > 1

2

Q̃L(X1, . . . , Xn) : F(Q)(X1, . . . , Xn) < 1
2

1
2 : F(Q)(X1, . . . , Xn) = 1

2

whereQ̃U and Q̃L are the upper and lower bounds, respectively, as defined in [9,
Def. 99, p. 70], but alternative definitions ofFL andFU are also conceivable and might
prove equally useful. The proposed strategy of resorting to specificity bounds allevi-
ates the need for a direct assessment of fully general standard DFSes, the internal
construction of which is not yet known.

Following these lines, and adopting other techniques that have already been devel-
oped in DFS theory, it might become feasible to characterise the full class of standard
DFSes. Judging from today’s knowledge, it is perfectly possible that this full class
is indeed exhausted by the models introduced here. A thorough analysis is required
to decide this matter and to locate the present class ofFΩ-DFSes (or equivalently,
Fψ-DFSes) within the total class of models. This endeavour may take some time to
develop, but it promises a number of amazing results that will anchor the models used
for applications into an iron-clad theoretical foundation.
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Appendix

Any proposition which occurs in the main text is called atheorem, and any proposition
which only occurs in the proofs alemma. Theorems are referred to as Th-n, where
n is the number of the theorem, while lemmata are referred to as L-n, wheren is the
number of the lemma. Equations which are embedded in proofs are referred to as(n),
wheren is the number of the equation.
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A Proof of theorems in chapter 4

A.1 Proof of Theorem 32

Let a semi-fuzzy quantifierQ : P(E)n −→ I and a choice of fuzzy arguments
X1, . . . , Xn ∈ P̃(E) be given.

a. By Def. 31, (Xi)
min
0 = (Xi)

>
1
2

and(Xi)
max
0 = (Xi)≥ 1

2
. Because(Xi)

>
1
2
⊆

(Xi)≥ 1
2

, each

T0(Xi) = {Y : (Xi)
min
0 ⊆ Y ⊆ (Xi)

max
0 } = {Y : (Xi)

>
1
2
⊆ Y ⊆ (Xi)≥ 1

2
}

is nonempty. HenceT0(X1, . . . , Xn) is nonempty as well, which entails that

SQ,X1,...,Xn(0) = {Q(Y1, . . . , Yn) : Y1, . . . , Yn ∈ T0(X1, . . . , Xn)} 6= ∅ .

b. To see that the second claim of the theorem is valid, considerγ, γ′ ∈ I with
γ ≤ γ′. Then

Xmin
γ ⊇ X

>
1
2 +

1
2γ
⊇ X

≥ 1
2 +

1
2γ
′ ⊇ X

min
γ′ .

Similarly

Xmax
γ ⊆ X

≥ 1
2−

1
2γ
⊆ X

>
1
2−

1
2γ
′ ⊆ X

max
γ′

by Def. 29, Def. 30 and Def. 31. Hence for alli ∈ {1, . . . , n},

Tγ(Xi) = {Y : (Xi)
min
γ ⊆ Y ⊆ (Xi)

max
γ }

⊆ {Y : (Xi)
min
γ′ ⊆ Y ⊆ (Xi)

max
γ′ } = Tγ′(Xi)

(90)

because(Xi)
min
γ′ ⊆ (Xi)

min
γ and(Xi)

max
γ ⊆ (Xi)

max
γ′ . In turn

SQ,X1,...,Xn(γ) = {Q(Y1, . . . , Yn) : Y1, . . . , Yn ∈ Tγ(X1, . . . , Xn)} by Def. 51

⊆ {Q(Y1, . . . , Yn) : Y1, . . . , Yn ∈ Tγ′(X1, . . . , Xn)} by (90)

= SQ,X1,...,Xn(γ′) . by Def. 51

A.2 Proof of Theorem 33

We first observe that forγ = 0,

Xmin
0 = X

>
1
2

= ∅ (91)

Xmax
0 = X

≥ 1
2

= ({0} × I) ∪ {(1, 0)} , (92)
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this is apparent from (33) and Def. 31. Similarly forγ > 0,

Xmin
γ = X

≥ 1
2 +

1
2γ

= ∅ (93)

Xmax
γ = X

>
1
2−

1
2γ

= ({0} × I) ∪ ({1} × [0, γ)) . (94)

In order to prove the theorem, I first show that

S(γ) ⊆ SQ,X(γ) . (95)

Hence let us consider a choice ofz ∈ S(γ). In the case thatγ = 0, we clearly have
s(z) = 0 by Def. 53 and hencez ∈ S(s(z)). Now we considerY = {(0, z), (1, 0)} ∈
T0(X), which hasinf Y ′ = inf{z} = z andY ′′ = {0}, see (28) and (29). Hence
Q(Y ) = Qz(Y ′′) = Qz({0}). Becausez ∈ S(s(z)) = S(0), equation (31) applies,
i.e.Q(Y ) = Qz({0}) = z.
Next we consider the case thatγ > 0. We can then choose

Y = {(0, z)} ∪ ({1} × [0, γ)) .

For this choice ofY ∈ Tγ(X), we obtaininf Y ′ = inf{z} = z andY ′′ = [0, γ) by
(28) and (29), i.e.supY ′′ = γ. HenceQ(Y ) = Qz([0, γ)) = z by (27) and (30), (31)
becausez ∈ S(γ) by assumption.
It remains to be shown thatSQ,X(γ) ⊆ S(γ) for all γ ∈ I. Let us first consider the case
thatγ = 0 and letY ∈ T0(X) be given. We abbreviatez = inf Y ′ ∈ I. It is apparent
from (91) and (92) that we either haveY ′′ = ∅ orY ′′ = {0}. In any case,supY ′′ = 0.
If z ∈ S(γ) = S(0), then0 = s(z) by Def. 53 and hencez ∈ S(s(z)). We then obtain
from (31) thatQ(Y ) = Qz(Y ′′) = z ∈ S(0), as desired. Ifz /∈ S(γ) = S(0), then
eithers(0) ≥ 0 andz /∈ S(s(z)), i.e. (30) applies, ors(0) > 0 andz ∈ S(s(z)),
i.e. (31) applies. In any case, we obtain thatQ(Y ) = Qz(Y ′′) = z0, and hence
Q(Y ) ∈ S(0) by (32).
Finally in the case thatγ > 0 we considerY ∈ Tγ(X). Again we abbreviatez =
inf Y ′ ∈ I. We also notice that by (93) and (94),0 ≤ supY ′′ ≤ γ. If z ∈ S(s(z))
ands(z) ≤ supY ′′, we hence haveQ(Y ) = Qz(Y ′′) = z ∈ S(s(z)) ⊆ S(supY ′′) ⊆
S(γ). Similarly if z /∈ S(s(z)) ands(z) < supY ′′, we obtainQ(Y ) = Qz(Y ′′) =
z ∈ S(supY ′′) ⊆ S(γ) which is apparent from Def. 53 andγ ≥ supY ′′ ≥ s(z).
Hence there are two cases left to prove. Ifz ∈ S(s(z)) and supY ′′ < s(z), then
Q(Y ) = Qz(Y ′′) = z0 ∈ S(0) ⊆ S(γ), see (31) and (32). In the case thatz /∈ S(s(z))
andsupY ′′ ≤ s(z), we haveQ(Y ) = Qz(Y ′′) = z0 ∈ S(0) ⊆ S(γ) by (30) and (32).
This finishes the proof thatSQ,X(γ) ⊆ S(γ) for all γ ∈ I. Combining this with (95),
we obtain the desiredSQ,X = S.

A.3 Proof of Theorem 34

Lemma 1 If Ω : K −→ I satisfies(Ω-1), then

U(FΩ(Q)) = Q

for all semi-fuzzy quantifiersQ : P(E)n −→ I.
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Note. In particular,FΩ satisfies (Z-1), which weakens the lemma to the case that
n ≤ 1.

Proof SupposeΩ : K −→ I satisfies (Ω-1). Consider a semi-fuzzy quantifierQ :
P(E)n −→ I and a choice ofcrisp argumentsX1, . . . , Xn ∈ P(E). We have to
show thatFΩ(Q)(X1, . . . , Xn) = Q(X1, . . . , Xn). To this end, we first observe that
because theXi are crisp sets, it holds that(Xi)

min
γ = (Xi)

max
γ = Xi for all i =

1, . . . , n andγ ∈ I, see Def. 31. Hence

Tγ(Xi) = {Xi} (96)

for i = 1, . . . , n andγ ∈ I. In turn,

SQ,X1,...,Xn(γ) = {Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)} by Def. 51

= {Q(Y1, . . . , Yn) : Y1 ∈ {X1}, . . . , Yn ∈ {Xn}} by (96)

= {Q(X1, . . . , Xn)} ,

i.e.

SQ,X1,...,Xn(γ) = {Q(X1, . . . , Xn)} (97)

for all γ ∈ I. From this we obtain the desired

FΩ(Q)(X1, . . . , Xn) = Ω(SQ,X1,...,Xn) by Def. 55

= Q(X1, . . . , Xn) . by (97), (Ω-1)

Lemma 2 LetQ : P(E)n −→ I be a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E).
Then

S¬Q,X1,...,Xn(γ) = {1− z : z ∈ SQ,X1,...,Xn(γ)} ,

for all γ ∈ I.

Proof Trivial. Consider a semi-fuzzy quantifierQ : P(E)n −→ I andX1, . . . , Xn ∈
P̃(E). Recalling that¬x = 1− x denotes the standard negation, we obtain

S¬Q,X1,...,Xn(γ)
= {(¬Q)(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)} by Def. 51

= {1−Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)} by Def. 9,¬x = 1− x
= {1− z :

z ∈ {Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)}}
= {1− z : z ∈ SQ,(X1,...,Xn)(γ)} , by Def. 51

for all γ ∈ I.
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Lemma 3 SupposeΩ : K −→ I satisfies(Ω-2) and(Ω-3). ThenFΩ coincides withM
on two-valued quantifiers, i.e. wheneverQ : P(E)n −→ 2 is a two-valued quantifier
andX1, . . . , Xn ∈ P̃(E) are fuzzy arguments, then

FΩ(Q)(X1, . . . , Xn) =M(Q)(X1, . . . , Xn) .

Note. HenceFΩ induces the standard negation¬x = 1− x, the standard conjunction
x ∧ y = min(x, y), the standard disjunctionx ∨ y = max(x, y) and the standard

extension principlêFξ = ˆ̂(•). This is apparent because all of these are obtained from
two-valued quantifiers, andM is known to be a standard DFS by Th-12.

Proof LetQ : P(E)n −→ 2 be a two-valued quantifier and letX1, . . . , Xn ∈ P̃(E)
be given. ThenSQ,X1,...,Xn(γ) ∈ 2 for all γ ∈ I. We also know from Th-32 that
SQ,X1,...,Xn(0) 6= ∅. Hence there are two cases to consider.

a.: 1 ∈ SQ,X1,...,Xn(0). Then>Q,X1,...,Xn(γ) = supSQ,X1,...,Xn(γ) = 1 for all γ ∈
I, i.e.>Q,X1,...,Xn = c1. In addition,⊥Q,X1,...,Xn becomes

⊥Q,X1,...,Xn(γ) =
{

1 : 0 /∈ SQ,X1,...,Xn(γ)
0 : 0 ∈ SQ,X1,...,Xn(γ)

for all γ ∈ I, i.e.⊥̂Q,X1,...,Xn(I) ⊆ 2. BecauseM is anMB-DFS by Th-12, it is also
anFξ-DFS by Th-22. HenceM satisfies (X-3) by Th-23, and

M(Q)(X1, . . . , Xn) = 1
2 + 1

2 (⊥Q,X1,...,Xn)0
∗ by (X-3)

= 1
2 + 1

2s(0) by (12), Def. 53

= FΩ(Q)(X1, . . . , Xn) . by Def. 55, (Ω-3)

b.: 0 ∈ SQ,X1,...,Xn(0). Then1 ∈ {1 − z : z ∈ SQ,X1,...,Xn(0)} = S¬Q,X1,...,Xn(0)
by L-2. We can hence reduceb. to the proof ofa. as follows.

FΩ(Q)(X1, . . . , Xn) = Ω(SQ,X1,...,Xn) by Def. 55

= 1− Ω(S¬Q,X1,...,Xn) by (Ω-2), L-2

= 1−M(¬Q)(X1, . . . , Xn) by parta. of the lemma

= 1− (1−M(Q)(X1, . . . , Xn)) by Th-12, Th-2

=M(Q)(X1, . . . , Xn) .

Lemma 4 If Ω : K −→ I satisfies(Ω-2) and (Ω-3), thenFΩ satisfies(Z-2).

Proof This is now trivial. Let a choice ofΩ : K −→ I be given which satisfies
(Ω-2) and (Ω-3). Now consider a base setE 6= ∅ and an elemente ∈ E. By Def. 6,
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πe : P(E) −→ 2 is two-valued. HenceFΩ(πe) = M(πe) by L-3. In turn, we
conclude fromM being a DFS by Th-12 thatM(πe) = π̃e. HenceFΩ(πe) = π̃e,
i.e.FΩ satisfies (Z-2).

Lemma 5 SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier of arityn > 0. Then
for all X1, . . . , Xn ∈ P̃(E),

SQ¬,X1,...,Xn = SQ,X1,...,Xn−1,¬Xn ,

where¬Xn ∈ P̃(E) is the standard fuzzy complementµXn(e) = 1 − µXn(e), for all
e ∈ E.

Proof LetQ : P(E)n −→ I be given (n > 0) andX1, . . . , Xn ∈ P̃(E). We already
know from the proof of [7, L-22, p.127] (γ > 0) and [9, L-30, p.110] (γ = 0) that

Tγ(¬Xn) = {¬Y : Y ∈ Tγ(Xn)} , (98)

for all γ ∈ I. Therefore

SQ¬,X1,...,Xn(γ)
= {Q(Y1, . . . , Yn−1,¬Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 51, Def. 10

= {Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1),
Yn ∈ Tγ(¬Xn)} by (98)

= SQ,X1,...,Xn−1,¬Xn(γ) by Def. 51

for all γ ∈ I, as desired.

Lemma 6 SupposeΩ : K −→ I satisfies(Ω-2) and (Ω-3). ThenFΩ satisfies(Z-3).

Proof Let Ω : K −→ I with the desired properties (Ω-2) and (Ω-3) be given. We
know from L-3 thatFΩ induces the standard negation¬x = 1 − x. Now consider a
semi-fuzzy quantifierQ : P(E)n −→ I of arityn > 0 and a choice of fuzzy arguments
X1, . . . , Xn ∈ P̃(E). Then

FΩ(Q�)(X1, . . . , Xn)
= Ω(SQ�,X1,...,Xn) by Def. 55

= Ω(S¬Q¬,X1,...,Xn) by Def. 11

= 1− Ω(SQ¬,X1,...,Xn) by (Ω-2), L-2

= 1− Ω(SQ,X1,...,Xn−1,¬Xn) by L-5

= ¬FΩ(Q)(X1, . . . , Xn−1,¬Xn) , by Def. 55

i.e.FΩ satisfies (Z-3), as desired.

Lemma 7 SupposeΩ : K −→ I satisfies(Ω-2) and (Ω-3). ThenFΩ satisfies(Z-4).
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Proof Consider a choice ofΩ : K −→ I for which (Ω-2) and (Ω-3) are valid. We
then know from L-3 thatFΩ induces the standard disjunctionx ∨ y = max(x, y) and
the corresponding standard fuzzy union∪.
Now let a semi-fuzzy quantifierQ : P(E)n −→ I of arity n > 0 and a choice of
fuzzy argumentsX1, . . . , Xn, Xn+1 ∈ P̃(E) be given. It has been shown in [11,
p. 52, eq. (58)] that

Tγ(Xn ∪Xn+1) = {Yn ∪ Yn+1 : Yn ∈ Tγ(Xn), Yn+1 ∈ Tγ(Xn+1)} , (99)

for all γ ∈ I. Hence

SQ∪,X1,...,Xn+1(γ)
= {Q∪(Y1, . . . , Yn+1) : (Y1, . . . , Yn+1) ∈ Tγ(X1, . . . , Xn+1)} by Def. 51

= {Q(Y1, . . . , Yn−1, Yn ∪ Yn+1) : (Y1, . . . , Yn+1) ∈ Tγ(X1, . . . , Xn+1)} by Def. 12

= {Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn1 ∈ Tγ(Xn−1),
Yn ∈ Tγ(Xn ∪Xn+1)} by (99)

= SQ,X1,...,Xn1 ,Xn∪Xn+1(γ)

for all γ ∈ I, i.e.

SQ∪,X1,...,Xn+1 = SQ,X1,...,Xn1 ,Xn∪Xn+1 . (100)

In turn, we obtain the desired

FΩ(Q∪)(X1, . . . , Xn+1)
= Ω(SQ∪,X1,...,Xn+1) by Def. 55

= Ω(SQ,X1,...,Xn−1,Xn∪Xn+1) by (100)

= FΩ(Q)(X1, . . . , Xn−1, Xn ∪Xn+1) . by Def. 55

Lemma 8 If Ω : K −→ I satisfies(Ω-5), thenFΩ satisfies(Z-5).

Proof Let Q : P(E)n −→ I be nonincreasing in then-th argument and consider
X1, . . . , Xn, X

′
n ∈ P̃(E) with Xn ⊆ X ′n.

Let γ ∈ I. I first show that for allz ∈ SQ,X1,...,Xn−1,X′n(γ), there existsz′ ≥ z such
that z′ ∈ SQ,X1,...,Xn(γ). Hence letz ∈ SQ,X1,...,Xn−1,X′n(γ), i.e. by Def. 51 there
exists a choice of(Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn−1, X

′
n) with

z = Q(Y1, . . . , Yn) . (101)

BecauseYn ∈ Tγ(X ′n), it holds thatX ′n
min
γ ⊆ Yn ⊆ X ′n

max
γ . BecauseXn ⊆ X ′n, we

haveXn
min
γ ⊆ X ′n

min
γ ⊆ Yn by Def. 31. In turn, we conclude fromXn

min
γ ⊆ Xn

max
γ

that

Xn
min
γ = Xn

min
γ ∩Xn

max
γ ⊆ Yn ∩Xn

max
γ .
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Noticing the apparentYn∩Xn
max
γ ⊆ Xn

max
γ , this proves thatYn∩Xn

max
γ ∈ Tγ(Xn).

BecauseQ is assumed to be nonincreasing in then-th argument, we obtain fromYn ∩
Xn

max
γ ⊆ Yn that

z = Q(Y1, . . . , Yn) by (101)

≤ Q(Y1, . . . , Yn−1, Yn ∩Xn
max
γ ) becauseQ nonincn-th arg

= z′ ∈ Tγ(X1, . . . , Xn) .

Next I prove that for allz ∈ SQ,X1,...,Xn(γ), there existsz′ ≤ z such thatz′ ∈
SQ,X1,...,Xn−1,X′n(γ). Hence letz ∈ SQ,X1,...,Xn . By Def. 51, there exist(Y1, . . . , Yn) ∈
Tγ(X1, . . . , Xn) with z = Q(Y1, . . . , Yn). In particular,Xn

min
γ ⊆ Yn ⊆ Xn

max
γ . By

similar reasoning as in the previous case, we can conclude from this andXn
min
γ ⊆

X ′n
min
γ as well asXn

max
γ ⊆ X ′n

max
γ thatX ′n

min
γ ⊆ Yn ∪ X ′n

min
γ ⊆ X ′n

max
γ , i.e.Yn ∪

X ′n
min
γ ∈ Tγ(X ′n). In addition, we clearly haveYn ⊆ Yn ∪ X ′n

min
γ . Hencez′ =

Q(Y1, . . . , Yn−1, Yn ∪X ′n
min
γ ) ≤ Q(Y1, . . . , Yn) = z andz′ ∈ SQ,X1,...,Xn−1,X′n(γ),

as desired.
Combining the first two results yields

SQ,X1,...,Xn−1,X′n v SQ,X1,...,Xn . (102)

Therefore

FΩ(Q)(X1, . . . , Xn) = Ω(SQ,X1,...,Xn) by Def. 55

≥ Ω(SQ,X1,...,Xn−1,X′n) by (Ω-5) and (102)

= FΩ(Q)(X1, . . . , Xn−1, X
′
n) ,

i.e.FΩ(Q) is nonincreasing in then-th wheneverQ is nonincreasing in then-th argu-
ment.

The following lemmata are required for the proof that the conjunction of the ‘Ω-
conditions’ is sufficient forFΩ to satisfy (Z-6). The idea of the proof is the same
as in [7, p. 132], [9, p. 116] and [11, p. 53], viz I introduce a modified definition of
SQ,X1,...,Xn which is apparently compatible with functional application (Z-6). I then
show that the original definition produced the same results as the modified definition,
thus inheriting its compliance with (Z-6).

Definition 102 Let a semi-fuzzy quantifierQ : P(E)n −→ I be given andX1, . . . , Xn ∈
P̃(E). SHQ,X1,...,Xn

: I −→ P(I) is defined by

SHQ,X1,...,Xn = {Q(Y1, . . . , Yn) : Y ∈ T Hγ (X1, . . . , Xn) (103)
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where

T Hγ (X1, . . . , Xn) = {(Y1, . . . , Yn) : Y1 ∈ T Hγ (X1), . . . , Yn ∈ T Hγ (Xn)} (104)

T Hγ (X) = {Y : XHmin
γ ⊆ Y ⊆ XHmax

γ } (105)

XHmin
γ = X

>
1
2 +

1
2γ

(106)

XHmax
γ = Xmax

γ =

 X
≥ 1

2
: γ = 0

X
>

1
2−

1
2γ

: γ > 0 (107)

for all γ ∈ I.

Lemma 9 SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier,E′ is some non-empty
base set,f1, . . . , fn : E′ −→ E are mappings andX1, . . . , Xn ∈ P̃(E′). Then for all
γ ∈ (0, 1],

SH
Q◦

n
×
i=1

f̂i,X1,...,Xn
(γ) = SH

Q,
ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

(γ) .

Proof Let Q : P(E)n −→ I, f1, . . . , fn : E′ −→ E andX1, . . . , Xn ∈ P̃(E′) be
given andγ ∈ (0, 1]. We first recall that by [7, p.134, eq. (*)],

T Hγ ( ˆ̂
fi(Xi)) = {f̂i(Y ) : Y ∈ T Hγ (Xi)} (108)

for all i ∈ {1, . . . , n} in the assumed case thatγ > 0. Therefore

SH
Q◦

n
×
i=1

f̂i,X1,...,Xn
(γ)

= {(Q ◦
n
×
i=1

f̂i)(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ T Hγ (X1, . . . , Xn)} by Def. 51

= {Q(f1(Y1), . . . , fn(Yn)) : (Y1, . . . , Yn) ∈ T Hγ (X1, . . . , Xn)} by (4)

= {Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ T Hf1(X1),...,fn(Xn)(Q)γ} by (108)

= SH

Q,
ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

(γ) .

Lemma 10 For every semi-fuzzy quantifierQ : P(E)n −→ I and allX1, . . . , Xn ∈
P̃(E),

SHQ,X1,...,Xn ∈ K .

Proof Consider a semi-fuzzy quantifierQ : P(E)n −→ I and a choice of fuzzy
argumentsX1, . . . , Xn ∈ P̃(E). We first observe that

XHmin
0 = X

>
1
2
⊆ X

≥ 1
2

= XHmax
0 ,
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i.e.XHmin
0 ∈ T H0 (X) for all X = Xi, i = 1, . . . , n. Therefore

Q(X1
Hmin
0 , . . . , Xn

Hmin
0 ) ∈ SQ,X1,...,Xn(0) ,

i.e.SQ,X1,...,Xn(0) 6= ∅.
Now considerγ, γ′ ∈ I with γ < γ′ (the caseγ = γ′ is trivial). For allX = Xi,
i = 1, . . . , n, we obtain from (106) and (107) andγ < γ′ that

XHmin
γ′ = X

>
1
2 +

1
2γ
′ ⊆ X>

1
2 +

1
2γ

= XHmin
γ

and

XHmax
γ ⊆ X

≥ 1
2−

1
2γ
⊆ X

>
1
2−

1
2γ
′ ⊆ X

Hmax
γ′ .

Hence by (105),

T Hγ (X1, . . . , Xn) ⊆ T Hγ′ (X1, . . . , Xn) (109)

and in turn,

SHQ,X1,...,Xn(γ) = {Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ T Hγ (X1, . . . , Xn)} by (103)

⊆ {Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ T Hγ′ (X1, . . . , Xn)} by (109)

= SHQ,X1,...,Xn(γ′) . by (103)

We conclude from Def. 52 thatSHQ,X1,...,Xn
∈ K.

Lemma 11 SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier andX1, . . . , Xn ∈
P̃(E). Then for allγ ∈ I,

SQ,X1,...,Xn(γ) ⊆ SHQ,X1,...,Xn(γ)

SQ,X1,...,Xn(γ′) ⊇ SHQ,X1,...,Xn(γ) for all γ′ > γ .

Proof Consider a semi-fuzzy quantifierQ : P(E)n −→ I and a choice of fuzzy
subsetsX1, . . . , Xn ∈ P̃(E). We already know from [11, p. 55, eq. (69)] that for all
γ ∈ I andX = Xi, i ∈ {1, . . . , n},

Tγ(X) ⊆ T Hγ (X) . (110)

Therefore

SQ,X1,...,Xn(γ) = {Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)} by Def. 51

⊆ {Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ T Hγ (X1, . . . , Xn)} by (110)

= SHQ,X1,...,Xn(γ) . by (103)

This proves the first claim of the lemma. As concerns the second claim, letγ, γ′ ∈ I
with γ′ > γ. In this case, we recall [11, p. 55, eq. (70)] which states that

Tγ′(X) ⊇ T Hγ (X) (111)
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for all X = Xi, i ∈ {1, . . . , n}. Therefore

SQ,X1,...,Xn(γ′) = {Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ′(X1, . . . , Xn)} by Def. 51

⊇ {Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ T Hγ (X1, . . . , Xn)} by (111)

= SHQ,X1,...,Xn(γ) , by (103)

as desired.

Lemma 12 For all S ∈ K, S]
] = S].

Proof ClearlyS]
](1) = I = S](1) by Def. 56. In the remaining case thatγ < 1,

S]
]
(γ) = ∩

γ′>γ
∩

γ′′>γ′
S(γ′′) = ∩

γ′′>γ
S(γ′′) = S](γ) .

Lemma 13 For all S ∈ K and allγ ∈ I, S[(γ) ⊆ S(γ) ⊆ S](γ).

Proof In the case thatγ = 0,

S[(0) = S(0) by Def. 56

⊆ ∩
γ′>0

S(γ′) by Def. 52,S(γ′) ⊇ S(0)

= S](0) . by Def. 56

In the case thatγ ∈ (0, 1),

S[(γ) = ∪
γ′<γ

S(γ′) by Def. 56

⊆ S(γ) becauseS(γ′) ⊆ S(γ) for γ′ < γ by Def. 52

⊆ ∩
γ′>γ

S(γ′) becauseS(γ) ⊆ S(γ′) for γ′ > γ by Def. 52

= S](γ) .by Def. 56

Finally in the case thatγ = 1,

S[(1) = ∪
γ′<1

S(γ′) by Def. 56

⊆ S(1) becauseS(γ′) ⊆ S(γ) for γ′ < γ by Def. 52

⊆ I . by Def. 52

Lemma 14 For all S, S′ ∈ K, if S(γ) ⊆ S′(γ) for all γ ∈ I, thenS](γ) ⊆ S′](γ) for
all γ ∈ I.
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Proof Let S, S′ ∈ K be given such that

S(γ) ⊆ S′(γ) (112)

for all γ ∈ I. The claim of the lemma holds trivially ifγ = 1 whereS](1) = I =
S]
′(1) by Def. 56. Hence letγ < 1. Then

S](γ) = ∩
γ′>γ

S(γ′) by Def. 56

⊆ ∩
γ′>γ

S′(γ′) by (112)

= S′
](γ) . by Def. 56

Lemma 15 For all S ∈ K, S[
]

= S].

Proof The case thatγ = 1 is trivial becauseS[
]
(1) = I = S](1) by Def. 56. The

caseγ = 0 is also trivial becauseS[(0) = S(0) by Def. 56, i.e.S[
]
(0) = S](0).

Hence letγ ∈ (0, 1). We first observe thatS[(γ′) ⊆ S(γ′) for all γ′ ∈ I by L-13.
Hence

S[
]
(γ) ⊆ S](γ) (113)

by L-14. It remains to be shown thatS](γ) ⊆ S[](γ). For allγ′ > γ, I abbreviate

f(γ′) = γ+γ′

2 (114)

Apparently

∪
γ′′<γ′

S(γ′′) ⊇ S(f(γ′)) (115)

becausef(γ′) ∈ (γ, γ′), i.e. f(γ′) < γ′, and thereforeS(f(γ′) ⊆ S(γ′′) for γ′′ >
f(γ′). Hence

S](γ)
= ∩
γ′>γ

S(γ′) by Def. 56

= ∩
γ′∈(γ,

γ+1
2 ]

S(γ′) becauseS(γ+1
2 ) ⊆ S(γ′) for γ′ > γ+1

2 by Def. 52

= ∩
γ′>γ

S(f(γ′)) by (114)

⊆ ∩
γ′>γ

∪
γ′′<γ′

S(γ′′) by (115)

= S[
]
(γ) . by Def. 56

Lemma 16 SupposeΩ : K −→ I satisfies(Ω-4) and considerS, S′ ∈ K withS[(γ) ⊆
S′(γ) ⊆ S](γ) for all γ ∈ I. ThenΩ(S′) = Ω(S).

Note. In particular, the lemma shows thatΩ(S[) = Ω(S) = Ω(S]).

87



Proof Let us consider an arbitrary choice ofγ ∈ I. We first conclude fromS[(γ) ⊆
S′(γ) and L-14 that

S[
]
(γ) ⊆ S′](γ) .

Hence

S](γ) = S[
]
(γ) ⊆ S′](γ) (116)

by L-15. On the other hand, we deduce fromS′(γ) ⊆ S](γ), L-14 and L-12 that

S′
](γ) ⊆ S]](γ) = S](γ) . (117)

Combining (116) and (117), we obtain thatS′](γ) = S](γ). Becauseγ ∈ I was
arbitrarily chosen, this proves that

S′
] = S] . (118)

Therefore

Ω(S) = Ω(S]) by (Ω-4)

= Ω(S′]) by (118)

= Ω(S′) , by (Ω-4)

as desired.

Lemma 17 If Ω : K −→ I satisfies(Ω-4) and (Ω-5), then

Ω(SQ,X1,...,Xn) = Ω(SHQ,X1,...,Xn)

for all semi-fuzzy quantifiersQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E).

Proof Let γ ∈ I be given. We already know from L-11 thatSQ,X1,...,Xn(γ) ⊆
SHQ,X1,...,Xn

(γ). Hence by L-13,

(SQ,X1,...,Xn)[(γ) ⊆ SQ,X1,...,Xn(γ) ⊆ SHQ,X1,...,Xn(γ) (119)

for all γ ∈ I. I will now prove that

SHQ,X1,...,Xn(γ) ⊆ (SQ,X1,...,Xn)[(γ) (120)

for all γ ∈ I. This is trivial if γ = 1, because in this case

SHS,X1,...,Xn(1) ⊆ I = (SQ,X1,...,Xn)](1)

by Def. 56. Hence letγ < 1. In this case, we can utilize that

SHQ,X1,...,Xn(γ) ⊆ SQ,X1,...,Xn(γ′) (121)
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for all γ′ > γ by L-11. Therefore

SHQ,X1,...,Xn(γ) ⊆ ∩
γ′>γ

SQ,X1,...,Xn(γ′) by (121)

= (SQ,X1,...,Xn)[(γ) . by Def. 56

Hence (120) is valid. Combining this with (119), we notice that

(SQ,X1,...,Xn)[(γ) ⊆ SHQ,X1,...,Xn(γ) ⊆ (SQ,X1,...,Xn)](γ) (122)

for all γ ∈ I. From this we obtain the desiredΩ(SQ,X1,...,Xn) = Ω(SHQ,X1,...,Xn
) by

applying lemma L-16.

Lemma 18 SupposeΩ : K −→ I satisfies(Ω-4). ThenΩ(S) = Ω(S′) whenever
S, S′ ∈ K coincide for allγ ∈ (0, 1), i.e. ifS|(0,1) = S′|(0,1).

Proof AssumeS, S′ ∈ K satisfy

S(γ) = S′(γ) (123)

for all γ ∈ (0, 1), as required by the lemma. Let us now show thatS] = S′
]. This is

apparent forγ = 1, in which caseS](1) = I = S′
](1) by Def. 56. In the remaining

case thatγ < 1, we compute

S](γ) = ∩
γ′>γ

S(γ′) by Def. 56

= ∩
1>γ′>γ

S(γ′) becauseS(γ′) ⊆ S(1) for γ′ < 1 by Def. 52

= ∩ 1 > γ′ > γS′(γ′) by (123)

= ∩
γ′>γ

S′(γ′) becauseS(γ′) ⊆ S(1) for γ′ < 1 by Def. 52

= S′
](γ) . by Def. 56

Hence indeedS] = S′
] and

Ω(S) = Ω(S]) by (Ω-4)

= Ω(S′]) becauseS] = S′
]

= Ω(S′) . by (Ω-4)

Lemma 19 SupposeΩ : K −→ I satisfies(Ω-2), (Ω-3) and (Ω-4). ThenFΩ satisfies
(Z-6).
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Proof We first notice that by L-3,FΩ induces the standard extension principle. Now
consider a semi-fuzzy quantifierQ : P(E)n −→ I, a choice of mappingsfi : E′ −→
E, i = 1, . . . , n whereE′ 6= ∅ and fuzzy argumentsX1, . . . , Xn ∈ P̃(E′). Then

FΩ(Q ◦
n
×
i=1

f̂i)(X1, . . . , Xn)

= Ω(S
Q◦

n
×
i=1

f̂i,X1,...,Xn
) by Def. 55

= Ω(SH
Q◦

n
×
i=1

f̂i,X1,...,Xn
) by L-17

= Ω(SH
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

) by L-9, L-18

= Ω(S
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

) by L-17

= FΩ(Q)( ˆ̂
f1(X1), . . . , ˆ̂

fn(Xn)) , by Def. 55

i.e.FΩ satisfies (Z-6).

Proof of Theorem 34

The claim of the theorem thatFΩ is a DFS wheneverΩ : K −→ I satisfies (Ω-1)–
(Ω-5) is now a corollary of L-1, L-4, L-6, L-7, L-8 and L-19. It is then an immediate
consequence of L-3 and the fact thatM is a standard DFS by Th-12 thatFΩ is a
standard DFS also.

A.4 Proof of Theorem 35

SupposeΩ : K −→ I satisfies (Z-5) and consider a choice ofS ∈ K. In the following,
I show thatΩ(S) = Ω(S‡) by proving thatΩ(S) ≤ Ω(S‡) (parta.) and thatΩ(S) ≥
Ω(S‡) (partb.).

a.: Ω(S) ≤ Ω(S‡).
I define a semi-fuzzy quantifierQ : P(2× I)2 −→ I by

Q(Y1, Y2) =
{
Q′′inf Y ′(Y

′′) : Y2 = ∅

Q′inf Y ′(Y
′′) : Y2 6= ∅

(124)

for all Y1, Y2 ∈ P(2× I), where

Y ′ = {z ∈ I : (0, z) ∈ Y1} (125)

Y ′′ = {z ∈ I : (1, z) ∈ Y1} (126)

and the semi-fuzzy quantifiersQ′z, Q
′′
z : P(I) −→ I are defined as follows. We first

choose an arbitraryz0 ∈ S(0), which is known to exist by Def. 52. Next we consider
somez ∈ I andys ∈ I. If z ≤ z0 andS(ys) ∩ [0, z) 6= ∅, then we can choose some
λ(z, ys) ∈ S(ys) ∩ [0, z). In particular,

λ(z, ys) < z . (127)
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In dependence on the choices ofz0 and of theλ(z, ys)’s, we defineQ′z by

Q′z(Y
′′) =

 z : z ∈ S(ys)
λ(z, ys) : z /∈ S(ys), z ≤ z0, S(ys) ∩ [0, z) 6= ∅

z0 : else
(128)

for all Y ′′ ∈ P(I), where I have abbreviated

ys = supY ′′ . (129)

The quantifierQ′′z is defined in dependence on the same choice ofz0 by

Q′′z (Y ′′) =
{
z : z ∈ S‡(ys)
z0 : z /∈ S‡(ys)

(130)

for all Y ′′ ∈ P(I).

In order to relateQ with FΩ’s fulfilling (Z-5), I first show thatQ is nonincreasing
in its second argument. Hence letY1 be given. It is obvious from (124) that the only
interesting choices forY2, Y

′
2 areY2 = ∅ andY ′2 6= ∅. We apparently have∅ ⊆ Y ′2 ,

and it must be shown thatQ(Y1,∅) ≥ Q(Y1, Y
′
2). In the following it is convenient to

abbreviatez = inf Y ′′. I discern four cases.

a. z ∈ S(ys).
ThenQ(Y1, Y

′
2) = Q′z(Y

′′) = z by (124) and (128). It is clear from Def. 59
thatS(γ) ⊆ S‡(γ) for all γ ∈ I. Hencez ∈ S(ys) implies thatz ∈ S‡(ys)
also. ThereforeQ(Y1,∅) = Q′′z (Y ′′) = z by (124) and (130). In particular,
Q(Y1,∅) ≥ Q(Y1, Y

′
2).

b. z /∈ S(ys), z ≤ z0, S(ys) ∩ [0, z) 6= ∅.
In this case, we haveQ(Y1, Y

′
2) = Q′z(Y

′′) = λ(z, ys) by (124) and (128).
Becausez ≤ z0, there existsz′′ ≥ z with z′ ∈ S(ys); we can choosez′′ = z0.
In addition,S(ys) ∩ [0, z) entails that there existsz′ ∈ S(ys) with z′ < z.
Hence by Def. 59,z ∈ S‡(ys). We then conclude from (124) and (130) that
Q(Y1,∅) = Q′′z (Y ′′) = z. Recalling (127), this proves thatQ(Y1,∅) = z >
λ(z, ys) = Q(Y1, Y

′
2).

c. z /∈ S(ys) andz > z0.
ThenQ(Y1, Y

′
2) = Q′z(Y

′′) = z0 by (124) and (128). In addition,Q(Y1,∅) =
Q′′z (Y ′′) ∈ {z0, z}. Becausez > z0, this proves thatQ(Y1,∅) ≥ z0 =
Q(Y1, Y

′
2).

d. z /∈ S(ys) andS(ys) ∩ [0, z) = ∅.
ThenQ(Y1, Y

′
2) = Q′z(Y

′′) = z0 by (124), (128). We notice that in this case,
there does not exist az′ ≤ z with z′ ∈ S(ys). Hence by Def. 59,z /∈ S‡(ys).
In turn, we obtain from (124) and (130) thatQ(Y1,∅) = Q′′z (Y ′′) = z0. In
particular,Q(Y1,∅) ≥ Q(Y1, Y

′
2), as desired.
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This finishes the proof thatQ is nonincreasing in the second argument. Let us now
investigate the behaviour ofSQ,X,∅ andSQ,X,Y2 , Y2 6= ∅, for the particular choice of
X ∈ P̃(2× I) defined by

µX(a, y) =

{
1
2 : a = 0
1
2 −

1
2y : a = 1

(131)

for all a ∈ 2, y ∈ I. We notice thatX coincides with the fuzzy subset defined by (33).
Hence by (91), (92), (93) and (94),

Xmin
0 = X

>
1
2

= ∅ (132)

Xmax
0 = X

≥ 1
2

= ({0} × I) ∪ {(1, 0)} (133)

and forγ > 0,

Xmin
γ = X

≥ 1
2 +

1
2γ

= ∅ (134)

Xmax
γ = X

>
1
2−

1
2γ

= ({0} × I) ∪ ({1} × [0, γ)) . (135)

Next we prove thatSQ,X,∅ = S‡. To this end, we first observe that by (124),Q(Y1,∅) =
Q′′inf Y ′(Y

′′) for all Y1 ∈ Tγ(X) ⊆ P(2× I). In addition,Q′′inf Y ′(Y
′′) only depends

onz = inf Y ′ andys = supY ′′, see (130). Recalling equations (132)–(135), we know
thatys ∈ [0, γ]. For any such choice ofys, one of the following cases applies.

1. z ∈ S‡(ys). Then by (130),Q(Y1,∅) = Q′′z (Y ′′) = z. From z ∈ S‡(ys),
we conclude thatQ(Y1,∅) = z ∈ S‡(γ). This is becauseS‡ ∈ K; hence
z ∈ S‡(ys) andys ≤ γ entails thatz ∈ S‡(γ), cf. Def. 52.

2. z /∈ S‡(ys). ThenQ(Y1,∅) = Q′′z (Y ′′) = z0 ∈ S‡(0). Becauseγ ≥ 0, we
again conclude thatQ(Y1,∅) = z0 ∈ S‡(γ).

This proves thatSQ,X,∅(γ) ⊆ S‡(γ) for all γ ∈ I. Let us now consider the converse
inequation thatS‡ ⊆ SQ,X,∅. Hence letz ∈ S‡(γ). We notice thatY1 = {(0, z)} ∪
({(1)} × [0, γ)) ∈ Tγ(X). We then havez = inf Y ′ andys = supY ′′ = γ. Because
of the assumption thatz ∈ S‡(γ) = S‡(ys), (124) and (130) result inQ(Y1,∅) =
Q′′z (Y ′′) = z. HenceSQ,X,∅(γ) ⊆ S‡(γ) for all γ ∈ I. Combining both inequations,
we obtain the desired

SQ,X,∅ = S‡ . (136)

Finally we show thatSQ,X,Y2 = S. Recalling thatY2 is an arbitrary crisp subset with
Y2 6= ∅, we deduce from (124) thatQ(Y1,∅) = Q′inf Y ′(Y

′′) for all Y1 ∈ Tγ(X) ⊆
P(2× I). Again,Q′inf Y ′(Y

′′) only depends onz = inf Y ′ andys = supY ′′. This is
obvious from (128). We also know from equations (132)–(135) thatys ∈ [0, γ]. For
any such choice ofys, one of the following cases applies.

92



i. z ∈ S(ys).
ThenQ(Y1, Y2) = Q′z(Y

′′) = z ∈ S(ys) ⊆ S(γ) by (128) and becauseys ≤ γ.

ii. z /∈ S(ys), z ≤ z0, S(ys) ∩ [0, z) 6= ∅.
ThenQ(Y1, Y2) = Q′z(Y

′′) = λ(z, ys) ∈ S(ys) ∩ [0, z) ⊆ S(ys) ⊆ S(γ) by
(128) and by definition of theλ(z, ys)’s.

iii. “else”.
ThenQ(Y1, Y2) = Q′z(Y

′′) = z0 ∈ S(0) ⊆ S(γ) by (128).

HenceSQ,X,Y2(γ) ⊆ S(γ) for all γ ∈ I. As concerns the converse inequation thatS ⊆
SQ,X,Y2 , we consider a choice ofz ∈ S(γ). As we observed above,Y1 = {(0, z)} ∪
({(1)} × [0, γ)) ∈ Tγ(X) with z = inf Y ′ andys = supY ′′ = γ. Because of the
assumption thatz ∈ S(γ) = S(ys), we obtain from (124) and (128) thatQ(Y1, Y2) =
Q′z(Y

′′) = z. HenceSQ,X,Y2(γ) ⊆ S(γ) for all γ ∈ I. Summarising these results, I
have shown that

SQ,X,Y2 = S . (137)

Therefore

Ω(S) = Ω(SQ,X,Y2) by (137)

= FΩ(Q)(X,Y2) by Def. 55

≤ FΩ(Q)(X,∅) by (Z-5)

= Ω(SQ,X,∅) by Def. 55

= Ω(S‡) . by (136)

b.: Ω(S) ≥ Ω(S‡). The proof of this case can be carried out in complete analogy to
that ofa. I hence only state the required changes. In this case, I define the semi-fuzzy
quantifierQ : P(2× I)2 −→ I by

Q(Y1, Y2) =
{
Q′inf Y ′(Y

′′) : Y2 = ∅

Q′′inf Y ′(Y
′′) : Y2 6= ∅

(138)

for all Y1, Y2 ∈ P(2× I), where again

Y ′ = {z ∈ I : (0, z) ∈ Y1} (139)

Y ′′ = {z ∈ I : (1, z) ∈ Y1} (140)

and the semi-fuzzy quantifiersQ′z, Q
′′
z : P(I) −→ I are now defined as follows. We

again choose an arbitraryz0 ∈ S(0), which is known to exist by Def. 52. Next we
consider somez ∈ I andys ∈ I. If z ≥ z0 andS(ys)∩ (z, 1] 6= ∅, then we can choose
someζ(z, ys) ∈ S(ys) ∩ (z, 1]. In particular,

ζ(z, ys) > z . (141)
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In dependence on the choices ofz0 and of theζ(z, ys)’s, we defineQ′z by

Q′z(Y
′′) =

 z : z ∈ S(ys)
ζ(z, ys) : z /∈ S(ys), z ≥ z0, S(ys) ∩ (z, 1] 6= ∅

z0 : else
(142)

for all Y ′′ ∈ P(I), where I abbreviate as above

ys = supY ′′ . (143)

The quantifierQ′′z is defined by (130), i.e. exactly as above. It is then apparent from the
definition ofQ in terms ofQ′z andQ′′z thatQ is nonincreasing in its second argument.
Based on the very same choice of the fuzzy subsetX ∈ P̃(2× I) as in the case ofa.,
one shows that

SQ,X,∅ = S (144)

and

SQ,X,Y2 = S‡ (145)

for an arbitrary crisp setY2 ∈ P(E), Y2 6= ∅. Based on these results, we then conclude
that

Ω(S) = Ω(SQ,X,∅) by (144)

= FΩ(Q)(X,∅) by Def. 55

≥ FΩ(Q)(X,Y2) by (Z-5)

= Ω(SQ,X,Y2) by Def. 55

= Ω(S‡) . by (145)

A.5 Proof of Theorem 36

Lemma 20 If Ω : K −→ I does not satisfy(Ω-1), thenFΩ does not satisfy(Z-1).

Proof Suppose there existsS ∈ K anda ∈ I such thatS(γ) = {a} for all γ ∈ I and

Ω(S) 6= a . (146)

We consider the nullary quantifierQ : P(E)0 −→ I defined byQ(∅) = a. We
observe that by Def. 31,Tγ(∅) = {∅} for all γ ∈ I. Hence

SQ,∅(γ) = {Q(Y ) : Y ∈ {∅}} by Def. 51

= {Q(∅)}
= a by definition ofQ

= S(γ) ,
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i.e.

SQ,∅ = S . (147)

Therefore

FΩ(Q)(∅) = Ω(SQ,∅) by Def. 55

= Ω(S) by (147)

6= a by (146)

= Q(∅) ,

i.e. (Z-1) fails, like we intended to show.

Lemma 21 ConsiderS, S′ ∈ K with 1 ∈ S(0), 1 ∈ S′(0), S(γ) ⊆ {0, 1} and
S′(γ) ⊆ {0, 1} for all γ ∈ I. If FΩ satisfies(Z-5) andS v S′, thenΩ(S) ≤ Ω(S′).

Proof Let us first make some general observations onS∗ ∈ {S, S′}. Because1 ∈
S∗(0), we know from Def. 52 that1 ∈ S∗(γ) for all γ ∈ I. In addition,0 ∈ S∗(γ)
for someγ ∈ I entails that0 ∈ S∗(γ′) for all γ′ ≥ γ. BecauseS∗(γ) ⊆ {0, 1} for all
γ ∈ I by assumption, we conclude thatS∗(γ) has one of the following forms.

S∗(γ) =
{
{1} : γ < s∗(0)
{0, 1} : γ ≥ s∗(0)

or

S∗(γ) =
{
{1} : γ ≤ s∗(0)
{0, 1} : γ > s∗(0)

wheres∗ : I −→ I is defined in terms ofS∗ according to Def. 53. It is then apparent
from Def. 57 that in this case,S v S′ entails that

S′(γ) ⊆ S(γ) (148)

for all γ ∈ I.
We now define a semi-fuzzy quantifierQ : P(I)2 −→ I by

Q(Y1, Y2) =


1 : inf Y1 = 0 and0 /∈ Y1

1 : Y2 = ∅ and0 /∈ S′(inf Y1)
1 : Y2 6= ∅ and0 /∈ S(inf Y1)
0 : else

(149)

for all Y1, Y2 ∈ P(I). It is then apparent from (148) thatQ is nonincreasing in the
second argument.
Now consider the following choice of argumentsX1, X2, X

′
2 ∈ P̃(E): X2 = I,X ′2 =

∅ and

µX1(v) = 1
2 + 1

2v ,
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for all v ∈ I. It is apparent from Def. 31 that

Tγ(X2) = {I} (150)

Tγ(X ′2) = {∅} (151)

for all γ ∈ I. ConsideringTγ(X1), we obtain for(X1)min
γ and(X1)max

γ in the case
thatγ = 0,

(X1)min
0 = (X1)

>
1
2

= (0, 1] (152)

(X1)max
0 = (X1)

≥ 1
2

= I (153)

and in the case thatγ > 0,

(X1)min
γ = (X1)

≥ 1
2 +

1
2γ

= [γ, 1] (154)

(X1)max
γ = (X1)

>
1
2−

1
2γ

= I . (155)

In the following, assume a choice ofγ ∈ I. We first considerSQ,X1,X2(γ). It is
apparent from (152), (154) and (155) thatY1 = (0, 1] ∈ Tγ(X1). By (150),I = X2 ∈
Tγ(X2). Hence

Q((0, 1], I) = 1 ∈ SQ,X1,X2(γ) , (156)

see (149). We now discern two cases.

• 0 /∈ S(γ).
Noticing thatinf Y1 ≤ γ for all Y1 ∈ Tγ(X1) by (152) and (154), we obtain from
Def. 52 thatS(inf Y1) ⊆ S(γ) and hence0 /∈ S(inf Y1) for all Y1 ∈ Tγ(X1).
HenceQ(Y1, Y2) = 1 for all Y1 ∈ Tγ(X1) andY2 ∈ Tγ(X2), i.e. Y2 = I by
(150) andSQ,X1,X2(γ) = {1}. Because0 /∈ S(γ), we also haveS(γ) = {1},
i.e.SQ,X1,X2(γ) = S(γ), as desired.

• 0 ∈ S(γ).
We already know from (156) that(Y1, Y2) ∈ Tγ(X1, X2) exists withQ(Y1, Y2) =
1, i.e. 1 ∈ SQ,X1,X2(γ). Recalling (153) and (155), we also know thatY1 =
[γ, 1] ∈ Tγ(X1). In addition,Y2 = I ∈ Tγ(X2) by (150). HenceQ(Y1, Y2) =
0 ∈ SQ,X1,X2(γ) by (149). We conclude thatSQ,X1,X2(γ) = {0, 1} because
Q is two-valued. ConsideringS, we know that0 ∈ S(γ) (by assumption of
this case) and that1 ∈ S(γ) because1 ∈ S(0). In addition,S(γ) ⊆ {0, 1} by
assumption of the lemma. HenceS(γ) = {0, 1} = SQ,X1,X2(γ).

Summarizing, I have shown that

S = SQ,X1,X2 . (157)

Next we considerSQ,X1,X′2
. We first observe that by similar reasoning based on (152),

(154), (155),

Q((0, 1],∅) = 1 ∈ SQ,X1,X′2
(γ) , (158)

by (149). Now we proceed as above and again discern the two cases.
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• 0 /∈ S′(γ).
Noticing thatinf Y1 ≤ γ for all Y1 ∈ Tγ(X1) by (152) and (154), we obtain from
Def. 52 thatS(inf Y1) ⊆ S(γ) and hence0 /∈ S(inf Y1) for all Y1 ∈ Tγ(X1).
HenceQ(Y1, Y2) = 1 for all Y1 ∈ Tγ(X1) andY2 ∈ Tγ(X ′2), i.e.Y2 = ∅ by
(151) andSQ,X1,X′2

(γ) = {1}. Because0 /∈ S′(γ), we also haveS′(γ) = {1},
i.e.SQ,X1,X′2

(γ) = S′(γ).

• 0 ∈ S′(γ).
In this case, we know from (158) that there exist(Y1, Y2) ∈ Tγ(X1, X

′
2) with

Q(Y1, Y2) = 1, i.e. 1 ∈ SQ,X1,X′2
(γ). Again recalling (153) and (155), we

also know thatY1 = [γ, 1] ∈ Tγ(X1). In addition,Y2 = ∅ ∈ Tγ(X ′2) by
(151). HenceQ(Y1, Y2) = 0 ∈ SQ,X1,X′2

(γ) by (149). We conclude that
SQ,X1,X′2

(γ) = {0, 1} becauseQ is two-valued. ConsideringS′, we know that
0 ∈ S′(γ) (by assumption of this case) and that1 ∈ S′(γ) because1 ∈ S′(0). In
addition,S′(γ) ⊆ {0, 1} by assumption of the lemma. HenceS′(γ) = {0, 1} =
SQ,X1,X′2

(γ).

This proves that

S′ = SQ,X1,X′2
. (159)

Therefore

Ω(S′) = Ω(SQ,X1,X′2
) by (159)

= FΩ(Q)(X1, X
′
2) by Def. 55

≥ FΩ(Q)(X1, X2) by (Z-5)

= Ω(SQ,X1,X2) by Def. 55

= Ω(S) . by (157)

Lemma 22 SupposeΩ : K −→ I is a mapping such thatFΩ satisfies(Z-5). If Ω does
not fulfill (Ω-3), thenFΩ violates(Z-2).

Proof SupposeΩ : K −→ I fails on (Ω-3). Then there existsS ∈ K such that
S(γ) ⊆ {0, 1} for all γ ∈ I, 1 ∈ S(0) and

Ω(S) 6= 1
2 + 1

2s(0) . (160)

We shall discern four cases.

a. s(0) > 0 and 0 6∈ S(s(0)). In this case, let{∗} be an arbitrary singleton set and
defineX ∈ P({∗}) by

µX(∗) = 1
2 + 1

2s(0) . (161)
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Becauses(0) > 0, we have

Xmin
0 = X

>
1
2

= {∗}

Xmax
0 = X

≥ 1
2

= {∗}

and forγ > 0,

Xmin
γ = X

≥ 1
2 +

1
2γ

=
{
{∗} : γ ≤ s(0)
∅ : γ > s(0)

Xmax
γ = X

>
1
2 +

1
2γ

= {∗} .

Therefore

Sπ∗,X(γ) =
{
{1} : γ ≤ s(0)
{0, 1} : γ > s(0)

= S(γ)

for all γ ∈ I, i.e.

Sπ∗,X = S . (162)

In turn

π̃∗X = µX(∗) by Def. 7

= 1
2 + 1

2s(0) by (161)

6= Ω(S) by (160)

= Ω(Sπ∗,X) bt (162)

= FΩ(π∗)(X) , by Def. 55

i.e.Ω fails on (Z-2).

b. s(0) = 0 and 0 ∈ S(0).
In this case we defineX ∈ P̃({∗}) by µX(∗) = 1

2 . Then by Def. 31,

Xmin
0 = X

>
1
2

= ∅

Xmax
0 = X

≥ 1
2

= {∗}

and forγ > 0,

Xmin
γ = X

≥ 1
2 +

1
2γ

= ∅

Xmax
γ = X

>
1
2−

1
2γ

= {∗} .
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Therefore

Sπ∗,X(γ) = {0, 1} = S(γ)

for all γ ∈ I, i.e.

Sπ∗,X = S (163)

Hence again

π̃∗X = µX(∗) by Def. 7

= 1
2 by choice ofX

6= Ω(S) by (160)

= Ω(Sπ∗,X) bt (163)

= FΩ(π∗)(X) , by Def. 55

i.e.FΩ violates (Z-2).
Having shown that proper behaviour ofΩ in the casesa. andb. is necessary forFΩ to
satisfy (Z-2), we can now assume without loss of generality that

Ω(S) = 1
2 + 1

2s(0) (164)

wheneverS ∈ K satisfies1 ∈ S(0), S(γ) ⊆ {0, 1} for all γ ∈ I, and it either holds
thats(0) > 0 and0 /∈ S(s(0)), or it holds thats(0) = 0 and0 ∈ S(0).
In addition,Ω is known to fulfill the property stated in L-21 because it is supposed to
satisfy (Z-5).

c. s(0) > 0 and 0 ∈ S(s(0)).
In this case letε ∈ (0, s) and defineS′, S′′ ∈ K by

S′(γ) =
{
{1} : γ ≤ s(0)− ε
{0, 1} : γ > s(0)− ε (165)

S′′(γ) =
{
{1} : γ ≤ s(0) + ε
{0, 1} : γ > s(0) + ε

(166)

It is apparent from Def. 57 thatS′ v S v S′′. We also notice thats′(0) ands′′(0),
as defined by Def. 53 in terms ofS′ andS′′, resp., are given bys′(0) = s(0) − ε and
s′′(0) = s(0) + ε. In addition,S′ andS′′ apparently satisfy the conditions of casea.
Therefore

1
2 + 1

2s(0)− 1
2ε = Ω(S′) by (164)

≤ Ω(S) by L-21

≤ Ω(S′′) by L-21

= 1
2 + 1

2s(0) + 1
2ε .

Hence

Ω(S) ∈ [ 1
2 + 1

2s(0)− 1
2ε,

1
2 + 1

2s(0) + 1
2ε] .

ε→ 0 then yieldsΩ(S) = 1
2 + 1

2s(0), as desired.
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d. s(0) = 0 and 0 6∈ S(0). In this case, considerS′ ∈ K defined by

S′(γ) = {0, 1} (167)

for all γ ∈ I. By Def. 57, we haveS′ v S. Hence by L-21,Ω(S) ≥ Ω(S′) = 1
2 . On

the other hand, considerS′′ ∈ K defined by

S′′(γ) =
{
{1} : γ ≤ ε
{0, 1} : γ > ε

(168)

for someε > 0. Apparentlys′′(0) = ε andS v S′′. We hence obtain

1
2 + 1

2ε = Ω(S′′) by (164)

a ≥ Ω(S) . by L-21

ε→ 0 yieldsΩ(S) ≤ 1
2 . Combining this with the above inequationΩ(S) ≥ 1

2 finishes
the proof of cased.

Lemma 23 Let Ω : K −→ I be given. IfFΩ is a DFS, thenFΩ induces the standard
negationF̃Ω(¬) = ¬.

Proof SupposeΩ : K −→ I is a mapping such thatFΩ is a DFS. ThenΩ satisfies
(Ω-3) by L-22. In the following, we shall abbreviatẽ¬ = F̃Ω(¬). In addition, let us
recall that by Def. 8,̃¬(x) = Q′(X) for all x ∈ I, whereQ′ : P({1}) −→ 2 is defined
by

Q′(Y ) = ¬η−1(Y ) (169)

for all Y ∈ P({1}), andX ∈ P̃({1}) is defined byX = η̃(x), i.e.

µX(1) = x . (170)

Now letx ∈ [0, 1
2 ). By Def. 31,

Xmin
0 = X

>
1
2

= ∅

Xmax
0 = X

≥ 1
2

= ∅

and forγ > 0,

Xmin
γ = X

≥ 1
2 +

1
2γ

= ∅

Xmax
γ = X

>
1
2−

1
2γ

=
{
∅ : γ ≤ 1− 2x
{1} : γ > 1− 2x

Hence by Def. 51

SQ′,X(γ) =
{
{1} : γ ≤ 1− 2x
{0, 1} : γ > 1− 2x (171)
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for all γ ∈ I. BecauseΩ is assumed to satisfy (Ω-3), we conclude that

¬̃x = FΩ(Q′)(X) by Def. 8, (170)

= Ω(SQ′,X) by Def. 55

= 1
2 + 1

2s(0) by (Ω-3)

= 1
2 + 1

2 (1− 2x) by (171), Def. 53

= 1− x .

This proves that

¬̃x = 1− x , (172)

for all x ∈ [0, 1
2 ). Now let x ∈ ( 1

2 , 1]. By assumption,FΩ is a DFS, i.e.¬̃ is a
strong negation operator by Th-1. In particular,¬̃ is an involutive bijection by Def. 18.
Becausẽ¬ is involutive, it holds thatx = ¬̃ ¬̃x. On the other hand,x ∈ ( 1

2 , 1] implies
that1 − x ∈ [0, 1

2 ). Hence by (172),x = 1 − (1 − x) = ¬̃(1 − x). Combining both
equations, we havẽ¬ ¬̃x = ¬̃(1 − x). But ¬̃ is an injection, i.e. we can cancel the
leftmost¬̃ to obtain the desired̃¬x = 1 − x. This proves that̃¬x = 1 − x for all
x ∈ I\{ 1

2}. It is then apparent from the fact that¬̃ is a bijection that it fulfills¬̃ 1
2 = 1

2 ,
which finishes the proof that̃¬ = ¬.

Lemma 24 SupposeΩ : K −→ I is a mapping such thatFΩ induces the standard
negation. IfΩ does not satisfy(Ω-2), thenFΩ does not satisfy(Z-3).

Proof Let Ω : K −→ I be a given mapping such thatFΩ induces the standard
negationF̃Ω(¬) = ¬, ¬x = 1x. Further suppose thatΩ violates (Ω-2), i.e. there exists
S ∈ K such that

Ω(S) 6= 1− Ω(S′) , (173)

whereS′(γ) = {1 − z : z ∈ S(γ)} for all γ ∈ I. By Th-33 there existsQ :
P(2× I) −→ I,X ∈ P̃(2× I) with

SQ,X = S (174)

Hence

SQ�,¬X = S¬Q¬,¬X by Def. 11

= S′′ by L-2 and L-5

where

S′′(γ) = {1− z : z ∈ SQ,X(γ)}

for all γ ∈ I. Hence by (174),S′ = S′′, i.e.

SQ�,¬X = S′ . (175)
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Hence

FΩ(Q�)(¬X) = Ω(SQ�,¬X) by Def. 55

= Ω(S′) by (175)

6= 1− Ω(S) by (173)

= 1− Ω(SQ,X) by (174)

= ¬FΩ(Q)(X) by Def. 55

= ¬FΩ(Q)(¬¬X) because¬¬X = X

= FΩ(Q)�(¬X) , by Def. 11

i.e.FΩ violates (Z-3).

Lemma 25 SupposeΩ : K −→ I is given. IfFΩ satisfies(Z-5), thenΩ satisfies(Ω-5).

Proof Let Ω : K −→ I be given and supposeFΩ satisfies (Z-5). In order to show
thatΩ satisfies (Ω-5), we consider a choice ofS, S′ ∈ K such thatS v S′. It is then
apparent from Def. 57 and Def. 59 that

S‡ v S′‡

as well. We define a semi-fuzzy quantifierQ : P(2× I)2 −→ I by

Q(Y1, Y2) =
{
Q′inf Y ′(Y

′′) : Y2 = ∅

Q′′inf Y ′(Y
′′) : Y2 6= ∅

(176)

for all Y1, Y2 ∈ P(E), where

Y ′ = {z ∈ I : (0, z) ∈ Y1} (177)

Y ′′ = {z ∈ I : (1, z) ∈ Y1} . (178)

In order to define the semi-fuzzy quantifiersQ′z, Q
′′
z : P(I) −→ I, z ∈ I, we first

choosez0 ∈ S(0), z′0 ∈ S′(0). BecauseS v S′, we can assume a choice ofz0, z
′
0

such that

z0 ≤ z′0 . (179)

Based onz0 andz′0, the quantifiers are then defined by

Q′z(Y
′′) =

{
z : z ∈ S′‡(ys)
z′0 : z /∈ S′‡(ys)

(180)

Q′′z (Y ′′) =
{
z : z ∈ S‡(ys)
z0 : z /∈ S‡(ys)

(181)

for all Y ′′ ∈ P(I), where

ys = supY ′′ . (182)
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Let us now prove thatQ is nonincreasing in its second argument. It is apparent from
(176) that the only critical case is that ofY2 = ∅, Y ′2 6= ∅. Hence letY ′2 6= ∅ ∈
P(2× I) be given and letY1 ∈ P(2× I). We abbreviatez = inf Y ′. It is obvious
from (176) that

Q(Y1,∅) = Q′z(Y
′′)

Q(Y1, Y
′
2) = Q′′z (Y ′′) ,

and I will repeatedly use these equations in the following. It is now convenient to
discern four cases.

1. z /∈ S′‡(ys) andz /∈ S‡(ys).
ThenQ(Y1,∅) = Q′z(Y

′′) = z′0 ≥ z0 = Q′′z (Y ′′) = Q(Y1, Y
′
2) by (180), (181)

and (179).

2. z ∈ S′‡(ys) andz /∈ S‡(ys).
Then z > v for all v ∈ S‡(ys) becauseS‡ v S′

‡. In particular,z > z0.
ThereforeQ(Y1,∅) = Q′′z (Y ′′) = z > z0 = Q′z(Y

′′) = Q(Y1, Y
′
2) by (180)

and (181).

3. z ∈ S′‡(ys) andz ∈ S‡(ys).
ThenQ(Y1,∅) = Q′′z (Y ′′) = z = Q′z(Y

′′) = Q(Y1, Y
′
2) by (180) and (181). In

particularQ(Y1,∅) ≥ Q(Y1, Y
′
2).

4. z /∈ S′‡(ys) andz ∈ S‡(ys).
Then z < v for all v ∈ S′

‡(ys) becauseS‡ v S′
‡. In particularz < z′0.

ThereforeQ(Y1,∅) = Q′′z (Y ′′) = z′0 > z = Q′z(Y
′′) = Q(Y1, Y

′
2) by (180)

and (181).

This finishes the proof thatQ is nonincreasing in its second argument. Now consider
the fuzzy subsetX ∈ P̃(2× I) defined by

µX(a, y) =

{
1
2 : a = 0
1
2 −

1
2y : a = 1

for all a ∈ 2, y ∈ I. We notice that this is the same choice of fuzzy set as used in the
proof of Th-35, equation (131). In fact, it is now routine work to show that

SQ,X,∅ = S′
‡ (183)

SQ,X,Y ′2 = S‡ . (184)

(We simply need to recognize that the above cases are analogous to that of computing
Q(X,∅) in parta. of the proof of Th-35.)
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Therefore

Ω(S) = Ω(S‡) by Th-35

= Ω(SQ,X,Y ′2 ) by (184)

= FΩ(Q)(X,Y ′2) by Def. 55

≤ FΩ(Q)(X,∅) by (Z-5)

= Ω(SQ,X,∅) by Def. 55

= Ω(S′‡) by (183)

= Ω(S′) , by Th-35

which finishes the proof of the lemma.

Lemma 26 Consider a choice ofS ∈ K. Then

S](γ) ⊆ S(γ′)

for all γ, γ′ ∈ I with γ < γ′.

Proof SupposeS ∈ K andγ, γ′ ∈ I with γ < γ′ are given. In particularγ < 1.
Hence by Def. 56,

S](γ) = ∩
γ′′>γ

S(γ′′) by Def. 56 andγ < 1

= (∩{S(γ′′) : γ′′ > γ, γ′′ 6= γ}) ∩ S(γ′)
⊆ S(γ′) .

Lemma 27 SupposeΩ : K −→ I satisfies(Ω-2) and (Ω-3). For a given choice of
S ∈ K, we defineS1 ∈ K by

S1(γ) =
{
S](0) : γ = 0
S(γ) : γ > 0 (185)

for all γ ∈ I. If FΩ satisfies(Z-6), then

a. Ω(S1) = Ω(S]);

b. Ω(S) = Ω(S1).

Proof Consider a choice ofΩ : K −→ I which satisfies (Ω-2) and (Ω-3). We then
know from L-3 thatFΩ coincides withM for all two-valued quantifiers. We also
know from Th-12 thatM is a standard DFS. In particular, it induces the standard
extension principle. We notice that the induced extension principle depends on two-
valued quantifiers only, see Def. 16. ThereforeFΩ induces the standard extension
principle as well.
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Now let us assume that (Z-6) is valid forΩ. We consider a choice ofS ∈ K and assume
thatS1 ∈ K is given by (185). Let us now define a mappingg : 2× I× I −→ 2× I by

g(c, z1, z2) = (c, z1) (186)

for all c ∈ 2, z1, z2 ∈ I. In addition, let us define a fuzzy subsetX ∈ P̃(2× I× I) by

µX(c, z1, z2) =


1
2 : c = 0
1
2 + 1

2z2 : c = 1, z2 < z1

1
2z2 : c = 1, z1 = 0, z2 < 1
0 : else

(187)

for all c ∈ 2, z1, z2 ∈ I. I now investigate some cut ranges. Forγ = 0, we obtain from
Def. 31 and (187) that

Xmin
0 = X

>
1
2

= {(1, z1, z2) : z1 > z2}

Xmax
0 = X

≥ 1
2

= ({0} × I× I) ∪ {(1, z1, z2) : z1 > z2} .

Similarly for γ > 0,

Xmin
γ = X

≥ 1
2 +

1
2γ

= {(1, z1, z2) : z1 > z2 ≥ γ}

Xmax
γ = X

>
1
2−

1
2γ

= ({0} × I× I) ∪ {(1, z1, z2) : z1 > z2} ∪ {(1, 0, z2) : z2 > 1− γ} .

In turn by Def. 15 and (186),

ĝ(Xmin
0 ) = {1} × (0, 1] (188)

ĝ(Xmax
0 ) = ({0} × I) ∪ ({1} × (0, 1]) (189)

and forγ > 0,

ĝ(Xmin
γ ) = {1} × (γ, 1] (190)

ĝ(Xmax
γ ) = ({0} × I) ∪ ({1} × I) . (191)

In the following, I abbreviateV = ˆ̂g(X). It is apparent from (3) that

µV (c, z1) =

{
1
2 : c = 0
1
2 + 1

2z1 : c = 1
(192)

for all c ∈ 2, z1 ∈ I. Hence by Def. 31,

V min
0 = V

>
1
2

= {1} × (0, 1] (193)

V max
0 = V

≥ 1
2

= ({0} × I) ∪ ({1} × I) (194)

and forγ > 0,

V min
γ = V

≥ 1
2 +

1
2γ

= {1} × [γ, 1] (195)

V max
γ = ({0} × I) ∪ ({1} × I) . (196)

We are now prepared to prove both parts of the lemma.
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a.: Ω(S1) = Ω(S]).
In order to show this, we define a fuzzy quantifierQ : P(2× I) −→ I by

Q(Y ) = Qinf Y ′(Y ′′) (197)

for all Y ∈ P(2× I), where

Y ′ = {z ∈ I : (0, z) ∈ Y } (198)

Y ′′ = {z ∈ I : (1, z) ∈ Y } . (199)

Based on an an arbitrary choice ofz0 ∈ S(0), the semi-fuzzy quantifiersQz : P(I) −→
I, z ∈ I, are defined by

Qz(Y ′′) =


z : y` = 0, z ∈ S](0)
z : y` > 0, z ∈ S(y`), y` ∈ Y ′′
z : y` > 0, z ∈ S](y`), y` /∈ Y ′′
z0 : else

(200)

for all Y ′′ ∈ P(I), where I have abbreviated

y` = inf Y ′′ . (201)

In order to show thatSQ◦ĝ,X = S], it is convenient to prove the following subsumption
first, SQ◦ĝ,X(γ) ⊆ S](γ) for all γ ∈ I. In the case thatγ = 0, we havey` = 0 for all
Y ∈ {ĝ(Z) : Z ∈ T0(X)}, see (188), (189). Now considerz = inf Y ′. By (200), we
haveQ(Y ) = Qz(Y ′′) = z if z ∈ S](0), i.e.Q(Y ) = z ∈ S](0). In the remaining
case thatz /∈ S](0), we obtainQ(Y ) = Qz(Y ′′) = z0 ∈ S(0) ⊆ S](0). Now consider
γ > 0. Theny` ∈ [0, γ]. Depending onz = inf Y ′, one of the following cases applies.
If y` = 0 andz ∈ S](0), thenQ(Y ) = Qz(Y ′′) = z ∈ S](0) ⊆ S](γ). If y` > 0,
z ∈ S(y`) andy` ∈ Y ′′, thenQ(Y ) = Qz(Y ′′) = z ∈ S(y`) ⊆ S(γ) ⊆ S](γ). If
y` > 0, z ∈ S](y`) andy` /∈ Y ′′, thenQ(Y ) = Qz(Y ′′) = z ∈ S](y`) ⊆ S](γ). In
the remaining cases,Q(Y ) = Qz(Y ′′) = z0 ∈ S(0) ⊆ S](γ).
Now we prove the converse subsumption, vizS](γ) ⊆ SQ◦ĝ,X(γ) for all γ ∈ I. Hence
let γ ∈ I be given and considerz ∈ S](γ). It is apparent from (188) and (189) (in the
case thatγ = 0) or (190) and (191) (in the case thatγ > 0) thatY = {(0, z)}∪ ({1}×
(γ, 1]) ∈ {ĝ(Z) : Z ∈ Tγ(X)}. We notice that by (198),inf Y ′ = inf{z} = z and by
(199),y` = inf Y ′′ = inf(γ, 1] = γ. Becausey` = γ /∈ Y ′′, we obtain from (197) and
(200) thatQ(Y ) = Qz(Y ′′) = z becausez ∈ S](γ) = S](y`). Summarizing, I have
shown that

SQ◦ĝ,X = S] . (202)

Next I will show thatS
Q,

ˆ
ĝ(X)

= S1. Hence letγ ∈ I. I first prove thatS
Q,

ˆ
ĝ(X)

(γ) ⊆

S1(γ). If γ = 0, theny` = 0 for all Y ∈ T0(ˆ̂g(X)) = T0(V ), see (193), (194) and
(201). Let us abbreviatez = inf Y ′. If z ∈ S](0) = S1(0), thenQ(Y ) = Qz(Y ′′) =
z ∈ S1(0) by (197) and (200). Ifz /∈ S](0), thenQ(Y ) = Qz(Y ′′) = z0 ∈ S(0) ⊆
S](0) = S1(0) by (197) and (200). Now we consider the case thatγ > 0. Then
y` ∈ [0, γ] by (195) and (196). Ify` < γ, we either haveQ(Y ) = Qz(Y ′′) = z0 ∈

106



S(0) ⊆ S(γ) = S1(γ), or Q(Y ) = Qz(Y ′′) = z ∈ S(y`) ⊆ S(γ) = S1(γ), or
Q(Y ) = Qz(Y ′′) = z ∈ S](y`) ⊆ S(γ) = S1(γ) by L-26 becausey` < γ. Finally if
y` = γ, theny` ∈ Y ′′ by (195) and (196). Hence by (197) and (200), eitherQ(Y ) =
Qz(Y ′′) = z, wherez ∈ S(γ) = S1(γ), orQ(Y ) = Qz(Y ′′) = z0 ∈ S(0) ⊆ S(γ) =
S1(γ). This finishes the proof thatS

Q,
ˆ
ĝ(X)

(γ) ⊆ S1(γ) for all γ ∈ I. to see that the

converse subsumption also holds, we consider a choice ofγ ∈ I andz ∈ S0(γ). We
notice that by (193) and (194) (in the case thatγ = 0) or (195) and (196) (in the case
that γ > 0), we can chooseY = {(0, z)} ∪ [γ, 1] ∈ Tγ(ˆ̂g(X)) = Tγ(V ). For this
choice ofY , we clearly obtaininf Y ′ = inf{z} = z andinf Y ′′ = inf[γ, 1] = γ. By
assumption, it holds thatz ∈ S1(γ). Hence ifγ = 0, thenQ(Y ) = Qz(Y ′′) = z
becausez ∈ S1(0) = S](0) by (185). In the remaining case thatγ > 0, we also obtain
thatQ(Y ) = Qz(Y ′′) = z becausey` ∈ Y ′′ andz ∈ S1(γ) = S(γ), again by (185).
Hence the converse subsumption relationship also holds, and we can summarize these
results as

S
Q,

ˆ
ĝ(X)

= S1 . (203)

We conclude that

Ω(S1) = Ω(S
Q,

ˆ
ĝ(X)

) by (203)

= FΩ(Q)(ˆ̂g(X)) by Def. 55

= FΩ(Q ◦ ĝ)(X) by (Z-6)

= Ω(SQ◦ĝ,X) by Def. 55

= Ω(S]) , by (202)

which finishes the proof of parta.

b.: Ω(S) = Ω(S1).
In order to proof the second part of the lemma, replace the definition of theQz ’s in
parta. with the following modified definition:

Qz(Y ′′) =


z : y` = 0, y` ∈ Y ′′, z ∈ S](0)
z : y` = 0, y` /∈ Y ′′, z ∈ S(0)
z : y` > 0, z ∈ S(y`)
z0 : else

(204)

for all Y ′′ ∈ P(I), assuming again some arbitrary choice ofz0 ∈ S(0). The definition
of Q in terms of these modifiedQz ’s and the definitions ofY ′, Y ′′ andy` remain un-
changed, see (197), (198), (199) and (201), respectively.
In the following, I prove thatS

Q,
ˆ
ĝ(X)

= S1. To this end, I first consider the sub-

sumptionS
Q,

ˆ
ĝ(X)

(γ) ⊆ S1(γ). In the case thatγ = 0, it is apparent from (193)

and (194) thaty` = 0 for each choice ofY ∈ T0(ˆ̂g(X)) = T0(V ). Recalling
(197) and (204), the following cases may apply. Ify` ∈ Y ′′ andz ∈ S](0), then
Q(Y ) = Qz(Y ′′) = z ∈ S](0) = S1(0) by (185). If y` /∈ Y ′′ andz ∈ S(0), then
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Q(Y ) = Qz(Y ′′) = z ∈ S(0) ⊆ S](0) = S1(0). If neither of these conditions ap-
ply, thenQ(Y ) = Qz(Y ′′) = z0 ∈ S(0) ⊆ S](0) = S1(0). Next we consider the
case thatγ > 0. Theny` ∈ [0, γ]. We already know that fory` = 0, we obtain that
Q(Y ) ∈ S1(0) ⊆ S1(γ). If y` ∈ (0, γ], then eitherQ(Y ) = Qz(Y ′′) = z ∈ S(y`) ⊆
S(γ) = S1(γ) or Q(Y ) = Qz(Y ′′) = z0 ∈ S(0) ⊆ S(γ) = S1(γ). Hence indeed
S
Q,

ˆ
ĝ(X)

(γ) ⊆ S1(γ) for all γ ∈ I. As concerns the converse inequation, consider a

choice ofγ ∈ I andz ∈ S1(γ). We notice thatY = {(0, z)} ∪ ({1} × [γ, 1]) ∈
Tγ(ˆ̂g(X)) = Tγ(V ) by (193) and (194) (in the case thatγ = 0) or by (195) and
(196) (in the case thatγ > 0). We then obtain thatinf Y ′ = inf{z} = z and
y` = inf Y ′′ = inf[γ, 1] = γ. If γ = 0, we conclude from (197), (204) and0 ∈ Y ′′
thatQ(Y ) = Qz(Y ′′) = z becausez ∈ S1(0) = S](0) = S](y`). If γ > 0, then
Q(Y ) = Qz(Y ′′) = z becausez ∈ S1(γ) = S(γ) = S(y`). Hence the converse
inequation also holds, which finishes the proof that

S1 = S
Q,

ˆ
ĝ(X)

. (205)

It remains to be shown thatSQ◦ĝ,X = S. Again, I first prove thatSQ◦ĝ,X(γ) ⊆ S(γ)
for all γ ∈ I. Hence letγ ∈ I be given. Ifγ = 0, then we obtain from (188)
and (189) thaty` = 0. In addition,y` /∈ Y ′′ = (0, 1] regardless of the choice of
Y ∈ {ĝ(Z) : Z ∈ T0(X)}. Hence ifz ∈ S(0), thenQ(Y ) = Qz(Y ′′) = z ∈ S(0)
by (197) and (204). Otherwise we obtainQ(Y ) = Qz(Y ′′) = z0 ∈ S(0). Now we
consider the case thatγ > 0. Theny` ∈ [0, γ] by (190) and (191). Ifγ = 0, then
we either haveQ(Y ) = Qz(Y ′′) = z ∈ S(0) ⊆ S(γ), orQ(Y ) = Qz(Y ′′) = z ∈
S](0) ⊆ S(γ) by L-26, orQ(Y ) = Qz(Y ′′) = z0 ∈ S(0) ⊆ S(γ). If γ > 0, we
obtain from (197) and (204) that eitherQ(Y ) = Qz(Y ′′) = z ∈ S(y`) ⊆ S(γ) or
Q(Y ) = Qz(Y ′′) = z0 ∈ S(0) ⊆ S(γ). In any case,Q(Y ) ∈ S(γ), as desired. This
proves thatSQ◦ĝ,X(γ) ⊆ S(γ) for all γ ∈ I. To establish the converse inequation,
we again considerγ ∈ I and a choice ofz ∈ S(γ). We notice that by (188) and
(189) (in the case thatγ = 0) or by (190) and (191) (in the case thatγ > 0), we may
chooseY = {(0, z)} ∪ ({1} × (γ, 1]) ∈ {ĝ(Z) : Z ∈ Tγ(X)}. Again, we obtain that
inf Y ′ = inf{z} = z andY ′′ = (γ, 1], i.e.y` = inf(γ, 1] = γ. In the case thatγ = 0,
we then obtain from (197) and (204) thatQ(Y ) = Qz(Y ′′) = z becausez ∈ S(0) =
S(y`). In the case thatγ > 0, we similarly obtain thatQ(Y ) = Qz(Y ′′) = z because
z ∈ S(γ) = S(y`). This finishes the proof of the converse inequation, and we can
summarize these inequations as stating that

S = SQ◦ĝ,X . (206)

Therefore

Ω(S) = Ω(SQ◦ĝ,X) by (206)

= FΩ(Q ◦ ĝ)(X) by Def. 55

= FΩ(Q)(ˆ̂g(X)) by (Z-6)

= Ω(S
Q,

ˆ
ĝ(X)

) by Def. 55

= Ω(S1) , by (205)

i.e. partb. of the lemma holds, as desired.
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Lemma 28 SupposeΩ : K −→ I is a given aggregation mapping which satisfies(Ω-2)
and (Ω-3). If FΩ satisfies(Z-6), thenΩ satisfies(Ω-4).

Proof This is now trivial because

Ω(S) = Ω(S1) by L-27, partb.

= Ω(S]) . by L-27, parta.

Proof of Theorem 36

The results of the preceeding lemmata can be summarized as stating that (Ω-1) to (Ω-5)
are necessary forFΩ to be a DFS: (Ω-1) is known to be necessary forFΩ to satisfy
(Z-1) by L-20. Lemma L-22 shows that (Ω-3) is necessary forFΩ to be a DFS. Lemma
L-23 shows thatFΩ can only be a DFS if it induces the standard negation, and L-24
hence proves that (Ω-2) is necessary forFΩ to be a DFS. Lemma L-25 shows that
(Ω-5) is necessary forFΩ to satisfy (Z-5). Finally, lemma L-28 proves that (Ω-4) is
necessary forFΩ to be a DFS, by relation this condition to (Z-6). This finishes the
proof that (Ω-1)–(Ω-5) are necessary forFΩ to be a DFS.

A.6 Proof of Theorem 37

Let ξ : T −→ I be given and defineΩ : K −→ I by (34), i.e.

Ω(S) = ξ(>S ,⊥S)

for all S ∈ K. Now consider a semi-fuzzy quantifierQ : P(E)n −→ I and a choice
of fuzzy argumentsX1, . . . , Xn ∈ P̃(E). We notice that

>Q,X1,...,Xn(γ) = sup{Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)}
= supSQ,X1,...,Xn(γ)

by Def. 44, Def. 51 and (35), and similarly

⊥Q,X1,...,Xn(γ) = inf{Q(Y1, . . . , Yn) : (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn)}
= inf SQ,X1,...,Xn(γ)

for all γ ∈ I by (36), i.e.

>Q,X1,...,Xn = supSQ,X1,...,Xn (207)

⊥Q,X1,...,Xn = inf SQ,X1,...,Xn . (208)

Therefore

Fξ(Q)(X1, . . . , Xn) = ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) by Def. 46

= ξ(supSQ,X1,...,Xn , inf SQ,X1,...,Xn) by (207), (208)

= Ω(SQ,X1,...,Xn) by (34)

= FΩ(Q)(X1, . . . , Xn) . by Def. 55
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A.7 Proof of Theorem 38

Lemma 29 Supposeξ : T −→ I is given andΩ : K −→ I is defined in terms ofξ by
(34). For (>,⊥) ∈ T, we defineS(>,⊥) : I −→ P(I) by

S(>,⊥)(γ) = [⊥(γ),>(γ)] , (209)

for all γ ∈ I. ThenS(>,⊥) ∈ K, >S(>,⊥) = >, ⊥S(>,⊥) = ⊥ and henceξ(>,⊥) =
Ω(S(>,⊥)).

Proof By Def. 45,⊥(0) ≤ >(0), i.e.S(>,⊥)(0) = [⊥(0),>(0)] 6= ∅. In addition,
we have⊥(γ′) ≤ ⊥(γ) and>(γ′) ≥ >(γ) wheneverγ′ > γ, i.e. S(>,⊥)(γ) =
[⊥(γ),>(γ)] ⊆ [⊥(γ′),>(γ′)] = S(>,⊥)(γ′). HenceS(>,⊥) ∈ K by Def. 52. Now
considerγ ∈ I. We clearly have

>S(>,⊥)(γ) = supS(>,⊥)(γ) by (35)

= sup[⊥(γ),>(γ)] by (209)

= >(γ)

and similarly

⊥S(>,⊥)(γ) = inf S(>,⊥)(γ) by (36)

= inf[⊥(γ),>(γ)] by (209)

= ⊥(γ) ,

i.e.

> = >S(>,⊥) (210)

⊥ = ⊥S(>,⊥) . (211)

Therefore

ξ(>,⊥) = ξ(>S(>,⊥) ,⊥S(>,⊥)) by (210), (211)

= Ω(S(>,⊥)) , by (34)

as desired.

Lemma 30 Let (>,⊥) ∈ T be given. Then

>](γ) = sup (S(>,⊥))
](γ)

⊥](γ) = inf (S(>,⊥))
](γ) ,

for all γ ∈ [0, 1).
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Proof For brevity, I writeS = S(>,⊥). Let us first consider>]. Becauseγ < 1, we
obtain

>](γ) = lim
γ′→γ+

>(γ) by Def. 35

= inf{>(γ′) : γ′ > γ} by [9, Th-43, p. 44]

= inf{supS(γ′) : γ′ > γ} by L-29,

i.e.

>](γ) = inf{supS(γ′) : γ′ > γ} . (212)

Now I show that

>](γ) ≥ sup∩{S(γ′) : γ′ > γ} (213)

Considerε > 0. Then there existsz ∈ ∩{S(γ′) : γ′ > γ} such that

z > sup∩{S(γ′) : γ′ > γ} − ε . (214)

Becausez ∈ ∩{S(γ′) : γ′ > γ}, we apparently have

supS(γ′) ≥ z (215)

for all γ′ > γ, i.e.

>](γ) = inf sup{S(γ′) : γ′ > γ} by (212)

≥ z by (215)

> sup∩{S(γ′) : γ′ > γ} − ε . by (214)

ε→ 0 proves the desired inequation (213). Let us now show that the reverse inequation
also holds, i.e.

>](γ) ≤ sup∩{S(γ′) : γ′ > γ} . (216)

Considerα < >](γ). The proof is by contradiction; hence let us assume that

sup∩{S(γ′) : γ′ > γ} < α . (217)

Then for allz ≥ α, there existsγ′z > γ such thatz /∈ S(γ′z). BecauseS(γ′) ⊆ S(γ′z)
for all γ < γ′ ≤ γ′z, this proves thatz /∈ S(γ′) for all γ < γ′ ≤ γ′z. Recalling that by
(209),S(γ) is an intervalS(γ) = [⊥(γ),>(γ)], we deduce that

z′ /∈ S(γ′)

for all z′ ∈ [z, 1] andγ < γ′ ≤ γ′z. HencesupS(γ′) ≤ z for all γ < γ′ ≤ γ′z and for
all z ≥ α, i.e.

>](γ) = inf{supS(γ′) : γ′ > γ} by (212)

≤ α ,
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which contradicts with the choice ofα < >](γ). Hence the assumption (217) is false;
instead it holds that

sup∩{S(γ′) : γ′ > γ} ≥ α .

Becauseα < >](γ) was arbitrarily chosen, this proves thatsup∩{S(γ′) : γ′ > γ} ≥
>](γ), i.e. inequation (216) holds. Combining (213) and (216), we conclude that

>](γ) = sup∩{S(γ′) : γ′ > γ} = supS](γ) (218)

for all γ ∈ [0, 1) by Def. 56. The proof that

[](γ) = inf S](γ)

for all γ ∈ [0, 1) is completely analogous.

Lemma 31 Let (>,⊥) ∈ T be given. Then

>[(γ) = sup (S(>,⊥))
[(γ)

⊥[(γ) = inf (S(>,⊥))
[(γ) ,

for all γ ∈ I.

Proof For brevity, I writeS = S(>,⊥). The case thatγ = 0 is trivial because we then
have

>[(0) = >(0) = supS(0) = supS[(0)

by Def. 35, L-29 and Def. 56. For the same reason we have

⊥[(0) = ⊥(0) = inf S(0) = inf S[(0) .

Hence letγ > 0. Let us first consider>[. Becauseγ > 0, we obtain

>[(γ) = lim
γ′→γ−

>(γ) by Def. 35

= sup{>(γ′) : γ′ < γ} by [9, Th-43, p. 44]

= sup{supS(γ′) : γ′ < γ} by L-29,

i.e.

>[(γ) = sup{supS(γ′) : γ′ < γ} . (219)

Now I show that

>[(γ) ≥ sup∪{S(γ′) : γ′ < γ} (220)

Considerε > 0. Then there existsz ∈ ∪{S(γ′) : γ′ < γ} with

z > sup∪{S(γ′) : γ′ < γ} − ε . (221)
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In particular, there existsγ′′ < γ with z ∈ S(γ′′). Hence

>[(γ) = sup{supS(γ′) : γ′ < γ} by (219)

≥ supS(γ′′) becauseγ′′ < γ

≥ z becausez ∈ S(γ′′)
> sup∪{S(γ′) : γ′ < γ} − ε by (221).

ε→ 0 proves the desired inequation (220). Let us now show that the reverse inequation
also holds, i.e.

>[(γ) ≤ sup∪{S(γ′) : γ′ < γ} . (222)

Hence let againε > 0. Then there existsγ′′ < γ such that

supS(γ′′) > >[(γ)− ε
2 , (223)

which is apparent from (219). In turn, there existsz ∈ S(γ′′) such that

z > supS(γ′′)− ε
2 . (224)

We conclude that there existsz ∈ ∪{S(γ′) : γ′ < γ} ⊇ S(γ′′) with

z > supS(γ′′)− ε
2 by (224)

> >[(γ)− ε . by (223)

Becauseε > 0 was arbitrary, this proves that (222) holds. Combining (220) and (222),
we conclude that

>[(γ) = sup∪{S(γ′) : γ′ < γ} = supS[(γ)

for all γ ∈ [0, 1) by Def. 56. The proof that

⊥[(γ) = inf S[(γ)

for all γ ∈ [0, 1) is analogous.

Lemma 32 LetS ∈ K be given. Then

>S(γ) ≤ >S](γ) ≤ (>S)](γ)

(⊥S)](γ) ≤ ⊥S](γ) ≤ ⊥S(γ) ,

for all γ ∈ [0, 1).

Proof Let us first consider the case of>S . Becauseγ < 1, S](γ) can be rewritten as

S](γ) = ∩{S(γ′) : γ′ > γ} (225)

by Def. 56. We know from Def. 52 thatS(γ) ⊆ S(γ′) for all γ′ > γ. Therefore

S(γ) ⊆ ∩{S(γ′) : γ′ > γ} = S](γ)
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and in turn,

>S(γ) = supS(γ) ≤ supS](γ) = >S](γ)

⊥S(γ) = inf S(γ) ≥ inf S](γ) = ⊥S](γ)

by (35) and (36) becauseS(γ) ⊆ S](γ). As concerns the remaining two inequations
to be proven, I first show that

(>S)](γ) ≥ sup∩{S(γ′) : γ′ > γ} (226)

which proves that>S](γ) ≤ (>S)](γ) because of (225). Hence let us notice that for
γ < 1, (>S)](γ) becomes

(>S)](γ) = lim
γ′→γ+

>S(γ) by Def. 35

= inf{>S(γ′) : γ′ > γ} by [9, Th-43, p. 44]

= inf{supS(γ′) : γ′ > γ} by L-29.

Therefore

(>S)](γ) = inf{supS(γ′) : γ′ > γ} . (227)

To see that (226) holds, considerε > 0. Then there existsz ∈ ∩{S(γ′) : γ′ > γ} such
that

z > sup∩{S(γ′) : γ′ > γ} − ε . (228)

Becausez ∈ ∩{S(γ′) : γ′ > γ}, we apparently have

supS(γ′) ≥ z (229)

for all γ′ > γ, i.e.

(>S)](γ) = inf sup{S(γ′) : γ′ > γ} by (227)

≥ z by (229)

> sup∩{S(γ′) : γ′ > γ} − ε . by (228)

ε→ 0 proves the desired inequation (226).
The proof that

(⊥S)](γ) ≤ ⊥S](γ)

for all γ ∈ [0, 1) is completely analogous to that of (226).

Lemma 33 Let ξ : T −→ I be given and supposeΩ : K −→ I is defined in terms ofξ
according to(34). If

ξ(>,⊥) = ξ(>′,⊥′) (230)

for all (>,⊥), (>′,⊥′) ∈ T with

>(γ) ≤ >′(γ) ≤ >](γ) (231)

⊥](γ) ≤ ⊥′(γ) ≤ ⊥(γ) (232)

for all γ ∈ [0, 1), thenΩ satisfies(Ω-4).
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Proof Let S ∈ K be given. By L-32,

>S(γ) ≤ >S](γ) ≤ (>S)](γ) (233)

(⊥S)](γ) ≤ ⊥S](γ) ≤ ⊥(γ) (234)

for all γ ∈ [0, 1), i.e. the conditions (231) and (232) are fulfilled and by the assumed
property (230),

ξ(>S] ,⊥S]) = ξ(>S ,⊥S) . (235)

Therefore

Ω(S) = ξ(>S ,⊥S) by Th-37

= ξ(>S] ,⊥S]) by (235)

= Ω(S]) , by Th-37

i.e.Ω satisfies (Ω-4), as desired.

Lemma 34 a. If f : I −→ I is nonincreasing, then

f ] ≤ f ≤ f [ .

b. If f : I −→ I is a constant mapping, thenf ] = f [ = f .

c. If f : I −→ I is nondecreasing, then

f [ ≤ f ≤ f ] .

Proof See [9, L-39, p.117].

Lemma 35 Supposeξ : T −→ I is given andΩ : K −→ I is defined in terms ofξ
according to(34). If

ξ(>[,⊥]) = ξ(>],⊥[) (236)

for all (>,⊥) ∈ T andξ satisfies(X-5), then

ξ(>,⊥) = ξ(>′,⊥′)

whenever(>,⊥), (>′,⊥′) ∈ T with

>[ ≤ >′ ≤ >] (237)

⊥] ≤ ⊥′ ≤ ⊥[ . (238)

115



Proof Let (>,⊥), (>′,⊥′) ∈ T be given such that (237) and (238) hold. Then

ξ(>],⊥[) = ξ(>[,⊥]) by (236)

≤ ξ(>′,⊥′) by (X-5), (237), (238)

≤ ξ(>],⊥[) , by (X-5), (237), (238)

i.e.

ξ(>′,⊥′) = ξ(>],⊥[) . (239)

We notice that(>,⊥) itself is a legal choice for(>′,⊥′) which satisfies (237) and
(238), see L-34. Hence we obtain as a special case that

ξ(>,⊥) = ξ(>],⊥[) . (240)

Combining (239) and (240) yields the desiredξ(>,⊥) = ξ(>′,⊥′).

Lemma 36 Supposeξ : T −→ I is given andΩ : K −→ I is defined in terms ofξ
according to(34). If

ξ(>[,⊥]) = ξ(>],⊥[) (241)

for all (>,⊥) ∈ T andξ satisfies(X-5), then

ξ(>1,⊥1) = ξ(>2,⊥2)

whenever(>1,⊥1), (>2,⊥2) ∈ T satisfy>1|[0,1) = >2|[0,1) and⊥1|[0,1) = ⊥2|[0,1).

Proof Consider(>,⊥) ∈ T and define(>′,⊥′) ∈ T by

>′(γ) =
{
>(γ) : γ < 1
1 : γ = 1 (242)

⊥′(γ) =
{
⊥(γ) : γ < 1
0 : γ = 1 (243)

for all γ ∈ I. We then obtain from Def. 35 and L-34 that>′[ = >[,⊥′[ = ⊥[ and

>′[ ≤ > ≤ >′]

⊥′] ≤ ⊥ ≤ ⊥′[

Hence by L-35,

ξ(>,⊥) = ξ(>′,⊥′) . (244)

Now let (>1,⊥1), (>2,⊥2) ∈ T with >1|[0,1) = >2|[0,1) and⊥1|[0,1) = ⊥2|[0,1). We
notice that in this case, the results of the construction (242) coincide for>1 and>2,
i.e.

>1
′ = >2

′ . (245)
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Similarly, the results of the construction (243) on⊥1 and⊥2 coincide, i.e.

⊥1
′ = ⊥2

′ . (246)

Therefore

ξ(>1,⊥1) = ξ(>1
′,⊥1

′) by (244)

= ξ(>2
′,⊥2

′) by (245), (246)

= ξ(>2,⊥2) . by (244)

Lemma 37 Supposeξ : T −→ I is given andΩ : K −→ I is defined in terms ofξ
according to(34). If

ξ(>[,⊥]) = ξ(>],⊥[) (247)

for all (>,⊥) ∈ T andξ satisfies(X-5), thenΩ satisfies(Ω-4).

Proof Let (>,⊥), (>′,⊥′) ∈ T be given with

>(γ) ≤ >′(γ) ≤ >](γ) (248)

⊥](γ) ≤ ⊥′(γ) ≤ ⊥(γ) (249)

for all γ ∈ [0, 1). Define(>′′,⊥′′) ∈ T by

>′′(γ) =
{
>(γ) : γ < 1
>′(γ) : γ = 1 (250)

⊥′′(γ) =
{
⊥(γ) : γ < 1
⊥′(γ) : γ = 1 (251)

for all γ ∈ I. It is then apparent from (248), (249) and L-34 that

>′′[ ≤ >′ ≤ >′′]

⊥′′] ≤ ⊥′ ≤ ⊥′′[ ,

i.e. L-35 is applicable. We also notice that>′′|[0,1) = >|[0,1) and⊥′′|[0,1) = ⊥|[0,1),
which is apparent from (250) and (251). Therefore L-36 is applicable. We may hence
proceed as follows.

ξ(>,⊥) = ξ(>′′,⊥′′) by L-36

= ξ(>′,⊥′) . by L-35

This proves thatξ fulfills the property (230) required by L-33. The lemma is hence
applicable, and we deduce thatΩ satisfies (Ω-4).
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Proof of Theorem 38

Supposeξ : T −→ I is given andΩ : K −→ I is defined in terms ofξ according
to equation (34). We shall consider all entailments claimed by the theorem in turn,
splitting each equivalence into two separate entailments.

(X-1) entails (Ω-1).
Supposeξ satisfies (X-1) and consider somea ∈ I. Let S ∈ K be the mapping
defined byS(γ) = {a} for all γ ∈ I. It is then apparent from (35) and (36) that
>S(γ) = sup{a} = a and⊥S(γ) = inf{a} = a for all γ ∈ I, i.e.

>S = ⊥S = ca . (252)

Therefore

Ω(S) = ξ(>S ,⊥S) by (34)

= ξ(ca, ca) by (252)

= a , by (X-1)

i.e.Ω satisfies (Ω-1).

(Ω-1) entails (X-1)
SupposeΩ satisfies (Ω-1) and consider(ca, ca) ∈ T. In order to show thatξ(ca, ca) =
a, we notice thatS(ca,ca) as defined by (209) becomes

S(ca,ca)(γ) = [ca(γ), ca(γ)] = [a, a] = {a} (253)

for all γ ∈ I. Therefore

ξ(ca, ca) = Ω(S(ca,ca)) by L-29

= a , by (Ω-1), (253)

i.e. (X-1) holds, as desired.

(X-2) entails (Ω-2)
Supposeξ satisfies (X-2). Now consider a choice ofS, S′ ∈ K with

S′(γ) = {1− z : z ∈ S(γ)} (254)

for all γ ∈ I. Then

>S′(γ) = supS′(γ) by (35)

= sup{1− z : z ∈ S(γ)} by (254)

= 1− inf S(γ)
= 1−⊥S(γ) by (36)
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and similarly

⊥S′(γ) = inf S′(γ) by (36)

= inf{1− z : z ∈ S(γ)} by (254)

= 1− supS(γ)
= 1−>S(γ) , by (35)

for all γ ∈ I, i.e.

>S′ = 1−⊥S (255)

⊥S′ = 1−>S . (256)

Hence

Ω(S′) = ξ(>S′ ,⊥S′) by (34)

= ξ(1−⊥S , 1−>S) by (255), (256)

= 1− ξ(>S ,⊥S) by (X-2)

= 1− Ω(S) , by (34)

i.e.Ω satisfies (Ω-2).

(Ω-2) entails (X-2)
Let us assume thatΩ satisfies (Ω-2). We consider a choice of(>,⊥) ∈ T. Then

S(1−⊥,1−>)(γ) = [1−>(γ), 1−⊥(γ)] by (209)

= {1− z : z ∈ [⊥(γ),>(γ)]} ,

i.e.

S(1−⊥,1−>)(γ) = {1− z : z ∈ S(>,⊥)(γ)} (257)

for all γ ∈ I. Therefore

ξ(1−⊥, 1−>) = Ω(S(1−⊥,1−>)) by L-29

= 1− Ω(S(>,⊥)) by (Ω-2), (257)

= 1− ξ(>,⊥) , by L-29

which proves thatξ satisfies (X-2).

(X-3) entails (Ω-3)
Supposeξ satisfies (X-3) and consider a choice ofS ∈ K with 1 ∈ S(0) andS(γ) ⊆
{0, 1} for all γ ∈ I. It is then apparent from (35) that>S(γ) = supS(γ) = 1 for all
γ ∈ I, i.e.

>S = c1 . (258)
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In addition, we notice that by (36),⊥S(γ) = inf S(γ) ∈ {0, 1} for all γ ∈ I because
S(γ) ⊆ {0, 1}. Hence

⊥̂S(I) ⊆ {0, 1} . (259)

Finally, we observe that

(⊥S)0
∗ = inf{γ ∈ I : ⊥S(γ) = 0} by (12)

= inf{γ ∈ I : inf S(γ) = 0} by (36)

= inf{γ ∈ I : 0 ∈ S(γ)} becauseS(γ) ⊆ {0, 1}
= s(0) , by Def. 53

i.e.

(⊥S)0
∗ = s(0) . (260)

Therefore

Ω(S) = ξ(>S ,⊥S) by (34)

= 1
2 + 1

2 (⊥S)0
∗ by (258), (259) and (X-3)

= 1
2 + 1

2s(0) . by (260)

This proves thatΩ satisfies (Ω-3), as desired.

(Ω-3) entails (X-3) Let us assume thatΩ satisfies (Ω-3). Now consider a choice of
(c1,⊥) ∈ T with ⊥̂(I) ⊆ {0, 1}. We define

S(γ) = {1} ∪ {⊥(γ′) : γ′ ≤ γ} (261)

for all γ ∈ I. Then clearlyc1 = >S and⊥ = ⊥S by (35) and (36). In addition,
1 ∈ S(0) and apparentlyS(γ) ⊆ {0, 1} for all γ ∈ I because⊥(γ′) ∈ {0, 1} for all
γ′ ∈ I. Hence (Ω-3) applies toS. Finally

s(0) = inf{γ ∈ I : 0 ∈ S(γ)} by Def. 53

= inf{γ ∈ I : ⊥(γ) = 0} by (261)

= ⊥0
∗ , by (12)

i.e.

⊥0
∗ = s(0) . (262)

Hence

ξ(>,⊥)
= Ω(S) by Th-37 because> = >S ,⊥ = ⊥S
= 1

2 + 1
2s(0) by (Ω-3)

= 1
2 + 1

2⊥
0
∗ . by (262)

This finishes the proof thatξ satisfies (X-3).
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The conjunction of (X-2), (X-4) and (X-5) entails (Ω-4)
Let (>,⊥) ∈ T. We notice that

(1−⊥)] = 1−⊥] , (263)

this is apparent from Def. 35 because forγ < 1,

(1−⊥)](γ) = lim
γ′→γ+

(1−⊥(γ)) by Def. 35

= 1− lim
γ′→γ+

⊥(γ)

= 1−⊥](γ) . by Def. 35

(The case thatγ = 1 is uncritical). Similarly

(1−⊥)[ = 1−⊥[ , (264)

because forγ > 0,

(1−⊥)[(γ) = lim
γ′→γ−

(1−⊥(γ)) by Def. 35

= 1− lim
γ′→γ−

⊥(γ)

= 1−⊥[(γ) . by Def. 35

(The case thatγ = 0 is uncritical). Hence

ξ(>[,⊥]) = ξ(>],⊥]) by [11, L-20, p. 56]

= 1− ξ(1−⊥], 1−>]) by (X-2)

= 1− ξ((1−⊥)], 1−>]) by (263)

= 1− ξ((1−⊥)[, 1−>]) by [11, L-20, p. 56]

= 1− ξ(1−⊥[, 1−>]) by (264)

= ξ(>],⊥[) . by (X-2)

This proves thatξ satisfies the precondition stated in lemma L-37. We may hence apply
the lemma and deduce thatΩ satisfies (Ω-4).

(Ω-4) entails (X-4)
SupposeΩ satisfies (Ω-4). Now consider(>,⊥) ∈ T. We abbreviate

S = S(>,⊥) ,

see (209). We further choose somez0 ∈ S(0) and defineS′, S′′ : I −→ P(I) by

S′(γ) =
{
S(0) : γ = 0
S[(γ) ∪ [⊥(γ), z0] : γ > 0

(265)

S′′(γ) =
{
S](γ) ∩ [⊥(γ), 1] : γ < 1
S(1) : γ = 1 (266)
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for all γ ∈ I. It is apparent from the definition ofS′, S′′ in terms ofS ∈ K and the
fact that⊥ is nondecreasing and⊥ ≤ z0 thatS′, S′′ ∈ K as well. I now show that
>S′ = >[, >S′′ = >] and⊥S′ = ⊥S′′ = ⊥. To see that>S′ = >[, let us first
consider the case thatγ = 0. We then have

>S′(0) = supS′(0) by (35)

= supS(0) by Def. 56

= >(0) by L-29

= >[(0) . by Def. 35

In the case thatγ > 0, we recall that by L-31,

>[(γ) = supS[(γ) . (267)

We then haveS′(γ)∩[z0, 1] = S[(γ)∩[z0, 1] from (265). Becausez0 ∈ S(0) ⊆ S[(γ)
andz0 ∈ S′(γ), we conclude that

supS[(γ) = supS[(γ) ∩ [z0, 1]
= supS′(γ) ∩ [z0, 1]
= supS′(γ) .

Hence

>S′(γ) = supS′(γ) = supS[(γ) = >[(γ)

by (267) and (35). Combining this with the caseγ = 0, I have shown that

>S′ = >[ . (268)

As concerns⊥S′ , we notice that in the nontrivial case thatγ > 0,

⊥S′(γ) = inf S′(γ) by (36)

= inf S[(γ) ∪ [⊥(γ), z0] by (265)

= min(inf S[(γ),⊥(γ))
= ⊥(γ) ,

becauseS[(γ) ⊆ S(γ) by L-13 and henceinf S[(γ) ≥ inf S(γ) = ⊥(γ) by L-29.
Therefore

⊥S′ = ⊥ . (269)

Next we consider>S′′ . The case thatγ = 1 is trivial. Hence let us considerγ < 1.
We notice that by L-30,

>](γ) = >S](γ) . (270)
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Because⊥(γ) ≤ z0, we can then proceed as follows:

>S′′(γ) = supS](γ) ∩ [⊥(γ), 1] by (266)

= supS](γ) ∩ [z0, 1] because⊥(γ) ≤ z0

= supS](γ) becausez0 ∈ S](γ)
= >S](γ) by (35)

= >](γ) . by (270)

This proves that

>S′′ = >] . (271)

Concerning⊥S′′ , the case thatγ = 1 is again trivial. Forγ < 1, we deduce that

⊥S′′(γ) = inf S](γ) ∩ [⊥(γ), 1] by (266), (36)

= inf S[(γ) ∩ [⊥(γ),>(γ)] becausez0 ∈ S(γ) andz0 ≤ >(γ)

= inf S](γ) ∩ S(γ) by (209)

= inf S(γ) becauseS[(γ) ⊆ S(γ) by L-13

= ⊥(γ) , by L-29

i.e. indeed

⊥S′′ = ⊥ . (272)

We further notice thatS[(γ) ⊆ S′(γ) ⊆ S](γ) andS[(γ) ⊆ S′′(γ) ⊆ S](γ). This is
apparent from (265), (266) and L-13. We can hence apply L-16 to conclude that

Ω(S′) = Ω(S) = Ω(S′′) . (273)

Putting the pieces together,

ξ(>[,⊥) = ξ(>S′ ,⊥S′) by (268), (269)

= Ω(S′) by Th-37

= Ω(S′′) by (273)

= ξ(>S′′ ,⊥S′′) by Th-37

= ξ(S],⊥) . by (271) and (272)

Hence (X-4) holds, as desired.

(X-5) entails (Ω-5)
Supposeξ satisfies (X-5) and letS, S′ ∈ K be given whereS v S′. Now consider
γ ∈ I. For eachε > 0, there existsz ∈ S(γ) such that

z > supS(γ)− ε . (274)
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BecauseS v S′, there existsz′ ∈ S′(γ) with z′ ≥ z, see Def. 57. Hence

supS′(γ) ≥ z′ ≥ z > supS(γ)− ε

by (274).ε→ 0 yields

>S′(γ) = supS′(γ) ≥ supS(γ) = >S(γ) (275)

by (35). By similar reasoning, we know that for eachε > 0 there existsz′ ∈ S′(γ)
with

z′ < inf S′(γ) + ε . (276)

BecauseS v S′, we deduce from Def. 57 that there existsz ∈ S(γ) with z ≤ z′.
Hence

⊥S(γ) = inf S(γ) by (36)

≤ z becausez ∈ S(γ)
≤ z′ by choice ofz

< inf S′(γ) + ε by (276)

= ⊥S′(γ) + ε . by (36)

ε→ 0 yields

⊥S(γ) ≤ ⊥S′(γ) . (277)

Therefore

Ω(S) = ξ(>S ,⊥S) by Th-37

≤ ξ(>S′ ,⊥S′) by (X-5), (275) and (277)

= Ω(S′) . by Th-37

HenceΩ satisfies (Ω-5), as desired.

(Ω-5) entails (X-5)
Let us assume thatΩ satisfies (Ω-5). Now consider(>,⊥), (>′,⊥′) ∈ T with > ≤ >′
and⊥ ≤ ⊥′. Forγ ∈ I, we obtain from (209) that

S(>,⊥)(γ) = [⊥(γ),>(γ)]

and

S(>′,⊥′)(γ) = [⊥′(γ),>′(γ)] .

Considerz ∈ S(>,⊥)(γ). Then clearlyz ≤ >(γ) ≤ >′(γ) ∈ S(>′,⊥′)(γ) because
> ≤ >′. On the other hand, forz′ ∈ S(>′,⊥′)(γ) we havez′ ≥ ⊥′(γ) ≥ ⊥(γ) ∈
S(>,⊥)(γ) because⊥ ≤ ⊥′. Becauseγ ∈ I was arbitrarily chosen, this proves that

S(>,⊥) v S(>′,⊥′) (278)

124



by Def. 57. Therefore

ξ(>,⊥) = Ω(S(>,⊥)) by L-29

≤ Ω(S(>′,⊥′)) by (Ω-5), (278)

= ξ(>′,⊥′) , by L-29

i.e. (X-5) is valid forξ.

A.8 Proof of Theorem 39

In order to prove that condition (Ω−i), i ∈ {1, . . . , 5}, is independent of the remaining
conditions, we need to show that there exists anΩ-QFM which validates all of (Ω−1)–
(Ω − 5) except for (Ω − i). We can profit from Th-38 which permits us to reduce the
independence proof to the independence proof of (X-1)–(X-5). These conditions have
already been shown to be independent, see theorem Th-23.

(Ω-1) is independent of the remaining conditions We know from Th-23 that there
exists a choice ofξ : T −→ I wich satisfies all ‘X-conditions’ except for (X-1). From
Th-37, we know thatFξ is anFΩ-QFM, i.e.Fξ = FΩ if we defineΩ : K −→ I
by (34). Now we utilize Th-38. By part a. of the theorem, (Ω-1) fails because (X-1)
fails. In addition, we know from parts b., c., d.1, and e. of the theorem that (Ω-2),
(Ω-3), (Ω-4) and (Ω-5) hold because (X-2), (X-3), (X-4) and (X-5) hold. HenceFΩ

demonstrates that (Ω-1) is independent of the other conditions.

(Ω-2) is independent of the remaining conditions In this case, I recall theMB-
QFM used to prove the independence of the ‘B-condition’ (B-2) in [9, Th-66, p. 51]. It
is defined in terms of the followingB(B−2) : B −→ I.

B(B−2)(f) =


1
2 + 1

2B
′∫ (2f − 1) : f ∈ B+

1
2 : f ∈ B

1
2

1
2 −

1
2B
∗′(1− 2f) : f ∈ B−

(279)

for all f ∈ B. This QFM is known to satisfy all ‘B-conditions’ except for (B-2). We
recall thatMB(B−2) = Fξ provided we defineξ(>,⊥) = B(B−2)(med 1

2
(>,⊥)) for

all (>,⊥) ∈ T, see Th-22. We conclude from Th-24 thatξ satisfies all ‘X-conditions’
except for (X-2). Now we defineΩ : K −→ I in terms ofξ according to (34). Then
Ω fails to satisfy (Ω-2) by part b. of Th-38. By parts a., c., and e. of the theorem,Ω
is known to satisfy (Ω-1), (Ω-3) and (Ω-5) becauseξ satisfies (X-1), (X-3) and (X-5),
respectively. As concerns (Ω-4), we observe thatξ satisfies the preconditions of lemma
L-37. HenceΩ satisfies (Ω-4). This finishes the independence proof for (Ω-2).

(Ω-3) is independent of the remaining conditions In this case, we recall that by
Th-23 there exists a choice ofξ : T −→ I such that all ‘x-conditions’ except for
(X-3) are satisfied. From Th-37, we know thatFξ is anFΩ-QFM, i.e.Fξ = FΩ for
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Ω : K −→ I defined by (34). Again we apply Th-38. By part c. of the theorem, (Ω-3)
fails because (X-3) fails. By parts a., b., d.1, and e. of the theorem, we know that (Ω-1),
(Ω-2), (Ω-4) and (Ω-5) hold because (X-1), (X-2), (X-4) and (X-5) hold. HenceFΩ

proves that (Ω-3) is independent of the other conditions.

(Ω-4) is independent of the remaining conditions By Th-23, there existsξ : T −→
I which satisfies all ‘x-conditions’ except for (X-4). Because (X-4) fails, we obtain by
contraposition from part d.2 of Th-38 that (Ω-4) fails. The remaining ‘Ω-conditions’
(Ω-1), (Ω-2), (Ω-3) and (Ω-5) are known to hold from parts a., b., c., and e. of the
theorem, respectively. This proves the independence of (Ω-4).

(Ω-5) is independent of the remaining conditions To this end, we define a mapping
B′(B−5) : H −→ I by

B′(B−5)(f) =
{
f0
∗ : f∗0 = 1
f∗0 : f∗0 < 1 (280)

We further defineB(B−5) : B −→ I in terms ofB′(B−5) according to equation (18).
B(B−5) is known to satisfy (B-1), (B-2), (B-3) and (B-4) and to violate (B-5). By
Th-24, the mappingξ : T −→ I defined byξ(>,⊥) = B(B−5)(med 1

2
(>,⊥)) for

all (>,⊥) ∈ T satisfies (X-1), (X-2), (X-3) and (X-4), but violates (X-5). As usual,
we defineΩ : K −→ I in terms ofξ according to (34). By Th-38,Ω violates (Ω-5),
but it satisfies (Ω-1), (Ω-2) and (Ω-3). We notice thatΩ satisfies the precondition of
lemma L-33. HenceΩ satisfies (Ω-4), i.e. condition (Ω-5) is indeed independent of
(Ω-1)–(Ω-4), as desired.

A.9 Proof of Theorem 40

LetQ : P(E)n −→ I be given and consider a choice of fuzzy argumentsX1, . . . , Xn ∈
P̃(E). We know from Th-32.a thatSQ,X1,...,Xn(0) 6= ∅. Hence there exists a choice
of z0 ∈ SQ,X1,...,Xn(0). We notice that by Th-32.b,z0 ∈ SQ,X1,...,Xn(γ) for all γ ∈ I.
We hence obtain that

sQ,X1,...,Xn(z0)
= inf{γ ∈ I : z0 ∈ SQ,X1,...,Xn(γ)} by Def. 54

= inf I becausez0 ∈ SQ,X1,...,Xn(γ) for all γ ∈ I

= 0 .

Thereforez0 ∈ sQ,X1,...,Xn
−1(0), i.e.sQ,X1,...,Xn

−1(0) 6= ∅, as desired.

A.10 Proof of Theorem 41

Lemma 38 Lets ∈ L be given and suppose thatS : I −→ P(I) is defined by

S(γ) = {z ∈ I : γ ≥ s(z)} (281)
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for all γ ∈ I. ThenS ∈ K. Let us further denote the mapping defined in terms ofS
according to Def. 53 bys′ : I −→ I. Thens′ = s.

Proof Let s ∈ L be given and supposeS is defined by (281). I first show thatS ∈ K.
By Def. 51,s−1(0) 6= ∅, i.e. there existsz0 ∈ I with s(z0) = 0. By (281),z0 ∈ S(0),
in particularS(0) 6= ∅. Now letγ, γ′ ∈ I with γ′ ≥ γ. Then trivially

{z ∈ I : γ ≥ s(z)} ⊆ {z ∈ I : γ′ ≥ s(z)} .

HenceS(γ) ⊆ S(γ′) by (281). This finishes the proof thatS ∈ K, see Def. 52.
Now supposes′ is defined fromS by Def. 53. Then for allz ∈ I,

s′(z) = inf{γ ∈ I : z ∈ S(γ)} by Def. 53

= inf{γ ∈ I : γ ≥ s(z)} by (281)

= inf[s(z), 1]
= s(z) .

This proves thats′ = s.

Proof of Theorem 41

Considers ∈ L and suppose thatS : I −→ P(I) is defined by (37). We know from
L-38 that indeedS ∈ K. Further suppose thatQ : P(2× I) −→ I is defined by (27)
and thatX ∈ P̃(2× I) is the fuzzy subset defined by (33). We then obtain from Th-33
that

S = SQ,X1,...,Xn .

Hence by L-38 and Def. 54,s = sQ,X .

A.11 Proof of Theorem 42

Lemma 39 LetS ∈ K be given and supposes ∈ L is defined in terms ofS according
to Def. 53. Further letS′ ∈ K be defined in terms ofs according to equation(281).
ThenS′ = S].

Proof Immediate. Considerγ ∈ I. Then

S′(γ) = {z ∈ I : γ ≥ s(z)} by (281)

= {z ∈ I : γ ≥ inf{γ′ ∈ I : z ∈ S(γ′}} by Def. 53

= {z ∈ I : for all γ′ > γ, z ∈ S(γ′)} becauseS(γ′) ⊆ S(γ′′) for γ′ ≤ γ′′

= {z ∈ I : z ∈ ∩{S(γ′) : γ′ > γ}}
= ∩{S(γ′) : γ′ > γ}
= S](γ) . by Def. 56
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This is also correct forγ = 1 if we stipulate that∩{S(γ′) : γ′ > 1} = ∩
γ′∈∅

S(γ′) =

I.

Lemma 40 LetΩ,Ω′ : K −→ I be given. ThenFΩ = FΩ′ if and only ifΩ = Ω′.

Proof If Ω = Ω′, then triviallyFΩ = FΩ′ . It remains to be shown thatΩ 6= Ω′

entails thatFΩ 6= FΩ′ . Hence suppose thatΩ 6= Ω′. Then there exists a choice of
S ∈ K such that

Ω(S) 6= Ω′(S) . (282)

We now defineQ : P(2× I) −→ I by (27) and further defineX ∈ P̃(2× I) by (33).
Then by Th-33,

S = SQ,X . (283)

Therefore

FΩ(Q)(X) = Ω(SQ,X) by Def. 55

= Ω(S) by (283)

6= Ω′(S) by (282)

= Ω′(SQ,X) by (283)

= FΩ′(Q)(X) . by Def. 55

HenceFΩ 6= FΩ′ , as we intended to show.

Lemma 41 Letω : L −→ I be given and defineΩ : K −→ I by

Ω(S) = ω(s) (284)

for all S ∈ K, wheres is defined in terms ofS according to Def. 53. ThenΩ satisfies
(Ω-4).

Proof Expanding Def. 53, we obtain for the givenS ∈ K that

s(z) = inf{γ ∈ I : z ∈ S(γ)} (285)

for all z ∈ I. In the case ofS], I denote the mapping defined by Def. 53 bys] : I −→ I.
We then obtain

s](z) = inf{γ ∈ I : z ∈ S](γ)} (286)

Let us recall that due to lemma L-13,S(γ) ⊆ S](γ) for all γ ∈ I. It is hence apparent
from (285) and (286) that

s](z) ≤ s(z) (287)
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for all z ∈ I. As concerns the reverse inequations(z) ≤ s](z), we expandS] in (286)
according to Def. 56, thus

s](z) = inf{γ ∈ I : z ∈ ∩{S(γ′) : γ′ > γ}} (288)

Now considerε > 0. By (288), there existsγ ∈ I such that

γ < s](z) + ε
3 (289)

and for allγ′ > γ, z ∈ S(γ′). Hence letγ′′ = γ + ε
2 . Thenγ′′ > γ, hencez ∈ S(γ′′).

In addition,γ′′ < s](z) + ε by (289). This proves that

s(z) = inf{γ ∈ I : z ∈ S(γ)} by (285)

≤ γ′′ becausez ∈ S(γ′′)

< s](z) + ε .

ε→ 0 yields the desireds(z) ≤ s](z) for all z ∈ I. Combining this with (287) finishes
the proof thats = s].

Proof of Theorem 42

a. SupposeΩ : K −→ I satisfies (Ω-4) and further suppose thatω : L −→ I is
defined by (40). In order to prove thatFω = FΩ, we first defineΩ′ : K −→ I by

Ω′(S) = ω(s) (290)

for all S ∈ K, wheres is defined by Def. 53. It is then apparent from Def. 55 and
Def. 61 that

Fω = FΩ′ . (291)

Now let S ∈ K be given, assumes is defined in terms ofS by Def. 53 and further
assume thatS′ ∈ K is defined in terms ofs by (41). Then

Ω′(S) = ω(s) by (290)

= Ω(S′) by (40)

= Ω(S]) by L-39

= Ω(S) . by (Ω-4)

HenceΩ′ = Ω andFΩ = Fω by (291).

b. SupposeΩ : K −→ I does not satisfy (Ω-4) and consider an arbitrary choice of
ω : L −→ I. We defineΩ′ : K −→ I by

Ω′(S) = ω(s)
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for all S ∈ K, wheres is defined by Def. 53. We then know from Def. 55 and Def. 61
that

Fω = FΩ′ . (292)

In addition,Ω′ is known to satisfy (Ω-4) by L-41. Now assume thatFΩ = Fω. Then
alsoFΩ = FΩ′ by (292). Applying L-40, we conclude thatΩ = Ω′. But Ω is known
to violate (Ω-4), while Ω′ satisfies (Ω-4). Hence the assumption thatFΩ = Fω is
false. Becauseω was arbitrarily chosen, this proves that there is noω : L −→ I with
FΩ = Fω, i.e.FΩ is not anFω-QFM.

A.12 Proof of Theorem 43

Consider a givenω : L −→ I and suppose thatΩ : K −→ I is defined in terms ofω
according to (38). We consider the cases a.–e. of the theorem in turn.

a. Let us first show thatΩ’s satisfying (Ω-1) entails thatω satisfies (ω-1). Hence
suppose that (Ω-1) holds forΩ and consider a choice ofs ∈ L such thats−1([0, 1)) =
{a} for somea ∈ I, i.e. s(a) = a ands(z) = 1 for all z ∈ I \ {a} by Def. 60. We
have to show thatω(s) = a. To this end, we first notice that

ω(s) = Ω(S′) (293)

whereS′ ∈ K is defined by

S′(γ) = {z ∈ I : γ ≥ s(z)} =
{
{a} : γ < 1
I : γ = 1

This is apparent from L-38 and (38). We further notice that

S′ = S] (294)

for S ∈ K defined by

S(γ) = {a}

for all γ ∈ I. This is immediate from Def. 56. Therefore

ω(s) = Ω(S′) by (293)

= Ω(S]) by (294)

= Ω(S) by L-41

= a , by (Ω-1)

which proves thatω satisfies (ω-1).
It remains to be shown that the converse entailment also holds. Hence suppose that
ω satisfies (ω-1). Now consider a choice ofS ∈ K such that there existsa ∈ I with
S(γ) = {a} for all γ ∈ I. Then

s(z) = inf{γ ∈ I : z ∈ S(γ)} by Def. 53

=
{

0 : z = a
1 : z 6= a
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for all z ∈ I, i.e.s−1([0, 1)) = {a}. HenceΩ(S) = ω(s) = a by (38) and (ω-1), i.e.Ω
satisfies (Ω-1).

b. Again I prove the equivalence of (Ω-2) and (ω-2) by considering both implications
separately. Hence let us assume thatΩ satisfies (Ω-2); it must be shown thatω satisfies
(ω-2). Considers, s′ ∈ L where

s′(z) = s(1− z) (295)

for all z ∈ I. In accordance with (281), I define

S(γ) = {z ∈ I : γ ≥ s(z)} (296)

S′(γ) = {z ∈ I : γ ≥ s′(z)} (297)

for all γ ∈ I. Then

S′(γ) = {z ∈ I : γ ≥ s′(z)} by (297)

= {z ∈ I : γ ≥ s(1− z)} by (295)

= {1− z ∈ I : γ ≥ s(z)} by substitution

= {1− z : z ∈ S(γ)} by (296)

for all γ ∈ I, i.e.S andS′ are related in the way required by (Ω-2). Therefore

ω(s′) = Ω(S′) by L-38, (38)

= 1− Ω(S) by (Ω-2)

= 1− ω(s) , by L-38, (38)

which proves thatω satisfies (ω-2).
To see that (ω-2) entails (Ω-2), suppose thatω satisfies (ω-2) and consider a choice of
S, S′ ∈ K with

S′(γ) = {1− z : z ∈ S(γ)} (298)

for all γ ∈ I. For the mappingss ands′ defined by Def. 53 in terms ofS andS′

respectively, we then obtain

s(z) = inf{γ ∈ I : z ∈ S(γ)} (299)

and

s′(z) = inf{γ ∈ I : z ∈ S′(γ)} by Def. 53

= inf{γ ∈ I : 1− z ∈ S(γ)} by (298)

= s(1− z) , by (299)

for all z ∈ I. Hences ands′ are related in the way required by (ω-2). We conclude
that

Ω(S′) = ω(s′) by (38)

= 1− ω(s) by (ω-2)

= 1− Ω(S) . by (38)
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c. Next we prove the equivalence ofΩ satisfying (Ω-3) andω satisfying (ω-3). Hence
suppose (Ω-3) is valid for Ω and consider a choice ofs ∈ L with s(1) = 0 and
s−1([0, 1)) ⊆ {0, 1}, i.e.s(z) = 1 for all z ∈ (0, 1). DefineS ∈ K by

S(γ) =
{
{1} : γ < s(0)
{0, 1} : γ ≥ s(0)

for all γ ∈ I. Then the mapping defined in terms ofS according to Def. 53 coincides
with s. Therefore

ω(s) = Ω(S) by (38)

= 1
2 + 1

2s(0) . by (Ω-3)

To see that (ω-3) entails (Ω-3), suppose thatω satisfies (ω-3) and considerS ∈ K
with 1 ∈ S(0) andS(γ) ⊆ {0, 1} for all γ ∈ I. Then the mappings defined by
Def. 53 in terms ofS apparently satisfiess(1) = 0 ands(z) = 1 for all z ∈ (0, 1),
i.e. s−1([0, 1)) ⊆ {0, 1}. Hences satisfies the requirements for application of (ω-3),
and

Ω(S) = ω(s) by (38)

= 1
2 + 1

2s(0) . by (ω-3)

d. The claim that everyΩ : K −→ I defined in terms of someω : L −→ I according
to equation (38) has already been proven in lemma L-41.

e. Finally we prove the equivalence of (Ω-5) and (ω-4), again by splitting it into two
implications to be proven separately. Hence let us assume thatΩ satisfies (Ω-5). We
now consider a choice ofs, s′ ∈ L with s v s′. In accordance with (281), I define

S(γ) = {z ∈ I : γ ≥ s(z)} (300)

S′(γ) = {z ∈ I : γ ≥ s′(z)} (301)

for all γ ∈ I. We now obtain from Def. 59 and (300)/(301) that

S‡(γ) = {z ∈ I : there existz′ ≤ z ≤ z′′ with γ ≥ s(z′) andγ ≥ s(z′′)} (302)

S′
‡(γ) = {z ∈ I : there existz′ ≤ z ≤ z′′ with γ ≥ s′(z′) andγ ≥ s′(z′′)} , (303)

for all γ ∈ I. ThereforeS], S′] ∈ K become

S‡
](γ)

= ∩{S‡(γ′) : γ′ > γ}
= {z ∈ I : for all γ′ > γ, there existz′ ≤ z ≤ z′′ with γ′ ≥ s(z′) andγ′ ≥ s(z′′)}

(304)

S′
‡](γ)

= ∩{S‡(γ′) : γ′ > γ}
= {z ∈ I : for all γ′ > γ, there existz′ ≤ z ≤ z′′ with γ′ ≥ s′(z′) andγ′ ≥ s′(z′′)}

(305)
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for all γ ∈ I, see Def. 56 and (302)/(303). Let us now show thatS‡
] v S′‡

]
. We shall

consider the two conditions in in turn which are imposed by Def. 57 onS‡
]

andS′‡
]

in order to haveS‡
] v S′‡

]
. Hence letγ ∈ I be given and letz ∈ S‡](γ). I will show

that there existsz′ ∈ S′‡
]
(γ) with z′ ≥ z. To this end, let us first recall thatS′‡

]
(0) ⊇

S′
‡(0) ⊇ S′(0) 6= ∅ by L-13, Def. 59 and Def. 52. Letz′0 denote an arbitrary element

z′0 ∈ S′(0). If z ≤ z′0, then apparentlyz′0 ∈ S′(γ) ⊆ S′
‡(γ) ⊆ S′

‡](γ). Hence

z′ = z′0 is an admissible choice ofz′ with z′ ≥ z andz′ ∈ S′‡
]
(γ). In the remaining

case thatz > z′0, consider a choice ofγ′ > γ. Abbreviatingγ′′ = (γ + γ′)/2, we
apparently have

γ′ > γ′′ > γ . (306)

From (304) andγ′′ > γ, we deduce thatz ∈ S‡(γ′′), i.e. there existz1 ≤ z ≤ z2 with
z1 ∈ S(γ′′) andz2 ∈ S(γ′′). Hence by (300) and (306),

γ′ > γ′′ ≥ s(z2) . (307)

Now we notice that by Def. 62,s v s′ entails that

inf{s′(z′) : z′ ≥ z2} ≤ s(z2) . (308)

Becauseγ′ > s(z2) by (307), we conclude from (308) that there existsz′ ≥ z2 with

s′(z′) < γ′ .

It is then immediate from (301) thatz′ ∈ S′(γ′). Now considerz. By assumption,
z > z′0 for z′0 ∈ S′(γ′). In addition,z ≤ z2 ≤ z′ for z′ ∈ S′(γ′). Hence by Def. 59,
z ∈ S′‡(γ′). Becauseγ′ > γ was arbitrary, this proves thatz ∈ S′‡(γ′) for all γ′ > γ,

i.e. z ∈ ∩{S′‡(γ′) : γ′ > γ} = S′
‡](γ). Thereforez′ = z is an admissable choice of

z′ with z′ ≥ z andz′ ∈ S′‡
]
(γ).

Next I consider the second condition forS‡
] v S′

‡]. Hence letγ ∈ I and letz′ ∈
S′
‡](γ). I will show that there existsz ∈ S‡](γ) with z ≤ z′. Again, we first observe

thatS‡
](0) ⊇ S‡(0) ⊇ S(0) 6= ∅, and assume a choice of some elementz0 ∈ S(0).

If z′ ≥ z0, thenz = z0 is an admissible choice ofz with z ≤ z′ andz0 ∈ S(γ) ⊆
S‡

](γ). In the remaining case thatz′ < z0, we considerγ′ > γ and again abbreviate
γ′′ = (γ+γ′)/2. We then deduce from (305) andγ′′ > γ that there existz1 ≤ z′ ≤ z2

with z1, z2 ∈ S′(γ′′). Hence by (301),

γ′ > γ′′ ≥ s′(z1) . (309)

At this point we recall that by Def. 62,s v s′ entails

inf{s(z) : z ≤ z1} ≤ s′(z1) (310)

From this we may conclude that there existsz ≤ z1 with

s(z) < γ′
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becauseγ′ > s′(z1) by (309). In turn, we obtain from (300) thatz ∈ S(γ′). Now
considerz′. We know thatz ≤ z1 ≤ z′ for z ∈ S(γ′). In addition, we havez′ ≤ z0

for z0 ∈ S(γ) by assumption. Hence by Def. 59,z′ ∈ S‡(γ′). Becauseγ′ > γ was

arbitrary,z′ ∈ S‡(γ′) for all γ′ > γ, i.e.z′ ∈ ∩{S‡(γ′) : γ′ > γ} = S‡
](γ). Hence

z = z′ is a legal choice ofz with z ≤ z′ andz ∈ S‡](γ). This finishes the proof that
the defining conditions for

S‡
] v S′‡

]
(311)

are satisfied, see Def. 57. Therefore

ω(s) = Ω(S) by L-38, (38)

≤ Ω(S′) by (Ω-5), (311)

= ω(s′) . by L-38, (38)

Henceω satisfies (ω-4), i.e. (Ω-5) entails (ω-4), as desired.
Finally let us prove thatω’s satisfying (ω-4) entails thatΩ satisfies (Ω-5). Hence
assume that (ω-4) is valid for ω and suppose thatS, S′ ∈ K satisfyS v S′. In
accordance with Def. 53, we define

s(z) = inf{γ ∈ I : z ∈ S(γ)} (312)

s′(z) = inf{γ ∈ I : z ∈ S′(γ)} (313)

for all z ∈ I. Now let z ∈ I and choose someε > 0. We conclude from (312) that
there exists

γ < s(z) + ε (314)

such thatz ∈ S(γ). BecauseS v S′, there existsz′′ ≥ z with z′′ ∈ S′(γ), see Def. 57.
Hence

s′(z′′) ≤ γ by (313)

< s(z) + ε by (314)

and in turn,

inf{s′(z′) : z′ ≥ z} ≤ s′(z′′) < s(z) + ε .

ε→ 0 yields

inf{s′(z′) : z′ ≥ z} ≤ s(z) . (315)

To prove the second condition imposed in Def. 62 fors v s′ to hold, considerz′ ∈ I
and choose someε > 0. By (313), there exists

γ < s′(z′) + ε (316)
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with z′ ∈ S′(γ). BecauseS v S′, we obtain from Def. 57 that there existsz′′ ≤ z′

with z′′ ∈ S(γ). Hence

s(z′′) ≤ γ by (312)

< s′(z′) + ε . by (316)

In particular

inf{s(z) : z ≤ z′} ≤ s(z′′) < s′(z′) + ε .

ε→ 0 yields

inf{s(z) : z ≤ z′} ≤ s′(z′) . (317)

By Def. 62, (315) and (317) prove thats v s′. Therefore

Ω(S) = ω(s) by (38)

≤ ω(s′) by (ω-4)

= Ω(S′) by (38),

i.e. (Ω-5) is indeed valid forΩ.

A.13 Proof of Theorem 44

Supposeω : L −→ I satisfies (ω-1)–(ω-4). ThenΩ : K −→ I defined by (38) satisfies
(Ω-1)–(Ω-5). We apply Th-34 and conclude thatFΩ is a standard DFS. Finally, we
notice thatFω = FΩ by (39), i.e.Fω is a standard DFS, as desired.

A.14 Proof of Theorem 45

Supposeω : L −→ I violates one of (ω-1)–(ω-4). ThenΩ : K −→ I as defined by
(38) violates one of (ω-1), (ω-2), (ω-3) or (ω-4), see Th-43. HenceFΩ is not a DFS by
Th-36. ButFω = FΩ by (39), which proves thatFω is not a DFS.

A.15 Proof of Theorem 46

We know from Th-39 that (Ω-1)–(Ω-5) are independent. Hence for each choice of
i ∈ {1, 2, 3, 5}, there exists a choice ofΩi : K −→ I which violates (Ω−i) and satisfies
the remaining ‘Ω-conditions’, including (Ω-4). Because eachΩi satisfies (Ω-4), we
know that

Ωi(S) = ωi(s) (318)

for all S ∈ K ands defined in terms ofS according to Def. 53, whereωi is defined in
terms ofΩi according to (40). This is apparent from (39), Th-42.a and L-40. Because
(318) holds, we can apply Th-43 and conclude that eachω1 satisfies all ‘ω-conditions’
except for (ω-1); ω2 satisfies all conditions except for (ω-2); ω3 satisfies all conditions
except for (ω-3), and finallyω5 satisfies all conditions except for (ω-4). Hence the
conditions (ω-1)–(ω-4) are indeed independent.
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A.16 Proof of Theorem 47

Let a choice ofs ∈ L be given.

a. To see thats‡ ≤ s, considerz ∈ I. Clearly

inf{s(z′) : z′ ≤ z} ≤ s(z) (319)

inf{s(z′′) : z′′ ≥ z} ≤ s(z) (320)

Hence

s‡(z) = max(inf{s(z′) : z′ ≤ z}, inf{s(z′′) : z′′ ≥ z}) by Def. 65

≤ max(s(z), s(z)) by (319), (320)

= s(z) . by idempotence ofmax

Becausez ∈ I was arbitrary, this proves thats‡ ≤ s.

b. We know from Def. 60 thats−1(0) 6= ∅, i.e. there existsz0 ∈ I with s(z0) = 0.

By part a. of the theorem,s‡(z0) ≤ s(z0) = 0, i.e. s‡(z0) = 0. Hences‡
−1(0) 6= ∅

ands‡ ∈ L by Def. 60.

c. To see thats‡ is concave, considerz1 ≤ z2 ≤ z3. Then

inf{s(z′′) : z′′ ≥ z2} ≤ inf{s(z′′) : z′′ ≥ z3} (321)

becausez2 ≤ z3, and

inf{s(z′) : z′ ≤ z1} ≥ inf{s(z′) : z′ ≤ z2} (322)

becausez1 ≤ z2. Recalling from Def. 65 that

s‡(z2) = max(inf{s(z′) : z′ ≤ z2}, inf{s(z′′) : z′′ ≥ z2}) , (323)

it is now convenient to discern two cases.

1. inf{s(z′) : z′ ≤ z2} ≥ inf{s(z′′) : z′′ ≥ z2}. Then

s‡(z2) = inf{s(z′) : z′ ≤ z2} by (323)

≤ inf{s(z′) : z′ ≤ z1} by (322)

≤ max(inf{s(z′) : z′ ≤ z1}, inf{s(z′′) : z′′ ≥ z1})
= s‡(z1) by Def. 65

≤ max(s‡(z1), s‡(z3)) .
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2. inf{s(z′) : z′ ≤ z2} < inf{s(z′′) : z′′ ≥ z2}. In this case

s‡(z2) = inf{s(z′′) : z′′ ≥ z2} by (323)

≤ inf{s(z′′) : z′′ ≥ z3} by (321)

≤ max(inf{s(z′) : z′ ≤ z3}, inf{s(z′′) : z′′ ≥ z3})
= s‡(z3) by Def. 65

≤ max(s‡(z1), s‡(z3)) .

This finishes the proof thats‡ is concave.

A.17 Proof of Theorem 48

Let ω : L −→ I be a given mapping which satisfies (ω-4). We consider some choice
of s ∈ L. Because (ω-4) holds forω, we can prove thatω(s) = ω(s‡) by proving that
s v s‡ ands‡ v s. Let us first show thats v s‡. Hence letz ∈ I be given. Then

inf{s‡(z′) : z′ ≥ z} ≤ s‡(z) ≤ s(z) (324)

by Th-47, part a. This proves the first requirement fors v s‡. To see that the second
condition is also fulfilled, letz′ ∈ I. We have to prove that

inf{s(z) : z ≤ z′} ≤ s‡(z′) . (325)

Let us denote byz0 some elementz0 ∈ s−1(0) 6= ∅, which is known to exist by
Def. 60. Ifz0 ≤ z′, then (325) is trivially true because in this case

inf{s(z) : z ≤ z′} ≤ s(z0) = 0 ≤ s‡(z′) .

In the remaining case thatz0 > z′, we apparently have

inf{s(z′′) : z′′ ≥ z′} ≤ s(z0) = 0 . (326)

Therefore

s‡(z′) = max(inf{s(z′′) : z′′ ≥ z′}, inf{s(z) : z ≤ z′}) by Def. 65

= max(0, inf{s(z) : z ≤ z′}) by (326)

= inf{s(z) : z ≤ z′} . because0 is identity ofmax

In particular, (325) is valid. Combining (324) and (325) proves the desireds v s‡, see
Def. 65.
Next let us show that alsos‡ v s. Firstly we notice that for allz′ ∈ I,

s‡(z′) ≤ s(z′) ,

again by Th-47, part a. Therefore

inf{s‡(z) : z ≤ z′} ≤ s‡(z′) ≤ s(z) . (327)
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This proves the second requirement of Def. 62 fors‡ v s. To see that the first require-
ment also holds, considerz ∈ I. It must be shown that

inf{s(z′) : z′ ≥ z} ≤ s‡(z) . (328)

Hence letz0 ∈ s−1(0) be an arbitrary element withs(z0) = 0, which is known to exist
by Def. 60. Ifz0 ≥ z, then (328) holds because

inf{s(z′) : z′ ≥ z} ≤ s(z0) = 0 ≤ s‡(z) .

In the remaining case thatz0 < z, we observe that

inf{s(z′) : z′ ≤ z} ≤ s(z0) = 0 . (329)

Therefore

s‡(z) = max(inf{s(z′) : z′ ≤ z}, inf{s(z′) : z′ ≥ z}) by Def. 65

= max(0, inf{s(z′) : z′ ≥ z}) by (329)

= inf{s(z′) : z′ ≥ z} . because0 identity ofmax

In particular, (328) holds. It is then immediate from (327) and (328) thats‡ v s
by Def. 62. Hences v s‡, which entails thatω(s) ≤ ω(s‡) becauseω is assumed
to satisfy (ω-4), ands‡ v s, which entails thatω(s‡) ≤ ω(s). We conclude that
ω(s) = ω(s‡), as desired.

A.18 Proof of Theorem 49

Lemma 42 Considers, s′ ∈ L. If s E s′, then it also holds thats v s′.

Proof Suppose thats, s′ ∈ L satisfys E s′. We consider somez ∈ I. We then know
from Def. 64 that there existsz′′ ≥ z with

s′(z′′) ≤ s(z) .

Therefore

inf{s′(z′) : z′ ≥ z} ≤ s′(z′′) ≤ s(z) . (330)

Now we consider somez′ ∈ I. Again by Def. 64, there existsz′′ ≤ z′ with

s(z′′) ≤ s(z′) .

In turn,

inf{s(z) : z ≤ z′} ≤ s(z′′) ≤ s(z′) . (331)

Hence both inequations (330) and (331) are valid, and we conclude from Def. 62 that
s v s′.

Lemma 43 Lets ∈ L be given and letz0 be an elementz0 ∈ s−1(0) 6= ∅.

a. If z ≥ z0, thens‡(z) = inf{s(z′) : z′ ≥ z}.

b. If z ≤ z0, thens‡(z) = inf{s(z′) : z′ ≤ z}.
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Proof

a. Becausez ≥ z0, we observe that

inf{s(z′) : z′ ≤ z} ≤ s(z0) becausez0 ≤ z
= 0 , becausez0 ∈ s−1(0), i.e.s(z0) = 0

i.e.

inf{s(z′) : z′ ≤ z} = 0 . (332)

Therefore

s‡(z) = max(inf{s(z′) : z′ ≥ z}, inf{s(z′) : z′ ≤ z}) by Def. 65

= max(inf{s(z′) : z′ ≥ z}, 0) by (332)

= inf{s(z′) : z′ ≥ z} . because0 is identity ofmax

b. In this case, we conclude fromz ≤ z0 that

inf{s(z′) : z′ ≥ z} ≤ s(z0) becausez0 ≥ z
= 0 . becausez0 ∈ s−1(0), i.e.s(z0) = 0

Hence in this case

inf{s(z′) : z′ ≥ z} = 0 . (333)

We then obtain

s‡(z) = max(inf{s(z′) : z′ ≥ z}, inf{s(z′) : z′ ≤ z}) by Def. 65

= max(inf{s(z′) : z′ ≤ z}, 0) by (333)

= inf{s(z′) : z′ ≤ z} . because0 is identity ofmax

Lemma 44 Considers, s′ ∈ L with s v s′.

a. Letz′0 be an elementz′0 ∈ s′
−1(0). Thens′‡(z) ≤ s(z) for all z > z′0.

b. Letz0 be an elementz0 ∈ s−1(0). Thens‡(z) ≤ s′(z) for all z < z0.

Proof We recall from Def. 62 thats v s′ entails that

inf{s′(z′) : z′ ≥ z} ≤ s(z) (334)

inf{s(z′) : z′ ≤ z} ≤ s′(z) , (335)

for all z ∈ I. Now let us consider the two parts of the lemma.
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a. In this case,

s′
‡(z) = inf{s′(z′) : z′ ≥ z} by L-43.a

≤ s(z) by (334).

b. The proof of this part is analogous. Hence

s‡(z) = inf{s(z′) : z′ ≤ z} by L-43.b

≤ s′(z) . by (335)

Lemma 45 Lets, s′ ∈ L be given withs v s′.

a. Letz′0 ∈ s′
−1(0) be given and supposez ≥ z′0. Thens‡(z) = inf{s(z′) : z′ ≥

z}.

b. Letz0 ∈ s−1(0) and supposez ≤ z0. Thens′‡(z) = inf{s′(z′) : z′ ≤ z}.

Proof It is helpful to observe that the above inequations (334) and (335) are valid in
this context, too. Now let us consider the parts of the lemma in turn.

a. Straightforward. We first notice that

inf{s(z′) : z′ ≤ z} ≤ inf{s(z′) : z′ ≤ z′0} becausez′0 ≤ z
≤ s′(z′0) by (335)

= 0 , becausez′0 ∈ s′
−1(0)

i.e.

inf{s(z′) : z′ ≤ z} = 0 (336)

Therefore

s‡(z)
= max(inf{s(z′) : z′ ≥ z}, inf{s(z′) : z′ ≤ z}) by Def. 65

= max(inf{s(z′) : z′ ≥ z}, 0) by (336)

= inf{s(z′) : z′ ≥ z} , because0 is identity ofmax

as desired.

b. The proof of this case is analogous. Thus

inf{s′(z′) : z′ ≥ z} ≤ inf{s′(z′) : z′ ≥ z0} becausez0 ≥ z
≤ s(z0) by (334)

= 0 , becausez0 ∈ s−1(0)
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i.e.

inf{s′(z′) : z′ ≥ z} = 0 (337)

Therefore

s′
‡(z)

= max(inf{s′(z′) : z′ ≤ z}, inf{s′(z′) : z′ ≥ z}) by Def. 65

= max(inf{s′(z′) : z′ ≤ z}, 0) by (337)

= inf{s′(z′) : z′ ≤ z} . because0 is identity ofmax

Lemma 46 Supposes, s′ ∈ L satisfys v s′. Thens‡ E s′‡.

Proof Let us first show that for allz ∈ I, there existsz′ ≥ z with

s′
‡(z′) ≤ s‡(z) . (338)

To see this, choose some elementz′0 ∈ s′
−1(0), which is known to exist from Def. 60.

If z ≤ z′0, thens′‡(z′0) = 0 ≤ s‡(z), i.e. z′ = z′0 is an admissible choice ofz′ with
z′ ≥ z and s′‡(z′) ≤ s‡(z), which proves that (338) is valid in this case. In the
remaining case thatz > z′0, consider the following chain of (in)equations.

s‡(z) = inf{s(z′) : z′ ≥ z} by L-45

≥ inf{inf{s′(z′′) : z′′ ≥ z′} : z′ ≥ z} by (334)

= inf{s′(z′) : z′ ≥ z}

= s′
‡(z) . by L-43

Hencez′ = z is an admissible choice ofz′ with z′ ≥ z ands‡
′(z′) ≤ s‡(z), and (338)

is valid in this case as well.
Next we show that for allz′ ∈ I, there existsz ≤ z′ with

s‡(z) ≤ s′‡(z′) . (339)

In this case, we choose some elementz0 ∈ s−1(0), which is again known to exist by
Def. 60. If z′ ≥ z0, thens‡(z0) = 0 ≤ s‡

′(z′), i.e.z = z0 is a legal choice ofz with
z ≤ z′ ands‡(z) ≤ s′

‡(z′). Hence (339) is valid. In the remaining case thatz′ < z0,
we deduce that

s′
‡(z′) = inf{s′(z) : z ≤ z′} by L-45

≥ inf{inf{s(z′′) : z′′ ≤ z} : z ≤ z′} by (335)

= inf{s(z) : z ≤ z′}
= s‡(z′) . by L-43

Hencez = z′ is a suitable choice ofz with z ≤ z′ ands‡(z) ≤ s′
‡(z′), i.e. (339) is

valid in this case, too.
Finally, it is apparent from Def. 64 that (338) and (339) ensure the desireds‡ E s′‡.
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Proof of Theorem 49

Let us first notice that the conditionsa. andb. stated in the theorem are entailed by
(ω-4). Hence suppose thatω : L −→ I satisfies (ω-4). Then for alls, s′ ∈ L with
s E s′, we recall that by L-42, it also holds thats v s′. Henceω(s) ≤ ω(s′) by (ω-4),
i.e. conditiona. is valid, as desired. As concerns conditionb., it has already been
shown in Th-48 thatω’s satisfying (ω-4) entails thatω(s) = ω(s‡), i.e. conditionb.
holds as well. This finishes the proof that conditionsa. andb. are entailed by (ω-4).
Let us now prove the converse entailment. Hence suppose thata. andb. are valid and
considers, s′ ∈ L with s v s′. Then

ω(s) = ω(s‡) by propertyb.

≤ ω(s′‡) by propertya. and L-46

= ω(s′) . by propertyb.

Hence (ω-4) holds, as desired.

A.19 Proof of Theorem 50

Lemma 47 Considers ∈ L and supposes′ ∈ L is defined bys′(z) = s(1− z) for all
z ∈ I. Then it also holds that

s′
‡(z) = s‡(1− z)

for all z ∈ I.

Proof Considerz ∈ I. Then

s′
‡(z)

= max(inf{s′(z′) : z′ ≥ z}, inf{s′(z′) : z′ ≤ z}) by Def. 65

= max(inf{s(1− z′) : z′ ≥ z},
inf{s(1− z′) : z′ ≤ z}) by definition ofs′

= max(inf{s(z′′) : z′′ ≤ 1− z},
inf{s(z′′) : z′′ ≥ 1− z}) by substitutionz′′ = 1− z′

= s‡(1− z) , by Def. 65

as desired.

Lemma 48 For all s, s′ ∈ L with s′(z) = s(1− z) for all z ∈ I, it holds that

a. s′>,0∗ = 1− s⊥,0∗ ;

b. s′⊥,0∗ = 1− s>,0∗ .
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Proof Supposes, s′ ∈ L satisfy

s′(z) = s(1− z) (340)

for all z ∈ I.

a. To see that the equation of casea. holds, we simply notice that

s′
>,0
∗ = sup s′‡

−1
(0) by (42)

= sup{z ∈ I : s′‡(z) = 0}
= sup{z ∈ I : s‡(1− z) = 0} by L-47 and (340)

= sup{1− z′ ∈ I : s‡(z′) = 0} by substitutionz′ = 1− z
= 1− inf{z′ ∈ I : s‡(z′) = 0}
= 1− s⊥,0∗ . by (43)

b. To see that the second equation also holds, we simply notice that (340) entails that
s(z) = s′(1−z) for all z ∈ I, i.e. the ‘roles’ ofs ands′ are interchangeable. Therefore

s′
⊥,0
∗ = 1− (1− s′⊥,0∗ )

= 1− s>,0∗ . by parta. of the lemma

Lemma 49 For all s, s′ ∈ L with s′(z) = s(1− z) for all z ∈ I, it holds that

a. s′
≥ 1

2
∗ = s

≤ 1
2
∗ ;

b. s′
≤ 1

2
∗ = s

≥ 1
2
∗ .

Proof Let us first prove that parta. of the lemma is valid. Hence suppose thats′ is
defined in terms ofs ∈ L as stated in the lemma. Then

s′
≥ 1

2
∗ = inf{s′(z) : z ≥ 1

2} by (47)

= inf{s(1− z) : z ≥ 1
2} by definition ofs′

= inf{s(z′) : z′ ≤ 1
2} by substitutionz′ = 1− z

= s
≤ 1

2
∗ .

This also proves partb. becauses ands′ are interchangeable, i.e. it also holds that
s(z) = s′(1− z) for all z ∈ I.

Lemma 50 Supposes ∈ L is concave, i.e. for allz1 ≤ z2 ≤ z3, it holds that

s(z2) ≤ max(s(z1), s(z3)) . (341)

Thens‡ = s.
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Proof Let a choice ofs ∈ L be given such that (341) holds. By Def. 60,s−1(0) 6= ∅.
We can hence choose somez0 ∈ I with s(z0) = 0. Now considerz ∈ I. If z ≥ z0,
then for allz′ ≥ z,

s(z) ≤ max(s(z0), s(z′)) by (341)

≤ max(0, s(z′)) becausez0 ∈ s−1(0)
= s(z′) , because0 is identity ofmax

i.e.

s(z) ≤ s(z′) . (342)

Hence

inf{s(z′) : z′ ≥ z} ≤ inf{s(z) : z′ ≥ z} by (342)

= inf{s(z)}
= s(z) .

On the other hand,z ∈ {z′ ∈ I : z′ ≥ z} and henceinf{s(z′) : z′ ≥ z} ≤ s(z).
Combining both inequations, we obtain that

inf{s(z′) : z′ ≥ z} = s(z) . (343)

Therefore

s‡(z) = inf{s(z′) : z′ ≥ z} by L-43

= s(z) . by (343)

In the remaining case thatz ≤ z0, we can proceed analogously. Then for allz′ ≤ z,
we again have

s(z) ≤ max(s(z0), s(z′)) by (341)

≤ max(0, s(z′)) becausez0 ∈ s−1(0)
= s(z′) , because0 is identity ofmax

i.e.

s(z) ≤ s(z′) . (344)

Therefore

inf{s(z′) : z′ ≤ z} ≤ inf{s(z) : z′ ≤ z} by (344)

= inf{s(z)}
= s(z) .

We again notice thatz ∈ {z′ ∈ I : z′ ≤ z} and henceinf{s(z′) : z′ ≤ z} ≤ s(z).
Combining both inequations proves that

inf{s(z′) : z′ ≤ z} = s(z) . (345)
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Therefore

s‡(z) = inf{s(z′) : z′ ≤ z} by L-43

= s(z) . by (345)

Lemma 51 For all s ∈ L, s‡
‡ = s‡.

Proof By Th-47.c,s‡ is concave. Hence by L-50,s‡
‡ = s‡, as desired.

Lemma 52 For all s ∈ L,

a. s‡
>,0
∗ = s>,0∗ ;

b. s‡
⊥,0
∗ = s⊥,0∗ .

Proof Consider somes ∈ L. Concerninga., we notice that

s‡
>,0
∗ = sup s‡

‡−1

(0) by (42)

= sup s‡
−1

(0) by L-51

= s>,0∗ . by (42)

Similarly in the case ofb.,

s‡
⊥,0
∗ = inf s‡

‡−1

(0) by (43)

= inf s‡
−1

(0) by L-51

= s⊥,0∗ . by (43)

Lemma 53 For all s ∈ L,

a. s‡
≥ 1

2
∗ = s

≥ 1
2
∗ ;

b. s‡
≤ 1

2
∗ = s

≤ 1
2
∗ .

Proof Consider a choice ofs ∈ L and denote byz0 an arbitrary elementz0 ∈
s−1(0).
First I prove parta. of the lemma. This is trivial ifz0 ≥ 1

2 . We then have

s
≥ 1

2
∗ = inf{s(z) : z ≥ 1

2} by (47)

≤ s(z0) becausez0 ≥ 1
2

= 0 , by choice ofz0
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i.e.

s
≥ 1

2
∗ = 0 .

We recall that by Th-47.a,s‡(z0) ≤ s(z0) = 0, i.e.

s‡(z0) = 0 . (346)

Hence

s‡
≥ 1

2
∗ = inf{s‡(z) : z ≥ 1

2} by (47)

≤ s‡(z0) becausez0 ≥ 1
2

= 0 ,

i.e.

s‡
≥ 1

2
∗ = 0 .

This finishes the proof thats‡
≥ 1

2
∗ = 0 = s

≥ 1
2
∗ . In the remaining case thatz0 <

1
2 , we

notice that

s
≥ 1

2
∗ = s‡( 1

2 ) (347)

by (47) and L-43. For similar reasons, it holds that

s‡
≥ 1

2
∗ = s‡

‡
( 1

2 ) ; (348)

this is apparent from L-43 and (346). Therefore

s
≥ 1

2
∗ = s‡( 1

2 ) by (347)

= s‡
‡
( 1

2 ) by L-51

= s‡
≥ 1

2
∗ . by (348)

Hence parta. of the lemma is valid. To see that partb. holds as well, let us define
s′ ∈ L by s′(z) = s(1− z) for all z ∈ I. We can then proceed as follows.

s
≤ 1

2
∗ = s′

≥ 1
2
∗ by L-49

= s′
‡≥

1
2
∗ by parta. of the lemma

= s‡
≤ 1

2
∗ . by L-47 and L-49

Lemma 54 For all s, s′ ∈ L with s v s′, it holds that

a. s>,0∗ ≤ s′>,0∗ ;

b. s⊥,0∗ ≤ s′⊥,0∗ .
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Proof Let s, s′ ∈ L with s v s′ be given. We conclude from L-46 thats‡ E s′
‡,

i.e. for allz ∈ I, there existsz′ ≥ z with

s′
‡(z′) ≤ s‡(z) , (349)

and for allz′ ∈ I, there existsz ≤ z′ with

s‡(z) ≤ s′‡(z′) . (350)

Based on these inequations, the lemma is straightforward. I first consider casea. of
the lemma. Now letε > 0. Let us recall from (42) thats>,0∗ = sup s‡−1(0). Hence

there existsz ∈ s‡−1(0) with

z > s>,0∗ − ε . (351)

By (349), there exists

z′ ≥ z (352)

with s′
‡(z′) ≤ s‡(z). We notice thats‡(z) ≤ s(z) by Th-47.a and thats(z) = 0

becausez ∈ s−1(0). Hences′‡(z′) = 0, i.e.

z′ ∈ s′‡
−1

(0) . (353)

I conclude that

s′
>,0
∗ = sup s′‡

−1
(0) by (42)

≥ z′ becausez′ ∈ s′‡
−1

(0) by (353)

≥ z by (352)

> s>,0∗ − ε . by (351)

ε→ 0 proves the desireds′>,0∗ ≥ s>,0∗ .
To see that partb. of the lemma also holds, we observe thats v s′ entails that̄s′ v s̄,
wheres̄, s̄′ ∈ L are defined bȳs(z) = s(1 − z) ands̄′(z) = s′(1 − z) for all z ∈ I.
Therefore

s⊥,0∗ = 1− s̄>,0∗ by L-48

≤ 1− s̄′>,0∗ by parta. of the lemma

= s′
⊥,0
∗ . by L-48

Lemma 55 For all s, s′ ∈ L with s E s′, it holds that

a. s
≥ 1

2
∗ ≥ s′

≥ 1
2
∗ ;

b. s
≤ 1

2
∗ ≤ s′

≤ 1
2
∗ .
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Proof Suppose thats, s′ ∈ L with s E s′ are given. We know from Def. 64 that for
all z ∈ I, there existsz′ ≥ z with

s′(z′) ≤ s(z) (354)

and that for allz′ ∈ I, there existsz ≤ z′ with

s(z) ≤ s′(z′) . (355)

As concerns parta. of the lemma, we first recall from (47) that

s
≥ 1

2
∗ = inf{s(z) : z ≥ 1

2} . (356)

Now letε > 0. We conclude from (356) that there existsz ∈ [ 1
2 , 1] with

s(z) < s
≥ 1

2
∗ + ε . (357)

By (354), there existsz′ ≥ z with s′(z′) ≤ s(z), hence

s′(z′) < s
≥ 1

2
∗ + ε (358)

by (357). Therefore

s′
≥ 1

2
∗ = inf{s′(z) : z ≥ 1

2} by (47)

≤ s′(z′) becausez′ ≥ z ≥ 1
2

< s
≥ 1

2
∗ + ε . by (358)

ε→ 0 yields the desireds′
≥ 1

2
∗ ≤ s

≥ 1
2
∗ .

Now let us consider partb. of the lemma. We definēs, s̄′ ∈ L by s̄(z) = s(1− z) and
s̄′(z) = s′(1− z) for all z ∈ I. It is then apparent from Def. 64 thats E s′ entails that
s̄′ E s̄. Therefore

s
≤ 1

2
∗ = s̄

≥ 1
2
∗ by L-49

≤ s̄′
≥ 1

2
∗ by parta. of the lemma

= s′
≤ 1

2
∗ . by L-49

Lemma 56 For all s, s′ ∈ L with s v s′, it holds that

a. s
≥ 1

2
∗ ≥ s′

≥ 1
2
∗ ;

b. s
≤ 1

2
∗ ≤ s′

≤ 1
2
∗ .
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Proof By L-55, (•)
≥ 1

2
∗ and(•)

≤ 1
2
∗ are monotonic with respect toE. By L-53, (•)

≥ 1
2
∗

and(•)
≤ 1

2
∗ are‡-invariant. We can hence apply Th-49 to deduce that(•)

≥ 1
2
∗ and(•)

≤ 1
2
∗

are monotonic with respect tov, as desired.

Proof of Theorem 50

By Th-44, it is sufficient forFM = FωM to be a standard DFS (ω-1)–(ω-4) are valid
for ωM .

ωM satisfies (ω-1) Let us consider a choice ofs ∈ L such that

s−1([0, 1)) = {a} (359)

for somea ∈ I. Then

s⊥,0∗ = inf s‡
−1

(0) by (43)

= inf s−1(0) by L-50 ands concave

= inf{a} by (359)

= a ,

i.e.

s⊥,0∗ = a . (360)

By the same reasoning, we also obtain

s>,0∗ = a . (361)

Concerning the coefficientss
≤ 1

2
∗ ands

≥ 1
2
∗ , we obtain from (46) and (359) that

s
≤ 1

2
∗ = inf{s(z) : z ≤ 1

2} =

{
1 : a > 1

2

0 : a ≤ 1
2

(362)

Similarly by (47) and (359),

s
≥ 1

2
∗ = sup{s(z) : z ≥ 1

2} =

{
1 : a < 1

2

0 : a ≥ 1
2

(363)

Hence ifa > 1
2 , thens⊥,0∗ = a > 1

2 ands
≤ 1

2
∗ = 1 by (360) and (362). In turn, we

obtain from Def. 67 that

ωM (s) = min(s⊥,0∗ , 1
2 + 1

2s
≤ 1

2
∗ ) = min(a, 1

2 + 1
2 · 1) = min(a, 1) = a .
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If a < 1
2 , thens>,0∗ = a < 1

2 ands
≥ 1

2
∗ = 1 by (361) and (363). In this case, we obtain

from Def. 67 that

ωM (s) = max(s>,0∗ , 1
2 −

1
2s
≥ 1

2
∗ ) = max(a, 1

2 −
1
2 · 1) = max(a, 0) = a .

Finally if a = 1
2 , thens>,0∗ = s⊥,0∗ = 1

2 by (360) and (361). ThereforeωM (s) = 1
2 by

Def. 67.

ωM satisfies (ω-2) Let s ∈ L be given and suppose thats′ ∈ L is defined bys′(z) =
s(1− z). If s′⊥,0∗ > 1

2 , then

ωM (s′) = min(s′⊥,0∗ , 1
2 + 1

2s
′≤

1
2
∗ ) by Def. 67

= min(1− s>,0∗ , 1
2 + 1

2s
≥ 1

2
∗ ) by L-48, L-49

= min(1− s>,0∗ , 1− ( 1
2 −

1
2s
≥ 1

2
∗ ))

= 1−max(s>,0∗ , 1
2 −

1
2s
≥ 1

2
∗ ) by De Morgan’s law

= 1− ωM (s) , by Def. 67

where the last step holds becauses>,0∗ = 1− s′⊥,0∗ < 1
2 by L-48.

In the case thats′>,0∗ < 1
2 , we notice thats⊥,0∗ = 1− s′>,0∗ > 1

2 by L-48. Therefore

ωM (s′) = max(s′>,0∗ , 1
2 −

1
2s
′≥

1
2
∗ ) by Def. 67

= max(1− s⊥,0∗ , 1
2 −

1
2s
≤ 1

2
∗ ) by L-48, L-49

= max(1− s⊥,0∗ , 1− ( 1
2 + 1

2s
≤ 1

2
∗ ))

= 1−min(s⊥,0∗ , 1
2 + 1

2s
≤ 1

2
∗ ) by De Morgan’s law

= 1− ωM (s) . by Def. 67

Finally if s′⊥,0∗ ≤ 1
2 ≤ s

′>,0
∗ , thens⊥,0∗ = 1− s′>,0∗ ≤ 1

2 ≤ 1− s′⊥,0∗ = s>,0∗ by L-48.
HenceωM (s′) = 1

2 = ωM (s) by Def. 67. In particular,ωM (s′) = 1− ωM (s).

ωM satisfies (ω-3) Consider a choice ofs ∈ L with s(1) = 0 ands−1([0, 1)) ⊆
{0, 1}, i.e.s(z) = 1 for all z ∈ (0, 1). We then obtain from Def. 65 that

s‡(z) =
{

0 : z = 1
s(0) : z < 1

for all z ∈ I. Therefore

s>,0∗ = sup s‡
−1

(0) = 1 (364)

s⊥,0∗ = inf s‡
−1

(0) =
{

1 : s(0) > 0
0 : s(0) = 0 (365)
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by (42) and (43), resp. We further notice that

s
≤ 1

2
∗ = inf{s(z) : z ≤ 1

2} = s(0) , (366)

which is apparent from (46) and the assumed properties ofs. In the following, we
discern two cases. Ifs(0) = 0, thens⊥,0∗ = 0 by (365) ands>,0∗ = 1 by (364). Hence
by Def. 67,ωM (s) = 1

2 = 1
2 + 1

2 · 0 = 1
2 + 1

2s(0), as desired. In the remaining case

thats(0) > 0, we know from (365) thats⊥,0∗ = 1. Therefore

ωM (s) = min(s⊥,0∗ , 1
2 + 1

2s
≤ 1

2
∗ ) by Def. 67

= min(1, 1
2 + 1

2s(0)) by (365), (366)

= 1
2 + 1

2s(0) .

This proves that (ω-3) is indeed valid.

ωM satisfies (ω-4) Let s, s′ ∈ L be given withs v s′. We know from L-54 and L-56
that

s>,0∗ ≤ s′>,0∗ (367)

s⊥,0∗ ≤ s′⊥,0∗ (368)

s
≥ 1

2
∗ ≥ s′

≥ 1
2
∗ (369)

s
≤ 1

2
∗ ≤ s′

≤ 1
2
∗ . (370)

If s′⊥,0∗ > 1
2 ands⊥,0∗ ≤ 1

2 , thenωM (s′) ≥ 1
2 ≥ ωM (s) by Def. 67. Similarly if

s′
>,0
∗ ≥ 1

2 , s⊥,0∗ ≤ 1
2 ands>,0∗ ≥ 1

2 , thenωM (s′) = 1
2 = ωM (s) by Def. 67. Hence

there are only two critical cases, viz.s′⊥,0∗ ≥ s⊥,0∗ > 1
2 ands>,0∗ ≤ s′

>,0
∗ < 1

2 . It is
sufficient to prove the monotonic behaviour ofωM in the first case because the second
case can be reduced to the first one through negation, noting thats v s′ if and only
if s̄′ v s̄, wheres̄(z) = s(1 − z) and s̄′(z) = s′(1 − z) for all z ∈ I. Hence let us
consider the first case and assume thats′

⊥,0
∗ ≥ s⊥,0∗ > 1

2 . Then

ωM (s) = min(s⊥,0∗ , 1
2 + 1

2s
≤ 1

2
∗ ) by Def. 67

≤ min(s′⊥,0∗ , 1
2 + 1

2s
′≤

1
2
∗ ) by (368), (370)

= ωM (s′) . by Def. 67

This proves that (ω-4) holds, as desired. I have hence shown thatωM satisfies (ω-1)–
(ω-4) and by Th-44,FM is a standard DFS.
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A.20 Proof of Theorem 51

To see thatFM is not anFξ-DFS, considerS, S′ ∈ K defined by

S(γ) =

{
[ 3
4 , 1] : γ ≤ 1

4

[ 1
2 , 1] : γ > 1

4

(371)

S′(γ) =

{
[ 3
4 , 1] : γ ≤ 1

4

( 1
2 , 1] : γ > 1

4

(372)

for all γ ∈ I. We then obtain for the mappingss, s′ ∈ L defined by Def. 53 in terms of
S andS′ that

s(z) =


0 : z ≥ 3

4
1
4 : z ≥ 1

2

1 : z < 1
2

(373)

s′(z) =


0 : z ≥ 3

4
1
4 : z > 1

2

1 : z ≤ 1
2

(374)

for all z ∈ I. Let us now consider the coefficients used in the definition ofωM . We
notice thats, s′ are concave, i.e.s‡ = s ands′‡ = s′ by L-50. Hence by (373), (374)
and (43),

s⊥,0∗ = inf s‡
−1

(0) = inf s−1(0) = inf[3
4 , 1] = 3

4 (375)

s′
⊥,0
∗ = inf s′‡

−1
(0) = inf s′−1(0) = inf[3

4 , 1] = 3
4 (376)

Fors
≤ 1

2
∗ ands′

≤ 1
2
∗ , we obtain from (373), (374) and (46) that

s
≤ 1

2
∗ = inf{s(z) : z ≤ 1

2} = 1
4 (377)

s′
≤ 1

2
∗ = inf{s′(z) : z ≤ 1

2} = 1 . (378)

Therefore

ωM (s) = min(s⊥,0∗ , 1
2 + 1

2s
≤ 1

2
∗ ) = min( 3

4 ,
1
2 + 1

2 ·
1
4 ) = min( 3

4 ,
5
8 ) = 5

8 (379)

by Def. 67, (375) and (377). Similarly, we have

ωM (s′) = min(s′⊥,0∗ , 1
2 + 1

2s
′≤

1
2
∗ ) = min( 3

4 ,
1
2 + 1

2 · 1) = min( 3
4 , 1) = 3

4 (380)

by Def. 67 and (376), (378). Now let us recall that by Th-33, there existQ,Q′ :
P(2× I) −→ I and a fuzzy subsetX ∈ P̃(2× I) with

S = SQ,X (381)

S′ = SQ′,X (382)

152



By Th-41, we then have

s = sQ,X (383)

s′ = sQ′,X . (384)

We hence have

FM (Q)(X) = ωM (sQ,X) = ωM (s) = 5
8

and

FM (Q′)(X) = ωM (sQ′,X) = ωM (s′) = 3
4

by Def. 61, (383), (384), (379) and (380). In particular,

FM (Q)(X) 6= FM (Q′)(X) . (385)

Now consider an arbitrary mappingξ : T −→ I. By Th-37,Fξ = FΩ, where

Ω(S) = ξ(>S ,⊥S)

for all S ∈ K. In the present case ofS, S′ ∈ K defined by (371) and (372), we obtain
from (35) and (36) that

>S(γ) = supS(γ) = 1

⊥S(γ) = inf S(γ) =

{
3
4 : γ ≤ 1

4
1
2 : γ > 1

4

>S′(γ) = supS′(γ) = 1

⊥S′(γ) = inf S′(γ) =

{
3
4 : γ ≤ 1

4
1
2 : γ > 1

4

for all γ ∈ I. In particular,

(>S ,⊥S) = (>S′ ,⊥S′) . (386)

Therefore

Fξ(Q)(X) = ξ(>SQ,X ,⊥SQ,X ) by Th-37

= ξ(>S ,⊥S) by (381)

= ξ(>S′ ,⊥S′) by (386)

= ξ(>SQ′,X ,⊥SQ′,X ) by (382)

= Fξ(Q′)(X) . by Th-37

HenceFξ(Q)(X) = Fξ(Q′)(X) in everyFξ-QFM, butFM (Q)(X) 6= FM (Q′)(X)
by (385). This proves thatFM is not anFξ-DFS.
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A.21 Proof of Theorem 52

Lemma 57 For all s, s′ ∈ L with s′(z) = s(1− z) for all z ∈ I, it holds that

a. s′>,∗1 = 1− s⊥,∗1 ;

b. s′⊥,∗1 = 1− s>,∗1 .

Proof Suppose thats′ is defined in terms ofs ∈ L as stated in the lemma. We then
obtain that

s>,∗1 = sup s′−1([0, 1)) by (44)

= sup{z ∈ I : s′(z) < 1}
= sup{z ∈ I : s(1− z) < 1} becauses′(z) = s(1− z)
= sup{1− z′ ∈ I : s(z′) < 1} by substututionz′ = 1− z
= 1− inf{z′ ∈ I : s(z′) < 1}
= 1− inf s−1([0, 1))

= 1− s⊥,∗1 . by (45)

This proves parta. of the lemma. As concerns partb., we notice that the roles ofs and
s′ are interchangeable, i.e. it also holds thats(z) = s′(1− z) for all z ∈ I. Therefore

s⊥,∗1 = 1− (1− s⊥,∗1 )

= 1− s′>,∗1 . by parta. of the lemma

Lemma 58 For all s ∈ L,

a. s‡
>,∗
1 = s>,∗1 ;

b. s‡
⊥,∗
1 = s⊥,∗1 .

Proof I first prove parta. of the lemma. Hence lets ∈ L be given. Recalling that
s‡ ≤ s by Th-47, we deduce that

s>,∗1 = sup{z ∈ I : s(z) < 1} by (44)

≤ sup{z ∈ I : s‡(z) < 1} becauses‡ ≤ s

= s‡
>,∗
1 ,

i.e.

s>,∗1 ≤ s‡>,∗1 . (387)
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Let us choose somez0 ∈ s−1(0). It is apparent from (44) thatz0 ≤ s>,∗1 ; hence also

z0 ≤ s‡
>,∗
1 by (387). In the following, it is therefore sufficient to considerz ≥ z0.

Then

s‡(z) = inf{s(z′) : z′ ≥ z} (388)

by L-43. Hence

s‡
>,∗
1 = sup{z ∈ I : inf{s(z′) : z′ ≥ z} < 1} . (389)

Now letε > 0. We conclude from (389) that there exists a choice ofz ∈ I with

z > s‡
>,∗
1 − ε (390)

and

inf{s(z′) : z′ ≥ z < 1} . (391)

It is then apparent from (391) that there existsz′ ∈ I with z′ ≥ z ands(z′) < 1.
Therefore

s>,∗1 = sup{z ∈ I : s(z) < 1} by (44)

≥ z′ becauses(z′) < 1

> s‡
>,∗
1 − ε . by (390) andz′ ≥ z

ε → 0 yields s>,∗1 ≥ s‡
>,∗
1 . Recalling (387), we obtain the desireds>,∗1 = s‡

>,∗
1 ,

i.e. parta. of the lemma is valid. As concerns partb., let us defines′ ∈ L by s′(z) =
s(1− z) for all z ∈ I. Then

s⊥,∗1 = 1− s′>,∗1 by L-57

= 1− s′‡
>,∗
1 by parta. of the lemma

= s‡
⊥,∗
1 . by L-57 and L-47

Lemma 59 For all s, s′ ∈ L with s E s′,

a. s>,∗1 ≤ s′>,∗1 ;

b. s⊥,∗1 ≤ s′⊥,∗1 .

Proof Suppose thats, s′ ∈ L with s E s′. I first show that parta. of the lemma is
valid. Hence letε > 0. Recalling thats>,∗1 = sup s−1([0, 1)) by (44), there exists
z ∈ I with

s(z) < 1 (392)
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and

z > s>,∗1 − ε . (393)

It is then immediate from Def. 64 ands E s′ that there existsz′ ≥ z with s′(z′) ≤ s(z).
Hencez′ > s>,∗1 − ε by (393) ands′(z′) < 1 by (392), i.e.z′ ∈ s′

−1([0, 1)). We
conclude that

s′
>,∗
1 = sup s′−1([0, 1)) by (44)

≥ z′ becausez′ ∈ s′−1([0, 1))

> s>,∗1 − ε .

ε→ 0 proves the desireds′>,∗1 ≥ s>,∗1 .
To see that partb. of the lemma holds as well, definēs, s̄′ ∈ L by s̄(z) = s(1 − z),
s̄′(z) = s′(1− z) for all z ∈ I. It is then obvious from Def. 64 ands E s′ that s̄′ E s̄.
Therefore

s⊥,∗1 = 1− s̄>,∗1 by L-57

≤ 1− s̄′>,∗1 by parta. of present lemma

= s′
⊥,∗
1 . by L-57

Lemma 60 For all s, s′ ∈ L with s v s′, it holds that

a. s>,∗1 ≥ s′>,∗1 ;

b. s⊥,∗1 ≤ s′⊥,∗1 .

Proof By L-59, (•)>,∗1 and(•)⊥,∗1 are monotonic with respect toE. By L-58, (•)>,∗1

and(•)⊥,∗1 are also‡-invariant. We can hence apply Th-49 and conclude that(•)>,∗1

and(•)⊥,∗1 are monotonic with respect tov, as stated in the lemma.

Proof of Theorem 52

By Th-44, it is sufficient forFP = FωP to be a standard DFS thatωP satisfy (ω-1)–
(ω-4). Hence let us consider these conditions in turn.

ωP satisfies (ω-1) Let us consider a choice ofs ∈ L such that

s−1([0, 1)) = {a} (394)

for somea ∈ I. Let us recall from the proof of Th-50 that

s⊥,0∗ = a . (395)

s>,0∗ = a , (396)
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see equations (360) and (361) above. Concerning the coefficientss
≤ 1

2
∗ ands

≥ 1
2
∗ , we

recall equations (362) and (363), viz

s
≤ 1

2
∗ =

{
1 : a > 1

2

0 : a ≤ 1
2

(397)

s
≥ 1

2
∗ =

{
1 : a < 1

2

0 : a ≥ 1
2

(398)

Finally we need to consider the coefficientss>,∗1 ands⊥,∗1 , thus

s>,∗1 = sup s−1([0, 1)) = sup{a} = a (399)

by (44) and (394), and

s⊥,∗1 = inf s−1([0, 1)) = inf{a} = a (400)

by (45) and (394).

Hence ifa > 1
2 , thens⊥,0∗ = a > 1

2 , s
≤ 1

2
∗ = 1 ands>,∗1 = a by (395), (397) and (399),

resp. In turn, we obtain from Def. 68 that

ωP (s) = min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) = min(a, 1

2 + 1
2 · 1) = min(a, 1) = a .

If a < 1
2 , thens>,0∗ = a < 1

2 , s
≥ 1

2
∗ = 1 ands⊥,∗1 = a by (396), (398) and (400), resp.

In this case, we obtain from Def. 68 that

ωP (s) = max(s⊥,∗1 , 1
2 −

1
2s
≥ 1

2
∗ ) = max(a, 1

2 −
1
2 · 1) = max(a, 0) = a .

Finally if a = 1
2 , thens>,0∗ = s⊥,0∗ = 1

2 by (395) and (396). ThereforeωP (s) = 1
2 by

Def. 68. This completes the proof thatωP satisfies (ω-1).

ωP satisfies (ω-2) Let s ∈ L be given and suppose thats′ ∈ L is defined bys′(z) =
s(1− z). If s′⊥,0∗ > 1

2 , then

ωP (s′) = min(s′>,∗1 , 1
2 + 1

2s
′≤

1
2
∗ ) by Def. 68

= min(1− s⊥,∗1 , 1
2 + 1

2s
≥ 1

2
∗ ) by L-57, L-49

= min(1− s⊥,∗1 , 1− ( 1
2 −

1
2s
≥ 1

2
∗ ))

= 1−max(s⊥,∗1 , 1
2 −

1
2s
≥ 1

2
∗ ) by De Morgan’s law

= 1− ωP (s) , by Def. 68
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where the last step holds becauses>,0∗ = 1− s′⊥,0∗ < 1
2 by L-48.

In the case thats′>,0∗ < 1
2 , we notice thats⊥,0∗ = 1− s′>,0∗ > 1

2 by L-48. Therefore

ωP (s′) = max(s′⊥,∗1 , 1
2 −

1
2s
′≥

1
2
∗ ) by Def. 68

= max(1− s>,∗1 , 1
2 −

1
2s
≤ 1

2
∗ ) by L-57, L-49

= max(1− s>,∗1 , 1− ( 1
2 + 1

2s
≤ 1

2
∗ ))

= 1−min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) by De Morgan’s law

= 1− ωP (s) . by Def. 68

Finally if s′⊥,0∗ ≤ 1
2 ≤ s

′>,0
∗ , thens⊥,0∗ = 1− s′>,0∗ ≤ 1

2 ≤ 1− s′⊥,0∗ = s>,0∗ by L-48.
HenceωP (s′) = 1

2 = ωP (s) by Def. 68. In particular,ωP (s′) = 1− ωP (s).

ωP satisfies (ω-3) Consider a choice ofs ∈ L with s(1) = 0 ands−1([0, 1)) ⊆
{0, 1}, i.e. s(z) = 1 for all z ∈ (0, 1). Let us notice that equations (364), (365) and
(366) are valid in the present case, too. Hence

s>,0∗ = 1 (401)

s⊥,0∗ =
{

1 : s(0) > 0
0 : s(0) = 0 (402)

and

s
≤ 1

2
∗ = s(0) . (403)

As regards the coefficients>,∗1 , we observe that

s>,∗1 = sup s−1([0, 1)) = 1 (404)

by (44) becauses(1) = 0, i.e.1 ∈ s−1([0, 1)). In the following, we discern two cases.
If s(0) = 0, thens⊥,0∗ = 0 by (402) ands>,0∗ = 1 by (401). Hence by Def. 68,
ωP (s) = 1

2 = 1
2 + 1

2 · 0 = 1
2 + 1

2s(0), as desired. In the remaining case thats(0) > 0,

we know from (402) thats⊥,0∗ = 1. Therefore

ωP (s) = min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) by Def. 68

= min(1, 1
2 + 1

2s(0)) by (403), (404)

= 1
2 + 1

2s(0) .

This proves that (ω-3) is indeed valid.
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ωP satisfies (ω-4) Let s, s′ ∈ L be given withs v s′. We know from L-54, L-56 and
L-60 that

s>,0∗ ≤ s′>,0∗ (405)

s⊥,0∗ ≤ s′⊥,0∗ (406)

s
≥ 1

2
∗ ≥ s′

≥ 1
2
∗ (407)

s
≤ 1

2
∗ ≤ s′

≤ 1
2
∗ (408)

s>,∗1 ≤ s′>,∗1 (409)

s⊥,∗1 ≤ s′⊥,∗1 . (410)

If s′⊥,0∗ > 1
2 ands⊥,0∗ ≤ 1

2 , thenωP (s′) ≥ 1
2 ≥ ωP (s) by Def. 68. Similarly if

s′
>,0
∗ ≥ 1

2 , s⊥,0∗ ≤ 1
2 ands>,0∗ ≥ 1

2 , thenωP (s′) = 1
2 = ωP (s) by Def. 68. Hence

there are only two critical cases, viz.s′⊥,0∗ ≥ s⊥,0∗ > 1
2 ands>,0∗ ≤ s′

>,0
∗ < 1

2 . Like
in the case of Th-50, it is sufficient to prove the monotonic behaviour ofωP in the first
case because the second case can be reduced to the first one through negation, again
noting thats v s′ if and only if s̄′ v s̄, wheres̄(z) = s(1− z) ands̄′(z) = s′(1− z)
for all z ∈ I. Hence let us consider the first case and assume thats′

⊥,0
∗ ≥ s⊥,0∗ > 1

2 .
Then

ωP (s) = min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) by Def. 68

≤ min(s′>,∗1 , 1
2 + 1

2s
′≤

1
2
∗ ) by (408), (409)

= ωP (s′) . by Def. 68

To sum up,ωP satisfies all conditions (ω-1)–(ω-4). We can hence conclude from Th-44
thatFP is a standard DFS.

A.22 Proof of Theorem 53

To see thatFP is not anFξ-DFS, we consider the same choice ofS, S′ ∈ K, s, s′ ∈ L
andQ,Q′ : P(2× I) −→ I, X ∈ P̃(2× I) as in the proof of Th-51. We already
know thatFξ(Q)(X) = Fξ(Q′)(X) for all ξ : T −→ I. HenceFP is not anFξ-DFS
if we can show thatFP (Q)(X) 6= FP (Q′)(X). We recall that the coefficientss⊥,0∗ ,

s′
⊥,0
∗ , s

≤ 1
2
∗ ands′

≤ 1
2
∗ are given by equations (375), (376), (377) and (378), respectively.

For the coefficientss>,∗1 ands′>,∗1 , we obtain from (44) and (373), (374) that

s>,∗1 = sup s−1([0, 1)) = 1 (411)

s′
>,∗
1 = sup s−1([0, 1)) = 1 (412)
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becauses(1) = s′(1) = 0. Therefore

FP (Q)(X) = ωP (sQ,X) by Def. 61

= ωP (s) by (383)

= min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) by Def. 68 and (375)

= min(1, 1
2 + 1

2 ·
1
4 ) by (411), (377)

= 5
8

and

FP (Q′)(X) = ωP (sQ′,X) by Def. 61

= ωP (s′) by (384)

= min(s′>,∗1 , 1
2 + 1

2s
′≤

1
2
∗ ) by Def. 68 and (376)

= min(1, 1
2 + 1

2 · 1) by (412), (378)

= 1 .

In particularFP (Q)(X) 6= FP (Q′)(X). HenceFP cannot be anFξ-DFS.

A.23 Proof of Theorem 54

Lemma 61 Lets ∈ L andz0 ∈ s‡
−1(0) be given. Then

a. If z ≥ z0, thens‡(z) = inf{s(z′) : z′ ≥ z}.

b. If z ≤ z0, thens‡(z) = inf{s(z′) : z′ ≤ z}.

Note. The lemma is very similar to L-43, but this timez0 is chosen froms‡
−1(0) and

not froms−1(0).

Proof Let s ∈ L be given and supposez0 is a choice ofz0 ∈ s‡
−1(0) 6= ∅. We shall

further choose somez′0 ∈ s−1(0) 6= ∅. Now considerz ∈ I.

a.: z ≥ z0. It is convenient to discern two cases. Ifz ≥ z′0, then

s‡(z) = inf{s(z′) : z′ ≤ z}

by L-43. In the remaining case thatz0 ≤ z < z′0, we notice that

inf{s(z′) : z′ ≤ z} ≤ inf{s(z′) : z′ ≤ z0}
= s‡(z0) by L-43

= 0 , becausez0 ∈ s‡
−1

(0)
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i.e.

inf{s(z′) : z′ ≤ z} = 0 .

In addition, we know thats‡ is concave, see Th-47.c. Hence

s‡(z) ≤ max(s‡(z0), s‡(z′0)) by Th-47.c

= 0 , becauses‡(z0) = s‡(z′0) = 0

i.e.

s‡(z) = 0 .

Hences‡(z) = 0 = inf{s(z′) : z′ ≤ z}.

b.: z ≤ z0. Again we discern two cases. Ifz ≤ z′0, then we obtain from L-43 that

s‡(z) = inf{s(z′) : z′ ≤ z} ,

as desired. In the remaining case thatz0 ≥ z > z′0, we observe that

inf{s(z′) : z′ ≤ z} ≤ s(z′0) becausez′0 < z

= 0 , becausez′0 ∈ s−1(0)

i.e. inf{s(z′) : z′ ≤ z} = 0. In addition, we have

s‡(z) = inf{s(z′) : z′ ≥ z} by L-43

≤ inf{s(z′) : z′ ≥ z0} becausez0 ≥ z
= s‡(z0) by L-43

= 0 , becausez0 ∈ s‡
−1

(0)

i.e.s‡(z) = 0 = inf{s(z′) : z′ ≤ z}.

Lemma 62 For all s ∈ L,

ωZ(s) =

 min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) : s‡

−1(0) ∩ [ 1
2 , 1] 6= ∅

max(s⊥,∗1 , 1
2 −

1
2s
≥ 1

2
∗ ) : s‡

−1(0) ∩ [0, 1
2 ] 6= ∅

Proof It is apparent from Def. 69 that the equation stated in the lemma holds in
the case thats‡

−1(0) ⊆ [ 1
2 , 1] or s‡

−1(0) ⊆ [0, 1
2 ]. In the remaining case that both

s‡
−1(0) ∩ [ 1

2 , 1] 6= ∅ ands‡
−1(0) ∩ [0, 1

2 ] 6= ∅, we conclude from the fact thats‡ is
concave by Th-47.c that

s‡( 1
2 ) = 0 . (413)
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Hence

s
≤ 1

2
∗ = inf{s(z) : z ≤ 1

2} = s‡( 1
2 ) = 0 (414)

by (46), L-61 and (413). Similarly

s
≥ 1

2
∗ = inf{s(z) : z ≥ 1

2} = s‡( 1
2 ) = 0 (415)

by (46), L-61 and (413). We also notice that

s>,∗1

= s‡
>,∗
1 by L-58

= sup s‡
−1

([0, 1)) by (44)

≥ sup s‡
−1

(0) by monotonicity ofsup

≥ 1
2

becauses‡
−1(0) ∩ [ 1

2 , 1] 6= ∅, i.e.

s>,∗1 ≥ 1
2 . (416)

By similar reasoning

s⊥,∗1

= s‡
⊥,∗
1 by L-58

= inf s‡
−1

([0, 1)) by (45)

≤ inf s‡
−1

(0) by monotonicity ofinf

≤ 1
2

becauses‡
−1(0) ∩ [0, 1

2 ] 6= ∅. Hence

s⊥,∗1 ≤ 1
2 . (417)

We conclude that

min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) = min(s>,∗1 , 1

2 + 1
2 · 0) by (414)

= 1
2 by (416)

= max(s⊥,∗1 , 1
2 −

1
2 · 0) by (417)

= max(s⊥,∗1 , 1
2 −

1
2s
≥ 1

2
∗ ) , by (415)

which coincides with the desiredωZ(s) = 1
2 by Def. 69.

Lemma 63 For all s ∈ L, ωZ(s‡) = ωZ(s).
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Proof It is obvious from L-62 that

ωZ(s) = f(s>,∗1 , s⊥,∗1 , s
≤ 1

2
∗ , s

≥ 1
2
∗ , s‡

−1
(0)) (418)

for all s ∈ L, wheref : I4 × P(I) −→ I is defined by

f(a, b, c, d, e) =


min(a, 1

2 + 1
2c) : e ⊆ [ 1

2 , 1]
max(b, 1

2 −
1
2e) : e ⊆ [0, 1

2 ] ande 6= { 1
2}

1
2 : else

(419)

for all a, b, c, d ∈ I ande ∈ P(I). We further notice that

(s‡)
‡−1

(0) = s‡
−1

(0) (420)

by L-51. Hence for alls ∈ L

ωZ(s‡) = f((s‡)
>,∗
1 , (s‡)

⊥,∗
1 , (s‡)

≤ 1
2
∗ , (s‡)

≥ 1
2
∗ , (s‡)

‡−1

(0)) by (419)

= f(s>,∗1 , s⊥,∗1 , s
≤ 1

2
∗ , s

≥ 1
2
∗ , s‡

−1
(0)) by L-58, L-53 and (420)

= ωZ(s) , by (419)

as desired.

Lemma 64 For all s, s′ ∈ L with s E s′, it holds thatωZ(s) ≤ ωZ(s′).

Proof To see this, consider a choice ofs, s′ ∈ Lwith s E s′. Thens‡
−1(0)∩[ 1

2 , 1] 6=
∅ entails thats′‡

−1
(0) ∩ [ 1

2 , 1] 6= ∅. Utilizing L-62, it is hence sufficient to discern
the following three cases.

s‡
−1

(0) ∩ [ 1
2
, 1] 6= ∅. Thens′‡

−1
(0) ∩ [ 1

2 , 1] 6= ∅ as well. Hence

ωZ(s) = min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) by L-62

≤ min(s′>,∗1 , 1
2 + 1

2s
′≤

1
2
∗ ) by L-59, L-55

= ωZ(s′) . by L-62

s‡
−1

(0) ∩ [ 1
2
, 1] = ∅ and s′

‡−1
(0) 6= ∅. Thens‡

−1 ∩ [0, 1
2 ] 6= ∅, in particular

s⊥,∗1 = inf s‡
−1

(0) ≤ 1
2 (421)

by (45). By similar reasoning,s′‡
−1

(0) ∩ [ 1
2 , 1] 6= ∅ entails that

s′
>,∗
1 = sup s‡

−1
(0) ≥ 1

2 (422)

163



by (44). Therefore

ωZ(s) = max(s⊥,∗1 , 1
2 −

1
2s
≥ 1

2
∗ ) by L-62

≤ 1
2 by (421)

≤ min(s′>,∗1 , 1
2 + 1

2s
′≤

1
2
∗ ) by (422)

= ωZ(s′) . by L-62

s′
‡−1

(0)∩[ 1
2
, 1] = ∅. Thens‡

−1(0)∩[ 1
2 , 1] = ∅ as well becauses E s′. We conclude

thats‡
−1(0) ∩ [0, 1

2 ] 6= ∅ ands′‡
−1

(0) ∩ [0, 1
2 ] 6= ∅. Therefore

ωZ(s) = max(s⊥,∗1 , 1
2 −

1
2s
≥ 1

2
∗ ) by L-62

≤ max(s′⊥,∗1 , 1
2 −

1
2s
′≥

1
2
∗ ) by L-59, L-55

= ωZ(s′) . by L-62

Proof of Theorem 54

I utilize Th-44 in order to prove thatFZ is a standard DFS by showing thatωZ satisfies
(ω-1) to (ω-4).

ωZ satisfies (ω-1). Let us consider a choice ofs ∈ L such that

s−1([0, 1)) = {a} (423)

for somea ∈ I. As concerns the coefficientss
≤ 1

2
∗ ands

≥ 1
2
∗ , we recall equations (362)

and (363), viz

s
≤ 1

2
∗ =

{
1 : a > 1

2

0 : a ≤ 1
2

(424)

s
≥ 1

2
∗ =

{
1 : a < 1

2

0 : a ≥ 1
2

(425)

Finally as concerns the coefficientss>,∗1 ands⊥,∗1 , we recall from (399) and (400) that

s>,∗1 = a (426)

and

s⊥,∗1 = a . (427)
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Let us further observe that

s‡ = s , (428)

which is apparent from Def. 65 and (423). Therefore

s‡
−1

(0) = s−1(0) = {a} (429)

by (428) and (423).
Hence ifa > 1

2 , thens‡
−1(0) = {a} ⊆ [0, 1

2 ] by (429). Therefore

ωZ(s) = min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) by Def. 69

= min(a, 1
2 + 1

2 · 1) by (426) and (424)

= a .

In the case thata = 1
2 , s‡

−1(0) = { 1
2} ⊆ [ 1

2 , 1] by (429) and hence

ωZ(s) = min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) by Def. 69

= min( 1
2 ,

1
2 + 1

2 · 0) by (426) and (424)

= 1
2 .

Finally in the case thata < 1
2 , we know from (429) thats‡

−1(0) = {a} ⊆ [0, 1
2 ].

Therefore

ωZ(s) = max(s⊥,∗1 , 1
2 −

1
2s
≥ 1

2
∗ ) by Def. 69

= max(a, 1
2 −

1
2 · 1) by (427), (425)

= a .

ωZ satisfies (ω-2). Let s ∈ L be given and suppose thats′ ∈ L is defined bys′(z) =

s(1− z). If s‡
−1(0) ∩ [ 1

2 , 1] 6= ∅, thens′‡
−1

(0) ∩ [0, 1
2 ] 6= ∅ by L-47. Therefore

ωZ(s′) = min(s′>,∗1 , 1
2 + 1

2s
′≤

1
2
∗ ) by L-62

= min(1− s⊥,∗1 , 1
2 + 1

2s
≥ 1

2
∗ ) by L-57, L-49

= min(1− s⊥,∗1 , 1− ( 1
2 −

1
2s
≥ 1

2
∗ ))

= 1−max(s⊥,∗1 , 1
2 −

1
2s
≥ 1

2
∗ ) by De Morgan’s law

= 1− ωZ(s) . by L-62
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In the remaining case thats‡
−1(0) ∩ [0, 1

2 ] 6= 1
2 , we again conclude from L-47 that

s′
‡−1

(0) ∩ [ 1
2 , 1] 6= ∅. Therefore

ωZ(s′) = max(s′⊥,∗1 , 1
2 −

1
2s
′≥

1
2
∗ ) by L-62

= max(1− s>,∗1 , 1
2 −

1
2s
≤ 1

2
∗ ) by L-57, L-49

= max(1− s>,∗1 , 1− ( 1
2 + 1

2s
≤ 1

2
∗ ))

= 1−min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) by De Morgan’s law

= 1− ωZ(s) . by L-62

ωZ satisfies (ω-3). Consider a choice ofs ∈ L with s(1) = 0 ands−1([0, 1)) ⊆
{0, 1}, i.e.s(z) = 1 for all z ∈ (0, 1). Let us notice that equation (366) is valid in the
present case, too. Hence

s
≤ 1

2
∗ = s(0) . (430)

As regards the coefficients>,∗1 , we recall from (404) that

s>,∗1 = 1 . (431)

Let us also notice that

s‡
−1

(0) =
{
{1} : s(0) > 0
I : s(0) = 0 (432)

In the following, we discern two cases. Ifs(0) = 0, then s‡
−1(0) 6⊆ [ 1

2 , 1] and

s‡
−1(0) 6⊆ [0, 1

2 ] by (432). HenceωZ(s) = 1
2 = 1

2 + 1
2s(0) by Def. 69.

In the remaining case thats(0) > 0, we know from (432) thats‡
−1(0) = {1} ⊆ [ 1

2 , 1].
Therefore

ωZ(s) = min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) by Def. 69

= min(1, 1
2 + 1

2s(0)) by (430), (431)

= 1
2 + 1

2s(0) .

This proves that (ω-3) is indeed valid.

ωZ satisfies (ω-4). This is apparent from L-63 and L-64, recalling theorem Th-49.

A.24 Proof of Theorem 55

Lemma 65 For all s ∈ L,

a. if s⊥,0∗ > 1
2 , thenωP (s) = ωZ(s);

b. if s>,0∗ < 1
2 , thenωP (s) = ωZ(s).
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Proof Let us first consider casea. of the lemma, i.e.s⊥,0∗ > 1
2 . By (43), this means

thats⊥,0∗ = inf s‡−1(0) > 1
2 . Hences‡

−1(0) ⊆ [ 1
2 , 1] and

ωP (s) = min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) by Def. 68

= ωZ(s) . by Def. 69

Now we consider caseb. of the lemma, i.e.s>,0∗ < 1
2 . We observe thats>,0∗ =

sup s‡−1(0) < 1
2 , in particulars‡

−1(0) ⊆ [0, 1
2 ]. Therefore

ωP (s) = max(s⊥,∗1 , 1
2 −

1
2s
≥ 1

2
∗ ) by Def. 68

= ωZ(s) . by Def. 69

Proof of Theorem 55

The very same example as in the proof of Th-53 can be used to show thatFZ is not
anFξ-DFS, noticing that in the example,s⊥,0∗ = s′

⊥,0
∗ = 3

4 , i.e.ωZ(s) = ωP (s) and
ωZ(s′) = ωP (s′) by L-65.

A.25 Proof of Theorem 56

Lemma 66 For all s ∈ L, s‡(0) = s(0) ands‡(1) = s(1).

Proof To see this, considers ∈ L. Clearly

s‡(0) = inf{s(z) : z ≤ 0} by L-43

= inf{s(0)}
= s(0) .

Similarly

s‡(1) = inf{s(z) : z ≥ 1} by L-43

= inf{s(1)}
= s(1) ,

as desired.

Lemma 67 ωR is ‡-invariant, i.e.ωR(s) = ωR(s‡) for all s ∈ L.

Proof Definef : I4 −→ I by

f(a, b, c, d) =


min(a, 1

2 + 1
2c) : b ≥ a > 1

2

max(b, 1
2 −

1
2d) : a ≤ b < 1

2
1
2 : else

167



for all a, b, c, d ∈ I. It is apparent from Def. 70 that

FR(s) = f(s⊥,0∗ , s>,0∗ , s(0), s(1)) (433)

for all s ∈ L. Therefore

ωR(s‡) = f(s′⊥,0∗ , s′
>,0
∗ , s‡(0), s‡(1)) by (433)

= f(s⊥,0∗ , s>,0∗ , s(0), s(1)) by L-52, L-66

= ωR(s) by (433)

for all s ∈ L.

Lemma 68 ωR is monotonic with respect toE, i.e. whenevers, s′ ∈ L with s E s′, it
holds thatωR(s) ≤ ωR(s′).

Proof Let s, s′ ∈ L be given withs E s′. Hence by Def. 64,

for all z ∈ I, there existsz′ ≥ z with s′(z′) ≤ s(z) (434)

for all z′ ∈ I, there existsz ≤ z with s(z) ≤ s′(z′) (435)

It is apparent from (434) that

s(1) ≥ s′(1) , (436)

and it is apparent from (435) that

s(0) ≤ s′(0) . (437)

Let us now recall that

s⊥,0∗ ≤ s′⊥,0∗ (438)

s>,0∗ ≤ s′>,0∗ (439)

by L-54 and L-42. It is hence sufficient to discern the following five cases.

a.: s⊥,0∗ > 1
2
. Thens′⊥,0∗ > 1

2 as well by (438). Hence

ωR(s) = min(s⊥,0∗ , 1
2 + 1

2s(0)) by Def. 70

≤ min(s′⊥,0∗ , 1
2 + 1

2s(0)) by (438), (437)

= ωR(s′) . by Def. 70

b.: s′⊥,0∗ > 1
2

and s⊥,0∗ ≤ 1
2
. ThenωR(s) ≤ 1

2 ≤ ωR(s′) by Def. 70.

c.: s′>,0∗ < 1
2
. Thens>,0∗ < 1

2 also by (439). Hence

ωR(s) = max(s>,0∗ , 1
2 −

1
2s(1)) by Def. 70

≤ max(s′>,0∗ , 1
2 −

1
2s
′(1)) by (439), (436)

= ωR(s′) . by Def. 70
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d.: s′⊥,0∗ ≤ 1
2

and s′
>,0
∗ ≥ 1

2
and s>,0∗ < 1

2
. ThenωR(s) ≤ 1

2 = ωR(s′) by Def. 70.

e.: s′⊥,0∗ ≤ 1
2

and s>,0∗ ≥ 1
2
. Thens⊥,0∗ ≤ 1

2 ands′>,0∗ ≥ 1
2 as well, see (438) and

(439). HenceωR(s) = 1
2 = ωR(s′) by Def. 70, in particularωR(s) ≤ ωR(s′), as

desired.

Proof of Theorem 56

By Th-44, we can show thatFR = FωR is a standard DFS by proving that (ω-1)–(ω-4)
are valid forωR. Hence let us consider these conditions in turn.

ωR satisfies (ω-1). Let x ∈ I be given and defines ∈ L by

s(z) =
{

0 : z = x
1 : else

for all z ∈ I. It is then apparent from L-43 thats‡ = s. Therefore

s⊥,0∗ = inf s‡
−1

(0) = inf s−1(0) = inf{x} = x (440)

s>,0∗ = sup s‡
−1

(0) = sup s−1(0) = sup{x} = x (441)

by (43) and (42). In addition, we observe that

s(0) =
{

0 : x = 0
1 : x > 0 (442)

s(1) =
{

0 : x = 1
1 : x < 1 . (443)

Hence ifx > 1
2 , thens⊥,0∗ = x > 1

2 , i.e.

ωR(s) = min(s⊥,0∗ , 1
2 + 1

2s(0)) by Def. 70

= min(x, 1
2 + 1

2 · 1) by (440), (442)

= x .

In the case thatx = 1
2 , we obtain from (440) and (441) thats⊥,0∗ = s>,0∗ = 1

2 , and
henceωR(s) = 1

2 = x by Def. 70.
Finally in the case thatx < 1

2 , we know from (441) that

ωR(s) = max(s>,0∗ , 1
2 −

1
2s(1)) by Def. 70

= max(x, 1
2 −

1
2 · 1) by (441), (443)

= x ,

i.e.ωR satisfies (ω-1), as desired.
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ωR satisfies (ω-2). Let s ∈ L be given and defines′ ∈ L by

s′(z) = s(1− z) , (444)

for all z ∈ I. In particular

s′(0) = s(1) (445)

s′(1) = s(0) . (446)

Let us also recall from L-48 thats′⊥,0∗ = 1− s>,0∗ ands′>,0∗ = 1− s⊥,0∗ .
Hence ifs⊥,0∗ > 1

2 , thens′>,0∗ = 1− s⊥,0∗ < 1
2 and therefore

ωR(s′) = max(s′>,0∗ , 1
2 −

1
2s
′(1)) by Def. 70

= max(1− s⊥,0∗ , 1
2 −

1
2s(0)) by L-48 and (446)

= max(1− s⊥,0∗ , 1− ( 1
2 + 1

2s(0)))

= 1−min(s⊥,0∗ , 1
2 + 1

2s(0)) by De Morgan’s Law

= 1− ωR(s) .

In the case thats>,0∗ < 1
2 , it holds thats′⊥,0∗ = 1− s>,0∗ > 1

2 and hence

ωR(s′) = min(s′⊥,0∗ , 1
2 + 1

2s
′(0)) by Def. 70

= min(1− s>,0∗ , 1
2 + 1

2s(1)) by L-48 and (445)

= min(1− s>,0∗ , 1− ( 1
2 −

1
2s(1)))

= 1−max(s>,0∗ , 1
2 −

1
2s(1)) by De Morgan’s Law

= 1− ωR(s) . by Def. 70

Finally in the case thats>,0∗ ≥ 1
2 ands⊥,0∗ ≤ 1

2 , we obtain from L-48 thats′>,0∗ =
1 − s⊥,0∗ ≥ 1

2 ands′⊥,0∗ = 1 − s>,0∗ ≤ 1
2 . HenceωR(s) = 1

2 andωR(s′) = 1
2 by

Def. 70. In particularωR(s′) = 1− ωR(s).

ωR satisfies (ω-3). To see this, considers ∈ L with s−1([0, 1)) ⊆ {0, 1} ands(1) =
0. We can choosez0 = 1 ∈ s−1(0). Hence for allz < 1,

s‡(z) = inf{s(z′) : z′ ≤ z} = s(0)

by L-43, i.e.

s‡(z) =
{

0 : z = 1
s(0) : z < 1 (447)

for all z ∈ I, and

s‡
−1

(0) =
{

I : s(0) = 0
{1} : s(0) > 0 (448)
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Hence ifs(0) = 0, then

s⊥,0∗ = inf s‡
−1

(0) by (43)

= inf I by (448)

= 0

≤ 1
2

and

s>,0∗ = sup s‡
−1

(0) by (43)

= sup I by (448)

= 1

≥ 1
2 ,

i.e.ωR(s) = 1
2 = 1

2 + 1
2 · 0 = 1

2 + 1
2s(0) by Def. 70.

In the remaining case thats(0) > 0, we obtain from (43) and (448) that

s⊥,0∗ = inf s‡
−1

(0) = inf{1} = 1 . (449)

In particular,s⊥,0∗ > 1
2 and hence

ωR(s) = min(s⊥,0∗ , 1
2 + 1

2s(0)) by Def. 70

= min(1, 1
2 + 1

2s(0)) by (449)

= 1
2 + 1

2s(0) ,

which completes the proof thatωR satisfies (ω-3).

ωR satisfies (ω-4). This is apparent from L-67, L-68 and Th-49.

A.26 Proof of Theorem 57

To see thatFR is not anFξ-DFS, considerS, S′ ∈ K defined by

S(γ) =

{
{1} : γ < 1

2

(0, 1] : γ ≥ 1
2

(450)

S′(γ) =
{
{1} : γ < 1

2
[0, 1] : γ ≥ 1

2

(451)

for all γ ∈ I. We then obtain for the mappingss, s′ ∈ L defined by Def. 53 in terms of
S andS′ that

s(z) = inf{γ ∈ I : z ∈ S(γ)} =


0 : z = 1
1
2 : z ∈ (0, 1)
1 : z = 0

(452)

s′(z) = inf{γ ∈ I : z ∈ S′(γ)} =

{
0 : z = 1
1
2 : z < 1

(453)
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for all z ∈ I. Let us now consider the coefficients used in the definition ofωR. We first
notice thats, s′ are concave, i.e.s‡ = s ands′‡ = s′ by L-50. Hence by (452), (453)
and (43),

s⊥,0∗ = inf s‡
−1

(0) = inf s−1(0) = inf{1} = 1 (454)

s′
⊥,0
∗ = inf s′‡

−1
(0) = inf s′−1(0) = inf{1} = 1 (455)

Therefore

ωR(s) = min(s⊥,0∗ , 1
2 + 1

2s(0)) by Def. 70

= min(1, 1
2 + 1

2 · 1) by (454) and (452)

= 1

and

ωR(s′) = min(s′⊥,0∗ , 1
2 + 1

2s
′(0)) by Def. 70

= min(1, 1
2 + 1

2 ·
1
2 ) by (455) and (453)

= 3
4 ,

i.e.

ωR(s) = 1 (456)

and

ωR(s′) = 3
4 . (457)

Now let us recall that by Th-33, there existQ,Q′ : P(2× I) −→ I and a fuzzy subset
X ∈ P̃(2× I) with

S = SQ,X (458)

S′ = SQ′,X (459)

By Th-41, we then have

s = sQ,X (460)

s′ = sQ′,X . (461)

We hence have

FR(Q)(X) = ωR(sQ,X) = ωR(s) = 1

and

FR(Q′)(X) = ωR(sQ′,X) = ωR(s′) = 3
4
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by Def. 61, (460), (461), (456) and (457). In particular,

FR(Q)(X) 6= FR(Q′)(X) . (462)

Now consider an arbitrary mappingξ : T −→ I. By Th-37,Fξ = FΩ, where

Ω(S) = ξ(>S ,⊥S)

for all S ∈ K. In the present case ofS, S′ ∈ K defined by (450) and (451), we obtain
from (35) and (36) that

>S(γ) = supS(γ) = 1

⊥S(γ) = inf S(γ) =

{
1 : γ < 1

2

0 : γ ≥ 1
2

>S′(γ) = supS′(γ) = 1

⊥S′(γ) = inf S′(γ) =

{
1 : γ < 1

2

0 : γ ≥ 1
2

for all γ ∈ I. In particular,

(>S ,⊥S) = (>S′ ,⊥S′) . (463)

Therefore

Fξ(Q)(X) = ξ(>SQ,X ,⊥SQ,X ) by Th-37

= ξ(>S ,⊥S) by (458)

= ξ(>S′ ,⊥S′) by (463)

= ξ(>SQ′,X ,⊥SQ′,X ) by (459)

= Fξ(Q′)(X) . by Th-37

HenceFξ(Q)(X) = Fξ(Q′)(X) in everyFξ-QFM, butFR(Q)(X) 6= FR(Q′)(X)
by (462). This proves thatFR is not anFξ-DFS.

A.27 Proof of Theorem 58

Lemma 69 For all S, S′ ∈ K, it holds thatS �c S′ if and only if the following condi-
tions are satisfied for allγ ∈ I.

for all z′ ∈ S′(γ) ∩ [ 1
2 , 1], there existsz ∈ S(γ) ∩ [ 1

2 , z
′]; (464)

for all z ∈ S(γ) ∩ ( 1
2 , 1], there existsz′ ∈ S′(γ) ∩ [z, 1]; (465)

for all z′ ∈ S′(γ) ∩ [0, 1
2 ], there existsz ∈ S(γ) ∩ [z′, 1

2 ]; (466)

for all z ∈ S(γ) ∩ [0, 1
2 ), there existsz′ ∈ S′(γ) ∩ [0, z]. (467)
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Proof Let us first notice that (464)–(467) are entailed byS�cS′. To see this, consider
a choice ofS, S′ ∈ K with S �c S′. For z′ ∈ S′(γ) ∩ [ 1

2 , 1], we obtain from (52)
that there existsz ∈ S(γ) with z �c z′. We conclude from (5) andz′ ≥ 1

2 that
1
2 ≤ z ≤ z′, i.e. z ∈ S(γ) ∩ [ 1

2 , z
′]. This proves that equation (464) holds. Now

considerz ∈ S(γ) ∩ ( 1
2 , 1]. We know from (53) that there existsz′ ∈ S′(γ) with

z �c z′. It is then obvious fromz > 1
2 and (5) thatz′ ≥ z. Hencez′ ∈ S′(γ) ∩ [z, 1],

and (465) is valid. As regardsz′ ∈ S′(γ) ∩ [0, 1
2 ], we know from (52) that there

existsz ∈ S(γ) with z �c z′. We obtain from (5) andz′ ≤ 1
2 that z′ ≤ z ≤ 1

2 .
Thereforez ∈ S(γ) ∩ [z′, 1

2 ]. In particular, equation (466) holds. Finally consider
z ∈ S(γ)∩ [0, 1

2 ). By (53), there existsz′ ∈ S′(γ) with z�c z′. We then deduce from
(5) andz < 1

2 thatz′ ≤ z. Hencez′ ∈ S′(γ)∩ [0, z], which proves that equation (467)
is indeed valid. To sum up, I have shown that the conditions (464)–(467) are entailed
by S �c S′.
Now let us consider the converse entailment. Hence suppose thatS, S′ ∈ K satisfy
(464)–(467). It must be shown thatS�c S′, i.e. (53) and (52) must hold, see Def. 71. I
will first prove that (52) holds. Hence letγ ∈ I and considerz′ ∈ S′(γ). If z′ ∈ [ 1

2 , 1],
then there existsz ∈ S(γ)∩ [ 1

2 , z
′] by (464). From (5) and12 ≤ z ≤ z

′, we obtain that
the given choice ofz ∈ S(γ) satisfiesz �c z′. In the remaining case thatz′ ∈ [0, 1

2 ],
we conclude from (52) that there existsz ∈ S(γ) ∩ [z′, 1

2 ]. We then obtain from (5)
andz′ ≤ z ≤ 1

2 that the given choice ofz ∈ S(γ) satisfiesz �c z′. This proves that
condition (52) is valid.
As concerns (53), letz ∈ S(γ) be given. Ifz ∈ ( 1

2 , 1], then (465) is applicable, which
states that there existsz′ ∈ S′(γ) ∩ [z, 1]. We then conclude from (5) and12 < z ≤ z′

that the given choice ofz′ ∈ S′(γ) satisfiesz �c z′. In the case thatz = 1
2 , consider a

choice ofz′0 ∈ S′(0) 6= ∅. By (5),z = 1
2 �c z

′
0 ∈ S′(γ). Finally consider the case that

z ∈ [0, 1
2 ). Then (467) states that there existsz′ ∈ S′(γ) ∩ [0, z]. We obtain from (5)

andz′ ≤ z < 1
2 that the given choice ofz′ ∈ S′(γ) satisfiesz �c z′. Hence condition

(53) is also valid. We conclude from Def. 71 thatS �c S′, as desired.

Lemma 70 SupposeQ,Q′ : P(E)n −→ I are semi-fuzzy quantifiers withQ �c Q′.
Then for allX1, . . . , Xn ∈ P̃(E),

SQ,X1,...,Xn �c SQ′,X1,...,Xn

Proof Consider a choice of semi-fuzzy quantifiersQ,Q′ : P(E)n −→ I with Q �c
Q′. Further suppose thatX1, . . . , Xn ∈ P̃(E) is a choice of fuzzy arguments. I
will now show that the conditions (464)–(467) are valid for allγ ∈ I. Hence con-
sider z′ ∈ SQ′,X1,...,Xn(γ) ∩ [ 1

2 , 1]. Becausez′ ∈ SQ′,X1,...,Xn(γ), we conclude
from Def. 51 that there exists a choice of(Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn) with z′ =
Q′(Y1, . . . , Yn) ≥ 1

2 . We then conclude fromQ(Y1, . . . , Yn) �c Q′(Y1, . . . , Yn) and
(5) thatQ(Y1, . . . , Yn) ∈ [ 1

2 , Q
′(Y1, . . . , Yn)] = [ 1

2 , z
′]. Hencez = Q(Y1, . . . , Yn)

satisfiesz ∈ SQ,(X1,...,Xn)(γ) andz ∈ [ 1
2 , z
′], i.e. condition (464) holds.

Now I consider (465). Hence letz ∈ SQ,X1,...,Xn(γ)∩( 1
2 , 1]. Becausez ∈ SQ,X1,...,Xn(γ),

we obtain from Def. 51 thatz = Q(Y1, . . . , Yn) for a choice of(Y1, . . . , Yn) ∈
Tγ(X1, . . . , Xn). We conclude fromQ(Y1, . . . , Yn) �c Q′(Y1, . . . , Yn) and (5) that
Q′(Y1, . . . , Yn) ≥ Q(Y1, . . . , Yn). Hence the consideredz′ = Q′(Y1, . . . , Yn) satis-
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fiesz′ ∈ Tγ(X1, . . . , Xn) andz′ ∈ [z, 1], i.e. condition (465) holds, as desired.
As concerns condition (466), we proceed analogously. Hence letz′ ∈ SQ′,X1,...,Xn(γ)∩
[0, 1

2 ]. Then there exists a choice of(Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn) with z′ =
Q′(Y1, . . . , Yn). FromQ(Y1, . . . , Yn)�c Q′(Y1, . . . , Yn) and (5), we then obtain that
Q(Y1, . . . , Yn) ∈ [Q′(Y1, . . . , Yn), 1

2 ] = [z′, 1
2 ]. Hencez = Q(Y1, . . . , Yn) satisfies

z ∈ SQ,X1,...,Xn(γ) andz ∈ [z′, 1
2 ], which proves that (466) is valid.

Finally I consider (467). Hence letz ∈ SQ,X1,...,Xn(γ) ∩ [0, 1
2 ). There exists a choice

of (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn) with z = Q(Y1, . . . , Yn). We conclude from
Q(Y1, . . . , Yn)�cQ′(Y1, . . . , Yn) and (5) thatQ′(Y1, . . . , Yn) ∈ [0, Q(Y1, . . . , Yn)] =
[0, z]. Hencez′ = Q′(Y1, . . . , Yn) satisfiesz′ ∈ [0, z] andz′ ∈ SQ′,...(γ), i.e. (467)
holds.
Hence the conditions stated in lemma L-69 are satisfied. We conclude thatSQ,X1,...,Xn�c
SQ′,X1,...,Xn .

Proof of Theorem 58

Let Ω : K −→ I be given and supposeFΩ is the QFM defined by Def. 55.

a.: If Ω propagates fuzziness, then FΩ propagates fuzziness in quantifiers.
Hence let us assume thatΩ propagates fuzziness. Now we consider a choice of semi-
fuzzy quantifiersQ,Q′ : P(E)n −→ I with Q �c Q′. For allX1, . . . , Xn ∈ P̃(E),
we then obtain that

FΩ(Q)(X1, . . . , Xn) = Ω(SQ,X1,...,Xn) by Def. 55

�c Ω(SQ′,X1,...,Xn) by Def. 72, L-70

= FΩ(Q′)(X1, . . . , Xn) . by Def. 55

HenceFΩ(Q)�c FΩ(Q′), which proves thatFΩ propagates fuzziness in quantifiers.

b.: If FΩ propagates fuzziness in quantifiers, then Ω propagates fuzziness.
Hence suppose thatFΩ propagates fuzziness in quantifiers and considerS, S′ ∈ K
with S �c S′. It must be shown thatΩ(S) �c Ω(S′). To this end, we first notice that
there existz0 ∈ S(0), z′0 ∈ S′(0) with

z0 �c z′0 . (468)

This is apparent from Def. 71 and Def. 52. We also notice that for allv ∈ I and all
z ∈ S′(v), we can choose someζz,v ∈ S(v) with

ζz,v �c z . (469)

This is immediate from (5), (464) of L-69 and (466). For similar reasons, there exist
choices ofζ ′z,v ∈ S′(v) for all v ∈ I andz ∈ S(v), such that

z �c ζ ′z,v . (470)
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We now define semi-fuzzy quantifiersQ,Q′ : P(2× I) −→ I by

Q(Y ) =

 z : z ∈ S(v)
ζz,v : z /∈ S(v), z ∈ S′(v)
z0 : z /∈ S(v), z /∈ S′(v)

(471)

Q′(Y ) =


z : z ∈ S′(v)
ζ ′z,v : z /∈ S′(v), z ∈ S(v)
z′0 : z /∈ S′(v), z /∈ S(v)

(472)

where

Y ′ = {z ∈ I : (0, z) ∈ Y } (473)

Y ′′ = {z ∈ I : (1, z) ∈ Y } (474)

z = inf Y ′ (475)

v = supY ′′ (476)

for all Y ∈ P(2× I). Next we consider the fuzzy subsetX ∈ P̃(2× I) defined by

µX(a, y) =

{
1
2 : a = 0
1
2 −

1
2y : a = 1

(477)

for all a ∈ 2, y ∈ I. We recall from the proof of Th-33 that forγ = 0,

Xmin
0 = X

>
1
2

= ∅ (478)

Xmax
0 = X

≥ 1
2

= ({0} × I) ∪ {(1, 0)} (479)

by (91) and (92). Similarly forγ > 0,

Xmin
γ = X

≥ 1
2 +

1
2γ

= ∅ (480)

Xmax
γ = X

>
1
2−

1
2γ

= ({0} × I) ∪ ({1} × [0, γ)) (481)

by (93) (94). Let us now use these cut ranges to prove thatSQ,X = S. Hence letγ ∈ I.
We first notice that

S(γ) ⊆ SQ,X(γ) . (482)

To see this, considerz ∈ S(γ). If γ = 0, thenY = {(0, z), (1, 0)} ∈ T0(X), see
(478), (479). For this choice ofY , we obtain thatz = inf{z} = inf Y ′ by (473)
andv = supY ′′ = sup{0} = 0 = γ by (474). HenceQ(Y ) = z becausez ∈
S(v) = S(γ), see (471). Ifγ > 0, then we know from (480) and (481) thatY =
{(0, z)} ∪ ({1} × [0, γ)) ∈ Tγ(X). For this choice ofY , we obtainz = inf{z} =
inf Y ′ andv = supY ′′ = sup[0, γ) = γ by equations (473) and (474). We then
conclude fromz ∈ S(γ) and (471) thatQ(Y ) = z. This finishes the proof of (482).
To see that the converse subsumptionSQ,X(γ) ⊆ S(γ) also holds, consider a choice
of Y ∈ Tγ(X). It is then apparent from (478) and (479) (ifγ = 0) and (480), (481)
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(if γ > 0) thatv = supY ′′ ∈ [0, γ]. Let us again abbreviatez = inf Y ′. We observe
from (471) that eitherQ(Y ) = z ∈ S(v) ⊆ S(γ), orQ(Y ) = ζz,v ∈ S(v) ⊆ S(γ),
orQ(Y ) = z0 ∈ S(0) ⊆ S(γ). In any case,Q(Y ) ∈ S(γ). HenceSQ,X(γ) ⊆ S(γ)
by Def. 51, as desired. Combining this with (482) proves thatSQ,X(γ) = S(γ) for all
γ ∈ I, i.e.

SQ,X = S . (483)

Next I show thatSQ′,X = S′. Again letγ ∈ I. In order to prove that

S′(γ) ⊆ SQ′,X(γ) (484)

considerz ∈ S′(γ). If γ = 0, thenY = {(0, z), (1, 0)} ∈ T0(X) by (478), (479).
We obtainz = inf{z} = inf Y ′ by (473) andv = supY ′′ = sup{0} = 0 = γ
by (474). HenceQ′(Y ) = z becausez ∈ S′(v) = S′(γ) by (472). Forγ > 0
we obtain from (480) and (481) thatY = {(0, z)} ∪ ({1} × [0, γ)) ∈ Tγ(X). This
choice ofY yieldsz = inf{z} = inf Y ′ andv = supY ′′ = sup[0, γ) = γ by (473)
and (474). We deduce fromz ∈ S′(γ) and (472) thatQ′(Y ) = z. Hence (484) is
valid. To see thatSQ′,X(γ) ⊆ S′(γ) also holds, consider a choice ofY ∈ Tγ(X).
It is then apparent from (478) and (479) (ifγ = 0) and (480), (481) (ifγ > 0) that
v = supY ′′ ∈ [0, γ]. z = inf Y ′ can assume arbitrary valuesz ∈ I. We observe from
(472) that eitherQ′(Y ) = z ∈ S′(v) ⊆ S′(γ), orQ′(Y ) = ζ ′z,v ∈ S′(v) ⊆ S′(γ), or
Q′(Y ) = z′0 ∈ S′(0) ⊆ S′(γ). In any case,Q′(Y ) ∈ S′(γ). HenceSQ′,X(γ) ⊆ S′(γ)
by Def. 51. Recalling (484), we have shown thatSQ′,X(γ) = S′(γ) for all γ ∈ I, thus

SQ′,X = S′ . (485)

Finally we notice thatQ �c Q′. To this end, we consider someY ∈ P(2× I). If
z ∈ S(v) andz ∈ S′(v), thenQ(Y ) = z = Q′(Y ) by (471) and (472). In particular,
Q(Y )�c Q′(Y ). In the case thatz ∈ S(v) andz /∈ S′(V ), thenQ(Y ) = z �c ζ ′z,v =
Q′(Y ) by (471), (472) and (470). In the case thatz /∈ S(v) and z ∈ S′(v), we
obtain thatQ(Y ) = ζz,v �c z = Q′(Y ) by (471), (472) and (469). In the remaining
case thatz /∈ S(v) and z /∈ S′(v), we conclude from (471), (472) and (468) that
Q(Y ) = z0 �c z′0 = Q′(Y ). Hence indeedQ�c Q′, as desired. In particular, because
FΩ is assumed to propagate fuzziness in quantifiers, we have

FΩ(Q)(X)�c FΩ(Q′)(X) . (486)

Now we can put the pieces together.

Ω(S) = Ω(SQ,X) by (483)

= FΩ(Q)(X) by Def. 55

�c FΩ(Q′)(X) by (486)

= Ω(SQ′,X) by Def. 55

= Ω(S′) . by (485)

Because the choice ofS �c S′ was arbitrary, this proves thatΩ propagates fuzziness,
as desired.

177



A.28 Proof of Theorem 59

Lemma 71 SupposeΩ : K −→ I is a mapping such that(Ω-2) is valid. If

Ω(S) = Ω(S‡ ∩ [ 1
2 , 1]) (487)

for all S ∈ K with S(0) ⊆ [ 1
2 , 1], then it also holds that

Ω(S) = Ω(S‡ ∩ [0, 1
2 ])

for all S ∈ K with S(0) ⊆ [0, 1
2 ].

Proof Let S ∈ K be given withS(0) ⊆ [0, 1
2 ]. We defineS′ ∈ K by

S′(γ) = {1− z : z ∈ S(γ)} (488)

for all γ ∈ I. ThenS′(0) ⊆ [ 1
2 , 1] and hence

Ω(S′) = Ω(S′‡ ∩ [ 1
2 , 1]) . (489)

We further defineS‡
′(γ) = {1 − z : z ∈ S‡} for all γ ∈ I. It is then apparent from

Def. 59 that

S‡
′

= S′
‡
. (490)

We further defineS′′ ∈ K byS′′(γ) = {1−z : z ∈ S‡(γ)∩ [0, 1
2 ]} for all γ ∈ I. Then

S′′(γ) = {1− z : z ∈ S‡(γ) ∩ [0, 1
2 ]}

= {1− z : z ∈ S‡(γ), z ∈ [0, 1
2 ]}

= {1− z : z ∈ S‡(γ), 1− z ∈ [ 1
2 , 1]}

= {z′ : 1− z′ ∈ S‡(γ), z′ ∈ [ 1
2 , 1]} by substitutionz′ = 1− z

= {z′ : z′ ∈ S‡′(γ), z′ ∈ [ 1
2 , 1]} by definition ofS‡

′

= {z′ : z′ ∈ S′‡(γ), z′ ∈ [ 1
2 , 1]} by (490)

= S′
‡ ∩ [ 1

2 , 1] .

Therefore

Ω(S′‡ ∩ [ 1
2 , 1]) = 1− Ω(S ∩ [0, 1

2 ]) (491)

by (Ω-2). In turn

Ω(S ∩ [0, 1
2 ]) = 1− Ω(S′‡ ∩ [ 1

2 , 1])
= 1− Ω(S′) by (487)

= 1− (1− Ω(S)) by (488), (Ω-2)

= Ω(S) ,

as desired.
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Lemma 72 Consider a choice ofΩ : K −→ I which satisfies(Ω-2), (Ω-4) and (Ω-5).
Further suppose that

Ω(S) = Ω(S‡ ∩ [ 1
2 , 1]) (492)

for all S ∈ K with S(0) ⊆ [ 1
2 , 1]. Then

Ω(S) = 1
2

wheneverS ∈ K is such thatS(0) ∩ [ 1
2 , 1] 6= ∅ andS(0) ∩ [0, 1

2 ] 6= ∅.

Proof SupposeS(0) ∈ K satisfiesS(0) ∩ [ 1
2 , 1] 6= ∅ andS(0) ∩ [0, 1

2 ] 6= ∅. We
defineS′, S′′ by

S′(γ) =

{
S(0) ∩ [ 1

2 , 1] : γ = 0
S(γ) : γ > 0

(493)

S′′(γ) =

{
S(0) ∩ [0, 1

2 ] : γ = 0
S(γ) : γ > 0

(494)

for all γ ∈ I. By the assumption onS, there existz−, z+ ∈ S(0) with z− ≤ 1
2 ≤ z+.

Hencez+ ∈ S′(0) andz− ∈ S′′(0), which shows thatS′, S′′ ∈ K. For the same
reasonS ∩ [0, 1

2 ] ∈ K andS ∩ [ 1
2 , 1] ∈ K, see Def. 52. We notice that

S′
] = S] = S′′

]
, (495)

which is obvious from Def. 56. Now defineS1/2 ∈ K byS1/2(γ) = { 1
2} for all γ ∈ I.

Clearly

S′′ ∩ [0, 1
2 ] v S1/2 v S′ ∩ [ 1

2 , 1] . (496)

BecauseS1/2(γ) = {1 − z : z ∈ S1/2(γ)}, we conclude from (Ω-2) thatΩ(S1/2) =
1− Ω(S1/2), i.e.

Ω(S1/2) = 1
2 . (497)

Therefore

Ω(S) = Ω(S′) by (495), (Ω-4)

= Ω(S′ ∩ [ 1
2 , 1]) by (492)

≥ Ω(S1/2) by (496)

= 1
2 . by (497)

By similar reasoning

Ω(S) = Ω(S′′) by (495), (Ω-4)

= Ω(S′′ ∩ [0, 1
2 ]) by L-71

≤ Ω(S1/2) by (496)

= 1
2 . by (497)

HenceΩ(S) = 1
2 , as desired.
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Lemma 73 SupposeΩ : K −→ I satisfies(Ω-2), (Ω-4) and (Ω-5). If

Ω(S) = Ω(S‡ ∩ [ 1
2 , 1]) (498)

for all S ∈ K with S(0) ⊆ [ 1
2 , 1], thenΩ propagates fuzziness.

Proof Let S, S′ ∈ K be given withS �c S′. We shall discern three cases.

a.: S(0) ⊆ ( 1
2
, 1]. It is then apparent fromS �c S′ and Def. 71 thatS′(0) ⊆ ( 1

2 , 1] as
well. To see this, considerz′ ∈ S′(0). BecauseS �c S′, there existsz ∈ S(0) with
z �c z′. ButS(0) ⊆ ( 1

2 , 1], i.e.z > 1
2 . It follows from (5) thatz′ ≥ z > 1

2 . We hence
know from (498) that

Ω(S) = Ω(S‡ ∩ [ 1
2 , 1]) (499)

Ω(S′) = Ω(S′‡ ∩ [ 1
2 , 1]) . (500)

I will now show that

S‡ ∩ [ 1
2 , 1] v S′‡ ∩ [ 1

2 , 1] , (501)

according to definition Def. 57. Hence letγ ∈ I and consider a choice ofz ∈ S‡(γ) ∩
[ 1
2 , 1]. By definition Def. 59, there existsz′ ≥ z with z′ ∈ S(γ), in particularz′ ∈
S(γ) ∩ [ 1

2 , 1]. In the case thatz;> 1
2 we proceed as follows. We know fromS �c S′

and Def. 71 that there existsz′′ ∈ S′(γ) with z′ �c z′′. Becausez′ > 1
2 , we conclude

from (5) thatz′′ ≥ z′ ≥ z. In the remaining case thatz′ = 1
2 , 1

2 ≤ z ≤ z′ entails that
z = 1

2 as well. Then everyz′′ ∈ S′(γ) ∩ [ 1
2 , 1] 6= ∅ satisfiesz′′ ≥ z anyway. To sum

up, I have shown that for allz ∈ S‡(γ) ∩ [ 1
2 , 1], there existsz′′ ∈ S′(γ) ∩ [ 1

2 , 1] ⊆
S′
‡(γ) ∩ [ 1

2 , 1] with z ≤ z′′. In order to prove (501), it remains to be shown that for

all z′ ∈ S′‡(γ) ∩ [ 1
2 , 1], there existsz ∈ S‡(γ) ∩ [ 1

2 , 1] such thatz ≤ z′. To this end,

assume a choice ofz′ ∈ S′‡(γ) ∩ [ 1
2 , 1]. By Def. 59, there existz′1, z

′
2 ∈ S′(γ) with

z′1 ≤ z′ ≤ z′2. Becausez′2 ≥ z′ ≥ 1
2 , we conclude fromS �c S′ and Def. 71 that there

existsz2 ∈ S(γ) with z2 �c z′2, and hence12 ≤ z2 ≤ z′2 by (5).
If z2 ≤ z′, then we have found az = z2 ∈ S(γ) ∩ [ 1

2 , 1] ⊆ S‡(γ) ∩ [ 1
2 , 1] with the

desired properties. Ifz2 > z′, we must proceed as follows.

• If z′1 ≥ 1
2 , then we utilize that byS�cS′ that there existsz ∈ S(γ) with z�c z′1.

Hence 1
2 ≤ z ≤ z′1 by (5). In particular, there existsz′ ∈ S(γ) ∩ [ 1

2 , 1] ⊆
S‡(γ) ∩ [ 1

2 , 1] with z ≤ z′1 ≤ z′.

• If z′1 <
1
2 , we again use that there existsz1 ∈ S(γ) with z1 �c z′1. In this case,

(5) yields thatz′1 ≤ z1 ≤ 1
2 becausez′1 <

1
2 . Hencez1 ≤ 1

2 ≤ z′ < z2, and
we conclude from Def. 59 thatz′ ∈ S‡(γ). Becausez′ ≥ 1

2 , this proves that
z′ ∈ S‡ ∩ [ 1

2 , 1]. Therefore the choice ofz = z′ satisfiesz ∈ S‡ ∩ [ 1
2 , 1] and

z ≤ z′, as desired.
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Hence both conditions of Def. 57 are satisfied, and we conclude that (501) is valid.
Hence by (Ω-5),

Ω(S) ≤ Ω(S′) . (502)

Next we consider the mappingS′′ ∈ K defined byS′′(γ) = { 1
2} for all γ ∈ I. Clearly

S′′(γ) = {1 − z : z ∈ S′′(γ)} for all γ ∈ I. HenceΩ(S′′) = 1 − Ω(S′′) by (Ω-2),
i.e.Ω(S′′) = 1

2 . It is further apparent from Def. 57 thatS′′ v S. Therefore

1
2 = Ω(S′′) ≤ Ω(S) (503)

by (Ω-5). Combining (502) and (503) yields12 ≤ Ω(S) ≤ Ω(S′). Applying (5), we
obtain the intendedΩ(S)�c Ω(S′).

b.: S(0) ⊆ [0, 1
2
). Lemma L-71 shows thatΩ satisfies a condition analogous to (498)

that is required to prove caseb. The proof is analogous to that ofa., based on the
property described in the lemma.

c.: there exist z−, z+ ∈ S(0) with z− ≤ 1
2
≤ z+. In this case, we obtain from L-71

thatΩ(S) = 1
2 . Hence triviallyΩ(S)�c Ω(S′), see (5).

Lemma 74 SupposeS1, S2 ∈ K are defined by

S1(γ) = {0, 1
2}

S2(γ) = { 1
2 , 1}

for all γ ∈ I. If Ω : K −→ I propagates fuzziness and satisfies(Ω-3), thenΩ(S1) =
Ω(S2) = 1

2 .

Proof DefineS3 ∈ K by S3(γ) = {0, 1} for all γ ∈ I. We observe that

Ω(S3) = 1
2 + 1

2s3(0) = 1
2 + 1

2 · 0 = 1
2 (504)

by (Ω-3). We notice thatS1 �c S3 by Def. 71. BecauseΩ propagates fuzziness, we
conclude thatΩ(S1)�c Ω(S3) = 1

2 by Def. 72 and (504). HenceΩ(S1) = 1
2 by (5).

By similar reasoning, we conclude from the apparentS2�cS3 thatΩ(S2)�cΩ(S3) =
1
2 . HenceΩ(S2) = 1

2 , as desired.

Lemma 75 SupposeΩ : K −→ I satisfies(Ω-1), (Ω-3) and (Ω-5). If there exists
S ∈ K with S(0) ⊆ [ 1

2 , 1] and Ω(S) 6= Ω(S‡ ∩ [ 1
2 , 1], thenΩ does not propagate

fuzziness.

Proof Let Ω : K −→ I be a given mapping which satisfies (Ω-1), (Ω-3) and (Ω-5).
Further suppose that there existsS ∈ K with S(0) ⊆ [ 1

2 , 1] and

Ω(S) 6= Ω(S‡ ∩ [ 1
2 , 1] . (505)
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In order to proof thatΩ does not propagate fuzziness, we first notice that

S‡ ∩ [ 1
2 , 1]�c S (506)

S v S‡ ∩ [ 1
2 , 1] (507)

Ω(S‡ ∩ [ 1
2 , 1]) ≥ Ω(S1/2) = 1

2 , (508)

whereS1/2(γ) = { 1
2} for all γ ∈ I. This is apparent from Def. 71, Def. 59, Def. 57,

(Ω-1) and (Ω-5). In turn, we conclude from (507) and (Ω-5) that

Ω(S) ≤ Ω(S‡ ∩ [ 1
2 , 1]) . (509)

In the following, let us discern two cases.

a.: Ω(S) ≥ 1
2
. Then 1

2 ≤ Ω(S) ≤ Ω(S‡ ∩ [ 1
2 , 1] by (509), i.e.Ω(S)�c Ω(S‡ ∩ [ 1

2 , 1])
by (5). The following proof is by contradiction. Hence assume thatΩ propagates
fuzziness. We can then conclude from (506) thatΩ(S‡ ∩ [ 1

2 , 1]) �c Ω(S) as well.
Because�c is a partial order, this entails thatΩ(S‡ ∩ [ 1

2 , 1]) = Ω(S). This contradicts
(505). Hence the assumption thatΩ propagates fuzziness is false, i.e.Ω does not
propagate fuzziness.

b. Ω(S) < 1
2
. In this case, considerS′ ∈ K defined byS′(γ) = {0, 1

2} for all
γ ∈ I. BecauseS(0) ⊆ [ 1

2 , 1] andS(0) 6= ∅, we know that there existsz0 ∈ [ 1
2 , 1]

with z0 ∈ S(γ) for all γ ∈ I. It is hence apparent thatS′ v S by Def. 57. The
following argument is again by contradiction. Assume thatΩ propagates fuzziness.
ThenΩ(S′) = 1

2 by L-74, i.e.Ω(S) ≥ Ω(S′) ≥ 1
2 . This conflicts with the assumption

of caseb. thatΩ(S) < 1
2 . HenceΩ does not propagate fuzziness.

Proof of Theorem 59

The condition onΩ is sufficient forΩ to propagate fuzziness by lemma L-73. It is
necessary forΩ to propagate fuzziness by L-75.

A.29 Proof of Theorem 60

Lemma 76 Consider a quantifierQ : P(E)n −→ I andX1, . . . , Xn, X
′
1, . . . , X

′
n ∈

P̃(E) withXi �c X ′i for i = 1, . . . , n. ThenSQ,X1,...,Xn b SQ,X′1,...,X′n .

Proof It is known from [11, L-59, p. 105] thatXi �c X ′i, i ∈ {1, . . . , n} entails that

Tγ(Xi) ⊇ Tγ(X ′i) (510)
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for all γ ∈ I. Therefore

SQ,X1,...,Xn(γ)
= {Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 51

⊇ {Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X ′1), . . . , Yn ∈ Tγ(X ′n)} by (510)

= SQ,X′1,...,X′n(γ) . by Def. 51

Becauseγ ∈ I was arbitrary, we deduce from Def. 73 thatSQ,X1,...,Xn b SQ,X′1,...,X′n .

Proof of Theorem 60

Let Ω : K −→ I be given and supposeFΩ is the QFM defined by Def. 55.

a.: If Ω propagates unspecificity, then FΩ propagates fuzziness in arguments.
Hence let us assume thatΩ propagates unspecificity. Now we consider a semi-fuzzy
quantifierQ : P(E)n −→ I and choices of argumentsX1, . . . , Xn, X

′
1, . . . , X

′
n ∈

P̃(E) with Xi �c X ′i for all i = 1, . . . , n.

FΩ(Q)(X1, . . . , Xn) = Ω(SQ,X1,...,Xn) by Def. 55

�c Ω(SQ,X′1,...,X′n) by Def. 74, L-76

= FΩ(Q)(X ′1, . . . , X
′
n) . by Def. 55

HenceFΩ(Q)(X1, . . . , Xn) �c FΩ(Q)(X ′1, . . . , X
′
n), which proves thatFΩ propa-

gates fuzziness in arguments.

b.: If FΩ propagates fuzziness in arguments, then Ω propagates unspecificity.
Hence suppose thatFΩ propagates fuzziness in arguments and considerS, S′ ∈ K
with S b S′, i.e.

S′(γ) ⊆ S(γ) (511)

for all γ ∈ I. We must prove thatΩ(S) �c Ω(S′). To this end, we first choose some
z0 ∈ S′(0) 6= ∅. Noticing thatS b S′ entailsS(0) ⊇ S′(0), we also havez0 ∈ S(0).
Based on this choice ofz0, I define a semi-fuzzy quantifierQ : P({∗} ∪ (2× I)) −→
I as follows, where{∗} is an arbitrary singleton set with∗ /∈ 2 × I. For all Y ∈
{∗} ∪ (2× I),

Q(Y ) =

 z : z ∈ S(v), ∗ ∈ Y
z : z ∈ S′(v), ∗ /∈ Y
z0 : else

(512)

where

Y ′ = {y ∈ I : (0, y) ∈ Y } (513)

Y ′′ = {y ∈ I : (1, y) ∈ Y } (514)

z = inf Y ′ (515)

v = supY ′′ . (516)
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In addition, I define fuzzy subsetsX,X ′ ∈ P̃({∗} ∪ (2× I)) by

µX(e) =


1
2 : e = ∗
1
2 : e = (0, y) for somey ∈ I
1
2 −

1
2y : e = (1, y) for somey ∈ I

(517)

µX′(e) =


0 : e = ∗
1
2 : e = (0, y) for somey ∈ I
1
2 −

1
2y : e = (1, y) for somey ∈ I

(518)

for all e ∈ {∗} ∪ (2× I). It is immediate from these definitions thatµX(e)�c µX′(e)
for all e ∈ {∗} ∪ (2× I), i.e.

X �c X ′ .

We hence deduce fromFΩ propagating fuzziness in arguments that

FΩ(Q)(X)�c FΩ(Q)(X ′) . (519)

Next we investigate the cut ranges. Forγ = 0, we obtain from Def. 31 and (517), (518)
that

Xmin
0 = X

>
1
2

= ∅ (520)

Xmax
0 = X

≥ 1
2

= {∗} ∪ ({0} × I) ∪ {(1, 0)} (521)

X ′
min
0 = X ′

>
1
2

= ∅ (522)

X ′
max
0 = X ′

≥ 1
2

= ({0} × I) ∪ {(1, 0)} . (523)

Now we consider the case thatγ > 0. We then obtain from Def. 31 and (517), (518)
that

Xmin
γ = X

≥ 1
2 +

1
2γ

= ∅ (524)

Xmax
γ = X

>
1
2−

1
2γ

= {∗} ∪ ({0} × I) ∪ ({1} × [0, γ)) (525)

X ′
min
γ = X ′

≥ 1
2 +

1
2γ

= ∅ (526)

X ′
max
γ = X ′

>
1
2−

1
2γ

= ({0} × I) ∪ ({1} × [0, γ)) . (527)

Based on these cut ranges, I now prove thatS = SQ,X . Hence letγ ∈ I. Firstly let us
observe that

S(γ) ⊆ SQ,X(γ) . (528)

To see this, considerz ∈ S(γ). If γ = 0, thenY = {∗, (0, z), (1, 0)} ∈ T0(X),
see (520), (521). For this choice ofY , we obtain thatz = inf{z} = inf Y ′ by (513)
andv = supY ′′ = sup{0} = 0 = γ by (514). HenceQ(Y ) = z becausez ∈
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S(v) = S(γ) and∗ ∈ Y , see (512). Ifγ > 0, then we know from (524) and (525)
that Y = {∗, (0, z)} ∪ ({1} × [0, γ)) ∈ Tγ(X). For this choice ofY , we obtain
z = inf{z} = inf Y ′ andv = supY ′′ = sup[0, γ) = γ by equations (513) and
(514). We then conclude fromz ∈ S(γ), ∗ ∈ Y and (512) thatQ(Y ) = z. This
finishes the proof of (528). To see that the converse subsumptionSQ,X(γ) ⊆ S(γ)
also holds, consider a choice ofY ∈ Tγ(X). It is then apparent from (520) and (521)
(if γ = 0) and (524), (525) (ifγ > 0) that v = supY ′′ ∈ [0, γ]. Let us again
abbreviatez = inf Y ′. We observe from (512) that eitherQ(Y ) = z ∈ S(v) ⊆ S(γ),
orQ(Y ) = z ∈ S′(v) ⊆ S(v) by (511), orQ(Y ) = z0 ∈ S(0) ⊆ S(γ). In any case,
Q(Y ) ∈ S(γ). HenceSQ,X(γ) ⊆ S(γ) by Def. 51, as desired. Combining this with
(528) proves thatSQ,X(γ) = S(γ) for all γ ∈ I, i.e.

SQ,X = S . (529)

Next I prove thatS′ = SQ,X′ . Let againγ ∈ I. In order to prove that

S′(γ) ⊆ SQ,X′(γ) (530)

considerz ∈ S′(γ). If γ = 0, thenY = {(0, z), (1, 0)} ∈ T0(X ′) by (522), (523).
We obtainz = inf{z} = inf Y ′ by (513) andv = supY ′′ = sup{0} = 0 = γ by
(514). HenceQ(Y ) = z becausez ∈ S′(v) = S′(γ) and∗ /∈ Y , see (512). For
γ > 0 we obtain from (526) and (527) thatY = {(0, z)} ∪ ({1} × [0, γ)) ∈ Tγ(X ′).
This choice ofY yields z = inf{z} = inf Y ′ andv = supY ′′ = sup[0, γ) = γ
by (513) and (514). We deduce fromz ∈ S′(γ), ∗ /∈ Y and (512) thatQ(Y ) = z.
Hence (530) is valid. To see thatSQ,X′(γ) ⊆ S′(γ) also holds, consider a choice of
Y ∈ Tγ(X ′). It is then apparent from (522) and (523) (ifγ = 0) and (526), (527) (if
γ > 0) thatv = supY ′′ ∈ [0, γ] and∗ /∈ Y ; z = inf Y ′ can assume arbitrary values
z ∈ I. We observe from (512) and∗ /∈ Y that eitherQ(Y ) = z ∈ S′(v) ⊆ S′(γ) or
Q(Y ) = z0 ∈ S′(0) ⊆ S′(γ). In any case,Q(Y ′) ∈ S′(γ). HenceSQ,X′(γ) ⊆ S′(γ)
by Def. 51. Recalling (530), we have shown thatSQ,X′(γ) = S′(γ) for all γ ∈ I, thus

SQ,X′ = S′ . (531)

Based on these auxiliary results, we can now proceed as follows.

Ω(S) = Ω(SQ,X) by (529)

= FΩ(Q)(X) by Def. 55

�c FΩ(Q)(X ′) by (519)

= Ω(SQ,X′) by Def. 55

= Ω(S′) . by (531)

A.30 Proof of Theorem 61

Lemma 77 Let Ω : K −→ I be a given mapping which satisfies(Ω-2). If Ω satisfies
conditionb. of theorem Th-61, thenΩ also satisfies the following condition. For all
s ∈ K with S(0) ⊆ [0, 1

2 ], it holds thatΩ(S) = Ω(S′), whereS′ ∈ K is defined by

S′(γ) =
{

[0, z∗] : z∗ ∈ S(γ)
[0, z∗) : z∗ /∈ S(γ) (532)
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for all γ ∈ I, wherez∗ = z∗(γ) abbreviates

z∗ = supS(γ) . (533)

Proof SupposeS ∈ K satisfiesS(0) ⊆ [0, 1
2 ]. We defineS1 ∈ K by

S1(γ) = {1− z : z ∈ S(γ)} (534)

for all γ ∈ I. We further defineS′ ∈ K according to (532), andS′1 ∈ K according to
(54). It is apparent from these equations and (534) that

S′(γ) = {1− z : z ∈ S′1(γ)} (535)

for all γ ∈ I. Noticing thatS1(0) ⊆ [ 1
2 , 1], we hence obtain

Ω(S) = 1− Ω(S1) by (Ω-2)

= 1− Ω(S′1) by conditionb. of Th-61

= Ω(S′) , by (535)

as desired.

Lemma 78 SupposeΩ : K −→ I satisfies(Ω-2), (Ω-4) and (Ω-5). If Ω satisfies
conditionb. of theorem Th-61, thenΩ also satisfies the following condition. For all
S ∈ K with S(0) ∩ [ 1

2 , 1] 6= ∅ andS(0) ∩ [0, 1
2 ] 6= ∅, it holds thatΩ(S) = 1

2 .

Proof To see this, considerS ∈ K with S(0) ∩ [ 1
2 , 1] 6= ∅ andS(0) ∩ [0, 1

2 ] 6= ∅.
We defineS+, S− : I −→ P(I) by

S+(γ) =

{
S(0) ∩ [ 1

2 , 1] : γ = 0
S(γ) : γ > 0

(536)

S−(γ) =

{
S(0) ∩ [0, 1

2 ] : γ = 0
S(γ) : γ > 0

(537)

for all γ ∈ I. It is apparent fromS(0)∩[ 1
2 , 1] 6= ∅ andS(0)∩[0, 1

2 ] 6= ∅ thatS+, S− ∈
K by Def. 52. We further defineS′+, S′− ∈ K by (54) and (532), respectively. Finally,
we defineS′′ ∈ K by

S′′(γ) = I (538)

for all γ ∈ I. It is then apparent from (Ω-2) andS′′(γ) = {1− z : z ∈ S′′(γ)} for all
γ ∈ I that

Ω(S′′) = 1
2 . (539)
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Noticing thatS′− v S′′, we hence obtain

Ω(S) = Ω(S−) by (537) and L-18

= Ω(S′−) by L-77

≤ Ω(S′′) by (Ω-5)

= 1
2 . by (539)

In a similar way, we obtain fromS′′ v S′+ that

Ω(S) = Ω(S+) by (536) and L-18

= Ω(S′+) by conditiona. of Th-61

≥ Ω(S′′) by (Ω-5)

= 1
2 . by (539)

We conclude thatΩ(S) = 1
2 .

Proof of Theorem 61

Consider a choice ofΩ : K −→ I which satisfies (Ω-1), (Ω-2), (Ω-4) and (Ω-5).

Condition b. of the theorem entails condition a.: To see this, let us suppose thatΩ
satisfies conditionb. of the theorem. We have to show thatΩ propagates unspecificity.
Hence letS1, S2 ∈ K be given withS1 b S2, i.e.

S2(γ) ⊆ S1(γ) (540)

for all γ ∈ I. I will discern three cases in the proof thatΩ(S1)�c Ω(S2).
Firstly if S1(0)∩ [ 1

2 , 1] 6= ∅ andS1(0)∩ [0, 1
2 ] 6= ∅, thenΩ(S1) = 1

2 �cΩ(S2), which
is apparent from L-78 and (5).
In the second case thatS1(0) ⊆ [ 1

2 , 1], we observe from (540) thatS2(0) ⊆ [ 1
2 , 1] as

well. We defineS′1 andS′2 according to equation (54) in terms ofS1 andS2, respec-
tively. It is then apparent from (540) and (54) thatS′1 v S′2 and hence

Ω(S1) = Ω(S′1) ≤ Ω(S′2) = Ω(S2) (541)

by (Ω-5) and the assumption thatΩ satisfies conditionb. of the theorem. We further
defineS′′1 ∈ K by

S′′1 (γ) ∪ { 1
2}

for all γ ∈ I. BecauseS1(0) ⊆ [ 1
2 , 1] andS1(0) 6= ∅, we conclude thatS1(0)∩[ 1

2 , 1] 6=
∅. HenceS′′1 v S1 by Def. 57. Therefore

Ω(S1) ≤ Ω(S′′1 ) by (Ω-5)

= 1
2 . by L-78
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Hence1
2 ≤ Ω(S1) ≤ Ω(S2) by (541), i.e.Ω(S1)�c Ω(S2) by (5).

Finally in the case thatS(0) ⊆ [0, 1
2 ], we defineS′1(γ) = {1 − z : z ∈ S1(γ)} and

S′2(γ) = {1 − z : z ∈ S2(γ)} for all γ ∈ I. We can then conclude from the second
case and (Ω-2) that

1− Ω(S1) = Ω(S′1)�c Ω(S′2) = 1− Ω(S2) .

It is then apparent from (5) thatΩ(S1)�c Ω(S2).

Condition a. of the theorem entails condition b.: To see that conditionb. of the
theorem holds whenevera. holds, let us assume thatΩ propagates unspecificity. Now
considerS ∈ K with S(0) ⊆ [ 1

2 , 1] and defineS′ by (54). It is then apparent that
S(γ) ⊆ S′(γ) for all γ ∈ I, i.e.S′ b S and hence

Ω(S′)�c Ω(S) . (542)

BecauseS(0) ⊆ [ 1
2 , 1], we can choose somez0 ≥ 1

2 with z0 ∈ S(0). We defineS′′ ∈
K by S′′(γ) = {z0} for all γ ∈ I. Then clearlyS b S′′ and henceΩ(S) �c Ω(S′′).
In additionΩ(S′′) = z0 ≥ 1

2 by (Ω-1). HenceΩ(S) ≥ 1
2 by (5). Combining this with

(542), we obtain that

Ω(S′) ≤ Ω(S) , (543)

which is apparent from (5). We now notice from (54) and Def. 57 thatS v S′. Hence
Ω(S) ≤ Ω(S′). Combining this with (543) yields the desiredΩ(S′) = Ω(S).

A.31 Proof of Theorem 62

Lemma 79 Supposeω : L −→ I is given andΩ : K −→ I is defined in terms ofω by
(38). If Ω propagates fuzziness, thenω propagates fuzziness.

Proof Considers, s′ ∈ L with s�c s′. We defineS, S′ ∈ K by

S(γ) = {z ∈ I : γ ≥ s(z)}
S′(γ) = {z ∈ I : γ ≥ s′(z)} .

for all γ ∈ I. Next let us prove thatS �c S′. Hence letγ ∈ I and considerz ∈ S(γ),
i.e. γ ≥ s(z). We know from (56) that there existsz′ ∈ I with z �c z′ ands′(z′) ≤
s(z) ≤ γ. Hencez′ ∈ S′(γ) andz �c z′. This proves that condition (53) holds.
Now consider somez′ ∈ S′(γ), i.e.γ ≥ s′(z′). We know from (57) that there exists
z ∈ I with z �c z′ ands(z) ≤ s′(z′). In particular,γ ≥ s(z); hencez ∈ S(γ). This
proves that condition (52) also holds; we conclude from Def. 71 thatS�c S′. Because
Ω is assumed to propagate fuzziness,S �c S′ entails that

Ω(S)�c Ω(S′) . (544)
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Therefore

ω(s) = Ω(S) by (39)

�c Ω(S′) by (544)

= ω(s′) . by (39)

Henceω propagates fuzziness by Def. 76, as desired.

Lemma 80 Supposeω : L −→ I has the following property. Ifs, s′ ∈ L satisfy

for all z ∈ I, inf{s′(z′) : z �c z′} ≤ s(z) (545)

and

for all z′ ∈ I, inf{s(z) : z �c z′} ≤ s′(z′), (546)

thenω(s) �c ω(s′). Further suppose thatΩ : K −→ I is defined by(38). ThenΩ
propagates fuzziness.

Proof Suppose thatω : L −→ I has the properties stated in the lemma. In order to
prove thatΩ propagates fuzziness, we consider a choice ofS, S′ ∈ K with S �c S′.
We defines, s′ ∈ L in terms ofS, S′, viz

s(z) = inf{γ ∈ I : z ∈ S(γ)} (547)

s′(z) = inf{γ ∈ I : z ∈ S′(γ)} (548)

for all z ∈ I. To see that (545) is satisfied, considerz ∈ I and letγ > s(z). Then
z ∈ S(γ) by (547). By (53), there existsz′ ∈ S′(γ) with z �c z′. Becausez ∈ S′(γ),
we conclude from (548) thats′(z′) ≤ γ. Becauseγ > s(z) was arbitrary, this proves
that

inf{s′(z′) : z �c z′} ≤ s(z) ,

i.e. (545) is satisfied. To see that (546) holds as well, considerz′ ∈ I. Then for all
γ > s′(z′), z′ ∈ S′(γ) by (548). We hence know from (52) that there existsz ∈ S(γ)
with z �c z′. In particular,z ∈ S(γ) entails thats(z) ≤ γ. Becauseγ > s′(z′) was
arbitrary, this proves that

inf{s(z) : z �c z′} ≤ s′(z′) .

Hence (546) is valid, too. From the assumption onω stated in the lemma we deduce
that

ω(s)�c ω(s′) . (549)

Therefore

Ω(S) = ω(s) by L-38, (38)

�c ω(s′) by (549)

= Ω(S′) . by L-38, (38)

This proves thatΩ propagates fuzziness, as desired.
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Lemma 81 Supposes, s′ ∈ L are related by(545)and (546). Then there existz0 ∈
s‡
−1(0), z′0 ∈ s′

‡−1
(0) with z0 �c z′0.

Proof Choose somez0 ∈ s−1(0). Then alsoz0 ∈ s‡
−1(0) by Th-47.a. Ifz0 = 1

2

then any choice ofz′0 ∈ s′
‡−1

(0) 6= ∅ satisfiesz0 = 1
2 �c z

′
0, see (5). In the case

that z0 >
1
2 , choose somez′′0 ∈ s′

−1(0). If z′′0 ≥ z0, thenz′′0 is a proper choice for

z′0 becauses′‡ ≤ s′ entails thatz′′0 ∈ s′
‡−1

(0), and becausez′′0 ≥ z0 >
1
2 entails that

z0 �c z′′0 by (5). If z′′0 < z0, however, we proceed as follows. we know that

0 = s(z0) becausez0 ∈ s−1(0)
≥ inf{s′(z′) : z0 �c z′} by (545)

= inf{s′(z′) : z′ ≥ z0} by z0 >
1
2 and (5)

= s‡
′
(z0) , by L-43

i.e.s‡
′(z0) = 0. Hencez′0 = z0 is a proper choice forz′0 with z0�cz′0 ands‡(z′0) = 0.

Finally let us consider the case thatz0 < 1
2 . Again choose somez′′0 ∈ s′

−1(0). If
z′′0 ≤ z0, then we are done because in this casez′0 = z′′0 is a proper choice ofz′0 which
satisfiess′‡(z′0) = 0 andz0 �c z′0. In the remaining case thatz′′0 > z0, we notice that

s′
‡(z0) = inf{s′(z′) : z′ ≤ z0} by L-43

= inf{s′(z′) : z0 �c z′} by z0 <
1
2 and L-43

≤ s(z0) by (545)

= 0 , becausez0 ∈ s−1(0)

i.e.s′‡(z0) = 0. Hencez′0 = z0 is an admissible choice ofz′0 which satisfiess′‡(z′0) =
0 andz0 �c z′0, as desired.

Lemma 82 Supposes, s′ ∈ L satisfy the condition(545). Further suppose thatz0 ∈
s‡
−1(0), z′0 ∈ s′

‡−1
(0) are given withz0 �c z′0. Then for allz ∈ I,

a. If z > 1
2 andz′0 < z, thens′‡(z) ≤ s(z);

b. If z > 1
2 andz′0 ≥ z thenz �c z′0 ands′‡(z′0) ≤ s‡(z);

c. If z = 1
2 , thenz �c z′0 ands′‡(z′0) ≤ s‡(z);

d. If z < 1
2 andz′0 ≤ z, thenz �c z′0 ands′‡(z0) ≤ s‡(z);

e. If z < 1
2 andz′0 > z thens′‡(z) ≤ s(z).

Proof We know from L-81 that there existz0 ∈ s‡
−1(0), z′0 ∈ s′

‡−1
(0) with z0�cz′0.

Now let us consider somez ∈ I.
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a.: If z > 1
2 andz′0 < z, then

s′
‡(z) = inf{s′(z′) : z′ ≥ z} by L-61

= inf{s′(z′) : z �c z′} by (5) andz > 1
2

≤ s(z) . by (545)

b., c. and d.: Immediate from (5) ands′‡(z′0) = 0.

e.: If z < 1
2 andz′0 > z then

s′
‡(z) = inf{s′(z′) : z′ ≤ z} by L-61

= inf{s′(z′) : z �c z′} by (5) becausez < 1
2

≤ s(z) . by (545)

Lemma 83 Supposes, s′ ∈ L satisfy the condition(545). Further suppose thatz0 ∈
s‡
−1(0), z′0 ∈ s′

‡−1
(0) are given withz0 �c z′0. Then for allz ∈ I,

a. If z > 1
2 andz′0 < z, thens′‡(z) ≤ s‡(z);

b. If z < 1
2 andz′0 > z thens′‡(z) ≤ s‡(z).

Proof Let z ∈ I be given.

a.: z > 1
2

and z′0 < z. Supposez′0 ≤ 1
2 . We then deduce fromz0 �c z′0 and (5) that

z0 ∈ [z′0,
1
2 ]. In particular,z0 < z. In the remaining case thatz′0 >

1
2 , we obtain from

z0�c z′0 and (5) thatz0 ∈ [ 1
2 , z
′
0], and againz0 ≤ z′0 < z. Hence in both casesz0 < z.

Therefore

s‡(z) = inf{s(z′) : z′ ≥ z} by L-61

≥ inf{s′‡(z′) : z′ ≥ z} by L-82.a

= s′
‡‡(z) by L-43

= s′
‡(z) . by L-51

b.: z < 1
2

and z′0 > z. If z′0 ∈ (z, 1
2 ], thenz0 �c z′0 entails thatz0 ∈ [z′0,

1
2 ] by

(5). In particularz0 > z. In the remaining case thatz′0 ∈ [ 1
2 , 1], z0 �c z′0 entails that
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z0 ∈ [ 1
2 , z
′
0] by (5). In particularz0 ≥ 1

2 > z. Hence in both casesz0 > z. Therefore

s‡(z) = inf{s(z′) : z′ ≤ z} by L-61

≥ inf{s′‡(z′) : z′ ≤ z} by L-82.e

= s′
‡‡(z) by L-43

= s′
‡(z) . by L-51

Lemma 84 Supposes, s′ ∈ L satisfy the condition(546). Further suppose thatz0 ∈
s‡
−1(0), z′0 ∈ s′

‡−1
(0) are given withz0 �c z′0. Then for allz′ ∈ I,

a. If z′ ≥ 1
2 andz0 ∈ (z′, 1], thens‡(z′) ≤ s′(z′);

b. If z′ ≥ 1
2 andz0 ∈ [ 1

2 , z
′], thenz0 �c z′ ands‡(z0) ≤ s′‡(z′);

c. If z′ ≥ 1
2 andz0 ∈ [0, 1

2 ), thens‡( 1
2 ) ≤ s′(z′);

d. If z′ < 1
2 andz0 ∈ [0, z′), thens‡(z′) ≤ s′(z′);

e. If z′ < 1
2 andz0 ∈ [z′, 1

2 ], thens‡(z0) ≤ s′‡(z′);

f. If z′ < 1
2 andz0 ∈ ( 1

2 , 1], thens‡( 1
2 ) ≤ s′(z′).

Proof

a.: z′ ≥ 1
2

and z0 ∈ (z′, 1]. Thenz0 > z′ ≥ 1
2 . Therefore

s‡(z′) = inf{s(z) : z ≤ z′} by L-61

= min(inf{s(z) : z ∈ [ 1
2 , z
′]}, inf{s(z) : z ∈ [0, 1

2 )})
≤ inf{s(z) : z ∈ [ 1

2 , z
′]}

= inf{s(z) : z �c z′} by (5) becausez′ ≥ 1
2

≤ s′(z′) . by (546)

Hence indeeds‡(z′) ≤ s′(z′).

b.: z′ ≥ 1
2

and z0 ∈ [ 1
2
, z′]. We conclude from1

2 ≤ z0 ≤ z′ thatz0 �c z′ by (5). The

claim of partb. is then immediate froms‡(z0) = 0 ≤ s′‡(z′).

c.: z′ ≥ 1
2

and z0 ∈ [0, 1
2
). Becausez0 <

1
2 , we may proceed as follows.

s‡( 1
2 ) = inf{s(z) : z ≥ 1

2} by L-61

≤ inf{s(z) : z ∈ [ 1
2 , z
′]}

= inf{s(z) : z �c z′} by (5) becausez ≥ 1
2

≤ s′(z′) . by (546)
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Hences‡( 1
2 ) ≤ s′(z′) holds, as desired.

d.: z′ < 1
2

and z0 ∈ [0, z′). Thenz′0 ≤ z0 < z′, see (5). Therefore

s‡(z′) = inf{s(z′′) : z′′ ≥ z′} by L-61

≤ inf{s(z′′) : z′′ ∈ [z′, 1
2 ]}

= inf{s(z′′) : z′′ �c z′} by (5) becausez′ < 1
2

≤ s′(z′) . by (546)

This proves that indeeds‡(z′) ≤ s′(z′).

e.: z′ < 1
2

and z0 ∈ [z′, 1
2
]. Thenz′ ≤ z0 ≤ 1

2 . Hencez0 �c z′ by (5). The claim of

parte. is then immediate froms‡(z0) = 0 ≤ s′‡(z′).

f.: z′ < 1
2

and z0 ∈ ( 1
2
, 1] Becausez0 > z′, we can proceed as follows.

s‡( 1
2 ) = inf{s(z) : z ≤ 1

2} by L-61

≤ inf{s(z) : z ∈ [z′, 1
2 ]}

= inf{s(z) : z �c z′} by (5) becausez′ < 1
2

≤ s′(z′) . by (546)

Therefores‡( 1
2 ) ≤ s′(z′), i.e. the claim of partf. is valid, as desired.

Lemma 85 Supposes, s′ ∈ L satisfy the condition(546). Further suppose thatz0 ∈
s‡
−1(0), z′0 ∈ s′

‡−1
(0) are given withz0 �c z′0. Then for allz′ ∈ I,

a. If z′ ≥ 1
2 andz0 ∈ (z′, 1], thens‡(z′) ≤ s′‡(z′);

b. If z′ ≥ 1
2 andz0 ∈ [0, 1

2 ), thens‡( 1
2 ) ≤ s′‡(z′);

c. If z′ < 1
2 andz0 ∈ [0, z′), thens‡(z′) ≤ s′‡(z′);

d. If z′ < 1
2 andz0 ∈ ( 1

2 , 1], thens‡( 1
2 ) ≤ s′‡(z′).

Proof Considerz′ ∈ I.
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a.: z′ ≥ 1
2

and z0 ∈ (z′, 1]. We observe that by (5),z0 �c z′0 andz0 > z′ ≥ 1
2 implies

thatz′0 ≥ z0 > z′. Therefore

s′
‡(z′) = inf{s′(z′′) : z′′ ≤ z′} by L-61

= min(inf{s′(z′′) : z′′ ∈ [ 1
2 , z
′]},

inf{s′(z′′) : z′ ∈ [0, 1
2 )})

≥ min(inf{s‡(z′′) : z′′ ∈ [ 1
2 , z
′]}, s‡( 1

2 )) by L-84.a and L-84.f

= inf{s‡(z′′) : z′′ ∈ [ 1
2 , z
′]}

≥ inf{s‡(z′′) : z′′ ≤ z′}

= s‡
‡
(z′) by L-43

= s‡(z′) . by L-51

This proves the claim of partb. thats‡(z′) ≤ s′‡(z′).

b.: z′ ≥ 1
2

and z0 ∈ [0, 1
2
). In this case, we obtain fromz0 �c z′0 and (5) thatz′0 ≤

z0 <
1
2 . In particularz′0 < z′. Therefore

s′
‡(z′) = inf{s′(z′′) : z′′ ≥ z′} by L-61

≥ inf{s‡( 1
2 ) : z′′ ≥ z′} by L-84.c

= inf{s‡( 1
2 )}

= s‡( 1
2 ) .

This proves the desireds‡( 1
2 ) ≤ s′‡(z′).

c.: z′ < 1
2

and z0 ∈ [0, z′). In this case, we havez′0 ≤ z0 < z′ ≤ 1
2 , which is apparent

from z0 �c z′0 and (5). In particularz′0 ≤ z′. Therefore

s′
‡(z′) = inf{s′(z′′) : z′′ ≥ z′} by L-61

= min(inf{s′(z′′) : z′′ ∈ [z′, 1
2 )},

inf{s′(z′′) : z′′ ∈ [ 1
2 , 1]})

≥ min(inf{s‡(z′′) : z′′ ∈ [z′, 1
2 )}, s‡( 1

2 )} by L-84.c, L-84.d

= inf{s‡(z′′) : z′′ ∈ [z′, 1
2 ]}

≥ inf{s‡(z′′) : z′′ ≥ z′}

= s‡
‡
(z′) by L-43

= s‡(z′) . by L-51

This proves thats‡(z′) ≤ s′‡(z′).
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d.: z′ < 1
2

and z0 ∈ ( 1
2
, 1]. Then we know fromz0 �c z′0 and (5) thatz′0 ≥ z0 >

1
2 .

In particular,z′ < z′0. Therefore

s′
‡(z′) = inf{s′(z′′) : z′′ ≤ z′} by L-61

≥ inf{s‡( 1
2 ) : z′′ ≤ z′} by L-84.f

= inf{s‡( 1
2 )}

= s‡( 1
2 ) .

Hences‡( 1
2 ) ≤ s′‡(z′), as desired.

Lemma 86 Supposes, s′ ∈ L satisfy conditions(545)and (546). Thens‡ �c s′
‡.

Proof We first notice that by L-81, there existz0 ∈ s‡
−1(0), z′0 ∈ s′

‡−1
(0) such

thatz0 �c z′0. We then obtain from L-82.b/c and L-83.a/b that (56) holds fors‡, s′
‡.

In addition, we obtain from L-84.b/e and L-85.a-d that (57) holds fors‡, s′
‡. Hence

s‡ �c s′
‡ by Def. 75, as desired.

Proof of Theorem 62

Supposeω : L −→ I is ‡-invariant, i.e.ω(s‡) = ω(s) for all s ∈ L.

a.: If Fω propagates fuzziness in quantifiers, then ω propagates fuzziness. To see
this, assume thatFω propagates fuzziness in quantifiers. Let us recall thatFω = FΩ

by (39), provided we defineΩ by (38). We hence know from Th-58 thatΩ propagates
fuzziness. In turn, lemma L-79 permits us to conclude thatω propagates fuzziness, as
desired.

b.: If ω propagates fuzziness, then Fω propagates fuzziness in quantifiers. Con-
sider a choice ofs, s′ ∈ L which satisfies (545) and (546). Thens‡ �c s′

‡ by L-86,
i.e.

ω(s‡)�c ω(s′‡) (550)

becauseω is assumed to propagate fuzziness. Hence

ω(s) = ω(s‡) by assumption thatω be‡-invariant

�c ω(s′‡) by (550)

= ω(s′) . by assumption thatω be‡-invariant

Henceω fulfills the preconditons of lemma L-80. We conclude thatΩ : K −→ I
defined by (38) propagates fuzziness. HenceFΩ propagates fuzziness in quantifiers by
Th-58. ButFω = FΩ by (39), i.e.Fω propagates fuzziness in quantifiers.
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A.32 Proof of Theorem 63

Lemma 87 Lets ∈ L be given withs−1(0) ⊆ [ 1
2 , 1] and supposes′ ∈ L is defined by

s′(z) =

{
s‡(z) : z ≥ 1

2

1 : z < 1
2

(551)

for all z ∈ I. Abbreviating

S′(γ) = {z ∈ I : γ ≥ s′(z)} (552)

S′′(γ) = {z ∈ I : γ ≥ s‡(z)} (553)

for all γ ∈ I, it holds that

S′(γ) = S′′(γ) ∩ [ 1
2 , 1]

for all γ ∈ [0, 1).

Proof I first show that

S′(γ) ⊆ S′′(γ) ∩ [ 1
2 , 1] (554)

for all γ < 1. Hence letγ < 1 andz ∈ S′(γ). Then

γ ≥ s′(z) (555)

which is apparent from (552). Becauses′(z′) = 1 > γ for all z′ < 1
2 by (551), we

conclude from (555) that

z ≥ 1
2 (556)

Therefores′(z) = s‡(z) by (551). We hence obtain from (555) thatγ ≥ s‡(z). In turn,
we conclude from (553) thatz ∈ S′′(γ). This proves thatz ∈ S′′(γ) ∩ [ 1

2 , 1] because
z ≥ 1

2 by (556). Hence indeedS′(γ) ⊆ S′′(γ) ∩ [ 1
2 , 1], i.e. (554) holds, as desired.

To see that

S′′(γ) ∩ [ 1
2 , 1] ⊆ S′(γ) (557)

is also valid for allγ < 1, considerz ∈ S′′(γ) ∩ [ 1
2 , 1]. Thenz ≥ 1

2 andz ∈ S′′(γ),
hence

γ ≥ s‡(z) . (558)

Becausez ≥ 1
2 , we conclude from (551) thats′(z) = s‡(z), henceγ ≥ s′(z) by (558).

In turnz ∈ S′(γ) by (552), which finishes the proof of (557).
Combining (554) and (557), we finally obtain the desiredS′(γ) = S′′(γ) ∩ [ 1

2 , 1] for
all γ < 1.
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Lemma 88 Supposeω : L −→ I is a given mapping which satisfies(ω-1) to (ω-4).
Further suppose thatΩ : K −→ I is defined in terms ofω according to equation
(38). If Ω propagates fuzziness, thenω has the following property. For alls ∈ L with
s−1(0) ⊆ [ 1

2 , 1], it holds thatω(s) = ω(s′), where

s′(z) =

{
s‡(z) : z ≥ 1

2

1 : z < 1
2

(559)

for all z ∈ I.

Proof Let ω : L −→ I be the given mapping which satisfies (ω-1) to (ω-4) and
supposeΩ : K −→ I is defined in terms ofω according to (38). In order to prove the
claim of the lemma, we assume thatΩ propagates fuzziness. Now consider a choice of
s ∈ L with s−1(0) ⊆ [ 1

2 , 1] and defines′ : I −→ I by (559). It is then apparent from

s−1(0) ∩ [ 1
2 , 1] 6= ∅ thats′−1(0) 6= ∅, i.e.s′ ∈ L. We defineS′, S′′, S∗ ∈ K by

S′(γ) = {z ∈ I : γ ≥ s′(z)} (560)

S′′(γ) = {z ∈ I : γ ≥ s‡(z)} (561)

S∗(γ) =
{
S′′(0) ∩ [ 1

2 , 1] : γ = 0
S′′(γ) : γ > 0 (562)

for all γ ∈ I. We notice that for allγ ∈ I, S∗(γ) is convex in the sense thata ≤ b ≤ c
anda, c ∈ S∗(γ) entail thatb ∈ S∗(γ). Therefore

S∗‡ = S∗ , (563)

which is apparent from Def. 59. We also notice from (561) and (562) that

S∗ ∩ [ 1
2 , 1] = S′′ ∩ [ 1

2 , 1] . (564)

Therefore

ω(s′) = Ω(S′) by (560), (38) and L-38

= Ω(S′′ ∩ [ 1
2 , 1]) by L-87

= Ω(S∗ ∩ [ 1
2 , 1]) by (564)

= Ω(S∗‡ ∩ [ 1
2 , 1]) by (563)

= Ω(S∗) by Th-59

= Ω(S′′) by (561), (562) and L-18

= ω(s‡) by (561), (38) and L-38

= ω(s) . by Th-48

Lemma 89 Supposeω : L −→ I is a given mapping which satisfies(ω-1) to (ω-4).
Let Ω : K −→ I be defined in terms ofω according to(38). If Ω propagates fuzziness,
thenω(s) = 1

2 for all s ∈ L with s−1(0) ∩ [ 1
2 , 1] 6= ∅ ands−1(0) ∩ [0, 1

2 ] 6= ∅.
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Proof To see this, defineS ∈ K by

S(γ) = {z ∈ I : γ ≥ s(z)} (565)

for all γ ∈ I. ThenS(0) = s−1(0), henceS(0) ∩ [ 1
2 , 1] 6= ∅ andS(0) ∩ [0, 1

2 ] 6= ∅.
We conclude from L-72 that

Ω(S) = 1
2 . (566)

Therefore

ω(s) = Ω(S) by (565), (38) and L-38

= 1
2 . by (566)

Lemma 90 Supposeω : L −→ I satisfies(ω-1), (ω-2) and(ω-4). Then condition1. is
equivalent to the conjunction of conditons2.a and2.b: are equivalent.

1. For all s ∈ L with s−1(0) ∩ [ 1
2 , 1] 6= ∅, it holds thatω(s) = ω(s′), where

s′(z) =
{
s‡(z) : z ≥ 1

2
1 : z < 1

2

for all z ∈ I;

2.a For all s ∈ L with s−1(0) ⊆ [ 1
2 , 1], it holds thatω(s) = ω(s′), wheres′ ∈ L is

defined as in1.;

2.b For all s ∈ L with s−1(0) ∩ [ 1
2 , 1] 6= ∅ ands−1(0) ∩ [0, 1

2 ] 6= ∅, it holds that
ω(s) = 1

2 .

Proof

1. entails 2.a: This is trivially the case because2.a is an apparent weakening of1.

1. entails 2.b: To see this, supposeω fulfills 1. and consider a choice ofs ∈ L with
s−1(0) ∩ [ 1

2 , 1] 6= ∅ ands−1(0) ∩ [0, 1
2 ] 6= ∅. We defines′, s′′ : I −→ I by

s′(z) =

{
s‡(z) : z ≥ 1

2

1 : z < 1
2

s′′(z) =

{
1 : z > 1

2

s‡(z) : z ≤ 1
2

for all z ∈ I. It is apparent froms−1(0) ∩ [ 1
2 , 1] 6= ∅ that s′ ∈ L. Similarly, we

conclude froms−1(0) ∩ [0, 1
2 ] 6= ∅ thats′′ ∈ L. We notice that

ω(s) = ω(s′) (567)
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by 1., and also

ω(s) = ω(s′′) (568)

which is apparent from1. and (ω-2). Now let us defines 1
2
∈ L by

s 1
2

(z) =

{
0 : z = 1

2

1 : z 6= 1
2

for all z ∈ I. Apparentlys 1
2
v s′ and hence

ω(s) = ω(s′) by (567)

≥ ω(s 1
2

) by (ω-4)

= 1
2 , by (ω-1)

i.e.ω(s) ≥ 1
2 . By similar reasoning, we conclude froms′′ v s 1

2
that

ω(s) = ω(s′′) by (568)

≤ ω(s 1
2

) by (ω-4)

= 1
2 , by (ω-1)

i.e.ω(s) ≤ 1
2 . Combining this with the former inequation yieldsω(s) = 1

2 .

The conjunction of 2.a and 2.b entails 1.: Let us assume that both2.a and2.b are
valid. Now considers ∈ L with s−1(0) ∩ [ 1

2 , 1] 6= ∅ and defines′ ∈ L by

s′(z) =

{
s‡(z) : z ≥ 1

2

1 : z < 1
2

(569)

for all z ∈ I.
If s−1 ∩ [0, 1

2 ) = ∅, thens−1 ⊆ [ 1
2 , 1]. Henceω(s) = ω(s′) by 2.a, as desired.

In the remaining case thats−1(0) ∩ [0, 1
2 ) 6= ∅, we conclude from2.b that

ω(s) = 1
2 . (570)

In order to show thatω(s′) = 1
2 as well, we considerz = 1

2 . We know thats−1(0) ∩
[ 1
2 , 1] 6= ∅, hence there existsz+ with s(z+) = 0 andz+ ≥ 1

2 . Henceinf{s(z) : z ≥
1
2} ≤ s(z

+) = 0, i.e.

inf{s(z) : z ≥ 1
2} = 0 (571)

By similar reasoning, we conclude froms−1(0) ∩ [0, 1
2 ] 6= ∅ that there existsz− with

s(z−) = 0 andz− ≤ 1
2 . Thereforeinf{s(z) : z ≤ 1

2} ≤ s(z
−) = 0, i.e.

inf{s(z) : z ≤ 1
2} = 0 (572)

We conclude from (571), (572) and Def. 65 thats‡( 1
2 ) = 0. By (569),s′( 1

2 ) = s‡( 1
2 ) =

0. Hences′−1(0) ∩ [ 1
2 , 1] 6= ∅ ands′−1(0) ∩ [0, 1

2 ] 6= ∅, i.e.ω(s′) = 1
2 = ω(s) by

2.b and (570).
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Lemma 91 LetS ∈ K be given. Defines, s∗ ∈ L by

s(z) = inf{γ ∈ I : z ∈ S(γ)} (573)

s∗(z) = inf{γ ∈ I : z ∈ S‡(γ)} (574)

for all z ∈ I. Thens‡ = s∗.

Proof Considerz ∈ I. I will show thats‡(z) = s∗(z) by proving both inequations
s‡(z) ≤ s∗(z) ands‡(z) ≥ s∗(z).

a.: s‡(z) ≤ s∗(z). Considerγ′ > s∗(z). Thenz ∈ S‡(γ′) by (574). By Def. 59 there
existz−, z+ ∈ S(γ′) with

z− ≤ z ≤ z+ . (575)

Becausez−, z+ ∈ S(γ′), we conclude from (573) that

s(z−) ≤ γ′ (576)

s(z+) ≤ γ′ . (577)

We can hence proceed as follows.

inf{s(z′) : z′ ≤ z} ≤ s(z−) by (575)

≤ γ′ by (576)

and siimilarly

inf{s(z′) : z′ ≥ z} ≤ s(z+) by (575)

≤ γ′ . by (577)

Hence by Def. 65,

s‡(z) = max(inf{s(z′) : z′ ≤ z}, inf{s(z′) : z′ ≥ z}) ≤ γ′ .

Becauseγ′ > s∗(z) was arbitrarily chosen, this proves thats‡(z) ≤ s∗(z).

b.: s‡(z) ≥ s∗(z). Hence letγ′ > s‡(z). Recalling thats‡(z) = max(inf{s(z′) :
z′ ≤ z}, inf{s(z′) : z′ ≥ z}) by Def. 65, we conclude that there existz−, z+ ∈ I
with s(z−) < γ′, z− ≤ z, s(z+) < γ′ and z+ ≥ z. It is apparent from (573)
that s(z−) < γ′ and s(z+) < γ′ entail thatz−, z+ ∈ S(γ′). Hence by Def. 59,
z ∈ S‡(γ′). In turn, we obtain from (574) thats∗(z) ≤ γ′. Becauseγ′ > s‡(z) was
arbitrarily chosen, this proves the desireds∗(z) ≤ s‡(z).

Lemma 92 Supposeω : L −→ I satisfies(ω-1) to (ω-4). Further suppose that for all
s ∈ L with s−1(0) ∩ [ 1

2 , 1] 6= ∅, it holds thatω(s) = ω(s′), where

s′(z) =

{
s‡(z) : z ≥ 1

2

1 : z < 1
2

for all z ∈ I. Then the mappingΩ : K −→ I defined by(38)propagates fuzziness.
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Proof Let ω : L −→ I be a mapping with the properties stated in the lemma and
suppose thatΩ is defined in terms ofω according to equation (38). In order to prove that
Ω propagates fuzziness, it is sufficient to show thatΩ(S) = Ω(S‡ ∩ [ 1

2 , 1]) whenever
S(0) ⊆ [ 1

2 , 1], see Th-59. Hence let a choice ofS ∈ K with S(0) ⊆ [ 1
2 , 1] be given.

We defines ∈ L by

s(z) = inf{γ ∈ I : z ∈ S(γ)} (578)

for all z ∈ I. We further defines′, s∗, s+ ∈ L by

s′(z) =

{
s‡(z) : z ≥ 1

2

1 : z < 1
2

(579)

s∗(z) = inf{γ ∈ I : z ∈ S‡(γ)} (580)

s+(z) =

{
s∗(z) : z ≥ 1

2

1 : z < 1
2

(581)

for all z ∈ I. We notice that

s+(z) = inf{γ ∈ I : z ∈ S‡(γ) ∩ [ 1
2 , 1]} (582)

for all z ∈ I, which is apparent from (581) and (580). Therefore

Ω(S)
= ω(s) by (38), (578)

= ω(s′) by (579) and assumed property ofω

= ω(s+) by L-91

= Ω(S‡ ∩ [ 1
2 , 1]) . by (582), (38)

Proof of Theorem 63

Let ω : L −→ I be a given mapping which satisfies (ω-1)–(ω-4) and supposeΩ :
K −→ I is defined in terms ofω according to equation (38). I first prove that the con-
dition stated in the theorem is sufficient forω to propagate fuzziness. Hence suppose
that the condition (58) holds for alls ∈ L with s−1(0)∩ [ 1

2 , 1] 6= ∅. We may then con-
clude from lemma L-92 thatΩ propagates fuzziness. In turn, we conclude from Th-58
thatFω = FΩ propagates fuzziness in quantifiers. Finally, we conclude from Th-62
thatω propagates fuzziness, as desired. To see that the condition stated in the theorem
is also necessary forω to propagate fuzziness, supposeω propagates fuzziness. Then
Ω also propagates fuzziness by Th-62 and Th-58. We conclude from L-88, L-89 and
L-90 thatω satisfies condition (58) for alls ∈ L with s−1(0) ∩ [ 1

2 , 1] 6= ∅.

A.33 Proof of Theorem 64

Letω : L −→ I be a given mapping. ThenFω = FΩ, provided we defineΩ : K −→ I
by equation (38). We already know from Th-60 thatFω = FΩ propagates fuzziness
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in arguments if and only ifΩ propagates unspecificity. Hence we can prove thatFω
propagates fuzziness in arguments if and only ifω propagates unspecificity by showing
thatω propagates unspecificity if and only ifΩ propagates unspecificity.

a.: If Ω propagates unspecificity, then ω propagates unspecificity. Hence suppose
thatΩ propagates unspecificity, i.e.S b S′ implies thatΩ(S) �c Ω(S′), see Def. 74.
Now considers, s′ ∈ L with s ≤ s′. We abbreviate

S(γ) = {z ∈ I : γ ≥ s(z)}
S′(γ) = {z ∈ I : γ ≥ s′(z)}

It is apparent from these definitions ands(z) ≤ s′(z) for all z ∈ I thatS(γ) ⊇ S′(γ)
for all γ ∈ I, i.e.S b S′ by Def. 73. BecauseΩ is assumed to propagate unspecificity,
we obtain that

Ω(S)�c Ω(S′) . (583)

Therefore

ω(s) = Ω(S) by (39)

�c Ω(S′) by (583)

= ω(s′) . by (39)

b.: If ω propagates unspecificity, then Ω propagates unspecificity. To see this, let
us assume thatω propagates unspecificity, i.e.ω(s) �c ω(s′) whenevers ≤ s′. Now
considerS, S′ ∈ K with S b S′. We defines, s′ ∈ L by

s(z) = inf{γ ∈ I : z ∈ S(γ)} (584)

s′(z) = inf{γ ∈ I : z ∈ S′(γ)} (585)

for all z ∈ I. Now we recall that by Def. 73,S(γ) ⊇ S′(γ) for all γ ∈ I. Hence for all
z ∈ I,

{γ ∈ I : z ∈ S(γ)} ⊇ {γ ∈ I : z ∈ S′(γ)} ,

which proves thats(z) ≤ s′(z), see (584) and (585). Becauseω is assumed to propa-
gate unspecificity, we conclude from Def. 77 that

ω(s)�c ω(s′) . (586)

Therefore

Ω(S) = ω(s) by L-38, (38)

�c ω(s′) by (586)

= Ω(S′) . by L-38, (38)
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A.34 Proof of Theorem 65

Lemma 93 Supposes ∈ L is given ands′ ∈ L is defined by(59). Then

s′(z) =
{

0 : z ≥ z0

s‡(z) : z < z0

for all z ∈ I, wherez0 is an arbitrary elementz0 ∈ s−1(0).

Proof To see this, considerz ≥ z0. Then

s′(z) = inf{s(z′) : z′ ≤ z} by (59)

≤ s(z0) becausez0 ≤ z
= 0 , becausez0 ∈ s−1(0)

i.e. indeeds′(z) = 0. In the remaining case thatz < z0, we obtain that

s′(z) = inf{s(z′) : z′ ≤ z} by (59)

= s‡(z) , by L-43

as desired.

Lemma 94 Supposeω : L −→ I satisfies(ω-1). If ω propagates unspecificity, then
ω(s) ≥ 1

2 whenevers ∈ L satisfiess−1 ∩ [ 1
2 , 1] 6= ∅.

Proof Let ω : L −→ I be a mapping which satisfies (ω-1). Further suppose thatω
propagates unspecificity. Now lets ∈ L with s−1(0) ∩ [ 1

2 , 1] be given. We may hence
choose somez0 ≥ 1

2 with s(z0) = 0. We defines′ ∈ L by

s′(z) =
{

0 : z = z0

1 : else

for all z ∈ I. Thens ≤ s′, i.e.

ω(s)�c ω(s′) (587)

becauseω propagates unspecificity. In addition, we know thatω(s′) = z0 ≥ 1
2 because

ω satisfies (ω-1). In turn, we conclude from (5) and (587) that1
2 ≤ ω(s) ≤ z0, in

particularω(s) ≥ 1
2 .

Lemma 95 Supposeω : L −→ I satisfies(ω-2) and (ω-4). If ω fulfills condition
b. stated in Th-65, thenω(s) ≥ 1

2 whenevers ∈ L satisfiess−1(0) ∩ [ 1
2 , 1] 6= ∅.

Proof Let ω : L −→ I be a mapping which satisfies (ω-2) as well as (ω-4) and also
fulfills condition b. of Th-65. Now considers ∈ L with s−1(0) ∩ [ 1

2 , 1] 6= ∅. We
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defines′ ∈ L by (59), and we further defines′′ ∈ L by s′′(z) = 0 for all z ∈ I. It is
then apparent froms′′(z) = s′′(1− z) for all z ∈ I and (ω-2) that

ω(s′′) = 1
2 . (588)

It is further clear from Def. 62 thats′′ v s′. Hence

ω(s) = ω(s′) by assumed conditionb. of Th-65

≥ ω(s′′) by (ω-4)

= 1
2 . by (588)

Proof of Theorem 65

Let ω : L −→ I be a given mapping which satisfies (ω-1), (ω-2) and (ω-4).

Condition b. entails condition a. of the theorem: To see that conditionb. is suffi-
cient forω to propagate unspecificity, suppose thatω satisfies the condition and con-
siders1, s2 ∈ L with s1 ≤ s2. In order to prove thatω(s1) �c ω(s2), I discern two
cases.
Firstly in the case thats−1

2 (0) ∩ [ 1
2 , 1] 6= ∅, we know froms1 ≤ s2 that s−1

1 (0) ∩
[ 1
2 , 1] 6= ∅ as well. We shall defines′1, s

′
2 according to equation (59) in terms ofs1 and

s2, respectively. We notice thats1 ≤ s2 entails thats1
‡ ≤ s2

‡, see Def. 65. It is hence
clear from L-93 and Def. 62 thats′1 v s′2. In turn, we conclude from the assumed
propertyb. and (ω-4) that

ω(s1) = ω(s′1) ≤ ω(s′2) = ω(s2) .

On the other hand, we know from L-95 ands−1
1 (0) ∩ [ 1

2 , 1] 6= ∅ thatω(s1) ≥ 1
2 .

Hence1
2 ≤ ω(s1) ≤ ω(s2), i.e.ω(s1)�c ω(s2) by (5).

In the remaining case thats−1
2 (0) ∩ [ 1

2 , 1] = ∅, we know thats−1
2 (0) ∩ [0, 1

2 ] 6= ∅

becauses−1
2 (0) 6= ∅ by Def. 60. This case can hence be reduced to the proof of the

previous case by utilizing condition (ω-2).

Condition b. is entailed by condition a. of the theorem: In order to prove that con-
dition b. is also necessary forω to propagate unspecificity, suppose thatω propagates
unspecificity and considers ∈ Lwith s−1(0)∩[ 1

2 , 1] 6= ∅. Further suppose thats′ ∈ L
is defined by (59). It is apparent from (59) thats′ ≤ s and hence

ω(s′)�c ω(s) (589)

becauseω propagates unspecificity. We conclude froms−1(0) ∩ [ 1
2 , 1] 6= ∅ and L-

94 thatω(s) ≥ 1
2 . Combining this with (589), it is then apparent from (5) that1

2 ≤
ω(s′) ≤ ω(s), in particular

ω(s′) ≤ ω(s) . (590)
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We further notice L-93 and Def. 62 thats‡ v s′ and hence

ω(s) = ω(s‡) ≤ ω(s′)

by (ω-4) and Th-48. Recalling the converse inequation (590), this proves thatω(s) =
ω(s′).

A.35 Proof of Theorem 66

Lemma 96 Let s ∈ L with s−1(0) ∩ [ 1
2 , 1] 6= ∅ be given and suppose thats′ ∈ L is

defined by(58). Thens′
≤ 1

2
∗ = s

≤ 1
2
∗ .

Proof Straightforward. Becauses−1(0) ∩ [ 1
2 , 1] 6= ∅, there existsz0 ≥ 1

2 with
s(z0) = 0. Hence

s′
≤ 1

2
∗ = inf{s′(z) : z ≤ 1

2} by (46)

= min(inf{s′(z) : z < 1
2}, s

′( 1
2 ))

= min(inf{1}, s‡( 1
2 )) by (58)

= s‡( 1
2 )

= inf{s(z) : z ≤ 1
2} by L-43 because12 ≤ z0

= s
≤ 1

2
∗ . by (58)

Lemma 97 Lets ∈ L with s−1(0)∩ [ 1
2 , 1] 6= ∅ be given and supposes′ ∈ L is defined

in terms ofs according to(58). Thens′ = s′
‡.

Proof To see this, we choose somez0 ≥ 1
2 with s(z0) = 0. We notice thats′(z0) =

s‡(z0) = 0 by (58) and Th-47.a. Now for allz ≥ z0,

s′
‡(z) = inf{s′(z′) : z′ ≥ z} by L-43

= inf{s‡(z′) : z′ ≥ z} by (58)

= s‡
‡
(z) by L-43

= s‡(z) by L-51

= s′(z) . by (58)

In the case thatz ∈ [ 1
2 , z0), we first notice that

s‡( 1
2 )

= s‡
‡
( 1

2 ) by L-51

= inf{s‡(z) : z ≤ 1
2} , by L-43
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i.e.

s‡( 1
2 ) = inf{s‡(z) : z ≤ 1

2} . (591)

Therefore

s′
‡(z) = inf{s′(z′) : z′ ≤ z} by L-43

= min(inf{s′(z′) : z′ ∈ [ 1
2 , z]}, inf{s′(z′) : z′ ∈ [0, 1

2 )})
= min(inf{s‡(z′) : z′ ∈ [ 1

2 , z]}, inf{1}) by (58)

= inf{s‡(z′) : z′ ∈ [ 1
2 , z]}

= min(inf{s‡(z′) : z′ ∈ ( 1
2 , z]}, s

‡( 1
2 ))

= min(inf{s‡(z′) : z′ ∈ ( 1
2 , z]}, inf{s‡(z′) : z′ ∈ [0, 1

2 ]}) by (591)

= inf{s‡(z′) : z′ ≤ z}

= s‡
‡
(z) by L-43

= s‡(z) by L-51

= s′(z) . by (58)

In the remaining case thatz < 1
2 , we obtain that

s′
‡(z) = inf{s′(z′) : z′ ≤ z} by L-43

= inf{1} by (58)

= 1
= s′(z) , by (58)

which completes the proof of the lemma.

Lemma 98 Let s ∈ L with s−1(0) ∩ [ 1
2 , 1] 6= ∅ be given and suppose thats′ ∈ L is

defined in terms ofs according to(58).

a. If s⊥,0∗ > 1
2 , thens′⊥,0∗ = s⊥,0∗ ;

b. If s⊥,0∗ ≤ 1
2 , thens′⊥,0∗ = 1

2 .

Proof Suppose thats, s′ are chosen as stated in the lemma. Then

s′
⊥,0
∗ = inf s′‡

−1
(0) by (43)

= inf s′−1(0) by L-97

= min(inf s′−1(0) ∩ [ 1
2 , 1], inf s′−1(0) ∩ [0, 1

2 ))

= min(inf s‡
−1

(0) ∩ [ 1
2 , 1], inf ∅) by (58)

= min(inf s‡
−1

(0) ∩ [ 1
2 , 1], 1)
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i.e.

s′
⊥,0
∗ = inf s‡

−1
(0) ∩ [ 1

2 , 1] (592)

In casea. of the lemma we haves⊥,0∗ > 1
2 , i.e. inf s‡−1(0) > 1

2 by (43). Hence

s‡
−1(0) ⊆ [ 1

2 , 1], in particulars‡
−1(0)∩ [ 1

2 , 1] = s‡
−1(0). Combining this with (592)

and (43) yields the desireds′⊥,0∗ = inf s‡−1(0) = s⊥,0∗ .

In caseb. of the lemma, it holds thats⊥,0∗ ≤ 1
2 , i.e. inf s‡−1(0) ≤ 1

2 by (43). Now

let ε > 0. Then there existsz1 ∈ s‡
−1(0), i.e. s‡(z1) = 0, with z < 1

2 + ε. In
addition, we know thats−1(0) ∩ [ 1

2 , 1] 6= ∅. We can hence choosez0 ≥ 1
2 with

s‡(z0) = s(z0) = 0. Without loss of generality, we may assume thatz1 ≤ z0. Now
considerz = max( 1

2 , z1). We conclude fromz1 ≤ z ≤ z0 and Th-47.c thats‡(z) ≤
max(s‡(z1), s‡(z0)) = max(0, 0) = 0. Hences‡(z) = 0, i.e. z ∈ s‡−1(0). Because

z ≥ 1
2 , it also holds thatz ∈ s‡

−1(0) ∩ [ 1
2 , 1]. We conclude fromz1 <

1
2 + ε and

z = max(z1,
1
2 ) thatz < 1

2 + ε as well. Hence

s′
⊥,0
∗ = inf s‡

−1
(0) ∩ [ 1

2 , 1] by (592)

≤ s becauses‡(z) = 0 andz ≥ 1
2

< 1
2 + ε .

ε→ 0 yieldss′⊥,0∗ ≤ 1
2 . Noticing that

s′
⊥,0
∗ = inf s‡

−1
(0) ∩ [ 1

2 , 1] by (592)

≥ inf[1
2 , 1]

= 1
2 ,

we indeed obtains′⊥,0∗ = 1
2 , as desired.

Lemma 99 Let s ∈ L with s−1(0) ∩ [ 1
2 , 1] 6= ∅ be given and suppose thats′ ∈ L is

defined by(58). Thens′>,0∗ = s>,0∗ .

Proof Becauses−1(0)∩ [ 1
2 , 1] 6= ∅, there existsz0 ≥ 1

2 with s(z0) = 0, in particular

z0 ∈ s‡
−1(0). We now observe that

s′
‡−1

(0) = s′
−1(0) by L-97

= s‡
−1

(0) ∩ [ 1
2 , 1] . by (58)

Hences′‡
−1

(0) ⊆ s‡−1(0), which entails that

s′
>,0
∗ = sup s′‡

−1
(0) ≤ sup s‡

−1
(0) = s>,0∗ . (593)
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On the other hand

s>,0∗ = sup s‡
−1

(0) by (42)

= sup s‡
−1

(0) ∩ [z0, 1] becausez0 ∈ s‡
−1

(0)

≤ sup s‡
−1

(0) ∩ [ 1
2 , 1] because12 ≤ z0

= sup s′−1(0) by (58)

= sup s′‡
−1

(0) by L-97

= s′
>,0
∗ . by (42)

Combining this with (593) yields the desireds′>,0∗ = s>,0∗ .

Proof of Theorem 66

We know from Th-50 thatFM is a DFS. HenceωM satisfies (ω-1)–(ω-4) by Th-45.
In particular,ωM is ‡-invariant by Th-48. Hence Th-62 and Th-63 are applicable, and
we can show thatFM propagates fuzziness in quantifiers by proving that for alls ∈ L
with s−1(0)∩ [ 1

2 , 1] 6= ∅, it holds thatωM (s) = ωM (s′), wheres′ is defined by (58).
Hence lets ∈ L with s−1(0) ∩ [ 1

2 , 1] 6= ∅. Then there existsz0 ≥ 1
2 with s(z0) = 0.

Hence

s>,0∗ = sup s‡
−1

(0) by (42)

≥ sup s−1(0) by Th-47.a

≥ z0 becausez0 ∈ s−1(0)

≥ 1
2 ,

i.e. s>,0∗ ≥ 1
2 . Recalling Def. 67, it is hence sufficient to consider the following two

cases.

s⊥,0∗ > 1
2
. Then

ωM (s) = min(s⊥,0∗ , 1
2 + 1

2s
≤ 1

2
∗ ) by Def. 67

= min(s′⊥,0∗ , 1
2 + 1

2s
′≤

1
2
∗ ) by L-98.a and L-96

= ωM (s′) . by (58)

s⊥,0∗ ≤ 1
2
. In this case,ωM (s) = 1

2 by Def. 67. As concernss′, we know from

L-98.b thats′⊥,0∗ = 1
2 , and we know from L-99 thats′>,0∗ = s>,0∗ ≥ 1

2 . Hence
ωM (s′) = 1

2 = ωM (s) by Def. 67.
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A.36 Proof of Theorem 67

Lemma 100 Let s ∈ L be given withs−1(0) ∩ [ 1
2 , 1] 6= ∅ and supposes′ ∈ L is

defined in terms ofs according to(59). Thens′
≤ 1

2
∗ = s

≤ 1
2
∗ .

Proof Becauses−1(0) ∩ [ 1
2 , 1] 6= ∅, there existsz0 ≥ 1

2 with s(z0) = 0. Recalling
thats‡ ≤ s, we also haves‡(z0) = 0. Therefore

s′
≤ 1

2
∗ = inf{s′(z) : z ≤ 1

2} by (46)

= inf{s‡(z) : z ≤ 1
2} by L-93

= s‡
‡
( 1

2 ) by L-43

= s‡( 1
2 ) by L-51

= inf{s(z) : z ≤ 1
2} by L-43

= s
≤ 1

2
∗ .

Lemma 101 Lets ∈ L be given and supposes′ ∈ L is defined in terms ofs according
to (59). Thens′‡ = s′.

Proof Let z0 ∈ s−1(0) 6= ∅. Thens′(z0) = 0 by L-93, i.e.z0 ∈ s′−1(0). Hence for
z ≥ z0,

s′
‡(z) ≤ s′(z) by Th-47.a

= 0 , by L-93

i.e.s′‡(z) = 0 = s′(z). In the remaining case thatz < z0, we compute

s′
‡(z) = inf{s′(z′) : z′ ≤ z} by L-43

= inf{s‡(z′) : z′ ≤ z} by L-93

= s‡
‡
(z) by L-43

= s‡(z) by L-51

= s′(z) , by L-93

which completes the proof of the lemma.

Lemma 102 Lets ∈ L be given and supposes′ ∈ L is defined in terms ofs according
to (59). Thens′⊥,0∗ = s⊥,0∗ .
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Proof To see this, considers ∈ L and assumes′ ∈ L is defined by (59). Letz0 be
some elementz0 ∈ s−1(0) 6= ∅. In particular,z0 ∈ s‡

−1(0) by Th-47.a. In turn, we

conclude thatz0 ∈ s‡
−1(0) ∩ [0, z0] and hence

inf s‡
−1

(0) ≤ z0 (594)

inf s‡
−1

(0) = inf s‡
−1

(0) ∩ [0, z0] . (595)

Therefore

s′
⊥,0
∗ = inf s′‡

−1
(0) by (43)

= inf s′−1(0) by L-101

= min(inf s′−1(0) ∩ [z0, 1], inf s′−1(0) ∩ [0, z0])

= min(inf[z0, 1], inf s‡
−1

(0) ∩ [0, z0]) by L-93

= min(z0, inf s‡
−1

(0)) by (595)

= inf s‡
−1

(0) by (594)

= s⊥,0∗ . by (43)

Lemma 103 Lets ∈ L be given and supposes′ ∈ L is defined in terms ofs according
to (59). Thens′>,0∗ = 1.

Proof Choose somez0 ∈ s−1(0) 6= ∅. Then

s′(1) = inf{s(z) : z ≤ 1} by (59)

≤ s(z0) becausez0 ≤ 1

= 0 , becausez0 ∈ s−1(0)

i.e.s′(1) = 0 and

1 ∈ s′−1(0) . (596)

Therefore

s′
>,0
∗ = sup s′‡

−1
(0) by (42)

≥ 1 by (596),

i.e.s>,0∗ = 1, as desired.

Proof of Theorem 67

We know from Th-50 thatFM is a DFS and hence satisfies (ω-1) to (ω-4) by Th-45. In
particular,ωM is ‡-invariant by Th-48. Hence Th-64 and Th-65 are applicable, which
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allow us to show thatFM propagates fuzziness in arguments by proving that for all
s ∈ L with s−1(0)∩ [ 1

2 , 1] 6= ∅, it holds thatωM (s) = ωM (s′), wheres′ is defined by
(59).
Hence lets ∈ Lwith s−1(0)∩[ 1

2 , 1] 6= ∅ be given and defines′ in terms ofs according
to (59). Becauses−1(0) ∩ [ 1

2 , 1] 6= ∅, there existsz0 ≥ 1
2 with s(z0) = 0. Hence

s>,0∗ = sup s‡
−1

(0) by (42)

≥ sup s−1(0) by Th-47.a

≥ z0 becausez0 ∈ s−1(0)

≥ 1
2 ,

i.e.s>,0∗ ≥ 1
2 . Recalling Def. 67, there are only two cases left to consider.

a.: s⊥,0∗ > 1
2
. Then

ωM (s) = min(s⊥,0∗ , 1
2 + 1

2s
≤ 1

2
∗ ) by Def. 67

= min(s′⊥,0∗ , 1
2 + 1

2s
′≤

1
2
∗ ) by L-100 and L-102

= ωM (s′) . by Def. 67

b.: s⊥,0∗ ≤ 1
2
. In this case, we conclude from Def. 67 thatωM (s) = 1

2 because

s>,0∗ ≥ 1
2 . Considerings′, we firstly know from L-102 thats′⊥,0∗ = s⊥,0∗ ≤ 1

2 . In

addition, we know from L-103 thats>,0∗ = 1. HenceωM (s′) = 1
2 = ωM (s) by

Def. 67, which completes the proof.

A.37 Proof of Theorem 68

Lemma 104 Let s ∈ L with s−1(0) ∩ [ 1
2 , 1] 6= ∅ be given and suppose thats′ ∈ L is

defined in terms ofs according to(58). Thens′>,∗1 = s>,∗1 .

Proof To see this, we first notice that there existsz0 ≥ 1
2 with s(z0) = 0, which is

immediate froms−1(0) ∩ [ 1
2 , 1] 6= ∅. In particularz0 ∈ s−1([0, 1)) and

z0 ∈ s‡
−1

([0, 1)) . (597)

Becausez0 ≥ 1
2 , this of course entails that

z0 ∈ s‡
−1

([0, 1)) ∩ [ 1
2 , 1] . (598)
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Therefore

s>,∗1 = (s‡)
>,∗
1 by L-58

= sup s‡
−1

([0, 1)) by (44)

= sup s‡
−1

([0, 1)) ∩ [ 1
2 , 1] by (598)

= max(sup s‡
−1

([0, 1)) ∩ [ 1
2 , 1], sup∅)

= max(sup s′−1([0, 1)) ∩ [ 1
2 , 1], sup s′−1([0, 1)) ∩ [0, 1

2 )) by (58)

= sup s′−1([0, 1))

= s′
>,∗
1 .

Proof of Theorem 68

We know from Th-52, Th-45 and Th-48 thatωP satisfies (ω-1)–(ω-4) and thatωP
is ‡-invariant. Therefore Th-62 and Th-63 are applicable, i.e. we can show thatFP
propagates fuzziness in quantifiers by proving that for alls ∈ L with s−1(0)∩ [ 1

2 , 1] 6=
∅, it holds thatωP (s) = ωP (s′), wheres′ is defined by (58).
Hence lets ∈ L with s−1(0) ∩ [ 1

2 , 1] 6= ∅. Then there existsz0 ≥ 1
2 with s(z0) = 0.

By the same reasoning as in the proof of Th-66, this entails thats>,0∗ ≥ 1
2 . Recalling

Def. 68, it is hence sufficient to consider the following two cases.

a.: s⊥,0∗ > 1
2
. Then

ωP (s) = min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) by Def. 68

= min(s′>,∗1 , 1
2 + 1

2s
′≤

1
2
∗ ) by L-104 and L-96

= ωP (s′) . by Def. 68

b.: s⊥,0∗ ≤ 1
2
. In this case, we recall that by Def. 68,s⊥,0∗ ≤ 1

2 ands>,0∗ ≥ 1
2 entail

thatωP (s) = 1
2 . As concernss′, we know from L-98.b thats′⊥,0∗ = 1

2 , and we know

from L-99 thats′>,0∗ = s>,0∗ ≥ 1
2 . HenceωP (s′) = 1

2 = ωP (s) by Def. 68.

A.38 Proof of Theorem 69

In order to prove thatFP does not propagate fuzziness in arguments, we can utilize
thatFP is a DFS by Th-52 and hence satisfies (ω-1)–(ω-4) by Th-45. We can there-
fore apply theorems Th-64 and Th-65. In order to show thatFP does not propagate
fuzziness in arguments it is hence sufficient to prove that there existss ∈ L with
s−1(0) ∩ [ 1

2 , 1] 6= ∅ andωP (s) 6= ωP (s′), wheres′ ∈ L is defined by (59). To this
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end, let us defines ∈ L by

s(z) =


1 : z > 4

5

0 : z ∈ ( 3
5 ,

4
5 ]

1 : z ≤ 35
(599)

It is then immediate from (43), (44) and (46) that

s⊥,0∗ = inf s‡
−1

(0) = inf(3
5 ,

4
5 ] = 3

5

s>,∗1 = sup s−1([0, 1)) = sup(3
5 ,

4
5 ] = 4

5

s
≤ 1

2
∗ = inf{s(z) : z ≤ 1

2} = inf{1} = 1 .

We conclude from Def. 68 that

ωP (s) = min( 4
5 ,

1
2 + 1

21) = min( 4
5 , 1) = 4

5 . (600)

Now let us considers′ defined by (59), i.e.

s′(z) = inf{s(z′) : z′ ≤ z} =

{
0 : z > 3

5

1 : z ≤ 3
5

for all z ∈ I, which is straightforward from (599). In this case we obtain from (43),
(44) and (46) that

s′
⊥,0
∗ = inf s′‡

−1
(0) = inf( 3

5 , 1] = 3
5

s′
>,∗
1 = sup s−1([0, 1)) = sup(3

5 , 1] = 1

s′
≤ 1

2
∗ = inf{s(z) : z ≤ 1

2} = inf{1} = 1 .

Hence by Def. 68 and (600)

ωP (s′) = min(1, 1
2 + 1

2 · 1) = 1 6= 4
5 = ωP (s) .

We conclude from Th-65 and Th-64 thatFP does not propagate fuzziness in arguments.

A.39 Proof of Theorem 70

We know from Th-54, Th-45 and Th-48 thatωZ satisfies (ω-1)–(ω-4) and thatωP
is ‡-invariant. Therefore Th-62 and Th-63 are applicable, i.e. we can show thatFZ
propagates fuzziness in quantifiers by proving that for alls ∈ L with s−1(0)∩ [ 1

2 , 1] 6=
∅, it holds thatωP (s) = ωP (s′), wheres′ is defined by (58).

Hence lets ∈ L with s−1(0) ∩ [ 1
2 , 1] 6= ∅. Becauses−1(0) ⊆ s‡

−1(0) by Th-47.a,

we hence know thats‡
−1(0) ∩ [ 1

2 , 1] 6= ∅. Considerings′ defined by (58), we recall

from L-97 thats′‡ = s′. We further notice thats′(z) = z‡ for all z ∈ [ 1
2 , 1]. Hence
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s′
‡−1

(0) ∩ [ 1
2 , 1] = s′

−1(0) ∩ [ 1
2 , 1] = s‡

−1(0) ∩ [ 1
2 , 1] 6= ∅. Therefore

ωZ(s) = min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) by L-62

= min(s′>,∗1 , 1
2 + 1

2s
′≤

1
2
∗ ) by L-104 and L-96

= ωZ(s′) , by L-62

i.e.FZ propagates fuzziness in quantifiers, as desired.

A.40 Proof of Theorem 71

By utilizing L-65, the very same example as in the proof of theorem Th-69 proves that
ωZ fails to propagate unspecificity, i.e.FZ does not propagate fuzziness in arguments
by Th-64.

A.41 Proof of Theorem 72

In order to prove thatFR does not propagate fuzziness in quantifiers, we recall thatωR
satisfies (ω-1)–(ω-4) by Th-56 and Th-45. In particular,ωR is ‡-invariant by Th-48.
Hence Th-62 and Th-63 are applicable, and we can prove thatFR fails to propagate
fuzziness in quantifiers by showing that there existss ∈ L with s−1(0) ∩ [ 1

2 , 1] 6= ∅

andωR(s) 6= ωR(s′), wheres′ is defined in terms ofs according to (58).
To see this, considers ∈ L defined by

s(z) =

{
0 : z = 1
1
2 : z < 1

(601)

for all z ∈ I. We observe thats is concave, i.e.

s‡ = s (602)

by L-50. Hences′ ∈ L as defined by (58) becomes

s′(z) =


0 : z = 1
1
2 : 1

2 ≤ z < 1
1 : z < 1

2

(603)

for all z ∈ I. We notice thats′ is concave as well, hence

s′
‡ = s′ (604)

by L-50. We hence obtain for the coefficients⊥,0∗ that

s⊥,0∗ = inf s‡
−1

(0) = inf s−1(0) = inf{1} = 1 (605)

by (43), (602) and (601). Similarly, we conclude from (43), (604) and (603) that

s′
⊥,0
∗ = inf s′‡

−1
(0) = inf s′−1(0) = inf{1} = 1 . (606)
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Hence

ωR(s) = min(s⊥,0∗ , 1
2 + 1

2s(0)) by Def. 70

= min(1, 1
2 + 1

2 ·
1
2 ) by (605), (601)

= 3
4

and

ωR(s′) = min(s′⊥,0∗ , 1
2 + 1

2s
′(0)) by Def. 70

= min(1, 1
2 + 1

2 · 1) by (606), (603)

= 1 .

HenceωR(s) = 3
4 6= 1 = ωR(s′), which completes the proof thatFR does not

propagate fuzziness in quantifiers.

A.42 Proof of Theorem 73

By Th-64, we can reduce the proof ofFR propagating fuzziness in arguments to the
proof thatωR propagates unspecificity. In turn, Th-65 permits us to simplify the proof
thatωR propagates unspecificity to showing thatωR(s) = ωR(s′) for all s ∈ L with
s−1(0) ∩ [ 1

2 , 1] 6= ∅, wheres′ ∈ L is defined by (59). To see that this condition is
satisfied byωR, we first notice thats−1(0)∩ [ 1

2 , 1] 6= ∅ entails that there existsz0 ≥ 1
2

with s(z0) = 0. In particular

s>,0∗ = sup s‡
−1

(0) ≥ sup s−1(0) ≥ z0 ≥ 1
2 (607)

by Th-47.a and (42). It is hence sufficient to discern the following two cases.

s⊥,0∗ > 1
2
. Thens′⊥,0∗ = s⊥,0∗ > 1

2 . We also notice that

s′(0) = inf{s(z) : z ≤ 0} by (59)

= inf{s(0)}
= s(0) ,

i.e.

s′(0) = s(0) . (608)

Therefore

ωR(s′) = min(s′⊥,0∗ , 1
2 + 1

2s
′(0)) by Def. 70

= min(s⊥,0∗ , 1
2 + 1

2s(0)) by L-102 and (608)

= ωR(s) . by Def. 70
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s⊥,0∗ ≤ 1
2
. Recalling thats>,0∗ ≥ 1

2 by (607), we then conclude from Def. 70 that

ωR(s) = 1
2 . As concernss′, we first notice thats′⊥,0∗ = s⊥,0∗ ≤ 1

2 by L-102. In

addition, we know from L-103 thats′>,0∗ = 1 ≥ 1
2 . HenceωR(s′) = 1

2 = ωR(s) by
Def. 70.

A.43 Proof of Theorem 74

Let ΩΩ be a collection of mappingsΩ ∈ ΩΩ, Ω : K −→ I and let

F = {FΩ : Ω ∈ ΩΩ} (609)

be the corresponding collection of QFMs.
To see thatΩΩ is specificity consistent wheneverF is specificity consistent, suppose
thatF is specificity consistent and consider a choice ofS ∈ K. By Th-33, there exists
a semi-fuzzy quantifierQ : P(2× I) −→ I and a fuzzy subsetX ∈ P̃(2× I) with

SQ,X = S . (610)

BecauseF is specificity consistent, we know from Def. 25 that

{FΩ(Q)(X) : FΩ ∈ F} ⊆ A (611)

for a choice ofA ∈ {[0, 1
2 ], [ 1

2 , 1]}. Therefore

{Ω(S) : Ω ∈ ΩΩ} = {Ω(SQ,X) : Ω ∈ ΩΩ} by (610)

= {FΩ(Q)(X) : Ω ∈ ΩΩ} by Def. 55

= {FΩ(Q)(X) : FΩ ∈ F} by (609)

⊆ A

for a choice ofA ∈ {[0, 1
2 ], [ 1

2 , 1]}, see (611). BecauseS ∈ K was arbitrarily chosen,
this proves thatΩΩ is specificity consistent according to Def. 78.
To see thatF is specificity consistent wheneverΩΩ is specificity consistent, consider a
semi-fuzzy quantifierQ : P(E)n −→ I and a choice of fuzzy argumentsX1, . . . , Xn ∈
P̃(E). Then

{Ω(SQ,X1,...,Xn) : Ω ∈ ΩΩ} ⊆ A (612)

for a choice ofA ∈ {[0, 1
2 ], [ 1

2 , 1]} according to Def. 78. Therefore

{FΩ(Q)(X1, . . . , Xn) : FΩ ∈ F}
= {FΩ(Q)(X1, . . . , Xn) : Ω ∈ ΩΩ} by (609)

= {Ω(SQ,X1,...,Xn) : Ω ∈ ΩΩ} by Def. 55

⊆ A

for a choice ofA ∈ {[0, 1
2 ], [ 1

2 , 1]}, see (612). HenceF is specificity consistent by
Def. 25.
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A.44 Proof of Theorem 75

Lemma 105 Let Ω : K −→ I be a given mapping which satisfies(Ω-5). Further
suppose thatΩ(S) = 1

2 for all S ∈ K with S(0) ∩ [ 1
2 , 1] 6= ∅ andS(0) ∩ [0, 1

2 ] 6= ∅.
Then for allS ∈ K,

a. If S(0) ⊆ [ 1
2 , 1], thenΩ(S) ≥ 1

2 ;

b. If S(0) ⊆ [0, 1
2 ], thenΩ(S) ≤ 1

2 .

Proof To see thata. holds, consider a choice ofS ∈ K with S(0) ⊆ [ 1
2 , 1] and define

S′ ∈ K by

S′(γ) = S(γ) ∪ { 1
2}

for all γ ∈ I. Then

Ω(S′) = 1
2 (613)

becauseS′(0) ∩ [ 1
2 , 1] ⊇ { 1

2} 6= ∅ andS′(0) ∩ [0, 1
2 ] ⊇ { 1

2} 6= ∅. Let us also notice
that

S′ v S . (614)

This is immediate from Def. 57: firstlyS(γ) ⊆ S′(γ) entails that for allz ∈ S(γ),
there existsz′ ∈ S′(γ) with z′ ≤ z becausez′ = z is a suitable choice. Secondly
if z′ ∈ S′(γ), then there existsz ∈ S(γ) with z ≥ z′. This is apparent forz′ 6= 1

2 ,
where againz = z′ is a suitable choice. In the remaining case thatz′ = 1

2 , we notice
that S(0) ⊆ [ 1

2 , 1] andS(0) 6= ∅ ensures the existence of somez0 ∈ S(0) with
z0 ≥ 1

2 = z′. Hence (614) is indeed valid. We conclude that

Ω(S) ≥ Ω(S′) by (Ω-5), (614)

= 1
2 , by (613)

as desired.
The proof of partb. of the lemma is completely analogous to that of parta.. In this
case, we use the apparent inequationS v S′, whereS(0) ⊆ [0, 1

2 ], andS′ is defined
as above.

Proof of Theorem 75

Suppose thatΩΩ is a collection of mappingsΩ : K −→ I with the properties stated in
the theorem and defineF = {FΩ : Ω ∈ ΩΩ}. To see thatF is specificity consistent, we
utilize theorem Th-74. It is hence sufficient to prove thatΩΩ is specificity consistent.
Hence letS ∈ K be given. We discern three cases.

S(0) ⊆ [ 1
2
, 1]. ThenΩ(S) ≥ 1

2 for all Ω ∈ ΩΩ by parta. of L-105, i.e.

{Ω(S) : S ∈ ΩΩ} ⊆ [ 1
2 , 1] .
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S(0) ⊆ [0, 1
2
]. ThenΩ(S) ≤ 1

2 for all Ω ∈ ΩΩ by partb. of L-105, i.e.

{Ω(S) : S ∈ ΩΩ} ⊆ [0, 1
2 ] .

S(0) ∩ [ 1
2
, 1] 6= ∅ and S(0) ∩ [0, 1

2
] 6= ∅. ThenΩ(S) = 1

2 for all Ω ∈ ΩΩ by the
assumption onΩΩ. In particular,

{Ω(S) : S ∈ ΩΩ} = { 1
2} ⊆ [ 1

2 , 1] .

Hence{Ω(S) : S ∈ ΩΩ} ⊆ A for a choice ofA ∈ {[0, 1
2 ], [ 1

2 , 1]}. This proves thatΩΩ
is specificity consistent by Def. 78.

A.45 Proof of Theorem 76

Let Ω,Ω′ ∈ K be given. Let us first prove thatFΩ �c FΩ′ wheneverΩ�c Ω′. Hence
suppose thatΩ �c Ω′ and consider some semi-fuzzy quantifierQ : P(E)n −→ I and
a choice of fuzzy argument setsX1, . . . , Xn ∈ P̃(E). Then

FΩ(Q)(X1, . . . , Xn) = Ω(SQ,X1,...,Xn) by Def. 55

�c Ω′(SQ,X1,...,Xn) becauseΩ�c Ω′

= FΩ′(Q)(X1, . . . , Xn) .

To see that the reverse relationship also holds, suppose thatFΩ �c FΩ′ and consider a
choice ofS ∈ K. By Th-33, there exists a semi-fuzzy quantifierQ : P(2× I) −→ I
and a fuzzy subsetX ∈ P̃(2× I) with

SQ,X = S . (615)

Therefore

Ω(S) = Ω(SQ,X) by (615)

= FΩ(Q)(X) by Def. 55

�c FΩ′(Q)(X) becauseFΩ �c FΩ′

= Ω′(SQ,X) by Def. 55

= Ω′(S) . by (615)

A.46 Proof of Theorem 77

Let Ω,Ω′ : K −→ I be given mappings which satisfy (Ω-2) and (Ω-5). Further suppose
thatΩ(S) = 1

2 = Ω′(S) wheneverS ∈ K hasS(0)∩[ 1
2 , 1] 6= ∅ andS(0)∩[0, 1

2 ] 6= ∅.
To see thatΩ �c Ω′ if and only if Ω(S) ≤ Ω′(S) for all S ∈ K with S(0) ⊆ [ 1

2 , 1], I
first prove that the latter property is entailed by former. Hence suppose thatΩ �c Ω′

and consider someS ∈ K with S(0) ⊆ [ 1
2 , 1]. Then

Ω′(S) ≥ 1
2
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by L-105. In addition

Ω(S)�c Ω′(S)

becauseΩ�cΩ′. We conclude from (5) that12 ≤ Ω(S) ≤ Ω′(S), in particularΩ(S) ≤
Ω′(S), as desired.
In order to prove the converse implication, let us assume thatΩ(S) ≤ Ω′(S) for all
S ∈ K with S(0) ⊆ [ 1

2 , 1]. To see thatΩ �c Ω′, consider a choice ofS ∈ K. If
S(0) ⊆ [ 1

2 , 1], then 1
2 ≤ Ω(S) ≤ Ω′(S) by L-105 and the assumed property ofΩ and

Ω′. HenceΩ(S) �c Ω′(S) by (5). The case thatS(0) ⊆ [0, 1
2 ] can be reduced to the

previous case by means of (Ω-2). Finally if S(0) ∩ [ 1
2 , 1] 6= ∅ andS(0) ∩ [0, 1

2 ] 6= ∅,
thenΩ(S) = 1

2 by the assumed property ofΩ. In particularΩ(S)�c Ω′(S) by (5).

A.47 Proof of Theorem 78

Let ωω be a collection of mappingsω ∈ ωω, ω : L −→ I and let

F = {Fω : ω ∈ ωω} (616)

be the corresponding collection of QFMs as defined by Def. 61.
To see thatωω is specificity consistent wheneverF is specificity consistent, suppose
thatF is specificity consistent and consider a choice ofs ∈ L. By Th-41, there exists a
semi-fuzzy quantifierQ : P(2× I) −→ I and a fuzzy subsetX ∈ P̃(2× I) with

sQ,X = s . (617)

BecauseF is specificity consistent, we know from Def. 25 that

{Fω(Q)(X) : Fω ∈ F} ⊆ A (618)

for a choice ofA ∈ {[0, 1
2 ], [ 1

2 , 1]}. Therefore

{ω(s) : ω ∈ ωω} = {ω(sQ,X) : ωinωω} by (617)

= {Fω(Q)(X) : ω ∈ ωω} by Def. 61

= {Fω(Q)(X) : Fω ∈ F} by (616)

⊆ A

for a choice ofA ∈ {[0, 1
2 ], [ 1

2 , 1]}, see (618). Becauses ∈ L was arbitrarily chosen,
this proves thatωω is specificity consistent according to Def. 80.
To see thatF is specificity consistent wheneverωω is specificity consistent, consider a
semi-fuzzy quantifierQ : P(E)n −→ I and a choice of fuzzy argumentsX1, . . . , Xn ∈
P̃(E). Then

{ω(sQ,X1,...,Xn) : ω ∈ ωω} ⊆ A (619)

for a choice ofA ∈ {[0, 1
2 ], [ 1

2 , 1]} according to Def. 80. Therefore

{Fω(Q)(X1, . . . , Xn) : Fω ∈ F}
= {Fω(Q)(X1, . . . , Xn) : ω ∈ ωω} by (616)

= {ω(sQ,X1,...,Xn) : ω ∈ ωω} by Def. 61

⊆ A
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for a choice ofA ∈ {[0, 1
2 ], [ 1

2 , 1]}, see (619). HenceF is specificity consistent by
Def. 25.

A.48 Proof of Theorem 79

Lemma 106 Let ω : L −→ I be a given mapping which satisfies(ω-4). Further
suppose thatω(s) = 1

2 for all s ∈ Lwith s−1(0)∩[ 1
2 , 1] 6= ∅ ands−1(0)∩[0, 1

2 ] 6= ∅.
Then for alls ∈ L,

a. If s−1(0) ⊆ [ 1
2 , 1], thenω(s) ≥ 1

2 ;

b. If s−1(0) ⊆ [0, 1
2 ], thenω(s) ≤ 1

2 .

Proof Let a choice ofω : L −→ I be given which satisfies (ω-4) and has the addi-
tional property stated in the lemma, i.e.ω(s) = 1

2 whenevers−1(0) ∩ [ 1
2 , 1] 6= ∅ and

s−1(0) ∩ [0, 1
2 ] 6= ∅.

To see thata. holds, consider somes ∈ L with s−1(0) ⊆ [ 1
2 , 1] and defines′ ∈ L by

s′(z) =

{
s(z) : z 6= 1

2

0 : z = 1
2

(620)

for all z ∈ I. Thens′−1(0) ∩ [ 1
2 , 1] ⊇ { 1

2} 6= ∅ ands′−1(0) ∩ [0, 1
2 ] ⊇ { 1

2} 6= ∅.
Hence

ω(s′) = 1
2 (621)

by the assumed special property ofω. We further notice thats′ E s. To see this,
considerz ∈ I. It is apparent from (620) thatz′ = z is a legal choice ofz′ ≤ z
with s′(z′) ≤ s(z). Similarly, it holds that for allz′ ∈ I, there existsz ≥ z′ with
s(z) ≤ s′(z′). This is apparent forz′ 6= 1

2 , whenz = z′ is a suitable choice forz. In
the case thatz′ = 1

2 , we utilize thats−1(0) ⊆ [ 1
2 , 1] ands−1(0) 6= ∅. Hence there

existsz0 ∈ s−1(0) with z0 ≥ 1
2 = z′ ands(z0) = 0 ≤ s′(z′). We conclude that

indeeds′ E s by Def. 64. In turn we obtain from L-42 thats′ v s. We conclude that

ω(s) ≥ ω(s′) by (ω-4)

= 1
2 . by (621)

This completes the proof of parta. of the lemma. The proof of partb. is entirely
analogous. In this case, we haves−1(0) ⊆ [0, 1

2 ] and hences v s′, wheres′ is defined
as above. This permits us to conclude thatω(s) ≤ ω(s′) = 1

2 , as desired.

Proof of Theorem 79

Suppose thatωω is a collection of mappingsω : L −→ I with the properties stated in
the theorem and defineF = {Fω : ω ∈ ΩΩ}. To see thatF is specificity consistent, we
utilize theorem Th-78. It is hence sufficient to prove thatωω is specificity consistent.
Hence lets ∈ L be given. We discern three cases.
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s−1(0) ⊆ [ 1
2
, 1]. Thenω(s) ≥ 1

2 for all ω ∈ ωω by parta. of L-106, i.e.

{ω(s) : s ∈ ωω} ⊆ [ 1
2 , 1] .

s−1(0) ⊆ [0, 1
2
]. Thenω(s) ≤ 1

2 for all ω ∈ ωω by partb. of L-106, i.e.

{ω(s) : s ∈ ωω} ⊆ [0, 1
2 ] .

s−1(0) ∩ [ 1
2
, 1] 6= ∅ and s−1(0) ∩ [0, 1

2
] 6= ∅. Thenω(s) = 1

2 for all ω ∈ ωω by the
assumption onωω. In particular,

{ω(s) : s ∈ ωω} = { 1
2} ⊆ [ 1

2 , 1] .

Hence{ω(s) : s ∈ ωω} ⊆ A for a choice ofA ∈ {[0, 1
2 ], [ 1

2 , 1]}. This proves thatωω is
specificity consistent by Def. 80.

A.49 Proof of Theorem 80

Consider a choice ofω : L −→ I which satisfies (ω-1)–(ω-4). Let us also suppose that
the corresponding QFMFω defined by Def. 61 propagates fuzziness in quantifiers,
i.e.ω propagates fuzziness by Th-62.
Now lets ∈ L be given withs−1(0) ∩ [ 1

2 , 1] 6= ∅ ands−1(0) ∩ [0, 1
2 ] 6= ∅. We define

s′, s′′, s′′′, s+, s− ∈ L by

s′(z) =
{

0 : z ∈ {0, 1}
1 : else

(622)

s′′(z) =

{
0 : z ∈ { 1

2 , 1}
1 : else

(623)

s′′′(z) =

{
0 : z ∈ {0, 1

2}
1 : else

(624)

s+(z) =

{
s‡(z) : z ≥ 1

2

1 : z < 1
2

(625)

s−(z) =

{
1 : z > 1

2

s‡(z) : z ≤ 1
2

(626)

for all z ∈ I. We first observe that

ω(s′) = 1
2 (627)

which is apparent from (622) and (ω-2). We then notice thats′′ �c s′, see (622), (623)
and Def. 75. Henceω(s′′) �c ω(s′) becauseω propagates fuzziness. Butω(s′) = 1

2 ,
hence

ω(s′′) = 1
2 (628)

221



by (5). We further notice thats+ v s′′, which is apparent from Def. 64 and L-42.
Hence

ω(s) = ω(s+) by Th-63

≤ ω(s′′) by (ω-4)

= 1
2 . by (628)

The remaining proof thatω(s) ≤ 1
2 is analogous. In this case, we first notice that

s′′′ �c s′; henceω(s′′′) �c ω(s′) becauseω propagates fuzziness. We then conclude
from ω(s′) = 1

2 that

ω(s′′′) = 1
2 (629)

as well. We further notice thats′′′ v s−, which is apparent from Def. 64 and L-42.
Hence

ω(s) = ω(s−) by Th-63 and (ω-2)

≥ ω(s′′′) by (ω-4)

= 1
2 . by (629)

A.50 Proof of Theorem 81

The claim of the theorem is an immediate consequence of Th-80 and Th-79.

A.51 Proof of Theorem 82

Let ω : L −→ I be a given mapping which satisfies (ω-1)–(ω-4). Further suppose
that the DFSFω defined in terms ofω according to Def. 61 propagates fuzziness in
arguments, i.e.ω propagates unspecificity by Th-64.
Now lets ∈ L be given withs−1(0) ∩ [ 1

2 , 1] 6= ∅ ands−1(0) ∩ [0, 1
2 ] 6= ∅. Then

s‡( 1
2 ) = 0 (630)

by Def. 65. We defines′ ∈ L by

s′(z) =

{
0 : z = 1

2

1 : z 6= 1
2

for all z ∈ I. It is then apparent froms′(z) = s′(1− z) for all z ∈ I and (ω-2) that

ω(s′) = 1
2 . (631)

We notice from (630) thats‡ ≤ s′. Henceω(s) �c ω(s′) becauseω propagates un-
specificity. Butω(s′) = 1

2 by (631). Thereforeω(s) = 1
2 by (5), as desired.

A.52 Proof of Theorem 83

The claim of the theorem is an immediate consequence of Th-82 and Th-79.
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A.53 Proof of Theorem 84

Let ω, ω′ : L −→ I be given and suppose thatFω andFω′ are defined by Def. 61.
I first prove thatFω �c Fω′ wheneverω �c ω′. Hence suppose thatω �c ω′ and
consider a semi-fuzzy quantifierQ : P(E)n −→ I and a choice of fuzzy arguments
X1, . . . , Xn ∈ P̃(E). Then

Fω(Q)(X1, . . . , Xn) = ω(sQ,X1,...,Xn) by Def. 61

�c ω′(sQ,X1,...,Xn) by Def. 81

= Fω′(Q)(X1, . . . , Xn) , by Def. 61

as desired.
To see thatω �c ω′ wheneverFω �c Fω′ , suppose that the latter condition holds and
considers ∈ L. By Th-41, there existsQ : P(2× I) −→ I andX ∈ P̃(2× I) with

sQ,X = s . (632)

Hence

ω(s) = ω(sQ,X) by (632)

= Fω(Q)(X) by Def. 61

�c Fω′(Q)(X) by Def. 81

= ω′(sQ,X) by Def. 61

= ω′(s) . by (632)

A.54 Proof of Theorem 85

Lemma 107 Let ω : L −→ I be a mapping which satisfies(ω-4). Further suppose
thatω(s) = 1

2 for all s ∈ L with s−1(0) ∩ [ 1
2 , 1] 6= ∅ ands−1(0) ∩ [0, 1

2 ] 6= ∅. Then
for all s ∈ L,

a. if s‡
−1(0) ⊆ [ 1

2 , 1], thenω(s) ≥ 1
2 ;

b. if s‡
−1(0) ⊆ [0, 1

2 ], thenω(s) ≤ 1
2 ;

c. if s‡
−1(0) ∩ [ 1

2 , 1] 6= ∅ ands‡
−1(0) ∩ [0, 1

2 ] 6= ∅, thenω(s) = 1
2 .

Proof Let ω : L −→ I be a given mapping which fulfills the requirements of the
lemma.

a.: s‡
−1

(0) ⊆ [ 1
2
, 1]. Then

ω(s) = ω(s‡) by Th-48

≥ 1
2 . by L-106.a
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b.: s‡
−1

(0) ⊆ [0, 1
2
]. Then

ω(s) = ω(s‡) by Th-48

≤ 1
2 . by L-106.b

c.: s‡
−1

(0) ∩ [ 1
2
, 1] 6= ∅ and s‡

−1
(0) ∩ [0, 1

2
] 6= ∅. In this case,ω(s‡) = 1

2 by the
assumed property ofω. Henceω(s) = ω(s‡) = 1

2 by Th-48.

Proof of Theorem 85

Letω, ω′ : L −→ I be given mappings which satisfy (ω-2) and (ω-4). Further suppose
thatω(s) = 1

2 = ω′(s) whenevers ∈ L hass−1(0)∩ [ 1
2 , 1] 6= ∅ ands−1(0)∩ [0, 1

2 ] 6=
∅. To see thatω�c ω′ if and only ifω(s) ≤ ω′(s) for all s ∈ L with s‡

−1(0) ⊆ [ 1
2 , 1],

I first prove that the latter property is entailed by former. Hence suppose thatω �c ω′

and consider somes ∈ L with s‡
−1(0) ⊆ [ 1

2 , 1]. Then

ω′(s) ≥ 1
2

by L-107. In addition

ω(s)�c ω′(s)

becauseω �c ω′. We conclude from (5) that12 ≤ ω(s) ≤ ω′(s), in particularω(s) ≤
ω′(s), as desired.
In order to prove the converse implication, let us assume thatω(s) ≤ ω′(s) for all

s ∈ L with s‡
−1(0) ⊆ [ 1

2 , 1]. To see thatω �c ω′, consider a choice ofs ∈ L.

If s‡
−1(0) ⊆ [ 1

2 , 1], then 1
2 ≤ ω(s) ≤ ω′(s) by L-107 and the assumed property

of ω andω′. Henceω(s) �c ω′(s) by (5). The case thats‡
−1(0) ⊆ [0, 1

2 ] can be

reduced to the previous case by means of (ω-2). Finally if s‡
−1(0) ∩ [ 1

2 , 1] 6= ∅ and

s‡
−1(0) ∩ [0, 1

2 ] 6= ∅, thenω(s) = 1
2 by the assumed property ofω. In particular

ω(s)�c ω′(s) by (5).

A.55 Proof of Theorem 86

Lemma 108 Supposeω : L −→ I propagates fuzziness and satisfies(ω-1)–(ω-4).

Thenω(s) ≤ 1
2 + 1

2s
≤ 1

2
∗ for all s ∈ L.
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Proof Defines1, s2 ∈ L by

s1(z) =


0 : z = 1
1 : z ∈ (0, 1)

s
≤ 1

2
∗ : z = 0

(633)

s2(z) =


0 : z = 1

s
≤ 1

2
∗ : z ∈ [ 1

2 , 1)

1 : z < 1
2

(634)

i.e.

s2(z) =

{
s1
‡(z) : z ≥ 1

2

1 : z < 1
2

(635)

for all z ∈ I. Let us now show thats v s2:

• Let z ∈ I. Theninf{s2(z′) : z′ ≥ z} = 0 ≤ s(z).

• Let z′ ∈ I. We must show thatinf{s(z) : z ≤ z′} ≤ s2(z′). If z′ = 1,
then any choice ofz ∈ s−1(0) 6= ∅ satisfiesz ≤ z′ ands(z) = 0. Hence
inf{s(z) : z ≤ 1} = 0 ≤ s2(1). In the case thatz′ ∈ [ 1

2 , 1), we simply observe
that

inf{s(z) : z ≤ z′}
≤ inf{s(z) : z ≤ 1

2} becausez′ ≥ 1
2

= s
≤ 1

2
∗ by (46)

= s2(z) . by (634)

Finally if z < 1
2 , then trivially inf{s(z) : z ≤ z′} ≤ 1 = s2(z).

This proves that indeeds v s2 by Def. 62, and

ω(s) ≤ ω(s2) by (ω-4)

= ω(s1) by (635) and Th-63

= 1
2 + 1

2s1(0) by (ω-3)

= 1
2 + 1

2s
≤ 1

2
∗ . by (633)

Lemma 109 Supposeω : L −→ I satisfies(ω-1) and (ω-4). Then for alls ∈ L,
ω(s) ≤ s>,∗1 .
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Proof Let ω : L −→ I be a given mapping which satisfies (ω-1) and (ω-4). Now
considers ∈ L. We defines′ ∈ L by

s′(z) =
{

0 : z = s>,∗1

1 : else
(636)

for all z ∈ I. We first notice thats E s′.

• Let z ∈ I. If z > s>,∗1 , thens(z) = 1, see (44). Hencez′ = z is a proper
choice ofz′ with z′ ≥ z ands′(z′) = 1 ≤ 1 = s(z). In the remaining case that
z ≤ s>,∗1 , z′ = s>,∗1 is a choice ofz′ with z′ ≥ z ands′(z′) = 0 ≤ s(z).

• Now considerz′ ∈ I. If z′ > s>,∗1 , thenz = z′ satisfiesz ≤ z′ ands(z) =
1 ≤ 1 = s′(z′), see (44). In the case thatz′ = s>,∗1 , we choose somez ∈
s−1(0) 6= ∅. Clearly z ≤ sup s−1(0) ≤ sup s−1([0, 1)) = s>,∗1 = z′. In
addition,s(z) = 0 ≤ s′(z′). Finally if z′ < s>,∗1 , thenz = z′ has the desired
propertiesz ≤ z′ ands(z) ≤ 1 = s′(z′).

Hence indeeds E s′, in particulars v s′ by L-42. Therefore

ω(s) ≤ ω(s′) by (ω-4)

= s>,∗1 . by (ω-1) and (636)

Proof of Theorem 86

It has been shown in Th-54 and Th-70 thatFZ is a DFS and propagates fuzziness in
quantifiers. HenceωZ satisfies (ω-1)–(ω-4) by Th-45 and propagates fuzziness by Th-
62. Now consider anotherFω-DFS which propagates fuzziness in quantifiers, i.e.ω
satisfies (ω-1)–(ω-4) and propagates fuzziness. Utilizing Th-84, Th-80 and Th-85,
we can prove thatFω �c FZ by showing thatω(s) ≤ ωZ(s) for all s ∈ L with

s‡
−1(0) ⊆ [ 1

2 , 1]. Hence let such a choice ofs be given. Then

ω(s) ≤ min(s>,∗1 , 1
2 + 1

2s
≤ 1

2
∗ ) by L-109 and L-108

= ωZ(s) . by Def. 69

Henceω(s) ≤ ωZ(s) holds for all s ∈ L with s‡
−1(0) ⊆ [ 1

2 , 1], i.e. Fω �c FZ .
BecauseFω was an arbitraryFω-DFS which propagates fuzziness in quantifiers, this
proves thatFZ is indeed the most specificFω-DFS which propagates fuzziness in
quantifiers.

A.56 Proof of Theorem 87

Lemma 110 Supposeω : L −→ I satisfies(ω-3) and (ω-4). Then for alls ∈ L,
ω(s) ≤ 1

2 + 1
2s(0).
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Proof To see this, defines′ ∈ L by

s′(z) =

 0 : z = 1
1 : z ∈ (0, 1)
s(0) : z = 0

(637)

Let us now notice thats E s′:

• Let z ∈ I. Then there existsz′ ≥ z with s′(z′) ≤ s(z), viz z′ = 1 yields
s′(z′) = 0 ≤ s(z).

• Let z′ ∈ I. Then there existsz ≤ z′ with s(z) ≤ s′(z′). This is apparent for
z′ = 1, wherez0 ∈ s−1(0) 6= ∅ is a suitable choice forz. For z′ ∈ [0, 1), we
can choosez = 0 becauses(0) ≤ s′(z) by (637).

Hences E s′ by Def. 64. Recalling L-42, this proves thats v s′. Therefore

ω(s) ≤ ω(s′) by (ω-4)

= 1
2 + 1

2s
′(0) by (ω-3)

= 1
2 + 1

2s(0) . by (637)

Lemma 111 Supposeω : L −→ I propagates unspecificity and further satisfies(ω-1),
(ω-2) and (ω-4). Then for alls ∈ L, ω(s) ≤ s⊥,0∗ .

Proof Considerε > 0. Recalling (43), there existsx ∈ s‡−1(0) with

x < s⊥,0∗ + ε . (638)

Now we defines1 ∈ L by

s1(z) =
{

0 : z = x
1 : else

(639)

for all z ∈ I. We further defines2 ∈ L by (59), i.e.

s2(z) =
{

0 : z ≥ x
1 : else

(640)

for all z ∈ I. We notice thats v s2:

• Considerz ∈ I. Theninf{s2(z′) : z′ ≥ z} ≤ s2(1) = 0, i.e. inf{s2(z′) : z′ ≥
z} = 0 ≤ s(z).

• Now letz′ ∈ I. In the case thatz′ ≥ x, we utilize thatx ∈ s‡−1(0), i.e.

max(inf{s(z′) : z′ ≥ x}, inf{s(z′) : z′ ≤ x}) = s‡(x) = 0
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by Def. 65. In particularinf{s(z) : z ≤ x} = 0. Becausez′ ≥ x, we conclude
that inf{s(z) : z ≤ z′} ≤ inf{s(z) : z ≤ x} = 0 ≤ s′(z′). In the remaining
case thatz′ < x, it trivially holds that inf{s(z) : z ≤ z′} ≤ 1 = s2(z′) by
(640).

Hence indeeds v s2 by Def. 65. We conclude that

ω(s) ≤ ω(s2) by (ω-4)

= ω(s1) by Th-65

= x by (ω-1)

< s⊥,0∗ + ε . by (638)

ε→ 0 yieldsω(s) ≤ s⊥,0∗ .

Proof of Theorem 87

We already know from Th-56 and Th-73 thatFR is a DFS and propagates fuzziness
in arguments, i.e.ωR satisfies (ω-1)–(ω-4) by Th-45 and propagates unspecificity by
Th-64. Now consider anotherFω-DFS which propagates fuzziness in arguments, i.e.ω
satisfies (ω-1)–(ω-4) and propagates unspecificity. Utilizing Th-84, Th-82 and Th-85,
we can prove thatFω �c FR by showing thatω(s) ≤ ωR(s) for all s ∈ L with

s‡
−1(0) ⊆ [ 1

2 , 1]. Hence let such a choice ofs be given. Ifs⊥,0∗ > 1
2 , then

ω(s) ≤ min(s⊥,0∗ , 1
2 + 1

2s(0)) by L-111 and L-110

= ωR(s) . by Def. 70

In the case thats⊥,0∗ = 1
2 , we obtain that

ω(s) ≤ s⊥,0∗ by L-111

= 1
2 by assumption

= ωR(s) by Def. 70

where the last equation holds becauses>,0∗ ≥ s⊥,0∗ = 1
2 .

It is apparent that the cases⊥,0∗ < 1
2 is not possible here becauses⊥,0∗ = inf s‡−1(0)

by (43), buts‡
−1(0) ⊆ [ 1

2 , 1] by assumption ons. Henceω(s) ≤ ωR(s) holds for

all s ∈ L with s‡
−1(0) ⊆ [ 1

2 , 1], i.e.Fω �c FR. BecauseFω was an arbitraryFω-
DFS which propagates fuzziness in arguments, this proves thatFR is indeed the most
specificFω-DFS which propagates fuzziness in arguments.

A.57 Proof of Theorem 88

We already know from Th-50, Th-66 and Th-67 thatFM is a DFS and propagates
fuzziness both in quantifiers and arguments, i.e.ωM satisfies (ω-1)–(ω-4) by Th-45,
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propagates fuzziness by Th-62 and propagates unspecificity by Th-64. Now consider
anotherFω-DFS which propagates fuzziness both in quantifiers and arguments, i.e.ω
satisfies (ω-1)–(ω-4), and propagates fuzziness as well as unspecificity. Utilizing Th-
84, Th-82 and Th-85, we can prove thatFω�cFM by showing thatω(s) ≤ ωM (s) for

all s ∈ L with s‡
−1(0) ⊆ [ 1

2 , 1]. Hence let such a choice ofs be given. Ifs⊥,0∗ > 1
2 ,

then

ω(s) ≤ min(s⊥,0∗ , 1
2 + 1

2s
≤ 1

2
∗ ) by L-111 and L-108

= ωM (s) . by Def. 67

In the case thats⊥,0∗ = 1
2 , we obtain that

ω(s) ≤ s⊥,0∗ by L-111

= 1
2 by assumption

= ωM (s) by Def. 67

where the last equation holds becauses>,0∗ ≥ s⊥,0∗ = 1
2 .

The cases⊥,0∗ < 1
2 is not possible here becauses⊥,0∗ = inf s‡−1(0) by (43), but

s‡
−1(0) ⊆ [ 1

2 , 1] by assumption ons. Henceω(s) ≤ ωM (s) holds for alls ∈ L
with s‡

−1(0) ⊆ [ 1
2 , 1], i.e.Fω �c FM . BecauseFω was an arbitraryFω-DFS which

propagates fuzziness both in quantifiers and arguments, this proves thatFM is the most
specificFω-DFS which propagates fuzziness both in quantifiers and arguments.

A.58 Proof of Theorem 89

In order to conduct the proof thatMU is the least specificFω-DFS, I first make explicit
the exact shape of the mappingωU : L −→ I which corresponds toB′U : H −→ I,
and hence results inMU = FωU . We know that such mapping exists from Th-22,
Th-37 and Th-42, where the last theorem is applicable by Th-13 and Th-36. The
reformulation will be performed in a number of steps which take us fromB′U to BU ,
then toξU , from there toΩU , and finally fromΩU to the desiredωU .

Lemma 112 The DFSMU can be rewritten asMU =MBU , whereBU : B −→ I is
defined by

BU (f) =


max( 1

2 + 1
2f

1↑
∗ , f

∗
1 ) : f ∈ B+

min( 1
2 −

1
2f

0↑
∗ , f

∗
1 ) : f ∈ B−

1
2 : f ∈ B

1
2

(641)

for all f ∈ B.

Proof Considerf ∈ B. In order to prove the claim of the theorem, we must show
thatBU is the mapping defined by equation (18). It is convenient to discern three cases
which correspond to the case distinction in (18).
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a.: f ∈ B+. In this case, we first observe that

(2f − 1)1↑
∗

= sup{γ ∈ I : 2f(γ)− 1 = 1} by (15)

= sup{γ ∈ I : f(γ) = 1} (apparent)

= f1↑
∗ by (15)

and

(2f − 1)∗1
= lim
γ→1−

(2f(γ)− 1) by (14)

= 2( lim
γ→1−

f(γ))− 1 (apparent)

= 2f∗1 − 1 , by (14)

i.e.

(2f − 1)1↑
∗ = f1↑

∗ (642)

(2f − 1)∗1 = 2f∗1 − 1 . (643)

Therefore

BU (f) = max( 1
2 + 1

2f
1↑
∗ , f

∗
1 ) by (641)

= max(1
2 + 1

2f
1↑
∗ ,

1
2 + 1

2 (2f∗1 − 1)) (apparent)

= max(1
2 + 1

2 (2f − 1)1↑
∗ ,

1
2 + 1

2 (2f − 1)∗1) by (642), (643)

= 1
2 + 1

2 max((2f − 1)1↑
∗ , (2f − 1)∗1) (apparent)

= 1
2 + 1

2B
′
U (2f − 1) , by Def. 41

i.e.BU is defined in accordance with (18).

b.: f ∈ B−. This case can be treated analogously. We notice that

(1− 2f)1↑
∗

= sup{γ ∈ I : 1− 2f(γ) = 1} by (15)

= sup{γ ∈ I : f(γ) = 0} (apparent)

= f0↑
∗ by (16)

and

(1− 2f)∗1
= lim
γ→1−

(1− 2f(γ)) by (14)

= 1− 2 lim
γ→1−

f(γ) (apparent)

= 1− 2f∗1 , by (14)
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i.e.

(1− 2f)1↑
∗ = f0↑

∗ (644)

(1− 2f)∗1 = 2f∗1 − 1 . (645)

Consequently

BU (f) = min( 1
2 −

1
2f

0↑
∗ , f

∗
1 ) by (641)

= min(1
2 −

1
2f

0↑
∗ ,

1
2 −

1
2 (1− 2f∗1 )) (apparent)

= min(1
2 −

1
2 (1− 2f)1↑

∗ ,
1
2 −

1
2 (1− 2f)∗1) by (644), (645)

= 1
2 −

1
2 max((1− 2f)1↑

∗ , (1− 2f)∗1) (apparent)

= 1
2 −

1
2B
′
U (1− 2f) . by Def. 41

Hence we obtain the desired equation (18) in this case as well.

c.: f ∈ B
1
2 . In this case, we immediately look upBU (f) = 1

2 from (641), which
corresponds to the result required by (18).

Lemma 113 MU can be represented asMU = FξU , whereξU : T −→ I is defined
by

ξU (>,⊥) =


max( 1

2 + 1
2⊥

1↑
∗ ,⊥∗1) : ⊥(0) > 1

2

min(1
2 −

1
2>

0↑
∗ ,>∗1) : >(0) < 1

2
1
2 : ⊥(0) ≤ 1

2 ≤ >(0)

(646)

for all (>,⊥) ∈ T.

Proof Recalling Th-22 and L-112, we simply need to show that

ξU (>,⊥) = BU (f) (647)

for all (>,⊥) ∈ T, wheref ∈ B abbreviates

f = med 1
2

(>,⊥) . (648)

Hence let us consider a choice of(>,⊥) ∈ T. It is useful to split the proof according
to the cases discerned in the definition ofξU .

a.: ⊥(0) > 1
2
. Then in particular>(0) ≥ ⊥(0) > 1

2 as well and by Def. 33,

f = med 1
2

(>,⊥) ∈ B+ . (649)

Noticing that>(γ) ≥ >(0) > 1
2 for all γ ∈ I because> is nondecreasing, we obtain

from Def. 23 that in this case,

f(γ) = med 1
2

(>(γ),⊥(γ)) = max(⊥(γ), 1
2 ) (650)
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for all γ ∈ I. Let us now consider the coefficients used to defineξU . Firstly

⊥1↑
∗

= sup{γ ∈ I : ⊥(γ) = 1} by (15)

= sup{γ ∈ I : max(⊥(γ), 1
2 ) = 1}

= sup{γ ∈ I : f(γ) = 1} by (648) and (650)

= f1↑
∗ by (15)

and

max(⊥∗1, 1
2 )

= max( lim
γ→1−

⊥(γ), 1
2 ) by (14)

= lim
γ→1−

max(⊥(γ), 1
2 )

= f∗1 . by (650) and (14)

To sum up,

⊥1↑
∗ = f1↑

∗ (651)

max(⊥∗1, 1
2 ) = f∗1 . (652)

Based on these results, we obtain that

ξU (>,⊥)

= max( 1
2 + 1

2⊥
1↑
∗ ,⊥∗1) by (646)

= max( 1
2 + 1

2⊥
1↑
∗ ,max(⊥∗1, 1

2 )) because12 + 1
2⊥

1↑
∗ ≥ 1

2

= max( 1
2 + 1

2f
1↑
∗ , f

∗
1 ) by (651) and (652)

= BU (f) . by (641), (649)

Hence equation (647) is satisfied in casea.

b.: >(0) < 1
2
. In this case, we can proceed in a similar way. We first notice that

⊥(0) ≤ >(0) < 1
2 as well and hence by Def. 33,

f = med 1
2

(>,⊥) ∈ B− . (653)

Observing that⊥(γ) ≤ ⊥(0) < 1
2 for all γ ∈ I because⊥ is nonincreasing, we hence

obtain from Def. 23 that in caseb.,

f(γ) = med 1
2

(>(γ),⊥(γ)) = min(>(γ), 1
2 ) (654)
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for all γ ∈ I. Again, we relate the coefficients used to defineξU to the coefficients
used to defineBU . In this case, the relevant coefficients are

>0↑
∗

= sup{γ ∈ I : >(γ) = 0} by (16)

= sup{γ ∈ I : min(>(γ), 1
2 ) = 0}

= sup{γ ∈ I : f(γ) = 0} by (648) and (654)

= f0↑
∗ by (16)

and

min(>∗1, 1
2 )

= min( lim
γ→1−

>(γ), 1
2 ) by (14)

= lim
γ→1−

min(>(γ), 1
2 )

= lim
γ→1−

f(γ) by (654)

= f∗1 . by (14)

In other words

>0↑
∗ = f0↑

∗ (655)

min(>∗1, 1
2 ) = f∗1 . (656)

From this it is immediate that

ξU (>,⊥)

= min(1
2 −

1
2>

0↑
∗ ,>∗1) by (646)

= min(1
2 −

1
2>

0↑
∗ ,min(>∗1, 1

2 )) because12 −
1
2>

0↑
∗ ≤ 1

2

= min(1
2 −

1
2f

0↑
∗ , f

∗
1 ) by (655) and (656)

= BU (f) . by (641), (653)

Hence again equation (647) is satisfied, as desired.

c.: ⊥(0) ≤ 1
2
≤ >(0). In this case, we obtain from Def. 23 and (648) thatf(0) =

med 1
2

(>(0),⊥(0)) = 1
2 . Hence by Def. 33,f ∈ B

1
2 . In turn, we obtain from (646)

and (641) thatξU (>,⊥) = 1
2 = BU (f). Hence (647) is valid in casec. again, which

completes the proof of the lemma.

In order to link the resultingΩU with a correspondingΩU : K −→ I, we need
two additional coefficientss[0,1)

∗ ands(0,1]
∗ , which are computed from a givens ∈ L

according to

s
[0,1)
∗ = inf ŝ([0, 1)) (657)

s
(0,1]
∗ = inf ŝ((0, 1]) . (658)
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Based on these coefficients, we can now conveniently express the desired mapping
ΩU : K −→ I.

Lemma 114 MU can be written asMU = FΩU , whereΩU : K −→ I is defined by

ΩU (S) =


max( 1

2 + 1
2s

[0,1)
∗ , s⊥,∗1 ) : inf S(0) > 1

2

min(1
2 −

1
2s

(0,1]
∗ , s>,∗1 ) : supS(0) < 1

2
1
2 : inf S(0) ≤ 1

2 ≤ supS(0)

(659)

for all l ∈ K, ands is defined fromS according to Def. 53.

Proof Recalling theorem Th-37 and building on the previous lemma L-113, it is suf-
ficient to show thatΩU satisfies (34), i.e.

ΩU (S) = ξU (>,⊥) (660)

for all S ∈ K, where> = >S and⊥ = ⊥S are defined by (35) and (36), respectively.
Hence letS ∈ K be given. I first relate the coefficients used in the definition ofξU to
those used for definingΩU . Firstly

⊥∗1
= lim
γ→1−

⊥(γ) by (14)

= inf{⊥(γ) : γ < 1} because⊥ nonincreasing

= inf{inf S(γ) : γ < 1} by (36)

= inf{z ∈ I : there existsγ < 1 s.th.z ∈ S(γ)}
= inf{z ∈ I : s(z) < 1} apparent from Def. 53

= inf s−1([0, 1))

= s⊥,∗1 , by (45)

and by similar reasoning

>∗1
= lim
γ→1−

>(γ) by (14)

= sup{>(γ) : γ < 1} because> nondecreasing

= sup{supS(γ) : γ < 1} by (35)

= sup{z ∈ I : there existsγ < 1 s.th.z ∈ S(γ)}
= sup{z ∈ I : s(z) < 1} apparent from Def. 53

= sup s−1([0, 1))

= s>,∗1 . by (44)

234



We further notice that

⊥1↑
∗

= sup{γ ∈ I : ⊥(γ) = 1} by (15)

= inf{γ ∈ I : ⊥(γ) < 1} because⊥ is nonincreasing

= inf{γ ∈ I : inf S(γ) < 1} by (36)

= inf{γ ∈ I : there existsz < 1 s.th.z ∈ S(γ)}
= inf{inf{γ ∈ I : z ∈ S(γ)} : z < 1}
= inf{s(z) : z < 1}
= inf ŝ([0, 1)) by Def. 15

= s
[0,1)
∗ , by (657)

and analogously

>0↑
∗

= sup{γ ∈ I : >(γ) = 0} by (16)

= inf{γ ∈ I : >(γ) > 0} because> nondecreasing

= inf{γ ∈ I : supS(γ) > 0} by (35)

= inf{γ ∈ I : there existsz > 0 s.th.z ∈ S(γ)}
= inf{inf{γ ∈ I : z ∈ S(γ)} : z > 0}
= inf{s(z) : z > 0}
= inf ŝ((0, 1]) by Def. 15

= s
(0,1]
∗ . by (658)

To sum up,

⊥∗1 = s⊥,∗1 (661)

>∗1 = s>,∗1 (662)

⊥1↑
∗ = s

[0,1)
∗ (663)

>0↑
∗ = s

(0,1]
∗ . (664)

In order to prove that (660) is valid, it is now convenient to discern three cases that
parallel the definition ofΩU .

a.: inf S(0) > 1
2
. It is then immediate from (36) that⊥(0) > 1

2 as well. Therefore

ΩU (S) = max( 1
2 + 1

2s
[0,1)
∗ , s⊥,∗1 ) by (659)

= max( 1
2 + 1

2⊥
1↑
∗ ,⊥∗1) by (661), (663)

= ξU (>,⊥) , by (646)

as desired.
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b.: supS(0) < 1
2
. In this case, we obtain from (35) that>(0) < 1

2 as well. Conse-
quently

ΩU (S) = min( 1
2 −

1
2s

(0,1]
∗ , s>,∗1 ) by (659)

= min(1
2 −

1
2>

0↑
∗ ,>∗1) by (662), (664)

= ξU (>,⊥) . by (646)

c.: inf S(0) ≤ 1
2
≤ supS(0). In this remaining case, we observe from (35) and (36)

that⊥(0) ≤ 1
2 ≤ >(0). Hence by (659) and (646),ΩU (S) = 1

2 = ξU (>,⊥).

The above definition ofΩU can then easily be transformed into our target mapping
ωU : L −→ I.

Lemma 115 The DFSMU can be expressed asMU = FωU , whereωU : L −→ I is
defined by

ωU (s) =


max( 1

2 + 1
2s

[0,1)
∗ , s⊥,∗1 ) : inf S(0) > 1

2

min( 1
2 −

1
2s

(0,1]
∗ , s>,∗1 ) : supS(0) < 1

2
1
2 : inf S(0) ≤ 1

2 ≤ supS(0)

(665)

for all s ∈ L, andS is defined according to equation(37), i.e.S(γ) = {z : γ ≥ s(z)}
for all γ ∈ I.

Proof We first recall from the previous lemma L-114 thatMU = FΩU . It is hence
sufficient to show thatFωU = FΩU . It is now convenient to utilize theorem Th-
42, which is applicable by Th-13 and Th-36. The theorem states thatFΩU = FωU ,
provided thatωU satisfies

ωU (s) = ΩU (S) (666)

for all s ∈ L, whereS ∈ K is defined by (41). To see this, lets ∈ L and suppose
thatS ∈ K is defined by (41). Further suppose thats′ ∈ L is defined in terms ofS
according to Def. 53. Then

ΩU (S)

=


max( 1

2 + 1
2s
′[0,1)
∗ , s′

⊥,∗
1 ) : inf S(0) > 1

2

min(1
2 −

1
2s
′(0,1]
∗ , s′

>,∗
1 ) : supS(0) < 1

2
1
2 : inf S(0) ≤ 1

2 ≤ supS(0)

by (659)

=


max( 1

2 + 1
2s

[0,1)
∗ , s⊥,∗1 ) : inf S(0) > 1

2

min(1
2 −

1
2s

(0,1]
∗ , s>,∗1 ) : supS(0) < 1

2
1
2 : inf S(0) ≤ 1

2 ≤ supS(0)

by L-38,s = s′

= ωU (s) . by (665)

Hence (666) is indeed valid, as desired.
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This completes the chain of lemmata concerned with reformulations ofMU , which
finally lead to the explicit representation ofMU as anFω-DFS, based on the mapping
ωU defined by (665). In order to prove the theorem, I need some additional observa-
tions related to the greatest lower specificity bound on theFω-DFSes. It is convenient
to introduce some abbreviations. The class of allFω-DFSes will be denotedFω. We
know from Th-6 thatFω has a greatest lower specificity boundFglb, which can be
expressed as

Fglb(Q)(X1, . . . , Xn) = m 1
2
{Fω(Q)(X1, . . . , Xn) : Fω ∈ Fω} , (667)

for all semi-fuzzy quantifiersQ : P(E)n −→ I and fuzzy argumentsX1, . . . , Xn ∈
P̃(E). We now introduce the mappingωglb : L −→ I, defined by

ωglb(s) = m 1
2
{ω(s) : ω ∈ IL satisfies (ω-1)–(ω-4)} (668)

for all s ∈ L. It is then apparent that

Fglb(Q)(X1, . . . , Xn)
= m 1

2
{Fω(Q)(X1, . . . , Xn) : Fω ∈ Fω} by (667)

= m 1
2
{Fω(Q)(X1, . . . , Xn) : ω ∈ IL satisfies (ω-1)–(ω-4)} by Th-45

= m 1
2
{ω(sQ,X1,...,Xn) : ω ∈ IL satisfies (ω-1)–(ω-4)} by Def. 61

= ωglb(sQ,X1,...,Xn) by (668)

and hence by Def. 61,

Fglb(Q)(X1, . . . , Xn) = Fωglb(Q)(X1, . . . , Xn) (669)

for all semi-fuzzy quantifiersQ : P(E)n −→ I and all choices of fuzzy arguments
X1, . . . , Xn ∈ P̃(E). This proves that the least specificFω-DFS is anFω-DFS itself,
viz the DFS defined in terms ofωglb.

Proof of Theorem 89

We already know from (669) that the least specificFω-DFS can be expressed asFglb =
Fωglb . Recalling from L-115 thatMU = FωU , we can hence prove the theorem by
showing thatωU = ωglb. To this end, let us first notice thatFωU ∈ Fω by Th-13 and
L-115. ButFglb is the greatest lower specificity bound onFω, henceFglb�c FωU . By
equation (669), this means thatFωglb �c FωU . Now utilizing Th-84, we deduce that

ωglb �c ωU . (670)

Observing that�c is a partial order, it only remains to be shown thatωU �c ωglb

as well. The proof is greatly simplified by Th-85, and it is worthwhile showing that
the theorem is applicable. We first recall from Th-20 thatMU = FωU propagates
fuzziness in quantifiers. Hence by Th-80,

ωU (s) = 1
2 (671)
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for all s ∈ L with s−1(0) ∩ [ 1
2 , 1] 6= ∅ ands−1(0) ∩ [0, 1

2 ] 6= ∅. We then conclude
from the aboveωglb �c ωU that

ωglb(s) = 1
2 (672)

for all s ∈ Lwith s−1(0)∩[ 1
2 , 1] 6= ∅ ands−1(0)∩[0, 1

2 ] 6= ∅, becauseωglb(s)�c 1
2 =

ωU (s) is only possible forωglb(s) = 1
2 , see (5). This proves that the precondition of

Th-85 is indeed satisfied. We can hence apply the theorem and reduce the proof of
ωU �c ωglb to the proof that

ωU (s) ≤ ωglb(s) (673)

for all s ∈ L with s‡
−1(0) ⊆ [ 1

2 , 1]. Hence let such a choice ofs ∈ L be given. Further
suppose thatS ∈ K is defined by (37), i.e.S(γ) = {z : γ ≥ s(z)} for all γ ∈ I. We
first notice that

S(0) = {z ∈ I : 0 ≥ s(z)} by (37)

= {z ∈ I : s(z) = 0} becausez ∈ I

= s−1(0)

⊆ s‡−1
(0) by Th-47.a

⊆ [ 1
2 , 1] ,

by the assumption on the choice ofs ∈ L. We hence know that12 ≤ inf S(0) ≤
supS(0). This permits us to restrict the proof to the following two cases.

a.: inf S(0) = 1
2
. ThenωU (s) = 1

2 by (665). We conclude from (670) and (5) that
ωglb(s) = 1

2 as well. In particularωU (s) ≤ ωglb(s), as desired.

b.: inf S(0) > 1
2
. We then look up from (665) thatωU (s) = max( 1

2 + 1
2s

[0,1)
∗ , s⊥,∗1 ).

In order to prove the desiredωU (s) ≤ ωglb(s), it is hence sufficient to show that both

inequationsωglb(s) ≥ s⊥,∗1 andωglb(s) ≥ 1
2 + 1

2s
[0,1)
∗ are valid.

As concerns the first inequation, it is useful to introduce an additional mappings′ ∈ L
defined by

s′(z) =

{
0 : z = s⊥,∗1

1 : else
(674)

for all z ∈ I. As I will now show, this choice ofs′ satisfiess′ E s. Hence let
us consider the preconditions stated in Def. 64. In order to prove preconditiona. for
s′ E s, letz ∈ I be given; it must be verified that there existsz′ ≥ z with s(z′) ≤ s′(z).

• if z 6= s⊥,∗1 , thens(z′) ≤ s′(z) = 1 by (674). Hencez′ = z is a suitable choice
of z′ ≥ z with s(z′) ≤ s′(z);
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• if z = s⊥,∗1 , then

z = inf s−1[0, 1) by (45)

≤ inf s−1(0)
≤ z′

for an arbitrary choice ofz′ ∈ s−1(0) 6= ∅, see Def. 60. We then obtains(z′) =
0 ≤ s(z), as desired.

Next I prove preconditionb. stated in Def. 64. Hence letz′ ∈ I be given; it must be
shown that there existsz ≤ z′ with s′(z) ≤ s(z′). This is apparent ifz′ ≥ s⊥,∗1 ; in this
casez = s⊥,∗1 is a suitable choice which results ins(z) = 0 ≤ s(z′), see (674). In the
remaining case thatz′ < s⊥,∗1 , we know from (45) thatz′ < inf s−1([0, 1)). Hence
z′ /∈ s−1([0, 1)), which proves thats(z′) = 1. In other words,z = z′ is a suitable
choice ofz ≤ z′ which results ins′(z) ≤ 1 = s(z′). Because both of the preconditions
are valid, we conclude from Def. 64 that indeeds′ E s. In turn, we conclude from L-42
thats′ v s. Becauseωglb is known to satisfy (ω-1) and (ω-4), this proves that

ωglb(s) ≥ ωglb(s′) = s⊥,∗1 , (675)

i.e. the first inequation is valid.
In order to finish the proof, we must still show that the second inequationωglb(s) ≥
1
2 + 1

2s
[0,1)
∗ is valid. I will treat separately the following two cases.

• In the case thats(1) > 0, we conclude froms−1(0) 6= ∅ that there exists
z0 ∈ [0, 1) with s(z0) = 0. Consequentlys[0,1)

∗ = inf ŝ([0, 1)) ≤ s(z0) = 0,
i.e. s[0,1)

∗ = 0. In particular 1
2 + 1

2s
[0,1)
∗ = 1

2 . Now we recall thatωU (s) =
max( 1

2 + 1
2s

[0,1)
∗ , s⊥,∗1 ) by the assumed choice ofs, and henceωU (s) ≥ 1

2 .
In turn, we deduce from (670) and (5) thatωglb(s) ∈ [ 1

2 , ωU (s)], in particular

s
[0,1)
∗ = 1

2 ≤ ωglb(s), as desired.

• In the remaining case thats(1) = 0, we consider the mappings′ ∈ L defined by

s′(z) =


0 : z = 1
1 : z ∈ (0, 1)
s

[0,1)
∗ : z = 0

(676)

for all z ∈ I. As I will now show, it then holds thats′ v s. To prove this, we
need to address the preconditionsa. andb. for s′ v s stated in Def. 62. Hence
let z ∈ I. Then inf{s(z′) : z′ ≥ z} ≤ s(1) = 0 ≤ s′(z), which validates
preconditiona. As to the other condition, we assume a choice ofz′ ∈

∫
. If

z′ = 1, theninf{s′(z) : z ≤ z′} = inf{s′(z) : z ≤ 1} ≤ s′(1) = 0 ≤ s(1).
In the second case thatz′ < 1, we obtain thatinf{s′(z) : z ≤ z′} ≤ s′(0) =
inf{s(z′) : z′ < 1} ≤ s(z′). Hence both preconditions of Def. 62 are valid, and
we conclude thats′ v s. Becauseωglb is known to satisfy (ω-3) and (ω-4), this

proves thatωglb(s) ≥ ωglb(s′) = 1
2 + 1

2s
′(0) = 1

2 + 1
2s

[0,1)
∗ .
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This completes the proof thatωU (s) ≤ ωglb(s) in the main caseb. of the proof, i.e. in
the case thatinf S(0) > 1

2 . Hence the desired inequation (673) is valid for alls ∈
L with s‡

−1(0) ⊆ [ 1
2 , 1], and application of Th-85 yields the desiredωU �c ωglb.

Combining this with (670), we hence conclude thatωU = ωglb. BecauseFωglb is
known to be the least specificFω-DFS, and becauseMU is known to coincide with
FωU , this proves that it is in fact the known modelMU , which is the least specific
Fω-DFS.

A.59 Proof of Theorem 90

Lemma 116 For all S ∈ K,

>S = >S�
⊥S = ⊥S� .

Proof To see this, letS ∈ K be given and letγ ∈ I. Then

>S�(γ) = supS�(γ) by (35)

= sup[inf S(γ), supS(γ)] by Def. 82

= supS(γ)
= >S(γ) by (35)

and similarly

⊥S�(γ) = inf S�(γ) by (36)

= inf[inf S(γ), supS(γ)] by Def. 82

= inf S(γ)
= ⊥S(γ) . by (36)

Becauseγ ∈ I was arbitrary, this proves that>S� = >S and⊥S� = ⊥S , as desired.

Proof of Theorem 90

Let Ω : K −→ I be a given mapping andFΩ the QFM defined by Def. 55.

If FΩ is an Fξ-QFM, then Ω is �-invariant. Hence suppose thatFΩ is anFξ-QFM,
i.e. there existsξ : T −→ I with

FΩ = Fξ . (677)

Now considerS ∈ K. By Th-33, there existQ,Q′ : P(2× I) −→ I andX ∈
P̃(2× I) with

SQ,X = S (678)
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and

SQ′,X = S� . (679)

Hence

Ω(S) = Ω(SQ,X) by (678)

= FΩ(Q)(X) by Def. 55

= Fξ(Q)(X) by (677)

= ξ(>Q,X ,⊥Q,X) by Def. 46

= ξ(>SQ,X ,⊥SQ,X ) by (25), (26), (35) and (36)

= ξ(>S ,⊥S) by (678)

= ξ(>S� ,⊥S�) by L-116

= ξ(>SQ′,X ,⊥SQ′,X ) by (679)

= ξ(>Q′,X ,⊥Q′,X) by (25), (26), (35) and (36)

= Fξ(Q′)(X) by Def. 46

= FΩ(Q′)(X) by (677)

= Ω(SQ′,X) by Def. 55

= Ω(S�) . by (679)

HenceΩ is indeed�-invariant.

If Ω is �-invariant, then FΩ is an Fξ-QFM. Hence let us assume thatΩ is�-invariant.
We defineξ : T −→ I by

ξ(>,⊥) = Ω(S) (680)

for all (>,⊥) ∈ T, where

S(γ) = [⊥(γ),>(γ)] (681)

for all γ ∈ I. We observe that for allS ∈ K,

S�(γ) = [inf S(γ), supS(γ)] = [⊥S(γ),>S(γ)]

for all γ ∈ I. This is apparent from Def. 82, (35) and (36). Hence for allS ∈ K,

ξ(>,⊥) = Ω(S�) (682)

by (680) and (681). To see thatFΩ = Fξ, consider a semi-fuzzy quantifierQ :
P(E)n −→ I and a choice of fuzzy argument setsX1, . . . , Xn ∈ P̃(E). Then

FΩ(Q)(X1, . . . , Xn) = Ω(SQ,X1,...,Xn) by Def. 55

= Ω((SQ,X1,...,Xn)�) becauseΩ is �-invariant

= ξ(>SQ,X1,...,Xn
,⊥SQ,X1,...,Xn

) by (682)

= ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) by (25), (26), (35) and (36)

= Fξ(Q)(X1, . . . , Xn) . by Def. 46
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A.60 Proof of Theorem 91

Lemma 117 For all S ∈ K andγ ∈ I, S‡(γ) ⊆ S�(γ).

Proof To see this, letS ∈ K andγ ∈ I be given and consider somez ∈ S‡(γ). Then
by Def. 59, there existz′, z′′ ∈ S(γ) with z′ ≤ z ≤ z′′. Henceinf S(γ) ≤ z′ ≤ z and
supS(γ) ≥ z′′ ≥ z. Becausez ∈ S‡(γ) was arbitrary, we conclude thatinf S(γ) ≤
z ≤ supS(γ) for all z ∈ S‡, i.e. inf S(γ) ≤ inf S‡(γ) andsupS(γ) ≥ supS‡(γ).
BecauseS‡(γ) ⊆ [inf S‡(γ), supS‡(γ)], this permits us to conclude thatS‡(γ) ⊆
[inf S‡(γ), supS‡(γ)] ⊆ [inf S(γ), supS(γ)], i.e. S‡(γ) ⊆ S�(γ) by Def. 82, as
desired.

Lemma 118 For all S ∈ K and allγ ∈ I, (inf S(γ), supS(γ)) ⊆ S‡(γ).

Proof Let S ∈ K andγ ∈ I be given. Now considerz ∈ (inf S(γ), supS(γ)).
Becausez > inf S(γ), there existsz′ ∈ S(γ) with inf S(γ) ≤ z′ < z. Similarly
becausez < supS(γ), there existsz′′ ∈ S(γ) with z < z′′ ≤ supS(γ). Hence
z ∈ S‡(γ) by Def. 59.

Lemma 119 For all S ∈ K andγ ∈ I, S�(γ) \ S‡(γ) ⊆ {inf S(γ), supS(γ)}.

Proof It is immediate from Def. 82 thatS�(γ)\S‡(γ) ⊆ S�(γ) = [inf S(γ), supS(γ)].
In order to prove the lemma, it is hence sufficient to show that(inf S(γ), supS(γ)) ⊆
S‡(γ). This has already been proven in L-119.

Lemma 120 LetS ∈ K, γ ∈ I andδ > 0 be given. Then

a. there existsz′ ∈ S‡(γ) with supS(γ)− z′ ≤ δ
2 ;

b. there existsz′ ∈ S‡(γ) with z′ − inf S(γ) ≤ δ
2 .

Proof

a.: If inf S(γ) = supS(γ), thenz′ = supS(γ) yields supS(γ) − z′ = 0 ≤ δ
2 . In

addition,z′ ∈ S‡(γ). This is apparent becauseinf S(γ) = supS(γ) = z′ entails that
S(γ) = {z′}, and becauseS(γ) ⊆ S‡(γ). In the case thatinf S(γ) 6= supS(γ),
we conclude fromS(γ) ⊇ S(0) 6= ∅ that in fact inf S(γ) < supS(γ). Hence
(inf S(γ), supS(γ)) is nonempty, and we can choosez′ ∈ (inf S(γ), supS(γ)) with
supS(γ) − z′ ≤ δ

2 . This completes the proof of parta. noticing thatz′ ∈ S‡(γ) by
L-118.

b.: If inf S(γ) = supS(γ), thenz′ = inf S(γ) yields z′ − inf S(γ) = 0 ≤ δ
2 . In

addition,z′ ∈ S‡(γ). In the remaining case thatinf S(γ) 6= supS(γ), we again con-
clude fromS(γ) ⊇ S(0) 6= ∅ that inf S(γ) < supS(γ). Hence(inf S(γ), supS(γ))
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is nonempty, and we can choosez′ ∈ (inf S(γ), supS(γ)) with z′ − inf S(γ) ≤ δ
2 .

This provesb. because againz′ ∈ S‡(γ) by L-118.

Lemma 121 LetS ∈ K andδ > 0 be given and suppose thatQ,Q′ : P(2× I) −→ I
are defined by

Q(Y ) = Qinf Y ′(Y ′′) (683)

Q′(Y ) = Q′inf Y ′(Y
′′) (684)

for all Y ∈ P(2× I), whereY ′, Y ′′ ∈ P(I) are defined by(28)and(29), respectively.
We assume an arbitrary but fixed choice ofz0 ∈ S(0). The semi-fuzzy quantifiers
Qz : P(I) −→ I are then defined by

Qz(Y ′′) =


z : z ∈ S‡(supY ′′)
z′ : z ∈ S�(supY ′′) \ S‡(supY ′′)
z0 : z /∈ S�(supY ′′)

(685)

for all Y ′′ ∈ P(I), where the

z′ ∈ S‡(γ) (686)

are chosen such that

|z′ − z| ≤ δ
2 , (687)

which is possible by L-119 and L-120. The semi-fuzzy quantifiersQ′z : P(I) −→ I are
defined by

Q′z(Y
′′) =

{
z : z ∈ S�(supY ′′)
z0 : z /∈ S�(supY ′′)

(688)

for all Y ′′ ∈ P(I). We further suppose thatX ∈ P̃(2× I) is defined as in(33).
ThenSQ,X = S‡, SQ′,X = S� andd(Q,Q′) < δ.

Proof

SQ,X = S‡. We first recall equations (91), (92), i.e. forγ = 0,

Xmin
0 = X

>
1
2

= ∅ (689)

Xmax
0 = X

≥ 1
2

= ({0} × I) ∪ {(1, 0)} . (690)

In the case thatγ > 0, we recall equations (93) and (94), viz

Xmin
γ = X

≥ 1
2 +

1
2γ

= ∅ (691)

Xmax
γ = X

>
1
2−

1
2γ

= ({0} × I) ∪ ({1} × [0, γ)) . (692)

243



In order to prove the claim thatSQ,X = S‡, I first show that

S‡(γ) ⊆ SQ,X(γ) . (693)

Hence let us consider a choice ofz ∈ S‡(γ). In the case thatγ = 0, it hence
holds thatz ∈ S‡(0). Now we considerY = {(0, z), (1, 0)} ∈ T0(X), which
has inf Y ′ = inf{z} = z andY ′′ = {0}, see (28) and (29). ThereforeQ(Y ) =
Qz(Y ′′) = Qz({0}). Becausez ∈ S‡(0) = S‡(sup{0}), equation (685) applies,
i.e.Q(Y ) = Qz({0}) = z.
Next we consider the case thatγ > 0. We can then choose

Y = {(0, z)} ∪ ({1} × [0, γ)) .

For this choice ofY ∈ Tγ(X), we obtaininf Y ′ = inf{z} = z andY ′′ = [0, γ) by
(28) and (29), i.e.supY ′′ = γ. HenceQ(Y ) = Qz([0, γ)) = z by (683) and (685)
becausez ∈ S‡(γ) by assumption. This completes the proof of (693).
It remains to be shown thatSQ,X(γ) ⊆ S‡(γ) for all γ ∈ I.
Let us first consider the case thatγ = 0. Hence letY ∈ T0(X) be given. We abbreviate
z = inf Y ′ ∈ I. It is apparent from (689) and (690) that we either haveY ′′ = ∅ or
Y ′′ = {0}. In any case,supY ′′ = 0.

• If z ∈ S‡(γ) = S‡(0), thenQ(Y ) = Qz(Y ′′) = z ∈ S‡(0) by (683) and (685).

• In the case thatz ∈ S�(0) \ S‡(0), we obtain from (683), (685) and (686) that
Q(y) = Qz(Y ′′) = z′ ∈ S‡(0).

• Finally if z /∈ S�(0), thenQ(Y ) = Qz(Y ′′) = z0 ∈ S(0) ⊆ S‡(0) by (683)
and (685).

In any case, we obtain thatQ(Y ) ∈ S‡(0) for all Y ∈ T0(X), i.e.SQ,X(0) ⊆ S‡(0)
by Def. 51.
Let us now show thatSQ,X(γ) ⊆ S‡(γ) also holds in the case thatγ > 0. Hence let
γ > 0 and consider someY ∈ Tγ(X). Again we abbreviatez = inf Y ′ ∈ I. We also
notice that by (691) and (692),0 ≤ supY ′′ ≤ γ.

• If z ∈ S‡(supY ′′), then

Q(Y ) = Qz(Y ′′) by (683)

= z by (685)

∈ S‡(supY ′′) by assumption

⊆ S‡(γ) . becausesupY ′′ ≤ γ

• If z ∈ S�(supY ′′) \ S‡(supY ′′), then

Q(Y ) = Qz(Y ′′) by (683)

= z′ by (685)

∈ S‡(supY ′′) by (686)

⊆ S‡(γ) . becausesupY ′′ ≤ γ
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• If z /∈ S�(supY ′′), then

Q(Y ) = Qz(Y ′′) by (683)

= z0 by (685)

∈ S(0) by choice ofz0

⊆ S(γ) by Def. 52

⊆ S‡(γ) . apparent from Def. 59

HenceQ(Y ) ∈ S‡(γ) for all Y ∈ Tγ(X), i.e.SQ,X ⊆ S‡(γ). Combining this with
(693), we obtain thatSQ,X(γ) = S‡(γ) for all γ ∈ I, i.e.SQ,X = S‡.

a.: SQ′,X = S�. We observe thatQ′ andQ′z as defined by (684) and (688) result from
the very same construction that has been used in Th-33, equations (27) and (30)/(31),
substitutingS� for S. Hence by Th-33,SQ′,X = S�, as desired.

b.: d(Q,Q′) < δ. To see this, consider someY ∈ P(2× I) and let us abbreviate
z = inf Y ′. ThenQ(Y ) = Qz(Y ′′) andQ′(Y ) = Q′z(Y

′′) by (683) and (684).
If z ∈ S‡(supY ′′), then z ∈ S�(supY ′′) as well, see L-117. HenceQ(Y ) =
Qz(Y ′′) = z = Q′z(Y

′′) = Q′(Y ) by (685) and (688), i.e.|Q(Y )−Q′(Y )| = 0.
In the case thatz /∈ S�(supY ′′), we obtain from (685) and (688) thatQ(Y ) =
Qz(Y ′′) = z0 = Q′z(Y

′′) = Q′(Y ). Hence|Q(Y ) − Q′(Y )| = 0 in this case,
too.
In the remaining case thatz ∈ S�(γ) \ S‡(γ), we obtain from (685) thatQ(Y ) =
Qz(Y ′′) = z′ andQ′(Y ) = Q′z(Y

′′) = z. Hence|Q(Y )−Q′(Y )| = |z − z′| ≤ δ
2 by

(687).
We conclude that

d(Q,Q′) = sup{|Q(Y )−Q′(Y )| : Y ∈ P(2× I)} by (7)

≤ δ
2 by above reasoning

< δ . becauseδ > 0

Proof of Theorem 91

Suppose thatΩ : K −→ I is an‡-invariant mapping. The proof is by contraposition.
Hence let us assume thatFΩ is not anFξ-QFM; it must be shown thatFΩ is not Q-
continuous.
BecauseFΩ is not anFξ-QFM, we know from Th-90 thatΩ is not�-invariant. Hence
there existsS ∈ K with Ω(S) 6= Ω(S�). We may hence choose

ε = |Ω(S)− Ω(S�)| > 0 . (694)

Let us define the semi-fuzzy quantifierQ′ : P(2× I) −→ I according to (684). Ac-
cording to Def. 28, we can prove thatFΩ is not Q-continuous by proving that for all
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δ > 0, there existsQ : P(2× I) −→ I with d(Q,Q′) < δ but d(FΩ(Q),FΩ(Q′)) ≥
ε.
Hence letδ > 0 and defineQ : P(2× I) −→ I by (683). We can then apply L-121 to
conclude thatd(Q,Q′) < δ and

SQ,X = S‡ (695)

SQ′,X = S� (696)

for the choice ofX ∈ P̃(2× I) defined by (33). Therefore

d(FΩ(Q),FΩ(Q′))

= sup{|FΩ(Q)(Z)−FΩ(Q′)(Z)| : Z ∈ P̃(2× I)} by (8)

≥ |FΩ(Q)(X)−FΩ(Q′)(X)| becauseX ∈ P̃(2× I)
= |Ω(SQ,X)− Ω(SQ′,X)| by Def. 55

= |Ω(S‡)− Ω(S�)| by (695), (696)

= |Ω(S)− Ω(S�)| becauseΩ is ‡-invariant

≥ ε . by (694)

This completes the proof thatFΩ fails to be Q-continuous.
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B Proofs of theorems in chapter 5

B.1 Proof of Theorem 92

Lemma 122 LetE 6= ∅ be some base set andX1, . . . , Xn ∈ P̃(E), wheren > 0.
Further suppose thatX ∈ P̃({1, . . . , n} × E) is defined by

µX(i, e) = µXi(e) (697)

for all i ∈ {1, . . . , n} ande ∈ E. ThenDX1,...,Xn = DX .

Proof Let us associate with each choice of(Y1, . . . , Yn) ∈ P(E)n a corresponding
subsetY ∈ P({1, . . . , n} × E),

Y = {(i, e) : i ∈ {1, . . . , n}, e ∈ Yi} . (698)

It is apparent that(Y1, . . . , Yn) 7→ Y is a bijection. In addition,

ΞY1,...,Yn((X1, . . . , Xn))

=
n
∧
i=1

min(inf{µXi(e) : e ∈ Yi},

inf{1− µXi(e) : e /∈ Yi}) by Def. 83

= min(min{inf µXi(e) : e ∈ Yi} : i ∈ {1, . . . , n}},
min{inf{1− µXi(e) : e /∈ Yi} : i ∈ {1, . . . , n}})

= min(inf{µXi(e) : i ∈ {1, . . . , n}, e ∈ Yi},
inf{1− µXi(e) : i ∈ {1, . . . , n}, e /∈ Yi})

= min(inf{µX(i, e) : i ∈ {1, . . . , n}, e ∈ Yi},
inf{1− µX(i, e) : i ∈ {1, . . . , n}, e /∈ Yi}) by (697)

= min(inf{µX(i, e) : (i, e) ∈ Y }, inf{1− µX(i, e) : (i, e) /∈ Y }) by (698)

= ΞY (X) ,

i.e.

ΞY1,...,Yn(X1, . . . , Xn) = ΞY (X) . (699)

Therefore

DX1,...,Xn

= {ΞY1,...,Yn(X1, . . . , Xn) : Y1, . . . , Yn ∈ P(E)} by Def. 84

= {ΞY (X) : (Y1, . . . , Yn) ∈ P(E)} by (699)

= {ΞY (X) : Y ∈ P({1, . . . , n} × E)} as(Y1, . . . , Yn) 7→ Y bijection

= DX , by Def. 84

as desired.
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Lemma 123 LetE 6= ∅ be some base set andX1, . . . , Xn ∈ P̃(E) wheren ≥ 0. We
abbreviate

Y +
i = Xi≥ 1

2
(700)

for i = 1, . . . , n, and

r+ = ΞY +
1 ,...,Y +

n
(X1, . . . , Xn) . (701)

Thenr+ ≥ 1
2 .

Proof In the case thatn = 0, there is only one possible choice of fuzzy arguments,
viz the empty tuple∅. Applying theα-cut at 1

2 to the arguments in the empty tuple
is a vacuous operation which again returns the empty tuple. We hence obtain that
r+ = Ξ(0)

∅
(∅) = 1. In particularr+ ≥ 1

2 , as desired.
As concerns the remaining cases thatn > 0, it is apparent from L-122 and (700) that
it is sufficient to consider the casen = 1 only. Hence letE 6= ∅ be a base set and
X ∈ P̃(E). Then

r+

= min(inf{µX(e) : e ∈ Y +
i }, inf{1− µX(e) : e /∈ Y +

i }) by Def. 83, (701)

= min(inf{µX(e) : e ∈ X
≥ 1

2
},

inf{1− µX(e) : e /∈ X
≥ 1

2
}) by (700)

= min(inf{µX(e) : e ∈ E,µX(e) ≥ 1
2},

inf{1− µX(e) : e ∈ E,µX(e) < 1
2}) by Def. 29

≥ min(inf{ 1
2 : e ∈ E,µX(e) ≥ 1

2},
inf{ 1

2 : e ∈ E,µX(e) < 1
2})

= 1
2 ,

as desired.

Lemma 124 Let E 6= ∅ be some base set andX1, . . . , Xn ∈ P̃(E) wheren ≥
0. Further assume thatY +

i , i = 1, . . . , n, and r+ are defined by(700) and (701),
respectively. Then

ΞY1,...,Yn(X1, . . . , Xn) ≤ 1
2

for all (Y1, . . . , Yn) ∈ P(E) with (Y1, . . . , Yn) 6= (Y +
1 , . . . , Y +

n ). In particular,
ΞY1,...,Yn(X1, . . . , Xn) ≤ r+.

Proof The casen = 0 is trivial. In this case, there is only one possible choice
of fuzzy arguments, i.e. the empty tuple. The condition of the lemma then becomes
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vacuous because there are no fuzzy arguments beyond that defined by (700).
In the remaining case thatn > 0, we can again utilize L-122, which permits us to
restrict attention to the case that indeedn = 1 (this is apparent from (697) and (700)).
Hence letE 6= ∅ be some base set and letX ∈ P̃(E). Now consider someY ∈ P(E),
Y 6= Y +. Then eitherY \ Y + 6= ∅ or Y + \ Y 6= ∅.
In the case thatY \ Y + 6= ∅, choose somee′ ∈ Y \ Y +. Becausee′ /∈ Y +, we know
from (700) and Def. 29 that

µX(e′) < 1
2 . (702)

Hence

ΞY (X) = min(inf{µX(e) : e ∈ Y }, inf{1− µX(e) : e /∈ Y }) by Def. 83

≤ inf{µX(e) : e ∈ Y }
≤ µX(e′) becausee′ ∈ Y
< 1

2 . by (702)

In the remaining case thatY + \ Y 6= ∅, let us choose somee′′ ∈ Y + \ Y 6= ∅. Then

µX(e′′) ≥ 1
2 . (703)

by (700) and Def. 29. Hence

ΞY (X) = min(inf{µX(e) : e ∈ Y }, inf{1− µX(e) : e /∈ Y })
≤ inf{1− µX(e) : e /∈ Y }
≤ 1− µX(e′′) becausee′′ /∈ Y
≤ 1

2 . by (703)

The second claim of the lemma thatΞY1,...,Yn(X1, . . . , Xn) ≤ r+ is then apparent
from ΞY (X) ≤ 1

2 ≤ r+, see L-123.

Lemma 125 Let E 6= ∅ be some base set,X1, . . . , Xn ∈ P̃(E), and suppose that
Y +
i , i = 1, . . . , n, andr+ are defined by(700)and(701), respectively. Ifr+ > 1

2 , then

ΞY1,...,Yn(X1, . . . , Xn) < 1− r+ (704)

for all (Y1, . . . , Yn) ∈ P(E)n with (Y1, . . . , Yn) 6= (Y +
1 , . . . , Y +

n ).

Proof The condition of the lemma again becomes vacuous ifn = 0. Hence suppose
thatn > 0. By the same reasoning as above, we conclude from L-122 that it is suf-
ficient to consider the case thatn = 1. Hence letE 6= ∅ be some base set and let
X ∈ P̃(E). Further suppose thatY + andr+ are defined by (700) and (701), respec-
tively.
Now considerY ∈ P(E), Y 6= Y +. Then eitherY + \ Y 6= ∅ or Y \ Y + 6= ∅.
In the former case, there existse′ ∈ Y + with e′ /∈ Y . Becausee′ ∈ Y +,

r+ = min(inf{µX(e) : e ∈ Y +}, inf{1− µX(e) : e /∈ Y +}) by Def. 83, (701)

≤ inf{µX(e) : e ∈ Y +}
≤ µX(e′) , becausee′ ∈ Y +

249



i.e.

µX(e′) ≥ r+ . (705)

Hence

ΞY (X) = min(inf{µX(e) : e ∈ Y }, inf{1− µX(e) : e /∈ Y })
≤ inf{1− µX(e) : e /∈ Y }
≤ 1− µX(e′) becausee′ /∈ Y
≤ 1− r+ . by (705)

In the remaining case thatY \ Y + 6= ∅, there existse′′ ∈ Y with e′′ /∈ Y +. Therefore

r+ = min(inf{µX(e) : e ∈ Y +}, inf{1− µX(e) : e /∈ Y +}) by Def. 83, (701)

≤ inf{1− µX(e) : e /∈ Y +}
≤ 1− µX(e′′) , becausee′′ /∈ Y +

i.e.

µX(e′′) ≤ 1− r+ . (706)

Hence

ΞY (X) = min(inf{µX(e) : e ∈ Y }, inf{1− µX(e) : e /∈ Y }) by Def. 83

≤ inf{µX(e) : e ∈ Y }
≤ µX(e′′) becausee′′ ∈ Y
≤ 1− r+ . by (706)

This proves that indeedΞY (X) ≤ 1− r+.

Lemma 126 Suppose thatE 6= ∅ is some base set andX1, . . . , Xn ∈ P̃(E) where
n ≥ 0. Further letr+ be defined by(701). ThenDX1,...,Xn ∩ [ 1

2 , 1] = {r+}.

Proof In the case thatn = 0, we simply notice that the only possible choice of
X1, . . . , Xn is the empty tuple, which results inD(0)

∅
= {1} and henceDX1,...,Xn ∩

[ 1
2 , 1] = {1} ∩ [ 1

2 , 1] = {1} = r+ in this case. Forn > 0, then, we already
know from L-123 thatr+ ≥ 1

2 and r+ = ΞY +
1 ,...,Y +

n
(X1, . . . , Xn) ∈ DX1,...,Xn .

Hence{r+} ⊆ DX1,...,Xn ∩ [ 1
2 , 1]. Now considerr ∈ DX1,...,Xn with r 6= r+,

i.e. there existY1, . . . , Yn ∈ P(E) with (Y1, . . . , Yn) 6= (Y +
1 , . . . , Y +

n ) and r =
ΞY1,...,Yn(Y1, . . . , Yn).
In the case thatr+ = 1

2 , we apply L-124 to conclude thatr ≤ 1
2 . Becauser 6= r+ by

assumption, it in fact holds thatr < 1
2 . In particular,r /∈ DX1,...,Xn ∩ [ 1

2 , 1] and indeed
DX1,...,Xn ∩ [ 1

2 , 1] = {r+}.
In the remaining case thatr+ > 1

2 , we apply L-125 and conclude that

r = ΞY1,...,Yn(X1, . . . , Xn) ≤ 1− r+ < 1
2 .

Hence againr /∈ DX1,...,Xn ∩ [ 1
2 , 1], which proves the desiredDX1,...,Xn ∩ [ 1

2 , 1] =
{r+}.
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Lemma 127 LetE 6= ∅ be some base set,X1, . . . , Xn ∈ P̃(E), and suppose thatr+

is defined by(701). If r+ > 1
2 , thensupDX \ {r+} = 1− r+.

Proof In the case thatn = 0, the claim of the lemma is apparent becauseX1, . . . , Xn

coincides with the empty tupleDX1,...,Xn = D
(0)
∅

= {1}. In particularr+ = 1 and

D
(0)
∅
\{r+} = ∅. This proves thatsupD(0)

∅
\{r+} = sup void = 0 = 1−1 = 1−r+,

as desired. In the remaining cases thatn 6= 0, it is again clear from L-122 that only the
casen = 1 must be considered.
Hence letE 6= ∅ andX ∈ P̃(E) be given and suppose thatr+ > 1

2 . We already
know from L-125 thatDX \ {r+} ⊆ [0, 1− r+], and hencesupDX \ {r+} ≤ 1− r+.
It remains to be shown thatsupDX \ {r+} ≥ 1 − r+. We now recall from (701) that
eitherr+ = inf{µX(e) : e ∈ Y +} or r+ = inf{1 − µX(e) : e /∈ Y +}. It is hence
useful to discern two cases.

a.: r+ = inf{µX(e) : e ∈ Y +}.
In the case thatY + = ∅, it trivially holds that

1− r+ = 1− inf ∅ = 1− 1 = 0 ≤ supDX \ {r+} .

Hence suppose thatY + 6= ∅ and consider someε > 0. Then there existse′ ∈ Y +

with

r+ ≤ µX(e′) < r+ + ε . (707)

We abbreviate

Y = Y + \ {e′} . (708)

It is then apparent that

r+ = min(inf{µX(e) : e ∈ Y +}, inf{1− µX(e) : e /∈ Y +}) by (701), Def. 83

≤ min(inf{µX(e) : e ∈ Y + \ {e′}}, inf{1− µX(e) : e /∈ Y +}) ,

i.e.

r+ ≤ min(inf{µX(e) : e ∈ Y }, inf{1− µX(e) : e ∈ Y +}) (709)

by (708). Hence

1− r+ ≥ ΞY (X) by L-125

= min(inf{µX(e) : e ∈ Y },
inf{1− µX(e) : e /∈ Y }) by Def. 83

= min{inf{µX(e) : e ∈ Y },
inf{1− µX(e) : e /∈ Y, e 6= e′}, 1− µX(e′)} becausee′ /∈ Y by (708)

= min{inf{µX(e) : e ∈ Y },
inf{1− µX(e) : e /∈ Y +}, 1− µX(e)} . by (708)
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Because of (709), we conclude that1− µX(e′) ≤ 1− r+ and hence

ΞY (X) = µX(e′) .

In turn, we obtain from (707) thatΞY (X) > 1−r+−ε. BecauseΞY (X) ∈ DX \{r+},
this proves thatsupDX \{r+} ≥ ΞY (X) > 1−r+ +ε. Becauseε > 0 was arbitrarily
chosen, we conclude thatsupDX \ {r+} ≥ 1− r+.

b.: r+ = inf{1− µX(e) : e 6∈ Y +}.
In the case thatY + = E, it trivially holds that

1− r+ = 1− inf ∅ = 1− 1 = 0 ≤ supDX \ {r+} .

Hence suppose thatY + 6= E and consider someε > 0. Then there existse′ ∈ E \Y +

with

r+ ≤ 1− µX(e′) < r+ + ε . (710)

We abbreviate

Y = Y + ∪ {e′} . (711)

Then obviously

1− r+

< r+ becauser+ > 1
2

= min(inf{µX(e) : e ∈ Y +}, inf{1− µX(e) : e /∈ Y +}) by (701), Def. 83

≤ min(inf{µX(e) : e ∈ Y +}, inf{1− µX(e) : e /∈ Y +, e 6= e′}) ,

i.e.

1− r+ < min(inf{µX(e) : e ∈ Y \ {e}}, inf{1− µX(e) : e /∈ Y }) (712)

by (711). We also notice that

1− r+ ≥ ΞY (X) by L-125

= min(inf{µX(e) : e ∈ Y },
inf{1− µX(e) : e /∈ Y }) by Def. 83

= min{inf{µX(e) : e ∈ Y \ {e′}},
inf{1− µX(e) : e /∈ Y }, µX(e′)} . becausee′ ∈ Y by (711)

Recalling (712), we conclude that thatµX(e′) ≤ 1− r+ and

ΞY (X) = µX(e′) . (713)

In turn, we obtain from (710) thatΞY (X) = µX(e′′) > 1−r+−ε. BecauseΞY (X) ∈
DX \ {r+}, we deduce that

supDX \ {r+} ≥ ΞY (X) > 1− r+ − ε .

ε→ 0 yieldssupDX \ {r+} ≥ 1− r+, as desired.

Lemma 128 LetE 6= ∅ be some base set and letX1, . . . , Xn ∈ P̃(E) wheren ≥ 0.
Then for allD′ ⊆ DX1,...,Xn withD′ 6= ∅, inf D′ ∈ DX1,...,Xn .
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Proof The claim is vacuous forn = 0, and for similar reasons as above, it is sufficient
to restrict attention ton = 1 in order to cover the remaining cases. Hence letX ∈
P̃(E) and suppose thatD′ ⊆ DX ,D′ 6= ∅.
We first treat the case thatinf D′ ≥ 1

2 . ThenD′ ⊆ [ 1
2 , 1], i.e.D′ = D′ ∩ [ 1

2 , 1] ⊆
D ∩ [ 1

2 , 1] = {r+} by L-126. BecauseD′ 6= ∅ by assumption, we conclude that
D′ = {r+} andinf D′ = r+ ∈ DX by L-123.

In the remaining case thatinf D′ < 1
2 , we abbreviate

r = inf D′ . (714)

We now defineY ∈ P(E) by

Y = {e ∈ E : µX(e) ∈ [r, 1
2 ) ∪ (1− r, 1]} . (715)

In order to prove thatr = ΞY (X), let us first show thatΞY (X) ≥ r. We first notice
that

inf{µX(e) : µX(e) > 1− r} ≥ 1− r > r (716)

becauser = inf D′ < 1
2 . For similar reasons

inf{µX(e) : µX(e) ∈ [r, 1
2 )} ≥ r (717)

inf{1− µX(e) : µX(e) < r} ≥ 1− r > r (718)

inf{1− µX(e) : µX(e) ∈ [ 1
2 , 1− r]} ≥ r . (719)

Therefore

ΞY (X)
= min(inf{µX(e) : e ∈ Y }, inf{1− µX(e) : e /∈ Y }) by Def. 83

= min{inf{µX(e) : µX(e) > 1− r},
inf{µX(e) : µX(e) ∈ [r, 1

2 )},
inf{1− µX(e) : µX(e) < r},
inf{1− µX(e) : µX(e) ∈ [ 1

2 , 1− r]}}
≥ r . by (716)–(719)

It remains to be shown thatΞY (X) ≤ r. To this end, we consider a choice ofε > 0.
Becauser < 1

2 , 1
2 − r > 0. Without loss of generality, we can hence assume thatε is

chosen small enough that

ε < 1
2 − r . (720)

Recalling thatD′ 6= ∅ andr = inf D′ by (714), there existsr′ ∈ D′ with

r ≤ r′ < r + ε
2 . (721)

Becauser′ ∈ D′ ⊆ DX , there existsY ′ ∈ P(E) with

r′ = ΞY ′(X) . (722)
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We now notice that eitherΞY ′(X) = inf{µX(e) : e ∈ Y ′} or ΞY ′(X) = inf{1 −
µX(e) : e /∈ Y ′}, see Def. 83. It proves useful to treat these cases separately.

In the case thatΞY ′(X) = inf{µX(e) : e ∈ Y ′}, there existse′ ∈ Y ′ with µX(e′) <
ΞY ′(X) + ε

2 . Hence

r ≤ µX(e′) < ΞY ′(X) + ε
2 < r + ε < 1

2 (723)

by (720)–(722). HenceµX(e′) ∈ [r, 1
2 ), i.e.e′ ∈ Y by (715). Therefore

ΞY (X) = min(inf{µX(e) : e ∈ Y }, inf{1− µX(e) : e /∈ Y }) by Def. 83

≤ inf{µX(e) : e ∈ Y }
≤ µX(e′) , becausee′ ∈ Y

i.e.

ΞY (X) < r + ε (724)

by (723).

In the remaining case thatΞY ′(X) = inf{1 − µX(e) : e /∈ Y ′}, there existse′′ ∈
E \ Y ′} with 1− µX(e′′) < ΞY ′(X) + ε

2 < r + ε, see (721) and (722). Hence

µX(e′′) > 1− r − ε > 1
2 (725)

by (720). On the other handr ≤ ΞY ′(X) ≤ 1− µX(e′′) by (721), (722) and Def. 83.
Consequently

µX(e′′) ≤ 1− r . (726)

We conclude from (715), (725) and (726) thate′′ /∈ Y . Therefore

ΞY (X) = min(inf{µX(e) : e ∈ Y }, inf{1− µX(e) : e /∈ Y }) by Def. 83

≤ inf{1− µX(e) : e /∈ Y }
≤ 1− µX(e′′) , becausee′ ∈ Y

i.e.

ΞY (X) < r + ε (727)

by (725).
Hence in both cases,ΞY (X) < r + ε by (724) and (727), respectively.ε → 0
yields ΞY (X) ≤= inf D′. This completes the proof that there existsY ∈ P(E)
with ΞY (X) = inf D′, i.e. inf D′ ∈ DX by Def. 84.

Proof of Theorem 92

Let E 6= ∅ be some base set andX1, . . . , Xn ∈ P̃(E). We know from L-126 that
DX1,...,Xn ∩ [ 1

2 , 1] = {r+}, wherer+ is defined by (701). We further know from L-
128 thatinf D′ ∈ DX1,...,Xn for all D′ ⊆ DX1,...,Xn , D′ 6= ∅. Finally in the case
that r+ > 1

2 , we know from L-127 thatsupDX1,...,Xn \ {r+} = 1 − r+. Hence
DX1,...,Xn ∈ D by Def. 85, as desired.
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B.2 Proof of Theorem 93

Lemma 129 For all semi-fuzzy quantifiersQ : P(E)n −→ I and allX1, . . . , Xn ∈
P̃(E),

∪{AQ,X1,...,Xn(z) : z ∈ I} = DX1,...,Xn .

Proof LetQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) be given. Then

∪{AQ,X1,...,Xn(z) : z ∈ I}
= ∪{{ΞY1,...,Yn(X1, . . . , Xn) : Q(Y1, . . . , Yn) = z} : z ∈ I} by Def. 86

= {ΞY1,...,Yn(X1, . . . , Xn) : Q(Y1, . . . , Yn) = z for some z ∈ I}
= {ΞY1,...,Yn(X1, . . . , Xn) : Y1, . . . , Yn ∈ P(E)}
= DX1,...,Xn . by Def. 84

Proof of Theorem 93

LetQ : P(E)n −→ I be a semi-fuzzy quantifier. Further suppose that fuzzy argument
setsX1, . . . , Xn ∈ P̃(E) are given. To see thatAQ,X1,...,Xn ∈ A, we first notice that

∪{AQ,X1,...,Xn(z) : z ∈ I} = DX1,...,Xn ∈ D (728)

by L-129 and Th-92. Recalling Def. 87, it remains to be shown that for allz, z′ ∈ I,
supA(z) > 1

2 andsupA(z′) > 1
2 entails thatz = z′.

Hence let us chooseY +
1 , . . . , Y +

n ∈ P(E) according to (700) and suppose thatr+ is
defined in terms of theY +

i according to (701).
If r+ = 1

2 , thenDX1,...,Xn ⊆ [0, 1
2 ] by L-124. Hence by (728),supAQ,X1,...,Xn(z) ≤

1
2 for all z ∈ I, i.e. we are done because the above condition is vacuous in this case.
In the remaining case thatr+ > 1

2 , we know from L-123 and L-127 thatY +
1 , . . . , Y +

n

is the only choice of crisp subsets withΞY +
1 ,...,Y +

n
(X1, . . . , Xn) = r+, and that for all

Y1, . . . , Yn ∈ P(E) with (Y1, . . . , Yn) 6= (Y +
1 , . . . , Y +

n ), ΞY1,...,Yn(X1, . . . , Xn) ≤
1− r+ < 1

2 . Hencez = Q(Y +
1 , . . . , Y +

n ) is the only choice ofz ∈ I with

supAQ,X1,...,Xn(z) = r+ > 1
2 ,

and for allz′ 6= z, supAQ,X1,...,Xn(z) ≤ 1− r+ < 1
2 , as desired.

B.3 Proof of Theorem 94

Let a choice ofA ∈ A be given andD(A) = ∪{A(z) : z ∈ I}.

a. D(A) = {1}.
ThenA(z+) = {1} andA(z) = ∅ for z 6= z+, see Def. 87. Now we consider
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Q : P({∗})0 −→ I defined byQ(∅) = z+, where∅ is the empty tuple. BecauseQ is
defined on the empty tuple only andQ(∅) = z+, we obtain

A
(0)
Q,∅(z+) = {Ξ(0)

∅
(∅)} by Def. 86

= {1} by Def. 83

= A(z+)

and

A
(0)
Q,∅(z) = ∅ = A(z)

for z 6= z+. Hence indeedA = A
(0)
A,∅, as desired.

b. D(A) 6= {1}.
In this case, let us suppose thatQ : P(I× I) −→ I andX ∈ P̃(I ∈ I) are defined
by (69) and (66), respectively. In order to prove thatA = AQ,X , we consider some
z0 ∈ I. Let us now prove in turn thatAQ,X(z0) ⊆ A(z0) andA(z0) ⊆ AQ,X(z0).

a.: AQ,X(z0) ⊆ A(z0).
To see this, considerr0 ∈ AQ,X(z0). By Def. 86, there existsY ∈ P(I× I) with
r′ = ΞY (X) = r0 andQ(Y ) = z0. Now letz′ = inf{z ∈ I : (z, r0) ∈ Y, r0 ∈ A(z)}
as in (68). We can then conclude fromQ(Y ) = z0 and (69) that eitherQ(Y ) = ζ(r0),
orQ(Y ) 6= ζ(r0), in which caseQ(Y ) = z′.

• In the former case we hence obtainz0 = Q(Y ) = ζ(r0). It is then immediate
from (64) thatr0 ∈ A(ζ(r0)) = A(z0).

• In the second case we conclude from (69) andQ(Y ) 6= ζ(r0) thatr0 ∈ A(z′)
andQ(Y ) = z′. Becausez0 = Q(Y ) = z′, this proves the desiredr0 ∈ A(z0).

b.: A(z0) ⊆ AQ,X(z0).
To see this, considerr0 ∈ A(z0). Recalling Def. 86, we must show that there exists
Y ∈ P(I× I) with Q(Y ) = z0 andΞY (X) = r. In the following, it is beneficial to
discern two main cases.

b.1: r0 >
1
2
.

In this case, we know from Def. 85 that

r0 = r+ . (729)

Now considerY = ∅. Then

r′ = ΞY (X) by (67)

= inf{1− µX(z, r) : z, r ∈ I} by Def. 83

= min(inf{1− r : z ∈ I, r ∈ A(z) \ {r+}},
inf{1− r− : z ∈ I, r /∈ A(z) ∨ r = r+})
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i.e.

r′ = min(inf{1− r : z ∈ I, r ∈ A(z) \ {r+}},
inf{1− r− : z ∈ I, r /∈ A(z) ∨ r = r+})

(730)

Now we recall from (729) and the assumption of caseb.1 thatr+ = r0 >
1
2 . Therefore

inf{1− r : z ∈ I, r ∈ A(z) \ {r+}} = 1− supD(A) \ {r+} = 1− (1− r+) = r+

(731)

by (62) and Def. 85. In addition

inf{1− r− : z ∈ I, r /∈ A(z) ∨ r = r+}) = inf{1− r−} = 1− r− (732)

because there existsz ∈ I with r+ ∈ A(z). Combining these results,

r′ = min(inf{1− r : z ∈ I, r ∈ A(z) \ {r+}},
inf{1− r− : z ∈ I, r /∈ A(z) ∨ r = r+}) by (730)

= min(r+, 1− r−)
= r+ by (65)

= r0 . by (729)

This finishes the proof that

r′ = r0 = r+. (733)

It remains to be shown thatQ(Y ) = z0. Becauser0 = r+ ∈ A(z0) andr+ > 0, we
conclude from Def. 87 thatz0 is the only choice ofz ∈ I with

r0 = r+ ∈ A(z) . (734)

Hence

ζ(r0) = z0 (735)

by (64). We first deduce from (68) andY = ∅ that

z′ = inf{z ∈ I : (z, r′) ∈ Y andr′ ∈ A(z)} = inf ∅ = 1 .

Hence ifr+ ∈ A(1), then

Q(Y ) = 1 by (69)

= z0 . by (734)

In the remaining case thatr′ /∈ A(1), the result is

Q(Y ) = ζ(r0) by (69)

= z0 . by (735)

Hence indeedr′ = r0 andQ(Y ) = z0, i.e.r0 ∈ AQ,X(z0), as desired.
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b.2: r0 ≤ 1
2
.

In this case, we defineY ∈ P(I× I) by

Y = {(z0, r0)} ∪ {(z, r) : r ∈ A(z) ∩ (r0,
1
2 ]} . (736)

To see thatr0 = ΞY (X), we first considerinf{µX(z, r) : (z, r) ∈ Y }. Based on
(736), we can rewrite this as

inf{µX(z, r) : (z, r) ∈ Y } = min(µX(z0, r0), inf{µX(z, r) : r ∈ A(z) ∩ (r0,
1
2 ]}) .
(737)

As concernsµX(z0, r0), we reason as follows.

• If r0 = 1
2 , thenr0 = r+ = 1

2 , which is immediate from Def. 85. Consequently

µX(z0, r0) = 1
2 by (66)

= r0 . by assumption onr0

• If r0 <
1
2 , thenr0 6= r+ becauser+ ≥ 1

2 . We can hence conclude fromr0 ∈
A(z0) thatr0 ∈ A(z0)\{r+}. In turn, we obtain from (66) thatµX(z0, z0) = r0.

Hence

µX(z0, r0) = r0 . (738)

Let us now turn toinf{µX(z, r) : r ∈ A(z) ∩ (r0,
1
2 ]}.

• If r0 = r+ = 1
2 , then(r0,

1
2 ] = ( 1

2 ,
1
2 ] = ∅ and henceinf{µX(z, r) : r ∈

A(z) ∩ (r0,
1
2 ]} = inf ∅ = 1 ≥ r0.

• If r0 < r+ = 1
2 , then

inf{µX(z, r) : r ∈ A(z) ∩ (r0,
1
2 ])

= min(inf{µX(z, 1
2 ) : 1

2 ∈ A(z)},
inf{µX(z, r) : r ∈ A(z) ∩ (r0,

1
2 )})

= min(inf{1− r− : 1
2 ∈ A(z)},

inf{r : r ∈ A(z) ∩ (r0,
1
2 )}) by (66)

= min(inf{ 1
2 : 1

2 ∈ A(z)}, inf{r : r ∈ A(z) ∩ (r0,
1
2 )}) by (65) andr+ = 1

2

≥ r0 . becauser0 <
1
2

• If r+ > 1
2 , thenA(z) ∩ [0, 1

2 ] = A(z) \ {r+}, see Def. 85. Hence

inf{µX(z, r) : r ∈ A(z) ∩ (r0,
1
2 ]}

= inf{r : r ∈ A(z) ∩ (r0,
1
2 ]} by (66)

≥ r0 .
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This proves that

inf{µX(z, r) : r ∈ A(z) ∩ (r0,
1
2 ]} ≥ r0 . (739)

Combining (738) and (739), we obtain from (737) that

inf{µX(z, r) : (z, r) ∈ Y } = r0 . (740)

Next we focus on

inf{1− µX(z, r) : (z, r) /∈ Y }
= inf{1− µX(z, r) : r /∈ A(z) ∩ (r0,

1
2 ] ∧ (z, r) 6= (z0, r0)}

by (736). Noticing thatr0 ∈ A(z0) , we can further decompose this into

inf{1− µX(z, r) : (z, r) /∈ Y } = min(inf{1− µX(z, r) : r ∈ A(z) ∧ r > 1
2},

inf{1− µX(z, r) : r ∈ A(z) ∧ r ≤ r0

∧(z, r) 6= (z0, r0)},
inf{µX(z, r) : r /∈ A(z)}} .

(741)

Let us now consider theinf-subexpressions in turn. As concernsinf{1 − µX(z, r) :
r ∈ A(z) ∧ r > 1

2}, we obtain the following.

• if r+ = 1
2 , thenD(A) ⊆ [0, 1

2 ] by Def. 85 and henceinf{1 − µX(z, r) : r ∈
A(z) ∧ r > 1

2} = inf ∅ = 1 ≥ r0.

• if r+ > 1
2 , thenD(A) ∩ [ 1

2 , 1] = {r+} and hence

inf{1− µX(z, r) : r ∈ A(z) ∧ r > 1
2}

= inf{1− r−} by (66)

≥ 1− (1− r+) by (65)

= r+

> 1
2 by assumption of this case

≥ r0 .

Summarizing,

inf{1− µX(z, r) : r ∈ A(z) ∧ r > 1
2} ≥ r0} . (742)

Let us now turn toinf{1− µX(z, r) : r ∈ A(z) ∧ r ≤ r0 ∧ (z, r) 6= (z0, r0)}.

• If r = 1
2 , thenr+ = 1

2 , which is apparent from Def. 85. Hence

1− µX(z, r) = 1− 1
2 by (66)

= 1
2

= r by assumption of present case

≤ r0 .
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• If r < 1
2 , thenr < r+ becauser+ ≥ 1

2 . Hencer ∈ A(z) entails thatr ∈
A(z) \ {r+}, i.e.µX(z, r) = r ≤ r0 by (66). In particular1− µX(z, r) ≥ r0.

These results can be summarized as

inf{1− µX(z, r) : r ∈ A(z) ∧ r ≤ r0 ∧ (z, r) 6= (z0, r0)} ≥ r0 . (743)

Finally we considerinf{1 − µX(z, r) : r /∈ A(z)}}. Hence letz, r ∈ I such that
r /∈ A(z). Then

1− µX(z, r) = 1− r− by (66)

≥ 1− (1− r+) by (65)

= r+

≥ 1
2 by Def. 85

≥ r0 .

Therefore

inf{1− µX(z, r) : r /∈ A(z)} ≥ r0 . (744)

Recalling (741), we can now utilize inequations (742), (743) and (744) to conclude
that

inf{1− µX(z, r) : (z, r) /∈ Y } ≥ r0 . (745)

This finally proves the desired

ΞY (X) = min(inf{µX(z, r) : (z, r) ∈ Y },
inf{1− µX(z, r) : (z, r) /∈ Y }) by Def. 83

= r0 , by (740), (745)

i.e.

r′ = ΞY (X) = r0 (746)

by (67). It remains to be shown thatQ(Y ) = z0. To this end, we simply notice that

z′ = inf{z : (z, r′) ∈ Y ∧ r′ ∈ A(z)} by (68)

= inf{z : (z, r0) ∈ Y ∧ r0 ∈ A(z)} by (746)

= inf{z0} by (736)

= z0 .

HenceY ∈ P(I× I) as defined by (736) indeed yieldsΞY (X) = r0 and

Q(Y ) = z0, (747)

i.e. r0 ∈ AQ,X(z0).
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B.4 Proof of Theorem 95

LetD ∈ D be given.

a.: D = {1}.
In this case, consider the empty tuple∅ ∈ P({∗})0. Then

D
(0)
∅

= {Ξ(0)
Y (∅) : Y ∈ P({∗})0} by Def. 84

= {Ξ(0)
Y (∅) : Y ∈ {∅}} (unique empty tuple)

= {Ξ(0)
∅

(∅)}
= {1} . by Def. 83

b.: D 6= {1}.
In this case we defineA : I −→ P(I) by

A(z) =
{
D : z = 1
∅ : z 6= 1 (748)

for all z ∈ I. It is then apparent from Def. 87 thatA ∈ A. Now let us defineX ∈
P̃(I× I) by (66). Then by Th-94,A = AQ,X . Hence

D = ∪{A(z) : z ∈ I} by (748) (749)

= D(A) by (62) (750)

= D(AQ,X) by Th-94 (751)

= DX , by L-129 and (62) (752)

as desired.

B.5 Proof of Theorem 96

In order to prove the theorem, it is useful to introduce a slightly stronger condition on
ψ : A −→ I, which states that for allA ∈ A,

If VL (A) = {z} for somez ∈ I andr+ = 1, thenψ(A) = z. (ψ-1′)

The new condition is apparently stronger than (ψ-1). Conversely, it is entailed by (ψ-1)
in the case that (ψ-5) is valid as well.

Lemma 130 Suppose thatψ : A −→ I satisfies(ψ-1) and(ψ-5). Thenψ also satisfies
(ψ-1′).

Proof To see this, considerA ∈ A with VL(A) = {z′} for somez′ ∈ I andr+ = 1.
We defineA′ ∈ A by

A′(z) =
{
{1} : z = z′

∅ : else

261



for all z ∈ I. It is then immediate from Def. 91 that

�A′ = �A . (753)

In addition,A′ apparently hasD(A′) = {1} andz+ = z+(A′) = z′, see (63), i.e. (ψ-1)
is applicable. Therefore

ψ(A) = ψ(�A) by (ψ-5)

= ψ(�A′) by (753)

= ψ(A′) by (ψ-5)

= z′ . by (ψ-1)

Lemma 131 LetE 6= ∅ be given andn ∈ N. Then for allY1, . . . , Yn, Z1, . . . , Zn ∈
P(E),

ΞY1,...,Yn(Z1, . . . , Zn) =
{

1 : Yi = Zi for all i ∈ {1, . . . , n}
0 : Yi 6= Zi for somei ∈ {1, . . . , n}.

Proof To see this, we notice that for alle ∈ E,

δZi,Yi(e) =


0 : e ∈ Yi ande /∈ Zi
1 : e ∈ Yi ande ∈ Zi
1 : e /∈ Yi ande /∈ Zi
0 : e /∈ Yi ande ∈ Zi

(754)

by (60). Therefore

ΞY1,...,Yn(Z1, . . . , Zn) = inf{δZi,Yi(e) : e ∈ E, i = 1, . . . , n} by (61)

=
{

1 : Zi = Yi for all i ∈ {1, . . . , n}
0 : Zi 6= Yi for somei ∈ {1, . . . , n}, by (754)

as desired.

Lemma 132 Supposeψ : A −→ I satisfies(ψ-1′). Then for all semi-fuzzy quantifiers
Q : P(E)n −→ I, U(Fψ)(Q) = Q.

Proof Let a semi-fuzzy quantifierQ : P(E)n −→ I and a choice ofcrisparguments
Z1, . . . , Zn ∈ P(E) be given. We then know from L-131 thatΞZ1,...,Zn(Z1, . . . , Zn) =
1, in particular1 ∈ AQ,Z1,...,Zn(z), where

z = Q(Z1, . . . , Zn) , (755)

and hence

r+ = 1 . (756)
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We also know from L-131 thatΞY1,...,Yn(Z1, . . . , Zn) = 0 for all (Y1, . . . , Yn) 6=
(Z1, . . . , Zn). In particularAQ,Z1,...,Zn(z′) ⊆ {0} for all z′ ∈ I \ {z}, i.e.

VL(AQ,Z1,...,Zn) = {z} (757)

Combining (756)–(757), we observe thatAQ,Z1,...,Zn satisfies the requirements of
(ψ-1′). Hence

ψ(AQ,Z1,...,Zn) = z = Q(Z1, . . . , Zn) (758)

by (755). Therefore we obtain the desired

Fψ(Q)(Z1, . . . , Zn) = ψ(AQ,(Z1,...,Zn)) by Def. 88

= Q(Z1, . . . , Zn) . by (758)

Proof of Theorem 96

We recall from L-130 thatψ also satisfies (ψ-1′). The theorem is hence entailed by
L-132, because (Z-1) requiresU(Fψ)(Q) = Q only in the case thatn ∈ {0, 1}.

B.6 Proof of Theorem 97

Lemma 133 LetE 6= ∅ be some base set,n ∈ N andX1, . . . , Xn ∈ P̃(E). Then for
all Y1, . . . , Yn ∈ P(E), the following are equivalent.

a. (Y1, . . . , Yn) ∈ T0(X1, . . . , Xn);

b. ΞY1,...,Yn(X1, . . . , Xn) ≥ 1
2 .

Proof

a.→b.:
Suppose that(Y1, . . . , Yn) ∈ T0(X1, . . . , Xn). Hence by Def. 31,

Xi
>

1
2
⊆ Yi ⊆ Xi≥ 1

2
,

for i = 1, . . . , n. Recalling Def. 29, we conclude that

µXi(e) ≥ 1
2 (759)

for all e ∈ Yi. In addition, we conclude fromXi
>

1
2
⊆ Yi and Def. 30 thatµXi(e) ≤ 1

2 ,

and hence

1− µXi(e) ≥ 1
2 , (760)
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for all e /∈ Yi. Therefore

ΞY1,...,Yn(X1, . . . , Xn)

=
n
∧
i=1

min(inf{µXi(e) : e ∈ Yi}, 1− µXi(e) : e /∈ Y }) by Def. 83

≥ 1
2 , by (759), (760)

as desired.

b.→a.:
Suppose thatΞY1,...,Yn(X1, . . . , Xn) ≥ 1

2 . ThenΞYi(Xi) ≥ 1
2 for all i = 1, . . . , n

(see Def. 83), which in turn yields

inf{µXi(e) : e ∈ Yi} ≥ 1
2 (761)

inf{1− µXi(e) : e /∈ Yi} ≥ 1
2 . (762)

Now consider somee ∈ Yi. We then obtain from (761) thatµXi(e) ≥ 1
2 , i.e.e ∈ Xi≥ 1

2
by Def. 29. In particulare ∈ Xi

max
0 by Def. 31. This proves that

Yi ⊆ Xi
max
0 . (763)

Next we considere ∈ Xi
min
0 , i.e.e ∈ Xi

>
1
2

andµXi(e) >
1
2 by Def. 31 and Def. 30.

We hence know that

1− µXi(e) < 1
2 . (764)

The proof thate ∈ Yi is by contradiction. Hence suppose thate /∈ Yi. Then

inf{1− µXi(e′) : e′ /∈ Yi}
≤ 1− µXi(e) becausee /∈ Yi for the givene

< 1
2 . by (764)

This contradicts (762). Hence the assumptione /∈ Yi is false, i.e.e ∈ Yi. This proves
that

Xi
min
0 ⊆ Yi . (765)

Combining (763) and (765), we obtain from Def. 31 thatYi ∈ T0(Xi). Because
i ∈ {1, . . . , n} was arbitrary, this finishes the proof of the desired(Y1, . . . , Yn) ∈
T0(X1, . . . , Xn).

Lemma 134 LetE 6= ∅ be some base set,n ∈ N andX1, . . . , Xn ∈ P̃(E). Further
suppose thatY1, . . . , Yn ∈ P(E) is a choice of crisp subsets ofE. We abbreviate

γ = max(0, 1− 2ΞY1,...,Yn(X1, . . . , Xn)) . (766)

Then

(Y1, . . . , Yn) ∈ Tγ′(X1, . . . , Xn)

for all γ′ > γ.
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Proof To see this, letX1, . . . , Xn ∈ P̃(E) andY1, . . . , Yn ∈ P(E) be given. Let us
now considerγ defined by equation (766).
In the case thatγ = 0, we know from (766) thatΞY1,...,Yn(X1, . . . , Xn) ≥ 1

2 . We now
recall L-133, which states thatY1, . . . , Yn ∈ T0(X1, . . . , Xn) in this case. Noticing
thatT0(X1, . . . , Xn) ⊆ Tγ′(X1, . . . , Xn) for all γ′ ≥ 0, this proves the claim of the
present lemma.
Now let us consider the remaining case thatγ > 0. Then (766) can be simplified as
follows.

γ = 1− 2ΞY1,...,Yn(X1, . . . , Xn) . (767)

In other words,ΞY1,...,Yn(X1, . . . , Xn) = 1
2 −

1
2γ and hence

inf{µXi(e) : e ∈ Yi} ≥ 1
2 −

1
2γ (768)

inf{1− µXi(e) : e /∈ Yi} ≥ 1
2 −

1
2γ , (769)

which is immediate from Def. 83.
Now let γ′ > γ be given. First we consider somee ∈ Yi. ThenµXi(e) ≥ 1

2 −
1
2γ >

1
2 −

1
2γ
′ by (768). Hencee ∈ Xi

>
1
2−

1
2γ
′ = Xi

max
γ′ by Def. 30 and Def. 31. This

proves that

Yi ⊆ Xi
max
γ′ . (770)

Finally we considere ∈ Xi
min
γ′ , i.e.e ∈ Xi≥ 1

2 +
1
2γ
′ and henceµXi(e) ≥ 1

2 + 1
2γ
′ by

Def. 31 and Def. 29. In particular

1− µXi(e) ≤ 1
2 −

1
2γ
′ < 1

2 −
1
2γ . (771)

The proof thate ∈ Yi is by contradiction. Hence let us assume to the contrary that
e /∈ Yi. Then

γ = 1− 2ΞY1,...,Yn(X1, . . . , Xn) by (767)

≤ 1− 2 inf{1− µXi(e′) : e′ /∈ Yi} apparent from Def. 83

≤ 1− 2(1− µXi(e)) becausee /∈ Yi for the givene

< 1− 2( 1
2 −

1
2γ) by (771)

= 1− 1 + γ

= γ .

Henceγ < γ, a contradiction. This prove that the assumptione /∈ Yi is false, in fact it
holds thate ∈ Yi. Becausee ∈ Xi

min
γ′ was arbitrarily chosen, this proves that

Xi
min
γ′ ⊆ Yi . (772)

Combining equations (770) and (772), we obtain from Def. 31 thatYi ∈ Tγ′(Xi).
Becausei ∈ {1, . . . , n} was arbitrary, this completes the proof that(Y1, . . . , Yn) ∈
Tγ′(X1, . . . , Xn).
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Lemma 135 Suppose thatE 6= ∅ is some base set andX1, . . . , Xn ∈ P̃(E), n ∈ N.
Further letY1, . . . , Yn ∈ P(E) be given. We again abbreviate

γ = max(0, 1− 2ΞY1,...,Yn(X1, . . . , Xn)) . (773)

Then

(Y1, . . . , Yn) /∈ Tγ′(X1, . . . , Xn)

for all γ′ < γ.

Proof The claim of the lemma is vacuous ifγ = 0. Hence suppose thatγ > 0 and
consider a choice ofγ′ < γ. In this case, (773) reduces to

γ = 1− 2ΞY1,...,Yn(X1, . . . , Xn) .

Hence

ΞY1,...,Yn(X1, . . . , Xn) = 1
2 −

1
2γ <

1
2 −

1
2γ
′ . (774)

Let us also notice that

ΞY (X) =
n
∧
i=1

min(inf{µXi(e) : e ∈ Yi}, inf{1− µXi(e) : e /∈ Yi}) by Def. 83

= min(
n
∧
i=1

inf{µXi(e) : e ∈ Yi},
n
∧
i=1

inf{1− µXi(e) : e /∈ Yi}) .

It is hence sufficient to discern the following two cases.

a.: ΞY1,...,Yn(X1, . . . , Xn) =
n
∧
i=1

inf{µXi(e) : e ∈ Yi}.
In this case, we can deduce from (774) that there existsi ∈ {1, . . . , n} ande′ ∈ Yi
with µXi(e

′) < 1
2 −

1
2γ
′. Hencee′ /∈ Xi≥ 1

2−
1
2γ
′ ⊇ Xi

max
γ′ for the givene′ ∈ Yi,

see Def. 29 and Def. 31. In particularYi 6⊆ Xi
max
γ′ . By Def. 31, this proves that

Yi /∈ Tγ′(Xi), which results in(Y1, . . . , Yn) /∈ Tγ′(X1, . . . , Xn) = Tγ′(Xi) × · · · ×
Tγ′(Xn), as desired.

b.: ΞY1,...,Yn(X1, . . . , Xn) =
n
∧
i=1

inf{1− µXi(e) : e /∈ Yi}.
In this case, we conclude from (774) that there existsi ∈ {1, . . . , n} ande′ ∈ E \ Yi
with 1−µXi(e′) < 1

2 −
1
2γ
′, i.e.µXi(e

′) > 1
2 + 1

2γ
′. Hencee′ ∈ Xi

>
1
2 +

1
2γ
′ ⊆ Xi

min
γ′

by Def. 30 and Def. 31. Becausee′ /∈ Yi, it witnesses the failure ofXi
min
γ′ ⊆ Yi. Hence

Yi /∈ Tγ′(Xi) by Def. 31 and in turn,(Y1, . . . , Yn) /∈ Tγ(X1, . . . , Xn).

Lemma 136 LetE 6= ∅ be some base set,X1, . . . , Xn ∈ P̃(E), Y1, . . . , Yn ∈ P(E)
andγ ∈ I. If (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn), thenΞY1,...,Yn(X1, . . . , Xn) ≥ 1

2−
1
2γ.
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Proof Let (Y1, . . . , Yn) ∈ Tγ(X1, . . . , Xn) be given. The proof is by contradic-
tion. Hence let us assume thatΞY1,...,Yn(X1, . . . , Xn) < 1

2 −
1
2γ, i.e. γ < 1 −

2ΞY1,...,Yn(X1, . . . , Xn). This is only possible if1 − 2ΞY1,...,Yn(X1, . . . , Xn) > 0,
hence1 − 2ΞY1,...,Yn(X1, . . . , Xn) = max(0, 1 − 2ΞY1,...,Yn(X1, . . . , Xn)) in this
case. We can hence apply L-135 and conclude that(Y1, . . . , Yn) /∈ Tγ(X1, . . . , Xn),
a contradiction. Hence the assumption thatΞY1,...,Yn(X1, . . . , Xn) < 1

2 −
1
2γ is false,

and it indeed holds thatΞY1,...,Yn(X1, . . . , Xn) ≥ 1
2 −

1
2γ.

Lemma 137 LetQ : P(E)n −→ I, X1, . . . , Xn ∈ P̃(E) andz ∈ I be given. Then
for all γ′ > s(AQ,X1,...,Xn)(z), z ∈ SQ,X1,...,Xn(γ′).

Proof

a.: supAQ,X1,...,Xn(z) ≤ 1
2
.

Then (80) reduces tos(AQ,X1,...,Xn)(z) = 1 − 2 supAQ,X1,...,Xn(z) ≥ 0, andγ′ >
s(AQ,X1,...,Xn)(z) can be reformulated into

1
2 −

1
2γ
′ < supAQ,X1,...,Xn(z) . (775)

We first consider the special case thatAQ,X1,...,Xn(z) = ∅. Then apparently

supAQ,X1,...,Xn(z) = 0 and s(AQ,X1,...,Xn)(z) = 1 ,

i.e. the condition is vacuous becauseγ′ > 1 is not possible forγ′ ∈ I.
Hence let us assume thatAQ,X1,...,Xn(z) 6= ∅. Recalling (775), this entails that there
existsr ∈ AQ,X1,...,Xn(z) with 1

2 −
1
2γ
′ < r ≤ supAQ,X1,...,Xn(z). By Def. 86, then,

there existsY ′1 , . . . , Y
′
n ∈ P(E) with

Q(Y ′1 , . . . , Y
′
n) = z (776)

1
2 −

1
2γ
′ < ΞY ′1 ,...,Y ′n(X1, . . . , Xn) = r ≤ supAQ,X1,...,Xn(z) . (777)

We conclude from (777) that

γ′ > 1− 2ΞY ′1 ,...,Y ′n(X1, . . . , Xn) = max(0, 1− 2ΞY ′1 ,...,Y ′n(X1, . . . , Xn)) .

Hence L-134 is applicable, from which we obtain that(Y ′1 , . . . , Y
′
n) ∈ TX1,...,Xn(γ′).

In turn, we conclude from Def. 51 thatz = Q(Y ′1 , . . . , Y
′
n) ∈ SQ,X1,...,Xn(γ′), as

desired.

b.: supAQ,X1,...,Xn(z) > 1
2
.

In this case, we know from (80) that

s(AQ,X1,...,Xn)(z) = 0 . (778)

We then know from L-123 and L-124 that

supAQ,X1,...,Xn(z) = r+ = ΞY +
1 ,...,Y +

n
(X1, . . . , Xn) (779)
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and

Q(Y +
1 , . . . , Y +

n ) = z , (780)

whereY +
1 , . . . , Y +

n ∈ P(E) are defined by (700). In particular, we notice from (779)
thatΞY +

1 ,...,Y +
n

(X1, . . . , Xn) ≥ 1
2 . Hence

(Y +
1 , . . . , Y +

n ) ∈ T0(X1, . . . , Xn) ⊆ Tγ′(X1, . . . , Xn) (781)

by L-133 and Def. 31. Combining (780) and (781), we obtain from Def. 51 thatz =
Q(Y +

1 , . . . , Y +
n ) ∈ SQ,X1,...,Xn(γ′), as desired.

Lemma 138 LetQ : P(E)n −→ I,X1, . . . , Xn ∈ P̃(E) andz ∈ I be given.
If γ′ < s(AQ,X1,...,Xn)(z), thenz /∈ SQ,X1,...,Xn(γ′).

Proof The claim of the lemma is vacuous ifs(AQ,X1,...,Xn)(z) = 0. Hence suppose
thats(AQ,X1,...,Xn)(z) > 0, i.e.

s(AQ,X1,...,Xn)(z) = 1− 2 · supAQ,X1,...,Xn(z) > 0 (782)

by (80). Now let

γ′ < s(AQ,X1,...,Xn) = 1− 2 supAQ,X1,...,Xn(z) . (783)

I will show that for all (Y1, . . . , Yn) ∈ Q−1(z), (Y1, . . . , Yn) /∈ Tγ′(X1, . . . , Xn).
Hence consider a choice of(Y1, . . . , Yn) ∈ Q−1(z). Then

supAQ,X1,...,Xn

= sup{ΞY ′1 ,...,Y ′n(X1, . . . , Xn) : (Y ′1 , . . . , Y
′
n) ∈ Q−1(z)} by Def. 86

≥ ΞY1,...,Yn(X1, . . . , Xn) .

Hence1− 2ΞY1,...,Yn(X1, . . . , Xn) ≥ 1− 2 supAQ,X1,...,Xn(z) and in turn,

max(0, 1− 2ΞY1,...,Yn(X1, . . . , Xn)) ≥ max(0, 1− 2 supAQ,X1,...,Xn(z))
= 1− 2 supAQ,X1,...,Xn(z)

by (80) and (782). We then obtain from (783) that

γ′ < max(0, 1− 2ΞY1,...,Yn(X1, . . . , Xn)) .

Hence by L-135,

(Y1, . . . , Yn) /∈ Tγ′(X1, . . . , Xn) .

Because(Y1, . . . , Yn) ∈ Q−1(z) was arbitrary, this proves thatz /∈ SQ,X1,...,Xn(γ′),
see Def. 51.
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Proof of Theorem 97

Let Q : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) be given. Further letz ∈ I. Let us
now apply the results of the previous lemmata. We know from L-137 that

inf{γ ∈ I : z ∈ SQ,X1,...,Xn(γ)} ≤ s(AQ,X1,...,Xn)(z) . (784)

We further known from L-138 that

inf{γ ∈ I : z ∈ SQ,X1,...,Xn(γ)} ≥ s(AQ,X1,...,Xn)(z) . (785)

Therefore

sQ,X1,...,Xn(z) = inf{γ ∈ I : z ∈ SQ,X1,...,Xn(γ)} by Def. 54

= s(AQ,X1,...,Xn)(z) , by (784), (785)

as desired.

B.7 Proof of Theorem 98

Let ω : L −→ I be given and suppose thatψ : A −→ I is defined by (81). In order to
prove thatFω = Fψ, we consider a semi-fuzzy quantifierQ : P(E)n −→ I and fuzzy
argumentsX1, . . . , Xn ∈ P̃(E). Then

Fω(Q)(X1, . . . , Xn) = ω(sQ,X1,...,Xn) by Def. 61

= ω(s(AQ,X1,...,Xn)) by Th-97

= ψ(AQ,X1,...,Xn) by (81)

= Fψ(Q)(X1, . . . , Xn) . by Def. 88

B.8 Proof of Theorem 99

Lemma 139 Consider a semi-fuzzy quantifierQ : P(E)n −→ I and a choice of
X1, . . . , Xn ∈ P̃(E). Then

A¬Q,X1,...,Xn(z) = AQ,X1,...,Xn(1− z) .

for all z ∈ I.

Proof Straightforward.

A¬Q,X1,...,Xn(z)

= {ΞY1,...,Yn(X1, . . . , Xn) : (Y1, . . . , Yn) ∈ ¬Q−1(z)} by Def. 86

= {ΞY1,...,Yn(X1, . . . , Xn) : (Y1, . . . , Yn) ∈ Q−1(1− z)} Def. 9,¬x = 1− x
= AQ,X1,...,Xn(1− z) . by Def. 86
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Proof of Theorem 99

We first notice that by Th-5, all standard DFSes coincide on two-valued quantifiers. It
is hence sufficient to show thatFψ coincide with an arbitrary standard DFS on two-
valued quantifiers. In the following, it will be convenient to show thatFψ coincides
with FP .
Now let a two-valued quantifierQ : P(E)n −→ 2 and a choice ofX1, . . . , Xn ∈
P̃(E) be given. BecauseQ is two-valued, we know that

AQ,X1,...,Xn(z) = {ΞY1,...,Yn(X1, . . . , Xn) : (Y1, . . . , Yn) ∈ Q−1(z)} = ∅ (786)

for all z ∈ (0, 1). Hence eitherr+ ∈ AQ,X1,...,Xn(1) or r+ ∈ AQ,X1,...,Xn(0). We
shall consider these cases in turn.

a.: r+ ∈ AQ,X1,...,Xn(1).
Recalling (786), we observe that (ψ-3) is applicable, which lets us deduce that

ψ(AQ,X1,...,Xn) = 1− supAQ,X1,...,Xn(0) . (787)

We further notice thatr+ ∈ AQ,X1,...,Xn(1) entails thatsupAQ,X1,...,Xn(0) ≤ 1
2 , see

L-124. Therefore

1− 2 supAQ,X1,...,Xn(0) = max(0, 1− 2 supAQ,X1,...,Xn(0)) = s(AQ,X1,...,Xn)(0) ,
(788)

see (80). We now proceed as follows.

Fψ(Q)(X1, . . . , Xn) = ψ(AQ,X1,...,Xn) by Def. 88

= 1− supAQ,X1,...,Xn(0) by (787)

= 1
2 + 1

2 (1− 2 supAQ,X1,...,Xn(0))

= 1
2 + 1

2s(AQ,X1,...,Xn)(0) by (788)

= 1
2 + 1

2sQ,X1,...,Xn(0) by Th-97

= ωP (sQ,X1,...,Xn) by (ω-3), Th-52

= FP (Q)(X1, . . . , Xn) , by Def. 61

as desired.

b. r+ ∈ AQ,X1,...,Xn(0).
In this case, we consider the standard negation¬Q : P(E)n −→ 2 of Q. Clearly
AQ,X1,...,Xn(z) = ∅ for z ∈ (0, 1) because¬Q is two-valued. In addition,r+ ∈
AQ,X1,...,Xn(0) entails thatr+ ∈ A¬Q,X1,...,Xn(1), see L-139. It is then apparent from
the proof of parta. of the present lemma that

Fψ(¬Q)(X1, . . . , Xn) = FP (¬Q)(X1, . . . , Xn) . (789)
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Therefore

Fψ(Q)(X1, . . . , Xn) = ψ(AQ,X1,...,Xn) by Def. 88

= 1− ψ(A¬Q,X1,...,Xn) by (ψ-2) and L-139

= 1−Fψ(¬Q)(X1, . . . , Xn) by Def. 88

= 1−FP (¬Q)(X1, . . . , Xn) by (789)

= 1− (1−FP (Q)(X1, . . . , Xn)) by Th-52, Th-2

= FP (Q)(X1, . . . , Xn) .

B.9 Proof of Theorem 100

Suppose thatψ : A −→ I satisfies (ψ-2) and (ψ-3). Now letE 6= ∅ be some base
set and consider somee ∈ E. Thenπe : P(E) −→ 2 is a two-valued quantifier, see
Def. 6. Hence

Fψ(πe) = FP (πe) by Th-99, Th-52 and Th-5

= π̃e . by Th-52 and (Z-2)

B.10 Proof of Theorem 101

Lemma 140 LetE 6= ∅ be some base set,X ∈ P̃(E) andY ∈ P(E). Then

Ξ¬Y (¬X) = ΞY (X) .

Proof To see this, consider the following chain of equations.

ΞY (X)
= min(inf{µX(e) : e ∈ Y },

inf{µX(e) : e /∈ Y }) by Def. 83

= min(inf{1− µ¬X(e) : e ∈ Y },
inf{µ¬X(e) : e /∈ Y }) by def. of fuzzy complement¬X

= min(inf{1− µ¬X(e) : e /∈ ¬Y },
inf{µ¬X(e) : e ∈ ¬Y }) by def. of crisp complement¬Y

= Ξ¬Y (¬X) . by Def. 83

Lemma 141 LetE 6= ∅ be some base set,X1, . . . , Xn ∈ P̃(E) andY1, . . . , Yn ∈
P(E) wheren > 0. Then

ΞY1,...,Yn−1,¬Yn(X1, . . . , Xn−1,¬Xn) = ΞY1,...,Yn(X1, . . . , Xn) .
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Proof Straightforward:

ΞY1,...,Yn−1,¬Yn(X1, . . . , Xn−1,¬Xn)

= min(
n−1
∧
i=1

ΞYi(Xi),Ξ¬Yn(¬Xn)) by Def. 83

= min(
n−1
∧
i=1

ΞYi(Xi),ΞYn(Xn)) by L-140

= ΞY1,...,Yn(X1, . . . , Xn) . by Def. 83

Lemma 142 LetQ : P(E)n −→ I be a semi-fuzzy quantifier of arityn > 0 and let
X1, . . . , Xn ∈ P̃(E). Then

AQ¬,X1,...,Xn = AQ,X1,...,Xn−1,¬Xn .

Proof Let us first observe that for a givenz ∈ I,

AQ¬,X1,...,Xn(z)

= {ΞY1,...,Yn(X1, . . . , Xn) : (Y1, . . . , Yn) ∈ (Q¬)−1(z)} by Def. 86

= {ΞY1,...,Yn−1,¬Yn(X1, . . . , Xn) : (Y1, . . . , Yn) ∈ Q−1(z)} by Def. 10

= {ΞY1,...,Yn(X1, . . . , Xn−1,¬Xn) : (Y1, . . . , Yn) ∈ Q−1(z)} by L-141

= AQ,X1,...,Xn−1,¬Xn(z) . by Def. 86

Becausez ∈ I was arbitrary, this proves thatAQ¬,X1,...,Xn = AQ,X1,...,Xn−1,¬Xn , as
desired.

Proof of Theorem 101

Suppose thatψ : A −→ I satisfies (ψ-2) and (ψ-3). We then know from Th-99 thatψ
induces the standard negation. Now letQ : P(E)n −→ I be a semi-fuzzy quantifier
of arity n > 0 and letX1, . . . , Xn ∈ P̃(E). Then

Fψ(Q�)(X1, . . . , Xn) = ψ(AQ�,X1,...,Xn) by Def. 88

= ψ(A¬Q¬,X1,...,Xn) by Def. 11

= 1− ψ(AQ¬,X1,...,Xn) by L-139 and (ψ-2)

= 1− ψ(AQ,X1,...,Xn−1,¬Xn) by L-142

= 1−Fψ(Q)(X1, . . . , Xn−1,¬Xn) by Def. 88

= ¬Fψ(Q)(X1, . . . , Xn−1,¬Xn) .

This completes the proof thatFψ satisfies (Z-3).
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B.11 Proof of Theorem 102

Suppose thatψ : A −→ I satisfies (ψ-5). In order to see that (ψ-5′) is valid, we
considerA ∈ A. We notice that for allz ∈ I,

sup�A(z) = min(supA(z), 1
2 ) = �A(z)

and hence

��A(z) = min(sup�A(z), 1
2 )

= min(supA(z), 1
2 ), 1

2 )

= min(supA(z), 1
2 )

= �A(z) ,

which is apparent from Def. 90 and Def. 91. Becausez ∈ I was arbitrary, this proves
that

��A = �A .

Henceψ(A) = ψ(�A) = ψ(��A) = ψ(�A), becauseψ satisfies (ψ-5).

B.12 Proof of Theorem 103

Lemma 143 Let E 6= ∅ be some base set,X1, X2 ∈ P̃(E) and Y1, Y2 ∈ P(E).
Further abbreviateX = X1 ∪X2 andY = Y1 ∪ Y2. Then

ΞY (X) ≥ ΞY1,Y2(X1, X2) .

Proof Let us recall from (61) that

ΞY (X) = inf{δX,Y (e) : e ∈ E}
ΞY1,Y2(X1, X2) = inf{min(δX1,Y1(e), δX2,Y2(e)) : e ∈ E} .

It is hence sufficient to show thatδX,Y (e) ≥ min(δX1,Y1(e), δX2,Y2(e)) for all e ∈ E.
Hence considere ∈ E. It is convenient to discern the following four cases.

a.: e /∈ Y1 and e /∈ Y2.
Hencee /∈ Y = Y1 ∪ Y2. Therefore

δX,Y (e) = 1− µX(e) by (60) ande /∈ Y
= 1−max(µX1(e), µX2(e)) becauseX = X1 ∪X2

= min(1− µX1(e), 1− µX2(e)) by De Morgan’s law

= min(δX1,Y1(e), δX2,Y2(e)) . by (60),e /∈ X1 ande /∈ X2
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b.: e ∈ Y1 and e /∈ Y2.
In this case,e ∈ Y = Y1 ∪ Y2. Therefore

δX,Y (e) = µX(e) by (60) ande ∈ Y
= max(µX1(e), µX2(e)) becauseX = X1 ∪X2

≥ µX1(e)
≥ min(µX1(e), 1− µX2(e))
= min(δX1,Y1(e), δX2,Y2(e)) . by (60),e ∈ Y1 ande /∈ Y2

c.: e /∈ Y1 and e ∈ Y2.
The proof of this case is analogous to that ofb., exchanging the roles ofX1, Y1 and
X2, Y2.

d.: e ∈ Y1 and e ∈ Y2.
In this case,e ∈ Y = Y1 ∪ Y2. Hence

δX,Y (e) = µX(e) by (60),e ∈ Y
= max(µX1(e), µX2(e)) becauseX = X1 ∪X2

≥ min(µX1(e), µX2(e))
= min(δX1,Y1(e), δX2,Y2(e)) , by (60),e ∈ Y1 ande ∈ Y2

which completes the proof of the lemma.

Lemma 144 Let E 6= ∅ be some base set,Y ∈ P(E) andX = X1 ∪ X2, where
X1, X2 ∈ P̃(E). Furter suppose thatΞY (X) ≥ r for a givenr ∈ [0, 1

2 ]. Then there
existY1, Y2 ∈ P(E) with Y = Y1 ∪ Y2 andΞY1,Y2(X1, X2) ≥ r.

Proof Let us abbreviate

Y1 = {e ∈ Y : µX1(e) ≥ µX2(e) ∨ µX1(e) ≥ 1
2}

= {e ∈ Y : µX1(e) ≥ min(µX2(e), 1
2 )} (790)

Y2 = {e ∈ Y : µX2(≥)µX1(e) ∨ µX2(e) ≥ 1
2}

= {e ∈ Y : µX2(e) ≥ min(µX1(e), 1
2 )} . (791)

ClearlyY1 ⊆ Y andY2 ⊆ Y , henceY1 ∪ Y2 ⊆ Y . Now considere ∈ Y . If µX1(e) ≥
µX2(e), thene ∈ Y1 and hencee ∈ Y1 ∪ Y2. If µX1(e) < µX2(e), thene ∈ Y2

and hencee ∈ Y1 ∪ Y2. This proves thatY ⊆ Y1 ∪ Y2. Combining this with the
aboveY1 ∪ Y2 ⊆ Y , we obtain the desiredY = Y1 ∪ Y2. It remains to be shown that
ΞY1,Y2(X1, X2) ≥ r. To this end, let us first prove thatΞY1(X1) ≥ r. By (61), it is
sufficient to show thatδX1,Y1(e) ≥ r for all e ∈ E. Hence lete ∈ E. We notice from
ΞY (X) ≥ r and (61) that

δX,Y (e) ≥ r . (792)

We shall discern the following cases.

274



a.: e ∈ Y and µX1(e) ≥ µX2(e).
In this case we know from (790) thate ∈ Y1 and hence

δX1,Y1(e) = µX1(e) by (60)

= max(µX1(e), µX2(e)) by assumption of casea.

= µX(e) becauseX = X1 ∪X2

= δX,Y (e) by (60) ande ∈ Y
≥ r . by (792)

b.: e ∈ Y and µX1(e) ≥ 1
2 .

Again, we know from (790) thate ∈ Y1. Hence

δX1,Y1(e) = µX1(e) by (60)

≥ 1
2 by assumption of caseb.

≥ r ,

becauser ≤ 1
2 by assumption of the lemma.

c.: e ∈ Y , µX1(e) < µX2(e) and µX1(e) < 1
2 .

Thene /∈ Y1 by (790). Therefore

δX1,Y1(e) = 1− µX1(e) by (60)

> 1
2 by assumption of casec.

≥ r ,

again recalling thatr ≤ 1
2 by assumption of the lemma.

d.: e /∈ Y .
In this case, we obtain from (790) thate /∈ Y1. Hence

δX1,Y1(e) = 1− µX1(e) by (60)

≥ min(1− µX1(e), 1− µX2(e))
= 1−max(µX1(e), µX2(e)) by De Morgan’s law

= 1− µX(e) becauseX = X1 ∪X2

= δX,Y (e) by (60) ande /∈ Y
≥ r . by (792)

This proves that indeedδX1,Y1(e) ≥ r for all e ∈ E, and henceΞY1(X1) ≥ r
by (61). By the very same reasoning, it can be shown thatΞY2(X2) ≥ r as well,
noticing the apparent symmetry between (790) and (791). HenceΞY1,Y2(X1, X2) =
min(ΞY1(X1),ΞY2(X2)) ≥ r, as desired.

Lemma 145 Supposeψ : A −→ I satisfies(ψ-2), (ψ-3) and (ψ-5′). Then for all
Q : P(E)n −→ I of arity n > 0 and allX1, . . . , Xn+1,

�AQ∪,X1,...,Xn+1 = �AQ,X1,...,Xn−1,Xn∪Xn+1 .
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Proof To see this, letz ∈ I. We can then show that

�AQ∪,X1,...,Xn+1(z) = �AQ,X1,...,Xn−1,Xn∪Xn+1(z)

by proving that the set on the left hand side of the equation is contained in the set on
the right hand side and vice versa.

a.: �AQ∪,X1,...,Xn+1(z) ⊆ �AQ,X1,...,Xn−1,Xn∪Xn+1(z).
We considerr ∈ �AQ∪,X1,...,Xn+1(z). We then know from Def. 90 thatr ≤ 1

2 and that
there existsr′ ∈ AQ∪,X1,...,Xn+1(z) with r ≤ r′. In turn, we obtain from Def. 86 that
there exist(Y1, . . . , Yn+1) ∈ Q∪−1(z) with ΞY1,...,Yn+1(X1, . . . , Xn+1) = r′ ≥ r.
Now we setY ′n = Yn ∪ Yn+1 andX ′n = Xn ∪Xn+1. Then

Q(Y1, . . . , Yn−1, Y
′
n) = Q(Y1, . . . , Yn−1, Yn ∪ Yn+1)

= Q∪(Y1, . . . , Yn+1)
= z

because(Y1, . . . , Yn+1) has been chosen fromQ∪−1(z). We conclude that

(Y1, . . . , Yn−1, Y
′
n) ∈ Q−1(z) .

Let us now investigater′′ = ΞY1,...,Yn−1,Y ′n
(X1, . . . , Xn−1, X

′
n). We proceed as fol-

lows.

r′′ = ΞY1,...,Yn−1,Y ′n(X1, . . . , Xn−1, X
′
n)

= min(
n−1
∧
i=1

YiXi,ΞY ′n(X ′n)) by Def. 83

≥ min(
n−1
∧
i=1

YiXi,min(ΞYn(Xn),ΞYn+1(Xn+1))) by L-143

= ΞY1,...,Yn+1(X1, . . . , Xn+1) . by Def. 83

Hence there existsr′′ ∈ AQ,X1,...,Xn−1,Xn∪Xn+1(z) with r′′ ≥ r′ ≥ r. Because
r ≤ 1

2 , we conclude from Def. 90 thatr ∈ �AQ,X1,...,Xn−1,Xn∪Xn+1(z). Because
r ∈ �AQ∪,X1,...,Xn+1(z) was arbitrarily chosen, this proves that indeed

�AQ∪,X1,...,Xn+1(z) ⊆ �AQ,X1,...,Xn−1,Xn∪Xn+1(z) .

b.: �AQ,X1,...,Xn−1,Xn∪Xn+1(z) ⊆ �AQ∪,X1,...,Xn+1(z).
Again, we abbreviateX ′n = Xn∪Xn+1. Now considerr ∈ �AQ,X1,...,Xn−1,Xn∪Xn+1(z).
We then know from Def. 90 thatr ≤ 1

2 and that there exists(Y1, . . . , Yn−1, Y
′
n) ∈

Q−1(z) with

r′ = ΞY1,...,Yn−1,Y ′n(X1, . . . , Xn−1, X
′
n) ≥ r . (793)

In particular,

ΞY ′n(X ′n) ≥ min(
n−1
∧
i=1

ΞYi(Xi),ΞY ′n(X ′n))

= ΞY1,...,Yn−1,Y ′n
(X1, . . . , Xn−1, X

′
n) by Def. 83

≥ r .
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We can now apply lemma L-144, which establishes the existence ofYn, Yn+1 ∈ P(E)
with Y ′n = Yn ∪ Yn+1 and

ΞYn,Yn+1(Xn, Xn+1) ≥ r . (794)

Therefore

ΞY1,...,Yn+1(X1, . . . , Xn+1)

=
n+1
∧
i=1

ΞYi(Xi) by Def. 83

= min(
n−1
∧
i=1

ΞYi(Xi),
n+1
∧
i=n

YiXi)

= min(
n−1
∧
i=1

ΞYi(Xi),ΞYn,Yn+1(Xn, Xn+1)) by Def. 83

≥ min(
n−1
∧
i=1

ΞYi(Xi), r) by (794)

≥ min(min(
n−1
∧
i=1

ΞYi(Xi),ΞY ′n(X ′n)), r)

= min(ΞY1,...,Yn−1,Y ′n(X1, . . . , Xn−1, X
′
n), r) by Def. 83

= r . by (793)

Hencer′′ = ΞY1,...,Yn+1(≥)r. We further notice that

Q∪(Y1, . . . , Yn−1) = Q(Y1, . . . , Yn−1, Yn ∪ Yn+1)
= Q(Y1, . . . , Yn−1, Y

′
n) = z ,

i.e. (Y1, . . . , Yn+1) ∈ Q∪−1(z). It is then apparent from Def. 86 that

r′′ ∈ AQ∪,X1,...,Xn+1(z) .

Becauser′′ ≥ r andr ≤ 1
2 , this proves the desiredr ∈ �AQ∪,X1,...,Xn+1(z).

Proof of Theorem 103

Suppose thatψ : A −→ I satisfies (ψ-2), (ψ-3) and (ψ-5′). We then know from Th-99
thatFψ induces the standard fuzzy disjunctioñFψ(∨) = ∨, wherex∨y = max(x, y).
Now consider a semi-fuzzy quantifierQ : P(E)n −→ I of arity n > 0 and a choice of
fuzzy argumentsX1, . . . , Xn+1 ∈ P̃(E). Then

Fψ(Q∪)(X1, . . . , Xn+1) = ψ(AQ∪,X1,...,Xn+1) by Def. 88

= ψ(�AQ∪,X1,...,Xn+1) by (ψ-5′)

= ψ(�AQ,X1,...,Xn−1,Xn∪Xn+1) by L-145

= ψ(AQ,X1,...,Xn−1,Xn∪Xn+1) by (ψ-5′)

= Fψ(Q)(X1, . . . , Xn−1, Xn ∪Xn+1) . by Def. 88

HenceFψ satisfies (Z-4), as desired.
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B.13 Proof of Theorem 104

Let ψ : A −→ I be a mapping which satisfies (ψ-4). Now consider a choice of semi-
fuzzy quantifiersQ,Q′ : P(E)n −→ I such thatQ ≤ Q′. In order to prove that
Fψ(Q) ≤ Fψ(Q′), letX1, . . . , Xn ∈ P̃(E) be a choice of fuzzy arguments. We now
compareAQ,X1,...,Xn andAQ′,X1,...,Xn .
Hence letz ∈ I and consider somer ∈ AQ,X1,...,Xn(z). By Def. 86, there exists a
choice ofY1, . . . , Yn ∈ P(E) with r = ΞY1,...,Yn(X1, . . . , Xn) andz = Q(Y1, . . . , Yn).
BecauseQ ≤ Q′, we know thatz′ = Q′(Y1, . . . , Yn) ≥ z. Further noticing that
r = ΞY1,...,Yn(X1, . . . , Xn), we obtain from Def. 86 thatr ∈ AQ′,X1,...,Xn(z′) for
z′ ≥ z. Hence conditiona. of Def. 89 is satisfied.
To see that conditionb. of Def. 89 is also satisfied, consider somez′ ∈ I andr ∈
AQ′,X1,...,Xn(z′). By Def. 86, there existY1, . . . , Yn ∈ P(E) with z′ = Q′(Y1, . . . , Yn)
andr = ΞY1,...,Yn(X1, . . . , Xn). BecauseQ ≤ Q′, we obtain forz = Q(Y1, . . . , Yn)
thatz ≤ z′. Recalling Def. 86,r ∈ AQ,X1,...,Xn(z).
Hence both conditions stated in Def. 89 are valid, and

AQ,X1,...,Xn v AQ′,X1,...,Xn . (795)

Therefore

Fψ(Q)(X1, . . . , Xn) = ψ(AQ,X1,...,Xn) by Def. 88

≤ ψ(AQ′,X1,...,Xn) by (795) and (ψ-4)

= Fψ(Q′)(X1, . . . , Xn) . by Def. 88

B.14 Proof of Theorem 105

Lemma 146 LetQ : P(E)n −→ I be a semi-fuzzy quantifier andβ : {1, . . . , n} −→
{1, . . . , n} a permutation. Further suppose thatQ′ : P(E)n −→ I is defined by

Q′(Y1, . . . , Yn) = Q(Yβ(1), . . . , Yβ(n)) (796)

for all Y1, . . . , Yn ∈ P(E). Then

Fψ(Q′)(X1, . . . , Xn) = Fψ(Q)(Xβ(1), . . . , Xβ(n))

for all X1, . . . , Xn ∈ P̃(E).

Proof We first notice that

ΞY1,...,Yn(X1, . . . , Xn)
= min{ΞYi(Xi) : i ∈ {1, . . . , n}} by Def. 83

= min{ΞYβ(i)(Xβ(i)) : i ∈ {1, . . . , n}} β is permutation of{1, . . . , n}
= ΞYβ(1),...,Yβ(n)(Xβ(1), . . . , Xβ(n)) , by Def. 83

i.e.

ΞY1,...,Yn(X1, . . . , Xn) = ΞYβ(1),...,Yβ(n)(Xβ(1), . . . , Xβ(n)) (797)
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for all Y1, . . . , Yn ∈ P(E). Now letz ∈ I. In order to prove that

AQ′,X1,...,Xn(z) ⊆ AQ,Xβ(1),...,Xβ(n)(z) , (798)

let r ∈ AQ′,X1,...,Xn(z). By Def. 86, there existY1, . . . , Yn ∈ P(E) with

Q′(Y1, . . . , Yn) = z and ΞY1,...,Yn(X1, . . . , Xn) = r .

Now consider(Yβ(1), . . . , Yβ(n)) ∈ P(E)n. We know from (796) andQ′(Y1, . . . , Yn) =
z thatQ(Yβ(1), . . . , Yβ(n)) = z. In addition, we know from (797) that

ΞYβ(1),...,Yβ(n)(Xβ(1), . . . , Xβ(n)) = ΞY1,...,Yn(X1, . . . , Xn) = r .

Hence indeedr ∈ AQ,Xβ(1),...,Xβ(n)(z), which proves that (798) is valid. It remains to
be shown that

AQ,Xβ(1),...,Xβ(n)(z) ⊆ AQ′,X1,...,Xn(z) . (799)

Hence letr ∈ AQ,Xβ(1),...,Xβ(n)(z). By Def. 86, there existY1, . . . , Yn ∈ P(E)
with Q(Y1, . . . , Yn) = z and ΞY1,...,Yn(Xβ(1), . . . , Xβ(n)) = r. We now define
Z1, . . . , Zn ∈ P(E) by

Zj = Yβ−1(j) (800)

for j ∈ {1, . . . , n}. In particular

Yi = Yβ−1(β(i)) = Zβ(i) (801)

for all i ∈ {1, . . . , n}. Therefore

Q′(Z1, . . . , Zn) = Q(Zβ(1), . . . , Zβ(n)) by (796)

= Q(Y1, . . . , Yn) by (801)

= z .

We also notice that

ΞZ1,...,Zn(X1, . . . , Xn) = ΞZβ(1),...,Zβ(n)(Xβ(1), . . . , Xβ(n)) by (797)

= ΞY1,...,Yn(Xβ(1), . . . , Xβ(n)) by (801)

= r .

Hencer ∈ AQ′,X1,...,Xn(z), and (799) holds, as desired. Combining (798) and (799)
then proves the equation

AQ′,X1,...,Xn = AQ,Xβ(1),...,Xβ(n) , (802)

noticing thatz ∈ I was arbitrary. Therefore

Fψ(Q′)(X1, . . . , Xn) = ψ(AQ′,X1,...,Xn) by Def. 88

= ψ(AQ,Xβ(1),...,Xβ(n)) by (802)

= Fψ(Q)(Xβ(1), . . . , Xβ(n)) . by Def. 88

Lemma 147 Supposeψ : A −→ I satisfies(ψ-2), (ψ-3) and (ψ-5′). Then for all
Q : P(E)n −→ I of arity n > 0, Fψ(Q∩) = Fψ(Q)∩.
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Proof To see this, we observe that

Q∩ = Q¬∪¬τn¬τn

and

Fψ(Q)∩ = Fψ(Q)¬∪¬τn¬τn .

ThereforeFψ(Q∩) = Fψ(Q¬∪¬τn¬τn) = Fψ(Q)¬∪¬τn¬τn = Fψ(Q)∩, where
the middle equation is known to hold from Th-103, Th-99, L-142 and L-146.

Proof of Theorem 105

Let ψ : A −→ I be given andf suppose that (ψ-2), (ψ-3), (ψ-4) and (ψ-5′) are valid.
In order to show thatFψ satisfies (Z-5), let us consider a semi-fuzzy quantifierQ :
P(E)n −→ I. Further suppose thatQ is nonincreasing in itsn-th argument. It has
to be shown thatFψ(Q) is nonincreasing in itsn-th argument as well. Hence let
X1, . . . , Xn, X

′
n ∈ P̃(E) with Xn ⊆ Xn+1. In particular

Xn = Xn ∩X ′n (803)

Xn+1 = Xn ∪X ′n . (804)

Let us also notice thatQ’s being nonincreasing in then-th argument entails that

Q∩ ≥ Q∪ (805)

which is apparent from Def. 14. Therefore

Fψ(Q)(X1, . . . , Xn) = Fψ(X1, . . . , Xn−1, Xn ∩X ′n) by (803)

= Fψ(Q)∩(X1, . . . , Xn−1, Xn, X
′
n) by Def. 12

= Fψ(Q∩)(X1, . . . , Xn−1, Xn, X
′
n) by L-147

≥ Fψ(Q∪)(X1, . . . , Xn−1, Xn, X
′
n) by Th-104 and (805)

= Fψ(Q)∪(X1, . . . , Xn−1, Xn, X
′
n) by Th-103

= Fψ(Q)(X1, . . . , Xn−1, Xn ∪X ′n) by Def. 12

= Fψ(Q)(X1, . . . , Xn) . by (804)

B.15 Proof of Theorem 106

Lemma 148 LetE,E′ 6= ∅ be given base sets andf : E −→ E′. Then

ΞY (X) ≤ Ξf̂(Y )(
ˆ̂
f(X))

for all X ∈ P̃(E) andY ∈ P(E).
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Proof We first observe that for alle′ ∈ f̂(Y ), there existse0 ∈ f−1(e′) such that
e0 ∈ Y . Therefore

µ ˆ
f̂(X)

(e′) = sup{µX(e) : e ∈ f−1(e′)} by (3)

≥ µX(e0) becausee0 ∈ f−1(e′)
= δX,Y (e0) by (60) ande0 ∈ Y

and hence

µ ˆ
f̂(X)

(e′) ≥ ΞX(Y ) , (806)

recalling (61).
Next we consider the case thate′ ∈ E′, e /∈ f̂(Y ). We then know from Def. 15 that
f−1(e′) ∩ Y = ∅, and hence

δX,Y (e) = 1− µX(e) (807)

for all e ∈ f−1(e′), see (60). Therefore

1− µ ˆ
f̂(X)

(e′) = 1− sup{µX(e) : e ∈ f−1(e′)} by (3)

= inf{1− µX(e) : e ∈ f−1(e′)} by De Morgan’s law

= inf{δX,Y (e) : e ∈ f−1(e′)} by (807)

≥ inf{δX,Y (e) : e ∈ E} ,

and by (61),

1− µ ˆ
f̂(X)

(e′) ≥ ΞY (X) . (808)

Finally

Ξf̂(Y )(
ˆ̂
f(X))

= min(inf{µ ˆ
f̂(X)

(e′) : e′ ∈ f̂(Y )},

inf{1− µ ˆ
f̂(X)

(e′) : e′ /∈ f̂(Y )}) by Def. 83

≥ ΞY (X) . by (806) and (808)

Lemma 149 Let E,E′ 6= ∅ be given base sets,Q : P(E′)n −→ I, f1, . . . , fn :
E −→ E′ andX1, . . . , Xn ∈ P̃(E). Then

�̂
Q◦

n
×
i=1

f̂i,X1,...,Xn
(z) ≤ �̂

Q,
ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

(z)

for all z ∈ I.
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Proof Let r ∈ A
Q◦

n
×
i=1

f̂i,X1,...,Xn
(z). Then there existY1, . . . , Yn ∈ P(E) with

Q(f̂1(Y1), . . . , f̂n(Xn)) = z andΞY1,...,Yn(X1, . . . , Xn) = r. HenceZi = f̂i(Yi)
(i = 1, . . . , n) satisfyQ(Z1, . . . , Zn) = z. From L-148 and Def. 83, we know that

r′ = ΞZ1,...,Zn( ˆ̂
f1(X1), . . . , ˆ̂

fn(Xn)) ≥ ΞY1,...,Yn(X1, . . . , Xn) = r. Hence there
existsr′ ∈ A

Q,
ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

(z) with r′ ≥ r. Becauser ∈ A
Q◦

n
×
i=1

f̂i,X1,...,Xn
(z)

was chosen arbitrarily, this proves that

supA
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

(z) ≥ supA
Q◦

n
×
i=1

f̂i,X1,...,Xn
(z) . (809)

Therefore

�̂
Q◦

n
×
i=1

f̂i,X1,...,Xn
(z)

= min(supA
Q◦

n
×
i=1

f̂i,X1,...,Xn
(z), 1

2 ) by (73) and (75)

≤ min(A
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

(z), 1
2 ) by (809)

= �̂
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

(z) . by (73) and (75)

Lemma 150 LetE,E′ 6= ∅, f : E −→ E′,X ∈ P̃(E) andZ ∈ P(E′). Then

min(ΞZ( ˆ̂
f(X)), 1

2 ) ≤ sup{ΞY (X) : f̂(Y ) = Z} .

Proof Suppose thatZ 6⊆ Im f , i.e. there existse′ ∈ Z with f−1(e) = ∅. Then

ΞZ( ˆ̂
f(X)) ≤ µ ˆ

f̂(X)
(e′) by Def. 83

= sup{µX(e) : e ∈ f−1(e′)} by (3)

= sup∅ becausef−1(e) = ∅

= 0 ,

i.e.

ΞZ( ˆ̂
f(X)) = 0 . (810)

Hence trivially

sup{ΞY (X) : f̂(Y ) = Z} ≥ 0 = min(0, 1
2 ) = min(ΞZ( ˆ̂

f(X)), 1
2 ) .

Now let us consider the remaining case thatZ ⊆ Im f = {f(e) : e ∈ E}, i.e. for all
e′ ∈ Z,

f−1(e′) 6= ∅. (811)
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It is then sufficient to show that for allε > 0 there existsY ∈ P(E) with f̂(Y ) = Z

andΞY (X) ≥ r − ε, wherer = min(ΞZ( ˆ̂
f(X)), 1

2 ).
To see this, we first introduce abbreviations

V = f−1(Z) = {e ∈ E : f(e) ∈ Z} (812)

Y = {e ∈ V : µX(e) ≥ 1
2 ∨ µX(e) ≥ µ ˆ

f̂(X)
(f(e))− ε} . (813)

It is immediate from (812) and Def. 15 that̂f(V ) = Z. We then obtain fromY ⊆ V

that f̂(Y ) ⊆ Z. Now considere′ ∈ Z. By (811), f−1(e′) 6= ∅. In particular
{µX(e) : e ∈ f−1(e′)} 6= ∅. We may hence conclude that there existse0 ∈ f−1(e′)
with µX(e0) > sup{µX(e) : e ∈ f−1(e′)}−ε. Hence by (3),µX(e0) > µ ˆ

X̂
(()e′)−ε.

This proves thate0 ∈ Y , see (813). Recalling thate0 ∈ f−1(e′), i.e.f(e0) = e′, we
then obtain thate′ ∈ f̂(Y ). Becausee′ ∈ Z was arbitrary, this proves thatZ ⊆ f̂(Y ).
Combining this with the above inequation yields the desiredf̂(Y ) = Z.
Now considere ∈ Y . We discern two cases.

a. If µX(e) ≥ 1
2 , then

δX,Y (e) = µX(e) ≥ 1
2 ≥ r > r − ε

by (60) and above definition ofr.

b. If µX(e) ≥ µ ˆ
f̂(X)

(f(e))− ε, then

δX,Y (e) = µX(e) by (60) becausee ∈ Y
≥ µ ˆ

f̂(X)
(f(e))− ε by assumption of case b.

≥ ΞZ( ˆ̂
f(X))− ε ,

which is apparent from Def. 83 and (3) becausee ∈ Y entails thatf(e) ∈
f̂(Y ) = Z. We then proceed as follows.

δX,Y (e) ≥ ΞZ( ˆ̂
f(X))− ε

≥ min(ΞZ( ˆ̂
f(X)), 1

2 )− ε
= r − ε .

Hence indeed

δX,Y (e) ≥ r − ε (814)

for all e ∈ Y .
Now suppose thate /∈ Y . Again, it is convenient to discern two cases.
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• e /∈ V .
Then in particularf(e) /∈ Z, recalling equation (812). Abbreviatinge′ = f(e),
we obtain

δX,Y (e) = 1− µX(e) by (60)

≥ inf{1− µX(e′′) : e′′ ∈ f−1(e′)} becausef(e) = e′

= 1− sup{µX(e′′) : e′′ ∈ f−1(e′)} by De Morgan’s law

= 1− µ ˆ
f̂(X)

(()e′) by (3)

= δ ˆ
f̂(X),Z

(e′) by (60) ande′ /∈ V

≥ ΞZ( ˆ̂
f(X)) by (61)

≥ min(ΞZ( ˆ̂
f(X)), 1

2 )
= r

> r − ε .

• e ∈ V , µX(e) < 1
2 andµX(e) < µ ˆ

f̂(X)
(f(e))− ε.

This case is trivial because

δX,Y (e) = 1− µX(e) > 1
2 ≥ r > r − ε .

We have thus shown that

δX,Y (e) ≥ r − ε (815)

for all e ∈ E \ Y . Therefore

ΞX(Y ) = inf{δX,Y (e) : e ∈ E} by (61)

≥ r − ε , by (814), (815)

as desired.

Lemma 151 Let E,E′ 6= ∅ be given base sets,Q : P(E′)n −→ I, f1, . . . , fn :
E −→ E′ andX1, . . . , Xn ∈ P̃(E). Then

�̂
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

(z) ≤ �̂
Q◦

n
×
i=1

f̂i,X1,...,Xn
(z)

for all z ∈ I.

Proof We notice that

�̂
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

(z) = min(supA
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

(z), 1
2 ) by (73), (75)

= sup{min(r, 1
2 ) : r ∈ A

Q,
ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

(z)} .
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The claim of the lemma can hence be proven by showing that

�̂
Q◦

n
×
i=1

f̂i,X1,...,Xn
(z) ≥ min(r, 1

2 )

for all r ∈ A
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

(z)}. Hence consider such choice ofr. By Def. 86, there

existZ1, . . . , Zn ∈ P(E′) withQZ1, . . . , Zn = z andΞZ1,...,Zn( ˆ̂
f1(X1), . . . , ˆ̂

fn(Xn)) =
r. Now

supA
Q◦

n
×
i=1

f̂i,X1,...,Xn
(z)

= sup{ΞY1,...,Yn(X1, . . . , Xn) :

Q(f̂1(Y1), . . . , f̂n(Yn)) = z}
≥ sup{ΞY1,...,Yn(X1, . . . , Xn) :

f̂1(Y1) = Z1 . . . , f̂n(Yn) = Zn}

= sup{
n
∧
i=1

ΞYi(Xi) :

f̂1(Y1) = Z1 . . . , f̂n(Yn) = Zn}

=
n
∧
i=1

sup{ΞYi(Xi) : f̂i(Yi) = Zi} because theYi can be

chosen independently

≥
n
∧
i=1

ΞZi(
ˆ̂
fi(Xi)) by L-150

= ΞZ1,...,Zn( ˆ̂
f1(X1), . . . , ˆ̂

fn(Xn)) . by Def. 83

Proof of Theorem 106

LetE,E′ 6= ∅ be given base sets,Q : P(E′)n −→ I, f1, . . . , fn : E −→ E′ and and
X1, . . . , Xn ∈ P̃(E). The theorem is now a corollary of L-149 and L-151, which state
that

�̂
Q◦

n
×
i=1

f̂i,X1,...,Xn
= �̂

Q,
ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

.

Hence by (74) and Def. 91,

�
Q◦

n
×
i=1

f̂i,X1,...,Xn
= �

Q,
ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

. (816)
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Finally

Fψ(Q ◦
n
×
i=1

f̂i)(X1, . . . , Xn) = ψ(A
Q◦

n
×
i=1

f̂i,X1,...,Xn
) by Def. 88

= ψ(�
Q◦

n
×
i=1

f̂i,X1,...,Xn
) by (ψ-5), (74)

= ψ(�
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

) by (816)

= ψ(A
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

) by (ψ-5), (74)

= Fψ(Q)( ˆ̂
f1(X1), . . . , ˆ̂

fn(Xn)) . by Def. 88

B.16 Proof of Theorem 107

Supposeψ : A −→ I satisfies (ψ-1)–(ψ-5). Then by Th-102,ψ satisfies (ψ-5′) as well.
We obtain from Th-96, Th-100, Th-101, Th-103, Th-105 and Th-106 thatFψ satisfies
(Z-1), (Z-2), (Z-3), (Z-4), (Z-5) and (Z-6), respectively. By Def. 17,Fψ is a DFS.
The proof is completed by recalling Th-99, from which we obtain thatFψ is indeed a
standard DFS.

B.17 Proof of Theorem 108

I will prove the theorem by contraposition. Hence letψ : A −→ I be given and
suppose thatψ does not satisfy (ψ-1). Then there existsA ∈ A with D(A) = {1}
andψ(A) 6= z+. BecauseD(A) = ∪{A(z) : z ∈ I} = {1}, we know thatr+ = 1.
By Th-93 and Def. 87, then, there exists a uniquez+ ∈ I with 1 = r+ ∈ A(z+), and
A(z)∩ (1− r+, 1] = A(z)∩ (0, 1] for z 6= z+. BecauseD(A) = {1}, this proves that
A(z) = ∅ for z 6= z+.
We now defineQ : P({∗})0 −→ I by Q(∅) = z+, where∅ is the empty tuple. It
is then apparent from Def. 86 thatA(0)

Q,∅(z+) = {1} andA(0)
Q,∅(z) = ∅ for z 6= z+.

HenceA(0)
Q,∅ = A. We can then proceed as follows.

Fψ(Q)(∅) = ψ(A(0)
Q,∅) by Def. 88

= ψ(A) becauseA = A
(0)
Q,∅

6= z+ by assumption

= Q(∅) .

This proves thatFψ does not satisfy (Z-1).
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B.18 Proof of Theorem 109

Lemma 152 Suppose thatFψ satisfies(Z-2) and letx ∈ I. Further suppose that
A ∈ A is defined by

A(z) =

 {x} : z = 1
∅ : z ∈ (0, 1)
{1− x} : z = 0

for all z ∈ I. Thenψ(A) = x.

Proof Let us consider the quantifierπ∗ : P({∗}) −→ I. We define a fuzzy argument
set,X ∈ P̃({∗}), by µX(∗) = x. BecauseP({∗}) = {∅, {∗}} andπ∗(∅) = 0,
π∗({∗}) = 1 by Def. 6, we obtain the following results forAπ∗,X .

Aπ∗,X(1) = {ΞY (X) : π∗(Y ) = 1} by Def. 86

= {Ξ{∗}(X)} by Def. 6

= {µX(∗)} by Def. 83

= x by definition ofX

= A(1) . by assumption

Forz = 0, we have

Aπ∗,X(0) = {ΞY (X) : π∗(Y ) = 0} by Def. 86

= {Ξ∅(X)} by Def. 6

= {1− µX(∗)} by Def. 83

= 1− x by definition ofX

= A(0) . by assumption

Finally if z ∈ (0, 1), then

Aπ∗,X(z) = {ΞY (X) : π∗(Y ) = z} by Def. 86

= ∅ becauseπ∗ two-valued

= A(z) . by assumption of the lemma

To sum up, I have shown that

A = Aπ∗,X . (817)

Therefore

ψ(A) = ψ(Aπ∗,X) by (817)

= Fψ(π∗)(X) by Def. 88

= π̃∗(X) by (Z-2)

= µX(∗) by Def. 7

= x , by definition ofX

as desired.
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Proof of Theorem 109

Letψ : A −→ I be given and suppose thatFψ satisfies (Z-2). In order to show thatFψ
induces the standard negation, let us first recall the definition of induced fuzzy truth
functions, i.e.F̃ψ(¬)(x) = Fψ(Q¬)(η̃(x)) for all x ∈ I, see Def. 8. Abbreviating
Q = Q¬ and definingX ∈ P̃({1}) by

µX(1) = x (818)

for the givenx ∈ I, it is hence sufficient to show thatFψ(Q)(X) = 1 − x, where
Q : P({1}) −→ 2 is given by

Q(Y ) =
{

1 : Y = ∅

0 : Y = {1} (819)

for all Y ∈ P({1}), see again Def. 8. Let us now considerAQ,X . It is convenient to
abbreviate

x′ = 1− x . (820)

We then obtain forz = 1,

AQ,X(1) = {ΞY (X) : Q(Y ) = 1} by Def. 86

= {Ξ∅(X)} see (819)

= {1− µX(1)} by Def. 83

= {1− x} by (818)

= {x′} . by (820)

Forz = 0, we have

AQ,X(0) = {ΞY (X) : Q(Y ) = 0} by Def. 86

= {Ξ{1}(X)} see (819)

= {µX(1)} by Def. 83

= {x} by (818)

= {1− (1− x)} because1− x involutive

= {1− x′} . by (820)

In the remaining case thatz ∈ (0, 1),

AQ,X(z) = {ΞY (X) : Q(Y ) = z} by Def. 86

= ∅ . becauseQ two-valued

To sum up,

AQ,X(z) =

 {x
′} : z = 1

∅ : z ∈ (0, 1)
{1− x′} : z = 0

(821)

288



for all z ∈ I. Therefore

F̃ψ(¬)(x) = Fψ(Q)(X) by Def. 8

= ψ(AQ,X) by Def. 88

= x′ by L-152 and (821)

= 1− x . by (820)

B.19 Proof of Theorem 110

Lemma 153 Letψ : A −→ I be given and suppose thatFψ satisfies(Z-1) and (Z-2).
If Fψ violates(ψ-2), then there existsQ : P(I× I) −→ I withFψ(¬Q) 6= ¬Fψ(Q).

Proof To see this, suppose thatψ does not satisfy (ψ-2). Then there existA,A′ ∈ A
with A′(z) = A(1− z) for all z ∈ I and

ψ(A′) 6= 1− ψ(A) . (822)

Let us assume thatD(A) = {1}. ThenD(A′) = {1} as well and NV(A) = {z},
NV(A′) = {1 − z} for somez ∈ I. Let us now observe thatψ satisfies (ψ-1), which
is known from Th-108. Thereforeψ(A) = z = 1 − (1 − z) = 1 − ψ(A′), which
contradicts (825). HenceD(A) 6= {1}. By Th-94, then, there existQ : P(I× I) −→ I
andX ∈ P̃(I× I) with

AQ,X = A . (823)

Now consider¬Q. ThenA¬Q,X(z) = AQ,X(1− z) = A(1− z) by L-139 and (823).
Hence

A¬Q,X = A′ (824)

We now proceed as follows.

Fψ(¬Q)X = ψ(A¬Q,X) by Def. 88

= ψ(A′) by (824)

6= 1− ψ(A) by (822)

= 1− ψ(AQ,X) by (823)

= 1−Fψ(Q)X , by Def. 88

as desired.

Proof of Theorem 110

Consider a choice ofψ : A −→ I such thatFψ satisfies (Z-1) and (Z-2). The claim of
the theorem will be proven by contraposition. Hence suppose thatψ does not satisfy
(ψ-2); it must then be shown thatFψ does not satisfy (Z-3). More specifically, it must
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be shown thatFψ is not compatible with dualisation based on the standard negation,
becauseFψ is known to induce the standard negation, see Th-109.
Hence suppose thatψ violates (ψ-2). By L-153, there existsQ : P(I× I) −→ I and
X ∈ P̃(I× I) with

Fψ(¬Q)(X) 6= ¬Fψ(Q)(X) . (825)

Hence

Fψ(Q�)(¬X) = ψ(AQ�,¬X) by Def. 88

= ψ(A¬Q¬,¬X by Def. 11

= ψ(A¬Q,¬¬X) by L-142

= ψ(A¬Q,X) because¬ involutive

6= ¬ψ(AQ,X) by (825)

= ¬Fψ(Q)(X) by Def. 88

= ¬Fψ(Q)(¬¬X) because¬ involutive

= Fψ(Q)�(¬X) . by Def. 11

HenceFψ(Q�) 6= Fψ(Q)�, which completes the proof thatFψ does not satisfy (Z-3).

B.20 Proof of Theorem 111

Lemma 154 Letψ : A −→ I andx ∈ I be given and suppose thatFψ satisfies(Z-2).
DefineA ∈ A by

A(z) =

 {x,min(x, 1− x)} : z = 1
∅ : z ∈ (0, 1)
{1− x} : z = 0

for all z ∈ I. Thenψ(A) = x.

Proof

a.: a ≥ 1
2
.

To see thatψ(A) = x, we consider the projection quantifierπa : {a, b} −→ 2 and the
fuzzy subsetX ∈ P̃({a, b}) defined by

µX(a) = µX(b) = x . (826)

We notice thatP({a, b}) = {∅, {a}, {b}, {a, b}} andπa(∅) = πa({b}) = 0, πa({a}) =
πa({a, b}) = 1 by Def. 6. Therefore

πa
−1(0) = {∅, {b}} (827)

πa
−1(1) = {{a}, {a, b}} (828)
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and

πa
−1(z) = ∅ (829)

In turn

Aπa,X(0)

= {ΞY (X) : Y ∈ πa−1(0)} by Def. 86

= {Ξ∅(X),Ξ{b}(X)} by (827)

= {min(1− µX(a), 1− µX(b)),
min(1− µX(a), µX(b))} by Def. 83

= {min(1− x, 1− x),min(1− x, x)} by (826)

= {1− x,min(x, 1− x)}
= {1− x} . by assumptionx ≥ 1

2

Forz = 1, we obtain

Aπa,X(1)

= {ΞY (X) : Y ∈ πa−1(1)} by Def. 86

= {Ξ{a}(X),Ξ{a,b}(X)} by (828)

= {min(µX(a), 1− µX(b)),min(µX(a), µX(b))} by Def. 83

= {min(x, 1− x),min(x, x)} by (826)

= {x,min(x, 1− x)}

Finally if z ∈ (0, 1), then

Aπa,X(z) = {ΞY (X) : Y ∈ πa−1(z)} by Def. 86

= ∅ . by (829)

Hence

Aπa,X(z) =

 {x,min(x, 1− x)} : z = 1
∅ : z ∈ (0, 1)
{1− x} : z = 0

= A(z) (830)

for all z ∈ I. In turn

ψ(A) = ψ(Aπa,X) by (830)

= Fψ(πa)(X) by Def. 88

= π̃a(X) by (Z-2)

= µX(a) by Def. 7

= x . by (826)
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b.: x < 1
2
. In this case,min(x, 1−x) = x. HenceA as defined in the lemma becomes

A(z) =

 {x} : z = 1
∅ : z ∈ (0, 1)
{1− x} : z = 0

for all z ∈ I. The desiredψ(A) = x is then already known from L-152.

Proof of Theorem 111

Let ψ : A −→ I be given. We shall assume thatψ satisfies (Z-2) and that the induced
disjunction∨̃ = F̃ψ(∨) is ans-norm. Now considerx ∈ I. We abbreviateX =
η̃(x, x), i.e.

µX(1) = µX(2) = x . (831)

Further suppose thatQ = Q∨ : P({1, 2}) −→ 2 is defined as in Def. 8. Then

x ∨̃ x = Fψ(Q)(X) = ψ(AQ,X) . (832)

As concernsAQ,X , it is apparent that

AQ,X(1) = {ΞY (X) : Q(Y ) = 1} by Def. 86

= {Ξ{1}(X),Ξ{2}(X),Ξ{1,2}(X)} by definition ofQ

= {min(µX(1), 1− µX(2)),
min(1− µX(1), µX(2)),
min(µX(1), µX(2))} by Def. 83

= {min(x, 1− x),min(1− x, x),min(x, x)} by (831)

= {x,min(x, 1− x)} .

Forz = 0, we obtain

AQ,X(0) = {ΞY (X) : Q(Y ) = 0} by Def. 86

= {Ξ∅(X)} by definition ofQ

= {min(1− µX(1), 1− µX(2))} by Def. 83

= {min(1− x, 1− x)} by (831)

= {1− x}

In the remaining case thatz ∈ (0, 1), it is apparent from Def. 86 and the fact thatQ is
two-valued thatAQ,X(z) = ∅. Hence

AQ,X(z) =

 {x,min(x, 1− x)} : z = 1
∅ : z ∈ (0, 1)
{1− x} : z = 0

for all z ∈ I. It is now immediate from (832) and L-154 thatx ∨̃ x = ψ(AQ,X) = x.
Hence the induced fuzzy disjunctioñ∨ is an idempotents-norm. It is well-known
that∨ = max is the only idempotents-norm, see e.g. [13, Th-3.14, p.77]. HenceFψ
induces the standard disjunctionx∨̃y = x∨y = max(x, y) for all x, y ∈ I, as desired.
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B.21 Proof of Theorem 112

Lemma 155 Letψ : A −→ I be given andA ∈ A withD(A) = {1}. Further suppose
that someN ∈ P(I) is given such that

inf Y ∈ N (833)

for all Y ⊆ N with Y 6= ∅. If Fψ satisfies(Z-1), thenψ(A) = ψ(A′), whereA′ ∈ A
is defined by

A′(z) =
{
A(z) : z /∈ N
A(z) ∪ {0} : z ∈ N (834)

for all z ∈ I.

Proof To see this, we defineQ : P({∗})0 −→ I byQ(∅) = z+. Then

A
(0)
Q,∅ = A (835)

by Th-94, and in turn

ψ(A) = ψ(A(0)
Q,∅) by Def. 86

= Fψ(Q)(∅) by Def. 88

= Q(∅) by (Z-1),

i.e.

ψ(A) = z+ . (836)

We further defineQ′ : P(N) −→ I by

Q′(Y ) =
{
ν : Y 6= ∅

z+ : Y = ∅
(837)

for all Y ∈ P(N), where

ν = ν(Y ) = inf Y . (838)

ThenQ′∅ = z+ andΞ(1)
∅

(∅) = 1, i.e.

1 ∈ A(1)
Q′,∅(z+) .

For Y 6= ∅, Q′(Y ) = ν by (837) and (833). In additionΞ(1)
Y (∅) = 0, see Def. 83.

Therefore

0 ∈ A(1)
Q′,∅(ν) .
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These results can be summarized as stating that

A
(()
Q′,∅z) =


{0, 1} : z = z+, z+ /∈ N
{1} : z = z+, z+ ∈ N
{0} : z ∈ N, z 6= z+

∅ : z /∈ N, z 6= z+

for all z ∈ I, in other words:

A
(1)
Q′,∅ = A′ (839)

and hence

ψ(A′) = ψ(A(1)
Q′,∅) by (839)

= Fψ(Q′)(∅) by Def. 88

= Q′(∅) by (Z-1)

= z+ by (837)

= ψ(A) , by (836)

as desired.

Lemma 156 Letψ : A −→ I be a given mapping such thatFψ induces the standard
extension principle and satisfies(Z-6). Further suppose that someN ∈ P(I) is given
such that

inf Y ∈ N (840)

for all Y ⊆ N , Y 6= ∅. Then for allA ∈ A, ψ(A) = ψ(A′), whereA′ ∈ A is defined
by

A′(z) =
{
A(z) : z /∈ N
A(z) ∪ {0} : z ∈ N (841)

for all z ∈ I.

Proof The case thatD(A) = {1} has already been considered in lemma L-155.
Hence suppose thatD(A) 6= {1}. Then

A = AQ,X (842)

whereQ : P(E) −→ I, E = I× I is defined by (69), andX ∈ P̃(E) is defined by
(66), see Th-94.
Now letE′ = ({1} × E) ∪ ({2} ×N). We defineQ′ : P(E′) −→ I by

Q′(Y ′) =
{
Q(Y ) : Y ′ ∩ ({2} ×N) = ∅

inf{z ∈ N : (2, z) ∈ Y ′} : Y ′ ∩ ({2} ×N) 6= ∅
(843)
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for all Y ′ ∈ P(E′), whereY ∈ P(E) abbreviates

Y = {(z, r) ∈ E : (1, z, r) ∈ Y ′} . (844)

We denote byj : P(E) −→ P(E′) the injection

j(z, r) = (1, z, r) (845)

for all z, r ∈ I. Let us notice that for a givenY ∈ P(E), Y andY ′ = ĵ(Y ) are related
by (844). This proves that

Q = Q′ ◦ ĵ . (846)

Now we consider̂̂j(X) ∈ P̃(E′), based on our previous choice ofX ∈ P̃(E) accord-

ing to equation (66). Recalling (3),ˆ̂j(X) is the fuzzy subset defined by

µˆ
ĵ(X)

(c, e) =
{
µX(z, r) : c = 1, e = (z, r)
0 : c = 2 (847)

for all (c, e) ∈ E′.
Now consider a choice ofY ′ ∈ P(E′) and letY be defined by (844). It is then apparent
from (845) that

(z, r) ∈ Y ⇔ (1, z, r) ∈ Y ′ ,

for all z, r ∈ I. Recalling (60) and (847), this proves that

δˆ
ĵ(X),Y ′

(1, z, r) = δX,Y (z, r) (848)

for all z, r ∈ I. We notice that for allY ′ ∈ P̃(E′) with Y ′ ∩ ({2} ×N) = ∅,

ΞY ′(
ˆ̂j(X))

= inf{δˆ
ĵ(X),Y ′

(c, e) : (c, e) ∈ E′} by (61)

= min(inf{δˆ
ĵ(X),Y ′

(1, z, r) : (1, z, r) ∈ E′},

inf{δˆ
ĵ(X),Y ′

(2, e) : (2, e) ∈ E′}) becauseE′ = ({1} × E) ∪ ({2} ×N)

= min(inf{δX,Y (z, r) : (z, r) ∈ E},
inf{1− µˆ

ĵ(X)
(2, e) : e ∈ N}) by (848) and (60)

= min(inf{δX,Y (z, r) : (z, r) ∈ E},
inf{1− 0 : e ∈ N}) by (847)

= min(inf{δX,Y (z, r) : (z, r) ∈ E}, 1)
= inf{δX,Y (z, r) : (z, r) ∈ E} ,

i.e.

ΞY ′(
ˆ̂j(X)) = ΞY (X) . (849)
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In the remaining case thatY ′∩ ({2}×N) 6= ∅, there existse0 ∈ N with (2, e0) ∈ Y ′.
Hence

ΞY ′(
ˆ̂j(X)) = inf{δˆ

ĵ(X),Y ′
(c, e) : (c, e) ∈ E′} by (61)

≤ δˆ
ĵ(X),Y ′

(2, e0) because(2, e0) ∈ E′

= µˆ
ĵ(X)

(2, e0) by (60) because(2, e0) ∈ Y ′

= 0 . by (847)

We conclude that

ΞY ′(
ˆ̂j(X)) = 0 (850)

in this case.
Now let z0 ∈ I. Based on the above observations, it is now easy to prove that
A
Q′,

ˆ
ĵ(X)

(z0) = A′(z0). To see thatA′(z0) ⊆ A
Q′,

ˆ
ĵ(X)

(z0), considerr0 ∈ A′(z0).

a. If r0 ∈ A(z0), then we know from (842) that there existsY ∈ P(E) with
Q(Y ) = z0 andΞY (X) = r0. AbbreviatingY ′ = Ŷ , we notice thatY ′ and
Y are related by equation (844). In additionY ′ ∩ ({2} × N) = ∅. Hence

ΞY ′(
ˆ̂j(X)) = ΞY (X) = r0 by (849) andQ′(Y ′) = Q(Y ) = z0 by (846). From

Def. 86, then, we obtain thatr0 ∈ A
Q′,

ˆ
ĵ(X)

(z0).

b. If r0 /∈ A(z0), thenr0 = 0 by (841) andz0 ∈ N . Now considerY ′ = {(2, z0)}.
We then haveQ′(Y ′) = z0 by (843). In addition,ΞY ′(

ˆ̂j(X)) = 0 = r0 by
(850). Hence indeedr0 ∈ A

Q′,
ˆ
ĵ(X)

(z0).

It remains to be shown thatA
Q′,

ˆ
ĵ(X)

(z0) ⊆ A′(z0). Hence considerr0 ∈ A
Q′,

ˆ
ĵ(X)

(z0).

By Def. 86, there existsY ′ ∈ P(E′) with ΞY ′(
ˆ̂j(X)) = r0 andQ′(Y ′) = z0.

a. If Y ′ ∩ ({2} × N) = ∅, then z0 = Q(Y ′) = Q(Y ) by (844) andr0 =

ΞY ′(
ˆ̂j(X)) = ΞY (X) by (849), i.e.r0 ∈ AQ,X(z0) = A(z0) ⊆ A′(z0), see

(842) and (841). Hencer0 ∈ A′(z0).

b. If Y ′∩({2}×N) 6= ∅, thenz0 = Q(Y ′) = inf Z, whereZ = {z ∈ N : (2, z) ∈
Y ′, see (843). ClearlyZ ⊆ N andZ 6= ∅ becauseY ′ ∩ ({2}×N) 6= ∅. Hence
by (840),inf Z ∈ N . Becausez0 = Q(Y ′) = inf Z, this proves thatz0 ∈ N .

We further notice thatr0 = ΞY ′(
ˆ̂j(X)) = 0 by (850). Equation (841) then

shows that indeedr0 = 0 ∈ A′(z0) becausez0 ∈ N .

These results can be summarized as stating thatA
Q′,

ˆ
ĵ(X)

(z0) ⊆ A′(z0). Combining

this with the earlier result thatA′(z0) ⊆ A
Q′,

ˆ
ĵ(X)

(z0) and noticing thatz0 ∈ I was
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arbitrary, we obtain the desired

A′ = A
Q′,

ˆ
ĵ(X)

. (851)

Now we proceed as follows.

ψ(A) = ψ(AQ,X) by (842)

= ψ(AQ′◦ĵ,X) by (846)

= Fψ(Q′ ◦ ĵ)(X) by Def. 88

= Fψ(Q′)(ˆ̂j(X)) by (Z-6)

= ψ(A
Q′,

ˆ
ĵ(X)

) by Def. 88

= ψ(A′) , by (851)

which completes the proof of the lemma.

In order to prove the theorem Th-112, we further need an observation howAQ,X1,...,Xn

behaves with respect to the symmetric difference4. For a given base setE and fuzzy
subsetsX1, X2 ∈ P̃(E),X14X2 ∈ P̃(E) is defined by

µX14X2(e) = max(min(µX1(e), 1− µX2(e)),min(1− µX1(e), µX2(e)))

for all e ∈ E. Here we shall only need the case that the second argument is crisp.
Hence considerX ∈ P̃(E) andA ∈ P(E). In this case,X4A becomes

µX4A(e) =
{
µX(e) : e /∈ A
1− µX(e) : e ∈ A (852)

for all e ∈ E. Let us now state thatAQ,X1,...,Xn is compatible to symmetric set differ-
ence in this special case.

Lemma 157 Let E 6= ∅ be some base set,X ∈ P̃(E) and Y,A ∈ P(E). Then
ΞY4A(X4A) = ΞY (X).
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Proof Straightforward.

ΞY4A(X4A)
= min(inf{µX4A(e) : e ∈ Y4A},

inf{1− µX4A(e) : e /∈ Y4A}) by Def. 83

= min{inf{µX(e) : e /∈ A, e ∈ Y4A},
inf{1− µX(e) : e ∈ A, e ∈ Y4A},
inf{1− µX(e) : e /∈ A, e /∈ Y4A},
inf{µX(e) : e ∈ A, e /∈ Y4A}} by (852)

= min{inf{µX(e) : e /∈ A, e ∈ Y },
inf{1− µX(e) : e ∈ A, e /∈ Y },
inf{1− µX(e) : e /∈ A, e /∈ Y },
inf{µX(e) : e ∈ A, e ∈ Y }} by def. of crisp set difference

= min(inf{µX(e) : e ∈ Y },
inf{1− µX(e) : e /∈ Y }) because for alle, e ∈ A or e /∈ A

= ΞY (X) . by Def. 83

Lemma 158 Let Q : P(E)n −→ I be a quantifier of arityn > 0, X1, . . . , Xn ∈
P̃(E) andA ∈ P(E). Further suppose thatQ′ : P(E)n −→ I is defined by

Q′(Y1, . . . , Yn) = Q(Y1, . . . , Yn4A) (853)

for all Y1, . . . , Yn ∈ P(E). Then

AQ′,X1,...,Xn = AQ,X1,...,Xn4A

for all X1, . . . , Xn ∈ P̃(E).

Proof To see this, letz ∈ I. Then

AQ′,X1,...,Xn(z)
= {ΞY1,...,Yn(X1, . . . , Xn) : Q′(Y1, . . . , Yn) = z} by Def. 86

= {ΞY1,...,Yn(X1, . . . , Xn) : Q(Y1, . . . , Yn4A) = z} by (853)

= {ΞY1,...,Yn4A(X1, . . . , Xn4A) : Q(Y1, . . . , Yn4A) = z} by Def. 83, L-157

= {ΞZ1,...,Zn(X1, . . . , Xn4A) : Q(Z1, . . . , Zn) = z}

where the last equation is obtained from the substitutionZ1 = Y1, . . . , Zn−1 =
Yn−1, Zn = Yn4A. This step is valid becauseYn 7→ Yn4A = Zn is a bijec-
tion, with obvious inverseZn 7→ Zn4A = Yn. Recalling Def. 86, this proves that
AQ′,X1,...,Xn(z) = AQ,X1,...,Xn4A(z). Becausez ∈ I was arbitrary, we conclude that
AQ′,X1,...,Xn = AQ,X1,...,Xn4A, as desired.
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Lemma 159 Letψ : A −→ I be given and suppose thatFψ induces the standard fuzzy
disjunction and the standard extension principle. IfFψ satisfies(Z-4) and (Z-6), then

ψ(A′) = ψ(A)

for all A ∈ A, where

A′(z) =
{
A(z) : z 6= z+

A(z+) ∪ {1− r+} : z = z+
(854)

for all z ∈ I.

Proof The claim of the lemma is trivial if1 − r+ ∈ A(z+), in which caseA′ = A
and henceψ(A) = ψ(A′). In particular, this covers the case thatr+ = 1

2 where
1− r+ = 1− 1

2 = 1
2 ∈ A(z+).

Hence let us assume thatr+ > 1
2 and1− r+ /∈ A(z+). It is apparent from L-156 that

without loss of generality, we may further assume that

0 ∈ A(z) (855)

for all z ∈ I. In particular0 ∈ D(A) and henceD(A) 6= {1}. In addition, we obtain
that0 ∈ A(z+). Because1 − r+ /∈ A(z+) by assumption, we only need to consider
the case thatr+ 6= 1.

In order to prove the claim of the lemma, we introduce a suitable choice of semi-
fuzzy quantifiers and fuzzy arguments, which permit us to reduce the lemma to fulfill-
ment of (Z-4).
To this end, we shall suppose thatζ : D(A) −→ I andζ ′ : D(A′) −→ I are chosen
such that

r ∈ A(ζ(r)) for all r ∈ D(A) (856)

r ∈ A′(ζ ′(r)) for all r ∈ D(A′). (857)

It is apparent from (854) and (62) thatD(A′) \ {1− r+} ⊆ D(A) ⊆ D(A′). We can
hence assume that

ζ(r) = ζ ′(r) for all r ∈ D(A) (858)

In the following, we abbreviater− = 0. It is then clear from (855) andr+ 6= 1 that

r− = 0 ∈ D(A) ∩ [0, 1− r+) . (859)

In particular, condition (65) is satisfied byr−. Based onr− = 0, we now define fuzzy
subsetsX,X ′ ∈ P̃(I× I) by

µX(z, r) =

 r : r ∈ A(z) \ {r+}
r− : r /∈ A(z)
1− r− : r = r+, z = z+

(860)

µX′(z, r) =

 r : r ∈ A(z) \ {r+}
r− : r /∈ A(z)
r+ : r = r+, z = z+

(861)
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i.e.

µX(z, r) =

 r : r ∈ A(z) \ {r+}
0 : r /∈ A(z)
1 : r = r+, z = z+

(862)

µX′(z, r) =

 r : r ∈ A(z) \ {r+}
0 : r /∈ A(z)
r+ : r = r+, z = z+

(863)

becauser− = 0. GivenY ∈ P(I× I), we abbreviate

r′ = ΞY (X) (864)

z′ = inf{z ∈ I : (z, r′) ∈ Y4{(z+, r+)}, r′ = r′(Y ) ∈ A(z)} (865)

Based onz′ andr′, we then defineQ : P(I× I) −→ I by

Q(Y ) =
{
z′ : r′ ∈ A(z′)
ζ(r′) : r′ /∈ A(z′) (866)

for all Y ∈ P(I× I). In the following, let us suppose thatX∗ ∈ P̃(I× I) is defined
by (66), choosingr− = 0 as above. We then know from Th-94 that

AQ∗,X∗ = A (867)

becauseD(A) 6= {1}. Observing thatX∗ = X4{(z+, r+)}, and converselyX =
X∗4{(z+, r+)}, we can then conclude from L-158 that

AQ,X = AQ∗,X∗ = A . (868)

Next we prove thatAQ∪,X,X′ = A′. To see this, letz0 ∈ I be given.

a. We first consider the subsumptionA′(z0) ⊆ AQ∪,X,X′(z0). Hence letr0 ∈
A′(z0). We shall discern three cases.

a.1 If r0 = r+ thenz0 = z+ by Def. 87 becauser+ > 1
2 . Now considerY + = X

≥ 1
2

andY +′ = X ′
≥ 1

2
. ThenY + = {(z+, r+)} andY +′ = {(z+, r+)} = Y +, which is

apparent from (862), (863), Def. 29 and Def. 87. We notice that

inf{1− r : r ∈ A(z) \ {r+}}
= 1− sup{r : r ∈ A(z) \ {r+}} by De Morgan’s law

= 1− supD(A) \ {r+} by (62)

= 1− (1− r+) , by Def. 85

i.e.

inf{1− r : r ∈ A(z) \ {r+}} = r+ . (869)
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Hence

ΞY +(X)
= min(µX(z+, r+), inf{1− µX(z, r) : (z, r) 6= (z+, r+)}) by Def. 83

= min{1, inf{1− r : r ∈ A(z) \ {r+}}, inf{1− 0 : r /∈ A(z)}} by (862)

= inf{1− r : r ∈ A(z) \ {r+}} ,

i.e.

ΞY +(X) = r+ (870)

by (869). By similar reasoning,

ΞY +′(X ′)
= min(µX′(z+, r+), inf{1− µX′(z, r) : (z, r) 6= (z+, r+)}) by Def. 83

= min{r+, inf{1− r : r ∈ A(z) \ {r+}}, inf{1− 0 : r /∈ A(z)}} by (863)

= min(r+, inf{1− r : r ∈ A(z) \ {r+}})
= min(r+, r+) , by (869)

i.e.

ΞY +′(X ′) = r+ .

Combining this with (870), we obtain from Def. 83 that

ΞY +,Y +′(X,X ′) = min(ΞY +(X),ΞY +′(X ′)) = min(r+, r+) = r+ . (871)

As concerns the quantification result, we notice thatQ∪(Y +, Y +′) = Q(Y +∪Y +′) =
Q(Y +) becauseY + = Y +′. Now letY +∗ = X∗

≥ 1
2

. Then

z+ = z+(A)
= z+(AQ∗,X∗) by (868)

= Q∗(Y +∗) by L-123

= Q(Y +) ,

i.e.

Q(Y +) = z+ (872)

which is apparent from the definitions ofQ andQ∗, noticing that

Y +∗ = Y +4{(z+, r+)} .

Hence indeed

Q∪(Y +, Y +′) = Q(Y +) = z+ = z0 (873)

andΞY +,Y +′(X,X ′) = r+ = r0, i.e.r0 ∈ AQ∪,X,X′(z0), as desired.
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a.2 Now suppose thatz0 = z+ andr0 = 1 − r+; we then know from (854) that
r0 ∈ A′(z0). In this case we letY = Y + = {(z+, r+)} as above andY ′ = ∅. Then

Ξ∅(X ′) = inf{1− µX′(z, r) : z, r ∈ I} by Def. 83

= min(inf{1− r : r ∈ A(z) \ {r+}},
inf{1− 0 : r /∈ A(z)}, 1− r+} by (863)

= min{r+, 1, 1− r+} , by (869)

i.e.

Ξ∅(X ′) = 1− r+ (874)

becauser+ > 1
2 . Therefore

ΞY +,∅(X.X ′) = min(ΞY +(X),Ξ∅(X ′)) by Def. 83

= min(r+, 1− r+) by (870), (874)

= 1− r+ , becauser+ > 1
2

i.e.ΞY +,∅(X.X ′) = r0. As concerns the quantification result, we notice that

Q∪(Y +,∅) = Q(Y + ∪∅) = Q(Y +) = z+ = z0 ,

see (872). This proves thatr0 ∈ AQ∪,X,X′(z0), see Def. 86.

a.3 In the remaining case that(z0, r0) 6= (z+, r+) and(z0, r0) 6= (z+, 1− r+), let

Y = {(z0, r0), (z+, r+)} ∪ {(z, r) : r ∈ A(z) ∩ (r0,
1
2 ]} . (875)

We notice thatY4{(z+, r+)} = Y ∗, whereY ∗ is defined by (736). Therefore

ΞY (X) = ΞY ∗(X∗) by L-157

= r0 . by (746)

Hence

r0

= ΞY (X)
= inf{δX,Y (z, r) : z, r ∈ I} by (61)

= min(inf{δX,Y (z, r) : z, r ∈ I, (z, r) 6= (z+, r+)},
δX,Y (z+, r+))

= min(inf{δX,Y (z, r) : z, r ∈ I, (z, r) 6= (z+, r+)}, 1) . by (60), (875), (862)

We conclude that in fact

r0 = inf{δX,Y (z, r) : z, r ∈ I, (z, r) 6= (z+, r+)} . (876)
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As concernsX ′, we compute

ΞY (X ′)
= inf{δX′,Y (z, r) : z, r ∈ I} by (61)

= min(inf{δX′,Y (z, r) : z, r ∈ I, (z, r) 6= (z+, r+)},
δX′,Y (z+, r+))

= min(inf{δX,Y (z, r) : z, r ∈ I, (z, r) 6= (z+, r+)},
r+) by (862), (863)

= min(r0, r+) by (876)

= r0 .

ThereforeΞY,Y (X,X ′) = min(ΞY (X),ΞY (X ′)) = min(r0, r0) = r0. We further
notice thatQ∪(Y, Y ) = Q(Y ∪ Y ) = Q(Y ) = Q∗(Y ∗) = z0 by (747). Hence again
r0 ∈ AQ∪,X,X′ .
This completes the proof of claima. that

A′(z0) ⊆ AQ∪,X,X′(z0) . (877)

b. Now let us prove the converse subsumption,AQ∪,X,X′(z0) ⊆ A′(z0), by consid-
ering a choice ofr0 ∈ AQ∪,X,X′ . By Def. 86, then, there existY, Y ′ ∈ P(I× I) with
Q∪(Y, Y ′) = z0 andΞY,Y ′(X,X ′) = r0.

b.1 If Y = Y + = {(z+, r+)} andY ′ = Y +′ = {(z+, r+)}, then

r0 = ΞY,Y ′(X,X ′) = r+

by (871) andz0 = Q∪(Y, Y ′) = z+ by (873). r+ ∈ A′(z+) entails the desired
r0 ∈ A′(z0).

b.2 If Y = Y + = {(z+, r+)} andY ′ = ∅, then ΞY (X) = r+ by (870) and
ΞY ′(X ′) = 1− r+ because

ΞY ′(X ′)
= Ξ∅(X ′) by assumptionY ′ = ∅

= inf{1− µX′(z, r) : z, r ∈ I} by Def. 83

= min{inf{1− µX′(z, r) : r ∈ A(z) \ {r+}},
inf{1− µX′(z, r) : r /∈ A(z)},
1− µX′(z+, r+)} by splittinginf-expression

= min{inf{1− r : r ∈ A(z) \ {r+}},
inf{1− 0 : r /∈ A(z)}, 1− r+} by (863)

= min{r+, 1, 1− r+} by (869)

= 1− r+ . becauser+ > 1
2
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Hencer0 = ΞY,Y ′(X,X ′) = min(r+, 1− r+) = 1− r+, again noticing thatr+ > 1
2 .

As concerns the quantification result,z0 = Q∪(Y, Y ′) = Q∪(Y +,∅) = Q(Y + ∪
∅) = Q(Y +) = z+ by (872). Butr0 = 1− r+ ∈ A′(z+) = A′(z0) is apparent from
(854).

b.3 If Y = ∅ andY ′ = Y +′ = {(z+, r+)}, then

ΞY (X)
= Ξ∅(X) by assumptionY = ∅

= inf{1− µX(z, r) : z, r ∈ I} by Def. 83

= min{inf{1− µX(z, r) : r ∈ A(z) \ {r+}},
inf{1− µX(z, r) : r /∈ A(z)},
1− µX(z+, r+)} by splittinginf-expression

= min{inf{1− r : r ∈ A(z) \ {r+}},
inf{1− 0 : r /∈ A(z)}, 1− 1} by (862)

= min{r+, 1, 0} by (869)

= 0 .

In particularr0 = ΞY,Y ′(X,X ′) = min(ΞY (X),ΞY ′(X ′)) = min(0,ΞY ′(X ′)) = 0.
But r0 = 0 ∈ A(z0) is known from (855), andA(z0) ⊆ A′(z0) is apparent from (854).
Hence indeedr0 ∈ A′(z0).

b.4 For all other choices ofY, Y ′ ∈ P(I× I), we know thatY ∪Y ′ 6= {(z+, r+)} =
Y + = Y +′. Consequently

ΞY ∪Y ′(X) ≤ 1− r+ (878)

by L-125 becauseΞY +(X) = r+ for Y + = X
≥ 1

2
. In addition, we then know that

eitherY 6= Y + or Y ′ 6= Y +′ and hence

r0 = ΞY,Y ′(X,X ′) ≤ 1− r+ , (879)

again by L-125. We shall utilize these inequations in a minute. In the following, it is
convenient to discern two subcases.
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b.4.i If (z+, r+) /∈ Y , then

ΞY,Y ′(X,X ′) = min(ΞY (X),ΞY ′(X ′)) by Def. 83

≤ ΞY (X)
= inf{δX,Y (z, r) : z, r ∈ I} by (61)

≤ δX,Y (z+, r+)
= 1− µX(z+, r+) by (60)

= 1− 1 by (862)

= 0 .

We conclude thatr0 = ΞY,Y ′(X,X ′) = 0. Hencer0 ∈ A′(z0) by (855).

b.4.ii In the case that(z+, r+) ∈ Y , we know that(z+, r+) ∈ Y ∪Y ′. Now consider
z, r ∈ I. For(z, r) = (z+, r+), we then obtain from(z+, r+) ∈ Y ∪ Y ′ that

δX,Y ∪Y ′(z, r) = δX,Y ∪Y ′(z+, r+) = µX(z+, r+) = 1 (880)

see (862). In turn

min(δX,Y (z, r), δX′,Y ′(z, r))
= min(δX,Y (z+, r+), δX′,Y ′(z+, r+)) by assumption(z, r) = (z+, r+)
= min(1, δX′,Y ′(z+, r+)) by (880)

= δX′,Y ′(z+, r+)
≥ min(µX′(z+, r+), 1− µX′(z+, r+)) by (60)

= min(r+, 1− r+) by (863)

= 1− r+ , becauser+ > 1
2

i.e.

min(δX,Y (z, r), δX′,Y ′(z, r)) ≥ 1− r+ . (881)

Now consider(z, r) 6= (z+, r+). Then

µX(z, r) = µX′(z, r) , (882)

see (862) and (863). We further notice that

µX(z, r) = µX′(z, r) ≤ 1− r+ < 1
2 (883)

in this case, which is apparent from (882), (863), Def. 87 andr+ > 1
2 . In the following,

it is convenient to discern four cases for the given(z, r) 6= (z+, r+).

— If (z, r) ∈ Y and(z, r) ∈ Y ′, then(z, r) ∈ Y ∪ Y ′ and

δX,Y ∪Y ′(z, r) = µX(z, r) by (60)

= min(µX(z, r), µX(z, r)) by idempotence ofmin
= min(µX(z, r), µX′(z, r)) , by (882)
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i.e.

δX,Y ∪Y ′(z, r) = min(δX,Y (z, r), δX′,Y ′(z, r)) (884)

by (60).

— If (z, r) ∈ Y and(z, r) /∈ Y ′, then(z, r) ∈ Y ∪ Y ′ and hence

δX,Y ∪Y ′(z, r) = µX(z, r) by (60)

= min(µX(z, r), 1− µX(z, r)) by (883)

= min(µX(z, r), 1− µX′(z, r)) , by (882)

and again

δX,Y ∪Y ′(z, r) = min(δX,Y (z, r), δX′,Y ′(z, r)) (885)

by (60).

— If (z, r) /∈ Y and(z, r) ∈ Y ′, then(z, r) ∈ Y ∪ Y ′. Therefore

δX,Y ∪Y ′(z, r) = µX(z, r) by (60)

= min(1− µX(z, r), µX(z, r)) by (883)

= min(1− µX(z, r), µX′(z, r)) . by (882)

By (60), then,

δX,Y ∪Y ′(z, r) = min(δX,Y (z, r), δX′,Y ′(z, r)) . (886)

— Finally if (z, r) /∈ Y and(z, r) /∈ Y ′, then(z, r) /∈ Y ∪ Y ′ as well. Hence

δX,Y ∪Y ′(z, r) = 1− µX(z, r) by (60)

= min(1− µX(z, r), 1− µX(z, r)) by idempotence ofmin
= min(1− µX(z, r), 1− µX′(z, r)) , by (882)

i.e.

δX,Y ∪Y ′(z, r) = δX,Y (z, r), δX′,Y ′(z, r)) (887)

by (60). Therefore

inf{δX,Y ∪Y ′(z, r) : (z, r) 6= (z+, r+)}
= inf{min(δX,Y (z, r), δX′,Y ′(z, r)) : (z, r) 6= (z+, r+)} (888)

306



by (884)–(887).
We can now put the pieces together, in order to handle the remaining caseb.4.ii .

ΞY ∪Y ′(X)
= inf{δX,Y ∪Y ′(z, r) : z, r ∈ I} by (61)

= min(inf{δX,Y ∪Y ′(z, r) : (z, r) 6= (z+, r+)},
δX,Y ∪Y ′(z+, r+)) by splittinginf-expression

= min(inf{δX,Y ∪Y ′(z, r) : (z, r) 6= (z+, r+)}, 1) by (880)

= inf{δX,Y ∪Y ′(z, r) : (z, r) 6= (z+, r+)} , because1 is identity ofmin

i.e.

ΞY ∪Y ′(X) = inf{min(δX,Y (z, r), δX′,Y ′(z, r)) : (z, r) 6= (z+, r+)} (889)

by (888) and in particular

inf{min(δX,Y (z, r), δX′,Y ′(z, r)) : (z, r) 6= (z+, r+)} ≤ 1− r+ (890)

by (878). Therefore

ΞY,Y ′(X,X ′)
= min(ΞY (X),ΞY ′(X ′)) by Def. 83

= min(inf{δX,Y (z, r) : z, r ∈ I}, inf{δX′,Y ′(z, r) : z, r ∈ I}) by (61)

= inf{min(δX,Y (z, r), δX′,Y ′(z, r)) : z, r ∈ I}
= min(inf{min(δX,Y (z, r), δX′,Y ′(z, r)) : (z, r) 6= (z+, r+)},

min(δX,Y (z+, r+), δX′,Y ′(z+, r+))) by splittinginf-
expression

= inf{min(δX,Y (z, r), δX′,Y ′(z, r)) : (z, r) 6= (z+, r+)} . by (881), (890)

Hence

r0 = ΞY,Y ′(X,X ′) = ΞY ∪Y ′(X) (891)

by (889). Because alsoz0 = Q∪(Y, Y ′) = Q(Y ∪ Y ′), we know from Def. 86 that
r0 ∈ AQ,X . ButA = AQ,X by (868), hencer0 ∈ A(z0). We further notice from (854)
thatA′(z0) ⊆ A(z0). Hence indeedr0 ∈ A′(z0), which completes the proof of case
b.4.ii .
Noticing thatr0 ∈ AQ∪,X,X′(z0) was arbitrarily chosen, we hence know that

AQ∪,X,X′(z0) ⊆ A′(z0) .

Combining this with (877), we obtain thatAQ∪,X,X′(z0) = A′(z0). Becausez0 ∈ I
was arbitrary, we conclude that

AQ∪,X,X′ = A′ . (892)
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Based on these preparations, the claim of the lemma is now apparent from the following
reasoning.

ψ(A′) = ψ(AQ∪,X,X′) by (892)

= Fψ(Q∪)(X,X ′) by Def. 88

= Fψ(Q)(X ∪X ′) by (Z-4)

= Fψ(Q)(X) becauseX ′ ⊆ X, see (862) and (863)

= ψ(AQ,X) by Def. 88

= ψ(A) , by (868)

as desired.

Lemma 160 Letψ : A −→ I be given and suppose thatFψ induces the standard fuzzy
disjunction and the standard extension principle. IfFψ satisfies(Z-4) and (Z-6), then

ψ(A′) = ψ(A)

for all A ∈ A, where

A′(z) =
{
A(z) : z 6= z+

(A(z+) \ {r+}) ∪ { 1
2} : z = z+

(893)

for all z ∈ I.

Proof Consider a choice ofA ∈ A and suppose thatA′ ∈ A is defined by (893). By
L-159, we can assume without loss of generality that

1− r+ ∈ A(z+) , (894)

wherer+ refers tor+ = r+(A) andz+ = z+(A) as usual. In particular, we then know
that1− r+ ∈ D(A) and in turn,D(A) 6= {1}. We can further assume without loss of
generality thatr+ > 1

2 . This is apparent because (893) yieldsA = A′ in the case that
r+ = 1

2 , and hence the claim of the lemma is trivially fulfilled.
In the following, we assume a choice ofζ : D(A) −→ I andζ ′ : D(A′) −→ I such
that

r ∈ A(ζ(r)) for all r ∈ D(A) (895)

r ∈ A′(ζ ′(r)) for all r ∈ D(A′) (896)

ζ(r) = ζ ′(r) for all r ∈ D(A) ∩D(A′) . (897)

It is apparent from (62) and (893) that suitableζ, ζ ′ exist. Let us now defineX,X ′ ∈
P̃(I× I) by

µX(z, r) =
{
r : r ∈ A(z)
1− r+ : r /∈ A(z) (898)

µX′(z, r) =

{
µX(z, r) : (z, r) 6= (z+, r+)
1
2 : (z, r) = (z+, r+)

(899)
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for all z, r ∈ I. We defineQ : P(I× I) −→ I by

Q(Y ) =
{
z′ : r′ ∈ A(z′)
ζ(r′) : r′ /∈ A(z′) (900)

where

r′ = r′(Y ) = ΞY (X) (901)

z′ = z′(Y ) = inf{z ∈ I : (z, r′) ∈ Y, r′ = r′(Y ) ∈ A(z)} (902)

for all Y ∈ P(I× I).
Now we considerAQ,X∪X′ andAQ∪,X,X′ . As concernsAQ,X∪X′ , we first notice from
(898) and (899) that

X ′ ⊆ X , (903)

in particularX = X∪X ′ andAQ,X∪X′ = AQ,X . We also know thatD(A) 6= {1}. We
hence notice thatQ andX are defined in accordance with the corresponding definitions
in Th-94.b., which yields the desired

AQ,X∪X′ = AQ,X = A . (904)

It remains to be shown thatAQ∪,X,X′ = A′. Hence considerz0 ∈ I.

a. I first prove the subsumption

A′(z0) ⊆ AQ∪,X,X′(z0) . (905)

To see this, letr0 ∈ A′(z0).

a.1 In the case thatr0 = r+(A′) = 1
2 , we know thatz0 = z+. We now consider

(Y, Y ′) = (Y +, Y ′
+) = (X

≥ 1
2
, X ′

≥ 1
2

) , (906)

see (700). It is then apparent from (898), (899),r+ = r+(A) > 1
2 and L-125 that

Y = {(z+, r+)} = Y ′ . (907)

Therefore

ΞY (X)
= min(inf{µX(z+, r+)},

inf{1− µX(z, r) : (z, r) 6= (z+, r+)}) by Def. 83 and (907)

≥ min(r+, inf{1−max(r, 1− r+) : (z, r) 6= (z+, r+)}) by (898)

= min(r+, inf{min(1− r, r+) : (z, r) 6= (z+, r+)}) , by De Morgan’s law

309



i.e.

ΞY (X) = r+ (908)

by L-125; and

ΞY ′(X ′)
= min(inf{µX′(z+, r+)},

inf{1− µX′(z, r) : (z, r) 6= (z+, r+)}) by Def. 83 and (907)

≥ min(1
2 , inf{1−max(r, 1− r+) : (z, r) 6= (z+, r+)}) by (899)

= min( 1
2 , inf{min(1− r, r+) : (z, r) 6= (z+, r+)}) by De Morgan’s law

= 1
2 by L-125

i.e.ΞY,Y ′(X,X ′) = min(ΞY (X),ΞY ′(X ′)) ≥ min(r+,
1
2 ) = 1

2 . Because

ΞY,Y ′(X,X ′) ≤ µX′(z+, r+) = 1
2

by Def. 83 and (899), this proves that

ΞY ′(X ′) = 1
2 (909)

and in turn,

ΞY,Y ′(X,X ′) = 1
2 . (910)

Hence indeedr0 = 1
2 = r+(A′) ∈ ΞY,Y ′(X,X ′). In addition

Q∪(Y, Y ′) = Q(Y ∪ Y ′) by Def. 12

= Q(X
≥ 1

2
∪X ′

≥ 1
2

) by definition ofY, Y ′

= Q(X ∪X ′
≥ 1

2
) (property ofα-cuts)

= Q(X
≥ 1

2
) by (903)

= Q(Y ) by definition ofY

= z+ , by (900)

because in this case,r′ = r+ by (901) and (906), and hencez′ = z+. To sum up,
I have shown thatr0 = 1

2 ∈ ΞY,Y ′(X,X ′) andQ∪(Y, Y ′) = z+ = z0, i.e. 1
2 ∈

AQ∪,X,X′(z0) by Def. 86, as desired.

a.2 Now suppose thatr0 6= r+. We can then conclude fromr0 ∈ A′(z0) and (893)
thatr0 ∈ A(z0) as well. In addition,

r0 ≤ 1− r+ (911)

by (893) and L-125, recalling the abbreviationr+ = r+(A). We now defineY ∈
P(I× I) by

Y = {(z0, r0)} ∪ {(z, r) : r ∈ A(z) ∩ (r0,
1
2 ]} . (912)

Let us first show thatΞY (X) = r0.
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a.2.i Let us begin with the case that(z, r) ∈ Y . We observe that

µX(z0, r0) = r0 (913)

by (898) becauser0 ∈ A(z0). In addition,

inf{µX(z, r) : r ∈ A(z) ∩ (r0,
1
2 ]}

= inf{r : there existsz ∈ I s.t. r ∈ A(z) ∩ (r0,
1
2 ]} , by (898)

i.e.

inf{µX(z, r) : r ∈ A(z) ∩ (r0,
1
2 ]} ≥ r0 . (914)

Recalling that

inf{µX(z, r) : (z, r) ∈ Y }
= min({µX(z0, r0), inf{µX(z, r) : r ∈ A(z) ∩ (r0,

1
2 ]}) , by (912)

we hence obtain from (913) and (914) that

inf{µX(z, r) : (z, r) ∈ Y } = r0 . (915)

a.2.ii Now let us consider the case that(z, r) /∈ Y . Then

inf{1− µX(z, r) : (z, r) /∈ Y }
= min{inf{1− µX(z, r) : r /∈ A(z)},

inf{1− µX(z, r) : r ∈ A(z) ∩ [0, r0]},
inf{1− µX(z, r) : r ∈ A(z) ∩ [ 1

2 , 1]}} , by (912)

i.e.

inf{1− µX(z, r) : (z, r) /∈ Y }
= min{inf{1− µX(z, r) : r /∈ A(z)},

inf{1− µX(z, r) : r ∈ A(z) ∩ [0, r0]},
1− µX(z+, r+)} .

(916)

We shall consider these subexpressions in turn.

— Firstly

inf{1− µX(z, r) : r /∈ A(z)}
= inf{1− (1− r+) : r /∈ A(z)} by (898)

= inf{r+ : r /∈ A(z)}
≥ r+

> 1
2 ,

in particular

inf{1− µX(z, r) : r /∈ A(z)} ≥ r0 . (917)
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— Secondly,

inf{1− µX(z, r) : r ∈ A(z) ∩ [0, r0]}
= inf{1− r : r ∈ A(z) ∩ [0, r0)} by (898)

≥ inf{1− r : r ∈ [0, r0)}
= inf(1− r0, 1]
= 1− r0

≥ 1− (1− r+) by (911)

= 1− r+

≥ r0 , by (911)

i.e.

inf{1− µX(z, r) : r ∈ A(z) ∩ [0, r0]} ≥ r0 . (918)

— Finally

1− µX(z0, r0) = 1− r0 ≥ r0 (919)

by (898) andr0 ∈ A(z0), and noticing thatr0 <
1
2 .

These results can be summarized as stating that

inf{1− µX(z, r) : (z, r) /∈ Y } ≥ r0 (920)

in casea.2.ii , which is straightforward from equations (916)–(919). The above results
can then be combined to yield

ΞY (X) = min(inf{µX(z, r) : (z, r) ∈ Y }, inf{1− µX(z, r) : (z, r) /∈ Y }) = r0 ,
(921)

see Def. 83, (915), and (920).
Next we prove thatΞY (X ′) = r0 as well.

a.2.iii In order to treat the case that(z, r) ∈ Y , we first notice that

µX′(r0, z0) = µX(r0, z0) = r0 (922)

because(z0, r0) 6= (z+, r+), see (899) and (913). In addition

inf{µX′(z, r) : r ∈ A(z) ∩ (r0,
1
2 ]}

= inf{µX(z, r) : r ∈ A(z) ∩ (r0,
1
2 ]}

by (899) becauser ∈ (r0,
1
2 ] entails thatr < r+. Hence from (914),

inf{µX′(z, r) : r ∈ A(z) ∩ (r0,
1
2 ]} ≥ r0 . (923)

In turn, (912), (922) and (923) prove that

inf{µX′(z, r) : (z, r) ∈ Y }
= min(µX(z0, r0), inf{µX′(z, r) : r ∈ A(z) ∩ (r0,

1
2 ]})

= r0 .
(924)
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a.2.iv We now consider the case that(z, r) /∈ Y . Then

inf{1− µX′(z, r) : (z, r) /∈ Y }
= min(inf{1− µX′(z, r) : r /∈ A(z)},

inf{1− µX′(z, r) : r ∈ A(z) ∩ [0, r0)},
inf{1− µX′(z, r) : r ∈ A(z) ∩ [ 1

2 , 1]}} by (912)

= min(inf{1− µX(z, r) : r /∈ A(z)},
inf{1− µX(z, r) : r ∈ A(z) ∩ [0, r0)},
1− µX′(z+, r+)} by (899), L-125

= min(inf{1− µX(z, r) : r /∈ A(z)},
inf{1− µX(z, r) : r ∈ A(z) ∩ [0, r0)},
1
2} by (899)

and hence

inf{1− µX′(z, r) : (z, r) /∈ Y } ≥ r0 (925)

by (917), (918) and recalling thatr0 <
1
2 .

It is now apparent from Def. 83, (924) and (925) that

ΞY (X ′) = r0 .

Combining this with (921) yields

ΞY,Y (X,X ′) = min(r0, r0) = r0 . (926)

It remains to be shown thatQ∪(Y, Y ) = z0. To see this, we first observe thatr′ =
ΞY (X) = r0 by (901) and (921). Hence

z′ = inf{z : (z, r′) ∈ Y, r′ ∈ A(z)} by (902)

= inf{z : (z, r0) ∈ Y, r0 ∈ A(z)} becauser′ = r0

= inf{z0} , by (912)

i.e.

z′ = z0 . (927)

Consequently

Q∪(Y, Y ) = Q(Y ∪ Y ) by Def. 12

= Q(Y )
= z′ , by (900) andr′ = r0 ∈ A(z0)

i.e.

Q∪(Y, Y ) = z0 (928)

by (927). Recalling Def. 86, (926) and (928) prove thatr0 ∈ AQ∪,X,X′(z0). Hence
(905) is valid, as desired.
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b. Next we consider the converse subsumption,

AQ∪,X,X′(z0) ⊆ A′(z0) . (929)

Hence letr0 ∈ AQ∪,X,X′(z0). By Def. 86, then, there existY, Y ′ ∈ P(I× I) with
Q∪(Y, Y ′) = z0 andΞY,Y ′(X,X ′) = r0. In the following, it is convenient to discern
a number of cases.

b.1 If Y = Y + = X
≥ 1

2
andY ′ = Y +′ = X ′

≥ 1
2

, i.e. Y = Y ′ = {(z+, r+)} by

(907), thenY ∪ Y ′ = {(z+, r+)} = Y +. Hence

ΞY ∪Y ′(X) = ΞY +(X) becauseY + = Y ∪ Y ′

= r+ by (908)

for r+ = r+(AQ,X), and hencez0 = z+(AQ,X) = z+(A) = z+ by L-123 and
L-124 becauser+ > 1

2 , and recalling equation (904). We further recall thatr0 =
ΞY,Y ′(X,X ′) = 1

2 by (910). Butr0 = 1
2 ∈ A

′(z+) is immediate from (893).

b.2 The next case to consider isY = Y + = {(z+, r+)} andY ′ = ∅. Then again
Y ∪ Y ′ = {(z+, r+)} = Y + and hencez0 = Q∪(Y, Y ′) = Q(Y ∪ Y ′) = Q(Y +) =
z+ by the same reasoning. In this case, we haveΞY (X) = r+ and

ΞY ′(X ′)
= Ξ∅(X ′)
= inf{δX′,∅(z, r) : z, r ∈ I} by (61)

= inf{1− µX′(z, r) : z, r ∈ I} by (60)

= min(inf{1− µX′(z, r) : z, r ∈ I}, 1− µX′(z+, r+)) by splittinginf-expression

= min(inf{1− µX′(z, r) : z, r ∈ I}, 1− 1
2 ) by (899)

= min(inf{1− µX′(z, r) : z, r ∈ I}, 1
2 )

= min(inf{1− µX′(z, r) : z, r ∈ I}, µX′(z+, r+)) by (899)

= min(inf{δX′,V (z, r) : z, r ∈ I}, δX′,V (z+, r+)) by (60),V = {(z+, r+)}
= inf{δX′,V (z, r) : z, r ∈ I}
= ΞX′(V ) by (61)

= 1
2 by (909)

Hencer0 = ΞY,Y ′(X,X ′) = min(r+,
1
2 ) = 1

2 andz0 = z+ in this case. We again
notice from (893) thatr0 = 1

2 ∈ A
′(z+) = A′(z0) in this case.
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b.3 Now we consider the case thatY = ∅ andY ′ = Y +′ = {(z+, r+)}. We first
observe that

inf{1− µX(z, r) : (z, r) 6= (z+, r+)}
= inf{δX,Y +(z, r) : (z, r) 6= (z+, r+)} by (60),Y + = {(z+, r+)}
≥ inf{δX,Y +(z, r) : z, r ∈ I}
= ΞY +(X) by (61)

= r+ , by (908)

i.e.

inf{1− µX(z, r) : (z, r) 6= (z+, r+)} ≥ r+ . (930)

Therefore

Ξ∅(X)
= inf{δX,∅(z, r) : z, r ∈ I} by (61)

= min(inf{1− µX(z, r) : (z, r) 6= (z+, r+)},
1− µX(z+, r+)) by (60)

= min(inf{1− µX(z, r) : (z, r) 6= (z+, r+)}, 1− r+) by (898)

= 1− r+ . by (930) because1− r+ < r+

Let us now recall from (909) thatΞY ′(X ′) = 1
2 . Hencer0 = ΞY,Y ′(X,X ′) =

min(ΞY (X),ΞY ′(X ′)) = min(1 − r+,
1
2 ) = 1 − r+ in this case. We notice that

againz0 = Q∪(Y, Y ′) = Q(Y +) = z+, as in the previous cases. We can now utilize
(894) to conclude thatr0 = 1−r+ ∈ A(z+) = A(z0). It is then immediate from (893)
thatr0 ∈ A′(z0) as well.

b.4 Finally we consider the case thatY ∪Y ′ 6= {(z+, r+)} = Y +. We first need some
observation onmin(δX,Y (z, r), δX′,Y ′(z, r), for givenz, r ∈ I. Hence letz, r ∈ I.

b.4.i If (z, r) = (z+, r+), then

min(δX,Y (z+, r+), δX′,Y ′(z+, r+))

= min(δX,Y (z+, r+), 1
2 ) by (60), (899)

≥ min(min(µX(z+, r+), 1− µX(z+, r+)), 1
2 ) by (60)

= min(min(r+, 1− r+), 1
2 ) , by (898)

i.e.

min(δX,Y (z, r), δX′,Y ′(z, r)) ≥ 1− r+ (931)

in this case becauser+ > 1
2 by assumption.
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b.4.ii In remaining case that(z, r) 6= (z+, r+), we first observe that

µX(z, r) = µX′(z, r) (932)

for (z, r) 6= (z+, r+), which is immediate from (898) and (899). It is now convenient
to discern four subcases.

— Firstly if (z+, r+) ∈ Y and(z+, r+) ∈ Y ′, then(z+, r+) ∈ Y ∪ Y ′ as well, and

min(δX,Y (z, r), δX′,Y ′(z, r))
= min(µX(z, r), µX′(z, r)) by (60)

= min(µX(z, r), µX(z, r)) by (932)

= µX(z, r) by idempotence ofmin
= δX,Y ∪Y ′(z, r) . by (60)

— Secondly if(z, r) ∈ Y and(z, r) /∈ Y ′, then again(z, r) ∈ Y ∪ Y ′ and

min(δX,Y (z, r), δX′,Y ′(z, r))
= min(µX(z, r), 1− µX′(z, r)) by (60)

min(µX(z, r), 1− µX(z, r)) by (932)

= µX(z, r) becauseµX(z, r) ≤ 1
2 by (898)

= δX,Y ∪Y ′(z, r) . by (60)

— Next if (z, r) /∈ Y and(z, r) ∈ Y ′, then in particular(z, r) ∈ Y ∪ Y ′ and hence

min(δX,Y (z, r), δX′,Y ′(z, r))
= min(1− µX(z, r), µX′(z, r)) by (60)

min(1− µX(z, r), µX(z, r)) by (932)

= µX(z, r) becauseµX(z, r) ≤ 1
2 by (898)

= δX,Y ∪Y ′(z, r) . by (60)

— Finally if (z, r) /∈ Y and(z, r) /∈ Y ′, then(z, r) /∈ Y ∪ Y ′ as well. Therefore

min(δX,Y (z, r), δX′,Y ′(z, r))
= min(1− µX(z, r), 1− µX′(z, r)) by (60)

= 1−max(µX(z, r), µX′(z, r)) by De Morgan’s law

= 1− µX∪X′(z, r)
= 1− µX(z, r) by (903)

= δX,Y ∪Y ′(z, r) . by (60)

These findings can be summarized as stating that

inf{min(δX,Y (z, r), δX′,Y ′(z, r)) : (z, r) 6= (z+, r+)}
= inf{δX,Y ∪Y ′(z, r) : (z, r) 6= (z+, r+)} . (933)

316



We are now prepared to finish the proof thatAQ∪,X,X′(z0) ⊆ A′(z0). Hence consider
the remaining caseb.4 thatY ∪ Y ′ 6= {(z+, r+)} = Y +.

— If (z+, r+) /∈ Y ∪ Y ′, then we obtain from a simple computation that

ΞY,Y ′(X,X ′)
= min(inf{δX,Y (z, r) : z, r ∈ I},

inf{δX′,Y ′(z, r) : z, r ∈ I}) by Def. 83 and (60)

= inf{min(δX,Y (z, r), δX′,Y ′(z, r)) : z, r ∈ I}
= min(inf{min(δX,Y (z, r), δX′,Y ′(z, r))

: (z, r) 6= (z+, r+)},
min(δX,Y (z+, r+), δX′,Y ′(z+, r+)))

by splittinginf-expression

= min(inf{δX,Y ∪Y ′(z, r) : (z, r) 6= (z+, r+)},
min(1− µX(z+, r+), 1− µX′(z+, r+))) by (933) and (60)

and hence

ΞY,Y ′(X,X ′)
= min(inf{δX,Y ∪Y ′(z, r) : (z, r) 6= (z+, r+)},

1−max(µX(z+, r+), µX′(z+, r+))) by De Morgan’s law

= min(inf{δX,Y ∪Y ′(z, r) : (z, r) 6= (z+, r+)},
1− µX(z+, r+)) by (903)

= min(inf{δX,Y ∪Y ′(z, r) : (z, r) 6= (z+, r+)},
δX,Y ∪Y ′(z+, r+)) by (60) because(z+, r+) /∈ Y ∪ Y ′

= inf{δX,Y ∪Y ′(z, r) : z, r ∈ I}
= ΞY ∪Y ′(X) . by (61)

— In the remaining case thatY ∪ Y ′ 6= Y + and(z+, r+) ∈ Y ∪ Y ′, we conclude
from ΞY +(X) = r+ andY ∪ Y ′ 6= Y + that

ΞY ∪Y ′(X) ≤ 1− r+ . (934)

Therefore

1− r+ ≥ ΞY ∪Y ′(X)
= min(inf{δX,Y ∪Y ′(z, r) : (z, r) 6= (z+, r+)}, δX,Y ∪Y ′(z+, r+)) by (61)

= min(inf{δX,Y ∪Y ′(z, r) : (z, r) 6= (z+, r+)}, µX(z+, r+)) by (60)

= min(inf{δX,Y ∪Y ′(z, r) : (z, r) 6= (z+, r+)}, r+) . by (898)

Becauser+ > 1
2 > 1− r+, this proves that

ΞY ∪Y ′(X) = inf{δX,Y ∪Y ′(z, r) : (z, r) 6= (z+, r+)} . (935)
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Hence

ΞY,Y ′(X,X ′)
= min(inf{δX,Y (z, r) : z, r ∈ I},

inf{δX′,Y ′(z, r) : z, r ∈ I}) by Def. 83 and (61)

= inf{min(δX,Y (z, r), δX′,Y ′(z, r)) : z, r ∈ I}
= min(inf{min(δX,Y (z, r), δX′,Y ′(z, r))

: (z, r) 6= (z+, r+)},
min(δX,Y (z+, r+), δX′,Y ′(z+, r+)))

by splittinginf-expression

= min(inf{δX,Y ∪Y ′(z, r) : (z, r) 6= (z+, r+)},
min(δX,Y (z+, r+), δX′,Y ′(z+, r+))) by (933)

= min(ΞY ∪Y ′(X),min(δX,Y (z+, r+), δX′,Y ′(z+, r+)) by (935)

= ΞY ∪Y ′(X) . by (931) and (934)

We conclude thatΞY ∪Y ′(X) = ΞY,Y ′(X,X ′) = r0 in the considered case that
Y ∪ Y ′ 6= Y +. In addition,Q(Y ∪ Y ′) = Q∪(Y, Y ′) = z0. Hencer0 ∈ AQ,X(z0) =
A(z0) by Def. 86 and (904). Becauser0 6= r+, we obtain from (893) thatr0 ∈ A′(z0)
as well.
This finishes the proof of partb. thatAQ∪,X,X′(z0) ⊆ A′(z0) for all z0 ∈ I. Combin-
ing this with (905), we obtain the desired

A′ = AQ∪,X,X′ . (936)

To see how this proves the lemma, consider the following reasoning.

ψ(A′) = ψ(AQ∪,X,X′) by (936)

= Fψ(Q∪)(X,X ′) by Def. 88

= Fψ(Q)(X ∪X ′) by (Z-4)

= Fψ(Q)(X) by (903)

= ψ(AQ,X) by Def. 88

= ψ(A) . by (904)

Henceψ(A′) = ψ(A), as desired.

Proof of Theorem 112

Let ψ : A −→ I be a given mapping and suppose thatFψ induces the standard fuzzy
disjunction and the standard extension principle. Further suppose that (Z-4) and (Z-6)
are valid. We now consider someA0 ∈ A. In order to prove thatψ(A0) = ψ(�A0), it
is convenient to define a special choice ofA ∈ A in terms ofA0, viz

A(z) =
{
A0(z) : z 6= z+

(A0(z+) \ {r+}) ∪ { 1
2} : z = z+

(937)
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for all z ∈ I. It is then apparent from Def. 90 that

�A0 = �A . (938)

In addition,A0 andA are related by (893), and hence

ψ(A0) = ψ(A) (939)

by L-160. We further notice thatr+(A) = 1
2 , and hence

A(z) ⊆ �A(z)

for all z ∈ I, which is immediate from Def. 90.
We now recall Th-94. Noticing that12 = r+(A) ∈ D(A), we clearly haveD(A) 6=
{1}. Hence by partb. of the theorem, we can constructX ∈ P̃(I× I) andQ :
P(I× I) −→ I with

AQ,X = A . (940)

Recalling this construction, we can chooser− = 1
2 here, see (65). Hence the definition

of X ∈ P̃(I× I) becomes

µX(z, r) =
{
r : r ∈ A(z)
1
2 : r /∈ A(z) (941)

for all z, r ∈ I, see (66). We further assume a choice ofζ : D(A) −→ I which satisfies
property (64). For a givenY ∈ P(I× I), we shall then assume the usual definition of
r′ = r′(Y ), z′ = z′(Y ) andQ(Y ), as stated by (67), (68) and (69), respectively. In the
following, we introduce a second fuzzy subsetX ′ ∈ P̃(I× I), which we define by

µX′(z, r) =
{
r : r ∈ �A(z)
1
2 : r /∈ �A(z) (942)

for all z, r ∈ I. We know thatr+(A) = 1
2 and hencer ∈ �A(z) entails thatr ≤ r+ =

1
2 . Therefore

µX(z, r) ≤ 1
2 (943)

µX′(z, r) ≤ 1
2 (944)

for all z, r ∈ I. In addition,r ≤ r+ = 1
2 for all r ∈ D(�A) entails thatX ′ ⊆ X and

in turn,

X ∪X ′ = X . (945)

We are now interested inAQ∪,X,X′ . Hence letz0 ∈ I. In order to prove that

AQ∪,X,X′(z0) = �A(z0) ,
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a. I first consider the subsumption

�A(z0) ⊆ AQ∪,X,X′(z0) . (946)

Hence letr0 ∈ �A(z0). Then there existsr1 ∈ A(z) with r0 ≤ r1. We define
Y ∈ P(I× I) by

Y = {(z0, r0), (z0, r1)} ∪ {(z, r) : r ∈ A(z) ∩ (r1,
1
2 ]} . (947)

We now considerr′ = r′(Y ). Some preparations are necessary to determine the precise
result obtained forr′.

a.1 Let us begin with the case of(z, r) ∈ Y . We first notice that

inf{µX(z, r) : r ∈ A(z) ∩ (r1,
1
2 ]}

≥ inf{r : r ∈ A(z) ∩ (r1,
1
2 ]} by (941) andD(A) ⊆ [0, 1

2 ]

≥ inf(r1,
1
2 ] ,

i.e.

inf{µX(z, r) : r ∈ A(z) ∩ (r1,
1
2 ]} ≥ r1 . (948)

It is now convenient to discern two subcases.

a.1.i If r0 ∈ A(z0), then

inf{µX(z, r) : (z, r) ∈ Y }
= min{µX(z0, r0), µX(z0, r1),

inf{µX(z, r) : r ∈ A(z) ∩ (r1,
1
2 ]}} by (947)

= min{r0, r1, inf{µX(z, r) : r ∈ A(z) ∩ (r1,
1
2 ]}} , by (941) andr0, r1 ∈ A(z0)

i.e.

inf{µX(z, r) : (z, r) ∈ Y } = r0 (949)

by (948) and recalling thatr0 ≤ r1.

a.1.ii In the remaining case thatr0 /∈ A(z0),

inf{µX(z, r) : (z, r) ∈ Y }
= min{µX(z0, r0), µX(z0, r1),

inf{µX(z, r) : r ∈ A(z) ∩ (r1,
1
2 ]}} by (947)

= min{ 1
2 , r1,

inf{µX(z, r) : r ∈ A(z) ∩ (r1,
1
2 ]}} , by (941) andr0 /∈ A(z0), r1 ∈ A(z0)

i.e.

inf{µX(z, r) : (z, r) ∈ Y } = r1 (950)

by (948) and noticing thatr1 ≤ 1
2 = r+(A).
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a.2 Now we consider the case that(z, r) /∈ Y . We need some preparations.

a.2.i.: (z, r) /∈ Y andr /∈ A(z).
If r > 1

2 , thenr /∈ A(z) for anyz ∈ I becauser ∈ A(z) entails thatr ≤ r+ = 1
2 .

Hence forr > 1
2 , µX(z, r) = 1

2 . Because such(z, r) exists, we know that

sup{µX(z, r) : (z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ A(z)} ≥ 1
2 .

On the other hand,µX(z, r) ≤ max(r, 1
2 ) = 1

2 for r ≤ 1
2 , which is clear from (941)

andr+(A) = 1
2 . Hence

sup{µX(z, r) : (z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ A(z)} ≤ 1
2 ,

and we may summarize this as

sup{µX(z, r) : (z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ A(z)} = 1
2 . (951)

a.2.ii.: (z, r) /∈ Y andr ∈ A(z).
Next we consider the case that(z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ (r1,

1
2 ] andr ∈ A(z).

Becauser ∈ A(z) ⊆ D(A) ⊆ [0, r+] = [0, 1
2 ], we know thatr ≤ 1

2 and hence
µX(z, r) = r ≤ 1

2 by (941). This proves that

sup{µX(z, r) : (z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ (r1,
1
2 ], r ∈ A(z)} ≤ 1

2 . (952)

In turn we combine casesa.2.i anda.2.ii , and thus obtain

sup{µX(z, r) : (z, r) /∈ Y }
= max(sup{µX(z, r) : (z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ A(z)},

sup{µX(z, r) : (z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ (r1,
1
2 ], r ∈ A(z)}) by (947)

i.e.

sup{µX(z, r) : (z, r) /∈ Y } = 1
2

by (951), (952). In particular

inf{1− µX(z, r) : (z, r) /∈ Y } = 1− sup{µX(z, r) : (z, r) /∈ Y } = 1
2 (953)

by De Morgan’s law. ConsideringΞY (X), we recall that

ΞY (X) = min(inf{µX(z, r) : (z, r) ∈ Y },
inf{1− µX(z, r) : (z, r) /∈ Y }) by Def. 83

and hence

r′ = ΞY (X) =
{
r0 : r0 ∈ A(z0)
r1 : r0 /∈ A(z0) (954)
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by (67), (949), (950) and (953).
Next we focus onz′ = z′(Y ), as defined by (68). Ifr0 ∈ A(z0), thenr′ = r0 by
(954). We hence know from (947) that{(z, r′) : (z, r′) ∈ Y } = {(z, r0) : (z, r0) ∈
Y } = {(z0, r0)}, becauser1 ≥ r0. Hence in this case,

z′ = inf{z ∈ I : (z, r′) ∈ Y, r′ = r′(Y ) ∈ A(z)} = inf{z0} = z0

by (68). In the remaining case thatr0 /∈ A(z0), we recall thatr′ = r1 by (954).
Therefore (947) yields{(z, r′) : (z, r′) ∈ Y } = {(z, r1) : (z, r1) ∈ Y } = {(z0, r1)}.
Hence again

z′ = inf{z ∈ I : (z, r′) ∈ Y, r′ = r′(Y ) ∈ A(z)} = inf{z0} = z0

by (68). This completes the proof that in both cases,

z′ = z0 . (955)

Next we considerΞY (X ′).

a.3 Let us start with the case of(z, r) ∈ Y . We observe that

inf{µX′(z, r) : r ∈ A(z) ∩ (r1,
1
2 ]}

= inf{µX(z, r) : r ∈ A(z) ∩ (r1,
1
2 ]} by (941), (942)

becauseA(z) ⊆ �A(z). Therefore

inf{µX′(z, r) : r ∈ A(z) ∩ (r1,
1
2 ]} ≥ r1 (956)

by (948). We can hence compute

inf{µX′(z, r) : (z, r) ∈ Y }
= min{µX′(z0, r0), µX′(z0, r1),

inf{µX′(z, r) : r ∈ A(z) ∩ (r1,
1
2 ]}} by (947)

= min{r0, r1, inf{µX′(z, r) : r ∈ A(z) ∩ (r1,
1
2 ]}} , by (942)

i.e.

inf{µX′(z, r) : (z, r) ∈ Y } = r0 (957)

by (956) and recalling thatr0 ≤ r1.

a.4 Now we treat the case that(z, r) /∈ Y . We shall split the proof into two subcases.

a.4.i.: (z, r) /∈ Y andr /∈ A(z).
We recall thatD(A) ∩ ( 1

2 , 1] = ∅ becauser+ = 1
2 . Hence by Def. 90,D(�A) ∩

( 1
2 , 1] = ∅ as well, i.e. ifr > 1

2 , thenr /∈ �A(z), regardless ofz ∈ I. By (942), then,
we conclude thatµX′(z, r) = 1

2 wheneverr > 1
2 . In particular

sup{µX′(z, r) : (z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ A(z)} ≥ µX′(1, 1) = 1
2 .
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On the other hand,µX′(z, r) ≤ max(r, 1
2 ) = 1

2 for r ≤ 1
2 . Hence

sup{µX′(z, r) : (z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ A(z)} ≤ 1
2 .

Combining this with the former result yields

sup{µX′(z, r) : (z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ A(z)} = 1
2 . (958)

a.4.ii.: (z, r) /∈ Y andr /∈ A(z).
In the remaining case that(z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ (r1,

1
2 ] andr ∈ A(z),

we know from (941) thatµX(z, r) = r. We conclude fromA(z) ⊆ �A(z) that
r ∈ �A(z) as well; henceµX′(z, r) = r = µX(z, r) and

sup{µX′(z, r) : (z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ (r1,
1
2 ], r ∈ A(z)}

= sup{µX(z, r) : (z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ (r1,
1
2 ], r ∈ A(z)} .

Recalling (952), then, this becomes

sup{µX′(z, r) : (z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ (r1,
1
2 ], r ∈ A(z)} ≤ 1

2 . (959)

Now we combine the results ofa.4.i anda.4.ii . Thus

sup{µX′(z, r) : (z, r) /∈ Y }
= max(sup{µX′(z, r) : (z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ A(z)},

sup{µX′(z, r) : (z, r) /∈ {(z0, r0), (z0, r1)}, r /∈ (r1,
1
2 ],

r ∈ A(z)}) by (947)

= 1
2 by (958), (959)

and by De Morgan’s law,

inf{1− µX′(z, r) : (z, r) /∈ Y } = 1− sup{µX′(z, r) : (z, r) /∈ Y } = 1
2 . (960)

In order to computeΞY (X ′), we recall that

ΞY (X ′) = min(inf{µX′(z, r) : (z, r) ∈ Y },
inf{1− µX′(z, r) : (z, r) /∈ Y }) . by Def. 83

Therefore

ΞY (X ′) = r0 , (961)

which is apparent from (957) and (960). Based on this result, we now obtain

ΞY,Y (X,X ′) = min(ΞY (X),ΞY (X ′)) by Def. 83

= min(ΞY (X), r0) by (961)

and hence

ΞY,Y (X,X ′) = r0 , (962)
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recalling thatr0 ≤ r1 andΞY (X) ≥ r0 by (954).
Finally we consider the quantification resultQ(Y ). We notice thatr′ ∈ A(z0) =
A(z′), see (954) and (955). HenceQ∪(Y, Y ) = Q(Y ∪Y ) = Q(Y ) = z0 by (69). Be-
causeΞY,Y (X,X ′) = r0 by (962), we conclude from Def. 86 thatr0 ∈ AQ∪,X,X′(z0).
Noticing thatr0 ∈ �A(z0) was arbitrarily chosen, this proves that the subsumption
(946) is indeed valid.

b. It remains to be shown that

AQ∪,X,X′(z0) ⊆ �A(z0) . (963)

To see this, letr0 ∈ AQ∪,X,X′(z0). By Def. 86, there existY, Y ′ ∈ P(I× I) with
z0 = Q∪(Y, Y ′) andr0 = ΞY,Y ′(X,X ′). In the following, I will show thatr0 ≤ r′ =
r′(Y ∪ Y ′).
The proof requires some preparations, and we must relatemin(δX,Y (e), δX′,Y ′(z, r)
to δX,Y ∪Y ′(z, r) for arbitraryz, r ∈ I.
Hence letz, r ∈ I. It is convenient to discern four cases.

b.1 If (z, r) ∈ Y and(z, r) ∈ Y ′, then(z, r) ∈ Y ∪ Y ′ and hence

min(δX,Y (z, r), δX′,Y ′(z, r))
= min(µX(z, r), µX′(z, r)) by (60)

= µX′(z, r) apparent from (945)

≤ µX(z, r) by (945)

= δX,Y ∪Y ′(z, r) . by (60)

b.2 In the second case that(z, r) ∈ Y and(z, r) /∈ Y ′, we again have(z, r) ∈ Y ∪Y ′
and hence

min(δX,Y (z, r), δX′,Y ′(z, r))
= min(µX(z, r), 1− µX′(z, r)) by (60)

= µX(z, r) by (943), (944)

= δX,Y ∪Y ′(z, r) . by (60)

b.3 In the third case that(z, r) /∈ Y and (z, r) ∈ Y ′, it again holds that(z, r) ∈
Y ∪ Y ′. Therefore

min(δX,Y (z, r), δX′,Y ′(z, r))
= min(1− µX(z, r), µX′(z, r)) by (60)

= µX′(z, r) by (943), (944)

≤ µX(z, r) by (945)

= δX,Y ∪Y ′(z, r) . by (60)
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b.4 Finally if (z, r) /∈ Y and(z, r) /∈ Y ′, then(z, r) /∈ Y ∪ Y ′ as well. Therefore

min(δX,Y (z, r), δX′,Y ′(z, r))
= min(1− µX(z, r), 1− µX′(z, r)) by (60)

= 1−max(µX(z, r), µX′(z, r)) by De Morgan’s law

= 1− µX(z, r) by (945)

= δX,Y ∪Y ′(z, r) . by (60)

The results obtained for these four cases can be summarized as

min(δX,Y (z, r), δX′,Y ′(z, r)) ≤ δX,Y ∪Y ′(z, r) (964)

for all z, r ∈ I. Therefore

r0 = ΞY,Y ′(X,X ′) by assumption onY, Y ′

= min(inf{δX,Y (z, r) : z, r ∈ I},
inf{δX′,Y ′(z, r) : z, r ∈ I}) by Def. 83 and (61)

= inf{min(δX,Y (z, r), δX′,Y ′(z, r)) : z, r ∈ I}
≤ inf{δX,Y ∪Y ′(z, r) : z, r ∈ I} by (964)

= ΞY ∪Y ′(X) , by (61)

i.e.

r0 = ΞY,Y ′(X,X ′) ≤ ΞY ∪Y ′(X) = r′ , (965)

wherer′ abbreviatesr′ = r′(Y ∪ Y ′), see (67). Let us further notice that

Q(Y ∪ Y ′) = Q∪(Y, Y ′) = z0 , (966)

by assumption onY, Y ′ ∈ P(I× I). Now consider

z′ = inf{z ∈ I : r′ ∈ A(z), (z, r′) ∈ Y ∪ Y ′} ,

as defined by (68). It is convenient to discern two cases, in accordance with the defini-
tion ofQ, see (69).

— In the first case thatz′ ∈ A(r′), we obtain from (69) thatz0 = Q(Y ∪ Y ′) = z′.
Hencer′ ∈ A(z0). Becauser0 ≤ r′ by (965), we conclude from Def. 90 that indeed
r0 ∈ �A(z0).

— In the remaining case thatz′ /∈ A(r′), we know from (69) thatz0 = Q(Y ∪Y ′) =
ζ(r′). We then deduce from (64) thatr′ ∈ A(ζ(r′)) = A(z0). Becauser0 ≤ r′ by
(965), Def. 90 again proves thatr0 ∈ �A(z0), as desired.
Becauser0 ∈ AQ∪,X,X′(z0) was arbitrarily chosen, this proves that subsumption (963)
of partb. is indeed valid. Combining this with our earlier result (946) of parta., we
have proven that�A(z0) = AQ∪,X,X′(z0) for all z0 ∈ I, i.e.

AQ∪,X,X′ = �A . (967)
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Based on this findings, it is now easy to prove the claim of the theorem. We simply
notice that

ψ(A0) = ψ(A) by (939)

= ψ(AQ,X) by (940)

= ψ(AQ,X∪X′) by (945)

= Fψ(Q)(X ∪X ′) by Def. 88

= Fψ(Q∪)(X,X ′) by (Z-4)

= ψ(AQ∪,X,X′) by Def. 88

= ψ(�A) by (967)

= ψ(�A0) . by (938)

Hence indeedψ(A0) = ψ(�A0), as desired.

B.22 Proof of Theorem 113

Letψ : A −→ I be given and suppose thatFψ induces the standard disjunction and the
standard extension principle. Further suppose thatψ satisfies (Z-4) and (Z-6). In order
to prove that (ψ-5) is valid, we considerA0 ∈ A. In terms ofA0, we defineA1 ∈ A by

A1(z) = A0(z) ∪ {0} (968)

for all z ∈ I. We further defineA ∈ A by

A = �A1 . (969)

It is then apparent from Def. 91 that

�A0 = �A . (970)

In addition, it is clear from (969), Def. 90 and0 ∈ A1(z) for all z ∈ I, that

0 ∈ A(z) (971)

for all z ∈ I as well. We further notice that

r+ = r+(A) = 1
2 (972)

and

A(z) ∈ {[0, �̂A(z)), [0, �̂A(z)]} (973)

which is apparent from (969) and Def. 90. In particular, because1
2 = r+ ∈ A(z+),

this entails that

A(z+) = �A(z+) = [0, 1
2 ] . (974)

326



It is further immediate from Def. 91 that

A(z) ⊆ �A(z) (975)

for all z ∈ I. Recalling thatr+(A) = r+(�A) = 1
2 , we further know from Def. 87

that

D(A) = [0, 1
2 ] (976)

and

D(�A) = [0, 1
2 ] . (977)

In dependence onA, we now defineX ∈ P̃(I× I× I) by

µX(z, r, s) =

 s : r ∈ �A(z), s < r
r : r ∈ A(z), s = r
0 : else

(978)

for all z, r, s ∈ I. We definef : I3 −→ I2 by

f(z, r, s) = (z, r) (979)

for all z, r, s ∈ I. We shall further abbreviate

X ′ = ˆ̂
f(X) (980)

As I will now show, it then holds that

µX′(z, r) =
{
r : r ∈ �A(z)
0 : r /∈ �A(z) (981)

for all z, r ∈ I. To see this, considerz, r ∈ I. Then

µX′(z, r)
= sup{µX(z, r, s) : s ∈ I} by (980), (3) and (979)

= max{sup{µX(z, r, s) : r ∈ �A(z), s < r},
sup{µX(z, r, r) : r ∈ A(z)}
sup{µX(z, r, s) : s > r ∨ (r /∈ A(z) ∧ s = r)

∨r /∈ �A(z)} by splittinginf-expression

= max{sup{s : r ∈ �A(z), s < r}, sup{r : r ∈ A(z)}, 0} , by (978)

i.e.

µX′(z, r) = max(sup{s : r ∈ �A(z), s < r}, sup{r : r ∈ A(z)}) . (982)

Now in the case thatr ∈ A(z), thenr ∈ �A(z) also and hence

µX′(z, r) = max(sup[0, r), r) by (982)

= max(r, r)
= r .
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In the case thatr ∈ �A(z) \A(z), we obtain that

µX′(z, r) = max(sup[0, r), sup∅) by (982)

= max(r, 0)
= r .

Finally if r /∈ �A(z), thenr /∈ A(z) either. Hence

µX′(z, r) = max(sup∅, sup∅) by (982)

= max(0, 0)
= 0

This completes the proof that (981) is indeed valid.
Let us now return to the task of defining a suitable quantifier. For a givenY ′ ∈
P(I× I), we abbreviate

r′ = r′(Y ′) = ΞY ′(X ′) , (983)

Z = Z(Y ′) = {z ∈ I : (z, r′) ∈ Y ′, r′ ∈ �A(z)} (984)

and

z′ = z′(Y ′) = inf Z = inf{z ∈ I : (z, r′) ∈ Y ′, r′ ∈ �A(z)} . (985)

We further notice that because of the specific properties ofA, theζ : D(�A) −→ I
as known from the construction used in Th-94.b can be replaced by the constantz+,
because

r ∈ A(z+) = �A(z+) (986)

for all r ∈ D(�A), see (974), (976) and (977). We now defineQ : P(I× I) −→ I by

Q(Y ′) =
{
z′ : r′ ∈ �A(z′) andz′ ∈ Z
ζ(r′) : r′ /∈ �A(z′) or z′ /∈ Z (987)

for all Y ′ ∈ P(I× I). Let us now show that

AQ,X′ = �A . (988)

Hence letz0 ∈ I. We first consider the subsumption

�A(z0) ⊆ AQ,X′(z0) . (989)

To see this, we considerr0 ∈ �A(z0). In dependence onr0, we define

Y ′ = {(z0, r0)} . (990)

Let us now notice that

µX′(z, r) ≤ 1
2 (991)
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for all z, r ∈ I, which is clear from (981) and (977). Therefore

ΞY ′(X ′)
= min(µX′(z0, r0), inf{1− µX′(z, r) : (z, r) 6= (z0, r0)} by Def. 83 and (990)

= min( r0︸︷︷︸
≤ 1

2

, inf{1− µX′(z, r)︸ ︷︷ ︸
≥ 1

2

: (z, r) 6= (z0, r0)}) by (991)

= r0 ,

i.e.

r′ = r0 (992)

by (983). As concernsZ = Z(Y ′), we hence obtain that

Z = {z ∈ I : (z, r′) ∈ Y ′, r′ ∈ �A(z)} by (984)

= {z ∈ I : (z, r0) ∈ {(z0, r0)}, r0 ∈ �A(z)} , by (990) and (992)

i.e.

Z = {z0} . (993)

Thereforez′ = inf Z = inf{z0} = z0. Becauser′ = r0 ∈ �A(z0) = �A(z′) by
assumption andz′ = z0 ∈ {z0} = Z, we conclude from (987) thatQ(Y ′) = z′ = z0.
Hence indeedr0 ∈ AQ,X′(z0) by Def. 86, i.e. (989) holds, as desired.
In order to prepare the proof of the converse subsumption

AQ,X′(z0) ⊆ �A(z0) , (994)

we first need to show that

r+(AQ,X′) = 1
2 . (995)

To this end, we observe that

X ′
≥ 1

2

= {(z, r) ∈ I2 : µX′(z, r) ≥ 1
2} by Def. 29

= {(z, r) ∈ I2 : µX′(z, r) ≥ 1
2} , by (991)

i.e.

X ′
≥ 1

2
= {(z, 1

2 ) : 1
2 ∈ �A(z)} (996)

by (981). Therefore

r+(AQ,X′)
= ΞX′

≥
1
2

(X ′) by L-124

= min(inf{µX′(z, 1
2 ) : 1

2 ∈ �A(z)},
inf{1− µX′(z, r) : 1

2 /∈ �A(z) ∨ r 6= 1
2}) by Def. 83 and (996)

= min(1
2 , inf{1− µX′(z, r) : 1

2 /∈ �A(z) ∨ r 6= 1
2}) because12 ∈ �A(z+)

= 1
2 ,
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noticing thatinf{1−µX′(z, r) : 1
2 /∈ �A(z)∨ r 6= 1

2} ≥
1
2 by (991). This proves that

(995) is valid, and we can now focus on (994).
Hence letr0 ∈ AQ,X′(z0). By Def. 86, there existsY ′ ∈ P(I× I) such that

r0 = ΞY ′(X ′) (997)

z0 = Q(Y ′) (998)

Let us abbreviater′ = r′(Y ′), Z = Z(Y ′) andz′ = z′(Y ′) as usual. Then

r′ = ΞY ′(X ′) = r0 (999)

by (983) and (997). We now consider two cases: eitherr′ ∈ �A(z′) andz′ ∈ Z; or
r′ /∈ A(z′) or z′ /∈ Z.
In the case thatr′ ∈ �A(z′) andz′ ∈ Z, we obtain from (987) and (998) thatz0 =
Q(Y ′) = z′. Hencer′ ∈ �A(z′) entails thatr′ ∈ �A(z0) as well. Finally we apply
(999), which yields the desired resultr0 = r′ ∈ �A(z0).
In the remaining case thatr′ /∈ �A(z′) or z′ /∈ Z, we obtain from (987) and (998) that
z0 = Q(Y ′) = z+. We then observe from (995) and L-124 thatr0 ≤ r+(AQ,X′) = 1

2 .
Hencer0 ∈ [0, 1

2 ] = �A(z+) = �A(z0) by (974). This completes the proof that (994)
is valid. Recalling our former result (989), it is then obvious that equation (988) holds,
as desired.
Next we prove thatAQ◦f̂ ,X = A. To see this, letz0 ∈ I be given. We first consider the
subsumption

A(z0) ⊆ AQ◦f̂ ,X(z0) . (1000)

Hence letr0 ∈ A(z0). We define

Y = {(z0, r0, r0)} . (1001)

and

Y ′ = f̂(Y ) = {(z0, r0)} . (1002)

We now observe that

µX(z, r, s) ≤ 1
2 , (1003)

for all z, r, s ∈ I, which is apparent from (978), (976) and (977). Therefore

ΞY (X)

= min(

≤ 1
2︷ ︸︸ ︷

µX(z0, r0, r0), inf{

≥ 1
2︷ ︸︸ ︷

1− µX(z, r, s) :
(z, r, s) 6= (z0, r0, r0)})

by Def. 83 and (1001)

= µX(z0, r0, s0) ,

i.e.

ΞY (X) = r0 (1004)
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becauseµX(z0, r0, r0) = r0 by (978), andr0 ∈ A(z0) by assumption. Recalling
(1003), it is now apparent that

ΞY ′(X ′)
= min(µX′(z0, r0)︸ ︷︷ ︸

≤ 1
2

, inf{1− µX′(z, r)︸ ︷︷ ︸
≥ 1

2

: (z, r) 6= (z0, r0)}) by Def. 83 and (1002)

= µX′(z0, r0) ,

i.e.

r′ = r′(Y ′) = ΞY ′(X ′) = r0 (1005)

by (983), (981) and noticing thatr0 ∈ �A(z) by (975). We then obtain that

z′ = z′(Y ′)
= inf{z ∈ I : (z, r′) ∈ Y ′, r′ ∈ A(z)} by (985)

= inf{z ∈ I : (z, r0) ∈ {(z0, r0)}, r0 ∈ A(z)} by (1005) and (1002)

= inf{z0} ,

and hence

z′ = z0 . (1006)

Becauser′ = r0 ∈ A(z0) = A(z′) ⊆ �A(z′) by (1005), (1006), (975) and the
assumption thatr0 ∈ A(z0), we conclude from (987) that(Q ◦ f̂)(Y ) = Q(f̂(Y )) =
Q(Y ′) = z′ = z0. Combining this with the above result (1004) thatΞY (X) = r0,
we obtain from Def. 86 thatr0 ∈ AQ◦f̂ ,X(z0), as desired. Becauser0 ∈ A(z0) was
arbitrary, this proves that subsumption (1000) is indeed valid.
It remains to be shown that the converse subsumption is also valid, i.e.

AQ◦f̂ ,X(z0) ⊆ A(z0) . (1007)

I will first show that

r+(AQ◦f̂ ,X) = 1
2 . (1008)

Hence let us observe that

X
≥ 1

2

= {(z, r, s) ∈ I3 : µX(z, r, s) ≥ 1
2} by Def. 29

= {(z, r, s) ∈ I3 : µX(z, r, s) = 1
2} , by (1003)

i.e.

X
≥ 1

2
= {(z, 1

2 ,
1
2 ) : 1

2 ∈ A(z)} (1009)
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by (981). Therefore

r+(AQ◦f̂ ,X)

= ΞX
≥

1
2

(X) by L-124

= min(inf{µX(z, 1
2 ,

1
2 ) : 1

2 ∈ A(z)},
inf{1− µX(z, r, s) : 1

2 /∈ A(z) ∨ r 6= 1
2 ∨ s 6=

1
2}) by Def. 83 and (1009)

= min( 1
2 , inf{1− µX(z, r, s) : 1

2 /∈ A(z) ∨ r 6= 1
2 ∨ s 6=

1
2}) by (978) and

1
2 = r+ ∈ A(z+)

= 1
2 ,

noticing thatinf{1 − µX(z, r, s) : 1
2 /∈ A(z) ∨ r 6= 1

2 ∨ s 6=
1
2} ≥

1
2 by (1003). This

proves that (1008) is valid. We can hence turn attention to (1007).
To see that (1007) holds, considerr0 ∈ AQ◦f̂ ,X(z0). By Def. 86, then, there exists
Y ∈ P(I× I× I) such that

ΞY (X) = r0 (1010)

Q(Y ′) = (Q ◦ f̂)(Y ) = z0 , (1011)

whereY ′ abbreviates

Y ′ = f̂(Y ) . (1012)

In order to prove the desired (1007), we now make some observations howδX′,Y ′(z, r)
relates toinf{δX′,Y ′(z, r, s) : s ∈ I} for (z, r) ∈ Y ′.
Hence letz, r ∈ I be given and suppose that(z, r) ∈ Y ′. Then there existŝs ∈ I with
(z, r, ŝ) ∈ Y , see (1012). Hence

inf{µX(z, r, s) : s ∈ I, (z, r, s) ∈ Y } ≤ µX(z, r, ŝ)

because(z, r, ŝ) ∈ Y , which proves that

inf{µX(z, r, s) : s ∈ I, (z, r, s) ∈ Y } ≤ 1
2 , (1013)

see (1003). We further notice that

inf{1− µX(z, r, s) : s ∈ I, (z, r, s) /∈ Y } ≥ 1
2 , (1014)

which is apparent from (1003). Therefore

inf{δX,Y (z, r, s) : s ∈ I}
= min(inf{µX(z, r, s) : s ∈ I, (z, r, s) ∈ Y },

inf{1− µX(z, r, s) : s ∈ I, (z, r, s) /∈ Y }) by (60)

= inf{µX(z, r, s) : s ∈ I, (z, r, s) ∈ Y } , by (1013) and (1014)

i.e.

inf{δX,Y (z, r, s) : s ∈ I} ≤ µX(z, r, ŝ) (1015)
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because(z, r, ŝ) ∈ Y by assumption. It is now convenient to discern three subcases. If
r ∈ A(z) andŝ = r, thenµX(z, r, ŝ) = µX(z, r, r) = r by (978). Hence

inf{δX,Y (z, r, s) : s ∈ I}
≤ µX(z, r, ŝ) by (1015)

= r .

If r ∈ �A(z) andŝ < r, thenµX(z, r, ŝ) = ŝ by (978). Therefore

inf{δX,Y (z, r, s) : s ∈ I} (1016)

≤ µX(z, r, ŝ) by (1015) (1017)

= ŝ by (978) (1018)

< r . by assumption (1019)

In the remaining case thatr /∈ �A(z), or r ∈ �A(z) \ A(z) andŝ ≥ r, or r ∈ A(z)
andŝ > r, we notice thatµX(z, r, ŝ) = 0 by (978). This proves that

inf{δX,Y (z, r, s) : s ∈ I}
≤ µX(z, r, ŝ) by (1015)

= 0 . by (978)

We can summarize these results as stating that

inf{δX,Y (z, r, s) : s ∈ I} ∈

 [0, r] : r ∈ A(z)
[0, r) : r ∈ �A(z) \A(z)
{0} : else

(1020)

In particular,

inf{δX,Y (z, r, s) : s ∈ I} ∈ A(z) (1021)

by (971) and noticing thatr ∈ �A(z) \ A(z) entails thatr = �̂A(z), becauseA(z)
satisfies (973).
Now let us return to the original goal of proving (1007). In the following, I will use the
usual abbreviationsr′ = r′(Y ′), Z = Z(Y ′) andz′ = z′(Y ′). It is now convenient to
discern two cases, in parallel with the two cases in the definition ofQ by (987).
In the first case thatr′ ∈ �A(z′) andz′ ∈ Z, we conclude from (984) that(z′, r′) ∈ Y ′
andr′ ∈ �A(z′). In turn, we conclude from(z′, r′) ∈ Y ′ and (1021) that

inf{δX,Y (z′, r′, s) : s ∈ I} ∈ A(z′) .

Noticing that

r0 = ΞY (X) by (1010)

= inf{δX,Y (z, r, s) : z, r, s ∈ I} by (61)

≤ inf{δX,Y (z′, r′, s) : s ∈ I} ,
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we hence obtain from (973) that

r0 ∈ A(z′) (1022)

as well. Due to the assumption of the present case thatr′ ∈ �A(z′) andz′ ∈ Z, we
look up from (987) thatz0 = Q(Y ′) = z′ by (1011). Substituting this intor0 ∈ A(z′)
yields the desiredr0 ∈ A(z0).
It remains to be shown thatr0 ∈ A(z0) in the case thatr′ /∈ �A(z′) or z′ /∈ Z.
We then obtain from (987) and (1011) thatz0 = Q(Y ′) = z+. Noticing thatr0 ≤
r+(AQ◦f̂ ,X) = 1

2 by (1008), it is then immediate from (974) thatr0 ∈ A(z+) = A(z0).
This completes the proof of (1007). Recalling the former result stated in (1000), we
have hence shown that

AQ◦f̂ ,X = A . (1023)

Based on these preparations, the proof of the theorem now reduces to the simple com-
putation

ψ(�A0) = ψ(�A) by (970)

= ψ(AQ,X′) by (988)

= Fψ(Q)(X ′) by Def. 88

= Fψ(Q)( ˆ̂
f(X)) by (980)

= Fψ(Q ◦ f̂)(X) by (Z-6)

= ψ(AQ◦f̂ ,X) by Def. 88

= ψ(A) by (1023)

= ψ(A1) by (969) and Th-112

= ψ(A0) . by (968) and L-156

Hence we have succeeded in proving the claim of the theorem, and it indeed holds that
ψ(�A0) = ψ(A0) for all A0 ∈ A.

B.23 Proof of Theorem 114

Let ψ : A −→ I be a given mapping which satisfies (ψ-5). Further suppose thatFψ
satisfies (Z-2). To see that given these properties,ψ satisfies (ψ-3) as well, we consider
a choice ofA0 ∈ A with NV(A0) ⊆ {0, 1} andr+ ∈ A0(1), i.e.z+ = z+(A0) = 1.
In particular, we then know from L-124 that

supA0(0) ≤ 1
2 (1024)

and hence

�̂A0(0) = min(supA0(0), 1
2 ) = supA0(0) (1025)

by (73). Therefore

�A0(z) =

 [0, supA0(0)] : z = 0
{0} : z ∈ (0, 1)
[0, 1

2 ] : z = 1
(1026)
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for all z ∈ I, which is apparent from Def. 91 and (1025), NV(A0) ⊆ {0, 1}, and
z+(A0) = 1, i.e.supA0(1) = r+ ≥ 1

2 . We now defineA ∈ A by

A(z) =

 {supA0(0)} : z = 0
∅ : z ∈ (0, 1)
{ 1

2} : z = 1
(1027)

for all z ∈ I. It is then clear from Def. 91 that

�A(z) =

 [0, supA0(0)] : z = 0
{0} : z ∈ (0, 1)
[0, 1

2 ] : z = 1

for all z ∈ I, and hence

�A = �A0 . (1028)

We now consider a two-element set{a, b}. Let us define a fuzzy subsetX ∈ P̃({a, b})
by

µX(a) = 1− supA0(0) (1029)

µX(b) = 1
2 . (1030)

We notice that

Ξ∅(X) = min(1− (1− supA0(0)), 1− 1
2 ) = supA0(0) (1031)

Ξ{a}(X) = min(1− supA0(0), 1
2 ) = 1

2 (1032)

Ξ{b}(X) = min(1− (1− supA0(0)), 1
2 ) = supA0(0) (1033)

Ξ{a,b}(X) = min(1− supA0(0), 1
2 ) = 1

2 (1034)

by Def. 83, (1024), (1029) and (1030).
Now we consider the projection quantifierπa : P({a, b}) −→ 2. It is apparent from
Def. 6 that(πa)−1(0) = {∅, {b}}. Hence by Def. 86,

Aπa,X(0) = {Ξ∅(X),Ξ{b}(X)} = {supA0(0)} = A(0)

by (1031), (1033) and (1027). We further notice that(πa)−1(1) = {{a}, {a, b}}.
Therefore

Aπa,X(1) = {Ξ{a}(X),Ξ{a,b}(X)} = { 1
2} = A(1) ,

see (1032), (1034) and (1027). Finally ifz ∈ (0, 1), then(πa)−1(z) = ∅ becauseπa
is two-valued. ThereforeAπa,X(z) = ∅ = A(z) in this case, recalling Def. 86 and
(1027). To sum up, we have shown that

Aπa,X = A . (1035)
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We can hence proceed as follows.

ψ(A0) = ψ(�A0) by (ψ-5)

= ψ(�A) by (1028)

= ψ(A) by (ψ-5)

= ψ(Aπa,X) by (1035)

= Fψ(πa)(X) by Def. 88

= π̃a(X) by (Z-2)

= µX(a) by Def. 7

= 1− supA0(0) , by (1029)

i.e. ψ(A0) = 1 − supA0(0), as desired. BecauseA0 with NV(A0) ⊆ {0, 1} and
z+ = 1 was arbitrary, this proves that (ψ-3) is indeed valid.

B.24 Proof of Theorem 115

Let ψ : A −→ I be a given mapping which satisfies (ψ-5). Further suppose thatFψ is
monotonic. Hence for all semi-fuzzy quantifiersQ0, Q1 : P(E)n −→ I,

Fψ(Q0) ≤ Fψ(Q1) (1036)

provided thatQ0 ≤ Q1. To see thatψ satisfies (ψ-4), we consider a choice ofA0, A1 ∈
A such that

A0 v A1 . (1037)

It is then apparent from Def. 91 and Def. 89 that

�A0 v �A1 (1038)

as well. In particular, we hence know from Def. 89 that for allz′ ∈ I andr ∈ �A1(z′),
there existsz ∈ I with z ≤ z′ andr ∈ �A0(z). In other words, there exists a mapping
κ : I× I −→ I such that

κ(z, r) ≤ z (1039)

and

r ∈ �A0(κ(z, r)) (1040)

for all z, r ∈ I with r ∈ �A1(z). We shall utilize the mappingκ in a minute.
Next we notice thatr+(�A0) = r+(�A1) = 1

2 . ThereforeD(�Ac) 6= {1}, c ∈
{0, 1}. We can hence defineX0, X1 ∈ P̃(I× I) by (66) and in accordance with part
b. of Th-94, viz

µXc(z, r) =
{
r : r ∈ �Ac(z)
0 : else

(1041)
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for c ∈ {0, 1}, noticing thatr− = 0 is a legal choice ofr− in (65) because0 ∈
D(�Ac). We recall the coefficients (67) and (68). ForXc, c ∈ {0, 1}, andYc ∈
P(I× I), these become

r′c = r′c(Yc) = ΞYc(Xc) (1042)

z′c = z′c(Yc) = inf{z ∈ I : (z, r′c) ∈ Yc, r′c ∈ �Ac(z)} . (1043)

We now notice that the constantz+c = z+(Ac) is a legal choice forζc in (64) because
�Ac(z+c) = [0, r+(�Ac)] = [0, 1

2 ] andD(�Ac) = [0, 1
2 ]. We can hence define

Q′c : P(I× I) −→ I in accordance to (69) by

Q′c(Yc) =
{
z′c : r′c ∈ �Ac(z′c)
z+c : else

(1044)

for all Yc ∈ P(I× I) andc ∈ {0, 1}. Hence by Th-94.b,

AQ′c,Xc = �Ac (1045)

for c ∈ {0, 1}. Based onX0 andX1, we now defineX ∈ P̃(I× I× 2) by

µX(z, r, c) = µXc(z, r) (1046)

for all z, r ∈ I andc ∈ {0, 1}. For a givenY ∈ P(I× I× 2), we denote byY0 =
Y0(Y ), Y1 = Y1(Y ) ∈ P(I× I) the crisp sets defined by

Yc = {(z, r) : (z, r, c) ∈ Y } (1047)

for c ∈ {0, 1}. We further abbreviate

Y +
c = Xc≥ 1

2
= {(z, 1

2 ) : 1
2 ∈ �Ac(z)} (1048)

for c ∈ {0, 1}, see (1041).
We now define semi-fuzzy quantifiersQ0, Q1 : P(I× I× 2) −→ I by

Q1(Y ) = Q′1(Y1) (1049)

Q0(Y ) =
{
Q′0(Y0) : Y1 = Y +

1

κ(Q1(Y ),ΞY (X)) : else
(1050)

for all Y ∈ P(I× I× 2). As I will now show, it holds that

AQc,X = �Ac (1051)

for c ∈ {0, 1}. Hence letc ∈ {0, 1} and¬c = 1 − c. Recalling (1045), it is sufficient
to show that

AQc,X = AQ′c,Xc .

Now letz0 ∈ I. I first show that

AQ′c,Xc(z0) ⊆ AQc,X(z0) . (1052)
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Hence letr0 ∈ �Q′cXc(z0). By Def. 86, there existsY ′ ∈ P(I× I) such that

z0 = Q′c(Y
′) (1053)

r0 = ΞY ′(Xc) . (1054)

Now considerY ∈ P(I× I× 2), defined by

Y = {(z, r, c) : (z, r) ∈ Y ′} ∪ {(z, r,¬c) : (z, r) ∈ Y +
¬c} . (1055)

It is then apparent from (1047) that

Y ′ = Yc = Yc(Y ) . (1056)

Therefore

inf{δX,Y (z, r, c) : z, r ∈ I}
= min(inf{µX(z, r, c) : z, r ∈ I, (z, r, c) ∈ Y },

inf{1− µz,r,c(:)z, r ∈ I, (z, r, c) /∈ Y }) by (60)

= min(inf{µXc(z, r) : (z, r) ∈ Yc},
inf{1− µXc(z, r) : (z, r) /∈ Yc}) by (1046), (1055)

= inf{δXc,Yc(z, r) : z, r ∈ I} by (60)

= ΞYc(Xc) by Def. 83

= ΞY ′(Xc) by (1056)

i.e.

inf{δX,Y (z, r, c) : z, r ∈ I} = r0 (1057)

by (1054). We further notice that

inf{δX,Y (z, r,¬c) : z, r ∈ I}
= min(inf{µX(z, r,¬c) : z, r ∈ I, (z, r,¬c) ∈ Y },

inf{1− µX(z, r,¬c) : z, r ∈ I, (z, r,¬c) /∈ Y }) by (60)

= min(inf{µX¬c(z, r) : (z, r) ∈ X¬c≥ 1
2
},

inf{1− µX¬c(z, r) : (z, r) /∈ X¬c≥ 1
2
}) by (1046), (1055)

= min(inf{µX¬c(z, r) : z, r ∈ I, µX¬c(z, r) ≥ 1
2},

inf{1− µX¬c(z, r) : z, r ∈ I, µX¬c(z, r) <
1
2}) by Def. 29

and hence

inf{δX,Y (z, r,¬c) : z, r ∈ I} ≥ 1
2 . (1058)

Therefore

ΞX(Y )
= inf{δX,Y (z, r, v) : z, r ∈ I, v ∈ 2} by (61)

= min(inf{δX,Y (z, r, c) : z, r ∈ I},
inf{δX,Y (z, r,¬c) : z, r ∈ I}) by splittinginf-expression

= min(r0, inf{δX,Y (z, r,¬c) : z, r ∈ I}) , by (1057)
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which proves that

ΞX(Y ) = r0 (1059)

becauser0 ∈ AQ′c,Xc(z0) = �Ac(z0) ⊆ D(�Ac) = [0, 1
2 ] by (1045), (62) and

Def. 91. Hencer ≤ 1
2 ≤ inf{δX,Y (z, r,¬c) : z, r ∈ I} by (1058). In the case that

c = 1, we directly obtain from (1049) thatQc(Y ) = Q1(Y ) = Q′1(Y1) = Q′c(Yc).
In the case thatc = 0, we first observe thatY1 = Y1(Y ) = Y +

1 , which is apparent
from (1047), (1055) and (1048). ThereforeQc(Y ) = Q0(Y ) = Q′0(Y0) = Q′c(Yc) by
(1050), i.e.Qc(Y ) = Q′c(Yc) is valid for both choices ofc ∈ {0, 1}. In turn,Qc(Y ) =
Q′c(Yc) = Q′c(Y

′) = z0 by (1056) and (1053). Hence indeedr0 ∈ AQc,X(z0) by
Def. 86.
It remains to be shown that the converse subsumptionAQc,X(z0) ⊆ AQ′c,Xc(z0) is also
valid. Hence letr0 ∈ AQc,X(z0). By Def. 86, then, there existsY ∈ P(I× I× 2)
such that

r0 = ΞY (X) (1060)

z0 = Qc(Y ) . (1061)

In the following, it is convenient to discern two cases. In the first case that eitherc = 1,
or c = 0 andY1 = Y +

1 , we obtain from (1049) and (1050) resp. thatQc(Y ) = Q′c(Yc).
Recalling (1061), this proves that

z0 = Qc(Y ) = Q′c(Yc) , (1062)

whereYc = Yc(Y ), see (1047). Let us abbreviater∗ = ΞYc(Xc). It is apparent
from (1062) and Def. 86 thatr∗ ∈ AQ′c,Xc(z0). In turn, we obtain from (1045) that
r∗ ∈ �Ac. We now observe that that

r∗ = ΞYc(Xc)
= min(inf{µXc(z, r) : (z, r) ∈ Yc},

inf{ 1− µXc(z, r) : (z, r) /∈ Yc}) by Def. 83

≥ min{inf{µXc(z, r) : (z, r) ∈ Yc},
inf{ 1− µXc(z, r) : (z, r) /∈ Yc},
inf{µX¬c(z, r) : (z, r) ∈ Y¬c},
inf{ 1− µX¬c(z, r) : (z, r) /∈ Y¬c}}

= min{inf{µX(z, r, c) : z, r ∈ I, (z, r, c) ∈ Y },
inf{1− µX(z, r, c) : z, r ∈ I, (z, r, c) /∈ Y },
inf{µX(z, r,¬c) : z, r ∈ I, (z, r,¬c) ∈ Y },
inf{1− µX(z, r,¬c) : z, r ∈ I, (z, r,¬c) /∈ Y }} by (1046), (1047)

= min(inf{µX(z, r, v) : (z, r, v) ∈ Y },
inf{1− µX(z, r, v) : (z, r, v) /∈ Y })

= ΞY (X) , by Def. 83
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i.e. r∗ ≥ r0 by (1060). Recalling Def. 91, we conclude fromr∗ ∈ �Ac(z0) andr0 ≤
r∗ thatr0 ∈ �A0(z0) as well. Because of (1045), this proves thatr0 ∈ AQ′c,Xc(z0), as
desired. In particular, we have shown that

AQc,X(z0) ⊆ AQ′c,Xc(z0) = �Ac(z0) (1063)

in the case that eitherc = 1, or c = 0 andY1 = Y +
1 , again recalling (1045).

Now we consider the remaining case thatc = 0 andY1 6= Y +
1 . We abbreviate

z1 = Q1(Y ) . (1064)

We then know from (1063) that

r0 = ΞY (X) ∈ �A1(z1) . (1065)

Therefore

Qc(Y ) = Q0(Y ) becausec = 0

= κ(Q1(Y ),ΞY (X)) , by (1050) becauseY1 6= Y +
1

i.e.

z0 = Qc(Y ) = κ(z1, r0) (1066)

by (1060), (1061) and (1064). In particular,

r0 ∈ �A0(κ(z1, r0)) by (1040) and (1065)

= �A0(z0) by (1066)

= AQ′0,(z0) by (1045)

= AQ′c,(z0) .

This finishes the proof that the subsumptionAQc,X(z0) ⊆ AQ′c,Xc(z0) is valid in the
second case as well; it hence holds unconditionally for forc ∈ {0, 1} and arbitrary
z0 ∈ I. Combining this with our former result stated in (1052) and recalling that
AQ′c,Xc = �Ac by (1045), we hence obtain the desiredAQc,X = �Ac for c ∈ {0, 1},
i.e. (1051) is indeed valid.
Let us now notice thatQ0 ≤ Q1. To see this, considerY ∈ P(I× I× 2). We will
treat separately two cases. Firstly ifY1(Y ) = Y +

1 , then

Q1(Y ) = Q′1(Y1) by (1049)

= Q′1(Y +
1 ) by assumption thatY1 = Y +

1

= z+(AQ′1,X) by (1048) and L-124

= z+(�A1) , by (1045)

and hence

Q1(Y ) = 1
2 (1067)
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becausez+(�A1) = 1
2 , see (63) and Def. 91. As concernsQ0(Y ), then, we obtain

that

Q0(Y ) = Q′0(Y0) by (1050)

≤ z+(AQ′0,X) by Th-93 and Def. 87

= z+(�A0) by (1045)

= 1
2 see (63) and Def. 91

= Q1(Y ) , by (1067)

and hence indeedQ0(Y ) ≤ Q1(Y ). In the remaining case thatY1(Y ) 6= Y +
1 , we

notice that

Q0(Y ) = κ(Q1(Y ),ΞY (X)) by (1050)

≤ Q1(Y ) ,

where the last step is apparent from (1039), becauseΞY (X) ∈ AQ1,X(Q1(Y )) =
�A1(Q1(Y )) by Def. 86 and (1045). To sum up, I have shown thatQ0(Y ) ≤ Q1(Y )
regardless ofY ∈ P(I× I× 2), and hence

Q0 ≤ Q1 . (1068)

Therefore

ψ(A0) = ψ(�A0) by (ψ-5)

= ψ(AQ0,X) by (1051)

= Fψ(Q0)(X) by Def. 88

≤ Fψ(Q1)(X) by (1036) and (1068)

= ψ(AQ1,X) by Def. 88

= ψ(�A1) by (1051)

= ψ(A1) . by (ψ-5)

HenceA0 v A1 entails thatψ(A0) ≤ ψ(A1), and the desired property (ψ-4) is indeed
valid.

B.25 Proof of Theorem 116

Let ψ : A −→ I be given and suppose thatFψ is a DFS. We then know from Def. 17
thatFψ satisfies (Z-1)–(Z-6). Now let us show thatψ satisfies (ψ-1)–(ψ-5). We shall
consider these conditions in turn.

ψ satisfies (ψ-1).
This is apparent from Th-108 becauseFψ satisfies (Z-1).

ψ satisfies (ψ-2).
This claim is immediate from Th-110 becauseFψ is known to satisfy (Z-1), (Z-2) and
(Z-3).
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ψ satisfies (ψ-5).
To this end, we recall from Th-1 that the induced disjunction of the DFSFψ is an
s-norm. In turn, we obtain from Th-111 thatFψ induces the standard disjunction
x ∨ y = max(x, y). It is then apparent from earlier work [9, Th-17.a, p. 20 and Th-
25, p. 25] thatFψ also induces the standard extension principle. BecauseFψ satisfies
(Z-4) and (Z-6), we can hence conclude with Th-113 thatψ satisfies (ψ-5).

ψ satisfies (ψ-3).
Knowing thatψ satisfies (ψ-5), we can now apply Th-114 and conclude from the fact
thatFψ satisfies (Z-2) thatψ indeed satisfies (ψ-3).

ψ satisfies (ψ-4).
To see this, we again utilize thatψ satisfies (ψ-5). In addition, we know from Th-3 that
the DFSFψ is monotonic. Hence Th-115 is applicable, anψ indeed satisfies (ψ-4).

To sum up, I have shown that ifFψ is a DFS, thenψ satisfies (ψ-1)–(ψ-5). Hence
(ψ-1)–(ψ-5) are indeed necessary forFψ to be a DFS.

B.26 Proof of Theorem 117

ConsiderA ∈ A and letz ∈ I. Then

�̂A(z)

= min(supA(z), 1
2 ) by (73)

= 1
2 ·min(2 · supA(z), 1)

= 1
2 ·min(1− (1− 2 · supA(z)), 1− (1− 1))

= 1
2 (1−max(1− 2 · supA(z), 0)) by De Morgan’s law

= 1
2 −

1
2 ·max(0, 1− 2 · supA(z))

= 1
2 −

1
2 · s(A)(z) , by (80)

which proves (82). As concerns (83), we discern two cases. Firstly ifsupA(z) ≤ 1
2 ,

then

s(A)(z)
= max(0, 1− 2 · supA(z)) by (80)

= 1− 2 · supA(z) becausesupA(z) ≤ 1
2

= 1− 2 ·min(supA(z), 1
2 ) becausesupA(z) ≤ 1

2

= 1− 2 · �̂A(z) . by (73)
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In the remaining case thatsupA(z) > 1
2 ,

s(A)(z)
= max(0, 1− 2 · supA(z)) by (80)

= 0 becausesupA(z) > 1
2

= 1− 2 · 1
2

= 1− 2 ·min(supA(z), 1
2 ) becausesupA(z) > 1

2

= 1− 2 · �̂A(z) . by (73)

Hence indeeds(A)(z) = 1 − 2 · �̂A(z), regardless ofsupA(z). This completes the
proof that (83) is valid, as desired.

B.27 Proof of Theorem 118

Let ψ : A −→ I be given and suppose thatψ satisfies (ψ-5). Further assume that
ω : L −→ I is defined by (84). We further defineψ′ : A −→ I according to (81), i.e.

ψ′(A) = ω(s(A)) (1069)

for all A ∈ A. Now considerz ∈ I. Then

As(A)(z) = [0, 1
2 −

1
2s(A)(z)] by (85)

= [0, 1
2 −

1
2 (1− 2�̂A(z))] by (83)

= [0, 1
2 −

1
2 + �̂A(z)]

= [0, �̂A(z)]
= �A(z) . by Def. 91

Becausez ∈ I was arbitrary, this proves that

As(A) = �A . (1070)

We notice that

ψ′(A)
= ω(s(A)) by (1069)

= ψ(As(A)) by (84)

= ψ(�A) , by (1070)

and hence

ψ′ = ψ (1071)

by (ψ-5), noticing thatA ∈ A was arbitrarily chosen. Therefore

Fψ = Fψ′ by (1071)

= Fω , by Th-98
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as desired.
The claim of the theorem that allFψ-DFSes areFω-DFSes is then apparent from Th-
116, becauseψ satisfies (ψ-5) wheneverFψ is a DFS.

B.28 Proof of Theorem 119

Lemma 161 For all A ∈ A, �̂�A = �̂A and��A = �A.

Proof To see this, considerA ∈ A and letz ∈ I. Then

sup�A(z) = �̂A(z) by (76)

= min(supA(z), 1
2 ) , by (73)

i.e.

sup�A(z) ≤ 1
2 . (1072)

Therefore

�̂�A(z) = min(sup�A(z), 1
2 ) by (73)

= sup�A(z) by (1072)

= �̂A(z) , by (76)

and hence

�̂�A = �̂A , (1073)

i.e. the first claim of the lemma is valid. As regards the second claim, we notice that

��A(z) = [0, �̂�A(z)] by Def. 91

= [0, �̂A(z)] by (1073)

= �A(z) . by Def. 91

Becausez ∈ I was arbitrary, this proves that��A = �A, as desired.

Lemma 162 Letω : L −→ I be given and suppose thatψ = ψ : A −→ I is defined
by (81). Thenψ satisfies(ψ-5).

Proof To see this, considerA ∈ A. Further letz ∈ I. Then

s(A)(z) = 1− 2�̂A(z) by (83)

= 1− 2�̂�A(z) by L-161

= s(�A)(z) by (83).

Becausez was arbitrary, we conclude that

s(A) = s(�A) . (1074)
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In turn

ψ(A) = ω(s(A)) by (81)

= ω(s(�A)) by (1074)

= ψ(�A) . by (81)

Henceψ(�A) = ψ(A) for all A ∈ A, which proves that (ψ-5) is indeed valid.

Lemma 163 Letψ,ψ′ : A −→ I be given and suppose thatFψ = Fψ′ . Thenψ = ψ′.

Proof To see this, considerA ∈ A. By Th-94, there existsQ : P(E)n −→ I and
X1, . . . , Xn ∈ P̃(E) with

A = AQ,X1,...,Xn . (1075)

Therefore

ψ(A) = ψ(AQ,X1,...,Xn) by (1075)

= Fψ(Q)(X1, . . . , Xn) by Def. 88

= Fψ′(Q)(X1, . . . , Xn) by assumption thatFψ = Fψ′
= ψ′(AQ,X1,...,Xn) by Def. 88

= ψ′(A) . by (1075)

Hence indeedψ(A) = ψ(A′). BecauseA ∈ A was arbitrary, this proves thatψ = ψ′.

Proof of Theorem 119

Considerω : L −→ I. We then know from Th-98 thatFω = Fψ, provided we define
ψ : A −→ I by (81). In addition, we know from L-162 that this particular choice of
ψ satisfies (ψ-5). We now recall from L-163 thatψ is only mappingψ′ : A −→ I
which results inFψ′ = Fω. This proves that everyFω-QFM is anFψ-QFM based on
a mappingψ : A −→ I which satisfies (ψ-5).
To see that the converse subsumption also holds, consider a choice ofψ : A −→ I
which satisfies (ψ-5). We then obtain from Th-118 thatFψ is anFω-QFM. Hence all
Fψ-QFMs based on a mappingψ that satisfies (ψ-5) are indeedFω-QFMs, as desired.

B.29 Proof of Theorem 120

Lemma 164 Letω : L −→ I be given and suppose thatψ = ψ : A −→ I is defined
by (81). If ω satisfies(ω-1), thenψ satisfies(ψ-1).

Proof In order to prove thatψ satisfies (ψ-1), we consider a choice ofA ∈ I with
D(A) = {1}. It is then immediate from Def. 87 that

A(z) =
{
{1} : z = z+

∅ : z 6= z+ .
(1076)
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As concernss(A), we hence obtain in the case thatz = z+,

s(A)(z+) = max(0, 1− 2 · supA(z+)) by (80)

= max(0, 1− 2 · sup{1}) by (1076)

= max(0, 1− 2 · 1)
= max(0,−1)
= 0 ,

and in the case thatz 6= z+,

s(A)(z+) = max(0, 1− 2 · supA(z)) by (80)

= max(0, 1− 2 · sup∅) by (1076)

= max(0, 1− 2 · 0)
= max(0, 1)
= 1 .

This proves that

s(A)(z) =
{

0 : z = z+

1 : z 6= z+

i.e.

(s(A))−1([0, 1)) = {z+} . (1077)

Therefore

ψ(A) = ω(s(A)) by (81)

= z+ . by (ω-1) and (1077)

BecauseA with D(A) = {1} was arbitrary, this completes the proof thatψ satisfies
(ψ-1).

Lemma 165 Letω : L −→ I be given and suppose thatψ = ψ : A −→ I is defined
by (81). If ω satisfies(ω-2), thenψ satisfies(ψ-2).

Proof Hence letA,A′ ∈ A be given and suppose that

A(z) = A′(1− z) (1078)

for all z ∈ I. Then apparently

supA(z) = supA′(1− z) (1079)

for all z ∈ I. Therefore

s(A)(z) = max(0, 1− 2 · supA(z)) by (80)

= max(0, 1− 2 · supA′(1− z)) , by (1079)
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and hence

s(A)(z) = s(A′)(1− z) (1080)

by (80). The claim of the lemma is then apparent from the following reasoning.

ψ(A) = ω(s(A)) by (81)

= 1− ω(s(A′)) by (ω-2) and (1080)

= 1− ψ(A′) . by (81)

Hence (ψ-2) is indeed valid, as desired.

Lemma 166 Letω : L −→ I be given and suppose thatψ = ψ : A −→ I is defined
by (81). If ω satisfies(ω-3), thenψ satisfies(ψ-3).

Proof To see this, consider a choice ofA ∈ A with NV(A) ⊆ {0, 1} andr+ ∈ A(1).
We then know from (78) that

A(z) = ∅ (1081)

for all z ∈ (0, 1). In addition,r+ ∈ A(1) andr+ ≥ 1
2 entails thatz+ = 1 and

supA(1) ≥ 1
2 . (1082)

Therefore

s(A)(1) = max(0, 1− 2 · supA(1)) by (80)

= 0 . by (1082)

In addition, we know that forz ∈ (0, 1),

s(A)(z) = max(0, 1− 2 · supA(z)) by (80)

= max(0, 1− 2 · sup∅) by (1081)

= max(0, 1− 2 · 0)
= max(0, 1)
= 1 .

To sum up, I have shown thats(A)(1) = 0 and(s(A))−1([0, 1)) ⊆ {0, 1}, as required
by (ω-3). We further notice that

supA(0) ≤ 1
2 (1083)

because0 6= 1 = z+ and hencer ≤ 1 − r+ ≤ 1
2 for all r ∈ A(0), see Def. 87.

Therefore

ψ(A) = ω(s(A)) by (81)

= 1
2 + 1

2s(A)(0) by (ω-3)

= 1
2 + 1

2 ·max(0, 1− 2 · supA(0)) by (80)

= 1
2 + 1

2 (1− 2 · supA(0)) by (1083)

= 1
2 + 1

2 − supA(0)
= 1− supA(0) .
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Henceψ satisfies (ψ-3), as desired.

Lemma 167 Letω : L −→ I be given and suppose thatψ = ψ : A −→ I is defined
by (81). If ω satisfies(ω-4), thenψ satisfies(ψ-4).

Proof LetA,A′ ∈ A be given and suppose that

A v A′ . (1084)

As I will now prove, this entails thats(A) v s(A′). By Def. 62, then, it must be shown
that

a. for allz ∈ I, inf{s(A′)(z′) : z′ ≥ z} ≤ s(A)(z);

b. for all z′ ∈ I, inf{s(A)(z) : z ≤ z′} ≤ s(A′)(z′).

We shall consider these conditions in turn. As concerns conditiona., we recall from
(80) thats(A)(z) = max(0, 1−2·supA(z)). In the case thatA(z) = ∅, supA(z) = 0
and in turn,s(A)(z) = max(0, 1 − 2 · 0) = 1. Hence triviallyinf{s(A′)(z′) : z′ ≥
z} ≤ s(A)(z) becauses(A′)(z′) ≤ 1 for all z′ ∈ I, i.e. inf{s(A′)(z′) : z′ ≥ z} ≤ 1.
In the remaining case thatA(z) 6= ∅, we considerε > 0. BecauseA(z) 6= ∅, there
existsr0 ∈ A(z) such that

r > supA(z)− ε
2 . (1085)

By Def. 89, we conclude fromA v A′ that there existsz0 ≥ z with r0 ∈ A′(z0). In
particular,

supA′(z0) ≥ r0 > supA(z)− ε
2 (1086)

and hence

s(A′)(z0)
= max(0, 1− 2 · supA′(z0))
≤ max(0, 1− 2(supA(z)− ε

2 ))
= max(0, 1− 2 · supA(z) + ε)
≤ max(ε, 1− 2 · supA(z) + ε)
= max(0, 1− 2 · supA(z)) + ε

= s(A)(z) + ε

Therefore

inf{s(A′)(z′) : z′ ≥ z} ≤ s(A′)(z0) becausez0 ≥ z
≤ s(A)(z) + ε .

ε→ 0 then yields

inf{s(A′)(z′) : z′ ≥ z} ≤ s(A)(z) ,
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i.e. conditiona. is valid. To see that conditionb. is valid as well, considerz′ ∈ I.
We recall from (80) thats(A)′(z′) = max(0, 1 − 2 · supA′(z′)). In the following,
we again discern two cases. Firstly ifA′(z′) = ∅, thensupA′(z′) = 0 and hence
s(A)′(z′) = max(0, 1 − 2 · 0) = 1. We then obtain froms(A)(z) ≤ 1 for all z ∈ I
that inf{s(A)(z) : z ≤ z′} ≤ 1 = s(A)′(z′), as desired. In the remaining case that
A′(z′) 6= ∅, we considerε > 0. BecauseA′(z′) 6= ∅, there existsr0 ∈ A′(z′) such
that

r0 > supA′(z′)− ε
2 .

BecauseA v A′, we now obtain from Def. 89 that there existsz0 ≤ z′ with r0 ∈
A(z0). In particular

supA(z0) ≥ r0 > supA(z′)− ε
2 , (1087)

for the givenz0 ≤ z′. Therefore

inf{s(A)(z) : z ≤ z′}
≤ s(A)(z0) becausez0 ≤ z′

= max(0, 1− 2 · supA(z0)) by (80)

≤ max(0, 1− 2 · (supA′(z′)− ε
2 )) by (1088)

= max(0, 1− 2 · supA′(z′) + ε)
≤ max(ε, 1− 2 · supA′(z′) + ε)
= max(0, 1− 2 · supA′(z′)) + ε ,

i.e.

inf{s(A)(z) : z ≤ z′} ≤ s(A′)(z′) + ε

by (80). Becauseε > 0 was arbitrarily chosen, we conclude that

inf{s(A)(z) : z ≤ z′} ≤ s(A′)(z′) .

To sum up, both conditiona. andb. of Def. 62 are satisfied, which proves that

s(A) v s(A′) . (1088)

The claim of the lemma is then obvious from the following computation.

ψ(A) = ω(s(A)) by (81)

≤ ω(s(A′)) by (ω-4) and (1088)

= ψ(A′) . by (81)

Lemma 168 Let ψ : A −→ I andω : L −→ I be given. Further suppose thatψ
satisfies(ψ-5). Then the following conditions are equivalent:

a. ψ is defined in terms ofω according to(81);

b. ω is defined in terms ofψ according to(84).
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Proof Suppose thatψ is defined in terms ofω according to (81), i.e. conditiona. is
satisfied.

To see thatb. is valid as well, let us considerω′ : L −→ I, defined by (84) in terms
of ψ. We can then show thatω is defined in terms ofψ according to (84) by proving
that ω = ω′. Hence lets ∈ L. By Th-41, there existsQ : P(I× I) −→ I and
X ∈ P̃(I× I) such that

s = sQ,X . (1089)

We can hence proceed as follows.

ω(s) = ω(sQ,X) by (1089)

= Fω(Q)(X) by Def. 61

= Fψ(Q)(X) by Th-98

= Fω′(Q)(X) by Th-118 and (ψ-5)

= ω′(sQ,X) by Def. 61

= ω′(s) . by (1089)

Now let us show that conditionb. entails conditiona. Hence suppose thatω is defined
in terms ofψ according to (84). We now considerψ′ : A −→ I, defined according to
(81) in terms ofω. Apparently, we can show thata. holds by proving thatψ = ψ′.
Hence letA ∈ A. Then by Th-94, there existsQ : P(E)n −→ I andX1, . . . , Xn ∈
P̃(E) with

A = AQ,X1,...,Xn . (1090)

Therefore

ψ(A) = ψ(AQ,X1,...,Xn) by (1090)

= Fψ(Q)(X1, . . . , Xn) by Def. 88

= Fω(Q)(X1, . . . , Xn) by Th-118, (ψ-5)

= Fψ′(Q)(X1, . . . , Xn) by Th-98

= ψ′(AQ,X1,...,Xn) by Def. 88

= ψ′(A) . by (1090)

Henceψ = ψ′, which completes the proof that conditionb. is entailed by condition
a.

Lemma 169 Letω : L −→ I be given and suppose thatψ = ψ : A −→ I is defined
by (81). If ψ satisfies(ψ-1), thenω satisfies(ω-1).

Proof To see this, lets ∈ L be given withs−1([0, 1)) = {a} for somea ∈ I. In other
words,

s(z) = 1 (1091)
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for all z ∈ I with z 6= a. We can then conclude from Def. 60 that

s(a) = 0 . (1092)

Therefore

As(z) = [0, 1
2 −

1
2s(z)] by (85)

=

{
[0, 1

2 −
1
2 · 0] : z = a

[0, 1
2 −

1
2 · 1] : z 6= a ,

by (1091) and (1092)

i.e.

As(z) =

{
[0, 1

2 ] : z = a

{0} : z 6= a
(1093)

for all z ∈ I. Now considerA ∈ A, defined by

A(z) =
{
{1} : z = a
∅ : z 6= a

(1094)

for all z ∈ I. It is then apparent from Def. 91, (1093) and (1094) that

As = �A . (1095)

In addition,D(A) = {1} andz+(A) = a. Therefore

ω(s) = ψ(As) by Th-118 and L-168

= ψ(�A) by (1095)

= ψ(A) by (ψ-5)

= z+ by (ψ-1)

= a .

Henceω indeed satisfies (ω-1).

Lemma 170 Letω : L −→ I be given and suppose thatψ = ψ : A −→ I is defined
by (81). If ψ satisfies(ψ-2), thenω satisfies(ω-2).

Proof Hence considers, s′ ∈ L with

s′(z) = s(1− z) (1096)

for all z ∈ I. We then obtain from (85) that

As′(z) = [0, 1
2 −

1
2s
′(z)] = [0, 1

2 −
1
2s(1− z)] = As(1− z) (1097)

for all z ∈ I. Therefore

ω(s′) = ψ(As′) by Th-118 and L-168

= 1− ψ(As) by (ψ-2)

= 1− ω(s) . by Th-118 and L-168
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Lemma 171 Letω : L −→ I be given and suppose thatψ = ψ : A −→ I is defined
by (81). If ψ satisfies(ψ-3), thenω satisfies(ω-3).

Proof Hence lets ∈ L be given. Further suppose that

s(1) = 0 (1098)

ands−1([0, 1)) ⊆ {0, 1}. Then in particular

s(z) = 1 (1099)

for all z ∈ (0, 1). Therefore

As(z) = [0, 1
2 −

1
2s(z)] by (85)

=


[0, 1

2 −
1
2s(0)] : z = 0

[0, 1
2 −

1
2 · 1] : z ∈ (0, 1)

[0, 1
2 −

1
2 · 0] : z = 1

by (1098), (1099)

and hence

As(z) =


[0, 1

2 −
1
2s(0)] : z = 0

{0} : z ∈ (0, 1)
[0, 1

2 ] : z = 1
(1100)

for all z ∈ I. We now defineA ∈ A by

A(z) =


{ 1

2 −
1
2s(0)} : z = 0

∅ : z ∈ (0, 1)
{ 1

2} : z = 1
(1101)

for all z ∈ I. It is then apparent from Def. 91, (1100) and (1101) that

As = �A . (1102)

We further notice that NV(A) ⊆ {0, 1} andr+ = 1
2 ∈ A(1), i.e. (ψ-3) is applicable.

The claim of the lemma can hence be proven as follows.

ω(s) = ψ(As) by Th-118 and L-168

= ψ(�A) by (1102)

= ψ(A) by (ψ-5)

= 1− supA(0) by (ψ-3)

= 1− ( 1
2 −

1
2s(0)) by (1101)

= 1
2 + 1

2s(0) ,

i.e.ω satisfies (ω-3).
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Lemma 172 Let ψ : A −→ I be a given mapping which satisfies(ψ-4). Consider
someA ∈ A and suppose thatA′ : I −→ P(I) is defined by

A′(z) =
{

[0, α(z)] : α(z) ∈ �A(z)
[0, α(z)) : α(z) /∈ �A(z) (1103)

where

α(z) = αA(z) = min(sup{�̂A(z′) : z′ ≤ z}, sup{�̂A(z′) : z′ ≥ z}) , (1104)

for all z ∈ I. ThenA′ ∈ A andψ(A′) = ψ(�A).

Proof I first prove thatA′ ∈ A. To this end, we notice thatr+(�A) = 1
2 , which is

apparent from Def. 91. Hence there existsz+ ∈ I with 1
2 ∈ �A(z+), and�A(z) ⊆

[0, 1
2 ] for all z ∈ I. In turn, we obtain from (76) that̂�A(z+) = 1

2 and�̂A(z) ≤ 1
2 for

all z ∈ I. Recalling (1104), it is then apparent thatα(z+) = 1
2 andα(z) ≤ 1

2 for all
z ∈ I. In particular,

A′(z+) = [0, 1
2 ] (1105)

and

A′(z) ⊆ [0, 1
2 ] (1106)

for all z ∈ I. We hence observe from (1103) thatD(A′)∩ [ 1
2 , 1] = { 1

2}, i.e.r+(A′) =
1
2 . In addition, we conclude from (1105) and (1106) thatD(A′) = [0, 1

2 ]. In particular,
if D′ ⊆ D(A′) = [0, 1

2 ] andD′ 6= ∅, theninf D′ ∈ [0, 1
2 ] and henceinf D′ ∈ D(A′).

We conclude from Def. 85 thatD(A′) ∈ D. Becauser+(A′) = 1
2 , this directly proves

thatA′ ∈ A, see Def. 87.
It remains to be shown thatψ(A′) = ψ(�A). To this end, I first prove thatA′ v �A.
By Def. 89, we must now show that

a. for allz ∈ I and allr ∈ A′(z), there existsz′ ≥ z with r ∈ �A(z′);

b. for all z′ ∈ I and allr ∈ �A(z′), there existsz ≤ z′ with r ∈ A′(z).

Let us first consider conditiona.; hence letz ∈ I and r ∈ A′(z). It is now use-
ful to discern two cases. Ifα(z) ∈ �A(z) thenA′(z) = [0, α(z)] by (1103) and
hencer ≤ α(z). On the other hand,�A(z) = [0, �̂A(z)] by Def. 91; henceα(z) ∈
�A(z) entails thatα(z) ≤ �̂A(z). Hencer ≤ α(z) ≤ �̂A(z), which proves that
r ∈ [0, �̂A(z)] = �A(z). This proves thatz = z′ is a valid choice forz′ ≥ z with
r ∈ �A(z′), i.e. conditiona. holds.
In the remaining case thatα(z) /∈ �A(z), we know from (1103) thatA′(z) = [0, α(z)).
Hencer ∈ A′(z) entails thatr < α(z). In particular,α(z) > 0. We now recall from
(1104) thatα(z) = min(sup{�̂A(z′) : z′ ≤ z}, sup{�̂A(z′) : z′ ≥ z}). In particu-
lar, sup{�̂A(z′) : z′ ≥ z} ≥ α(z) > 0, and hence

{�̂A(z′) : z′ ≥ z} 6= ∅ . (1107)
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In addition,sup{�̂A(z′) : z′ ≥ z} ≥ α(z) > r. Recalling (1107), then, we conclude
that there existsz′ ≥ z with �̂A(z′) > r. Hencer ∈ [0, �̂A(z′)] = �A(z′) for the
givenz′ ≥ z, see Def. 91. This proves that conditiona. is valid in the second case as
well, i.e. it holds unconditionally.
Next we turn to conditionb. stated above. I first show that

�A(z) ⊆ A′(z) (1108)

for all z ∈ I. This is apparent if we notice from (1104) thatα(z) ≥ �̂A(z). In
the case thatα(z) > �̂A(z), we hence obtain from Def. 91 and (1103) thatα(z) /∈
[0, �̂A(z)] = �A(z) and hence�A(z) = [0, �̂A(z)] ⊆ [0, α(z)) = A′(z) because
α(z) > �̂A(z). In the remaining case thatα(z) = �̂A(z), we clearly haveα(z) =
�̂A(z) ∈ [0, �̂A(z)] = �A(z), see Def. 91. HenceA′(z) = [0, α(z)] by (1103)
and in turn,�A(z) = [0, �̂A(z)] = [0, α(z)] = A′(z) by Def. 91, in particular
�A(z) ⊆ A′(z). This proves that (1108) is indeed valid.
Based on this result, it is now trivial to show that conditionb. is satisfied. Hence let
z′ ∈ I andr ∈ �A(z′). Thenr ∈ A′(z′) by (1108). Hencez = z′ is a valid choice for
z ≤ z′ which results inr ∈ A′(z).
I have shown that both preconditionsa. andb. for A′ v �A are fulfilled. Hence

A′ v �A

by Def. 89. We can then conclude from (ψ-4) that

ψ(A′) ≤ ψ(�A) . (1109)

Next I prove that�A v A′. Again by Def. 89, this can be shown by proving that

a. for allz ∈ I and allr ∈ �A(z), there existsz′ ≥ z with r ∈ A′(z′);

b. for all z′ ∈ I and allr ∈ A′(z′), there existsz ≤ z′ with r ∈ �A(z).

Conditiona. is again trivial. To see this, considerz ∈ I andr ∈ �A(z). By (1108),
then, we know thatr ∈ A′(z). Hencez′ = z is a valid choice forz′ ≥ z with
r ∈ A′(z′).
Now we consider conditionb.; hence letz′ ∈ I and r ∈ A′(z′). It is convenient
to discern two cases. Firstly ifα(z′) ∈ �A(z′), then we know from (1103) that
A′(z′) = [0, α(z′)] and hencer ∈ A′(z′) entails thatr ≤ α(z′). In turn, we know
from Def. 91 that�A(z′) = [0, �̂A(z′)]; henceα(z′) ∈ �A(z′) andr ≤ α(z′) entails
that r ≤ �̂A(z′) and hencer ∈ �A(z′) as well. This proves thatz = z′ is a legal
choice forz ≤ z′ with r ∈ �A(z′), and conditionb. holds.
In the remaining case thatα(z′) /∈ �A(z), we conclude from�A(z) = [0, �̂A(z)]
thatα(z′) > �̂A(z), see Def. 91. In particular,α(z′) > 0. Recalling from (1104)
thatα(z′) = min(sup{�̂A(z) : z ≤ z′}, sup{�̂A(z) : z ≥ z′}), we hence know that
sup{�̂A(z) : z ≤ z′} ≥ α(z′) > 0, and hence

{�̂A(z) : z ≤ z′} 6= ∅ . (1110)
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In addition,

sup{�̂A(z) : z ≤ z′} ≥ α(z) > r , (1111)

becauser ∈ A′(z′) = [0, α(z′)), which is apparent from (1103) and the assumption
α(z′) /∈ �A(z′). Recalling (1110) and (1111), then, we conclude that there exists
z ≤ z′ with �̂A(z) > r. Hencer ∈ [0, �̂A(z)] = �A(z) for the givenz ≤ z′, see
Def. 91. This proves that conditionb. is valid in the second case as well.
We hence conclude from Def. 89 that

�A v A′ .

In turn, we conclude from (ψ-4) that

ψ(�A) ≤ ψ(A′) (1112)

Combining inequations (1109) and (1112), we then obtain thatψ(A′) = ψ(�A), as
desired.

Lemma 173 Let ψ : A −→ I be a given mapping which satisfies(ψ-4) and (ψ-5).
Consider someA ∈ A and suppose thatA] : I −→ P(I) is defined by

A](z) = [0, α(z)] (1113)

for all z ∈ I, whereα(z) is defined by(1104). ThenA] ∈ A andψ(A]) = ψ(�A).

Proof Let A′ ∈ A be defined by (1103). Then apparentlyA] = �A′. In particular,
A] ∈ A, and

ψ(A]) = ψ(�A′) becauseA] = �A′

= ψ(A′) by (ψ-5)

= ψ(A) . by L-172

Lemma 174 For all s ∈ L, (As)
] = A(s‡).

Proof To see this, lets ∈ L andz ∈ I. We notice that

�̂As(z) = min(supAs(z), 1
2 ) by (73)

= min(sup[0, 1
2 −

1
2s(z)],

1
2 ) by (85)

= min(1
2 −

1
2s(z),

1
2 ) ,

and hence

�̂As(z) = 1
2 −

1
2s(z) (1114)
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becauses(z) ∈ I. Therefore

αAs(z) = min(sup{�̂As(z′) : z′ ≤ z}, sup{�̂As(z′) : z′ ≥ z}) by (1104)

= min(sup{ 1
2 −

1
2s(z

′) : z′ ≤ z}, sup{ 1
2 −

1
2s(z

′) : z′ ≥ z}) by (1114)

= min(1
2 −

1
2 inf{s(z′) : z′ ≤ z}, 1

2 −
1
2 inf{s(z′) : z′ ≥ z})

= 1
2 −

1
2 max(inf{s(z′) : z′ ≤ z}, inf{s(z′) : z′ ≥ z}) ,

i.e.

αAs(z) = 1
2 −

1
2s
‡(z) . (1115)

by Def. 65. In turn

(As)
](z) = [0, αAs(z)] by (1113)

= [0, 1
2 −

1
2s
‡(z)] by (1115)

= A(s‡)(z) . by (85)

Becausez ∈ I was arbitrarily chosen, this proves that(As)
] = A(s‡), as desired.

Lemma 175 Letω : L −→ I be given and suppose thatψ = ψ : A −→ I is defined
by (81). If ψ satisfies(ψ-4), thenω is ‡-invariant, i.e.ω(s) = ω(s‡) for all s ∈ L.

Proof We recall from L-162 thatψ is �-invariant, i.e.ψ satisfies (ψ-5). Becauseψ
also satisfies (ψ-4) by assumption, we know that lemma L-173 is applicable. The proof
of the lemma hence reduces to the following simple computation.

ω(s) = ψ(As) by Th-118 and L-168

= ψ(�As) by (ψ-5)

= ψ((As)
]) by L-173

= ψ(A(s‡)) by L-174

= ω(s‡) . by Th-118 and L-168

Becauses ∈ L was arbitrary, this proves thatω is indeed‡-invariant.

Lemma 176 Letω : L −→ I be given and suppose thatψ = ψ : A −→ I is defined
by (81). If ψ satisfies(ψ-4), thenω satisfies(ω-4).

Proof We already know from L-175 thatω is ‡-invariant. Recalling Th-49, we can
hence reduce the proof of (ω-4) to the proof of the simpler condition that

ω(s) ≤ ω(s′)

for every choice ofs, s′ ∈ L with s E s′.
Hence considers, s′ ∈ L with s E s′. Let us recall from (85) thatAs, As′ ∈ A are
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defined by

As(z) = [0, 1
2 −

1
2s(z)] (1116)

As′(z) = [0, 1
2 −

1
2s
′(z)] (1117)

for all z ∈ I. Let us now prove thatAs v As′ . We must hence show that

a. for allz ∈ I and allr ∈ As(z), there existsz′ ≥ z with r ∈ As′(z′);

b. for all z′ ∈ I and allr ∈ As′(z′), there existsz ≤ z′ with r ∈ As(z);

see Def. 89. I first prove that conditiona. is satisfied. Hence letz ∈ I andr ∈ As(z).
Thenr ≤ 1

2 −
1
2s(z) by (1116). We now recall that by Def. 64,s E s′ entails that

there existsz′ ≥ z with s′(z′) ≤ s(z). In particular,12 −
1
2s
′(z′) ≥ 1

2 −
1
2s(z) ≥ r and

hencer ∈ [0, 1
2 −

1
2s
′(z′)] = As′(z′) for the givenz′ ≥ z, see (1117). This completes

the proof that conditiona. is satisfied. As concernsb., we consider somez′ ∈ I and
r ∈ As′(z′). Hence by (1117),r ∈ [0, 1

2 −
1
2s
′(z′)], in particularr ≤ 1

2 −
1
2s
′(z′).

By Def. 64, we can conclude froms E s′ that there existsz ≤ z′ with s(z) ≤ s′(z′).
Hence1

2 −
1
2s(z) ≥

1
2 −

1
2s
′(z′) ≥ r and hencer ∈ [0, 1

2 −
1
2s(z)] = As(z) for the

givenz ≤ z′, see (1116). This proves that conditionb. is valid as well. Because both
preconditions stated in Def. 89 are satisfied, we conclude that

As v As′ . (1118)

Therefore

ω(s) = ψ(As) by Th-118 and L-168

≤ ψ(As′) by (ψ-4) and (1118)

= ω(s′) . by Th-118 and L-168

This proves thatω(s) ≤ ω(s′) whenevers E s′. Recalling thatω is also‡-invariant, we
can apply Th-49 and conclude thatω(s) ≤ ω(s′) whenevers v s′. Henceω satisfies
(ω-4), as desired.

Proof of Theorem 120

Considerω : L −→ I and suppose thatψ : A −→ I is defined by (81). We then
know from L-162 thatψ satisfies (ψ-5). In particular, parte. of the theorem is valid.
As concerns partsa.–d., the claimed equivalences are apparent from the following
lemmata:

a. L-164 and L-169;

b. L-165 and L-170;

c. L-166 and L-171;

d. L-167 and L-176,

which are applicable becauseψ is known to satisfy (ψ-5).
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B.30 Proof of Theorem 121

The only condition that still requires some work is (ψ-5); the independence of the other
conditions is clear from Th-46 and Th-120. In order to prove that (ψ-5) is independent
of (ψ-1)–(ψ-4), we consider the following choice ofψ� : A −→ I, defined by

ψ�(A) =


`(A) : `(A) > 1

2

u(A) : u(A) < 1
2

1
2 : `(A) ≤ 1

2 ≤ u(A)
(1119)

where

`(A) =

{
max(inf NV(A), 1− sup∪{A(z) : z < 1}) : A(1) ∩ [ 1

2 , 1] 6= ∅

max(inf NV(A), supA(1)) : A(1) ∩ [ 1
2 , 1] = ∅

(1120)

u(A) =

{
min(sup NV(A), sup∪{A(z) : z > 0}) : A(0) ∩ [ 1

2 , 1] 6= ∅

min(sup NV(A), 1− supA(0)) : A(0) ∩ [ 1
2 , 1] = ∅

(1121)

for all A ∈ A.
To see thatψ� is well-defined, we first make some observations on how the computa-
tion of `(A) andu(A) can be simplified.

Lemma 177 For all A ∈ A,

a. IfA(0) ∩ [ 1
2 , 1] 6= ∅, then`(A) = supA(1);

b. IfA(0) 6= ∅ andA(1) ∩ [ 1
2 , 1] = ∅, then`(A) = supA(1);

c. IfA(0) 6= ∅ andA(1) ∩ [ 1
2 , 1] 6= ∅, then`(A) = 1− sup∪{A(z) : z < 1};

d. IfA(0) ∩ [ 1
2 , 1] = ∅ andA(1) = ∅, then`(A) = inf NV(A).

Proof We first consider casea. Hence letA ∈ A be given withA(0) ∩ [ 1
2 , 1] 6= ∅.

In particular,A(0) 6= ∅. We hence know from (78) that

inf NV(A) = 0 . (1122)

In addition, Def. 87 permits us to conclude fromA(0)∩ [ 1
2 , 1] 6= ∅ thatA(0)∩ [ 1

2 , 1] =
{r+}.

• If A(1) ∩ [ 1
2 , 1] 6= ∅, thenA(1) ∩ [ 1

2 , 1] = {r+} as well. We hence conclude
from Def. 87 thatr+ = 1

2 . In particular,12 = r+ ∈ A(0), 1
2 = r+ ∈ A(1) and

A(z) ⊆ [0, 1
2 ] for all z ∈ I. This entails that

supA(1) = 1
2 , (1123)
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and also that

sup∪{A(z) : z < 1} = 1
2 . (1124)

In turn,

`(A) = max(inf NV(A), 1− sup∪{A(z) : z < 1}) by (1120)

= max(0, 1
2 ) by (1122) and (1124)

= 1
2

= supA(1) . by (1123)

• If A(1) ∩ [ 1
2 , 1] = ∅, then

`(A) = max(inf NV(A), supA(1)) by (1120)

= max(0, supA(1)) by (1122)

= supA(1) .

Now we consider caseb. Hence suppose thatA(0) 6= ∅ andA(1) ∩ [ 1
2 , 1] = ∅.

BecauseA(0) 6= ∅, we know from (78) thatinf NV(A) = 0. It is then immediate from
(1120) that̀ (A) = max(inf NV(A), supA(1)) = max(0, supA(1)) = supA(1), as
desired.
As concerns partc., suppose thatA(0) 6= ∅ andA(1)∩ [ 1

2 , 1] 6= ∅. Then in particular
inf NV(A) = 0 by (78) and hence

`(A) = max(inf NV(A), 1− sup∪{A(z) : z < 1}) by (1120)

= max(0, 1− sup∪{A(z) : z < 1}) becauseinf NV(A) = 0
= 1− sup∪{A(z) : z < 1} .

Finally let us prove that partd. of the lemma is also valid. Hence suppose that
A(0) ∩ [ 1

2 , 1] = ∅ andA(1) = ∅. Then clearlysupA(1) = 0 andA(1) ∩ [ 1
2 , 1] =

∅. It is hence immediate from (1120) that`(A) = max(inf NV(A), supA(1)) =
max(inf NV(A), 0) = inf NV(A).

Lemma 178 For all A ∈ A,

a. IfA(1) ∩ [ 1
2 , 1] 6= ∅, thenu(A) = 1− supA(0);

b. IfA(0) ∩ [ 1
2 , 1] = ∅ andA(1) 6= ∅, thenu(A) = 1− supA(0);

c. IfA(0) ∩ [ 1
2 , 1] 6= ∅ andA(1) 6= ∅, thenu(A) = sup{A(z) : z > 0};

d. IfA(0) = ∅ andA(1) ∩ [ 1
2 , 1] = ∅, thenu(A) = sup NV(A).
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Proof Analogous to the proof of L-177. As concerns casea., we considerA ∈ A
with A(1) ∩ [ 1

2 , 1] 6= ∅. In particular,A(1) 6= ∅. We hence know from (78) that

sup NV(A) = 1 . (1125)

In addition, we observe from Def. 87 thatA(1)∩[ 1
2 , 1] 6= ∅ entails thatA(1)∩[ 1

2 , 1] =
{r+}.

• If A(0) ∩ [ 1
2 , 1] 6= ∅, thenA(0) ∩ [ 1

2 , 1] = {r+} as well. We hence obtain from
Def. 87 thatr+ = 1

2 . In particular, 1
2 = r+ ∈ A(0), 1

2 = r+ ∈ A(1) and
A(z) ⊆ [0, 1

2 ] for all z ∈ I. Again, this entails that

supA(0) = 1
2 , (1126)

and also that

sup∪{A(z) : z > 0} = 1
2 . (1127)

In turn,

u(A) = min(sup NV(A), sup∪{A(z) : z > 0}) by (1121)

= min(1, 1
2 ) by (1125) and (1127)

= 1
2

= 1− supA(0) . by (1126)

• If A(0) ∩ [ 1
2 , 1] = ∅, then

u(A) = min(sup NV(A), 1− supA(0)) by (1121)

= min(1, 1− supA(0)) by (1125)

= 1− supA(0) .

Now we address partb. of the lemma. Hence suppose thatA(0) ∩ [ 1
2 , 1] = ∅ and

A(1) 6= ∅. BecauseA(1) 6= ∅, we know from (78) thatsup NV(A) = 1. It is then
immediate from (1121) thatu(A) = min(sup NV(A), 1 − supA(0)) = min(1, 1 −
supA(0)) = 1− supA(0).
In order to prove partc. of the lemma, suppose thatA(0)∩ [ 1

2 , 1] 6= ∅ andA(1) 6= ∅.
Then1 ∈ NV(A) by (78) and hencesup NV(A) = 1. Therefore

u(A) = min(sup NV(A), sup∪{A(z) : z > 0}) by (1121)

= min(1, sup∪{A(z) : z > 0}) becausesup NV(A) = 1
= sup∪{A(z) : z > 0} .

It remains to be shown that claimd. of the lemma is also valid. Hence assume that
A(0) = ∅ andA(1) ∩ [ 1

2 , 1] = ∅. Then1 − supA(0) = 1 andA(0) ∩ [ 1
2 , 1] = ∅.

We therefore obtain from (1121) thatu(A) = min(sup NV(A), 1 − supA(0)) =
min(sup NV(A), 1) = sup NV(A), as desired.

Based on these results concerning`(A) andu(A), it is now easy to prove thatψ� is
well-defined. Recalling (1119), we simply need to show that

Lemma 179 For all A ∈ A, `(A) ≤ u(A).
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Proof To see this, considerA ∈ A. It is then convenient to discern four main cases.

a.: A(0) ∩ [ 1
2
, 1] 6= ∅ and A(1) ∩ [ 1

2
, 1] 6= ∅.

In this case, we know from Def. 87 thatr+ = 1
2 and

supA(0) = supA(1) = 1
2 . (1128)

Therefore

`(A) = supA(1) by L-177.a

= 1
2 by (1128)

= 1− supA(0) by (1128)

= u(A) . by L-178.a

b.: A(0) ∩ [ 1
2
, 1] 6= ∅ and A(1) ∩ [ 1

2
, 1] = ∅.

We discern two subcases. Firstly ifA(1) 6= ∅, then

`(A) = supA(1) by L-177.a

≤ sup∪{A(z) : z > 0}
= u(A) . by L-178.c

In the remaining case thatA(1) = ∅, we simply notice that

`(A) = supA(1) by L-177.a

= 0 by assumption thatA(1) = ∅

≤ u(A) .

c: A(0) ∩ [ 1
2
, 1] = ∅ and A(1) ∩ [ 1

2
, 1] 6= ∅.

We again discern two subcases. Firstly ifA(0) 6= ∅, then

`(A) = 1− sup∪{A(z) : z < 1} by L-177.c

≤ 1− supA(0)
= u(A) . by L-178.a

In the remaining case thatA(0) = ∅, we simply notice that

`(A) ≤ 1
= 1− supA(0) by assumption thatA(0) = ∅

= u(A) . by L-178.a

d.: A(0) ∩ [ 1
2
, 1] = ∅ and A(1) ∩ [ 1

2
, 1] = ∅.

In order to handle this case, we will consider four subcases.
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Firstly if A(0) = ∅ andA(1) = ∅, then

`(A) = inf NV(A) by L-177

≤ sup NV(A) because NV(A) 6= ∅

= u(A) . by L-178.d

Secondly ifA(0) = ∅ andA(1) 6= ∅, then

`(A) ≤ 1 becausè(A) ∈ I by (1120)

= 1− supA(0) becauseA(0) = ∅

= u(A) . by L-178.b

Thirdly if A(0) 6= ∅ andA(1) = ∅, then

`(A) = supA(1) by L-177.b

= 0 by assumption thatA(1) = ∅

≤ u(A) . becauseu(A) ∈ I by (1121)

Finally if A(0) 6= ∅ andA(1) 6= ∅, then

`(A) = supA(1) by L-177.b

≤ 1
2 becauseA(1) ∩ [ 1

2 , 1] = ∅

≤ 1− supA(0) becauseA(0) ∩ [ 1
2 , 1] = ∅

= u(A) , by L-178.b

which completes the proof that`(A) ≤ u(A).

I now state some lemmata which facilitate the proof thatψ� satisfies all ‘ψ-conditions’
except for (ψ-5).

Lemma 180 Let A ∈ A be given and suppose that`(A) = u(A). Thenψ�(A) =
`(A).

Proof It is convenient to discern three cases. Firstly if`(A) > 1
2 , then

ψ�(A) = `(A)

by (1119). In the second case that`(A) < 1
2 , we know thatu(A) = `(A) < 1

2 as well.
Hence

ψ�(A) = u(A) = `(A)

by (1119). In the remaining case that`(A) = u(A) = 1
2 , we obtain from (1119) that

ψ�(A) = 1
2 = `(A) ,

which completes the proof thatψ�(A) = `(A), as desired.

Lemma 181 For all A,A′ ∈ A withA v A′, `(A) ≤ `(A′) andu(A) ≤ u(A′).
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Proof To see this, considerA,A′ ∈ A with A v A′. It is then clear from Def. 89 and
NV(A) = {z ∈ I : A(z) 6= ∅}, NV(A′) = {z ∈ I : A′(z) 6= ∅} that

inf NV(A) ≤ inf NV(A′) (1129)

and

sup NV(A) ≤ sup NV(A′) . (1130)

In addition,A v A′ entails that

A(1) ⊆ A′(1)
A(0) ⊇ A′(0)
∪{A(z) : z > 0} ⊆ ∪{A′(z) : z > 0}

and

∪{A(z) : z < 1} ⊇ ∪{A′(z) : z < 1} .

Therefore

supA(1) ≤ supA′(1) (1131)

1− supA(0) ≤ 1− supA′(0) (1132)

sup∪{A(z) : z > 0} ≤ sup∪{A′(z) : z > 0} (1133)

and

1− sup∪{A(z) : z < 1} ≤ 1− sup∪{A′(z) : z < 1} . (1134)

Now we consider̀(A) vs.`(A′). We notice that due to the above resultA(1) ⊆ A′(1),
A(1)∩ [ 1

2 , 1] 6= ∅ entails thatA′(1)∩ [ 1
2 , 1] 6= ∅. It is hence sufficient to consider the

following three cases.

a. A(1) ∩ [ 1
2 , 1] 6= ∅ andA′(1) ∩ [ 1

2 , 1] 6= ∅. Then

`(A) = max(inf NV(A), 1− sup∪{A(z) : z < 1}) by (1120)

≤ max(inf NV(A′), 1− sup∪{A′(z) : z < 1}) by (1129) and (1134)

= `(A′) . by (1120)

b. A(1)∩ [ 1
2 , 1] = ∅ andA′(1)∩ [ 1

2 , 1] 6= ∅. In this case, we notice thatr+(A′) ∈
A′(1) entails thatA′(z) ⊆ [0, 1 − r+(A′)] ⊆ [0, 1

2 ] for all z < 1. Therefore
sup{A′(z) : z < 1} ≤ 1

2 , and in turn1 − sup{A′(z) : z < 1} ≥ 1
2 . On the

other hand,A(1)∩ [ 1
2 , 1] = ∅ entails thatsupA(1) ≤ 1

2 . We can hence combine
these results, which yields

supA(1) ≤ 1
2 ≤ 1− sup{A′(z) : z < 1} . (1135)
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Therefore

`(A) = max(inf NV(A), supA(1)) by (1120)

≤ max(inf NV(A′), 1− sup∪{A′(z) : z < 1}) by (1129) and (1135)

= `(A′) . by (1120)

c. A(1) ∩ [ 1
2 , 1] = ∅ andA′(1) ∩ [ 1

2 , 1] = ∅. Then

`(A) = max(inf NV(A), supA(1)) by (1120)

≤ max(inf NV(A′), supA′(1)) by (1129) and (1131)

= `(A′) . by (1120)

This completes the proof that`(A) ≤ `(A′). We now turn tou(A) as compared
to u(A′). It is then worth noticing that the above resultA(0) ⊇ A′(0) ensures that
A′(0) ∩ [ 1

2 , 1] 6= ∅ only if A(0) ∩ [ 1
2 , 1] 6= ∅. It is hence sufficient to consider the

following three cases.

a. A(0) ∩ [ 1
2 , 1] 6= ∅ andA′(0) ∩ [ 1

2 , 1] 6= ∅. Then

u(A) = min(sup NV(A), sup∪{A(z) : z > 0}) by (1121)

≤ min(sup NV(A′), sup∪{A′(z) : z > 0}) by (1130), (1133)

= u(A′) . by (1121)

b. A(0) ∩ [ 1
2 , 1] 6= ∅ andA′(0) ∩ [ 1

2 , 1] = ∅. In this case, we know thatr+(A) ∈
A(0) and henceA(z) ⊆ [0, 1 − r+(A)] ⊆ [0, 1

2 ] for all z > 0. In particular
sup∪{A(z) : z > 0} ≤ 1

2 . We further observe that1− supA′(0) ≥ 1
2 because

A′(0)∩[ 1
2 , 1] = ∅ and hencesupA′(0) ≤ 1

2 . These findings can be summarized
by

sup∪{A(z) : z > 0} ≤ 1
2 ≤ 1− supA′(0) . (1136)

Therefore

u(A) = min(sup NV(A), sup∪{A(z) : z > 0}) by (1121)

≤ min(sup NV(A′), 1− supA(0)) by (1130) and (1136)

= u(A′) . by (1121)

c. A(0) ∩ [ 1
2 , 1] = ∅ andA′(0) ∩ [ 1

2 , 1] = ∅. Then

u(A) = min(sup NV(A), 1− supA(0)) by (1121)

≤ min(sup NV(A′), 1− supA′(0)) by (1130) and (1132)

= u(A′) . by (1121)

Henceu(A) ≤ u(A′) wheneverA v A′, as desired.
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Lemma 182 LetA ∈ A be given and suppose thatA′ ∈ A is defined by

A′(z) = A(1− z) (1137)

for all z ∈ I. Then

`(A′) = 1− u(A)

and

u(A′) = 1− `(A) .

Proof We first consider the claim of the lemma that`(A′) = 1− u(A). To this end,
we observe that

NV(A′) = {z ∈ I : A′(z) 6= ∅} by (78)

= {z ∈ I : A(1− z) 6= ∅} by (1137)

= {1− z′ : z′ ∈ I, A(z′) 6= ∅} by substitutionz′ = 1− z
= {1− z′ : z′ ∈ NV(A)} . by (78)

Therefore

inf NV(A′) = inf{1− z′ : z′ ∈ NV(A)}
= 1− sup{z′ : z′ ∈ NV(A)} ,

i.e.

inf NV(A′) = 1− sup NV(A) . (1138)

In addition,

1− sup∪{A′(z) : z < 1} = 1− sup∪{A(1− z) : z < 1}

by (1137), and hence

1− sup∪{A′(z) : z < 1} = 1− sup∪{A(z) : z > 0} . (1139)

We further notice that

supA′(1) = supA(0) = 1− (1− supA(0)) , (1140)

again by (1137), which also results inA′(1) ∩ [ 1
2 , 1] = A(0) ∩ [ 1

2 , 1], and hence

A′(1) ∩ [ 1
2 , 1] 6= ∅ ⇐⇒ A(0) ∩ [ 1

2 , 1] 6= ∅ . (1141)

It is therefore sufficient to prove the following two cases. IfA′(1) ∩ [ 1
2 , 1] 6= ∅, then

A(0) ∩ [ 1
2 , 1] 6= ∅ by (1141). Therefore

`(A′) = max(inf NV(A′), 1− sup∪{A′(z) : z < 1}) by (1120)

= max(1− sup NV(A), 1− sup∪{A(z) : z > 0}) by (1138) and (1139)

= 1−min(sup NV(A), sup∪{A(z) : z > 0}) by De Morgan’s law

= 1− u(A) . by (1121)
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In the second case thatA′(1)∩[ 1
2 , 1] = ∅, we know from (1141) thatA(0)∩[ 1

2 , 1] = ∅

as well. Therefore

`(A′) = max(inf NV(A′), supA′(1)) by (1120)

= max(1− sup NV(A), 1− (1− supA(0))) by (1138) and (1140)

= 1−min(sup NV(A), 1− supA(0)) by De Morgan’s law

= 1− u(A) . by (1121)

This finishes the proof that̀(A′) = u(A). The second claim thatu(A′) = 1 − `(A)
is reducible to the first one, noticing thatA(z) = A(1 − (1 − z)) = A′(1 − z) for all
z ∈ I. Hence

`(A) = 1− u(A′)

by the first claim of the lemma, which in turn proves the desiredu(A′) = 1− `(A).

Lemma 183 For all A ∈ A,

a. If u(A) ≥ 1
2 , thenψ�(A) ≥ 1

2 .

b. If `(A) ≤ 1
2 , thenψ�(A) ≤ 1

2 .

Proof As concerns parta. of the lemma, we make use of the inequation`(A) ≤ u(A)
proven in L-179. It is hence sufficient to discern the following cases. If1

2 < `(A) ≤
u(A), thenψ�(A) = `(A) > 1

2 by (1119). In the remaining case thatu(A) ≥ 1
2 and

`(A) ≤ 1
2 , we obtain from (1119) thatψ�(A) = 1

2 . Hencea. is indeed valid. As
concerns partb., we can now profit from L-182, which permits us to reduce the proof
of b. to that of parta. by means of negation.

Lemma 184 The condition(ψ-5) is independent of(ψ-1)–(ψ-4).

Proof I will show that (ψ-5) is independent of the remaining conditions by proving
thatψ� : A −→ I, defined by (1119), satisfies (ψ-1)–(ψ-4), and violates (ψ-5).

ψ� satisfies (ψ-1).
To see this, consider a choice ofA ∈ A with D(A) = {1}. Thenr+ = 1 and by
Def. 87,D(A)(z) ⊆ [0, 1 − z+] = {0} for all z 6= z+. Because0 /∈ D(A), we
conclude that

A(z) =
{
{1} : z = z+

∅ : z 6= z+

for all z ∈ I. Hence by (78), NV(A) = {z+} and in turn,

inf NV(A) = sup NV(A) = z+ . (1142)

366



Therefore

z+ = inf NV(A) by (1142)

≤ `(A) by (1120)

≤ u(A) by L-179

≤ sup NV(A) by (1121)

= z+ . by (1142)

In other words,̀ (A) = u(A) = z+. Thereforeψ�(A) = z+ by L-180, i.e. (ψ-1)
holds, as desired.

ψ� satisfies (ψ-2)
Hence letA ∈ A be given and defineA′ ∈ A by A′(z) = A(1 − z) for all z ∈ I.
Then`(A′) = 1 − u(A) andu(A′) = 1 − `(A), see L-182. Hence if̀(A) > 1

2 , then
u(A′) = 1 − `(A) < 1

2 andψ�(A′) = u(A′) = 1 − `(A) = 1 − ψ�(A) by (1119).
In the second case thatu(A) < 1

2 , we know that̀ (A′) = 1 − u(A) > 1
2 and hence

ψ�(A′) = `(A′) = 1− u(A) = 1− ψ�(A) by (1119). Finally if`(A) ≤ 1
2 ≤ u(A),

then1 − u(A) ≤ 1
2 ≤ 1 − `(A) and hencè(A′) ≤ 1

2 ≤ u(A′) as well, see L-182.
Thereforeψ�(A′) = 1

2 = 1 − 1
2 = 1 − ψ�(A) by (1119). This completes the proof

thatψ�(A′) = 1− ψ�(A), i.e. (ψ-2) is indeed valid.

ψ� satisfies (ψ-3).
In order to prove this, we considerA ∈ A with NV(A) ⊆ {0, 1} and z+ = 1,
i.e.A(1) ∩ [0, 1

2 ] 6= ∅. In particular,1 ∈ NV(A) and hencesup NV(A) = 1. We
now consider two cases.

• A(0) = ∅.
Then NV(A) = {1}, i.e.

inf NV(A) = 1 , (1143)

and

∪{A(z) : z < 1} = ∅ ,

in particular

1− sup∪{A(z) : z < 1} = 1 . (1144)

Therefore

`(A) = max(inf NV(A), 1− sup∪{A(z) : z < 1}) by (1120)

= max(1, 1) by (1143) and (1144)

= 1 .

As far asu(A) is concerned, we obtain from L-178 thatu(A) = 1− supA(0) =
1 − sup∅ = 1. Hence`(A) = u(A) = 1 and by L-180,ψ�(A) = 1 =
1− supA(0), as desired.
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• A(0) 6= ∅.
Then NV(A) = {0, 1}, and hence

inf NV(A) = 0 . (1145)

As concerns̀(A), we then obtain that

`(A) = 1− sup∪{A(z) : z < 1} by L-177.c

= 1− supA(0) ,

because NV(A) = {0, 1} and hence∪{A(z) : z < 1} = A(0) ∪ ∪{∅ : z ∈
(0, 1)} = A(0).
Now let us consideru(A). In this case,u(A) = 1− supA(0) is immediate from
part a. of lemma L-178. Hence again`(A) = u(A) = 1 − supA(0) and by
L-180,ψ�(A) = `(A) = 1− supA(0).

This proves thatψ�(A) = 1− supA(0) in both possible cases, i.e.ψ� indeed satisfies
(ψ-3).

ψ� satisfies (ψ-4).
Hence letA,A′ ∈ A be given and suppose thatA v A′. We then know from L-181
that`(A) ≤ `(A′) andu(A) ≤ u(A′). It is hence sufficient to consider the following
cases.

a. If `(A) > 1
2 , then`(A)′ > 1

2 as well. Hence

ψ�(A) = `(A) by (1119)

≤ `(A′) by L-181

= ψ�(A′) . by (1119)

b. If u(A) < 1
2 andu(A′) ≥ 1

2 , then

ψ�(A) = u(A) by (1119)

< 1
2 by assumption of caseb.

≤ ψ�(A′) . by L-183.a

c. If u(A) < 1
2 andu(A′) < 1

2 , then

ψ�(A) = u(A) by (1119)

≤ u(A′) by L-181

= ψ�(A′) . by (1119)

d. Finally if `(A) ≤ 1
2 ≤ u(A), then in particular12 ≤ u(A)′ by L-181. Therefore

ψ�(A) = 1
2 by (1119)

≤ ψ�(A′) . by L-183.a

To sum up, I have shown thatψ�(A) ≤ ψ�(A′) wheneverA,A′ ∈ A satisfyA v A′.
This proves thatψ� satisfies (ψ-4).
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ψ� violates (ψ-5).
Hence considerA ∈ A, defined by

A(z) =

{
{1} : z = 2

3

∅ : z 6= 2
3

for all z ∈ I. Becauseψ� is already known to satisfy (ψ-1), we conclude that

ψ�(A) = 2
3 .

As concerns�A, we observe from Def. 91 that

�A(z) =

{
[0, 1] : z = 2

3

{0} : z 6= 2
3

for all z ∈ I. Hence NV(�A) = I and

inf NV(�A) = 0 ,
sup NV(�A) = 1 .

In addition,�A(1) ∩ [ 1
2 , 1] = ∅ and consequently

`(�A) = max(inf NV(�A), sup�A(1)) = max(0, sup{0}) = 0

by (1120). Because�A(0) ∩ [ 1
2 , 1] = ∅ as well, we obtain from (1121) that

u(�A) = min(sup NV(�A), 1− sup�A(0)) = min(1, 1− sup{0}) = 1 .

Hence0 = `(�A) ≤ 1
2 ≤ 1 = u(�A) and by (1119),

ψ�(�A) = 1
2 .

To sum up, I have shown thatψ�(A) = 2
3 6=

1
2 = ψ�(�A), i.e.Awitnesses the failure

of ψ� with respect to (ψ-5).

Proof of Theorem 121

It is apparent from the independence of (ω-1)–(ω-4), as stated in Th-46, and theorem
Th-120, that each of (ψ-1), (ψ-2), (ψ-3) and (ψ-4) is independent of the remaining four
conditions in (ψ-1)–(ψ-5). As concerns (ψ-5), it has already been shown in L-184 that
this condition is independent of (ψ-1)–(ψ-4).

B.31 Proof of Theorem 122

ConsiderA ∈ A. To see thatfA ∈ X, we discern the cases that eitherr+ = 1
2 or

r+ > 1
2 .

Firstly in the case thatr+ = 1
2 , then we know from Def. 87 thatD(A)∩ [ 1

2 , 1] = { 1
2}.
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By (62), there existsz+ ∈ I with 1
2 ∈ A(z+), andA(z) ⊆ [0, 1

2 ] for all z ∈ I. Hence
fA(z+) = supA(z+) = 1

2 for z = z+, andfA(z) ≤ sup[0, 1
2 ] = 1

2 for all otherz ∈ I.
Hence conditionsa. andb. of Def. 95 are satisfied, and indeedfA ∈ X.
In the remaining case thatr+ > 1

2 , we know from Def. 87 thatr+ ∈ A(z+) for a
unique choice ofz+ ∈ I. Noticing thatA(z+) ∩ [ 1

2 , 1] ⊆ D(A) ∩ [ 1
2 , 1] = {r+} by

Def. 87, (62) and Def. 85, this proves thatfA(z+) = supA(z) = r+, and condition
a. stated in Def. 95 is satisfied. Becauser+ > 1

2 , we further know from Def. 87 that
r+ /∈ A(z) for z ∈ I\{z+} and henceA(z) ⊆ D(A)\{r+} ⊆ [0, 1−r+] by (62) and
Def. 85. In particularfA(z) = supA(z) ≤ sup[0, 1− r+] = 1− r+. Hence condition
b. stated in Def. 95 is satisfied as well‘, andfA ∈ X, as desired.
Of course, this also proves thatfQ,X1,...,Xn ∈ X for a given semi-fuzzy quantifier
Q : P(E)n −→ I and fuzzy argumentsX1, . . . , Xn ∈ P̃(E), becausefQ,X1,...,Xn =
fAQ,X1,...,Xn

by Def. 94, andAQ,X1,...,Xn ∈ A by Th-93.

B.32 Proof of Theorem 123

Considerf ∈ X and letz+ ∈ I be chosen such thatr+ = f(z+). We defineAf :
I −→ P(I) by

Af (z) =
{

[0, 1− r+] ∪ {r+} : z = z+

[0, f(z)] : z 6= z+
(1146)

for all z ∈ I.

In order to show thatAf ∈ A, we first considerD(Af ). Becausef(z) ≤ 1− r+ for
all z 6= z+ by conditionb. of Def. 95, we know thatAf (z) ⊆ [0, 1 − r+] ⊆ Af (z+)
for all z 6= z+, see (1146). Hence by (62),D(Af ) = ∪{Af (z) : z ∈ I} = Af (z+) =
[0, 1−r+]∪{r+}. We notice thatD(Af )∩ [ 1

2 , 1] = {r+} becauser+ ≥ 1
2 . We further

notice thatinf D′ ∈ D for all D′ ⊆ D(Af ) with D′ 6= ∅, which is apparent because
D(Af ) is a union of closed intervals. In addition, ifr+ > 1

2 , thensupD(Af )\{r+} =
sup([0, 1 − r+] ∪ {r+}) \ {r+} = sup[0, 1 − r+] = 1 − r+. HenceD(Af ) ∈ D by
Def. 85.
In order to prove thatAf ∈ A, suppose thatz, z′ ∈ I satisfy supAf (z) > 1

2 and
supAf (z′) > 1

2 . By (1146), this means thatf(z) > 1
2 andf(z′) > 1

2 . We then
conclude from conditiona. of Def. 95 thatf(z) = r+ > 1

2 . In addition, we conclude
from partb. of Def. 95 that eitherz′ = z or f(z′) ≤ 1 − r+ < 1

2 . But we know that
f(z′) > 1

2 , hencez = z′, and conditionb. of Def. 87 is satisfied, as desired. This
completes the proof thatAf ∈ A.
Next I prove that this particular choice ofAf ∈ A results inf = fAf . To see this,
considerz ∈ I. It is then apparent from (1146) thatsupAf (z) = f(z), and hence
fAf (z) = f(z) by Def. 93. Becausez ∈ I was arbitrary, this proves thatf = fAf for
Af ∈ A as defined by (1146).
Note that this also proves the second claim of the theorem concerning the existence of
Q : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) with f = fQ,X1,...,Xn . This is because
by Th-94, there existQ andX1, . . . , Xn with Af = AQ,X1,...,Xn . Hencef = fAf =
fAQ,X1,...,Xn

= fQ,X1,...,Xn by Def. 94.
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B.33 Proof of Theorem 124

Letϕ : X −→ I be given and suppose thatψ : A −→ I is defined by (87). Then for all
Q : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E),

Fϕ(Q)(X1, . . . , Xn) = ϕ(fQ,X1,...,Xn) by Def. 96

= ϕ(fAQ,X1,...,Xn
) by Def. 94

= ψ(AQ,X1,...,Xn) by (87)

= Fψ(Q)(X1, . . . , Xn) by Def. 88

BecauseQ andX1, . . . , Xn were arbitrary, this proves thatFϕ = Fψ, as desired.

B.34 Proof of Theorem 125

Suppose thatψ : A −→ I satisfies (ψ-5) and letϕ : X −→ I be defined by (88). Now
consider a choice ofQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E). Further letz ∈ I.
We now consider equation (89). In the case thatfA(z) ≤ 1

2 , this equation yields

AfA(z) = [0, fA(z)]

and hencesupAfA(z) = fA(z) ≤ 1
2 . In turn,

�̂AfA(z) = min(supAfA(z), 1
2 ) = min(fA(z), 1

2 ) = fA(z) (1147)

by (73). In addition, we conclude fromfA(z) ≤ 1
2 andfA(z) = supA(z) ≤ 1

2 by
Def. 93 that

�̂A(z) = min(supA(z), 1
2 ) = supA(z) = fA(z) . (1148)

Therefore

�AfA(z) = [0, �̂AfA(z)] by Def. 91

= [0, fA(z)] by (1147)

= [0, �̂A(z)] by (1148)

= �A(z) . by Def. 91

In the remaining case thatsupA(z) > 1
2 , we obtain from (89) and Def. 93 that

AfA(z) = [0, 1− supA(z)] ∪ {supA(z)} (1149)

becausefA(z) = supA(z) > 1
2 . Therefore

�AfA(z) = �([0, 1− supA(z)] ∪ {supA(z)}) by psi.ablo.phi.-1

= [0, 1
2 ] becausesupA(z) > 1

2

= �A(z) . by Def. 91 becausesupA(z) ≥ 1
2
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Recalling our above result concerned with the case thatsupA(z) ≤ 1
2 , we have suc-

ceeded to show that�AfA(z) = �A(z) for all z ∈ I, and hence

�AfA = �A . (1150)

Therefore

Fψ(Q)(X1, . . . , Xn) = ψ(AQ,X1,...,Xn) by Def. 88

= ψ(�AQ,X1,...,Xn) by (ψ-5)

= ψ(�AfAQ,X1,...,Xn
) by (1150)

= ψ(AfAQ,X1,...,Xn
) by (ψ-5)

= ψ(AfQ,X1,...,Xn
) by Def. 94

= ϕ(fQ,X1,...,Xn) by (88)

= Fϕ(Q)(X1, . . . , Xn) . by Def. 96

B.35 Proof of Theorem 126

Lemma 185 Considerϕ : X −→ I and suppose thatψ : A −→ I is defined in terms
ofϕ according to(87). Thenϕ is defined in termsψ according to(88).

Proof To see this, considerf ∈ X. I will now prove that

f = fAf , (1151)

whereAf ∈ A is defined by (89). Hence considerz ∈ I. If f(z) > 1
2 , then

fAf (z) = supAf (z) by Def. 93

= sup[0, 1− f(z)] ∪ {f(z)} by (89)

= f(z) ,

becausef(z) > 1
2 by assumption. In the remaining case thatf(z) ≤ 1

2 , we compute

fAf (z) = supAf (z) by Def. 93

= sup[0, f(z)] by (89)

= f(z) .

Becausez ∈ I was arbitrary, this proves thatfAf = f , i.e. equation (1151) is indeed
valid. In turn

ϕ(f) = ϕ(fAf ) by (1151)

= ψ(Af ) , by (87)

i.e. equation (88) holds, as desired.
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In order to relate the monotonicity conditions (ψ-4) and (ϕ-4), we need a convex-
ification construction onA. For all A ∈ A, let us hence defineA‡ : I −→ P(I)
by

A‡(z) = (∪{A(z′) : z′ ≤ z}) ∩ (∪{A(z′) : z′ ≥ z}) , (1152)

for all z ∈ I. It is apparent from Def. 87 that indeedA‡ ∈ A. In addition, it is obvious
from (1152) that

A(z) ⊆ A‡(z) (1153)

for all z ∈ I.

Lemma 186 For all A ∈ A, it both holds thatA v A‡ andA‡ v A.

Proof To see thatA v A‡, we consider both conditions of Def. 89. Firstly letz ∈ I
andr ∈ A(z). Thenz′ = z is an admissable choice forz′ ≥ z with r ∈ A‡(z′) because
r ∈ A(z) ⊆ A‡(z) = A‡(z′) by (1153). As concerns the second condition, letz′ ∈ I
andr ∈ A‡(z′). We now observe from (1152) thatA‡(z′) ⊆ ∪{A(z) : z ≤ z′}.
Thereforer ∈ A(z′) entails thatr ∈ ∪{A(z) : z ≤ z′}. In turn, this proves that there
existsz ≤ z′ with r ∈ A(z). Because both preconditions of Def. 89 are satisfied, we
conclude thatA v A‡.
It remains to be shown thatA‡ v A. Again we consider both preconditions of Def. 89.
As concerns the first condition, letz ∈ I andr ∈ A‡. It is then immediate from (1152)
thatA‡(z) ⊆ ∪{A(z′) : z′ ≥ z}. Hencer ∈ A‡(z) entails that there existsz′ ≥ z
with r ∈ A(z′). In other words, conditiona. of Def. 89 is satisfied. Now let us address
the second precondition. We considerz′ ∈ I andr ∈ A(z′). Thenz = z′ is a legal
choice forz ≤ z′ which satisfiesr ∈ A(z′) = A(z) ⊆ A‡(z), i.e. r ∈ A‡(z) by
(1153), as desired. Because both preconditions of Def. 89 are valid, we deduce that in
factA‡ v A.

Lemma 187 Suppose thatψ : A −→ I satisfies(ψ-4). Thenψ is ‡-invariant, i.e.

ψ(A‡) = ψ(A)

for all A ∈ A.

Proof We know from L-186 thatA v A‡ andA‡ v A. Henceψ(A) ≤ ψ(A‡) and
ψ(A‡) ≤ ψ(A) by (ψ-4), i.e.ψ(A‡) = ψ(A), as desired.

Lemma 188 Letf, f ′ ∈ X be given and suppose thatf v f ′. Thenr+(f) = r+(f ′).

Proof Let f, f ′ ∈ X be given and suppose thatr+(f) 6= r+(f ′). I will show that
f v f ′ is not possible in this case.
Suppose thatr+(f) > r+(f ′). By Def. 95, there existsz+ = z+(f) ∈ I with r+(f) =
f(z+). We now recall from parta. of Def. 97 that the condition

sup{f ′(z′) : z′ ≥ z+} ≥ f(z+) = r+(f) (1154)
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is necessary forf v f ′. However,

sup{f ′(z′) : z′ ≥ z+}
≤ sup{f ′(z) : z ∈ I}
= max(f ′(z+(f ′)), sup{f ′(z) : z 6= z+(f ′)}) by splittingsup-expression

= max(r+(f ′), sup{f ′(z) : z 6= z+(f ′)}) by Def. 95.a

= r+(f ′) by Def. 95.b becauser+(f ′) ≥ 1
2

< r+(f) . by assumption

This demonstrates that condition (1154) is not valid, which is a necessary precondition
of f v f ′.
Now we consider the remaining case thatr+(f) > r+(f ′). We recall from Def. 95 that
there existsz+ = z+(f ′) with r+(f ′) = f ′(z+). It is then immediate from Def. 97
that the following condition is necessary forf v f ′, viz

sup{f(z) : z ≤ z+} ≥ f ′(z+) , (1155)

which is a specialization of Def. 97.b. As I will now show, this condition is not valid.
This is because

sup{f(z) : z ≤ z+}
≤ sup{f(z) : z ∈ I}
= max(f(z+(f)), sup{f(z) : z 6= z+(f)}) by splittingsup-expression

= max(r+(f)︸ ︷︷ ︸
≥ 1

2

, sup{f(z) : z 6= z+(f)}︸ ︷︷ ︸
≤1−r+(f)≤ 1

2

) by Def. 95

= r+(f)
< r+(f ′) . by assumption

Hence (1155) is indeed violated, which proves thatf v f ′ is not possible.
To sum up, I have shown thatf v f ′ does not hold ifr+(f) 6= r+(f ′). This proves
thatr+(f) = r+(f ′) is entailed byf v f ′, as desired.

Let us now introduce another construction onA. For allA ∈ A, we defineA\ :
I −→ P(I) by

A\(z) = A(z) ∪ {supA(z)} , (1156)

for all z ∈ I. It is then apparent from Def. 87 andA ∈ A thatA\ ∈ A as well.

Lemma 189 Considerϕ : X −→ I and suppose thatψ : A −→ I is defined in terms
ofϕ according to(87). Thenψ is \-invariant, i.e.ψ(A\) = ψ(A) for all A ∈ A.
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Proof To see this, letA ∈ A be given. Now consider somez ∈ I. Then

fA(z) = supA(z) by Def. 93

= sup(A(z) ∪ {supA(z)})
= supA\(z) by (1156)

= fA\(z) . by Def. 93.

Becausez ∈ I was arbitrary, this proves that

fA = fA\ . (1157)

In turn

ψ(A\) = ϕ(fA\) by (87)

= ϕ(fA) by (1157)

= ψ(A) . by (87)

In the following, we also need an additional construction onX. For all f ∈ X, we
definef‡ : I −→ I by

f‡(z) = min(sup{f(z′) : z′ ≤ z}, sup{f(z′) : z′ ≥ z}) , (1158)

for all z ∈ I.

Lemma 190 Considerf ∈ X and suppose thatr+ = f(z+) for a givenz+ ∈ I. Then
for all z ∈ I,

a. if z ≤ z+, thenf‡(z) = sup{f(z′) : z′ ≤ z};

b. if z ≥ z+, thenf‡(z) = sup{f(z′) : z′ ≥ z}.

Proof We recall from Def. 95 that

r+ = f(z+) ≥ 1
2 (1159)

and

f(z) ≤ 1− r+ ≤ r+ (1160)

for all z ∈ I \ {z+}.
Now consider a givenz ∈ I. In order to prove casea. of the lemma, we suppose that
z ≤ z+. Then

sup{f(z′) : z′ ≥ z}
= max(f(z+), sup{f(z′) : z′ ≥ z, z′ 6= z+}) by splittingsup-expression

= max( r+︸︷︷︸
≥ 1

2

, sup{f(z′) : z′ ≥ z, z′ 6= z+}︸ ︷︷ ︸
≤ 1

2

) by (1159), (1160)

= r+
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and

sup{f(z′) : z′ ≤ z} ≤ r+

by (1159) and (1160). Hence

f‡(z) = min(sup{f(z′) : z′ ≥ z}︸ ︷︷ ︸
=r+

, sup{f(z′) : z′ ≤ z}︸ ︷︷ ︸
≤r+

) by (1158)

= sup{f(z′) : z′ ≤ z} .

Caseb. of the lemma is proven analogously. We then havez ≥ z+ and hence
sup{f(z′) : z′ ≤ z} = r+ by (1159) and (1160). On the other hand,sup{f(z′) :
z′ ≥ z} ≤ r+. Thereforef‡(z) = min(sup{f(z′) : z′ ≥ z}, sup{f(z′) : z′ ≤ z}) =
min(sup{f(z′) : z′ ≥ z}, r+) = sup{f(z′) : z′ ≥ z}, as desired.

Lemma 191 Let f ∈ X be given and suppose thatAf ∈ A is defined in terms off
according to equation(89). We further assume a choice ofz+ ∈ I with f(z+) ≥ 1

2 .
Then for allz0 ∈ I,

a. If z0 ≥ z+, thenAf
‡(z0) = ∪{Af (z′) : z′ ≥ z0};

b. If z ≤ z+, thenAf
‡(z0) = ∪{Af (z′) : z′ ≤ z0}.

Proof Let us recall from Def. 95 thatr+ = f(z+) ≥ 1
2 , andf(z) ≤ 1−r+ whenever

z 6= z+. Hence for allz ∈ I \ {z+},

Af (z) = [0, f(z)] ⊆ [0, r+] ∪ {r+} = [0, f(z+)] ∪ {f(z+)} = Af (z+) . (1161)

In order to prove parta., let us now suppose thatz0 ≥ z+. We then know from (1161)
that

∪{Af (z′) : z′ ≤ z0} = (∪{Af (z′) : z′ ≤ z0, z
′ 6= z+}) ∪Af (z+) , becausez+ ≤ z0

and hence

∪{Af (z′) : z′ ≤ z0} = Af (z+) (1162)

by (1161). On the other hand, the subsumption stated in (1161) entails thatAf (z) ⊆
Af (z+) for all z′ ≥ z0. Therefore

∪{Af (z′) : z′ ≥ z0} ⊆ Af (z+) . (1163)

In turn,

Af
‡(z0) = (∪{Af (z′) : z′ ≥ z0}) ∩ (∪{Af (z′) : z′ ≤ z0}) by (1152)

= (∪{Af (z′) : z′ ≥ z0}) ∩Af (z+) by (1162)

= ∪{Af (z′) ∩Af (z+) : z′ ≥ z0} by distributivity

= ∪{Af (z′) : z′ ≥ z0} , by (1163)
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as desired. In the remaining caseb. that z0 ≤ z+, we can proceed analogously. By
similar reasoning as above, one then shows that

∪{Af (z′) : z′ ≥ z0} = Af (z+)

and

∪{Af (z′) : z′ ≤ z0} ⊆ Af (z+) .

Based on these results, it is then easy to finish the proof ofAf
‡(z0) = ∪{Af (z′) :

z′ ≤ z0}, again utilizing the distributivity of set operations and the law of absorption.

Lemma 192 For all f ∈ X,

A(f‡) = (Af )‡
\
.

Proof Let z0 ∈ I be given.

a.: A(f‡)(z0) ⊆ (Af )‡
\
(z0).

To see this, considerr0 ∈ Af‡(z0). We abbreviater+ = r+(f). It is now convenient
to discern the following two cases.

In the first case thatr0 = r+ andr+ > 1
2 , we know from Def. 95 thatr+ = f(z+)

for a unique choice ofz+ ∈ I and thatf(z) ≤ 1−r+ < r+ for all z 6= z+. We observe
that forz > z+,

f‡(z)
= sup{f(z′) : z′ ≥ z} by L-190

≤ 1− r+

by Def. 95, becausez+ < z′ ≤ z. For similar reasons, we obtain thatf‡(z) ≤ 1− r+

in the case thatz < z+. Hencef‡(z) = r+ is possible only ifz = z+. In fact, we then
have:

f‡(z+) = sup{f(z′) : z′ ≥ z+} by L-190

= max(f(z+)︸ ︷︷ ︸
≥ 1

2

, sup{f(z′) : z′ > z+}︸ ︷︷ ︸
≤ 1

2

) by Def. 95

= f(z+) .

We can hence conclude fromr0 = r+ > 1
2 thatz0 = z+. HenceAf (z0) = Af (z+) =

[0, 1 − r+] ∪ {r+} by (89). It is then obvious fromf(z) ≤ 1 − r+ for all z 6= z+

and from (1152) thatAf
‡(z0) = [0, 1 − r+] ∪ {r+} as well. It is apparent from our

assumptionr+ > 1
2 thatr+ = sup([0, 1− r+] ∪ {r+}). Therefore

Af
‡\(z+) = [0, 1− r+] ∪ {r+} , (1164)
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and in particular,r0 = r+ ∈ Af ‡
\
(z+) = Af

‡\(z0), as desired.

Next we consider the remaining case thatr0 6= r+. It is then apparent from Def. 95
and (89) thatr0 ≤ 1 − r+. In the special case thatz0 = z+, we hence already know

from (1164) that indeedr0 ∈ Af
‡\(z0). Hence suppose thatz0 6= z+. It is then

apparent from L-190 andf(z′) ≤ 1 − r+ for all z′ 6= z+, as ensured by Def. 95, that
in fact

f‡(z0) ≤ 1− r+ . (1165)

Hence by (89),

Af‡(z0) = [0, f‡(z0)] ,

and in particular

r0 ≤ f‡(z0) .

We now observe from (89) that0 ∈ Af (z), regardless ofz ∈ I. In particular0 ∈
Af (z0). This proves thatr0 ∈ Af (z0) in the special case thatr0 = 0. Hence suppose
thatr0 > 0. It is now convenient to discern two more cases.
In the case thatz0 > z+, we know from L-190 that

f‡(z0) = sup{f(z′) : z′ ≥ z0} . (1166)

We can then consider somer′ ∈ [0, r0). In particular,r′ < f‡(z0) and by (1166),
f‡(z0) = sup{f(z′) : z′ ≥ z0} > 0. Hence there existsz′ ≥ z0 with

f(z′) > r′ . (1167)

Becausez′ ≥ z0 > z+, we also know thatf(z′) ≤ 1− r+ ≤ 1
2 . ThereforeAf (z′) =

[0, f(z′)]. In turn, we conclude fromz′ ≥ z0 and (1167) that

[0, r′] ⊆ [0, f(z′)] = Af (z′) ⊆ ∪{Af (z) : z ≥ z0} . (1168)

Becauser′ ≤ 1− r+, we also know from (89) andz+ < z0 that

[0, r′] ⊆ [0, 1− r+] ⊆ Af (z+) ⊆ ∪{Af (z) : z ≤ z0} . (1169)

Recalling (1152), this proves that

[0, r′] ⊆ (∪{Af (z) : z ≥ z0}) ∩ (∪{Af (z) : z ≤ z0}) = Af
‡(z0) .

Becauser′ < r0 was arbitrarily chosen, we conclude that

[0, r0) ⊆ Af ‡(z0) .

In particular,s = supAf ‡(z0) ≥ r0. Let us now recall from (89) that everyAf (z),
z 6= z+, is a closed interval of the form[0, a]. Becausez0 6= z+, we hence obtain
from L-191 thatAf

‡(z0) is a union of closed intervals of the above form. Hence
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Af
‡(z0) has one of the following forms,Af

‡(z0) = [0, s) orAf
‡(z0) = [0, s], where

s = supAf ‡(z0) as above. In any case,Af
‡(z0)∪ {s} = [0, s]. Recalling (1156), this

proves thatAf
‡\(z0) = [0, s], wheres ≥ r0. In particularr0 ∈ Af ‡

\
(z0), as desired.

The proof of the remaining case thatz0 < z+ is completely analogous to the above
prove of the casez0 > z+. We again utilize L-190, which in this case states that
f‡(z0) = sup{f(z′) : z′ ≤ z0}. Apart from reversal of the inequations (considering
z′ ≤ z0 instead ofz′ ≥ z0), the present case can hence be proven in the same way as
the casez0 > z+.

b.: (Af )‡
\
(z0) ⊆ A(f‡)(z0).

To see this, considerr0 ∈ Af ‡
\
(z0).

Let us first suppose thatz0 = z+. We notice thatAf (z) ⊆ [0, 1 − r+] for all z 6= z+

andAf (z+) = [0, 1− r+] ∪ {r+} by Def. 95 and (89). ThereforeAf
‡(z+) = [0, 1−

r+] ∪ {r+} and

Af
‡\(z+) = [0, 1− r+] ∪ {r+} (1170)

as well, see (1152) and (1156).
We further deduce fromf(z+) = r+ and (1158) thatf‡(z+) = r+ as well. By (89),
then, we obtain that

Af‡(z+) = [0, 1− r+] ∪ {r+}

becauser+ ≥ 1
2 . Combining this with (1170) results inAf‡(z+) = Af

‡\(z+). In

particularr0 ∈ Af‡(z0) andz0 = z+ entail thatr0 ∈ Af ‡
\
(z0).

Let us now treat the remaining case thatz0 6= z+. Let us recall from (89) and Def. 95
thatAf (z) = [0, f(z)] for all z 6= z+. Hence forz0 > z+,

Af
‡(z0)

= ∪{Af (z′) : z′ ≥ z0} by L-191

= ∪{[0, f(z′)] : z′ ≥ z0} by (89) and Def. 95 becausez+ < z0

⊆ [0, sup{f(z′) : z′ ≥ z0}]
= [0, f‡(z0)] , by L-190

and forz0 < z+,

Af
‡(z0)

= ∪{Af (z′) : z′ ≤ z0} by L-191

= ∪{[0, f(z′)] : z′ ≤ z0} by (89) and Def. 95 becausez+ > z0

⊆ [0, sup{f(z′) : z′ ≤ z0}]
= [0, f‡(z0)] . by L-190

To sum up, I have shown that for allz0 6= z+,

Af
‡(z0) ⊆ [0, f‡(z0)] .
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In particular,supAf ‡(z0) ≤ f‡(z0), i.e.supAf ‡(z0) ∈ [0, f‡(z0)]. Recalling (1156),

this proves thatAf
‡\(z0) ⊆ [0, f‡(z0)]. Let us further notice that

f‡(z0) ≤ sup{f(z′) : z′ 6= z} by L-190 andz 6= z+

≤ 1− r+ by Def. 95

≤ 1
2 .

Hence by (89),Af‡(z0) = [0, f‡(z0)], i.e.Af
‡\(z0) ⊆ [0, f‡(z0)] = Af‡(z0). In

particular,r0 ∈ Af ‡
\
(z0) entails thatr0 ∈ Af‡(z0), which completes the proof of part

b. of the lemma.

Lemma 193 Let ϕ : X −→ I be given and suppose thatψ : A −→ I is defined by
(87). If ψ satisfies(ψ-4), thenϕ is ‡-invariant, i.e.ϕ(f‡) = ϕ(f) for all f ∈ X.

Proof To see this, letf ∈ X. Then

ϕ(f‡) = ψ(Af‡) by L-185

= ψ(Af ‡
\
) by L-192

= ψ(Af ) by L-189, L-187

= ϕ(f) . by L-185

In the following, we introduce a preorderE on X. For all f, f ′ ∈ X, let us write
f E f ′ if and only if the following two conditions are satisfied.

a.: for allz ∈ I, there existsz′ ≥ z with f ′(z′) ≥ f(z); (1171)

b.: for all z′ ∈ I, there existsz ≤ z′ with f(z) ≥ f ′(z′). (1172)

Lemma 194 Letf, f ′ ∈ X be given and suppose thatf v f ′. Thenf‡ E f ′‡.

Proof In order to prove this, we first observe thatr+(f‡) = r+(f) andr+(f ′‡) =
r+(f ′), which is apparent from (1158). In addition, we know from L-188 thatf v f ′

entails thatr+(f) = r+(f ′). To sum up, there existsr+ ∈ I with

r+ = r+(f) = r+(f‡) = r+(f ′‡) = r+(f ′) . (1173)

It is also worth noticing that

f‡(z+) = f(z+) = r+ (1174)

and

f ′
‡(z+

′) = f ′(z+
′) = r+ , (1175)

wherez+ = z+(f) andz+
′ = z+(f ′), which is apparent from (1158) and the fact that

the maximum off is achieved atz+.
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Let us now consider the preconditions (1171) and (1172) off‡ E f ′‡ in turn.
To see that (1171) holds, suppose thatz ∈ I. In the case thatz ≤ z+

′ = z+(f ′), we
proceed as follows.

f‡(z) ≤ r+(f‡) by Def. 95

= r+(f ′) by (1173)

= f ′(z+
′) see Def. 95

= f ′
‡(z+

′) . by (1175)

Hencez′ = z+
′ is a legal choice ofz′ ≥ z with f‡(z) ≤ f ′‡(z′).

In the remaining case thatz > z+(f ′),

f ′
‡(z) = sup{f ′(z′) : z′ ≥ z} by L-190

= sup{sup{f(z′′) : z′′ ≥ z′} : z′ ≥ z}
≥ sup{f(z′) : z′ ≥ z} by Def. 97

≥ f‡(z) , by (1158)

i.e.z′ = z is a suitable choice ofz′ ≥ z with f ′‡(z′) ≥ f‡(z), as desired.
Now we focus on (1172). Hence considerz′ ∈ I. In the case thatz+ = z+(f) ≤ z′,

f‡(z+) = r+ by (1174)

= r+(f ′‡) by (1173)

≥ f ′‡(z′) . see Def. 95

Hencez = z+ is a suitable choice ofz ≤ z′ with f‡(z) ≥ f ′‡(z′).
Finally if z+ = z+(f) > z′, then

f‡(z′) = sup{f(z) : z ≤ z′} by L-190

= sup{sup{f(z′′) : z′′ ≤ z} : z ≤ z′}
≥ sup{f ′(z) : z ≤ z′} by Def. 97

≥ f ′‡(z′) . by (1158)

This proves thatz = z′ is a legal choice ofz ≤ z′ with f‡(z) ≥ f ′‡(z′). Because both
preconditions (1171) and (1172) are satisfied, we conclude the desiredf‡ E f ′‡.

Lemma 195 Letf, f ′ ∈ X be given and suppose thatf E f ′. Thenf v f ′ as well.

Proof Hence letf, f ′ ∈ X with f E f ′ be given. I first show that conditiona. of
Def. 97 is satisfied. Hence letz ∈ I be given. We then know from (1171) that there
existsz0 ≥ z with f ′(z0) ≥ f(z). In particular

sup{f ′(z′) : z′ ≥ z} ≥ f ′(z0) becausez0 ≥ z
≥ f(z) . by (1171)
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Now let us discuss conditionb. of Def. 97. Hence considerz′ ∈ I. By (1172), then,
there existsz1 ≤ z′ with f(z1) ≥ f ′(z′). Therefore

sup{f(z) : z ≤ z′} ≤ f(z1) becausez1 ≤ z′

≥ f ′(z′) . by (1172)

This completes the proof that both preconditions of Def. 97 are valid; hence indeed
f v f ′.

Lemma 196 Letϕ : X −→ I be given and suppose thatψ : A −→ I, defined by(87),
satisfies(ψ-4). Then for allf, f ′ ∈ X,

ϕ(f) ≤ ϕ(f ′) (1176)

provided thatf E f ′.

Proof Hence letf, f ′ ∈ X with f E f ′ be given. We then know from L-195 that
f v f ′. Hence L-188 is applicable, and

r+ = r+(f) = r+(f ′) . (1177)

I will now show thatAf v Af ′ , by proving that conditionsa. andb. of Def. 89 are
fulfilled by Af , Af ′ .
To see that conditiona. holds, considerz ∈ I. If f(z) ≥ 1

2 , i.e. f(z) = r+(f), then
Af (z) = [0, 1 − r+] ∪ {r+} by (89) and (1177). We then conclude from (1171) that
there existsz′ ≥ z with f ′(z′) ≥ f(z). Becauser+(f ′) = r+ by (1177), this is only
possible iff ′(z′) = r+. Hence by (89),Af ′(z′) = [0, 1 − r+] ∪ {r+} = Af (z). In
particular,r ∈ Af (z) entails thatr ∈ Af ′(z′) for the givenz′ ≥ z, as desired.
In the remaining case thatf(z) < 1

2 , we know from (89) thatAf (z) = [0, f(z)]. From
(1171), we obtain that there existsz′ ≥ z with f ′(z′) ≥ f(z). Hence[0, f(z)] ⊆
[0, f ′(z′)] ⊆ Af ′(z′). In particularr ∈ Af (z) = [0, f(z)] entails thatr ∈ Af ′(z′) for
the givenz′ ≥ z. This completes the proof that conditiona. of Def. 89 holds.

We now discuss conditionb. of Def. 89. Hence letz′ ∈ I be given. Iff ′(z′) ≥ 1
2 ,

i.e. f ′(z′) = r+(f ′), then thenAf ′(z′) = [0, 1− r+] ∪ {r+} by (89) and (1177). We
obtain from (1172) that there existsz ≤ z′ with f(z) ≥ f ′(z′). Becauser+(f) = r+

by (1177), this is only possible iff(z) = r+ as well. Hence by (89),Af (z) = [0, 1−
r+] ∪ {r+} = Af ′(z′). In particular,r ∈ Af ′(z′) entails thatr ∈ Af (z) for the given
z ≤ z′.
Finally in the case thatf ′(z′) < 1

2 , (89) results inAf ′(z′) = [0, f ′(z′)]. From (1172),
we obtain that there existsz ≤ z′ with f(z) ≥ f ′(z′). Hence[0, f ′(z′)] ⊆ [0, f(z)] ⊆
Af (z). In particularr ∈ Af ′(z′) = [0, f ′(z′)] entails thatr ∈ Af (z) for the given
z ≤ z′. Hence conditionb. of Def. 89 holds as well. This completes the proof that
indeed

Af v Af ′ . (1178)
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Consequently

ϕ(f) = ψ(Af ) by L-185, (88)

≤ ψ(Af ′) by (ψ-4) and (1178)

= ϕ(f ′) , by L-185, (88)

i.e.f E f ′ entails thatϕ(f) ≤ ϕ(f ′), as claimed by the lemma.

Proof of Theorem 126

Considerϕ : X −→ I and suppose thatψ : A −→ I is defined by (87). We shall prove
the equivalences stated in the theorem in due turn. For convenience, every equivalence
will be split into two implications, which are proven separately.

a.1: If ϕ satisfies (ϕ-1) then ψ satisfies (ψ-1).
To see this, suppose thatϕ satisfies (ϕ-1) and considerA ∈ A with D(A) = {1},
i.e.A(z+) = {1} andA(z) = ∅ for all z 6= z+. It is then apparent from Def. 93 that
fA(z+) = supA(z+) = sup{1} = 1 andfA(z) = supA(z) = sup∅ = 0 for all
z 6= z+. Hence

fA(z) =
{

1 : z = z+

0 : z 6= z+

for all z ∈ I. In particularf−1((0, 1]) = {z+} andf(z+) = 1. Therefore

ψ(A) = ϕ(fA) by (87)

= z+ . by (ϕ-1)

a.2: If ψ satisfies (ψ-1) then ϕ satisfies (ϕ-1).
Hence suppose thatψ satisfies (ψ-1) and letf ∈ X be given such thatf−1((0, 1]) =
{z+} andf(z+) = 1. We now defineA ∈ A by

A(z) =
{
{1} : z = z+

∅ : else

for all z ∈ I. It is then apparent from Def. 93 that

fA = f . (1179)

We further notice thatz+(A) coincides with the givenz+, andD(A) = {1}, i.e. (ψ-1)
is applicable. Therefore

ϕ(f) = ϕ(fA) by (1179)

= ψ(A) by (87)

= z+ . by (ψ-1)
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b.1: If ϕ satisfies (ϕ-2) then ψ satisfies (ψ-2).
Hence suppose thatϕ satisfies (ϕ-2) and letA,A′ ∈ A be given such that

A′(z) = A(1− z) (1180)

for all z ∈ I.
Now we considerfA

′(z) vs.fA(z) for a givenz ∈ I. Apparently

fA
′(z) = supA′(z) by Def. 93

= supA(1− z) by (1180)

= fA(1− z) . by Def. 93

Becausez ∈ I was arbitrary, this proves thatfA
′(z) = fA(1 − z) for all z ∈ I, and

(ϕ-2) is applicable. Consequently

ψ(A′) = ϕ(fA′) by (87)

= 1− ϕ(fA) by (ϕ-2)

= 1− ψ(A) . by (87)

b.2: If ψ satisfies (ψ-2) then ϕ satisfies (ϕ-2).
To see this, assume thatψ satisfies (ψ-2) and considerf, f ′ ∈ X with

f ′(z) = f(1− z) (1181)

for all z ∈ I. As I will now prove, this entails that

Af ′(z) = Af (1− z) (1182)

for all z ∈ I. Hence letz ∈ I. In the case thatf ′(z) > 1
2 , thenf(1− z) = f ′(z) > 1

2
as well. Therefore

Af ′(z) = [0, 1− f ′(z)] ∪ {f ′(z)} by (89)

= [0, 1− f(1− z)] ∪ {f(1− z)} by (1181)

= Af (1− z) . by (89)

In the remaining case thatf ′(z) ≤ 1
2 , we conclude from (1181) thatf(1 − z) =

f ′(z) ≤ 1
2 as well. Hence

Af ′(z) = [0, f ′(z)] by (89)

= [0, f(1− z)] by (1181)

= Af (1− z) . by (89)

Becausez ∈ I was arbitrary, this proves thatAf ′(z) = Af (1 − z) for all z ∈ I,
i.e. (ψ-2) is applicable. Hence

ϕ(f ′) = ψ(Af ′) by L-185, (88)

= 1− ψ(Af ) by (ψ-2)

= 1− ϕ(f) . by L-185 and (88)
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c.1: If ϕ satisfies (ϕ-3) then ψ satisfies (ψ-3).
Hence suppose thatϕ satisfies (ϕ-3) and considerA ∈ A with NV(A) ⊆ {0, 1} and
r+ ∈ A(1). HenceA(z) = ∅ for all z ∈ (0, 1), see (78). Recalling Def. 93, this
proves thatfA(z) = supA(z) = sup∅ = 0 for all z ∈ (0, 1). In other words,
fA
−1((0, 1]) ⊆ {0, 1}. Becauser+ ∈ A(1) and r+ ≥ 1

2 , we further obtain from
Def. 93 thatfA(1) = supA(1) ≥ r+ ≥ 1

2 . Summarizing these results, we have shown
that (ϕ-3) is applicable tofA, and hence

ϕ(fA) = 1− fA(0) = 1− supA(0) (1183)

by Def. 93. In turn

ψ(A) = ϕ(fA) by (87)

= 1− supA(0) , by (1183)

i.e. (ψ-3) holds, as desired.

c.2: If ψ satisfies (ψ-3) then ϕ satisfies (ϕ-3).
Suppose thatψ satisfies (ψ-3) and considerf ∈ X with f−1((0, 1]) ⊆ {0, 1} and
f(1) ≥ 1

2 . We defineA ∈ A by

A(z) =

 {f(0)} : z = 0
∅ : z ∈ (0, 1)
[0, 1− f(1)] ∪ {f(1)} : z = 1

(1184)

for all z ∈ I. It is then apparent from Def. 93 that

f = fA . (1185)

In addition, NV(A) = {0, 1} by (78) andr+(A) = f(1) ∈ A(1). Hence (ψ-3) is
applicable, and

ψ(A) = 1− supA(0) = 1− f(0) (1186)

by (1184). This proves that

ϕ(f) = ϕ(fA) by (1185)

= ψ(A) by (87)

= 1− f(0) , by (1186)

i.e. (ϕ-3) is indeed valid.

d.1: If ϕ satisfies (ϕ-4) then ψ satisfies (ψ-4).
Let us assume thatϕ fulfills (ϕ-4) and suppose thatA,A′ ∈ A satisfyA v A′. I now
show that

fA v fA′ . (1187)
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To see that conditiona. of Def. 97 is satisfied, considerz ∈ I. If A(z) = ∅, then
fA(z) = supA(z) = sup∅ = 0 and hence triviallysup{fA′(z′) : z′ ≥ z} ≥ 0 =
fA(z). In the remaining case thatA(z) 6= ∅, let ε > 0. BecausefA(z) = supA(z),
there existsr ∈ A(z) with r > fA(z)−ε. Recalling Def. 89, we conclude fromA v A′
that there existsz′0 ≥ z with r ∈ A(z′0). HencefA′(z′0) = supA′(z′0) ≥ r > fA − ε
for this choice ofz′0 ≥ z, and in turn

sup{fA′(z′) : z′ ≥ z} ≥ fA′(z′0) > fA(z)− ε

becausez′0 ≥ z. ε→ 0 then yields the desired

sup{fA′(z′) : z′ ≥ z} ≥ fA(z) ,

i.e. conditiona. of Def. 97 is satisfied. Let us now consider the second condition of
Def. 97. Hence letz′ ∈ I. If A′(z′) = ∅, thenfA

′(z′) = supA′(z′) = sup∅ = 0,
see Def. 93. It then holds trivially thatsup{fA(z) : z ≤ z′} ≥ 0 = fA′(z′). In
the remaining case thatA′(z′) 6= ∅, let ε > 0. Then there existsr ∈ A′(z′) with
r > supA′(z′) − ε = fA′(z′) − ε, see Def. 93. Recalling conditionb. of Def. 89,
we conclude fromA v A′ that there existz0 ≤ z′ with r ∈ A(z0). In particular
supA(z0) ≥ r and hencefA(z0) ≥ r > fA′(z′)− ε, cf. Def. 93. Becausez0 ≤ z′,

sup{fA(z) : z ≤ z′} ≥ fA(z0) > fA′(z)− ε .

Noticing thatε > 0 was chosen arbitrarily, we hence deduce thatsup fA(z) : z ≤
z′} ≥ fA′(z). This proves that the second condition of Def. 97 is also satisfied; which
permits us to deduce that (1187) is indeed valid. Therefore

ψ(A) = ϕ(fA) by (87)

≤ ϕ(fA′) by (ϕ-4) and (1187)

= ψ(A′) , by (87)

as desired.

d.2: If ψ satisfies (ψ-4) then ϕ satisfies (ϕ-4).
Hence suppose that (ψ-4) is valid for the givenψ. In order to prove thatϕ satisfies
(ϕ-4), we considerf, f ′ ∈ X with f v f ′. We then know from L-194 that

f‡ E f ′
‡
. (1188)

Therefore

ϕ(f) = ϕ(f‡) by L-193

≤ ϕ(f ′‡) by L-196 and (1188)

= ϕ(f ′) , by L-193

i.e.ϕ indeed satisfies (ϕ-4).
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e.1: If ϕ satisfies (ϕ-5) then ψ satisfies (ψ-5).
Suppose thatϕ satisfies (ϕ-5) and consider someA ∈ A. Then for allz ∈ I,

fA(z) = supA(z) (1189)

by Def. 93, and

f�A(z) = sup[0, �̂A(z)] by Def. 93 and Def. 91

= �̂A(z)

= min(supA(z), 1
2 ) by (73)

= min(fA(z), 1
2 ) . by (1189)

Hence (ϕ-5) is applicable, and

ϕ(fA) = ϕ(f�A) . (1190)

This in turn proves the desired

ψ(A) = ϕ(fA) by (87)

= ϕ(f�A) by (1190)

= ψ(�A) , by (87)

i.e.ψ indeed satisfies (ψ-5).

e.2: If ψ satisfies (ψ-5) then ϕ satisfies (ϕ-5).
To see this, let us assume thatψ satisfies (ψ-5). Now considerf ∈ X and definef ′ ∈ X
by

f ′(z) = min(f(z), 1
2 ) (1191)

for all z ∈ I. Recalling (89),f andf ′ apparently result in

Af (z) =

{
[0, f(z)] : f(z) ≤ 1

2

[0, 1− f(z)] ∪ {f(z)} : f(z) > 1
2

(1192)

and

Af ′(z) = [0, f ′(z)] (1193)

for all z ∈ I. Now expandingf ′(z) by (1191), we obtain

Af ′(z) = [0,min(f(z), 1
2 )] by (1191), (1193)

= [0,min(supAf (z), 1
2 )] by (1192)

= �Af (z) . by Def. 91

Becausez ∈ I was arbitrarily chosen, this proves that

Af ′ = �Af . (1194)
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Therefore

ϕ(f) = ψ(Af ) by L-185 and (88)

= ψ(�Af ) by (ψ-5)

= ψ(Af ′) by (1194)

= ϕ(f ′) , by L-185 and (88)

which completes the proof that (ϕ-5) holds provided that (ψ-5) is valid.

B.36 Proof of Theorem 127

Letϕ : X −→ I be given and suppose thatϕ satisfies (ϕ-1)–(ϕ-5). We then know from
Th-126 that the mappingψ : A −→ I defined by (87) satisfies (ψ-1)–(ψ-5). In turn,
we conclude from Th-107 thatFψ is a standard DFS. ButFϕ = Fψ by Th-124, which
proves thatFϕ is indeed a standard DFS.

B.37 Proof of Theorem 128

Let ϕ : X −→ I be given and suppose thatFϕ is a DFS. Let us defineψ : A −→ I
in terms ofϕ according to (87). We then know thatFψ = Fϕ, i.e. Fψ is a DFS.
Hence Th-116 states thatψ satisfies (ψ-1)–(ψ-5). In turn, we obtain from Th-126 that
ϕ satisfies (ϕ-1)–(ϕ-5), as desired.

B.38 Proof of Theorem 129

The independence of most of the ‘ϕ-conditions’ of the remaining conditions is apparent
from Th-126 and Th-121. In fact the only condition the independence of which needs
to be verified separately is (ϕ-5). To see that (ϕ-5) is independent of (ϕ-1), (ϕ-2), (ϕ-3)
and (ϕ-4), we introduce a mappingϕ∗ : X −→ I which satisfies all of these conditions
except for (ϕ-5). Hence let us define a number of coefficients based on a givenf , viz

`(f) =

{
max(inf f−1((0, 1]), 1− sup f̂([0, 1))) : f(1) = r+

max(inf f−1((0, 1]), f(1)) : f(1) 6= r+

(1195)

u(f) =

{
min(sup f−1((0, 1]), sup f̂((0, 1])) : f(0) = r+

min(sup f−1((0, 1]), 1− f(0)) : f(0) 6= r+

(1196)

α = α(f) = 2 · r+(f)− 1 (1197)

for all f ∈ X, wherer+ = r+(f). In terms of these coefficients, we then define
ϕ∗ : X −→ I by

ϕ∗(f) =


α · `(f) + (1− α)u(f) : `(f) > 1

2

α · u(f) + (1− α)`(f) : u(f) < 1
2

1
2 : `(f) ≤ 1

2 ≤ u(f)
(1198)
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for all f ∈ X. In the following, I will first prove thatϕ∗ is well-defined, by showing
that `(f) ≤ u(f) for all f ∈ X, as required by (1198). To this end, we need some
observations on how the computation of`(f) andu(f) can be simplified.

Lemma 197 Letf ∈ X be given. Then

a. if f(0) 6= 0 andf(1) 6= r+, then`(f) = f(1);

b. if f(0) 6= 0 andf(1) = r+, then`(f) = 1− sup f̂([0, 1));

c. if f(1) = 0, then`(f) = inf f−1((0, 1]).

Proof

a.: f(0) 6= 0 and f(1) 6= r+.
Then0 ∈ f−1((0, 1]) and hence

inf f−1((0, 1]) = 0 . (1199)

Therefore

`(f) = max(inf f−1((0, 1]), f(1)) by (1195)

= max(0, f(1)) by (1199)

= f(1) .

b.: f(0) 6= 0 and f(1) = r+. Then again0 ∈ f−1((0, 1]) and hence

inf f−1((0, 1]) = 0 . (1200)

In turn

`(f) = max(inf f−1((0, 1]), 1− sup f̂([0, 1))) by (1195)

= max(0, 1− sup f̂([0, 1))) by (1200)

= 1− sup f̂([0, 1)) .

c.: f(1) = 0

Then clearlyf(1) 6= r+ becauser+ ≥ 1
2 . Therefore

`(f) = max(inf f−1((0, 1]), f(1)) by (1195)

= max(inf f−1((0, 1]), 0) by assumption thatf(1) = 0

= inf f−1((0, 1]) .

In the case ofu(f), we obtain similar results.
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Lemma 198 Letf ∈ X be given. Then

a. if f(1) 6= 0 andf(0) 6= r+, thenu(f) = 1− f(0);

b. if f(1) 6= 0 andf(0) = r+, thenu(f) = sup f̂((0, 1]);

c. if f(0) = 0, thenu(f) = sup f−1((0, 1]).

Proof

a.: f(1) 6= 0 and f(0) 6= r+.
Then1 ∈ f−1((0, 1]) and hence

sup f−1((0, 1]) = 1 . (1201)

Therefore

u(f) = min(sup f−1((0, 1]), 1− f(0)) by (1196)

= min(1, 1− f(0)) by (1201)

= 1− f(0) .

b.: f(1) 6= 0 and f(0) = r+. Then again1 ∈ f−1((0, 1]) and hence

sup f−1((0, 1]) = 1 . (1202)

In turn

u(f) = min(sup f−1((0, 1]), sup f̂((0, 1])) by (1196)

= min(1, sup f̂((0, 1])) by (1202)

= sup f̂((0, 1]) .

c.: f(0) = 0

Then in particularf(0) 6= r+ becauser+ ≥ 1
2 . Therefore

u(f) = min(sup f−1((0, 1]), 1− f(0)) by (1196)

= min(sup f−1((0, 1]), 1) by assumption thatf(0) = 0

= sup f−1((0, 1]) .

Lemma 199 ϕ∗ is well-defined, i.e. for allf ∈ X, `(f) ≤ u(f).

Proof To see this, considerf ∈ X. It is convenient to discern the following cases.
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a.: f(0) = r+ and f(1) = 0.
Then

`(f) = f(1) by L-197.a

= 0 by assumption

≤ u(f) .

b.: f(0) = r+, f(1) 6= r+ and f(1) 6= 0.
Then

`(f) = f(1) by L-197.a

≤ sup f̂((0, 1]) because1 ∈ (0, 1] andf(1) ∈ f̂((0, 1])
= u(f) . by L-198.b

c.: f(0) = r+ and f(1) = r+.
We then know from Def. 95 thatr+ = 1

2 . Therefore

`(f) = 1− sup f̂([0, 1)) by L-197.b

= 1− r+ see Def. 95

= r+ becauser+ = 1
2

= sup f̂((0, 1]) see Def. 95

= u(f) . by L-198.b

d.: f(0) = 0 and f(1) = r+.
Then1 ∈ f−1((0, 1]) and hence

sup f−1((0, 1]) = 1 . (1203)

In particular

`(f) ≤ 1

= sup f−1((0, 1]) by (1203)

= u(f) . by L-198.c

e.: f(0) 6= 0, f(0) 6= r+ and f(1) = r+.
Then

`(f) = 1− sup f̂([0, 1)) by L-197.b

≤ 1− f(0) because0 ∈ [0, 1) and hencef(0) ∈ f̂([0, 1))
= u(f) . by L-198.a
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f.: f(0) = 0 and f(1) = 0.
Then

`(f) = inf f−1((0, 1]) by L-197.c

≤ sup f−1((0, 1]) becausef−1((0, 1]) 6= ∅

= u(f) . by L-198.c

g.: f(0) = 0 and f(1) 6= 0, f(1) 6= r+.
Then1 ∈ f−1((0, 1]) and hence

sup f−1((0, 1]) = 1 . (1204)

Therefore

`(f) ≤ 1

= sup f−1((0, 1]) by (1204)

= u(f) . by L-198.c

h.: f(0) 6= 0, f(0) 6= r+ and f(1) = 0.
Then

`(f) = f(1) by L-197.a

= 0 by assumption onf

≤ u(f) .

i.: f(0) 6= 0, f(0) 6= r+, f(1) 6= 0 and f(1) 6= r+.
Then

`(f) = f(1) by L-197.a

≤ 1− r+ by Def. 95 becausef(1) 6= r+

≤ r+ becauser+ ≥ 1
2

≤ 1− f(0) by Def. 95 becausef(0) 6= r+

= u(f) . by L-198.a

Lemma 200 Letf ∈ X be given and suppose that`(f) = u(f). Thenϕ∗(f) = `(f).

Proof It is useful to discern three cases. Firstly if`(f) > 1
2 , then

ϕ∗(f) = α `(f) + (1− α)u(f) by (1198)

= α `(f) + (1− α)`(f) by assumption

= α `(f) + `(f)− α`(f)
= `(f) .
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In the case that̀(f) = 1
2 , we directly obtain from (1198) thatϕ∗(f) = 1

2 = `(f).
Finally if `(f) < 1

2 , then in particularu(f) = `(f) < 1
2 and hence

ϕ∗(f) = αu(f) + (1− α)`(f) by (1198)

= α `(f) + (1− α)`(f) by assumption

= α `(f) + `(f)− α`(f)
= `(f) ,

as desired.

Lemma 201 Letf ∈ X be given and suppose thatf ′ ∈ X is defined by

f ′(z) = f(1− z) (1205)

for all z ∈ I. Then

a. `(f ′) = 1− u(f);

b. u(f ′) = 1− `(f).

Proof To see this, we first notice that

f ′(1) = f(0) , (1206)

f ′(0) = f(1) . (1207)

This is apparent from (1205). In addition, we observe that

f ′
−1((0, 1]) = {z : f ′(z) > 0} by definition of inverse images

= {z : f(1− z) > 0} by (1205)

= {1− z′ : f(z′) > 0} by substitutionz′ = 1− z
= {1− z : z ∈ {z′ : f(z′) > 0}} ,

and hence

f ′
−1((0, 1]) = {1− z : z ∈ f−1((0, 1])} . (1208)

This proves that

inf f ′−1((0, 1]) = inf{1− z : z ∈ f−1((0, 1])} = 1− sup f−1((0, 1]) (1209)

and

sup f ′−1((0, 1]) = sup{1− z : z ∈ f−1((0, 1])} = 1− inf f−1((0, 1]) (1210)

Finally

sup f̂ ′([0, 1)) = sup{f ′(z) : z ∈ [0, 1)} by Def. 15

= sup{f(z) : z ∈ (0, 1]} , by (1205)
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i.e.

sup f̂ ′([0, 1)) sup f̂((0, 1]) , (1211)

and similarly

sup f̂ ′((0, 1]) = sup{f ′(z) : z ∈ (0, 1]} by Def. 15

= sup{f(z) : z ∈ [0, 1)} , by (1205)

which shows that

sup f̂ ′((0, 1]) = sup f̂([0, 1)) . (1212)

We can now put the pieces together, and prove that parta. of the lemma is valid.
Firstly if f ′(1) = r+, then we know from (1206) thatf(0) = f ′(1) = r+ as well,
where I have abbreviatedr+ = r+f , noticing thatr+(f) = r+(f ′). Therefore

`(f ′) = max(inf f ′−1((0, 1]), 1− sup f̂ ′([0, 1))) by (1195)

= max(1− sup f−1((0, 1]), 1− sup f̂((0, 1])) by (1209), (1211)

= 1−min(sup f−1((0, 1]), sup f̂((0, 1])) by De Morgan’s law

= 1− u(f) . by (1196)

In the remaining case thatf ′(1) 6= r+, we again conclude fromf(0) = f ′(1) that
f(0) 6= r+ as well. Therefore

`(f ′) = max(inf f ′−1((0, 1]), f ′(1)) by (1195)

= max(1− sup f−1((0, 1]), f(0)) by (1206) and (1209)

= max(1− sup f−1((0, 1]), 1− (1− f(0))) because1− x involution

= 1−min(sup f−1((0, 1]), 1− f(0)) by De Morgan’s law

= 1− u(f) . by (1196)

This completes the proof of parta. of the lemma. As concerns partb., we proceed as
follows.

u(f ′) = 1− (1− u(f ′)) because1− x involution

= 1− `(f)

by parta. of the lemma, utilizing thatf(z) = f(1− (1− z)) = f ′(1− z) for all z ∈ I,
which is apparent from (1205).

Lemma 202 For all f ∈ X,

a. `(f‡) = `(f);

b. u(f‡) = u(f);

c. α(f‡) = α(f); and in particular

d. ϕ∗(f‡) = ϕ∗(f).
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Proof Consider somef ∈ X.

a.: `(f‡) = `(f).
We first notice from (1158) thatr+(f‡) = r+(f); in the following, I will hence
abbreviate both coefficients asr+. Recalling (1195), is then sufficient to show that

inf f‡−1((0, 1]) = inf f−1((0, 1]), sup f̂‡([0, 1)) = sup f̂([0, 1)), andf‡(1) = f(1).
As concernsinf f‡−1((0, 1]), we first recall thatf‡ ≥ f and hencef‡

−1((0, 1]) ⊇
f−1((0, 1]). Hence

inf f‡
−1

((0, 1]) ≤ inf f−1((0, 1]) . (1213)

Now let us consider the converse inequation. Letε > 0. Becausef‡(z+) = r+ > 0,

we know thatf‡
−1((0, 1]) 6= ∅. Hence there existsz′ ∈ I with

f‡(z′) > 0 (1214)

and

z′ < inf f‡
−1

((0, 1]) + ε . (1215)

It is apparent from (1158) that

sup{f(z) : z ≤ z′} ≥ f‡(z′) . (1216)

Recalling (1214), we can choose somer′ ∈ (0, f‡(z′)). By (1216), then, there exists
z′′ ∈ I with z′′ ≤ z′, i.e.

z′′ < inf f‡
−1

((0, 1]) + ε (1217)

by (1215); and with the additional property thatf(z′′) > r′, in particular

f(z′′) > 0 .

We hence know thatz′′ ∈ f−1((0, 1]). In turn by (1217),

inf f−1((0, 1]) ≤ z′′ < inf f‡
−1

((0, 1]) + ε . (1218)

ε→ 0 then proves thatinf f−1((0, 1]) ≤ z′′ ≤ inf f‡−1((0, 1]). Recalling (1213), we
have hence shown that indeed

inf f−1((0, 1]) = inf f‡
−1

((0, 1]) .

Now let us turn attention tosup f̂‡([0, 1)) vs.sup f̂([0, 1)). We first observe that

sup f̂‡([0, 1)) ≥ sup f̂([0, 1)) (1219)

becausef‡ ≥ f . Now let us show that the converse inequation is also valid. Hence let
ε > 0. Then there existsz0 ∈ [0, 1) with

f‡(z0) > sup f̂‡([0, 1))− ε
2 . (1220)
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By (1158), then, we know that

sup{f(z) : z ≤ z0} ≥ f‡(z0) .

In particular, there existsz1 ∈ [0, z0] with

f(z1) > sup{f(z) : z ≤ z0} − ε
2 ,

i.e.

f(z1) > sup f̂‡([0, 1))− ε

by (1220). Becausez1 ∈ [0, z0] ⊆ [0, 1), we conclude that

sup f̂([0, 1)) = sup{f(z) : z ∈ [0, 1)} ≥ f(z1) > sup f̂‡([0, 1))− ε .

Noticing thatε > 0 was arbitrarily chosen, this proves that in fact

sup f̂([0, 1)) ≥ sup f̂‡([0, 1)) .

Combining this with (1219), we hence obtain thatsup f̂([0, 1)) = sup f̂‡([0, 1)).
Now let us discussf‡(1) vs.f(1). In this case, we simply observe that

f‡(1) = sup{f(z) : z ≥ 1} by L-190 (1221)

= sup{f(1)} becausez ≤ 1 (1222)

= f(1) , (1223)

as desired. This finishes the proof that`(f‡) = `(f) becausè(•) only depends on the
coefficients discussed above, and these coefficients have been shown to be‡-invariant.

b.: u(f‡) = u(f).
To see this, suppose thatf ′, f ′′ ∈ X are defined by

f ′(z) = f(1− z) (1224)

f ′′(z) = f‡(1− z) (1225)

for all z ∈ I. Then

f ′
‡(z) = min(sup{f ′(z′) : z′ ≤ z},

sup{f ′(z′) : z′ ≥ z}) by (1158)

= min(sup{f(1− z′) : z′ ≤ z},
sup{f(1− z′) : z′ ≥ z}) by (1224)

= min(sup{f(z′′) : z′′ ≥ 1− z},
sup{f(z′′) : z′′ ≤ 1− z}) substitutingz′′ = 1− z′

= f‡(1− z) , by (1158)
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and hence

f ′
‡(z) = f ′′(z) (1226)

by (1225). Therefore

u(f‡) = 1− `(f ′′) by L-201 and (1225)

= 1− `(f ′‡) by (1226)

= 1− `(f ′) by parta. of the lemma

= u(f) . by L-201 and (1224)

c.: α(f‡) = α(f).
This is apparent from (1197) andr+(f‡) = r+(f). Henceα(f‡) = 2r+(f‡) − 1 =
2r+(f)− 1 = α(f), as desired.

d.: ϕ∗(f‡) = ϕ∗(f).
We already know from parta.–c. of the lemma that̀(f), u(f) andα(f) are‡-invariant.
Now ϕ∗ is a function of these coefficients, which is apparent from (1198). Henceϕ∗
is ‡-invariant as well, and indeedϕ∗(f‡) = ϕ∗(f).

Lemma 203 Letf, f ′ ∈ X be given and suppose thatf E f ′. Then

a. `(f) ≤ `(f ′);

b. u(f) ≤ u(f ′);

c. α(f) = α(f ′);

d. ϕ∗(f) ≤ ϕ∗(f ′).

Proof

a.: `(f) ≤ `(f ′).
I first show that

inf f−1((0, 1]) ≤ inf f ′−1((0, 1]) . (1227)

Hence letε > 0. Becausef ′−1((0, 1]) 6= ∅, there existsz′ ∈ I with z′ ∈ f ′−1((0, 1]),
i.e.

f ′(z′) > 0 (1228)

and

z′ < inf f ′−1((0, 1]) + ε . (1229)
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By (1172), there existsz ≤ z′ with f(z) ≥ f ′(z′). We then conclude from (1228) that
f(z) > 0 and hencez ∈ f−1((0, 1]). In addition, we conclude from (1229) that

z ≤ z′ < inf f ′−1((0, 1]) + ε

and hence

inf f−1((0, 1]) ≤ z < inf f ′−1((0, 1]) + ε ,

becausez ∈ f−1((0, 1]). ε→ 0 then proves the target inequation (1227).
I next prove that

sup f̂([0, 1)) ≥ sup f̂ ′([0, 1)) . (1230)

Hence letε > 0. Becausef̂ ′([0, 1)) 6= ∅, there existsr ∈ f̂ ′([0, 1)) with r >

sup f̂ ′([0, 1))− ε. In turn, we obtain from Def. 15 that there existsz′ ∈ [0, 1) with

f ′(z′) = r > sup f̂ ′([0, 1))− ε . (1231)

By (1172), then, there existsz ≤ z′ with f(z) ≥ f ′(z′). In particularz ∈ [0, 1) and
hencef(z) ∈ f̂([0, 1)). This proves that

sup f̂([0, 1)) ≥ f(z) ≥ f ′(z′) > sup f̂ ′([0, 1))− ε , (1232)

see (1231). The desired inequation (1230) is then obtained forε→ 0.
Let us further observe that

f(1) ≤ f ′(1) (1233)

This is apparent from (1171), which states the existence ofz′ ≥ 1 with f(1) ≤ f ′(z′).
But z′ is restricted to the unit rangez′ ∈ [0, 1]. Hence in factz′ = 1 and consequently
f(1) ≤ f ′(1), i.e. (1233) is satisfied.
Finally we recall from L-195 thatf v f ′. Hence L-188 is applicable, and

r+ = r+(f) = r+(f ′) . (1234)

Taking into account (1195), (1233) and (1234), it is now sufficient to consider the
following cases.
Firstly if f(1) < r+ andf ′(1) < r+,

`(f) = max(inf f−1((0, 1]), f(1)) by (1195)

≤ max(inf f ′−1((0, 1]), f ′(1)) by (1227) and (1233)

= `(f ′) . by (1195)

Secondly iff(1) < r+ andf ′(1) = r+, then

`(f) = max(inf f−1((0, 1]), f(1)) by (1195)

≤ max(inf f−1((0, 1]), 1
2 ) by Def. 95 becausef(1) 6= r+

≤ max(inf f ′−1((0, 1]), 1
2 ) by (1227)

≤ max(inf f ′−1((0, 1]), 1− sup f̂ ′([0, 1))) ,
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where the last step is apparent from Def. 95, becausef ′(1) = r+ and hencef ′(z) ≤
1− r+ for all z 6= 1. From this, we obtain that̀(f) ≤ `(f ′), which is immediate from
f ′(1) = r+ and (1195).
Finally if f(1) = r+ andf ′(1) = r+, then

`(f) = max(inf f−1((0, 1]), 1− sup f̂([0, 1))) by (1195)

≤ max(inf f ′−1((0, 1]), 1− sup f̂ ′([0, 1))) by (1227) and (1230)

= `(f ′) . by (1195)

This completes the proof of parta., i.e.f E f ′ entails that̀ (f) ≤ `(f ′), as desired.

b.: u(f) ≤ u(f ′).
To see this, definef1, f

′
1 ∈ X by f1(z) = f(1−z) andf ′1(z) = f ′(1−z) for all z ∈ I.

It is then apparent fromf E f ′ that

f ′1 E f1 . (1235)

Therefore

u(f) = 1− `(f1) by L-201

≤ 1− `(f ′1) by parta. of the lemma

= u(f ′) , by L-201

as desired.

c.: α(f) = α(f ′).
To this end, we simply notice that

α(f) = 2r+(f)− 1 by (1197)

= 2r+(f ′)− 1 by (1234)

= α(f ′) . by (1197)

d.: ϕ∗(f) ≤ ϕ∗(f ′).
We know from the previous parts of the lemma and L-199 that`(f) ≤ `(f ′) ≤ u(f ′)
and`(f) ≤ u(f) ≤ u(f ′). In addition, we know thatα(f) = α(f ′); this coefficient
will hence be abbreviated asα. Due to the above inequations, it is sufficient to discern
the following cases.
If `(f) > 1

2 , then`(f ′) > 1
2 as well and hence

ϕ∗(f) = α `(f) + (1− α)u(f) by (1198)

≤ α `(f ′) + (1− α)u(f ′) by partsa., b. of the lemma

= ϕ∗(f ′) . by (1198)
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If u(f ′) ≥ 1
2 and`(f) ≤ 1

2 , thenϕ∗(f) ≤ 1
2 ≤ ϕ∗(f

′), which is clear from (1198).
Finally if u(f ′) < 1

2 , thenu(f) < 1
2 as well. Hence

ϕ∗(f) = αu(f) + (1− α)`(f) by (1198)

≤ αu(f ′) + (1− α)`(f ′) by partsa., b. of the lemma

= ϕ∗(f ′) . by (1198)

Lemma 204 Suppose thatϕ : X −→ I is ‡-invariant and monotonic with respect to
E, i.e.

ϕ(f‡) = ϕ(f) (1236)

for all f ∈ X, and

ϕ(f) ≤ ϕ(f ′) (1237)

wheneverf E f ′. Thenϕ satisfies(ϕ-4).

Proof Hence letf, f ′ ∈ X with f v f ′ be given. We then know from L-194 that

f‡ E f ′
‡
. (1238)

This proves the desired

ϕ(f) = ϕ(f‡) by (1236)

≤ ϕ(f ′‡) by (1238) and (1237)

= ϕ(f ′) . by (1236)

Lemma 205 The condition(ϕ-5) is independent of(ϕ-1)–(ϕ-4).

Proof In order to prove this, I show thatϕ∗ : X −→ I as defined by (1198) satisfies
(ϕ-1)–(ϕ-4) and fails on (ϕ-5).

a.: ϕ∗ satisfies (ϕ-1).
Hence considerf ∈ X with f−1((0, 1]) = {z+} andf(z+) = 1. Then in particular

inf f−1((0, 1]) = sup f−1((0, 1]) = z+ . (1239)

In the case thatz+ = 0, we know from L-197.a that

`(f) = f(1) = 0 . (1240)
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In addition,f(z) = 0 for all z > 0 entails thatsup f−1((0, 1]) = sup∅ = 0 and
sup f̂((0, 1]) = sup{0} = 0. Therefore

u(f) = min(sup f−1((0, 1]), sup f̂((0, 1])) = min(0, 0) = 0 (1241)

by (1196). In turn

ϕ∗(f) = αu(f) + (1− α)`(f) by (1198)

= α · 0 + (1− α) · 0 by (1240), (1241) = 0
= z+ .

In the case thatz+ = 1, we know from Def. 95 andr+ = 1 that f(z) = 0 for all
z ∈ [0, 1). Thereforef−1((0, 1]) = {1} and

inf f−1((0, 1]) = 1 .

In addition

sup f̂ [0, 1) = sup{0} = 0 .

We conclude that

`(f) = max(inf f−1((0, 1]), 1− sup f̂ [0, 1)) = max(1, 1) = 1 (1242)

by (1195). As concernsu(f), we obtain from L-198.a that

u(f) = 1− f(0) = 1− 0 = 1 . (1243)

Hence in this case,

ϕ∗(f) = α `(f) + (1− α)u(f) by (1198)

= α · 1 + (1− α) · 1 by (1242), (1243)

= 1
= z+ .

In the remaining case thatz+ ∈ (0, 1), we conclude from Def. 95 andr+ = 1 that
f(0) = 0 andf(1) = 0. Hence by L-197.c and (1239),

`(f) = inf f−1((0, 1]) = z+ .

We further obtain from L-198.c and (1239) that

`(f) = sup f−1((0, 1]) = z+ .

We can then apply lemma L-200 and conclude thatϕ∗(f) = `(f) = z+.
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b.: ϕ∗ satisfies (ϕ-2).
Hence letf ∈ X and suppose thatf ′ ∈ X is defined byf ′(z) = f(1− z) for all z ∈ I.
Then apparentlyr+(f ′) = r+(f). In particular,α(f ′) = α(f), see (1197). In the
following, I will hence abbreviateα = α(f) = α(f ′).
Now suppose that̀(f ′) > 1

2 . We then know from L-201.b thatu(f) = 1− `(f ′) < 1
2 .

Therefore

ϕ∗(f ′) = α `(f ′) + (1− α)u(f ′) by (1198)

= α(1− u(f)) + (1− α)(1− `(f)) by L-201

= α− αu(f) + (1− α)− (1− α)`(f)
= 1− (αu(f) + (1− α)`(f))
= 1− ϕ∗(f) . by (1198)

Now suppose thatu(f ′) < 1
2 . We then know from L-201.a that`(f) = 1−u(f ′) > 1

2 .
Therefore

ϕ∗(f ′) = αu(f ′) + (1− α)`(f ′) by (1198)

= α(1− `(f)) + (1− α)(1− u(f)) by L-201

= α− α`(f) + (1− α)− (1− α)u(f)
= 1− (α`(f) + (1− α)u(f))
= 1− ϕ∗(f) . by (1198)

In the remaining case that`(f ′) ≤ 1
2 ≤ u(f ′), we know from L-201 that̀ (f) =

1− u(f ′) ≤ 1
2 ≤ 1− `(f ′) = u(f) as well. Henceϕ∗(f ′) = 1

2 = 1− 1
2 = 1−ϕ∗(f)

by (1198).

c.: ϕ∗ satisfies (ϕ-3).
To see this, considerf ∈ X with f−1((0, 1]) ⊆ {0, 1} andf(1) ≥ 1

2 . Hencef(1) =
r+ and1 ∈ f−1((0, 1]). In the following I discern two main cases.
If f(0) = 0, thenf−1((0, 1]) = {1}. In particular

inf f−1((0, 1]) = sup f−1((0, 1]) = 1 . (1244)

In addition,f−1((0, 1]) = {1} means thatf(z) = 0 for all z < 1. Hence

sup f̂([0, 1)) = sup{0} = 0 . (1245)

It therefore holds that

`(f) = max(inf f−1((0, 1]), 1− sup f̂([0, 1))) by (1195)

= max(1, 1− 0) by (1244), (1245)

= 1

and

u(f) = sup f−1((0, 1]) by L-198.c

= 1 . by (1244)
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By applying L-200, we obtain the desiredϕ∗(f) = 1 = 1− 0 = 1− f(0).
Next we consider the case thatf(0) > 0. Thenf−1((0, 1]) = {0, 1}, i.e.

inf f−1((0, 1]) = 0 (1246)

sup f−1((0, 1]) = 1 . (1247)

Recalling thatf(z) = 0 for all z ∈ (0, 1) by assumption, it is further apparent that

sup f̂([0, 1)) = sup{f(0), 0} = f(0) . (1248)

Therefore

`(f) = 1− sup f̂([0, 1)) by L-197.b

= 1− f(0) by (1248)

As concernsu(f), we observe thatu(f) = 1− f(0) by L-198.a, provided thatf(0) 6=
r+. If on the other andf(0) = r+, then we know from Def. 95 and the assumption
thatf(1) = r+ that indeedr+ = 1

2 . Recalling thatf(z) = 0 for all z ∈ (0, 1), we then
obtain that

sup f̂((0, 1]) = sup{f(1), 0} = f(1) = r+ . (1249)

Therefore

u(f) = sup f̂((0, 1]) by L-198.b

= r+ by (1249)

= 1− r+ becauser+ = 1
2

= 1− f(0) .

This completes the proof thatu(f) = 1−f(0) regardless off(0). Recalling the above
result that`(f) = 1 − f(0) as well, we can hence apply L-200 and conclude that
ϕ∗(f) = 1− f(0). This proves thatϕ∗ indeed satisfies (ϕ-3).

d.: ϕ∗ satisfies (ϕ-4).
This is apparent from the above lemmata: L-202 states thatϕ∗ is •‡-invariant, and L-
203 states thatϕ∗ is monotonic with respect toE. Hence lemma L-204 is applicable,
and we conclude thatϕ∗ satisfies (ϕ-4).

e.: ϕ∗ violates (ϕ-5).
To see this, considerf ∈ X defined by

f(z) =


3
4 : z = 4

5
1
4 : z ∈ { 3

5 , 1}
0 : else

(1250)

for all z ∈ I. Then clearly

f−1((0, 1]) = { 3
5 ,

4
5 , 1} . (1251)
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Therefore

`(f) = inf f−1((0, 1]) = 3
5 (1252)

by L-197.c and (1251). In addition

u(f) = sup f−1((0, 1]) = 1 (1253)

by L-198.c and (1251). Let us further notice from (1250) thatr+ = r+(f) = 3
4 and

henceα = α(f) = 1
2 by (1197). Becausè(f) = 3

5 >
1
2 , we then obtain from (1198)

that

ϕ∗(f) = α `(f) + (1− α)u(f) = 1
2 ·

3
5 + 1

2 · 1 = 3
10 + 1

2 = 4
5 . (1254)

Now considerf ′ ∈ X defined by

f ′(z) = min(f(z), 1
2 )

for all z ∈ I, i.e.

f ′(z) =


1
2 : z = 4

5
1
4 : z ∈ { 3

5 , 1}
0 : else

(1255)

by (1250). We observe that again

f ′
−1((0, 1]) = { 3

5 ,
4
5 , 1} .

Becausef ′(1) = 0, we hence obtain from L-197.c that

`(f ′) = inf f ′−1((0, 1]) = 3
5 . (1256)

We further obtain from L-198 tha

u(f ′) = sup f ′−1((0, 1]) = 1 . (1257)

Let us now notice from (1255) thatr+(f ′) = 1
2 . Henceα′ = α(f ′) = 0 by (1197),

and consequently

ϕ∗(f ′) = α′ `(f ′) + (1− α′)u(f ′) = u(f ′) = 1 (1258)

by (1198), (1256), (1257) and recalling thatα′ = 0. To sum up, equations (1254) and
(1258) prove thatϕ∗(f ′) = 1 6= 4

5 = ϕ∗(f) althoughf ′(z) = min(f(z), 1
2 ) for all

z ∈ I. Hence condition (ϕ-5) is not valid in the case ofϕ∗. Because all other ‘ϕ-
conditions’ are satisfied byϕ∗, this completes the proof that condition (ϕ-5) is indeed
independent of the remaining conditions.
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Proof of Theorem 129

We know from Th-121 that (ψ-1), (ψ-2), (ψ-3) and (ψ-4) are independent of the
remaining ‘ψ-conditions’ of (ψ-1)–(ψ-5). Hence there existψj : A −→ I, j ∈
{1, 2, 3, 4}, which violate condition (ψ-j) and satisfy all conditions (ψ-k), wherek ∈
{1, 2, 3, 4, 5} \ {j}. In particular, everyψj satisfies (ψ-5). Let us now defineϕj :
X −→ I relative toψj according to (88). We then know from L-185 and Th-126 that
everyϕj , j ∈ {1, 2, 3, 4}, violates condition (ϕ-j) and satisfies all other conditions
(ϕ-k), wherek ∈ {1, 2, 3, 4, 5} \ {j}. This proves that (ϕ-1), (ϕ-2), (ϕ-3), and (ϕ-4)
are each independent of the other conditions in (ϕ-1)–(ϕ-5).
It remains to be shown that (ϕ-5) is independent of (ϕ-1)–(ϕ-4). This condition has
been treated separately, and I simply refer to L-205.

B.39 Proof of Theorem 130

Lemma 206 LetE 6= ∅ be given,X ∈ P̃(E) andY ∈ P(E). Then for alle ∈ E,

θ(µX(e), χY (e)) = min(2 δX,Y (e), 1) .

Proof Considerx ∈ I andy ∈ {0, 1}.

• If y = 1 andx ≤ 1
2 , then2x ≤ 1 and hencemin(2x, 1) = 2x = θ(x, y);

• If y = 1 andx > 1
2 , then2x > 1 and hencemin(2x, 1) = 1 = θ(x, y);

• If y = 0 andx < 1
2 , then2− 2x > 1 and hencemin(2− 2x, 1) = 1 = θ(x, y);

• If y = 0 andx ≥ 1
2 , then2 − 2x ≤ 1 and hencemin(2 − 2x, 1) = 2 − 2x =

θ(x, y).

Combining these cases, this proves that

θ(x, y) =
{

min(2x, 1) : y = 1
min(2− 2x, 1) : y = 0 (1259)

for all x ∈ I andy ∈ {0, 1}. Now consider a choice ofE 6= ∅,X ∈ P̃(E), Y ∈ P(E)
ande ∈ E. Then

θ(µX(e), χY (e))

=
{

min(2µX(e), 1) : χY (e) = 1
min(2− 2µX(e), 1) : χY (e) = 0 by (1259)

=
{

min(2µX(e), 1) : e ∈ Y
min(2(1− µX(e)), 1) : e /∈ Y by (1)

= min(2 δX,Y (e), 1) , by (60)

as desired.

Lemma 207 LetE 6= ∅, X ∈ P̃(E) andY ∈ P(E) be given. ThenΘ(X, Y ) =
min(2 ΞX(Y ), 1).

405



Proof Straightforward:

Θ(X, Y ) = inf{θ(µX(e), χY (e)) : e ∈ E} by Def. 100

= inf{min(2 δX,Y (e), 1) : e ∈ E} by L-206

= min(2 inf{δX,Y (e) : e ∈ E}, 1) (apparent)

= min(2ΞX(Y ), 1) . by Def. 83

Lemma 208 Let E 6= ∅ be given,n ∈ N and consider a choice ofX1, . . . , Xn ∈
P̃(E), Y1, . . . , Yn ∈ P(E). Then

n
min
i=1

Θ(Xi, Yi) = min(2ΞY1,...,Yn(X1, . . . , Xn), 1) .

Proof Trivial consequence of the previous lemma.

n
min
i=1

Θ(Xi, Yi)

=
n

min
i=1

min(2 ΞYi(Xi), 1) by L-207

= min(2 ·
n

min
i=1

ΞYi(Xi), 1) (apparent)

= min(2 ΞY1,...,Yn(X1, . . . , Xn), 1) . by Def. 83

Lemma 209 Let Q : P(E)n −→ I be a semi-fuzzy quantifier andX1, . . . , Xn ∈
P̃(E) a choice of fuzzy arguments. Then for allz ∈ I,

Q̃z(X1, . . . , Xn) = min(2fQ,X1,...,Xn(z), 1) .

Proof Apparent from a simple computation.

Q̃z(X1, . . . , Xn)

= sup{
n

min
i=1

Θ(Xi, Yi) : (Y1, . . . , Yn) ∈ Q−1(z)} by Def. 101

= sup{min(2ΞY1,...,Yn(X1, . . . , Xn), 1) :

(Y1, . . . , Yn) ∈ Q−1(z)} by L-208

= min(2 sup{ΞY1,...,Yn(X1, . . . , Xn) :

(Y1, . . . , Yn) ∈ Q−1(z)}, 1) (obvious)

= min(2 fQ,X1,...,Xn(z), 1) . by Def. 94
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Proof of Theorem 130

Let a QFMF be given and suppose that conditiona. is satisfied. Hence there exists
ϕ : X −→ I with F = Fϕ, which satisfies (ϕ-5). For a givenQ : P(E)n −→ I and
X1, . . . , Xn ∈ P̃(E), let us abbreviate

f ′(z) = min(fQ,X1,...,Xn(z), 1
2 ) (1260)

for all z ∈ I. We then know from (ϕ-5) and Def. 96 thatFϕ(Q)(X1, . . . , Xn) =
ϕ(fQ,X1,...,Xn) = ϕ(f ′). Noticing that

f ′(z) = 1
2 min(2 fQ,X1,...,Xn(z), 1) = 1

2 Q̃z(X1, . . . , Xn) ,

this completes the proof thatFψ can be defined in terms of̃Qz.
Now consider the converse situation thatF can be defined in terms of̃Qz. Hence there
exists a mappingG : II −→ I such that

F(Q)(X1, . . . , Xn) = G((Q̃z(X1, . . . , Xn))z∈I) (1261)

for all semi-fuzzy quantifiersQ : P(E)n −→ I and choices of fuzzy arguments
X1, . . . , Xn ∈ P̃(E). In order to see thatF is anFϕ-QFM based on a choice of
ϕ which satisfies (ϕ-5), we now defineϕ : X −→ I by

ϕ(f) = G(min(2f, 1)) , (1262)

for all f ∈ X. Now consider a choice ofQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E).
Then

Fϕ(Q)(X1, . . . , Xn) = ϕ(fQ,X1,...,Xn) by Def. 96

= G(min(2fQ,X1,...,Xn , 1)) by (1262)

= G((Q̃z(X1, . . . , Xn))z∈I) by L-209

= F(Q)(X1, . . . , Xn) . by (1261)

HenceF is indeed anFϕ-QFM. It remains to be shown that (ϕ-5) is satisfied. Hence
let f ∈ X be given. Then

ϕ(min(f, 1
2 )) = G(min(2(min(f, 1

2 ), 1))) by (1262)

= G(2 min(f, 1
2 )) becausemin(f, 1

2 ) ≤ 1
2

= G(min(2f, 1)) (apparent)

= ϕ(f) . by (1262)

Henceϕ indeed satisfies (ϕ-5), as desired.
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