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Abstract

Quantifiers are at the heart of human language. A formalization of natural language
(NL) quantification and its subsequent computer implementation promises to enhance
a broad range of applications including NL interfaces, linguistic data summarisation,
multi-criteria decision making, database querying and others. However, the software
implementations available for NL quantifiers will remain insufficient and linguistically
implausible unless the inherent fuzziness of natural language is explicitly modelled. In
order to remedy this situation and to provide better support for applications that need
fuzzy quantifiers, the report presents an in-depth discussion of the standard models of
fuzzy quantification, which best comply with our linguistic expectations. After review-
ing the known classes of models that have already been identified in previous work on
the axiomatic theory of fuzzy quantification (DFS theory), it introduces a novel class of
models which embeds all of the previous classes. Two independent constructions are
developed and thoroughly investigated which both establish the target class of models,
and hence provide a justification of the resulting class from two perspectives:

e as an extension of the known class Bf-DFSes, it represents the full class
of models definable in terms of three-valued cuts. This style of presentation
lends itself to the development of algorithms which implement quantifiers in the
models;

e as an abstraction of the models G* and G, proposed in [7], which were in-
spired by the fuzzification mechanism proposed by Gaines, it captures the class
of models definable in terms of the extension principle, and hence links the anal-
ysis of fuzzy quantification to the fundamental principle underlying fuzzy set
theory.

The report also describes some typical examples of the new models. In addition, it
presents the exact conditions required to check if a model of interest obeys the ade-
quacy properties discovered by DFS theory. The report hence reaches an important
milestone in the superordinate endeavour of providing a solid theoretical foundation
for the use of fuzzy quantifiers in applications.






1 The axiomatics of fuzzy quantification

Natural language (NL) is pervaded by fuzzy conceptstédeor rich which lack clear
boundaries. The fuzziness of language is not restricted to its concepts, though. Ap-
proximate quantifiers likalmost allor manyare very frequently used, and serve the
important purpose of abstracting from details, and summarising a large number of ob-
servations into a total view of the given situation. In order to make this expressive
power available to machines and enable computer programs to handle this important
aspect of natural language, the problem must be solved of how to assign a reasonable
interpretation to quantifying natural language expressions, which might involve fuzzi-
ness both in the quantifier and its arguments.

Following Zadeh’s pioneering ideas [23], a number of approaches have been developed
to model approximate quantification with fuzzily defined concepts in the framework of
fuzzy set theory [24, 15, 19, 20]. However, it was soon recognized that the resulting
interpretations can be counter-intuitive [1, 15, 21]. A systematic investigation of the
traditional approaches according to linguistic criteria produced negative findings in all
cases [8].

DFS theory [7, 9] is an attempt to solve the puzzles of fuzzy quantification by em-
barking on an axiomatic solution. The basic idea is that linguistically plausible results
can only be guaranteed if we succeed (a) to formalize the relevant aspects of linguistic
adequacy, and (b) to develop computational models of the resulting axiom system. The
natural starting point for putting this venture into action was consideretintaistic

theory of natural language quantification, viz the Theory of Generalized Quantifiers
(TGQ), see e.g. [2, 3, 4]. DFS theory adopts the notion of a two-valued generalized
quantifier developed by TGQ, which is then extended to the key concepts of semi-
fuzzy quantifiers and fuzzy quantifiers. Fuzzy quantifiers form the class of operators
for approximate quantification with fuzzy arguments. However, these operators are too
complex to be defined directly. DFS theory hence proposes an intermediate layer of
semi-fuzzy quantifiers, which provide a more compact description of a fuzzy quanti-
fying operator. Semi-fuzzy quantifiers are able to represent approximate quantification
but avoid the intricacies caused by fuzziness in a quantifier’'s arguments. This makes
it possible to define semi-fuzzy quantifiers conveniently in terms of the familiar cardi-
nality of crisp sets (which is not of direct use for defining fuzzy quantifiers that accept
fuzzy argument sets). Introducing semi-fuzzy quantifiers therefore greatly facilitates
the modelling of NL base quantifiers, i.e. of non-composite quantifieraigeyand

a few which cannot be reduced to combinations of other known quantifiers. The map-
ping from simplified descriptions, i.e. semi-fuzzy quantifiers, to corresponding fuzzy
qguantifiers is established through a quantifier fuzzification mechanism (QFM). DFS
theory approaches the problem of reasonable interpretation by imposing formal condi-
tions on admissable choices of QFMs. These conditions ensure that the essential prop-
erties of quantifiers and their relationships are preserved when applying the fuzzifica-
tion mechanism. They can be likened to the well-known concept of a homomorphism
(a structure preserving mapping compatible with a number of given constructions).

In the following | sketch the core of DFS theory. The exposition is intended to give

a rough overview and to introduce all concepts required for the theorems and proofs
to follow. Most of the material has been compiled from [11]. A more thorough intro-



duction and motivating examples of the constructions or axioms can be found in the
primary sources on DFS theory: the original presentation is [7]. The current termi-

nology and a simplified axiom system have been introduced in [9]. Further sources
of interest are [11], which develops a broad class of standard models, and [10], which
summarizes the current state of DFS theory.

In order to introduce DFS theory, we first define two-valued generalized quantifiers in

accordance with TGQ:

Definition 1 An n-ary two-valued quantifieis a mapping@ : P(E)" — 2, where
E # @is anonempy set (the base set or domai()) is the powerset (set of subsets)
of E, n € Nis the arity (number of arguments), agd= {0, 1} denotes the set of two-

valued truth values.

A two-valued quantifier hence assigns a crisp interpretaf)éi,...,Y,,) € 2 to
each choice of crisp argumerits, ..., Y,, € P(F). We allow for the case of nullary
guantifiers £ = 0), which can be identified with the constaftand1. Some examples
of two-place quantifiers are

alg(Y1,Y2) =1, CYs
someg(YV1,Yo)=1Y1NY, £ 0
nog(¥V1,Y2)=1e¥iNY, =0

atleastk g(Y1,Y2) =1< |[Y1NYs| > k
more thank g(Y1,Y2)=1< Y1 NYs| >k

for all Y1,Y, € P(E); |e| denotes cardinality. The subscriptis dropped when the
base sef is understood. In order to cover the approximate variety of NL quantifiers
(e.g.about 10 and to be able to apply these quantifiers to argumentsdikendrich,

we need to enhance this concept of quantifiers and incorporate ideas from fuzzy set
theory. Afuzzy subseX of a given sefr assigns to each element E a membership
gradeux(e) € I, wherel = [0,1] is the unit interval. A fuzzy subset is uniquely
characterised by its membership functipg : £ — I. For example, a fuzzy subset

tall of a setE' of people can be defined by stipulating a membership grage(e)

for each persom € E. We shall denote the fuzzy powerset, i.e. the collection of all
fuzzy subsets oF, by P(E). It is convenient to assume thB( E) is an ordinary set.

In particular, crisp subsets will be viewed as a special case of fuzzy subsets, and it is
understood thaP(E) C P(E).! We are now ready to introduce fuzzy quantifiers:

Definition 2 An n-ary fuzzy quantifieron a base seff # @ is a mapping@ :
n

P(E) — 1

A fuzzy quantifier hence assigns to eactuple of fuzzy argument sefs,, ..., X, €
P(E) an interpretation(X1,...,X,) € I, which is allowed to be gradual. As

INote that this subsumption relationship does not hold if one identifies fuzzy subsets and their member-
ship functions, i.e. if one stipulates thﬁ(E) = I, whereIZ denotes the set of mappings: E — 1.
| assume that the appropriate transformations (e.g. from a crisp sdibSef’ to its characteristic function
xa € 2% C 1F) are carried out and for the sake of readability, these will be omitted in the notation.



opposed to two-valued quantifiers, fuzzy quantifiers accept fuzzy input (we could
e.g. haveX; =tall, X, =rich € P(E)). In addition, fuzzy quantifiers produce fuzzy
(gradual) output, thus providing a more natural account of approximate quantifiers like
about ten , almost all , many etc. However, fuzzy quantifiers pose a new problem.
Consider the expressianore than 10 percenfor example. Given a finite base g8t

we can easily define a corresponding two-valued quantifime than 10 percent

P(E)*> — 2, viz

1 @ [YinYs| > v)/10

more than 10 percent (Y7,Y3) = { 0 . else

for all Y1,Y, € P(E), utilizing the cardinality|e| of crisp sets. However, it is not
that easy to provide a straightforward definition of a corresponding fuzzy quantifier

more than 10 percent : 73(E)2 — I. This is becaus&;, X5 in

more than 10 percent (X1, X5)

are fuzzy subset¥|, X, € 75(E). The familiar cardinality of crisp sets is not applica-

ble to the fuzzy arguments, and it hence cannot be used to define the fuzzy quantifier.
There is no generally accepted notion of cardinality of fuzzy sets which could serve as
a substitute folte| in the fuzzy case. In order to overcome this problem, DFS theory
introduces the intermediary concept of semi-fuzzy quantifiers.

Definition 3 Ann-ary semi-fuzzy quantifieon a base sef # & is a mappingQ :
PE)" — 1.

@ hence assigns to eachtuple of crisp subset¥, ..., Y, € P(E) a gradual inter-
pretationQ(Y1,...,Y,) € L. Semi-fuzzy quantifiers share the expressiveness of fuzzy
quantifiers because they support fuzzy (gradual) quantification results. Like fuzzy
guantifiers, they are hence suited to model approximate quantification. On the other
hand, semi-fuzzy quantifiers are defined for crisp arguments only, thus alleviating the
need to provide a definition for arbitrary fuzzy arguments, which made it so hard to de-
fine fuzzy quantifiers and to justify a particular choice of their definition. Every semi-
fuzzy quantifier depends on crisp arguments only and can conveniently be defined in
terms of the crisp cardinality of its arguments and their Boolean combinations. In par-
ticular, every two-valued quantifier (like the above choicenofe than 10 percent )

is a semi-fuzzy quantifier by definition.

Because of these benefits, semi-fuzzy quantifiers are considered a suitable base rep-
resentation for NL quantifiers, sufficiently expressive to capture all quantifiers in the
sense of TGQ as well as approximate quantifiers, and still sufficiently simple to allow
for a straightforward definition. But of course, semi-fuzzy quantifiers cannot be ap-
plied to fuzzy arguments likeall or rich. | hence suggest the use of a mechanism
which accepts a description of the target quantifier, stated as a semi-fuzzy quantifier,
and returns a corresponding fuzzy quantifier which properly generalises the semi-fuzzy
quantifier to the case of fuzzy arguments.



Definition 4 A quantifier fuzzification mechanisf@QFM) F assigns to each semi-
fuzzy quantifie®) : P(E)" — Iacorresponding fuzzy quantifigi(Q) : P(E) —
I of the same arity: € N and on the same base g&t

There is an underlying assumption here, which | presupposed when introducing semi-
fuzzy quantifiers and quantifier fuzzification mechanisms. In fact, the QFM frame-
work can only be successully applied to model natural language quantification if the
considered NL quantifiers indeed permit a reduction to the simplified representation
format provided by semi-fuzzy quantifiers. Anticipating the construction of underly-
ing semi-fuzzy quantifier& (@) (defined below in Def. 5), which simply restricts the
fuzzy quantifier@ to crisp arguments, we can then express the followmantification
framework assumptiothat must be fulfilled:

Quantification framework assumption (QFA):

If two base quantifiers of interest (i.e. NL quantifiers to be defined directly)
have distinct mterpretaﬂoné} # Q' as fuzzy quantifiers, then they are
already distinct on crisp arguments, i%&(Q) # U(Q’).

This condition ensures the applicability of the QFM framework because we can then
represent), Q' by Q = U(Q) and@Q’ = U(Q’), without compromising the existence

of a QFM F which takesQ to Q = F(Q) andQ’ to Q' = F(Q'). If the QFA is
violated byQ and Q’, however, then it is impossible for any QFM to separate the
quantifiers, becaugé(Q) = U(Q’) entails that the same interpretatidi{/(Q)) =
F(U(Q)) is assigned to both quantifiers. This fundamental assumption underlying
the quantification framework makes so elementary a requirement, that it is hard to
conceive how it could be violated in human language. In the following, | will hence
assume that the QFA holds, because it does not seem to exclude any phenomena of
interest, and also because the QFA is justified from the current linguistic standpoint
(the linguistic theory of quantification, TGQ, silently makes the same assumption by
restriction attention to two-valued arguments only).

The above definition of ‘raw’, totally unrestricted QFMs must now be taylored to a
class of ‘reasonable’ fuzzification mechanisms. We expect a fuzzification mechanism
to be ‘systematic’ or ‘well-behaved’ and in conformance to linguistic considerations.
In the following, | introduce the set of criteria adopted by DFS theory. For a more
comprehensive treatment and motivation, see [9].

Perhaps the most elementary condition on a fuzzification mechanism is that it properly
generalizes the original semi-fuzzy quantifier. We can express this succintly if we
introduce the following notion of underlying semi-fuzzy quantifiers.

Definition 5 Let Q) : P(E)" — 1 be a fuzzy quantifier. Thenderlying semi-fuzzy
quantifier/ (Q) : P(E)" — TLis defined by

UQR)Yr,....Yn) =Q(Y1,....Y,),

for all n-tuples ofcrispsubsetss, ..., Y, € P(E).



It is natural to require tha/(F(Q)) = Q, i.e. F(Q) properly generalize§) in the
sense thaF (Q)(Y1,...,Y,) = Q(Y1,...,Y,) when all arguments are crisp.

Another adequacy constraint is based on the relationship of crisp and fuzzy member-
ship assessments with quantification. We make this relationship explicit through the
following definitions of projection quantifiers:

Definition 6 SupposeF is a base set and € E. The projection quantifierr, :
P(E) — 2is defined by

me(Y) = xv(e),
whereyy : E — 2 is the characteristic function df € P(FE), thus

XY(B)—{(l) ' ee @

For example, we can use the crisp projection quantifigr,, to evaluate crisp mem-
bership assessments like John married? which can be evaluated by computing
Tonn(Married ), wheremarried € P(E) is the crisp subset of married people in
E. A corresponding definition of fuzzy projection quantifiers is straightforward.

Definition 7 Let a base sety be given anct € E. Thefuzzy projection quantifier
7. : P(E) — 1is defined by

7e(X) = px(e)
forall X € P(E).

For example, we can evaluatg,,, (tall ) to assess the grade to which John is tall,
and we can computy.n, (rich ) to determingy.p, (John), the degree to which John

is rich. Because crisp and fuzzy projection quantifiers play the same role, viz. that
of crisp/fuzzy membership assessment, we expect a reasonable choice af Q&M
recognize this relationship and map each crisp projection quantifiéo the corre-
sponding fuzzy projection quantifier, i&., = F ().

We can also evaluate a QFM from the perspective of propositional fuzzy logic.
By a canonical construction, every QFM also gives rise to induced fuzzy truth func-
tions, i.e. to a unique choice of fuzzy conjunction, disjunction etc. In order to es-
tablish this link between logical connectives and quantifiers, we first observe that
2" =~ P({1, ..., n}), using the bijectiom : 2" — P ({1, ..., n}) defined by

n(xy,...,zn) ={ke{l, ...,n}:ap =1},
forall z,...,z, € 2. We can use an analogous construction in the fuzzy case. We
then havd™ = P({1, ..., n}), based on the bijectiofy : I" — P({1, ..., n})
defined by

/“L?](Il,...,a:7l)(k) =Tk,



for all z1,...,2, € Tandk € {1, ..., n}. These bijections can be utilized for a
translation between semi-fuzzy truth functiohs 2" — I and corresponding semi-
fuzzy quantifiers) s : P({1, ..., n}) — I, and similarly the translation from fuzzy

quantifiersq : ﬁ({l, ..., n}) — Iinto fuzzy truth functions : I" — L.

Definition 8 Let a QFMJ and a mapping (‘semi-fuzzy truth functiorf): 2" — 1
of arity n > 0 be given. The semi-fuzzy quantif@y : P({1, ..., n}) — Iis
defined by

Qs (Y) = f(n~(Y))

forall Y € P({1, ..., n}). Theinduced fuzzy truth functio(f) : I" — I is
defined by

F(N(@rs.osen) = F(Qp) (21, -, 2n)) s

forall z1,...,2, € L If f: 2° — Tis a nullary semi-fuzzy truth function (i.e.,
a constant), we shall defing(f) : I° — I by F(f)(@) = F(c)(2), wherec :
P({2})" — Iis the constant(2) = f(2).23

We shall not impose restrictions on the induced connectives directly; these will be
entailed by the remaining axioms. _ _

Induced operations on fuzzy sets like fuzzy complenientP(E) — P(E), fuzzy
intersectionN : 75(E)2 — P(E) and fuzzy unionJ : 75(E)2 — P(E), can

be defined element-wise in terms of the induced negationl — I, conjunction

A : IxI — T or disjunctionV : IxI — I, respectively. For example, the induced
complement: X € P(FE) of X € P(E) is defined by

p=x(e) = = px(e),

forall X € P(E) ande € E.
Based on the induced fuzzy negation and complement, we can express important con-
structions on quantifiers like negation, formation of antonyms, and dualisation.

Definition 9 The external negatior-Q : P(E)" — I of a semi-fuzzy quantifier
Q : P(E)" — Tis defined by

(:'Q)(Ylw--;}/n) = :‘(Q(Yh---,}/n))7

forall Yi,...,Y, € P(E). The definition o Q : P(E)" — T in the case of fuzzy
guantifiersQ : P(E)n — T is analogous.

2The special treatment of nullary truth functions is necessary to avoid the e of P(0) — 1,
which is not a semi-fuzzy quantifier because the base set is empty. More information on the construction of
induced fuzzy truth functions may be found in [9].

3To facilitate understanding?({2})° = {f|f : @ — P({@})} = {2}, i.e. '@ in ¢(&) andf ()
denotes the empty tuple.



For exampleno is the negation cfome .*

n

Definition 10 Let a semi-fuzzy quantifi€p : P(F)
Theantonym@Q— : P(E)" — I of Q is defined by

Q_‘(Yl;---,Yn) = Q(Yla' ~-,}/71—17_‘Yn)7

— I of arity n > 0 be given.

for all Yi,...,Y, € P(E). The antonynQ= : ﬁ(E)n — I of a fuzzy quantifier
Q: P(E)" — T is defined analogously, based on the given fuzzy complément

For exampleno is the antonym o#ll. The dualQC] of a quantifier is the negation of
the antonym, or equivalently, the antonym of the negation:

Definition 11 Thedual QO : P(E)™ — I of a semi-fuzzy quantifiep : P(E)" —
I, n > 0is defined by

QE(Y157Y71) = :Q(Yla '7Yn717"Yn);

forall Y4,...,Y, € P(E). The dualQ] = = Q= of a fuzzy quantifie€) is defined
analogously.

For examplesome is the dual ofall. We expect that a given QFNF be compati-
ble with these constructions on quantifiers. Heffd@o ) should be the negation of
F(some), F(no) should be the antonym of (all) andF(some ) should be the dual
of F(all).

Apart from negation/complementation, we can also form intersections and unions of
argument sets to construct new quantifiers from given ones.

Definition 12 Let a semi-fuzzy quantifig€p : P(E)" — I of arity n > 0 be given.
We define quantifie®U, Qn : P(E)" " — I hy

QUY1,.... Y1) =Q(Y1,..., Y 1,Y, UY11)
QNY1,....Yur1) =Q(Y1,..., Y 1,Y, NY11)

forall Yi,...,Y,11 € P(E). Inthe case of fuzzy quantifie@D and@ﬁ are defined
analogously, based on the given fuzzy set operatioasd N, resp.

In some proofs, | will also need another construction, that of permuting arguments of
a quantifier. Here | restrict to a special type of argument transpositions. It is apparent
that every permutation of the argument positions can be decomposed into a sequence
of the following simple transpositions:

Definition 13 For every semi-fuzzy quantifi€y : P(E)" — I of arity n > 0 and all
i€ {1, ..., n}, the semi-fuzzy quantifi€r; : P(E)" — Iis defined by

QTi(YI7~"7Yn) = Q(Y17"~7Y71717YH7Y71+17"'7Y71717}/Z')

4assuming that 0 = 1 and= 1 = 0, which will be assured by the axioms.



forall Yi,...,Y, € P(E). (In other words, thé-th argument is exchanged with the
last argument). The definition §fr; for fuzzy quantifiers is analogous.

As we shall later see, every intended model is compatible with argument permutations.
This ensures e.g. that symmetries of a quantifier are preserved in the fuzzy case.
Another important characteristic of quantifiers expresses through their monotonicity
properties.

Definition 14 A semi-fuzzy quantifigp : P(E)" — I is said to benonincreasing in
its i-th argumenti € {1, ..., n}, if

Q(Yiaayn) ZQ(YaJ"'aYVi717YVi/aYYi+17~-~,Yn>

whenevel,...,Y,, Y/ € P(E) such thafY; C Y/. Q) is said to benondecreasing in
thei-th argumentf the reverse inequation holds. The definitions for fuzzy quantifiers
are analogous.

For exampleall is nonincreasing in the first argument and nondecreasing in the second
argument. We expect each reasonable choice of @Rblpreserve such monotonicity
properties. Henc& (all ) should be nonincreasing in the first and nondecreasing in the
second argument.

We can also utilize a QFM to construct fuzzy powerset mappings. Let us first recall
the concept of a powerset mapping in the crisp case.

Definition 15 To each mapping : £ — E’, we can associate a mappir}@ :
P(E) — P(E’) (the powerset mapping ¢f) which is defined by

fY)={f(e):eecY}, 2
forallY € P(E).S

In order to generalise this concept to the fuzzy case, we need a mechanism which
associates fuzzy powerset mappirfs) : P(F) — P(E’) to given mappings
f : E — E’. Such a mechanism is called artension principlé The standard
extension principle, proposed by Zadeh [22], is defined by

pa () =sup{ux(e):ee f(e)}, ®3)

fF(X)

forall f : E — E', X € P(E) ande’ € E'. With each QFM, we can associate a
corresponding extension principle through a canonical construction.

Definition 16 Every QFMF induces an extension Jprincipl? which to_eachf :
E — FE’ (whereE, E' # @) assigns the mapping (f) : P(E) — P(E’) de-
fined by

lﬁj:(f)(x)(e/) = ]:(Xf(.)(e/))(X) ’

50ften the same symbol is used to denote both the original mapping and the powerset mapping.
8For our purposes, it will be convenient to assume fiaF’ # &.

10



forall X € P(E), ¢ € E'.

We require that every ‘reasonable’ choice/®the compatible with its induced exten-
sion principle in the following sense. SuppoQe: P(E)" — I is a semi-fuzzy
quantifier andfy, ..., f, : E' — FE are given mappingsy’ # &. We can construct

the semi-fuzzy quantifie) o X ﬁ : P(E')" — T by composing with the powerset
=1

mappingsﬁ», e ,f;, ie.

Qo X F)(Vi,....Ya) = QUAMY, ... Ful¥0)), (4)

for all Y1,...,Y, € P(E’). By utilizing the induced extension principl?eA‘ of a
QFM, we can perform a similar construction on fuzzy quantifiers, thus composing
Q: 75(E)n — Twith Z(f1),. .., F(f,) to form the fuzzy quantifie€) o X F(f):

i=1

~ n

P(E') — Idefined by
Qo X FU(Xr,.... Xa) = QE)(X), ... F(f) (X))

forall Xq,...,X, € 75(E’). We require that a QFMF be compatible with this
construction, i.e.

F(Qo x [i) = F(@Q) o x F(f).

This condition is of particular importance because it is the only criterion which relates
the results ofF for different base set&, E’. It hence grants thaf behave consis-
tently across domains. We can combine the above conditions in order to capture our
expectations on plausible models of fuzzy quantification in a condensed set of axioms.

Definition 17 A QFM F is called adeterminer fuzzification schen{®FS) if the fol-
lowing conditions are satisfied for all semi-fuzzy quantifiersP(E)" — 1.

Correct generalisation UFQ)=Q ifn<1 (Z-1)
Projection quantifiers F(Q) =7, Ifthereexiste € FE s.th.Q = 7.
(Z-2)

Dualisation FQD)=F(QO n>0 (2-3)
Internal joins FQU)=F(@QU n>0 (Z-4)
Preservation of monotonicity ) is nonincreasing im-th arg, then (Z-5)

F(Q) is nonincreasing im-th arg,n > 0
Functional application F(Qo % i) =F(@Q)o x F(fi) (2-6)

i=1 i=1
wherefy, ..., fn: B/ — E, E' # @.
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The original definition of DFSes in [7] was based on nine axioms. These were subse-
guently condensed into the equivalent axiom system presented above, and the indepen-
dence of the new axioms (Z-1) to (Z-6) has been proven [9].

The conditions (Z-1)—(Z-6) are intended to cover those adequacy criteria that are
essential from the perspective of linguistics and fuzzy logic, and to provide a formali-
sation of these criteria in terms of a system of independent axioms. Due to the goal of
obtaining an independent system, it was not possible to include all of these adequacy
criteria directly into the axiom set, thus compromising its independence. However, it
has been shown in [9] that DFSes comply with a large number of linguistic and logi-
cal adequacy criteria. The following excerpt is not intended to review these results on
adequacy properties of DFSes, which can be found in full detail in [9]. By contrast,
only those definitions and theorems are highlighted, that are necessary to understand
and prove the new theorems. Unless otherwise stated, the proofs of all theorems cited
can be found in [7, 9].

First we review some results on the fuzzy truth functions induced by a DFS. Let us
recall the definition of a strong negation (i.e. ‘reasonable’ fuzzy negation operator):

Definition 18 = : I — I is called astrong negation operatdf it satisfies

a. =0 = 1 (boundary condition)

b. =2y > =, for all z1, zo € I such thatz; < zo (i.e. = is monotonically
decreasing)

€. = o= =idg (i.e. = is involutive).
Note. Whenever the standard negatian = 1 — z is being assumed, we shall drop
the ‘tilde’-notation. Hence the standard fuzzy complement is denet&d where
u-x(e) = 1 — ux(e). Similarly, the external negation of a (semi-) fuzzy quanti-

fier with respect to the standard negation is writtef), and the antonym of a fuzzy
guantifier with respect to the standard fuzzy complement is writt&p-as

We also need the concepts of-aorm (i.e. ‘reasonable’ fuzzy conjunction) ard
norm (‘reasonable’ fuzzy disjunction), see [16]. The fuzzy truth functions induced by
a DFS are guaranteed to belong to the class of such reasonable operators:

Theorem 1 In every DFSF,
a. \%(idg) = idy is the identity truth function;
b. == ]?(ﬁ) is a strong negation operator;
c. A= F(A) is at-norm;
d. 1 Ve = 3(S 21 A S 2p), i.e.V is the duals-norm of A under=.

In the proofs to follow we also need the following theorem, which is a consequence of
Th-1, (Z-4) and (Z-3).

12



Theorem 2 Every DFSF is compatible with the external negation of quantifiers,
ie.forall@: P(E)" — I, F(=Q) = =F(Q).

We further need a result on the monotonicity of DFSes. For semi-fdzay’ :
P(E)" — 1, we say that) < Q' iff Q(Y1,...,Y,) < Q'(Y1,...,Y,) for all
Yi,...,Y, € P(E). For fuzzy quantifiers), ', we use an analogous definition,

ie.Q < Q' iff Q(X1,...,X,) <Q'(Xy,...,X,) forall Xi,..., X, € P(E).

Theorem 3 Every DFSF is monotonigi.e. if Q,Q’ : P(E)" — I are given semi-
fuzzy quantifiers an@ < Q’, thenF(Q) < F(Q’).

Finally | cite a result concerning the preservation of symmetries in a quantifier’s argu-
ments.

Theorem 4 Every DFSF is compatible with argument transpositions, Q) =
F(Q)7; for all semi-fuzzy quantifier® : P(E)" — I ofarityn > 0 and alli €

{1, ..., n}.

This theorem establishes e.g. that the meanings of ‘some rich people are lucky’ and
‘some lucky people are rich’ coincide.

Next we turn to special subclasses of DFSes, in order to single out a class of standard
models for fuzzy quantification.

Definition 19 Suppose- : I — T is strong negation operator. A DES is called a
=-DFS if its induced negation coincides with i.e. 7(—) = =. In particular, we will
call 7 a —-DFS if it induces the standard negatierr = 1 — .

As has been shown in [7, Th-28, p. 44], no models of interest are lost if we restrict
attention to~-DFSes only (i.e. to DFSes which induce the standard negation). This is
because all other DFSes can be transformed-inidFSes and vice versa.

It is convenient to group the models by their induced disjunctions.

Definition 20 A —~-DFS F which induces a fuzzy disjunctianis called aV-DFS.

Definition 21 A DFSF is called astandard DF& and only if 7 is amax-DFS, i.e. a
DFS which induces the standard negatiom = 1 — 2 and the standard disjunction
x Vy = max(z,y).

Note. It is then apparent from earlier work [9, Th-17.a, p. 20 and Th-25, p. 25] that
standard DFSes are exactly thesédFSes which induce the standard extension prin-

ciple 7 = () and the standard connectives of fuzzy logic. It is hence suggested that
standard DFSes be considered the standard models of fuzzy quantification.

The following result that has been proven for standard DFSes will be needed in later
proofs.

13



Theorem 5 All standard DFSes coincide on two-valued quantifiers. Hencg, if’
are standard DFSes an@ : P(E)" — 2 is a two-valued quantifier, the (Q) =
F Q).

The —-DFSes can be partially ordered by ‘specificity’ or ‘fuzziness’, in the sense of
closeness tg. We define a partial ordex. C I x I by
rX.ysy<z<gory<az<y, )

forall z,y € I. <. is Mukaidono’s ambiguity relation, see [14]. We extend this basic
definition of <, for scalars to the case of DFSes in the obvious way:

Definition 22 SupposeF, F’ are —=-DFSes. We say th&f is consistently less specific
than 7', in symbols:F <. ', iff for all semi-fuzzy quantifier§ : P(E)" — I and
all Xq,...,X,, € P(E),

FQ)(X1,..., Xpn) 2. F(Q)(Xy,..., Xn).
We now wish to establish the existence of consistently least spaciiESes. As

it turns out, the greatest lower specificity bound of a collectiorvddFSes can be
expressed using the fuzzy median [17, 5].

Definition 23 Thefuzzy medianned; : I x I — I is defined by
2

min(ug, ug) : min(ug, ug) > %
medq (u1, u2) = ¢ max(uq, uz) : max(ug, ug) < %
2 3 . else

The basic connective can be generalised to an opara%IorP(I) — I'which accepts
arbitrary subsets df as its arguments.

Definition 24 Thegeneralised fuzzy median% : P(I) — Iis defined by
mi X = med; (inf X, sup X),
2 2
forall X € P(I).

Now we can state the desired theorem.

Theorem 6 Suppose that is ans-norm[F a non-empty collection of-DFSesF < F.
Then there exists a greatest lower specificity bound oire. aV-DFS F1, such that
Fen 2 F forall F € F (i.e. o1, is a lower specificity bound), and for all other lower
specificity bounds”, 7' <. Fgip.

Feib is defined by

Fan(Q)(X1,..., Xn) = my {F(Q)(X1,..., X)) : F € F},

forall Q : P(E)" — TandX,...,X, € P(E).

14



In particular, the theorem asserts the existence of least spedifieSes, i.e. whenever

V is ans-norm such that/-DFSes exist, then there exists a least spegHRFS (just

apply the above theorem to the collection of\@alDFSes).

As concerns the converse issue of most specific DFSes, i.e. least upper bounds with
respect to<.., the following definition of ‘specificity consistence’ turns out to provide

the key concept:

Definition 25 Suppose/ is an s-norm andF is a non-empty collection of-DFSes
F € F. Fis calledspecificity consisterniff forall @ : P(E)" — IandX;,..., X, €
x, €[0,3]or Ry x,,....x, C [3,1], where

~~~~~ n

Ro.x,...x, ={F(Q)(X1,...,X,) : F €F}.

.....

We can now express the exact conditions under which a collectionRF Ses has a
least upper specificity bound.

Theorem 7 Supposeé/ is ans-norm andF is a non-empty collection of-DFSesF ¢
F.

a. F has upper specificity bounds exactifFifs specificity consistent.

b. If F is specificity consistent, then its least upper specificity bound ist{D&S
Fup defined by

Sup RQ1X17---7X7L : RQaXh“-vXn g [l7 1}
J:lub(Q)(Xlw-an): . . 2 1
inf Rg x,,..x, * Rox.x,C[0,3]

whereRg x, ... x, = {F(Q)(X1,...,X,) : F eF}.

.....

Let us now consider some additional adequacy criteria for approaches to fuzzy quan-
tification, which are not necessarily required for arbitrary DFSes. The first two criteria
are concerned with the ‘propagation of fuzziness’, i.e. the way in which the amount of
imprecision in the model’s inputs affects changes of the model's outputs. To this end,
let us recall the partial ordet. C I x I defined by equation (5). We can extendto

fuzzy setsX e ﬁ(E), semi-fuzzy quantifier§) : P(E)" — I and fuzzy quantifiers
Q: P(E)n — I as follows:
X <. X' <= px(e) 2. px(e) foralle € E;
Q=.Q = Q\,....Y,)=.QW,...,Y,) forallYi,...,Y, € P(E);
Q=2.Q = Q(X1,....Xn) <, Q(X1,...,X,) forallXy,...,X, € P(E).
Intuitively, we expect that the quantification results become less specific whenever the

quantifier or the argument sets become less specific: the fuzzier the input, the fuzzier
the output.

Definition 26 We say that a QFMF propagates fuzziness in argumeifitand only if
the following property is valid for a) : P(E)" — IandXy,..., X,, X],..., X}:
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If X; <. X/foralli=1,...,n,thenF(Q)(X1,...,Xn) 2 FQ)(X1,...,X]).
We say thatF propagates fuzziness in quantifiérand only if 7(Q) <. F(Q’) when-
ever@ <. Q’.

Both conditions are certainly natural to require, and | consider them as desirable but
optional. A more thorough discussion of propagation of fuzziness and its tradeoffs can
be found in [11].

Finally, I introduce two adequacy criteria concerned with distinct aspects of the ‘smooth-
ness’ or ‘continuity’ of a DFS. These conditions are essential for DFSespitalotical
because it is extremely important for applications that the results of a DFS be stable
under slight changes in the inputs. These ‘changes’ can either occur in the fuzzy argu-
ment sets (e.g. due to noise), or they can affect the semi-fuzzy quantifier. For example,
if a person A has a slightly different interpretation of quantifiecompared to person

B, then we still want them to understand each others, and the quantification results
obtained from the two models of the target quantifier should be very similar in such
cases.

In order to express the robustness criterion with respect to slight changes in the fuzzy
arguments, a metric on fuzzy subsets is needed, which serves as a numerical quantity
of the similarity of the arguments. For all base sBts¢ @ and alln € N, we define

the metricd : 75(E)n X 73(E)n — Ihy
d(X1,.. ., Xn), (X1,..., X)) = rlngilxsup{m)(i(e) —pxi(e)|:e€ E},  (6)

forall Xy,..., X, X],..., X/ € 75(E). Based on this metric, we can now express
the desired criterion for continuifyn arguments

Definition 27 We say that a QFMF is arg-continuousf and only if 7 maps all@ :
P(E)" — I to continuous fuzzy quantifiefs(Q), i.e. for all X;,..., X,, € P(E)
ande > 0 there exist9 > 0 such thatd(F(Q)(X1,...,Xn), F(Q)(X],..., X})) <
eforall X{,..., X! € P(E)withd((Xy,...,X,),(X],..., X)) < 4.

A second robustness criterion is intended to capture the idea that slight changes in a
semi-fuzzy quantifier should not cause the quantification results to change drastically.

To introduce this criterion, we must first define suitable distance measures for semi-

fuzzy quantifiers and for fuzzy quantifiers. Hence for all semi-fuzzy quantifje€s’ :

PE)" — 1,

d(Q,Q") =sup{|Q(Y1,...,Y,) — Q' (Y1,...,Y)|: Y1,...,Y, € P(E)}, (7)
and similarly for all fuzzy quantifier§, Q' : P(E)" — 1,

d(Q, Q) = sup{|Q(X1,..., Xn) — Q' (X1,...,Xn)| : X1,...,Xn € P(E)}. (8)

Definition 28 We say that a QFMF is Q-continuousf and only if for each semi-
fuzzy quantifieQ : P(E)" — I and alle > 0, there existsy > 0 such that
d(F(Q),F(Q')) < e whenever)' : P(E)" — 1 satisfies!(Q, Q') < 6.
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Both condition are crucial to the utility of a DFS and should be possessed by every
model employed in practical applications. They are not part of the DFS axioms because
| wanted to have DFSes for genetatorms (including the discontinuous variety).

This completes the first chapter, which was intended to give a brief introduction into
DFS theory. After motivating the need for a formal analysis and computer modelling of
approximate quantification, | first reviewed existing approaches which try and embed
approximate quantification in the framework of fuzzy set theory, based on operators
called fuzzy linguistic quantifiers. In addition, some pointers to the literature were
given, which reveal that these approaches are not plausible from a linguistic perspec-
tive, and can produce unexpected results in important situations.

The DFS theory of fuzzy quantification, by contrast, starts from the linguistic theory of
guantification, TGQ, which is then extended to handle the inherent fuzziness, which is
observed both in a quantifier and in its arguments. As opposed to existing approaches
which only consider absolute quantifiers (ligbout ten and proportional quantifiers

(like mos}, its anchoring into the linguistic framework permits DFS theory to cover the
complete range of NL quantification, which is known from linguistics. The concept of

a fuzzy quantifier was proposed, which embeds all quantifiers in the sense of TGQ and
constitutes the class of target operators for fuzzy NL quantification. These operators
pose a problem, though, because they live on fuzzy arguments and do not permit a di-
rect definition in terms of a cardinality measure. This makes it very hard to justify that
a particular choice of fuzzy quantifier be the proper model of a given NL quantifier.
In order to solve this problem of defining appropriate models of given NL quantifiers,
the novel concept of semi-fuzzy quantifiers was then introduced, which are (a) capable
of expressing approximate quantification, and (b) restricted to two-valued arguments,
i.e. definable in terms of the usual cardinality measure (whenever appropriate). Due
to their conceptual simplicity, semi-fuzzy quantifiers are good base representations of
NL quantifiers. However, they do not solve the problem of handling fuzzy arguments
(like in most rich people are ba)d To provide a full account of fuzzy quantification

and support fuzziness both in quantifiers and their arguments, it is hence necessary to
translate semi-fuzzy quantifiers into corresponding fuzzy quantifiers, which can then
be applied to fuzzy arguments. This translation is accomplished by quantifier fuzzifi-
cation mechanisms (or QFMs for short). QFMs are one of the central concepts of DFS
theory, and span the class of ‘raw’, totally unrestricted fuzzification mechanisms.

In turn, a number of adequacy criteria were presented which shrink down the unre-
stricted class of QFMs to its subclass of plausible models, and thus ensure a systematic
transfer from semi-fuzzy quantifiel@ to corresponding target operators, i.e. fuzzy
quantifiers#(Q), which indeed extrapolate the meaning of the base quantifier. Most
of these criteria have either been adopted from TGQ or reflect logical considerations.
Taken together, they constitute the set of ‘DFS axioms’ (Z-1)—(Z-6), which provide
a characterisation of the intended models, dubbed DFSes (determiner fuzzification
schemes), in terms of an independent axiom system.

Finally | presented a small number of additional properties, which are either fulfilled by
arbitrary DFSes (like monotonicity), or limited to special cases of DFSes (like propaga-
tion of fuzziness). The most important property of practical models has also been for-
malized, which is certainly that aftability, in order to absorb slight variations e.g. due

to noise, quantization errors etc., which are typical of real-world applications. In for-
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malizing this property, | recognized that it actually has two distinct faces, and conse-
guently developed separate criteria that capture (a) the robustness of the quantification
results under slight changes in the arguments (arg-continuity), and (b) the robustness
of the quantification results under slight changes in the quantifier (Q-continuity).

The chapter also introduces the class of standard DFSes, which is formed by those
models which conform to the standard operations of fuzzy set thedry, (nax etc.).

Due to the comprehensive adequacy properties observed with these models, and due
to the natural embedding of the established core of fuzzy set theory (standard connec-
tives, standard extension principle etc.), the assumption is made in the report that it is
these models, i.e. the standard DFSes, which constitute the standard models of fuzzy
quantification.
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2 The class of Mpz-DFSes

In [7], the first three models of the DFS axioms have been presented. An investigation
of the common principle underlying these DFSes has led to the introductidr ©f
DFSes in [9], the class of DFSes defined in terms of three-valued cuts of arguments
and subsequent aggregation based on the fuzzy median. Here | recall the definition
of Mpz-QFMs and the characterisation 8 z3-DFSes in terms of necessary and suf-
ficient conditions on the aggregation mappifigimportant models are also presented
and some interesting properties M z-DFSes are highlighted. Most of the mate-

rial is compiled from [11] and its exposition is mainly intended to introduce the basic
concepts that will be generalized lateron. Unless otherwise stated, the proofs of all
theorems cited in this chapter can be found in [9], which provides a comprehensive
discussion ofM z-DFSes.

| first define the unrestricted class 8 z-QFMs, which will then be shrunk to the
reasonable cases #fl 3-DFSes by imposing conditions on the aggregation mapping.
To this end, we need some notation. We recall the conceptalfts and strictv-cuts

of fuzzy subsets:

Definition 29 Let E be a given setX € P(E) a fuzzy subset of anda € I. By
X>q € P(E) we denote the-cut

Xsa={e€ E:pux(e) >a}l.

Definition 30 Let X € P(E) be given andv € I. By X-, € P(E) we denote the
strict a-cut

Xsa={e€ E:pux(e)>a}.

In terms of thesex-cuts, we define the cut randgg,(X) C P(E), which repre-
sents a three-valued cut at the ‘cautiousness leyeg 1 by a set of alternatives
{Y : X}yni“ CY C X;na"}. The reason for introducing three-valued cuts is that
we need a cutting mechanism compatible with complementatioiguts, however,
have(—-X). , # ~(X>a.). The desired symmetry is easily obtained with three-valued
cuts, defined as follows:

Definition 31 SUpposeE is some setX € P(E) and~y € L Xmin, Xmax ¢ P(E)
and7,(X) C P(E) are defined by

. X1 v=0
e I A
Z%Jr%v 7
X1 v=0
X max _ Z9
v X>%7%ﬂ/ o oy>0

T,(X)={Y : X" CY C X"},
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Note. The relationship of cut rang€s(X) and three-valued sets is discussed in [7,
p.58+] and [9, p. 39+].

How can we use these cut ranges to evaluate fuzzy quantifiers? The basic idea is that
we can view the crisp rangg, (X ) as providing a set of alternatives to be checked.
For example, in order to evaluate a quantifigrat a certain cut level, we have to
consider all choices ap (Y1, . ..,Y,,), whereY; € 7,(X;). The set of results obtained
in this way must then be aggregated to a single result in the unit interval, which we
denote a€),(X1,...,X,) € I. The generalised fuzzy median (see Def. 24) is well-
suited to carry out this aggregation. The use of the fuzzy median for this purpose was
originally motivated by the observation that the resulting fuzzification mechanisms
embed Kleene's three-valued logic. This is useful because the targeted class of models
(viz, standard DFSes) are known to embed Kleene’s logic, too.

Let us hence use the crisp ranggg X;) of the argument sets to define a family of
QFMs (e).,, indexed by the cautiousness parameterI:

Definition 32 For everyy € I, we denote bye)., the QFM defined by

Q'y(X17~~~aXn) = m%{Q(Yl, ,Yn) 1Y, € Ty(Xl),,Yn S Ty(Xn)},
for all semi-fuzzy quantifier§ : P(E)" — I andX;,..., X, € P(E).

None of the QFMSg(e),, is a DFS, because the required information is spread over
various cut levels. Hence in order to define DFSes based on these QFMs, we must
simultaneously consider the results obtained at all levels of cautiousnessthey-

index family (Q~ (X1, ..., X,))~ye1. We can then apply various aggregation operators
on thesey-indexed results to obtain new QFMs, which have a chance of being DFSes.
We now define the domain on which these aggregation operators can act.

1
Definition 33 BT,B2,B~ andB C I' are defined by
Bt ={feI': f(0) > % and f(I) C [%, 1] and f nonincreasing}
1
B2 ={c1}
2
B~ ={f eI': f(0) < 2 and f(I) C [0, 1] and f nondecreasing
1
B=B"UB2UB".

1
Note. In the definition o2, ¢c; : I — I is the constant; (z) = § forall z € I.

2 2
More generally, we stipulate for ail € I thatc,, : I — I be the constant mapping
Ca (m) =a, (9)

forallz € 1.
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Theorem 8

a. Suppose€) : P(E)" — IandXy,..., X, € P(E) are given. Then

B+ : Qo(Xl,...,Xn) >%

1
(Q’y(X17~ .. >Xn))'y€I (S B2 : QO(X17~ .. ,Xn) = %
B~ Qo(Xh...,Xn) <%

b. For eachf € B there exists) : P(E)" — I and Xy,..., X, € P(E) such
that f = (Qy(X1,..., Xp))yer.

Given an aggregation operatBr: B — I, we define the corresponding QFEM 5 as
follows.

Definition 34 Supposeés : B — I is given. The QFMM is defined by
MB(Q)(Xh e 7X’I’L) = B((Q’Y(Xla cee 7Xn))’y€I) 3 (10)
for all semi-fuzzy quantifier® : P(E)" — I andX; ..., X, € P(E).

By the class of\ z-QFMs we mean the class of all QFMd 5 defined in this way. Itis
apparent that if we do not impose restrictions on admissible choid8stbé resulting
QFMs will often fail to be DFSes. Hence let us state the necessary and sufficient
conditions tha3 must satisfy in order to mak#1z a DFS. To express these conditions,
we first need some constructionsBn

Definition 35 Supposef : I — I is a monotonic mapping (i.e., nondecreasing or
nonincreasing). The mappings, f : I — I are defined by:

fu:{ Jim fly) - ow<d

f(1) =1
li :
fb{g}%_f(y) m>2 forall f e B,z e L
L=

It is apparent that iff € B, thenf! € B andf” € B. f* and f* are obviously very
‘similar’ to each others (and tg) and every reasonablg should mapf” and f* to

the same aggregation result. This turns out to be essentiaifpto satisfy (Z-6), be-
cause(@~ (X1, ..., Xn)) er is not compatible with (Z-6) in a precise sense, but only
moduloti/b.

We shall further introduce several coefficients which describe certain aspects of a map-
pingf:I— L
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Definition 36 For every monotonic mappinf): I — I (i.e., either nondecreasing or

nonincreasing), we define

fl=inf{y €I: f(v) =0}

1
f2 =inf{yel: f() =3}

fil =sup{y el: f(y) =1}
ST =sup{y €I: f(7) =0}
fjl =inf{yeI: f(y) =1}.

(11)
(12)

(13)
(14)

(15)
(16)
(17)

1
We only needf,? to define the desired conditions d it turns out to be essential
for ensuring a proper behaviour @15 in the case of three-valued quantifiers, and
in particular to ensure the desired results for the two-valued projection quantifiers of
(Z-2). We will use the remaining coefficients later to define examplesigiDFSes.

Definition 37 Suppose’ : B — 1 is given. For allf, g € 13, we define the following

conditions onB3:

B(f)= f(0) if fisconstant,i.ef(z)= f(0)forallz €1
B(1—f)=1-B(/f)
If £(I) C {0, 3, 1}, then
3+ %f*% . fe€ IB%T
B(f)=1% 3 . feB2

1
%—%ff : feB™

B(f*) = B(f")
If f <g,thenB(f) < B(g)

(B-1)
(B-2)
(B-3)

(B-4)
(B-5)

As witnessed by the next theorem, these conditions capture precisely the requirement

on 5 for Mg to be a DFS.

Theorem 9

a. The conditiongB-1) to (B-5) are sufficient fotM 5 to be a standard DFS.

b. The conditiongB-1) to (B-5) are necessary faM  to be a DFS.
c. The conditiongB-1) to (B-5) are independent.
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In particular,B(f) =1 — B(1 — f) for all f € B, andB(f) > 1 wheneverf € B'.
We can hence give a more concise descriptiontt-DFSes, because it is sufficient
to consider their behaviour da™ only:

Definition 38 By H C I' we denote the set of nonincreasifigl — I, f # 0,

H={f cI': fnonincreasing ang(0) >0 }.

We can associate with eatdh: H — I aB : B — I as follows:
1+1iB(2f-1) : feB*
1
f eB2 (18)
— 1B (1-2f) : feB~

B(f) =

N[— D=

Theorem 10 If Mg is a DFS, ther3 can be defined in terms of a mappiBg: H —
I according to equatiofl8). B’ is defined by

B'(f)=2B(3+3f)—1. (19)
We can hence focus on mappings: H — I without loosing any desired models.

Definition 39 Supposé8’ : H — T is given. For allf, g € H, we define the following
conditions onf3’:

B'(f) = f(0) if fisconstant,i.ef(x) = f(0)forallz €1 (C-1)

If £(I) € {0, 1}, thenB'(f) = £2, (C-2)
B(f5) =B'(f*) if £((0,1]) # {0} (C-3)
If f < g, thenB'(f) < B'(g) (C-4)

A theorem analogous to Th-9 can be proven for (C-1) to (C-4):

Theorem 11

a. The conditiongC-1)to (C-4) are sufficient fotM ;5 to be a standard DFS.
b. The conditiongC-1)to (C-4) are necessary faM to be a DFS.
c. The condition$C-1)to (C-4) are independent.
Our introducing of3’ is only a matter of convenience, because the definitioBs’of

is usually shorter than the definition of the correspondiigWe now present some
examples ofM z-QFMs.

Definition 40 By M we denote theVi z-QFM defined by

1
Bi(f) :/O F@)de, forall f € HL.
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Theorem 12 M is a standard DFS.

M is Q-continuous and arg-continuous and hence a good choice for applications.
Definition 41 By My we denote theVi z-QFM defined by
B'u(f) = max(fiT, fr) forall f € H, see(14)and (15).
Theorem 13 Supposed : I? — Tis ans-norm andB’ : H — T is defined by
B(f)=fraof,

for all f € H. Further suppose that1 is defined in terms df’ according to equa-
tions(10)and (18). ThenMp is a standard DFS.

In particular, M, is a standard DFS. Itis neither Q-continuous nor arg-continuous and
hence not practical. Howevel!;; is of theoretical interest because it represents an
extreme case oM z-DFS in terms of specificity:

Theorem 14 My is the least specifid15-DFS.

Let us now consider the issue of most specHitz-DFSes.
Definition 42 By Mg we denote the\iz-QFM defined by
B's(f) = min(f2, f1) forall f € H; see(11)and(12).
Theorem 15 Supposés’ : H — I is defined by
B(f)=fof

for all f € H, where® : I? — I is at-norm. Further suppose that the QF Mz is
defined in terms 0B’ according to(10) and (18). ThenM 3 is a standard DFS.

In particular, Mg is a standard DFSM g fails on both continuity conditions, but:
Theorem 16 Mg is the most specifidg1z-DFS.
Definition 43 By M x we denote théWz-QFM defined by

B cx(f) = sup{min(z, f(z)) : z € I} forall f € HL.

Theorem 17 Suppose : I2 — Tis a continuoug-norm and3’ : H — T is defined
by

B'(f) =sup{y® f(y) : v €I}

for all f € H. Further suppose thaM g is defined in terms o8’ according to(10)
and(18). ThenMj is a standard DFS.
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ThereforeM ¢ x is a standard DFS. It is Q-continuous and arg-continuous and hence
a good choice for applications.

As has been shown in [9)V ¢ x exhibits unique properties. In fact, it is the only stan-
dard DFS which is compatible with a construction called ‘fuzzy argument insertion’,
which ensures a compositional interpretation of adjectival restriction with fuzzy adjec-
tives. M¢cx can be shown to generalize the well-known Sugeno integral to the case
of multiplace and non-monotonic quantifiers. Hentt:x consistently generalises
the basic FG-count approach of [19, 24], which is restricted to quantitative and non-
decreasing one-place quantifiers. In additidgrix can be shown to implement the
so-called ‘substitution approach’ to fuzzy quantification [18], i.e. the fuzzy quantifier is
modelled by constructing an equivalent logical formula (involving fuzzy connectives).
The reader interested in details is invited to consult [9].

Returning toM 3-DFSes in general, we can state that:

Theorem 18

e All Mg-DFSes coincide on three-valued arguments, i.&if..., X, € ﬁ(E)
satisfyux, (e) € {0, 3, 1} forall e € E;

e all Mz-DFSes coincide on three-valued semi-fuzzy quantifers?(E)" —
{0, 4, 1}.

This is different from general standard DFSes, which are guaranteed to coincide only
for two-valued quantifiers. An issue first addressed in [11] is whethds a genuine
partial order:

Theorem 19 <. is not a total order onM z-DFSes.

In particular, the standard DFSes are only partially ordereg by
One of the characteristic properties.bfz-DFSes is that they propagate fuzziness.

Theorem 20

e Every Mp-DFS propagates fuzziness in quantifiers.

e Every M ;-DFS propagates fuzziness in arguments.

This important theorem completes the review\df;-DFSes.

Summarizing, | have presented the required definitions of three-valued cuts and
of the median-based aggregation mechanism, and subsequently introduced the cor-
responding class aMz-QFMs, which are built from these base constructions. In
addition, a sketch of those results dz-DFSes was given, that are relevant for the
purposes of this report. In particular, | have presented an analysis of the precise condi-
tions which makeM 3 a DFS. | have also included prominent examplesdt-DFSes.

Some of these models play a special role even to the broader classes of models which
will be introduced in the subsequent chapters. In addition, characteristic properties of
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Mp-DFSes have been discussed. Here | want to capitalize on the last theorem that
every Mp-DFS propagates fuzziness in quantifiers as well as in arguments. | con-
sider this an important adequacy property because it appears implausible that the re-
sults should become more specific when the input (quantifier or argument) gets fuzzier.
Nevertheless, there seems to be a price one has to pay for the propagation of fuzziness:
as the input becomes less specific, the result o¥6s-DFS is likely to attain the least
specific value of, see [11, Th-34/Th-40]. In some applications, it might be preferable

to sacrifice the propagation of fuzziness, in order to obtain specific results (e.g. a fine-
grained result ranking) even in those cases where the input is overly fuzzy. A suitable
class of models which embeds thés-DFSes will be presented in the next chapter.
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3 The class of F.-DFSes

In order to show that standard DFSes exist which fail to propagate fuzziness in quanti-
fiers and/or arguments, the median-based aggregation mechanism used tdlgfine
DFSes was later replaced with a more general construction. This new construction,
which results in a broader class of models, fieDFSes, provides the starting point

of a further generalization which will be made in this report.

The material presented in this chapter is mainly compiled from [11], which also con-
tains the proofs of all theorems cited, and a more detailled discussion of the structure
and properties of the new models.

I now introduce the constructions necessary to define the broader class of models. We
get an idea of how to abstract from(3-QFMs if we simply expand the definition of

the generalized fuzzy median and rew(j#, as

QX1 Xy) = medy (sup{Q(¥i....Y;) 1 i € T, (X))

(20)
inf{Q(Y1,....Y,) : Vi € T,(X))}).

This is apparent from Def. 24 and Def. 32. The fuzzy median can then be replaced with

other connectives, e.g. the arithmetic méan-y)/2. If we viewsup{Q(Y7,...,Y,) :

Y; € 7,(X;) } andinf{Q(Y1, ..., Y,) : ¥; € 7,(X;)} as mappings that depend gn

then we can even eliminate the pointwise application of the connective and define more
‘holistic’ mechanisms.

Based on the definition of the crisp ran@gX) of a three-valued cut, which provides

a set of alternative choices for crisp arguments, we define the upper and lower bounds
of the quantification results given these alternatives as follows:

n

Definition 44 Let a semi-fuzzy quantifigp : P(E)" — I and fuzzy arguments
Xi,...,X, be given. We define the upper bound mappiagy,,.. x, : I — Iand
the lower bound mapping o x,,.. x, : I — Iby

n

TQ.x1,. %, () =sup{Q(Y1,...,Y,) : V1 € T,(X4),..., Yy € T, (X,)}
Lox.x, () =nf{Q(V1,....Y,) : Y1 € T,(X1), ..., Yy € T,(X,)} .

The domainT of the aggregation operatags: T — I which combine the results of
To.x,,...x, andLg x,, . x, can be defined as follows.

Definition 45 T C I' x I! is defined by
T={(T,L): T:I— Inondecreasingl : I — I nonincreasing,lL < T}.

Theorem 21

a. Suppose thaf) : P(E)" — I and X,,...,X, € P(E) are given. Then
(To.x1.. X0 Lo.x,,.x,) €T.

b. Forall (T, L) € T, there exists) : P(2 x I) — T and X € P(2 x I) such
that (T, J_) = (TQJ(, J_va).
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Based on the aggregation operagorT — I, we define a corresponding QF¥L in
the obvious way.

Definition 46  For every mapping : T — I, the QFMF; is defined by

Fe(@)( X1, Xn) =&(TQ.x1, X0 L@, X0, X0 ) » (21)

fgr all semi-fuzzy quantifier§ : P(E)" — I and all fuzzy subset&,..., X,, €
P(E).

The class of QFMs defined in this way will be called the clasgeQFMs. Obviously
it embeds the class 0¥15-QFMs:

Theorem 22 Suppose3 : B — I is a given aggregation mapping. Thérz = F¢,
where¢ : T — T is defined by

§(T, 1) = B(med%(Ta 1)) (22)

forall (T, 1) € T,andmed (T, L) abbreviates
2

med% (T,L)(y) = med% (T(M), L(),

forall v € 1.

Hence allM 3-QFMs areF.-QFMs, and allM z-DFSes aref.-DFSes. The full class

of F.-QFMs contains a number of QFMs that do not fulfill the DFS axioms. We
hence impose five elementary conditions on the aggregation magpingorder to
characterize the well-behaved models, i.e. the clags dDFSes.

Definition 47 For all (T, L) € T, we impose the following conditions on aggregation
mappings : T — L.

If T =1, thené&(T, L) = T(0) (X-1)
E1—L,1-T)=1-¢&(T,L1) (X-2)
If T =cyandL(I) C {0,1}, theng(T, L) =3 + 319 (X-3)
§(T°, 1) =&(TH 1) (X-4)

If (T’, L") € Tsuchthatl < T'andLl < L', thené(T, L) <&(T', L")  (X-5)

As stated in the following theorems, the conditions imposed oapture exactly the
requirements that makg: a DFS.

Theorem 23

a. The conditiongX-1) to (X-5) are sufficient fotF; to be a standard DFS.
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b. The conditiongX-1) to (X-5) are necessary fa¥, to be a DFS.
c. The conditiongX-1) to (X-5) are independent.

Sometimes we should be aware of the relationship between the ‘B-conditions’ and the
‘X-conditions’ in the case oM 3-QFMs:

Theorem 24 Suppose3 : B — T is given and : T — I is defined by equation
(22). Then

1. (B-1)is equivalent taX-1);
2. (B-2)is equivalent tqX-2);

3. (a) (B-3) entails(X-3);
(b) the conjunction ofX-2) and (X-3) entails(B-3);

4. (a) (B-4) entails(X-4);
(b) the conjunction ofX-2) and (X-4) entails(B-4);

5. (B-5) is equivalent tq(X-5).

The theorem is useful, e.g. to show that thész-DFSes are exactly thosg:-DFSes
that propagate fuzziness in both quantifiers and arguments.

Theorem 25 Suppose atF¢-DFS propagates fuzziness in both quantifiers and argu-
ments. ThetF; is an M3-DFS.

(The converse implication is already known from Th-20).
Let us now give examples of ‘genuing:-DFSes (i.e. models that go beyond the
special case aM 3-DFSes).

Definition 48 The QFMFcy = F¢, is defined in terms dfcy, : T — I by

1

1
ET D=4 [ Toyar+4 [ 1ar,
forall (T, 1) e T.

Note. Both integrals are known to exist becadsand_L are monotonic mappings.
Hencefqy, is well-defined.

Theorem 26 F¢y, is a standard DFS.

The modelF¢y, is of special interest because it consistently generalizes the well-known
Choquet integral and hence the ‘basic’ OWA approach to general multi-place quanti-
fiers without any assumptions on monotonicity, see [11]. Itis a practical model because
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it is Q-continuous and arg-continuous, which grants the desired robustness against
noise. Unlike the other models presented so far, does not propagate fuzziness,
neither in quantifiers nor in arguments. Herf&g, is a ‘genuine’F,-DFS (i.e. not an

M -DFS) by Th-20. In particular, this proves that-DFSes are indeed more general
than M z-DFSes.

Let us now discuss some aspects related to the specificity ordes-@irSes.

Theorem 27 My is the least specifi¢,-DFS.

As concerns upper specificity bounds, it has been shown in [11, Th-60, p. 35] that the
‘full’ class of F¢-QFMs is not specificity consistent. We hence know from Th-7 that

a ‘most specificF¢:-DFS’ does not exist. However, we obtain a positive result if we
restrict attention;-DFSes which propagate fuzziness. Both the clas§DFSes

that propagate fuzziness in quantifiers, and those that propagate fuzziness in arguments,
are specificity consistent and hence possess upper specificity bounds.

We shall now consider some more examples of models defined in terms of the new
construction, and locate them within the full class by specificity.

Definition 49 The QFMFg is defined in terms @fs : T — I by

1
min(T7, 3 + %J_fg) : 1(0) >

N

T, 1) = :
&s(T, L) max (L}, 3 — %T*ZQ) : T(0) <
1

5 : else

[N

1 1
forall (T, L) € T, where the coefficieng’sﬂSZ , f*22 ¢ I are defined by

1
fo? =if{yel: f(y) <5} (23)

1
fo? =mf{yel: f(y) > 3}, (24)

forall f: 1T — 1.

Theorem 28 Fs is a standard DFS.

The model propagates fuzziness in quantifiers, but not in arguments. Henisea
‘genuine’ F.-DFS as well, see Th-20. Its relevance stems from the following theorem:

Theorem 29 Fjg is the most specifi€,-DFS that propagates fuzziness in quantifiers.

HenceFg is of theoretical interest because it represents a boundary c#&sel@fF Ses.
However, the model is not suited for applications because it fails on both continuity
conditions.

Finally we consider the following QFNF4:

30



Definition 50 The QFMF, is defined interms afs : T — I by

min(Ly, 2 +319)  Li>1
* 1 . *
Ea(T, L) =< max(T§3-L171) « T5<]
3 . else

forall (T,L1) eT.

Theorem 30 F4 is a standard DFS.

The model fails to propagate fuzziness in quantifiers, but it does propagate fuzziness
in arguments. Hencgy is a genuineF¢-DFS as well, see Th-20. Recalling the sym-
metric situation withFg, the lack of both conditions wittF-;, and the presence of

both conditions in the case df15-DFSes, it is hence apparent that the conditions of
propagating fuzziness in quantifiers and arguments are independentRFSes.

The relevance of the modé#l, stems from the following observation.

Theorem 31 F4 is the most specifif,-DFS that propagates fuzziness in arguments.

ThereforeF, represents a boundary casefQFMs. Itis not suited for applications,
though, because it violates both continuity conditions.

To sum up, the chapter sketched an effort to extend the class of known models, and
to show that models exist which do not propagate fuzziness. The construction from
which M -QFMs were built, namely that @., (X4, ..., X,,), was therefore dropped
and replaced with a pair of mappings which represent the lower boung, . x,
and upper boundg x, ... x,, on the results obtained for the three-valued cuts. These
mappings capture some important aspects of the quantifier and its intended behaviour
for the considered fuzzy arguments. However, the important information is scattered
across the cut levels and hence a subsequent aggregation step is needed. We accom-
plish this by applying the mapping which computes the final quantification result
Fe(Q)(X1,..., X)) = &(To.x,,...x.,Lo,x1.....x,,). In order to identify the sub-
class of well-behaved models within the unrestricted class of resulirQFMs, an
independent set of criteria was developed which capture the necessary and sufficient
conditions on¢ that makeF; a DFS. In addition, some examples of ‘genuidf&-

DFSes were given: firstlfcy, which is important because of its affinity to the Cho-
quet integral/‘basic’ OWA approach; secondiy, the most specificF.-DFS which
propagates fuzziness in quantifiers; and finéfly, the most specificF.-DFS which
propagates fuzziness in arguments. In addition, Mig-DFSes were located within
their apparent superclass 6f-DFSes, and characterised as precisely ttfos®FSes

that propagate fuzziness both in quantifiers and arguments. Although it is not clear
at this stage whether the new models form a ‘natural’ class with certain distinguished
properties, the introduction ofs-DFSes clearly led to the discovery of some relevant
models, likeF¢y,, which can be expressed in terms of the new construction. In addition,
it turned out that the upper and lower bound mappifgsx, .. x, andLg x, .. x,

are easy to compute for common quantifiers. This is witnessed, for example, by a
successful implementation of absolute and proportional quantifiers based on the model
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Fecn, which is described in [10, 12]. Apart from its theoretical merits, | hence consider
the class ofF;-DFSes a fruitful source of practical models, which can prove useful in
future applications.

This brief discussion ofF¢-DFSes completes the review of known classes of stan-
dard DFSes, which included all definitions and theorems required to develop the novel
material. The remaining part of the report is devoted to the search of more general
types of models. In order to ensure that the new models subsume the Kfewn
DFSes, which form the broadest class of standard models developed in previous work
on DFS theory, it was considered best to start from the underlying mechanism that
was used to defing, and to pursue an apparent generalization. As we shall see, this
generalization will result in a new class of models genuinely broaderfaDFSes,
thefull class of models definable in terms of three-valued cuts. After introducing this
class in the next chapter, and discussing its models and their properties to some depth,
the subsequent chapter then departs from the three-valued cut mechanism. It succeeds
in defining DFSes from a very different construction, which is theoretically appealing
because these models utilize the extension principle for the transfer from semi-fuzzy
to fuzzy quantifiers. Interestingly, both constructions span the same class of standard
models.
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4 The class of models defined in terms of three-valued cuts

In this chapter, a further step will be taken to extend the class of known DFSes. By
abstracting from the mechanism used to deffae€QFMs, | first introduce the full class

of QFMs definable in terms of three-valued cuts: the clasgpQFMs. Unlike F-

QFMs, the definition of which is based on the upper and lower bounds on the results
obtained for the three-valued cuts and a subsequent aggregation step, the new models
are defined directly in terms of the ‘raw’ result set obtained for the cuts, to which an
aggregation mapping is then applied. Hence the new approach captures all models
definable in terms of three-valued cuts, and promises to span a general class of models
worthwhile investigating. After introducing the surrounding classFafQFMs, the
structure of its well-behaved members is then analysed, by making explicit the nec-
essary and sufficient conditions on the aggregation magpitttat makeFg, a DFS.

In addition, the required theory will be developed that permits us to check interest-
ing properties ofF-DFSes, e.g. whether a giveft, propagates fuzziness, and how
given Fo-QFMs are related by specificity. It is shown that the new class of DFSes is
genuinely broader thast.-DFSes. However, it does not introduce any new ‘practi-
cal’ models because thogg,-DFSes which are Q-continuous, and hence potentially
suited for applications, are in fad;-DFSes. These findings hence provide a justi-
fication for 7.-QFMs. It is also shown that the full class of standard models which
propagate fuzziness both in quantifiers and arguments, is genuinely broader than the
class of M z-DFSes. But again, all models outside the known range of models fail to
be Q-continuous. Apart from investigating these properties, a subclags-QfFMs

will also be introduced, the class #t,-QFMs. These QFMs can be expressed in terms

of a simpler construction which excludes some of the ‘raég-QFMs. | show how

this subclass is related to the full classf&f-QFMs. Among others, this investigation
reveals that the considered subclass still contains all well-behaved models, and hence
the Fo-DFSes andF,,-DFSes coincide. The relevance Bf-QFMs stems from the

fact that they can easily be linked to the alternative classes of models introduced lat-
eron. In other wordsF,,-QFMs are needed to establish the link between the models
defined in terms of three-valued cuts and those defined in terms of the extension prin-
ciple. An investigation ofF,-QFMs is hence essential to the proof that these classes
coincide, which is one of the main contributions to DFS theory made in this report.

To begin with, I will now extend the class df:-QFMs to the full class of QFMs
definable in terms of three-valued cuts of the argument sets. Hence let a semi-fuzzy
quantifier@ : P(E)" — I and a choice of fuzzy arguments, . .., X,, € P(E) be
given. In order to spot a starting point for the desired generalization, we re-consider
the definition ofTg x, .. x, andLg x, .. x, . Apparently, the upper and lower bound
mappings can be decomposed into (a) the three-valued cut mechanism, and (b) a sub-
sequeninf/sup-based aggregation:

TQ,XL.,---,Xn(rY)
= up{O(Vrr e Vo)t (Vi Vo) € To(Xis .o, X)) (25)
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and

J‘Q7X1,--~7Xn (7)
LY, :(Yl,...,Yn)E?;(Xl,...,Xn)} (26)

for all y € I, provided we definég x, ... x, (7) as follows.

n

Definition 51  For every semi-fuzzy quantifi§r: P(E)" — Iandall X,,..., X, €

P(E), the mappingy x, ... x, : I — P(I) is defined by

SQ,Xhm,Xn(’Y) = {Q(Yla cee 7Y7l) : (Y17~ .. 7YTL) € T‘/(Xla- .. ;Xn)}a

forall v € 1.

Some basic properties 6§ x, ... x, are stated in this theorem.

™

n

Theorem 32 Consider a semi-fuzzy quantifi§r : P(E)
subsetsXy, ..., X,, € P(E). Then

— T and choice of fuzzy

a. 59,x,,..,x,(0) # 7,

b. So.x,...x,(7) C So.x,....x, (7/) whenevery, v/ € Twith y < ~'.

x, are contained in the fol-

.....

lowing setK.
Definition 52 K C P(I)" is defined by

K={SecPI)":5(0)#zandS(y) C S(v') whenever < ~'}.

As we shall now proveK is the minimal set which contains all possible choices for

80.x,,....x,,- To this end, we first have to introduce coefficieats) € I associated

with S € K, which will play an essential role throughout the report.

Definition 53 ConsiderS € K. We associate witlh a mappings : I — I defined by
s(z)=inf{yel:ze S},

forall z € 1.

It is convenient to define a notation for tké:)’s obtained from a given quantifier and
arguments.
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Definition 54  For every semi-fuzzy quantifi§y: P(E)" — TIandallXy,..., X, €

ﬁ(E), we denote the mappingobtained fromSy x, ... x,, by applying Def. 53 by
50,x1,...x, : I — 1. The resulting mapping is hence defined by

5,X1,...X, (2) = nf{y € I 2 € o x,,.x, ()}
forall z € L.
As we shall see later, alf,-DFSes can be defined in termssfx,, . x,,.

Theorem 33 LetS € K be given and defin@ : P(2 x I) — I by

QYY) = Qunty' (Y") (27)
forall Y € P(2 x I), where
V'={yel:(0,y) €Y} (28)
V'i={yel:(Ly eY} (29)
and theQ. : P(I) — 1, z € I are defined by
m [z osupY” > s(2)
Q-(V") = { zo : else (30)
forall Y’ € P(X)if z ¢ S(s(z)), and
m |z osupY” > s(2)
Q-(V") = { zo : else (31)
in the case that € S(s(z)). 2o is an arbitrary element
zo € S(0), (32)
which exists by Th-32. Further suppose thae 75(2 x I) is defined by
1
5 a=0
= 33
pc(a:9) {%—%y L a=1 33)

foralla € 2,y € I. ThenSy x = S.
(Proof: A.2, p.77+)

~~~~

7777777

we apply an aggregation operator. K — I in the obvious way.

Definition 55 Consider an aggregation operaté? : K — I. The corresponding
QFM Fq, is defined by

fQ(Q)(Xh'"’X’ﬂ):Q(SQ,Xl ~~~~~ Xn)’

for all semi-fuzzy quantifier® : P(E)" — I and fuzzy argument&, ..., X,, €
P(E).
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By the class ofFo-QFMs, we mean the collection of all QFMs defined in this way.
As usual, we must impose conditions to shrink the full clasggfto its subclass of
Fa-DFSes.

Definition 56 For all S € K, we defines?, S° € K as follows.

n sH) : v<1 S(0) :oy=0
St — v >y Sh = / .
{I oy =1 7'275(7) : >0

forall v € 1.

Note. The definition is slightly asymmetric; | have departed from the usual scheme of
defining S¥(1) = S(1) in this case because the present definitios’dfl) = I allows

for more compact conditions dn, and eventually for shorter proofs.

| further stipulate a definition of = S’ which will serve to express a monotonicity
condition onf2.

Definition 57 For all S, 5" € K, S C S’ if and only if the following two conditions
hold for all v € I:

1. forall z € S(v), there exists’ € S’(v) with 2" > z;

2. forall 2’ € S’(y), there existz € S() with z < 2.

It is apparent from this definition that is reflexive and transitive, but not necessarily
antisymmetric (i.eS C S’ andS’ C S does not imply thats = S’). HenceC is a
preorder.

We are now ready to state the conditions on reasonable choides & — 1, in
analogy to the conditions (B-1)—(B-5) fov1z-DFSes and to the conditions (X-1)—
(X-5) for F¢-DFSes:

Definition 58 Consider(2 : K — I. We impose the following conditions én For
all S € K,
If there exists: € T with S(v) = {a} for all v € I, thenf(S) = a. (©2-1)
If S'(7) ={1—2:2€ S(y)}forall y € I, thenQ(S") =1 — Q(S). (©2-2)
If 1 € 5(0) andS(y) € {0,1} forall v € I, thenQ(S) = 5 + 35(0). (Q-3)
Q(8) = Q(S¥) (€2-4)
If S" € K satisfiesS C S’, thenQ(S) < Q(5"). (©2-5)

Note. The only condition which is slighly different from the usual schem&igl),

The departure from requirin@(S*) = Q(S”) turned out to shorten the proofs. The
latter equation is entailed by the above conditions, however.

Theorem 34 The conditiong2-1)}+(2-5) on 2 : K — I are sulfficient fotFg, to be a
standard DFS.
(Proof: A.3, p.78+)
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In the following, | introduce another construction which elucidates the exact properties
of S € K that a conforming choice @ can rely on.

Definition 59 For all S € K, we defineS* ¢ K by
St(y) = {z € I : there exist’, 2"’ € S(y) with 2’ < 2 < 2"}

forall v € 1.

Note. It is apparent that indeeti € K. The effect of applying to S is that of “filling
the gaps” in the interior of. The resultingS* will be a closed, half-open, or open
interval.

The importance of this construction with respecfg-QFMs stems from the invari-
ance of well-behaved-QFMs with respect to the gap-filling operation:

Theorem 35 Supposé) : K — T is a given mapping such th&f, satisfie(Z-5).
Then

Q(S) = (8%,

forall S € K.
(Proof: A.4, p.90+)

This means that a well-behaved choice&bfnay only depend osup S(7), inf S(v),

and the knowledge whetheup S(v) € S(v) andinf S(vy) € S(v). Apart from this,

the ‘interior structure’ ofS(v) is irrelevant to the determination 6(S).

| have anticipated the discussion of the gap-filling operation because it facilitates the
proof that (2-5) is necessary fofFq, to satisfy (Z-5). The otherQ2-conditions’ are
easily shown to be necessary 16y, to be a DFS, and require only minor adjustments

of the corresponding proofs fdf.-QFMs that were presented in [11].

Theorem 36 The conditiong(2-1)}H2-5) on2 : K — T are necessary fof, to be
a DFS.
(Proof: A.5, p.94+)

Hence theQ)-conditions’ are necessary and sufficient f&g to be a DFS, and alF,-
DFSes are indeed standard DFSes. In order to prove that the criteria are independent,
we relatef:-QFMs to their apparent superclass/t-QFMs.

Theorem 37 Consider an aggregation mappigg: T — L. ThenF; = Fo, where
Q : K — Tis defined by

QS) =¢&(Ts, Ls), (34)
forall S € K,and(Tg, Lg) € T is defined by

Ts(y) =supS(v) (35)

Ls(7) = inf S(3) (36)
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forall v € 1.
(Proof: A.6, p.109+)

This is apparent. Hence af:-QFMs areFo-QFMs and allF.-DFSes areF,-DFSes.
The next theorem permits to reduce the independence proof of the conditiéhtoon
the independence proof of the conditions imposed.on

Theorem 38 Supposé& : T — Iis given and : K — T is defined by{34). Then

a. (X-1) is equivalent td2-1);
b. (X-2) is equivalent tq(2-2);
c. (X-3) is equivalent tq2-3);

d. 1. the conjunction ofX-2), (X-4) and (X-5) implies(2-4);
2. (Q-4) implies(X-4);

e. (X-5) is equivalent tq2-5).
(Proof: A.7, p.110+)

Based on this theorem and the known independence of the conditions (X-1)—(X-5), it
is now easy to prove the desired result concerning independence.

Theorem 39 The conditiong2-1)}{2-5) imposed orf) : K — I are independent.
(Proof: A.8, p.125+)

As has been remarked above, evgiy-DFS can be defined in terms of the mapping
5Q,(x1,..,x,) : I — T and this usually makes a simpler representation. It therefore
makes sense to introduce the class of QFMs definable in tereas&f, . x,) : I —

L.

Theorem 40 Suppose) : P(E)" — Tis a semi-fuzzy quantifier ant;, ..., X,, €

P(FE) achoice of fuzzy arguments. Theny, . x, ~1(0) # &, i.e. there exists, € I
with 5Q,X1,...,.Xn (Zo) =0.

(Proof: A.9, p.126+)
Hence all possible choices &} x, ... x, are contained of the following s&t
Definition 60 L C I! is defined by

L={scI':s'0) #a}.

The following theorem states thatis the minimum subset dit which contains all
possible mapping% x,.... x, :
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Theorem 41 Forall s € L, let us defineS : I — P(I) by

S(v) ={zel:v=s(2)} (37)

for all v € 1. It is apparent thatS € K. Letus further suppose thét: P(2 x I) —
I is defined by27) and thatX € P(2 x I) is the fuzzy subset defined (38). Then

Q,Xx = S.
(Proof: A.10, p.126+)

In order to define quantification results basedsgry, ... x,., we need an aggregation
mappingw : . — I. The corresponding QFNM,, is defined in the usual way.

Definition 61 Let a mappingv : L — I be given. ByF,, we denote the QFM defined
by

fw(Q)(Xh s 7XTL) = w(SQ,Xl,---7Xn) ’

for all semi-fuzzy quantifier® : P(E)" — Tandall Xy,..., X, € 73(E).

It is obvious from the definition ofg x, ... x, in terms ofSy x, . x, that all F-
QFMs areFq-QFMs, using the apparent choicef K — 1,

Q(S) = w(s) (38)

wheres(z) = inf{y € I: z € S(v)}, see Def. 54. It is then clear from Def. 55 and
Def. 61 that

Fao=F,. (39)

The converse is not true, i.e. it is not the case thafghQFMs aref,,-QFMs. How-
ever, if anFo-QFMs is sufficiently ‘well-behaved’, then it is also &,-QFM. In
particular, this is the case fdf,-DFSes.

Theorem 42

a. If Q : K — I satisfieqQ2-4), thenF, = F,, provided we define : L — I
by

w(s) = Q(S) (40)
for all s € L, where
S() ={zel:v=>s(2)} (41)
forall v € I.

b. If Q : K — I does not satisf{£2-4), thenFg, is not anF,,-QFM.

(Proof: A.11, p.127+)
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Therefore arFo-QFM is anF,,-QFM if and only if it satisfiesQ-4). Let us recall that

by Th-36, 2-4) is necessary faF, to be a DFS. This means that we do not loose any
models of interest if we restrict attention to the class of thBseQFMs which satisfy
(©2-4), and can hence be expressedasQFMs.

It is then convenient to switch fronf%1)—(2-5) to corresponding conditions an :

L — I. To accomplish this, we first define a preor@erC L x L, which is needed

to express a monotonicity condition.

Definition 62 Forall s,s’ € I, s C s’ if and only if the following two conditions hold:
a. forallz € I,inf{s'(2') : 2’ > z} < s(2);
b. forall 2’ € I, inf{s(z) : 2 < 2’} < (/).

In the case ofF,,-QFMs, we can express the conditionswn . — I even more
succintly.

Definition 63 We impose the following conditions en . — I. Forall s € L,

If s71([0,1)) = {a}, thenw(s) = a. (w-1)
If s'(2) = s(1 — z2) forall z € I, thenw(s') = 1 — w(s). (w-2)
If s(1) = 0ands~'([0,1)) C {0, 1}, thenw(s) = 3 + 15(0). (w-3)
If s € Lwiths C s, thenw(s) < w(s’). (w-4)

Theorem 43 Letw : L. — I be given and suppose th@t: K — I is defined in
terms ofw according to(38). Then

a. Q) satisfieqQ-1) if and only ifw satisfieqw-1);
b. Q satisfieqQ2-2) if and only ifw satisfieqw-2);
c.  satisfieg2-3) if and only ifw satisfieqw-3);
d. Q satisfieq2-4);

e. Q) satisfieq2-5) if and only ifw satisfieqw-4).

(Proof: A.12, p.130+)

Due to these relationships, the following theorems are obvious from the corresponding
results for(2.

Theorem 44 The conditiongw-1)}w-4) are sufficient fotF, to be a standard DFS.
(Proof: A.13, p.135+)

Theorem 45 The conditiongw-1)}w-4) are necessary faf, to be a DFS.
(Proof: A.14, p.135+)
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Theorem 46 The conditiongw-1)}(w-4) are independent.
(Proof: A.15, p.135+)

To sum up,F,-DFSes comprise alF,-DFSes, they are usually easier to define, and
simpler conditionsy-1)—(w-4) have to be checked. However, the monotonicity condi-
tion (w-4) onw is somewhat more complicated compared to the monotonicity condition
(©2-5) on Q2. In the following, | hence introduce a simpler preordefor expressing
monotonicity, which when combined with an additional condition can replaead

the corresponding monotonicity conditian-4). < is defined as follows.

Definition 64 Forall s,s" € L, s < ¢’ if and only if the following two conditions hold:

a. forall z € I, there existg’ > z with s'(2') < s(z2);

b. forall 2’ € I, there exists < z with s(z) < s'(2').

In order to state the additional condition, it is necessary to introduce a construction on
s € L. which corresponds to the gap-filling operati§hdefined onS € K.

Definition 65 For all s € L, s* : T — T is defined by
st(z) = max(inf{s(2) : 2’ < z},inf{s(z") : 2" > 2}),

forall z € L.
Some basic properties bfare the following.
Theorem 47 Lets € IL be given. Then

a. st <s;

b. st eL;

c. stis concave, i.e.

s¥(2) < max(s¥(21), s%(23)).
whenevee; < zy < z3.

(Proof: A.16, p.136+)

We will need this ‘concavication construction’ for the proof théd satisfying {2-5)
entails thaf? defined by (38) satisfie$§%5). The connection betweérand monotonic
behaviour ofv becomes visible in the next theorem.

Theorem 48 Suppose : L. — I satisfiegw-4). Thenw(s*) = w(s) forall s € L.
(Proof: A.17, p.137+)
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The theorem proves useful for establishing the following result, which conneet} (
to the simplified conditions.

Theorem 49 For all w : .. — I, the monotonicity conditiofw-4) is equivalent to
the conjunction of the following two conditions:

a. forall s, s’ € Lwiths < ¢, it holds thatw(s) < w(s');
b. foralls € L, w(s) = w(s?).

(Proof: A.18, p.138+)

I will now present four examples of ‘genuing,,-DFSes, i.e. ofF,-DFSes which do
not belong to the class of;-DFSes. To this end, it is necessary to introduce some
coefficients defined in terms of a givere L.

1 1
Definition 66 For all s € L, the coefficients, **, si-, ,I’*,f’*sfz,sfz e Iare
defined by
5] =sup 5171(0) (42)
510 = inf st (0) (43)
s; 7 =sups([0,1)) (44)
57" =infs71([0,1)) (45)
<1
sy 2 =inf{s(z): 2 < 3} (46)
1
552 =inf{s(z) 1z > 1}. 47)

Based on these coefficients, | now define the examplégs,abFSes.

Definition 67 Bywj, : L — I we denote the following mapping,

1
101, 1.53% 10 1
min(sy", 5 + 555 %) 530> 3
1
wnm(s) = TO 1 1.23 TO _ 1
max(s, ", 5 — 585 %) se < 3
1 else

for all s € L. The QFMF,, is defined in terms af,; according to Def. 61, i.eFy; =
Fons-

Let us first notice that the QFM;, so defined is indeed a DFS.

Theorem 50 F,, is a standard DFS.
(Proof: A.19, p.142+)
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Let us also remark thafk,, is indeed a ‘genuineF,,-DFS.

Theorem 51 Fj is not anF,-DFS, i.e. there exists no: T — I with 7y = F¢.
(Proof: A.20, p.152+)

In particular, this proves that th&,-DFSes are really more general th&ap-DFSes,
i.e. theF.-DFSes form a proper subclass of thg-DFSes.

Definition 68 Bywp : L. — I we denote the mapping defined by

1
T 1, 1,52y . 101
min(s,; ,§+55*2) DSk > 5
1
wpls) = 4, 23 T,0
() max(s;7", 5 —4s502) 1 s <3
1 )
3 . else

for all s € .. We define the QFMp in terms ofwp according to Def. 61, i.eFp =
Fop-

Theorem 52 Fp is a standard DFS.
(Proof: A.21, p.154+)

Let us also observe tha is a genuineF,,-DFS.

Theorem 53 Fp is notanF,-DFS, i.e. there exists no: T — Isuch thatFp = Fe.
(Proof: A.22, p.159+)

It is possible to obtain an even more specific DFS by slightly changing the definition
of Fp.

Definition 69 Bywy : .. — I we denote the mapping defined by

<l —1
min(slT’*, % + %5*_2) : st(0) C [%, 1]
1
= >1 _
Y= max(st L 357 0 SN0 C 0]

1 .
5 : else

for all s € L. We define the QFMF in terms ofwz according to Def. 61, i.eF; =
Foy-

Note. To see that is well-defined, consider a choice ofc L. such thatsi_l(o) =

{3}. Thens='(0) = {1} as well because~'(0) # @ ands~!(0) C st71(0) by
Th-47. Hence

s =sups~([0,1)) = sups~(0) = sup{}} = . (48)
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by (44). Similarly

s =infs 1([0,1)) < infs '(0) = inf{1} =1. (49)
Noticing that
1
S22 (50)
1
522 =0 (51)

by (46) and (47) becausg?) = 0, we obtain the desired

Tox 1

1
min(s, ", 3 + 3s. %) = min($,2 + 1. 0) by (48), (50)

1
%), by (49), (51)
i.e.wz is indeed well-defined.

Theorem 54 F is a standard DFS.
(Proof: A.23, p.160+)

Again, it is easily shown that; is a genuineF,,-DFS.

Theorem 55 F is not anF.-DFS, i.e. there exists n : T — I such thatF,; =
Fe.

(Proof: A.24, p.166+)

Definition 70 Bywpg : L — I we denote the mapping defined by

min(si*, 3 + 5s(0)) 50> 3
wr(s) = max(s. ", 3 —3s(1) - s < 3
2 . else

for all s € L. We define the QFNFy in terms ofwy according to Def. 61, i.eF g =
For-

Theorem 56 Fp is a standard DFS.
(Proof: A.25, p.167+)

Again, we can assert th#iz is a genuinefF,,-DFS.

Theorem 57 Fp is not anF.-DFS, i.e. there exists np: T — I with Fr = F¢.
(Proof: A.26, p.171+)
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Now that the defining conditions of,-DFSes andF,,-DFS have been established and
examples of the new classes of models have been given, we turn to additional properties
like propagation of fuzziness. Usually | state the corresponding conditions both for the
representation in terms dfg and in terms ofF,,. This provides maximum flexibility

in later proofs whether a model at hand does or does not possess these properties.

Definition 71 For all S, S’ € K, we say thatS is fuzzier (less crisp) thaf’, in sym-
bols: S <. .5, if and only if the following conditions are satisfied for alc 1.

forall 2’ € S'(v), there exists € S(v) such that: <, 2/; (52)
for all z € S(v), there exists’ € S’(y) such that: <, 2’. (53)

Definition 72 Let) : K — I be given. We say th& propagates fuzzinessand
only if
QS) 2. (S

wheneverS, S’ € K satisfyS <. S’.

Theorem 58 For all Q : K — I, Fq propagates fuzziness in quantifiers if and only
if 2 propagates fuzziness.
(Proof: A.27, p.173+)

The following condition permits a simplified check if a giv@rpropagates fuzziness.

Theorem 59 Supposé) : K — I satisfie{Q2-1)H2-5). Then) propagates fuzziness
if and only if

forall S € K with 5(0) C [3,1].
(Proof: A.28, p.178+)

Definition 73 LetS, S’ € K be given. We say th&tis less specific thaf’, in symbols
S € &', ifand only if

S(v) 25 (v)

forall v € 1.

Definition 74 Let() : K — I be given. We say thé&t propagates unspecificitiyand
only if

Q(S) 2. Q)

for every choice of, S’ € Kwith S € S'.
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Theorem 60 Forall Q : K — I, Fq propagates fuzziness in arguments if and only if
2 propagates unspecificity.
(Proof: A.29, p.182+)

The above criterion fof2 propagating unspecificity can be simplified as follows.

Theorem 61 Supposé) : K — I satisfieg2-1), (2-2), (12-4) and (Q2-5). Then the
following conditions are equivalent:

a. ) propagates unspecificity;

b. for all s € K with S(0) C [4,1], it holds thatQ(S5) = Q(S’), whereS’ € K is

defined by
oy _ [ ] oz S()
so={ G § oese 59
forall v € I, and wherez,, = z,.(+y) abbreviates
ze = inf S(v) . (55)

(Proof: A.30, p.185+)

Definition 75 For all s, s’ € L, we say that is fuzzier (less crisp) thasl, in symbols
s =, s, if and only if

for all z € I, there exists’ € T with 2 <, 2" ands’(2’) < s(z); (56)
for all 2’ € T, there existg € Twith z <, 2’ ands(z) < s'(2/). (57)

Definition 76 A mappingw : L. — I is said topropagate fuzzines$ and only if
w(s) <. w(s’) for all choices ofs, s’ € L with s < s'.

Theorem 62 Supposev : L. — T is ¥-invariant, i.e.w(s?) = w(s) for all s € L.
ThenF,, propagates fuzziness in quantifiers if and only ifropagates fuzziness.
(Proof: A.31, p.188+)

If w is well-behaved, then we can further simplify the condition that must be tested for
establishing or rejecting that propagate fuzziness.

Theorem 63 Suppose that : . — I satisfiew-1}Hw-4). w propagates fuzziness
if and only if for all s € L with s=1(0) N [%,1] # @, it holds thatw(s) = w(s’), where

SiZ N z
s’(z>={ @ = 22 (58)

(SIS

1 Doz <

forall z € I
(Proof: A.32, p.196+)
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Definition 77 A mappingw : . — T is said topropagate unspecificiiy and only if
w(s) 2. w(s’") whenever, s’ € LL satisfys < s.

Theorem 64 Letw : L — I be a given mapping. TheR,, propagates fuzziness in
arguments if and only ib propagates unspecificity.
(Proof: A.33, p.201+)

Again, it is possible to simplify the condition imposed©n

Theorem 65 Suppose : L — I satisfieqw-1), (w-2) and(w-4). Then the following
conditions are equivalent.

a. w propagates unspecificity;

b. forall s € L withs=' N [3, 1] # @, it holds thatw(s) = w(s’), wheres’ € L is
defined by

s'(z) = inf{s(z') : 2’ < z} (59)
forall z € I.

(Proof: A.34, p.203+)

Now let us apply these criteria to the examplesFgtDF Ses.

Theorem 66 Fj; propagates fuzziness in quantifiers.
(Proof: A.35, p.205+)

Theorem 67 F,; propagates fuzziness in arguments.
(Proof: A.36, p.209+)

Let us recall from Th-51 thaf,, is not anF.-DFS, in particular not aoM z-DFS.

Hence the class 0¥ 5-DFSes, which propagate fuzziness in both arguments and quan-
tifiers, does not include all standard DFSes with this propétty.is a counterexample
which demonstrates that the class of standard DFSes which propagate fuzziness both
in quantifiers and arguments is genuinely broader than the clastgDFSes.

Theorem 68 Fp propagates fuzziness in quantifiers.
(Proof: A.37, p.211+)

Theorem 69 Fp does not propagate fuzziness in arguments.
(Proof: A.38, p.212+)

Theorem 70 F propagates fuzziness in quantifiers.
(Proof: A.39, p.213+)
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Theorem 71 Fz does not propagate fuzziness in arguments.
(Proof: A.40, p.214+)

As concernsFr, we have the following results.

Theorem 72 Fg does not propagate fuzziness in quantifiers.
(Proof: A.41, p.214+)

Theorem 73 Fp propagates fuzziness in arguments.
(Proof: A.42, p.215+)

Hence there aré,,-DFSes beyondr.-DFSes that propagate fuzziness in quantifiers,

but not in arguments. In particular, the class of standard DFSes that propagate fuzziness
in quantifiers but not in arguments is genuinely broader than the clags-biFSes

with this property. We shall check later that the classpfDFSes with this property

is still specificity consistent and investigate its least upper specificity bound.

Definition 78 A collection@ of mappings) € @, Q2 : K — I is calledspecificity
consistentif and only if for all S € K, either{2(S) : @ € K} C [$,1] or {Q(5) :
QeK}Cloil]

Theorem 74 Suppose® is a collection of mapping® € @, Q : K — I and let
F = {Fq : Q € @} be the corresponding collection of QFMs. ThEiis specificity
consistent if and only & is specificity consistent.

(Proof: A.43, p.216+)

Theorem 75 Suppose® is a collection of mappings) € @, 2 : K — I which
satisfy(2-5), and letF = {F, : Q € @} be the corresponding collection of DFSes.
Further suppose that evefy € @ has the additional property thd?(S) = % for all

S e Kwith S(0)N[3,1] # @ andS(0) N[0, 3] # @. ThenF is specificity consistent.
(Proof: A.44, p.217+)

Definition 79 We say thaf2 : K — 1 is fuzzier (less crisp) thaft’ : K — 1, in
symbols:) <. €, if and only ifQ(S) <. Q/(S) forall S € K.

Theorem 76 LetQ), Q) : K — T be given mappings and I, Fq be the corre-
sponding QFMs defined by Def. 55. Theép <. Fq- if and only ifQ <, .
(Proof: A.45, p.218+)

This criterion for comparing specificity can be further simplified in the frequent case
that some basic assumptions can be made @'

Theorem 77 LetQ), Q) : K — I be given mappings which satigf-2) and (Q2-5).
Further suppose tha(S) = 1 = Q'(S) wheneverS € K hasS(0) N [3,1] # @ and
5(0) N [0,4] # @. ThenQ =, Q' if and only ifQ(S) < Q'(S) for all S € K with
5(0) C [5.1].

(Proof: A.46, p.218+)
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Similar criteria can be established in the case of mappings — 1.

Definition 80 A collectionw of mappingsv € w, w : L. — T is called specificity
consistent if and only if for alk € L, either{w(s) : w € L} C [1,1] or {w(s) 1 w €
L} < [0, 5).

Theorem 78 Supposew is a collection of mappings € w, w : L — I, and let
F = {F, : w € w} be the corresponding collection of QFMs. THhetis specificity
consistent if and only if» is specificity consistent.

(Proof: A.47, p.219+)

Theorem 79 Supposew is a collection of mappings € w, w : . — I which satisfy
(w-1)Hw-4), and letF = {F, : w € w} be the corresponding collection of DFSes.
Further suppose that evety € w has the additional property that(s) = 3 for all

s € L with s71(0) N [3,1] # @ ands~1(0) N [0,3] # @. ThenF is specificity
consistent.

(Proof: A.48, p.220+)

The following theorems show that the above property is possessed b@&h-BySes
that propagate fuzziness in quantifiers and by those that propagate fuzziness in argu-
ments:

Theorem 80 Letw : . — I be a given mapping which satisfigs-1)(w-4) and
suppose that the corresponding DB, propagates fuzziness in quantifiers. Then
w(s) =1 forall s € Lwiths=1(0)N[3,1] # @ands~(0) N[0, 3] # @.

(Proof: A.49, p.221+)

In particular,

Theorem 81 The collection ofF,,-DFSes that propagate fuzziness in quantifiers is
specificity consistent.
(Proof: A.50, p.222+)

Theorem 82 Letw : L. — I be a given mapping which satisfig@s-1)}+(w-4) and
suppose that the corresponding DFS, propagates fuzziness in arguments. Then
w(s) =1 forall s € Lwiths=1(0)N[3,1] # @ands~1(0) N[0, 3] # @.

(Proof: A.51, p.222+)

Therefore

Theorem 83 The collection ofF,,-DFSes that propagate fuzziness in arguments is
specificity consistent.

(Proof: A.52, p.222+)

Definition 81 We say thatv : . — T is fuzzier (less crisp) thaw’ : L — 1, in
symbolsw =<, «’, if and only ifw(s) <, w'(s) forall s € L.
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Theorem 84 Letw,w’ : L — I be given mappings and I&%,,, F. be the corre-
sponding QFMs defined by Def. 61. ThEp <. F.- if and only ifw <, w’'.
(Proof: A.53, p.223+)

Again, it is possible to simplify the condition in typical situations.

Theorem 85 Letw,w’ : L — I be given mappings which satisy-2) and (w-4).

Further suppose that(s) = 1 = w’'(s) wheneves € L satisfiess!(0) N[5, 1] # @

ands~1(0) N[0, 3] # @. Thenw <. ' if and only ifw(s) < w/(s) for all s € L with
-1

st(0) C [5,1].

(Proof: A.54, p.223+)

The precondition of the theorem is e.g. satisfied by the models that propagate fuzzi-
ness. Based on this simplified criterion, it is now easy to prove the following results
concerning specificity bounds.

Theorem 86 F is the most specifi€,,-DFS that propagates fuzziness in quantifiers.
(Proof: A.55, p.224+)

Theorem 87 Fpg is the most specifi&,,-DFS that propagates fuzziness in arguments.
(Proof: A.56, p.226+)

Theorem 88 Fy, is the most specifif,,-DFS that propagates fuzziness both in quan-
tifiers and arguments.
(Proof: A.57, p.228+)

As concerns the issue of identifying the least specific model, we obtain the following
result which confirms the special role 8f;;.

Theorem 89 My, is the least specifi¢,,-DFS.
(Proof: A.58, p.229+)

Finally let us consider continuity properties8§-DFSes. This investigation will help
us to relate the new class of DFSes to its subclas§eDFSes. To this end, we
introduce the following operatidt.

Definition 82 For all S € K, S € K is defined by
S"(7) = [inf S(v), sup S(7)]
forall v € 1.
Note. It is apparent from Def. 52 that indet < K.
Theorem 90 For all  : K — I, Fq is an F.-QFM if and only ifQ is H.invariant,

i.e.Q(8) = Q(sY) forall S € K.
(Proof: A.59, p.240+)
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Utilizing this relationship, the following theorem is straightforward.

Theorem 91 Let() : K — I be an*-invariant mapping. IfF, is Q-continuous, then
itis an F¢-QFM, i.e. there exist§ : T — I with 7o = F¢. In particular, the theorem
is applicable to allF-DFSes.

(Proof: A.60, p.242+)

Hence allF,-DFSes that are interesting from a practical perspective are already con-
tained in the class af¢-QFMs.

Summarizing, this chapter was devoted to the definition and analysis of the full class
of QFMs definable in terms of three-valued cuts. In order to carry out this gener-
define F:-QFMs can be decomposed into subsequent application of the three-valued
cut mechanism (which generates an ambiguity set of alternative interpretations for each
cut level) followed by an aggregation step based on the infimum or supremum. In order
to abstract from the concepts used to deffaeand to capture the full class of standard
models that depend on three-valued cuts, it was straightforward to drepphief-
based aggregation step and to start an investigation of those models that can be defined
in terms of the ‘raw’ information obtained at the cut levels, i.e. in terms of the result
setsSy, x, ... x,, (7) which represent the ambiguity range of all possible interpretations
of Q given the three-valued cuts &f, ..., X, at the cut levels. In order to develop
the theory of these models, | first identified the precise range of possible mappings
S = %9,x,,...x, that can result from a choice of quantifi@ and fuzzy arguments
Xi,...,X,. Theresulting seK provides the proper domain to define aggregation op-
erators(2 : K — I, from which QFMs can then be constructed in the apparent way,
Ie]:Q(Q)(Xl, e ,Xn) = Q(SQ,Xl,...,X”)-

After introducing F-QFMs, | developed all formal machinery required to express
the precise conditions ofl that makeF, a DFS. In particular, | have characterised

the class ofF-DFSes in terms of a set of necessary and sufficient conditions, and |
have shown that these conditions are independent. This analysis also reveals that all
Fq-DFSes are in fact standard DFSes, and hence fulfill the expectations on standard
models of fuzzy quantification. In addition, the known class/fQFMs has been
related to its apparent superclassrf-QFMs.

| then focused on an apparent subclasg©fQFMs, the class af,,-QFMs. These are
obtained by defining coefficients x,,. . x, (z) = inf{vy: z € S x,,....x, () which
extract an important characteristic of the result sefs¢, ... x, (7). Introducing this
construction offers the advantage that we no longer need to worksettiof results,

like it was the case with th&; x, ... x. (7), which are subsets of the unit interval. By
contrast, we can now focus on scalassy, ,.... x,, in the unit range, and a subsequent
aggregation by applying the chosen . — I. Among others, this greatly simplifies

the definition of models, and hence all examplesFgtDFSes were presented in this
succint format.

Noticing that the new coefficientg) x, ... x, are functions o5, x, ... x, which sup-

press some of the original information, the question then arises if some d¢fthe
DFSes are lost under the new construction. To resolve this issue whettigr-bESes

are a subclass proper, and to gain some insight into their structure, | have introduced
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the concepts required to characterise adequate choicesRidilding on these defini-
tions, a set of independent conditions that precisely describh& HeFSes in terms of
necessary and sufficient criteria erhas been developed. In addition, thg-QFMs
have been related to their superclassFof-QFMs. This analysis revealed that the
move fromF,-QFMs toF,,-QFMs does not result in any loss of intended models, i.e.
the classes af,-DFSes andF,,-DFSes coincide.

Turning to examples af-DFSes (or synonymously;,,-DFSes), the simplified for-
mat was utilized to define the fouf,,-DFSesF,,, Fp, Fz andFg, all of which were
shown to be ‘genuine’ members which go beyond the class.eQFMs. In order to
gain more knowledge of these models, and to locate them precisely within the class of
F..-DFSes, the full set of conditions dhandw was then developed, that are required
to investigate the characteristic properties of DFSes.

To this end, | first extended the specificity order to the case ef S’ ands <, s'.
This allowed me to reducg,’s propagating fuzziness in quantifiers to the requirement
that(Q) propagate fuzziness, i.6.=<. S’ entailsQ(S) <. (5’). Based on a different
relationS € S’ defined orkK, it was then possible to define a condition of propagat-
ing unspecificity orf2, and to prove thafq propagates fuzziness in arguments if and
only if Q propagates unspecificity. In addition, | have shown that both the condition
of propagating fuzziness and the condition of propagating unspecificity can be further
simplified if the considered is well-behaved (in particular iFg, is a DFS). In this
common case, a very elementary testbis sufficient for detecting or rejecting these
properties. All of these results have also been transferrefl tQFMs, and hence
turned into corresponding conditions on After developing the formal apparatus re-
quired to investigate propagation of fuzzinessFin- and.F,,-QFMs, the issue of most
specific and least specific models was then discussed to some depth. Acknowledging
its relevance to the existence of most specific models, | first extended the notion of
specificity consistence to collectiof® of of aggregation mapping3 and proved that
the resulting criterion o2 precisely captures specificity consistence of the class of
QFMsF = {F, : Q € @}. Hence the question whethBrhas a least upper speci-
ficity bound can be decided by looking at the aggregation mappingks inhave also
shown how the criterion can be simplified in common situations. Following this, the
guestion was addressed how a specificity compazeors,. Fq: can be reformulated
into a condition() <, ' imposed on the aggregation mappings. Again, the condition
for Q <. Q' can be reduced to a very simple check in many typical situations. All of
the above concepts and theorems were then adapted-@FMs, in order to provide
similar support for specificity comparison in those cases where the models of interest
are defined in terms of an aggregation mapping

Based on these preparations, it was easy to prove some results concerning prop-
agation of fuzziness that elucidate the structure of the clasg eDFSes, and that
relate the examples of,-DFSes to the class as a whole. First of all, the full class
of F,,-DFSes is not specificity consistent (because its subclags-ofFSes is known
to violate specificity consistence), and hence a ‘most speEifiOFS’ ceises to exist.
However, the class of models that propagate fuzziness in quantifiers was shown to be
specificity consistent, and the most specffic-DFS with this property was also identi-
fied, and turned out to ;. Recalling thatF; is not anF,-QFM, this demonstrates
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that the class ofF,,-DFSes which propagate fuzziness in quantifiers is an extension
proper of the class aof¢-DFSes with the same behaviour. Turning to propagation of
fuzziness in quantifiers, it was possible to prove a similar result. The corresponding
class ofF,,-DFSes was shown to be specificity consistent, Ardwvas established to

be the most specifid,,-DFS with this property. Again, we conclude from the fact
that 7 is a ‘genuine’F,,-DFS that theF,,-DFSes contain models which propagate
fuzziness in arguments beyond those already known from the stufly-BFSes. We

then investigated those standard models that propagate fuzziness both in quantifiers
and arguments. The modgl, was shown to be the most specifig -DFS with these
properties. The class df:-DFSes that fulfill both conditions is known to coincide
with the class ofMz-DFSes. Becaus&), is not anF.-DFS, this proves that there

are standard models beyond s-DFSes which propagate fuzziness both in quantifiers
and arguments.

The problem of identifying the greatest lower specificity bound has also been ad-
dressed. In fact, the least specifi¢,-DFS was proven to coincide with one of the
Mp-DFSes, namelyM, which was already known to be the least specifig- and
Fe-DFS.

Finally, | have addressed the continuity issue. It is indispensible for applications that
the chosen QFM be robust against slight variations in the chosen quantifier and in its
arguments, which might e.g. result from noise. In addition, both continuity conditions
are desirable in order to account for imperfect knowledge of the precise interpreta-
tion of the involved NL quantifier and NL concepts in terms of numeric membership
grades. Based on an auxiliary fill constructiH, it was then shown that ever¥,-

QFM which is continuous in quantifiers is in fact #z-QFM. The class ofF,,-DFSes
which are Q-continuous therefore collapses into the clagg-cbntinuousF:-DFSes,

and those Q-continuous, -DFSes which propagate fuzziness in quantifiers and argu-
ments collapse into the class .M g-DFSes. This proves that gltactical models are
already contained in the class &t-DFSes, and those practical models which prop-
agate fuzziness both in quantifiers and arguments are contained in the clagsg-of
DFSes. This justifies the development and thorough analysis of these simpler classes
in [9] and [11], every model of practical interest will belong to one of these classes. It
can hence be expressed through constructions simpler than those used tdrgefine
andF,,-QFMs, which in turn permit a simpler check of the relevant formal properties,
like being a DFS, propagation of fuzziness, specificity comparisons, and continuity,
and which suggest simple algorithms for implementing quantifiers in the model.
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5 The class of models based on the extension principle

In this chapter, an attempt is made to define DFSes from independent considerations,
and to establish a new class of fuzzification mechanisms not constructed from three-
valued cuts. Starting from a straightforward definition of argument similarity, we first
introduce the full class of QFMs defined in terms of the similarity measure, the class
of F,-QFMs. It encloses the interesting subclas§gfQFMs, i.e. the class of models
defined through the standard extension principle (which serves to aggregate similar-
ity grades). The necessary and sufficient conditions are then developed, which the
aggregation mappings must satisfy in order to make the corresponding fuzzification
mechanism a DFS. Based on this analysis, it becomes possible to prove the main result
of this chapter, which states that the classe$@fDFSes andF,-DFSesF -DFSes
coincide. Because the same class of models is obtained from independent considera-
tions, this provides evidence that it indeed represents a natural class of standard models
of fuzzy quantification.

To begin with, the similarity grad&y, v, (Xi,...,X,) of the fuzzy arguments
(X1,...,X,) to achoice of crisp argument¥?, ..., Y;,) can be defined as follows.

Definition 83  Let £ # @ be some base set aiid € P(F). The mappingEy :
P(E) — 1is defined by

Ey(X) = min(inf{ux(e) e € Y},inf{l —pux(e):e ¢ Y})

forall X € P(E). Forn-tuples of argument;, ..., Y, € P(E), we defin&€}) .
ﬁ(E)n — T hy

n
Sy oy, (X, X)) = A

i

(1]

Evi(Xi)

forall Xq,...,X, € 75(E). Whenevenm is clear from context, we shall omit the
y, (X1,...,X,) instead oEgg) Yn(Xl, cey X))

.....

.....

At times, it will be convenient to use the following abbreviation. We recall the fuzzy
equivalence connective> : I x I — I defined by

rey=(xAy)V (- Ay)

forall z,y € I. In the case thaj € {0, 1}, this apparently becomes

o= y=1
x(_)y_{ﬁac : y=0

Now consider a base sét # @ and letX € P(E), Y € P(E). We make use of the
—-connective to definéx y : £ — I by

dxor(e) = ux(e) o orlen = { X0 eed (60)
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forall e € E. Interms ofdy g, we can now conveniently reformulai, (X). In
particular, we can expressy, v, (X1,...,X,), whereX;,...,X,, € P(E) and
Yi,...,Y, € P(E), by

Eyl,_”’yn (Xl, - 7Xn) = inf{éXi,Yi(e) e c E7i =1,.. .,TL}. (61)

This succint notation will at times be used in the proofs. Next we define the set
of all compatibility grades which corresponds to a given choice of fuzzy arguments
X1,..., X,.

Definition 84 Let E # @ be a given base set and, ..., X,, € P(E),n > 0. Then
DY . € P(1)is defined by

DY o ={Evy (X1, X)) 1 Y1, Y, € P(B)).
Whenever this causes no ambiguity, the supers¢riptvill be omitted, thus abbrevi-

atingDx, .. x, = D)(g)...,x

n

Note. The superscript is only needed to discBéq) (which corresponds to the empty
tuple) fromDél) (which corresponds to the empty set).

Definition 85 By D C P(P(I)) we denote the set of ald € P(I) with the following
properties:

1. DN [, 1] = {ry} forsomer, =r (D) €|
2. forall D' € Dwith D’ # @,inf D’ € D;

15

1
2

3. ifry. > %, thensup D\ {r } =1—r.

Theorem 92 Supposell # & is some base set anll;,..., X,, € 75(E) are fuzzy
subsets oF. ThenDx, . x, € D.
(Proof: B.1, p.247+)

.....

.....

theorem has been delayed because it then becomes a corollary).

In order to define the new class of fuzzification mechanisms, we now relate the simi-
larity information expressed iy, v, (X1, .., X,) to the behaviour of a quantifier

on its arguments.

Definition 86 LetQ : P(E)" — Ibe a given semi-fuzzy quantifier akq, ..., X,, €
P(E). Then (73(1,...,Xn : I — P(I) is defined by

A8, () = B (X, Xn) £ (V1 Ya) € Q71(2))
for all z € I. Whenn is clear from context, | usually omit the superscript), thus
abbreviating4, x, .. x, = (”;(1,__. X, -
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Note. Again, the superscript is only needed to eliminate the ambiguity bemggm

whereQ is a nullary quantifier an&s the empty tuple, an (1; where( is a one-
place quantifier an@ is the empty argument set.
Let us now describe the range of all possidle x, .. x, .

Definition 87 By A we denote the set of all mappings: I — P(I) with the follow-
ing properties:

a. U{A(z) : z €I} € D;

b. forall z,z" € I, sup A(z) > % andsup A(2’) > 1 entails that = 2.

In the following, D(A) denotes the set
D(A) =U{A(z) : z € I}. (62)

In addition, . abbreviates; (A) = r(D(A)). Itis then apparent from Def. &.
and Def. 85 that there exists = 2z, (A4) € I with

ry € A(zy). (63)
In the following, z is assumed to be an arbitrary but fixed choice.ofe I which
satisfies (63) for a consideretic A.

Theorem 93 Suppose) : P(E)" — T is a semi-fuzzy quantifier an,, ..., X,, €

ﬁ(E) ThenAQXl 77777 x. € A.

(Proof: B.2, p.255+)

HenceA contains alldg x,.... x, -

Theorem 94 LetA € A be given and)(A4) = U{A(z) : z € T}.

a. If D(A) = {1}, thenA = AJ), whereQ : P({x})" — L is the constant
quantifierQ(@) = z;.

b. If D(A) # {1}, then we can choose some mappjngD(A4) — I with
re A((r) (64)

forall r € D(A). If ry = r(A) equalsi, thenr, € D(A)N[0,1 —ri]. If
ry > 3, then we recall from Def. 87 thatip D(A) \ {r;} = 1 —r,. Because
D(A) # {1} by assumption, we hence know that there exists

r— € D(A)N[0,1 —r4] (65)

and we shall assume an arbitrary choiceraf with this property. Based on_,
we defineX € P(I x I) by

,uX(z,r):{

reA(z) \{ry}
~ ot rgAR)Vr=ry >3 (66)

r=ry

=3 3

1
2
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forall z,r € I. Forall Y € P(I x I), we abbreviate

T=1r(Y) =Ey(X) (67)
"Vy=inf{z €1:(z,7)eY andr =r'(Y) € A(2)}. (68)

[ A :or e A(Y)

forall Y € P(I x I).
ThenA = Ag x.

(Proof: B.3, p.255+)
Let us also state the following corollary:
Theorem 95 Forall D € D,

a. It D = {1}, thenD = D, wherew is the empty tuples € P({})".

b. If D # {1}, then there existX € P(I x I) such thatD = Dx.
(Proof: B.4, p.261+)

HenceD is indeed the smallest subset@{P(I)) which contains alDx, ... x, .

In order to carry out the desired aggregation, which will turn the compatibility grades
into a fuzzification mechanism, we now deploy mappiggsA — I. These can be
used to define a QFM in the apparent way, by composing wittghe, .. x,’s:

Definition 88  Letsy : A — I be given. The QFNF,; is defined by
Fop(@Q)(X1,..., Xn) =v¥(4g,x,,...x,,)

for all semi-fuzzy quantifier® : P(E)" — Iandall Xi,..., X, € P(E).

This definition spans the full class of QFMs definable in terms of argument similarity,
and we will now investigate its well-behaved models. To this end, we need some more
notation, for expressing the properties required from legal choices ofs usual,

the goal is that of characterising the new class of DFSes in terms of the necessary
and sufficient conditions on the aggregation mapping. In order to describe the desired
monotonicity properties, | first define a suitable pre-ordefon

Definition 89 For all A, A’ € A, we say thatd C A’ if and only if the following
conditions are satisfied hyt, A’

a. forallz e Tand allr € A(z), there exists’ > z withr € A’'(2');
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b. forall 2/ e Tand allr € A’(2'), there exists < 2z’ withr € A(z).

Next | introduce a ‘cut/fill operatort] on A, which will be essential to ensure that
¢ satisfy (Z-4). In order to define this operator, | first describe its behaviour on the
A(z)'s.0: P(I) — P(I) is defined by

OB = {r € 0, ] : there exists’ > r with ' € B} (70)

forall B € P(I). If B = A(z) forsomeA € A, z € 1, then it is apparent from Def. 87
and Def. 85 that

[0, s) i s8¢ A(z)

DA(2) = { [0, min(s, %)] i s€A(z) (71)

wheres = sup A(z). Based on this definition af] A(z), we defined A element-wise
forall z € I.

Definition 90 [ : A — A assigns to eacll € A the mappingd A € A defined by
(O A)(z) =0(A(z))
forall z € I.

Note. It is apparent from (71) and Def. 87 that inde€edl € A. We shall use this
operator in some of the theorems to follow. An invariance condition with respect to
O A will not be imposed ony, though. Instead, we require thatbe invariant with
respect to a stronger cut/fill operatét, which suppresses even more information:

Definition 91 Forall A € A, HA € A is defined by

BA(z) = [0,BA(2)], (72)
where

BA(z) = min(sup A(z), 1) (73)
forall z € I.
Notes

o [tis immediate from the definition diA thatEHA € A, see Def. 87.

e For every semi-fuzzy quantifigp : P(E)" — Iand allX;,..., X, € P(E),
we abbreviate
A0, X1, X, (74)

EQ,XU..,XTL =H
X = E/EAvala-“vxn ° (75)

EHQ7X17--
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e In the above definitiorfH has been used to expréBsin fact, both are definable
in terms of each others, because conversely

HA(z) = supBA(2), (76)
forall A € Aandz € 1.
¢ Itis immediate from Def. 90 that
HA(z) = sup O A(2) (77)

forall z € 1.

The cutffill operatofs is of special relevance to the characterisatiotFpfDFSes be-
causdb-invariance ensures that (Z-6) be valid.

In order to define the conditions o succintly and to support the corresponding
proofs, it is useful to introduce some additional abbreviations. Fot alA,

NV(A)={z€l: A(z) # o} (78)
VL(A)={z€1:A(z)\{0} £} ={2€1:A(2)n(0,1] #2}. (79)
We have now introduced all notation required to express the conditions on admissible
choices ofi.

Definition 92 Letty : A — T be given. The conditiong@)-1)—(y-5) are defined as
follows. ForallA, A’ € A,

If D(A) = {1}, theny(A4) = z. (¥-1)
If A(z) = A'(1 — z) forall z € I, theny(A4) =1 — ¢ (A’). (x-2)
IfNV(A4) C {0,1} andr, € A(1), (1-3)
theny(A) =1 — sup A(0).

If AC A, theny(A4) < ¢(A"). (1-4)
P(BA) = p(A). (¢-5)

The proof that these conditions are sufficient and necessaty,fdo be a (standard)
DFS has been split up into several theorems, in order to reveal the dependency structure
and some of the constructions that were useful in accomplishing this task.

Theorem 96 If ¢ : A — I satisfieqy)-1) and (1-5), thenF,, satisfieqZ-1).
(Proof: B.5, p.261+)

Next we consider the behaviour gf on two-valued quantifiers. To this end, it is
convenient to relately x, ... x, to the coefficienkg x, .. x, that was used to define
F.-QFMs. As a by-product of these results, we will discover thaFgHQFMs are in
fact F,-QFMs. In particular, allF, and F,,-DFSes constitute a subclass of our new
class ofF,,-DFSes.
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Theorem 97 Let@ : P(E)" — I be a semi-fuzzy quantifier and;,..., X,, €
P(E). Thenforallz €1,

wheres(A) € L, A € A is defined by
s(A)(z) = max(0,1 — 2 - sup A(2)) (80)

forall z € L.
(Proof: B.6, p.263+)

Theorem 98 Every F,-QFM is an F,-QFM, i.e. for allw : L. — T, there exists
¢ A — Twith 7, = Fy. ¢ is defined by
P(A) = w(s(A)) (81)

forall A € A.
(Proof: B.7, p.269+)

Theorem 99 If v : A — I satisfies(y-2) and (x-3), then F,, coincides with all
standard DFSes on two-valued quantifiers, i.e. for every standard Br®id two-
valued quantifie : P(E)" — {0,1}, it holds thatZ,(Q) = F(Q).

(Proof: B.8, p.269+)

Theorem 100 Supposep : A — I satisfies(y)-2) and (¢-3). ThenF, satisfies
(Z-2).
(Proof: B.9, p.271+)

Theorem 101 If ¢ : A — I satisfieq)-2) and (1)-3), thenF,, satisfieqZ-3).
(Proof: B.10, p.271+)

Let us now utilize the operaton defined above. We first notice th@tinvariance
impliesd -invariance.

Theorem 102 Suppose that : A — I satisfieq«-5). Theny is also[]-invariant,
i.e. it holds that

»(OA) =v(A), (1-5)
forall A € A. (Proof: B.11, p.273+)

Theorem 103 Suppose) : A — I satisfiegy-2), (-3) and (¢-5'). ThenF,, satis-
fies(Z-4).
(Proof: B.12, p.273+)

As concerns the preservation of monotonicity properties of quantifiers in their argu-
ments, we firstly observe:
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Theorem 104 If ¢ : A — I satisfies()-4), thenF, is monotonic, i.eF,(Q) <
Fup(Q) forall Q, Q" : P(E)" — IwithQ < Q.
(Proof: B.13, p.278+)

In the case that a few other conditions are valid §ormonotonicity of 7, can be
shown to entail the desired preservation of monotonicity in arguments (Z-5):

Theorem 105 If ¢ : A — I satisfieqy-2), (-3), (v-4) and(y-5'), thenF,, satisfies
(Z-5).
(Proof: B.14, p.278+)

Theorem 106 If ¢ : A — I satisfieqy-2), (v-3) and (-5), thenF,, satisfiegZ-6).
(Proof: B.15, p.280+)

These results can be summarized as follows.

Theorem 107 If ¢ : A — I satisfieqw-1)Hy-5), thenF, is a standard DFS.
(Proof: B.16, p.286+)

Next | prove that the conditions imposed grare necessary foF,, to be a DFS.

Theorem 108 If F,, satisfieqZ-1). theny : A — I satisfieqy-1).
(Proof: B.17, p.286+)

Theorem 109 Lety : A — I be a given mapping such th&i, satisfiegZ-2). Then
Fy induces the standard negatien: = 1 — x.
(Proof: B.18, p.287+)

Theorem 110 Lety : A — I be given and suppose thé, satisfiegZ-1) and(Z-2).
If 7, satisfieqZ-3), theny satisfiegy)-2).
(Proof: B.19, p.289+)

Theorem 111 Lety : A — I be given and suppose th#i, satisfies(Z-2). If
the induced disjunction is astnorm, thenF,, induces the standard fuzzy disjunction
x Vy = max(x,y).

(Proof: B.20, p.290+)

Theorem 112 Lety : A — I be given and suppose th&t, induces the standard
disjunction and the standard extension principlesliatisfies(Z-4) and (Z-6), then
»(OA) =¢(A)forall A e A. Hencey satisfiegy-5'), i.e.1) is O -invariant.

(Proof: B.21, p.293+)

This result can be extended to the case of invariance with respgkct to

Theorem 113 Letvy : A — I be given and suppose th#t, induces the standard
disjunction and the standard extension principleFlf satisfieqZ-4) and (Z-6), then
P(BA) = ¢(A) forall A € A. Hence(y-5) is valid, i.e.v) is B-invariant.

(Proof: B.22, p.326+)
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Based on these interrelationships, we can now state a theorem concerned with the
necessity of conditiony-3).

Theorem 114 Suppose thap : A — T is E-invariant, i.e.y satisfies(y-5). If Fy,
satisfiegZ-2), theny satisfieqy-3).
(Proof: B.23, p.334+)

The next theorem unveils the core reason, windj is necessary faf,, to be a DFS.

Theorem 115 Suppose thap : A — I satisfiegy-5), i.e. ¢ is B-invariant. If 7, is
monotonic, i.eFy(Q1) < Fy(Q-) for all semi-fuzzy quantifie,, Qs : P(E)" —
I such that®); < @-, theny satisfieqy-4).

(Proof: B.24, p.336+)

To sum up, it has been shown that the conditiafd |—(/-5) imposed onp) are neces-
sary forF,, to be a DFS, as stated in the next theorem (actually, a corollary):

Theorem 116 Lety : A — I be a given mapping. IF, is a DFS, then) satisfies

(-1Hv>-5).
(Proof: B.25, p.341+)

In particular, every choice af which makesF,, a DFS satisfiesi-5). As | will now

show, this entails that the class 5f,-QFMS, although considerably broader than the
class ofF,,-QFMs, does not introduce any new DFSes compared to those that already
belong to the class af,-DFSes. To see this, we notice the following relationship
betweens(A) andEHA.

Theorem 117 Let A € A be given. Then

BA(z) = § — 35(4)(2) (82)
and

s(A)(z) =1 — 2BA(z), (83)

forall z € I
(Proof: B.26, p.342+)

Based on this relationship, it is then apparent thaBaithvariantF,,-QFMs are in fact
F,-QFMs.

Theorem 118 Suppose thap : A — I satisfieqw)-5). ThenF,, is anF,-QFM, i.e.
Fyp=Fo
provided we define

w(s) = 1(As), (84)



for all s € L, where
Au(z) = [0, 4 — Ls(2)] (85)

for all z € I. In particular, all F,,-DFSes areF,,-DFSes.
(Proof: B.27, p.343+)

We have already shown in Th-98 how to relate the known clasg eQFMs to the

new class otF,-QFMs. We shall now proceed and relate the conditiond }—(wv-4)
imposed onw to the conditions-1)—()-5) imposed on the corresponding This

will permit us to prove the independence of the new set of conditions in terms of the
known independence of theconditions. We first notice that

Theorem 119 TheF,-QFMs are exactly thosé,,-QFMs that depend on a mapping
¥ : A — T which satisfieg-5).
(Proof: B.28, p.344+)

In the following, we will hence assume that-6) be valid. Then

Theorem 120 Letw : . — I be given and suppose that: A — T is defined by
(81). Then

a. w satisfieqw-1) if and only if« satisfieqy-1)
b. w satisfieqw-2) if and only ify satisfieq)-2);
. w satisfieqw-3) if and only ify satisfieq)-3);
d. w satisfieqw-4) if and only if« satisfieqy-4);
e. v satisfieqw)-5).

(Proof: B.29, p.345+)

Based on these results, it is now easy to prove a theorem concerning the independence
of the “4-conditions’.

Theorem 121 The conditiongy-1)(-5) are independent.
(Proof: B.30, p.358+)

In the following, | will discuss a slight reformulation of the aggregation mechanism
which shows that thé-,-DFSes coincide with the models defined in terms of the stan-
dard extension principle. The discovered class of models is hence theoretically appeal-
ing, because it evolves from the fundamental principle that underlies fuzzy set theory.
In order to define the class of those QFMs that depend on the extension principle, we
consider the following basic construction.
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Definition 93 For all A € A, we denote by, : I — I the mapping defined by
fa(z) =sup A(z)

forall z € 1.

It is apparent from (73) that
BA(2) = min(fa(=), §). (86)

forall A€ Aandz € 1.

Itis then apparent from Def. 91 th&tA can be defined in terms ¢f;, i.e. there exists
g such thatHA = ¢(fa) for all A € A. In turn, we conclude that every which
makesF, a DFS, can be defined in terms ff because every suahis E-invariant
by Th-113, and hence(A) = y(BA) = ¥(g(fa)). In other words, we do not loose
any models of interest if we restrict attention to those QFMs that are a functifn of
I now introduce the constructions necessary to define the new class of QFMs.

n

Definition 94 Consider a semi-fuzzy quantifi€r : P(E)" — I and a choice of

fuzzy argument set§y,..., X, € 75(E). By fo.x,,..x, = é”))(lxn I — Iwe

denote the mapping defined by

fQ-,le--an = fAQ,Xl ..... Xp

forall z € I.
Notes

e Again, the superscrifi) in f(é?))q,.u,xn is usually omitted when no ambiguity
arises.

e fo.x.... x,(z) expresses a measure of the maximal similarity®f, ..., X,,)
to those(Ys, ...,Y,,) € P(E)" which are mapped tQ (Y1, ...,Y,) = z.

Next let us describe the range of all possifile

Definition 95 By X € P(I') we denote the set of all mappings I — I with the
following properties:

a. Im f N [3,1] = {ry} forsomer, =r,(f) > 1;

b. If z; = 2 (f) € Iis chosen such that(z;.) = r4, thenf(z) <1 —r, forall
z# 2y,

65



Theorem 122 For all A € A, f4 € X. In particular, if @ : P(E)" is a semi-fuzzy
quantifier andXy, ..., X,, € P(E), thenfy x, .. x, € X.
(Proof: B.31, p.369+)

Theorem 123 For all f € X, there existsd € A with f = f4. In particular, there
existQ : P(E)" — IandXy,..., X, € P(E)with f = fo x, .. x,-
(Proof: B.32, p.370+)

HenceX is indeed the range of all possibie and fy x, ... x,, . We can therefore define
the class of QFMs computable frofy x, ... x,, called 7,-QFMs, in the apparent
way.

Definition 96 Lety : X — I be given. The QFNF,, is defined by

JTAP(Q)(XlavXn):SO(fQXl ..... Xn)a

fgr all semi-fuzzy quantifier@ : P(E)" — I and all fuzzy argument¥,..., X, €
P(E).

The F,-QFMs comprise the class of those fuzzification mechanisms which can be de-
fined from the argument similarity grades by applying the extension principle. This is
because x, ... x,, is obtained from the standard extension principle in the following
way. We start from a semi-fuzzy quantifier: P(E)" — 1. By applying the exten-

sion principle, we obtail) : P(P(E)) — P(I). Hence for a give'V € P(P(E)),
Q(V) € P(I) is the fuzzy subset defined by

pe o (2) =sup{pv(Yi,...,Yn) : (Y1,...,Y,) € Q71 (2)}
Q(V)

for all z € I, see (3). Given a choice of fuzzy argumefis, ..., X,, € P(E), we
now expres$” = Vx, . x, interms of argument similarity, viz

,UV(Yla B }/n) - EYl,...,Y,L (X17 e 7Xn) 5

forall Yi,...,Y, € P(E). Itis then apparent from Def. 94 that

foxi . x.(2)=px  (2)
Qv

for all z € I. Becausd/ = Vx,  x, represents argument similarit), is obtained
from @ by applying the standard extension principfg,x, ... x,, is defined by com-

posingQ andVx,  x,,andF,(Q)(X1,...,X,) = ¢(fo.x,...x,) is a function of
fo.x.,....x,. this proves our claim that ever, is defined from the argument similar-

ity grades by applying the extension principle. Noticing that no additional assumptions
were made in defining, x, ... x, , which merely composes similarity assessment and

the extended), this demonstrates that ttie,-QFMs are precisely the QFMs definable
in terms of argument similarity and the standard extension principle. /h@FMs
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hence constitute an interesting class of fuzzification mechanisms. In order to unveil
the structure of its well-behaved models, we first make two observations, which relate
F,-QFMs and their apparent superclassHfQFMs.

Theorem 124 All 7 ,-QFMs areF,;,-QFMs, i.e.F, = F,, provided that) : A — 1
is defined in dependence gn X — I by

Y(A) = ¢(fa), (87)
forall A € A.
(Proof: B.33, p.371+)

Conversely,

Theorem 125 Suppose that) : A — I satisfies(y-5). ThenF, = F,, where
¢ : X — Tis defined by

o(f) =v(Ay), (88)
forall f € X, and

A5() = { 0. /(2)] F () <

0,1- f(2)U{f(2)} : f(2)> (89)

N D=

forall z € 1.
(Proof: B.34, p.371+)

We shall now impose a number of conditions on admissable choiceslagt us first
define a preorder oK, again needed to express a monotonicity condition.

Definition 97 Forall f, ' € X, we writef C f” if and only if the following conditions
are satisfied forf, f'.

a. forallz e I, sup{f'(z) : 2/ > z} > f(2);
b. forall 2’ € I, sup{f(z) : 2 < 2’} > f'(2).
We can now state the conditions that must be obeyed inyorder to makeF,, a DFS.

Definition 98 Lety : X — I be given. The conditiong-1)-¢-5) are defined as
follows. Forall f, /' € X,

If £71((0,1]) = {24} and f(24) = 1, then theny(f) = 2. (¢-1)
If f'(2) = f(1—z)forall z € I, theny(f’) =1 — p(f). (¢-2)
It f71((0,1]) € {0, 1} and f(1) > 3,

theny(f) = 1 — /(0). : (>-3)
If f € f' thenp(f) < o(f). (¢-4)
If f'(z) = min(f(z), %) forall z € I, thenyp(f') = o(f). (¢-5)
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The proof that these conditions describe precisely the intended class of models, is
greatly facilitated if we notice the close relationship between ¢hednditions’ and
correspondingy-conditions’.

Theorem 126 Lety : X — I be given and suppose that: A — 1 is defined by
(87). Then

a. p satisfieqp-1) if and only if«) satisfiegy-1);
b. ¢ satisfieqp-2) if and only ify satisfieqw)-2);

o

 satisfieqp-3) if and only ify satisfieqy-3);
d. o satisfieqp-4) if and only if« satisfieqy-4);
e. p satisfieq-5) if and only if satisfieg-5).

(Proof: B.35, p.372+)

The following theorems are then straightforward from the previous resultg,en
QFMs:

Theorem 127 If ¢ : X — I satisfiegp-1)¢-5), thenF,, is a standard DFS.
(Proof: B.36, p.388+)

Theorem 128 Considery : X — 1. If F,, is a DFS, thenp satisfieg¢-1)¢-5).
(Proof: B.37, p.388+)

Theorem 129 The conditiongp-1)—(p-5) are independent.
(Proof: B.38, p.388+)

In [7, pp. 66-78], | have made a first attempt to define DFSes in terms of the exten-
sion principle. The construction of these models was motivated by the fuzzification
mechanism proposed by Gaines [6] as a ‘foundation of fuzzy reasoning’. This basic
mechanism was then fitted to the purpose of defining DFSes. Because the resulting
approach also relies on the extension principle, but utilizes a different notion of ar-
gument compatibility, the question arises how this ‘Gainesian approach’ relates to the
F,-QFMs defined in terms of the extension principle. In order to answer this question,

I recall some concepts needed to define the new models.
First we define the compatibilit§(z, y) of a gradual truth value € I to a crisp truth
valuey € 2 = {0, 1}.

Definition 99 6 : I x 2 — T is defined by

2z : xﬁ%,yzl
Oz, y) =4 2—2z : z>1y=0
1 . else

forallz € I,y € {0, 1}.

68



Hence a gradual truth value< % is considered fully compatible with ‘falsej (= 0),
but only gradually compatible with ‘true’y(= 1), and a gradual truth valug > %

is considered fully compatible with ‘truey(= 1), but only gradually compatible with
‘false’ (y = 0). 6 can be applied to compare membership gradeé&) (X € P(FE) a
fuzzy subset oF) with ‘crisp’ membership valuegy (e) (i.e. “Ise € Y?" Y € P(E)
crisp), wheree € E is some element of the universe. This suggests the following
definition of the compatibilityd (X, Y') of a fuzzy subsek € P(F) to a crisp subset

Y € P(E).

Definition 100 Let F be a nonempty set. The mappiig= O : P(E)xP(E) — 1

is defined by

O(X,Y)=inf{0(ux(e), xy(e)) : e € E},

forall X € P(E),Y € P(E).

The compatibility© (X, Y) of a fuzzy setX € P(E) to a crisp sely € P(E) is
therefore the minimal degree of element-wise compatibility of the membership func-
tion of X and the characteristic function af. Based onO(X, Y), | now define
@Z(Xl, ..., X,), the compatibility ofQ : P(E)" — I to the gradual truth value

z € 1, given a choicé X, ..., X,,) € 75(E)n of fuzzy argument sets.

Definition 101 Suppose) : P(E)" — T is a semi-fuzzy quantifier ande I. The
fuzzy quantifier), : P(E)" — T is defined by

Q=(X1,..., Xp) = sup{min ©(X;, ¥;): ¥ = (Vi,..., V) € Q71 ()},

n

forall (Xi,...,X,) € P(E)
In [7, p. 71], | have argued that the fuzzification mechanism proposed by Gaines can
naturally be expressed in terms @f. In addition, three examples were developed
which illustrate how DFSes can be defined fro@ (X, ..., X,)).c1; these models
have subsequently been shown to.bfs;-DFSes, however. The next theorem estab-
lishes that all such models, which are defined as a functid®of X1, . .., X,,)) eI,
are in fact? -DFSes:
Theorem 130 Consider a QFMF. Then the following statements are equivalent:

a. Fis anF,-QFM which satisfiegp-5),

b. Fis a function of the coeﬁicienéz (Xq1,...,Xn).

(Proof: B.39, p.405+)
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Hence the QFMs defined in terms@; are exactly ther,,-QFMs which satisfy ¢-5).

We conclude from Th-128 that the ‘Gainesian’ DFSes defined in terr@ @bincide
with the models defined in terms of the extension principle, i.e. witl#ihéFSes.

To sum up, this chapter has introduced a different construction of QFMs and de-
veloped the corresponding theory, in order to span a new class of models which is
interesting for theoretical investigation because of its motivation from independent
considerations. This departure from the three-valued cut scheme was necessary be-
cause this scheme has now been fully exploited by the introductiofneQFMs.

The models, G* andg, defined in a previous publication on DFS theory [7] rep-
resent an earlier effort to accomplish the intended departure, which was inspired by
the fuzzification mechanism proposed by Gaines [6]. These models, though, were sub-
sequently shown to ba1z-DFSes, and no systematic attempt was made to extract
the mechanism underlying these models and to develop a general class of models. In
principle, the ‘Gainesian’ fuzzification mechanism is a good point of departure, due
to its foundation in the extension principle of fuzzy set theory. However, the assumed
compatibility measure (of a gradual to a crisp truth value; of a fuzzy subset to a crisp
set) was considered somewhat awkward, and raised some concerns that the required
definitions and theorems would become more complicated than necessary, to capture
the target class of standard models. Consequently, | started by defining a simpler mea-
sure which quantizes the similarity of fuzzy subsets to given crisp=ge{s(), and
corresponding tuples of argumerts, .y, (Xi,...,X,). It was then necessary to
introduce the set of similarity gradesy, . x, that are generated from a choice of
fuzzy subsets(y, . .., X,, under the similarity measure, and to characterize its range of
possible valued). After that, the key construction was introduced, which to each po-
tential quantification result assigns the set of similarity gradles, ... x,, (z), which

are generated by those choices of ciigp. .., Y, with Q(Y1,...,Y,) = 2. After
characterising the rangg of possibleAg x, .. x,, the class of QFMs definable in
terms of argument similarity was introduced in the apparent way, based on aggregation
mappingsy : A — 1. In order to express properties of the mappiggthat are of
relevance to the resulting QFMS,, the required concepts were then developed, and
subsequently applied to analyse the precise conditions wmder which the resulting

QFM F,, becomes a DFS. The proposed system of conditigrk){(;)-5) was shown

to be necessary and sufficient {6y, to be a DFS, and alF,,-DFSes were proven to be
standard models. In addition the independence of the criteria was established. Next |
turned to the issue of relating the new clasgpfDFSes to the known class &,/ F,,-

DFSes. It came as a surprise that ev€pyDFS is in fact arF,,-DFS (and vice versa),

i.e. the class of-,,-DFSes coincides with the class®f,-DFSes. Noticing that the two
classes of models arose from constructions which are conceptually very different and
motivated independently, this exciting finding confirms thatfeDFSes (or synony-
mously, F,,-DFSes) form a natural class of standard models of fuzzy quantification,
that might even comprise the full class of standard DFSes. The latter hypothesis calls
for the development of analytic tools for a deeper investigation of these models, in
order to locate their precise place within the standard models.

The remainder of the chapter was concerned with the class of models defined in
terms of the extension principle. To this end, a mappfagvas derived from each
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A € A. By composing these mappings witly x, ... x, | defined the new base con-
struction, that offy x, ... x, . For each potential quantification resgltfo x,.... x, ()
expressed the maximum similarity of the fuzzy argumeis. .., X, to a choice of

crisp argument%’, ...,Y,, € P(FE) subject to the condition th&(Y7,...,Y,) = z.

Next the sefX was introduced and shown to precisely describe the set of those map-
pings f that occur asf = fy x,... x, for a choice of@ and X;,..., X,. Hence

X is the proper domain of aggregation operatprs X — I which span the new
class of 7,-QFMs in the usual way, i.eF,(Q)(X1,...,X,) = ©(fo,x1,...x,)- |

have explained that the resulting fuzzification mechanisms are exactly the QFMs de-
finable in terms of the standard extension principle, which is applied to the similarity
grades obtained for the quantifier's arguments. The move from the base construction
Ap . x, ... x, tothe new constructioffy x, ... x, means a great simplification because

we now deal with a single scaldgp x,.... x, (z) in the unit range, rather than sets of
such scalarsly x, .. x, (z). It is hence worthwhile studying this subclass of models
and elucidating their structure, although no new DFSes are introduced compared to the
full class of 7,-DFSes. Interestingly, the converse is also true, and in fact no mod-
els arelost when restricting attention to the subclass7f-DFSes. This is because
every F,,-DFS is known to satisfy(-5), which entails that)(A) can be computed

from f4, which underlies the definition of ,-QFMs. It is hence of particular interest

to develop conditions that fit this simpler presentatioFgtDFSes, which is offered

by fo,x.,...,x,, and aggregation mappings Due to the close relationship between

Ag x,,... x, and the derivedj x, ... x,,, the precise conditions op which makeF,,

a DFS are apparent from the corresponding conditign$)&(;)-5) imposed on). By
adapting these conditions, it was easy to obtain a set of necessary and sufficient condi-
tions (p-1)—(p-5) imposed orp, and to prove that these conditions are independent.

Finally | have reviewed the fuzzification mechanism proposed by Gaines [6] and its
reformulation into a base construction for QFMs proposed in [7]. In the course of this
investigation, it was proven that all of the resulting QFMs &g QFMs and hence
definable in terms of argument similarity and the extension principle. Conversely, all
‘reasonable’ choices of, wherey satisfies at leastA-5), can be expressed as ‘Gaine-
sian’ QFMs, and hence be reduced to a mechanism claimed to provide a ‘foundation
of fuzzy reasoning’ [6].
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6 Conclusion

In this report, an effort was made to boost the research into standard models of fuzzy
guantification. The pivotal objective was to prospect new classes of such models within
the DFS theory of fuzzy quantification, i.e. to explore novel constructions of potential
models and to characterize the resulting classes and their relevant properties in terms
of the exact conditions that must be imposed on the underlying constructions. In order
to better understand the obtained classes and the structure of their models, it was hence
necessary to develop the full set of theorems for investigating propagation of fuzziness,
continuity and other adequacy properties. A related goal was to develop representative
examples and to identify boundary cases of models within the classes (e.g. with respect
to specificity). In the report, this basic strategy was implemented for two general con-
structions of fuzzification mechanisms and corresponding classes of models, which are
discussed in chapter #(-QFMs) and chapter 54y,-QFMs), respectively.

In chapter 4, the known construction 8f-QFMs, which form the broadest class of
standard models developed in previous work on DFS theory, was extended to the full
class of QFMs definable in terms of three-valued cuts of the argument sets, the class
of Fo-QFMs. To this end, the underlying mechanism QtQFMs was decomposed
into two stages, (a) determination of the ‘raw’ set of results obtained from the three-
valued cut, and (b) subsequent computation of upper and lower bounds. By isolating
the first step, which simply determines the ambiguity%gk, ... x,, (y) obtained from
the quantifier and arguments at the given cut-leyele then got grip of a construc-
tion which captures the full class of QFMs definable in terms of three-valued cuts.
Embarking on the strategy outlined above, the structur&@DFSes was exposed
by formalizing the necessary and sufficient conditions on the aggregation mdpping
that makeFq a DFS. In addition, a number of theorems have been proven which re-
duce the test whether a given mod&}, fulfills additional adequacy properties (like
propagation of fuzziness), to an easy check on the underlying aggregation mgpping
Subsequently the apparent subclasg ofQFMs was introduced, which are based on a
coefficientsg x, ... x, computed fromS; x, .. x, . Although the construction of,,-

QFMs ignores part of the ‘raw’ data presentig x, , .. x,,, @ formal investigation of
F..-DFSes confirmed that no models of interest are lost compared to the construction
based or, i.e. the classes df,- and F,,-DFSes coincide. The rationale for putting
effort into 7, -QFMs is that they connect the models defined in terms of three-valued
cuts to the alternative construction of models in terms of the extension principle that
was discussed later. In addition, the alternative format usually permits a simpler defi-
nition of models, as witnessed by the succint descriptions of the examples. The final
investigation ofF/F,-DFSes with respect to continuity properties also revealed an
interesting result, by substantiating that all ‘practical’ models in the new class in fact
belong to the known class ¢f:-DFSes. Noticing that the construction of this latter
class is conceptually much simpler than that/f-DFSes, because only bounds on
the quantification results in the cut ranges are considered, this justifies in retrospective
the introduction and study of:.-QFMs as a separate class.

The subsequent chapter 5 was concerned with the definition and structég of
QFMs (fuzzification mechanisms definable in terms of argument similarity) and their
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subclass ofF,-QFMs (fuzzification mechanisms definable in terms of the extension
principle). An investigation into these models was considered auspicious because the
underlying construction is conceptually different from the three-valued cut mechanism
deployed in the known classes of DFSes and motivated by independent considerations.
The study of these models was therefore hoped to draw attention to some general char-
acteristics not idiosyncratic to the three-valued cut construction. In order to develop
this class of models, | first introduced a similarity measure on fuzzy arguments and
discussed some of its properties. After showing how the ndyeQFMs can be built

from this construction, the ‘intended models’ &Bf,-DFSes were then characterised by
stating the exact conditions on the aggregation mappimdich makeF,, a DFS. In

turn, the subclass of,-QFMs definable in terms of the extension principle was intro-
duced, and it was shown that their simplified construction does not result in any loss of
intended models. Hence &, -DFSes areF,-DFSes and vice versa. Again, the refor-
mulation of the original class into the modified constructiodFgiDF Ses is targeted at
permitting simpler descriptions of models. In addition, the anchoring of this class into
the extension principle is satisfying from a theoretical position, and acknowledges the
foundational role that the extension principle plays to fuzzy set theory. It has also been
remarked that the construction #f,-QFMs embeds the ‘Gainesian’ approach which
extends the fuzzification mechanism first described in [6] into a base construction for
models of fuzzy quantification, see [7].

The main result of the report | consider the proof that the models definable in terms of
three-valued cuts coincide with those defined in terms of argument similarity and the
extension principle. This reveals that thfg-DFSesF,,-DFSes andF,,-DFSesF, -

DFSes are merely different presentations of one and the same general class of target
models. Its distinct constructions elucidate two complementary faces of the identified
class of models:

e The presentation of this class in terms of the extension principle is theoretically
appealing because of the unique role of the extension principle to the foundation
of fuzzy logic. This reduces these DFSes to the fundamental principle underly-
ing fuzzy set theory, and hence provides a theoretical justification for the use of
three-valued cuts to model fuzzy quantification.

e Knowing that the considered class can be defined in terms of three-valued cuts
is of great practical interest because algorithms that implement quantifiers in the
models are easily derived from the cut-based presentation. Three-valued cuts
lend themselves to similar procedures as the familiar two-valued cuts because
every three-valued cut can be represented by a paira@its. This renders it
possible to compute subresults on the few resulting layers, which are subse-
guently aggregated into the final interpretation of the quantifier. The utility of
this general strategy has been confirmed by the successful implementation of
common quantifiers ioM, M x andF¢;, described in [10, 12]. No principled
difficulty is expected in transferring these techniques to gernEraDFSes as
well.

Noticing the twofold justification of the new class of models from different construc-
tions and motivated by independent considerations, there is evidence that it indeed
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forms anatural class of DFSes, which captures a broad range of standard models of
fuzzy quantification. Future research must decide if it even spans the full clafls of
standard models. In order to encourage this investigation, let me briefly draw attention
to a promising starting point for relating this class to the full class of standard DFSes,
which might be provided by an analysis of upper and lower bounds on quantification
results. Research into this topic has been initiated in [9, Chap. 8] and the techniques
developed from this analysis soon approved themselves invaluable for deriving inter-
esting results on DFSes. For example, it now became possible to substantiate the hy-
pothesis that all standard models coincide on two-valued quantifiers. | suggest the use
of these upper and lower bounds (or of straightforward variants) to introduce pairs of
Fr, Fu with Fr, <. F <. Fy, for each considered standard DFSFor example, one

could defineF;, andFy by

Fr(@Q)(X1,...,X,) =med; (QY(X1,...,Xn), QY (X1,..., X))

2
QU(Xy,....Xn) : FQ)(X1,...,X,)

>3
fU(Q)(Xla...,Xn) = @L(le.--;Xn) : ]:(Q)(Xh""X”) < %
1 D OFQ)( Xy X)) = 3

where QU and Q~ are the upper and lower bounds, respectively, as defined in [9,
Def. 99, p. 70], but alternative definitions #%, and.F; are also conceivable and might
prove equally useful. The proposed strategy of resorting to specificity bounds allevi-
ates the need for a direct assessment of fully general standard DFSes, the internal
construction of which is not yet known.

Following these lines, and adopting other techniques that have already been devel-
oped in DFS theory, it might become feasible to characterise the full class of standard
DFSes. Judging from today’s knowledge, it is perfectly possible that this full class
is indeed exhausted by the models introduced here. A thorough analysis is required
to decide this matter and to locate the present clasgpDFSes (or equivalently,
F,-DFSes) within the total class of models. This endeavour may take some time to
develop, but it promises a number of amazing results that will anchor the models used
for applications into an iron-clad theoretical foundation.
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Appendix

Any proposition which occurs in the main text is callethaorem and any proposition
which only occurs in the proofs lemma Theorems are referred to as Thwhere

n is the number of the theorem, while lemmata are referred to asviheren is the
number of the lemma. Equations which are embedded in proofs are referrethtp as
wheren is the number of the equation.
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A Proof of theorems in chapter 4

A.1 Proof of Theorem 32

Let a semi-fuzzy quantifief) : P(E)" — T and a choice of fuzzy arguments
X1,...,X, € P(E) be given.

a. By Def. 31, (X,)i"™ = (X;)
(X3)

. Becaus€ X;) 1 C

1 1
>3 >3

1, each
Z3

To(Xo) = {Y : (X)g™ €Y € (X)F™} = (V5 (X)L €Y € (Xi),1)

>
is nonempty. Henc&, (X1, ..., X,,) is nonempty as well, which entails that

S0.x1,..x,(0) ={Q(Y1,...,Y,) : Y1,....Y, € Io(Xq,.... X\ } # @

b. To see that the second claim of the theorem is valid, consjdet € I with
v <~'. Then

Xmn DX 4o, 11
K >5t37 25+37

Similarly

Xmax C x
Xy,

by Def. 29, Def. 30 and Def. 31. Hence for ak {1,...,n},

T,(X;) = {Y : (X)) C Y C (X))

c{y: (Xz')iyn/in CY C(X)3™} =T (X0) )

becauséX;)"™ C (X;)2™ and(X;)2™ € (X;)5™. Inturn

So.x1,.x, () ={Q(Y1,..., V) i V1., Y, € T,(Xy,..., X))} by Def. 51
C{QYi,....Y,) : Yq,....Y, € T (X1,...,X,)} by (90)
= S0, x1,..x. () - by Def. 51

A.2 Proof of Theorem 33

We first observe that foy = 0,
X oin =2 (91)

=X
Xg™ =X 1= ({0} xDU{(1,0)}, (92)

o= NI=
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this is apparent from (33) and Def. 31. Similarly for> 0,
=0 (93)

L= {0 x D U1} % [0,7)). (94)

xmin = x

>

N[ =

+

o= NI=

Xmax = X

N

>

In order to prove the theorem, | first show that

S(y) € S.x() - (95)

Hence let us consider a choice ofe S(v). In the case thay = 0, we clearly have
s(z) = 0 by Def. 53 and hence € S(s(z)). Now we considel” = {(0, z),(1,0)} €
To(X), which hasinf Y’ = inf{z} = z andY” = {0}, see (28) and (29). Hence
QYY) =Q.Y") = Q.({0}). Because: € S(s(z)) = S(0), equation (31) applies,
le.Q(Y) = Q.({0}) = 2.

Next we consider the case that- 0. We can then choose

Y ={(0,2)} U ({1} x[0,7)).

For this choice off” € 7, (X), we obtaininf Y’ = inf{z} = z andY"” = [0,~) by
(28) and (29), i.esup Y” = v. HenceQ(Y) = Q.([0,7)) = z by (27) and (30), (31)
because € S(v) by assumption.

It remains to be shown th&y x () C S(y) forall v € 1. Let us first consider the case
thaty = 0 and letY” € 75(X) be given. We abbreviate= inf Y’ € 1. Itis apparent
from (91) and (92) that we either ha¥& = @ orY” = {0}. Inany casesupY"” = 0.

If z € S(v) = S(0), then0 = s(z) by Def. 53 and hence € S(s(z)). We then obtain
from (31) thatQ(Y) = Q.(Y") = z € 5(0), as desired. It ¢ S(y) = S(0), then
eithers(0) > 0 andz ¢ S(s(z)), i.e. (30) applies, 08(0) > 0 andz € S(s(z)),
i.e. (31) applies. In any case, we obtain tliaY") = Q.(Y"”) = zo, and hence
Q(Y) € 5(0) by (32).

Finally in the case thay > 0 we considery” € 7,(X). Again we abbreviate =
inf Y € I. We also notice that by (93) and (94),< supY” < ~. If z € S(s(2))
ands(z) <supY”,we hence hav@(Y) = Q.(Y") = z € S(s(z)) C S(supY”)
S(y). Similarly if z ¢ S(s(z)) ands(z) < supY”, we obtainQ(Y) = Q.(Y")
z € S(supY”) C S(v) which is apparent from Def. 53 and > supY” > s(z).
Hence there are two cases left to prove.z IE S(s(z)) andsupY” < s(z), then
QYY) =Q.(Y") =2 € 5(0) C S(y),see(31)and (32). Inthe case that S(s(z))
andsupY” < s(z), we haveQ(Y) = Q. (Y") = 2o € S(0) C S(v) by (30) and (32).
This finishes the proof thaiy x () C S(v) for all v € I. Combining this with (95),
we obtain the desirefly x = S.

A.3 Proof of Theorem 34

Lemmal If Q:K — I satisfieq2-1), then

UFa(Q)) =Q

for all semi-fuzzy quantifier® : P(E)" — 1.
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Note. In particular,Fq, satisfies (Z-1), which weakens the lemma to the case that
n<1.

Proof Suppos€? : K — I satisfies -1). Consider a semi-fuzzy quantifi€J :
P(E)" — I and a choice otrisp argumentsX;,...,X,, € P(E). We have to
show thatFo(Q)(Xy, ..., X,) = Q(X1,...,X,). To this end, we first observe that
because theX; are crisp sets, it holds thaﬁ(i);‘““ = (Xi);“a" = X, foralli=
1,...,nandy € I, see Def. 31. Hence

T, (X;) = {Xi} (96)
fori =1,...,nandy €I Inturn,

So.x1..x. () ={Q(Y1,...,Y,) : Y1,...,Yn) € T,(X1,...,X,)} by Def. 51
={Q(Y1,...,Yn) : Y1 € {X1},..., Y, € {Xy}} by (96)

={Q(X1,..., Xn)},
ie.
So.x1.x, (V) = {Q(X1, ., X))} 97)
for all v € I. From this we obtain the desired
Fo(@Q)(X1,...,Xn) = Q2S.x,....x,) by Def. 55
=Q(X1,...,Xn). by (97), €2-1)

Lemma2 LetQ : P(E)" — I be a semi-fuzzy quantifier anh, ..., X,, € P(E).
Then

Sox.x, () ={1-z:2€ 8 x,..x,(7},

forall v € 1.

Proof  Trivial. Consider a semi-fuzzy quantifi¢: P(E)" — IandXy,..., X, €
P(E). Recalling that-z = 1 — « denotes the standard negation, we obtain

={(-Q)(Y1,....Y,): (Y1,...,Y,) €e T,(X1,..., Xy} by Def. 51
={1-Q(Y1,....Y,) : (Y1,....Y,) e T,(X4,..., X))} byDef.9,~z=1-=x
={l-=z:

ze{QYr,....Y,): (V1,....Y,) € T,(X1,..., X»)}}
={l1-2z:2€5%x,,.x)7}, by Def. 51

forall v € I.
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Lemma 3 Supposé) : K — I satisfieq2-2) and (2-3). ThenFg coincides withM
on two-valued quantifiers, i.e. whenewgr: P(E)" — 2 is a two-valued quantifier

andX,..., X, € ﬁ(E) are fuzzy arguments, then

Fa(@)(X1,..., Xn) = M(Q)(X1,..., X,).

Note. HenceF, induces the standard negatiem = 1 — z, the standard conjunction
x Ay = min(x,y), the standard disjunction V y = max(z,y) and the standard

extension principlef-'g = (;). This is apparent because all of these are obtained from
two-valued quantifiers, and1 is known to be a standard DFS by Th-12.

Proof LetQ : P(E)" — 2 be a two-valued quantifier and &, , . .., X,, € P(E)
be given. ThenS, x, .. x,(y) € 2 forallyv € I. We also know from Th-32 that
80,x4.,....x,, (0) # @. Hence there are two cases to consider.

a:le€ Sox,,..x,0). ThenTg x,. . x,.(v) =supSy x,.. . x,.(y)=1forallye
i x,, = ci1. Inaddition, Lg x,, . x, becomes

.

_J 1 0¢ Sxx.(7)
LQ,X“..,X”(V) = { 0 : Oe€ SQ,Xl,...,Xn(’Y)

forall vy €1, i.e.IQ,Xl,.,,,Xn (I) C 2. BecauseM is anM p-DFS by Th-12, itis also
anF¢-DFS by Th-22. HenceM satisfies (X-3) by Th-23, and

M@)(X1,.. . Xn) = 3+ 3 (Lox,...x.), by (X-3)
=3+ 3s(0) by (12), Def. 53
=TFo(Q)(X1,...,Xn). by Def. 55, (2-3)

b.: 0 € S,x,,...,x,(0). Thenl ¢ {1 —zZ:z € SQ,Xl,‘..,Xn(O)} = S_‘Q7X1,~»~7Xn(0)
by L-2. We can hence redute to the proof ofa. as follows.

Fao(Q)(X1,..., Xn) =QS.x1,...x,.) by Def. 55
=1-Q5q,x,,..x,) by (Q-2), L-2
=1-MEQ)(Xy,. .., Xn) by parta. of the lemma

=1-(1-M(@Q)X1,...,X,)) byTh-12, Th-2

= M(Q)(X1,...,Xy).

Lemma4 If Q: K — I satisfieq2-2) and (Q2-3), thenF, satisfieqZ-2).

Proof This is now trivial. Let a choice of) : K — I be given which satisfies
(Q-2) and €2-3). Now consider a base seét=# @ and an element € E. By Def. 6,
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m : P(E) — 2 is two-valued. HenceFq(m.) = ( ) by L-3. In turn, we
conclude fromM being a DFS by Th-12 that{(r.) = 7. HenceFq(m.) = e,
i.e. Fq satisfies (Z-2).

Lemma5 Suppose) : P(E)" — T is a semi-fuzzy quantifier of arity > 0. Then
forall Xy,...,X, € P(E),

where—X,, € P(E) is the standard fuzzy complement, (¢) = 1 — ux, (e), for all
ec E.

Proof LetQ:P(E)" — Ibegiven ¢ > 0)andX,..., X, € P(E). We already
know from the proof of [7, L-22, p.127h(> 0) and [9, L-30, p.110]+4 = 0) that

T, (~Xn) = {-Y Y € T,(Xy)}, (98)

for all v € 1. Therefore

SQinw--,Xn(’Y)
={QMY1,....Y1,7Y,) : Y1 € T,(X4),...,Y, € T,(X,,)} by Def. 51, Def. 10
={Q(Y1,...,Y,): ;€ T(Xl),...,Yn,le%( n—1)s
Y, € T,(-X,)} by (98)
= 50,X 1,00, Xn 1,2, (V) by Def. 51

forall v € 1, as desired.

Lemma 6 Supposé) : K — I satisfieq2-2) and (2-3). ThenF, satisfiegZ-3).

Proof Let( : K — I with the desired propertie$22) and (2-3) be given. We
know from L-3 thatF, induces the standard negatien = 1 — x. Now consider a
semi-fuzzy quantifie : P(E)" — I of arityn > 0 and a choice of fuzzy arguments
Xq,...,X, € 75(E). Then

Fao(QO)(Xy,...,X,)

= Q(S%0,x,,....x,.) by Def. 55
= Q(5Q-.x1,....x,) by Def. 11
=1-Q(5-x1,...x,,) by (Q-2), L-2
=1-Q(5,x1,...Xn_1,-X,) by L-5

= -Fa(Q)(X1,. ., Xn—1,7Xn), by Def. 55

i.e. Fq satisfies (Z-3), as desired.

Lemma 7 Supposé) : K — I satisfieq2-2) and (Q2-3). ThenF, satisfieqZ-4).
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Proof Consider a choice df? : K — I for which (2-2) and 2-3) are valid. We
then know from L-3 thatF, induces the standard disjunctien/ y = max(z,y) and
the corresponding standard fuzzy union

Now let a semi-fuzzy quantifie) : P(E)" — I of arity » > 0 and a choice of
fuzzy argumentsXy,..., X, X,,+1 € 73(E) be given. It has been shown in [11,
p.52, eq. (58)] that

Ty(Xn U Xn+1) = {Yn U Yn+1 : Yn € Ty(Xn)a Yn+1 € Ty(Xn+1)}7 (99)

for all v € I. Hence

SQU.X 1, X (V)
= [QU(YL,. . Yor1) : (Yis oo Y1) € To( X1y oy Xpit)) by Def. 51
— {Q(Yiy. . Y1, Yo UYns1) s (Vi Yos1) € To(X1, ..., Xns1)} by Def. 12
Qi Vo) Vi € TL(X0), e, Yoy € To(Xnoa),

Y, € T, (Xn U Xng1)} by (99)
= 80X, X X UX i1 (7)

forally €1, i.e.

‘SQU,Xl ..... Xn+1 - ‘%,Xl ..... an,XnUXn+1 . (100)

In turn, we obtain the desired

fQ(QU)(Xla ce. 7Xn+1)

= Q(SQU7X17---,Xn+1) by Def. 55
= Q(‘SQ;-Xlwnanfl)X'n.UXn+1) by (100)
:fQ(Q)(levanlaXnUXnJrl) by Def. 55

Lemma 8 If : K — I satisfieq(2-5), thenF, satisfieqZ-5).

Proof LetQ : P(E)" — I be nonincreasing in the-th argument and consider
X1,...,X,, X!, € P(E) with X,, C X/..

Lety € I. I first show that for alk € S x, ... x,_,,x (7), there existg’ > z such
thatz’ € Sp x,,...x,(v). Hence let: € S x,.... x,_,.x/ (7). i.e. by Def. 51 there

exists a choice ofY1,...,Y,) € T,(X1,..., X,—1, X},) with
2=Q(V1,...,Y,). (101)

Because’, € 7,(X},), it holds thatX;L;“i“ CY, C X, ™. BecauseX, C X,, we

haveXng1in C X,’ziyni“ C Y,, by Def. 31. In turn, we conclude from’nﬁ“in C X,
that

min min max max
any = Xn—y N X'n»Y cyvy,n any .
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Noticing the apparerit,, ﬂXn;“a" - Xn$ax, this proves that,, ﬂXnﬁ‘a" € T,(Xy).
Becaus«) is assumed to be nonincreasing in théh argument, we obtain frori, N
X, C Y, that

z2=Q(Y1,...,Y,) by (101)
<QM,...,Y,_1,Y, N Xnglax) becaus&) nonincn-th arg
=7 eT,(X1,....X,).

Next | prove that for allz € S x,,.. x, (7). there existsy’ < z such that:’ €

S@.x1,..X%n_1,x, (7). Hencelet € 5y x, .. x,. By Def. 51, there exigty, ..., Y,,) €
T,(X1,..., X,) with z = Q(Y1,...,Y,). In particular,X,,2™ C Y, C X,,2**. By

similar reasoning as in the previous case, we can conclude from thiaiid' C

X;Lfynf“ as well asX,, "™ C X;L;”ax thatX;l:“n cY,uU X;lglln C )_(,’L;na", ie.Y, U

X, 5" € T,(X;,). In addition, we clearly havé), C Y, U X", Hencez' =

Q(Yia sy Yn—lvyn U Xyll:lm) S Q(Yh .. 7Yn) =z andZ/ S SQ,Xl,...,Xn,l,X,’L (7)1

as desired.

Combining the first two results yields

SQ. X1, Xn_1, X! £ 90, X1, X,, - (102)
Therefore
Fao(@)(Xq,..., Xn) :Q(SQ_,X“MX”) by Def. 55
> (99,1, X0 1,X7,) by (€2-5) and (102)

= Fo(Q)( X1, Xn-1,X,,)

i.e. Fo(Q) is nonincreasing in the-th whenevex is nonincreasing in the-th argu-
ment.

The following lemmata are required for the proof that the conjunction of fhe
conditions’ is sufficient forF to satisfy (Z-6). The idea of the proof is the same
as in [7, p.132], [9, p.116] and [11, p.53], viz | introduce a modified definition of
90,x1....,x,, Which is apparently compatible with functional application (Z-6). | then
show that the original definition produced the same results as the modified definition,
thus inheriting its compliance with (Z-6).

Definition 102  Let a semi-fuzzy quantifi€} : P(E)" — Ibe givenand,..., X, €

P(E). 83 x,...x, : T — P(I) is defined by

S xx, =1QY1,..., Y)Y € Z/'(Xl, ey Xn) (103)
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where

TY (X1, X)) = (Vi Vo) s Vi € TV (X)), ..., Yo € TV (X)) (104)

v _ . Ymin VYmax
TV (X) = {V: XI™" C Y C X"} (105)
VYmin __
Xy =X 11 (106)
XVmax X max XZ% Y= 107
oo ) X1 1o o y>0 (107)
>5727
forall v € 1.

Lemma 9 Suppos&) : P(E)" — Tis a semi-fuzzy quantifie;’ is some non-empty
base setf,..., f, : ' — FE are mappings an&y, ..., X,, € P(E’). Then for all
7 € (0,1],

CAR N=5". .
Q°i>=<1fi;X1,~~~7Xn stl(Xl) ,,,,, fn(Xn)

Proof LetQ : P(E)" — I, f1,...,fn: B/ — EandXi,..., X, € P(E') be
given andy € (0, 1]. We first recall that by [7, p.134, eq. (*)],

Y (Ji(X0) = {Ji(Y) : Y € TV (X)} (108)
foralli € {1,...,n}in the assumed case that> 0. Therefore
Y ()

- {(Qoiglﬁ)(}ﬁ, LY (N, Y,) € TV (Xy, ..., X,)} by Def. 51
= {QUi(V1)s - fu(Yn)) s (Viv.o . Vo) € T (Xy,..., X)) by (4)

={QM1,.. .. Yn) : (M1, Ya) € T xy ) (@)} by (108)
=57 . s ().
Q. f1(X1)see s fn(Xn)

n

Lemma 10 For every semi-fuzzy quantifi€} : P(E)" — T and all X4,...,X,, €

P(E),

Proof Consider a semi-fuzzy quantifi€) : P(E)" — I and a choice of fuzzy
argumentsXs, ..., X,, € P(E). We first observe that

Xyt =X 1 CX_

1= XOVmax,
=2

N[=

>
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i.e. XJmin ¢ 7V(X) forall X = X;,i=1,...,n. Therefore
QX1 T™", . X ™) € S9.x1,...%,,(0),
L. 50.x:....x,(0) # 2.

Now considery,y" € I with v < +' (the casey = +/ is trivial). For all X = X;,
i1 =1,...,n, we obtain from (106) and (107) and< +’ that

Xy = X1, €X 1= Xy
and
Xymaxc Xz%f%v c X>%f%w' C xymex,
Hence by (105),
TV(X1, ..., Xn) ST (X1, ., Xy) (109)

and in turn,
S(S,Xl,..A,Xn (7) = {Q(Y17 s 7)/”) : (Yla R Yn) € /T'yv (X17 s 7Xn)} by (103)
C{QY1,....Yn) : (Y1,...,Y,) € TV (Xy,..., Xp)} by (109)
= S Xrxa (V) - by (103)
We conclude from Def. 52 thaf] € K.

Lemma 11 Suppos&) : P(E)" — T is a semi-fuzzy quantifier an¥y, ..., X,, €

P(E). Thenforally €1,

S.x1 %, () €85 x1x, ()
8Q.x1,..x,(7) 2 ch,xl,...,xn (7) forall o > ~.

Proof Consider a semi-fuzzy quantifi€) : P(E)" — I and a choice of fuzzy
subsetsX;,..., X, € P(F). We already know from [11, p. 55, eq. (69)] that for all
velandX = X;,ie{1,...,n},

T,(X) C T (X). (110)
Therefore

S0.x1,x, (1) ={Q(Y1, ... Yy) s (Y1,...,Yy) € T,(Xy,...,X,)} by Def. 51
- {Q(Y17 s 7Yn) : (YL oo 7Yn) € ,Zyv(le ce ,Xn)} by (110)
= 53 X1, (1) - by (103)

This proves the first claim of the lemma. As concerns the second claim,Jéte 1
with v/ > ~. In this case, we recall [11, p. 55, eq. (70)] which states that

T,(X) 2 77 (X) (111)
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forall X = X;,¢ € {1,...,n}. Therefore

‘SQ7X17-~~7X71, (’7/) = {Q(Yl’ ce Yn) : (Y17 e 7Yn) E 7;// (Xl, .. ,Xn)} by Def. 51
2 {QM,.... Vo) (Vi,..., o) € TV (Xy,..., X,)} by (111)
= 5 X1, % (1) by (103)
as desired.

Lemma 12 Forall S € K, St* — ¢,
Proof ClearlyS# (1) = I = S%(1) by Def. 56. In the remaining case that 1,

¥y = N N SG) = n SKH')=5).

V' >y A >y Y>>y

Lemma 13 Forall S € Kandally € I, 5°(vy) C S(y) C S4(y).

Proof Inthe case that = 0,

5°(0) = S(0) by Def. 56
c 0,50 by Def. 52,5(7') 2 S(0)
Y
= 5%(0). by Def. 56

In the case that € (0,1),

" ()= U S(v) by Def. 56
v <y
C S(v) becauses(y') C S(v) fory" < v by Def. 52
c n SK) becauses(y) C S(v') for v’ > ~ by Def. 52
V>

= S*(v) .by Def. 56

Finally in the case that = 1,

S ()= U SH) by Def. 56
<1
C S(1) becauses(v') C S(v) for v' < + by Def. 52
CI. by Def. 52

Lemma14 Forall 5,5’ € K, if S(7) C §'(7) for all v € I, thenS*(y) C S"*(v) for
ally 1.
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Proof LetS, S’ € K be given such that
S(v) € S'(v) (112)

for all v € I. The claim of the lemma holds trivially i = 1 whereS*(1) = I =
5%'(1) by Def. 56. Hence let < 1. Then

S¥(v)= n SH) by Def. 56
v >y
c n SH) by (112)
v >y
=5"%y). by Def. 56

Lemma 15 Forall S € K, shF = 5t

Proof The case thay = 1 is trivial becauseSbﬁ(l) =1 = S¥(1) by Def. 56. The
casey = 0 is also trivial becaus&”(0) = S(0) by Def. 56, i.e.5°*(0) = S*(0).
Hence lety € (0,1). We first observe thas®(y') € S(y/) for all v/ € T by L-13.
Hence

() € 5°(2) (113)
by L-14. It remains to be shown th&t(vy) C Sbﬂ(y). For ally’ > ~, | abbreviate
fo) =15 (114)
Apparently
L9862 8(() (115)

becausef (v') € (v,v), i.e. f(v/) < «/, and thereforeS(f(y') C S(v") for " >
f(#'). Hence

S*(v)
= N SK) by Def. 56
v >y
= n_ 560 becauses(141) C S(y') for ' > 2L by Def. 52
v EM, 5]
= N S(f(") by (114)
v'>y
C n U SH') by(115)
’YI>’Y ,Y//<,Y/
= 5% (y). by Def. 56

Lemma 16 Supposé) : K — I satisfiegQ2-4) and considesS, S’ € K with S°(y) C
S'(y) C S(y) forall v € I. ThenQ(S’) = Q(S).

Note. In particular, the lemma shows t§atS”) = Q(S) = Q(S%).
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Proof Let us consider an arbitrary choicepfc I. We first conclude frons”(y) C
S’() and L-14 that

s ) € 8%,
Hence
SH) = () € () (116)
by L-15. On the other hand, we deduce fréfiy) C S¥(v), L-14 and L-12 that
%) € () = $H(v). (117)

Combining (116) and (117), we obtain thﬁ’[ﬂ(’y) = S*(y). Becausey € I was
arbitrarily chosen, this proves that

S =gt (118)
Therefore
Q(S) = Q%) by (€2-4)
= (s by (118)
= Q(5), by (€2-4)
as desired.

Lemma 17 If Q: K — I satisfieq2-4) and (2-5), then
Q(SQ.x1....x,) = QS x,

for all semi-fuzzy quantifier® : P(E)" — Iand Xy,..., X, € 75(E).

Proof Let~y € I be given. We already know from L-11 tha&b x, . x,.(v) €
89.x,....x, (7). Hence by L-13,

(80.%1%) (1) € S X100 () € 8 xx, (V) (119)
for all v € I. | will now prove that
S xe (1) € (Soxix,) () (120)

~~~~~

SQV,Xl,...,Xn (v) € 5Q,X1,., X0 (7/) (121)



for all 4/ > v by L-11. Therefore
B XM E N Sxpx,(Y) by (121)
= (S.x1,..%,) (7). by Def. 56

Hence (120) is valid. Combining this with (119), we notice that

(S2.31,.%.) (1) € Y %1, () € (So.xr..x,)F () (122)

for all v € I. From this we obtain the desiréd(S; x,,..x,,) = Q(SJ x, . x,) by
applying lemma L-16.

Lemma 18 Suppos€? : K — I satisfies(Q2-4). ThenQ(S) = Q(S’) whenever
S, 8" € K coincide for ally € (0,1), i.e. if S|o,1) = 5| (0,1)-

Proof AssumeS, S’ € K satisfy
S(v) =50 (123)

for all v € (0,1), as required by the lemma. Let us now show tiat= 5. This is
apparent fory = 1, in which caseS*(1) =1 = S’”(l) by Def. 56. In the remaining
case thaty < 1, we compute

St(~) = A S(y") by Def. 56
= n S becauses (') C S(1) fory’ < 1 by Def. 52
1>~ >~
=N1>+">~5() by(123)
= r; S"(v") becauses (') C S(1) for 4’ < 1 by Def. 52
Y>>y
=5"%). by Def. 56

Hence indeed! = S"* and

Q(S) = (s%) by (2-4)
= Q5% becauses! = 5'*
= Q). by (2-4)

Lemma 19 Supposd? : K — I satisfieq2-2), (2-3) and (2-4). ThenF, satisfies
(Z-6).
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Proof ~We first notice that by L-3F, induces the standard extension principle. Now
consider a semi-fuzzy quantifi€} : P(E)" — 1, a choice of mapping$; : £/ —
E,i=1,...,nwhereE’ # @ and fuzzy argumentX, ..., X,, € P(E’). Then

Fo(Qo x F(Xu, .., Xy)

=Q(S_ - by Def. 55
Qo_>_<1fl7xl7"'5X7L

— v _

_ Q(SQo_Qlﬁxl, ) by L-17

- Q(SV N N by L'g, L'18
Q7f1(X1)7"*7 ”(Xn)

=Q(S = 2 ) by L-17
Q. f1(X1),- s fn(Xn)

i.e. Fq satisfies (Z-6).

Proof of Theorem 34

The claim of the theorem thak, is a DFS whenevef : K — T satisfies -1)—
(©-5) is now a corollary of L-1, L-4, L-6, L-7, L-8 and L-19. It is then an immediate
consequence of L-3 and the fact th&t is a standard DFS by Th-12 th#, is a
standard DFS also.

A.4 Proof of Theorem 35

Supposé) : K — I satisfies (Z-5) and consider a choice®E K. In the following,
I show that2(S) = ©(S*) by proving that2(S) < Q(S*) (parta.) and that2(S) >
Q(S*) (partb.).

a.: Q(S) < Q(sH).
| define a semi-fuzzy quantifiep : P(2 x I)> — I by

R B N (124)

forall Y1,Y; € P(2 x I), where
Y'={2€1:(0,2) e Y1} (125)
Y'={z2€1:(1,2) e Y1} (126)

and the semi-fuzzy quantifierg,, Q") : P(I) — I are defined as follows. We first
choose an arbitrary, € S(0), which is known to exist by Def. 52. Next we consider
somez € T'andys € I. If z < zp andS(ys) N [0, z) # @, then we can choose some
Mz, ys) € S(ys) N[0, 2). In particular,

Az,ys) < z. (127)
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In dependence on the choiceszgfand of the\(z, y5)’s, we defineR’, by

z iz € 85(ys)
QLY")=1q Azys) + 2¢S(ys) 2 < 20,S(ys)N[0,2) # & (128)
20 : else

forallY” € P(I), where | have abbreviated
ys =supY” . (129)
The quantifierQ” is defined in dependence on the same choicg oy

z o z€ SHy,)

Q) = { o 2 ¢ SHy) (130)

forallY” € P(I).

In order to relate with Fq’s fulfilling (Z-5), | first show thatQ is nonincreasing
in its second argument. Hence [kt be given. It is obvious from (124) that the only
interesting choices for,, Yy areY, = @ andY; # @. We apparently havey C Y3,
and it must be shown th& (Y7, @) > Q(Y71,Y5). In the following it is convenient to
abbreviatez = inf Y. | discern four cases.

a. z € S(ys).
ThenQ(Y1,Yy) = QL(Y") = z by (124) and (128). It is clear from Def. 59
that S(y) C S*(y) for all v € 1. Hencez € S(ys) implies thatz € S¥(y,)
also. Therefor&®(Y1,2) = Q7(Y"”) = z by (124) and (130). In particular,
QY1,2) > Q(V3,Yy).

b. z ¢ S(ys), z < z0, S(ys) N[0, 2) # @.
In this case, we hav&(Y1,Y5) = QL(Y") = A(z,ys) by (124) and (128).
Because: < zy, there existg” > z with 2’ € S(ys); we can choose” = z.
In addition, S(ys) N [0, z) entails that there exists € S(ys) with 2/ < z.
Hence by Def. 59z € S*(y,). We then conclude from (124) and (130) that
Q(Y1,2) = QU(Y") = z. Recalling (127), this proves thg(Y1,2) = z >
Az, ys) = Q(Y1, Y2/)

C. z ¢ S(ys) andz > z.
ThenQ(Y1,Ysy) = QL(Y") = z by (124) and (128). In additiorQ (Y1, @)
QI(Y") € {z0,2z}. Becausez > z, this proves tha)(Y1,9) > zp =
Q(Y1,Y3).

d. 2 ¢ S(ys) andS(ys) N [0, 2) = @.
ThenQ(Y1,Yy) = QL(Y") = z by (124), (128). We notice that in this case,
there does not existd < z with 2’ € S(ys). Hence by Def. 59z ¢ S¥(y;).
In turn, we obtain from (124) and (130) thé(Y1,2) = Q7(Y") = 2. In
particular,Q(Y1,2) > Q(Y1,Y5), as desired.
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This finishes the proof thap is nonincreasing in the second argument. Let us now
investigate the behaviour ¢f) x » andSy x.v,, Y2 # @, for the particular choice of
X € P(2 x I) defined by

a=0

1y ot (131)

MX(CL?y) = {

N D=

foralla € 2,y € I. We notice thatX coincides with the fuzzy subset defined by (33).
Hence by (91), (92), (93) and (94),

Xgh=X_1=0 (132)
2
Xgo = X_1 = ({0} x ) u{(1,0)} (133)
=2
and fory > 0,
X;nm = XZ%-"-%’Y = (134)
xmax — A)(>%7%7 = ({0} xT)U ({1} x [0,7)) . (135)

Next we prove that, v o = S*. To this end, we first observe that by (124),Y;, @) =

vey (Y forall Y, € 7,(X) € P(2 x I). In addition,Qi; ;- (Y") only depends
onz = inf Y’ andy, = supY”, see (130). Recalling equations (132)—(135), we know
thaty; € [0,~]. For any such choice af;, one of the following cases applies.

1. z € S*(y,). Then by (130)Q(Y1,9) = Q' (Y") = z. Fromz € S¥(y,),
we conclude that)(Y;, @) = z € S¥(y). This is becaus&* < K; hence
z € St(y,) andy, < v entails that: € S*(v), cf. Def. 52.

2. 2 ¢ St(ys). ThenQ(Y1,2) = Q”(Y") = 2 € S*(0). Becausey > 0, we
again conclude thad (Y1, @) = 2o € S*(v).

This proves thaty x » () € S*(v) for all v € 1. Let us now consider the converse
inequation thats* C S, x,». Hence let: € S*(v). We notice that; = {(0,2)} U
({(1)} x[0,7)) € 7,(X). We then have = inf Y’ andy, = supY” = ~. Because
of the assumption that € S*(y) = S*(y,), (124) and (130) result iQ)(Y;,2) =
Q!(Y") = z. HenceSy x.» () C S*(v) for all ¥ € I. Combining both inequations,
we obtain the desired

So.xo =St (136)

Finally we show thaty, x,y, = S. Recalling that is an arbitrary crisp subset with
Y, # &, we deduce from (124) th&@} (Y1, @) = Q¢ (Y") forallY; € 7,(X) C
P(2 x I). Again, Q! ;. (Y") only depends or = inf Y andy, = supY”. This s
obvious from (128). We also know from equations (132)—(135) ghat [0,~]. For
any such choice aj,, one of the following cases applies.
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i. z€S(ys).
ThenQ(Y1,Ys) = QL(Y") = z € S(ys) € S(v) by (128) and becausg < 7.

ii. z¢ S(ys), z < 20, S(ys) N[0, 2) # @.
ThenQ(Y1,Y2) = QL(Y") = A(z,us) € S(ys) N 10,2) € S(ys) € S(v) by
(128) and by definition of tha(z, y,)’s.

iii. “else”.
ThenQ(Y1,Ys2) = QL(Y") = z9 € S(0) C S(v) by (128).

HenceSy x,v, () € S(v) for all v € I. As concerns the converse inequation thiat
S0.x,v,, We consider a choice aof € S(vy). As we observed abové; = {(0,2)} U
{(M)} x [0,7)) € T,(X) with z = inf Y’ andy, = supY” = . Because of the
assumption that € S(y) = S(ys), we obtain from (124) and (128) tht(Y;,Y3) =
Q.L(Y") = z. HenceSy x,v,(v) € S(v) for all v € I. Summarising these results, |
have shown that

So.xy, =S (137)
Therefore
Q(5) = 2(5%,x.v2) by (137)
< Fo(Q)(X,9) by (Z-5)
= (% .x,2) by Def. 55
=Q(sh). by (136)

b.. Q(S) > Q(S*). The proof of this case can be carried out in complete analogy to
that ofa. | hence only state the required changes. In this case, | define the semi-fuzzy
quantifierQ : P(2 x I)> — I hy

[ Qv Y=o
Qo ={ i) D50 (138)

forall Y1,Y, € P(2 x I), where again

Y ={2€1:(0,2) e Y1} (139)

Y'={2€1:(1,2) e Y1} (140)
and the semi-fuzzy quantifier3,, @7 : P(I) — I are now defined as follows. We
again choose an arbitrapy € S(0), which is known to exist by Def. 52. Next we

consider some € Iandys € L. If z > zp andS(ys) N (z, 1] # &, then we can choose
some((z,ys) € S(ys) N (z,1]. In particular,

C(z,ys) > 2. (141)
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In dependence on the choiceszgfand of the((z, y;)'s, we definel)’, by

z : oz € S(ys)
QLY") =1 C((zys) + 2¢S(ys), 2220, S(ys) N (2, 1] # @ (142)
20 : else

forall Y € P(I), where | abbreviate as above
ys =supY” . (143)

The quantifie)” is defined by (130), i.e. exactly as above. Itis then apparent from the
definition of @ in terms ofQ’, andQ’/ that( is nonincreasing in its second argument.

Based on the very same choice of the fuzzy subSet ﬁ(2 x I) as in the case di.,
one shows that

Soxz =S (144)
and
So.xy, = S (145)

for an arbitrary crisp sét; € P(F), Y> # @. Based on these results, we then conclude
that

Q) = A%, x,) by (144)
= Fa(Q)(X, ) by Def. 55
> Fao(Q)(X,Y2) by (Z-5)
= Q(%,x,v2) by Def. 55
= Q(s%). by (145)

A.5 Proof of Theorem 36

Lemma 20 If Q: K — I does not satisf{f)-1), thenF, does not satisfyZ-1).

Proof Suppose there exisis€ K anda € I such thatS(y) = {a} for all v € T and
Q) #a. (146)

We consider the nullary quantifi€p : 7>(E)0 — I defined byQ(@) = a. We
observe that by Def. 317, (@) = {@} for all v € 1. Hence

S.e(7) ={QY) Y e {a}} by Def. 51
={Q(@)}
=a by definition of@Q
=507,

94



So.0 = 5. (147)
Therefore
Fa(Q)(@) = Q(5%,.2) by Def. 55
= Q(9) by (147)
7 a by (146)

=Q(9),

i.e. (Z-1) fails, like we intended to show.

Lemma2l ConsiderS,S” € Kwith1 € S(0), 1 € S(0), S(y) € {0,1} and
S’(v) € {0,1} for all v € I. If Fq, satisfieqZ-5)and S C §’, thenQ(S) < Q(S").

Proof Let us first make some general observationsSéne {S,S’}. Becausd &
S5*(0), we know from Def. 52 that € S*(v) for all v € I. In addition,0 € S*(v)
for somey € I entails that) € S*(+') for all o/ > ~. Becauses™* () C {0,1} for all
~ € I by assumption, we conclude thst(~) has one of the following forms.

{1} :oy < s*(0)
so={fhy 1 1550

or

ey ) {1 v <s7(0)
5(7)—{ 01 4> 8(0)

wheres* : I — T is defined in terms of* according to Def. 53. It is then apparent
from Def. 57 that in this caseS, C S’ entails that

S'(v) € S(7) (148)

forall v € I.
We now define a semi-fuzzy quantifier: P(I)> — I by

1 inf Y; = 0ando0 ¢ Y;
) Y, = @ and0 ¢ S’(inf Y?)
QY. Y2) =9 | | + @ and0 ¢ S(inf V;)
0 else

(149)

for all Y1,Y> € P(I). Itis then apparent from (148) thét is nonincreasing in the
second argument. B

Now consider the following choice of argumetis, X», X, € P(E): Xo =1, X} =
@ and

v,

N[

/LX1(U) = % +
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for all v € 1. It is apparent from Def. 31 that
7,(Xz) = {1} (150)
7,(X3) = {@} (151)

for all v € I. ConsideringZ, (X;), we obtain for(Xl)jlin and (X1)}™ in the case
thaty = 0,

(X)) = (A1) 1 = (0,1] (152)

(X1)g " = (Xi) 1 =1 (153)
and in the case that > 0,

(XD)T" = (X 1,1 = b1 (154)

(X))o = (X1).1 1 =T (155)

In the following, assume a choice of € I. We first considetS; x, x, (7). Itis
apparent from (152), (154) and (155) that= (0,1] € 7,,(X;). By (150),I = X, €
7,(X5). Hence

QU(0,1],1) =1 € Sg.x,,x,(7) » (156)
see (149). We now discern two cases.

e 0¢ S().
Noticing thatinf Y7 <~ forallY; € 7,(X;) by (152) and (154), we obtain from
Def. 52 thatS(inf Y1) C S(v) and hence ¢ S(infY7) for all Y1 € 7,(X3).
HenceQ(Y:1,Y;) = 1 forall Y; € 7,(X;) andY; € 7,(X,), i.e.Y, = I by
(150) andSg. x,,x,(v) = {1}. Becausd ¢ S(v), we also haves(y) = {1},

i.e.50 x,,x,(7) = S(v), as desired.

e 0 S(v).

We already know from (156) thét7,Ys) € 7., (X1, X2) exists withQ (Y7, Y2) =
1,i.e.1 € Sy x, x,(7). Recalling (153) and (155), we also know th4t =
[v,1] € 7,(X1). In addition,Y> = I € 7,(X3) by (150). Hence&)(Y1,Y2) =
0 € S9.x,.x,(7) by (149). We conclude thafy x, x,(v) = {0,1} because
Q is two-valued. Considering, we know thatd € S(y) (by assumption of
this case) and that € S(v) becausd € S(0). In addition,S(vy) C {0,1} by
assumption of the lemma. Henséy) = {0,1} = So x, . x,(7)-

Summarizing, | have shown that

S =50,x1,%, - (157)

Next we considefy, x, x;. We first observe that by similar reasoning based on (152),
(154), (155),

Q(0,1],2) =1 € So.x,.x3(7), (158)
by (149). Now we proceed as above and again discern the two cases.
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° 0¢5(7)
Noticing thatinf Y7 < ~forallY; € 7,(X;) by (152) and (154), we obtain from
Def. 52 thatS(inf Y1) C S(v) and hence ¢ S(infY7) for all Y1 € 7,(X3).
HenceQ(Y:1,Y;) = 1forallY; € 7,(X;) andY; € 7,(X3), i.e.Ys = @ by
(151) and$; x,,x;(v) = {1}. Becausé ¢ S’(v), we also haves’(y) = {1},
i.e.Snyl,Xé (’7) = SI(’}/)

e 0€S5(y).
In this case, we know from (158) that there exist,Y>) € 7, (X1, X35) with
Q(Y1,Y2) = 1,ie.1 € S x, x;(7)- Again recalling (153) and (155), we
also know thatt; = [y,1] € 7,(Xy). In addition,Y; = @ € 7,(X}) by
(151). HenceQ(Y1,Y2) = 0 € S x,,x,(7) by (149). We conclude that
S0.x,,x3(7) = {0, 1} becausd) is two-valued. Considering’, we know that
0 € S’(v) (by assumption of this case) and that S’(+) becauséa € S’(0). In
addition,S’(y) € {0,1} by assumption of the lemma. Hen8§~) = {0,1} =
Sa.x1.x5(7)-

This proves that

S' = So.x1. x5 - (159)
Therefore
Q(8") = Q(Sg.x,.x3) by (159)
= Fa(Q)(X1, X3) by Def. 55
> Fa(Q)(X1, X2) by (Z-5)
= Q(5,x,,x») by Def. 55
=Q(9). by (157)

Lemma 22 Supposé? : K — I is a mapping such thak, satisfieqZ-5). If 2 does
not fulfill (2-3), thenF, violates(Z-2).

Proof Suppose? : K — I fails on 2-3). Then there exist§ € K such that
S(y) € {0,1}forally € 1,1 € S(0) and

(8) # L + Ls(0). (160)

We shall discern four cases.

a. s(0) > 0and 0 ¢ S(s(0)). In this case, lef«} be an arbitrary singleton set and
defineX € P({x}) by

px () = 3+ 3s(0). (161)
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Becauses(0) > 0, we have
Xpn=X_ 1= ()

X0 :XZ% = {*}

and for~ > 0,
min _ {*} v S 5(0)
X=X = { & i oy>s(0)
X,Iynax = X>%+%’Y = {*}
Therefore
_J {1 v < 5(0)
S x (1) = { 0,1} : 7> s(0)
=S(7)
forally €1, i.e.
Sr.x =5
In turn
T X = px (%) by Def. 7
=1+ 1s(0) by (161)
#Q(S) by (160)
= Q(S. x) bt (162)
= Fa(m)(X), by Def. 55

i.e.) fails on (Z-2).

b. s(0)=0and 0 € S(0). _
In this case we defin& € P({x}) by ux () = 3. Then by Def. 31,

Xpnin — X>% =
Xp™=X,1 = {x)
=2
and fory > 0,
X'rynin

=X_1
23

Xmax = X
Y >%
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Therefore

forally €1, i.e.

Srox =8 (163)
Hence again
T X = pux (%) by Def. 7
=3 by choice ofX
#Q(S) by (160)
= Q(5, x) bt (163)
= Fa(m)(X), by Def. 55

i.e. Fq violates (Z-2).
Having shown that proper behaviour@fin the cases. andb. is necessary fafFg, to
satisfy (Z-2), we can now assume without loss of generality that

Q(S) =1+ 1s(0) (164)

wheneverS € K satisfiesl € S(0), S(y) C {0,1} for all v € I, and it either holds
thats(0) > 0 and0 ¢ S(s(0)), or it holds thats(0) = 0 and0 € S(0).

In addition, 2 is known to fulfill the property stated in L-21 because it is supposed to
satisfy (Z-5).

c. s(0) > 0and 0 € S(s(0)).
In this case let € (0, s) and defines’, S” € K by

so-{ {5
soo-{ [y 1 3510

It is apparent from Def. 57 tha&8’ C S C S”. We also notice that'(0) ands”(0),

as defined by Def. 53 in terms 6f and.S”, resp., are given by’ (0) = s(0) — ¢ and
s"”(0) = s(0) + e. In addition,S” and.S” apparently satisfy the conditions of came
Therefore

3+ 35(0) — 3 =Q(9) by (164)
<Q(S by L-21
< Q(8") by L-21

Hence
Q(S) € [2 + 35(0) — Le, L + 15(0) + Le].
e — 0 then yields)(S) = § + 35(0), as desired.
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d. s(0) =0and 0 ¢ S(0). Inthis case, considet’ € K defined by
S'(v) ={0,1} (167)

for all v € 1. By Def. 57, we haves’ C S. Hence by L-21Q(S5) > Q(S’) = 1. On
the other hand, considét’ € K defined by

o= { iy © 75

for somes > 0. Apparentlys”(0) = € andS C S”. We hence obtain

1+1e=0(5) by (164)
a>08). by L-21

e — 0yieldsQ(S) < 1. Combining this with the above inequati®X{s) >
the proof of casel.

1 finishes

Lemma 23 LetQ : K — I be given. IfFq is a DFS, thenFg induces the standard
negationFo(—) = .

Proof Suppos€? : K — T is a mapping such thak, is a DFS. Ther2 satisfies
(©2-3) by L-22. In the following, we shall abbreviate = Fo(—). In addition, let us
recall that by Def. 85:(z) = Q'(X) forall z € I, whereQ’ : P({1}) — 2 is defined
by

Q(Y)=-n"(Y) (169)

forallyY € P({1}), andX e P({1}) is defined byX = 7j(z), i.e.

px(l) =x. (170)

Now letz € [0, 1). By Def. 31,

X = X>% =g

X(I)Ila.x — XZ% — @
and fory > 0,

Xy = XZ%Jr%W =@

max _ 1] Y <1-2z
X5 X>%%v{ {1} v>1-—2z

(171)



for all v € I. Becausé? is assumed to satisfy%3), we conclude that

Sz = Fa(Q)(X) by Def. 8, (170)
= Q% x) by Def. 55
=14+15(0) by (2-3)
= % + %(1 —21) by (171), Def. 53
=1—-=x.

This proves that

srxr=1-—=x, 172)

for all z € [0,3). Now letz € (3,1]. By assumptionF, is a DFS, i.e~is a
strong negation operator by Th-1. In particufais an involutive bijection by Def. 18.
Because- is involutive, it holds that: = == z. On the other hand; € (1, 1] implies
thatl — 2 € [0, 1). Hence by (172)z = 1 — (1 — z) = =(1 — z). Combining both
equations, we havé =z = =(1 — z). But = is an injection, i.e. we can cancel the
leftmost= to obtain the desireéx = 1 — 2. This proves thatxz = 1 — « for all

x € I\{3}. Itis then apparent from the fact thais a bijection that it fulfills= § = 3,
which finishes the proof that = —.

Lemma 24 Suppose? : K — I is a mapping such thaf, induces the standard
negation. IfQ2 does not satisf{2-2), thenFq, does not satisfyZ-3).

Proof LetQ : K — I be a given mapping such th#, induces the standard
negationfq(—) = —, ~x = lz. Further suppose th&t violates (2-2), i.e. there exists
S € K such that

Q(S) £ 1—Q(S"), (173)

whereS'(y) = {1 —z : z € S(y)} for all v € I. By Th-33 there exists) :
P2xI) — I X € P(2xI)with

So,x =8 (174)
Hence

Som,-x = S-@-,-x by Def. 11
=59" by L-2 and L-5

where
S'(v) ={1-z:2€ S%x(}
for all v € I. Hence by (174)S' = 5", i.e.

Soox =S (175)
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Hence

Fa(QD)(=X) = Q(Spo,-x) by Def. 55
= (5" by (175)
#1-0Q(5) by (173)
=1-Q(%,x) by (174)
= ~Fa(Q)(X) by Def. 55
= -Fao(Q)(—-—X) because-—~X = X
= Fo(Q)D(—X), by Def. 11

i.e. Fq violates (Z-3).

Lemma 25 Supposé) : K — Iis given. IfFq satisfieZ-5), then(2 satisfieq2-5).

Proof Let() : K — I be given and supposg, satisfies (Z-5). In order to show
that() satisfies -5), we consider a choice &, S’ € K such thatsS C 5’. Itis then
apparent from Def. 57 and Def. 59 that

as well. We define a semi-fuzzy quantifi@r: P(2 x I)2 — Ihy

Qiney (Y") Yy =
Y1,Y5) = m ,, 176
Q. 12) { ey (Y") 0 Ya# O (176)
forall Y1,Y, € P(E), where
Y' ={z€l:(0,2) € Y1} (177)
Y'={2€1:(1,2) e 1}. (178)

In order to define the semi-fuzzy quantifieps, @7 : P(I) — I, z € I, we first
choosezy € S(0), z;, € S’(0). BecauseS C S/, we can assume a choice af, 2|,
such that

20 < 2. (179)

Based orx, andz{, the quantifiers are then defined by

Lo )z ZES’i(ys)
Qz(y)‘{ T aeo
1" : St s
QY )={ e (181)

forallY” € P(I), where

ys =supY”. (182)



Let us now prove thaf) is nonincreasing in its second argument. It is apparent from
(176) that the only critical case is that B8 = &, Y5 # &. Hence letYy # @ €
P(2 x I) be given and lel; € P(2 x I). We abbreviater = inf Y. It is obvious
from (176) that

Q(YV1,2) = QL(Y")
Q(Yh YQ/) = QZ(YH) )

and | will repeatedly use these equations in the following. It is now convenient to
discern four cases.

1. 2 ¢ S (y,) andz ¢ St(ys).
ThenQ(Y1,2) = QL(Y") = 2, > 2o = Q"(Y") = Q(Y1, YY) by (180), (181)
and (179).

2. z € 5" (y,) andz ¢ Si(ys).
Thenz > v for all v € S%(y,) becausest = S’*. In particular,z > z.
ThereforeQ(Yi, @) = Q/(Y") = = > 2 = QL(Y") = Q(¥1,Y{) by (180)
and (181).

3. z € §"*(y,) andz € S*(y,).
ThenQ(Y1,2) = Q7(Y") = z = Q.(Y") = Q(Y1,Y3) by (180) and (181). In
particularQ(Y1, @) > Q(Y1,Y3).

4. z ¢ ' (y,) andz € St(y,).
Thenz < v forall v € S'*(y,) becausest C S'*. In particularz < 2.
ThereforeQ(vi, @) = Q/(Y") = z > = = Q.(Y") = Q(Y1,Y) by (180)
and (181).

This finishes the proof tha is nonincreasing in its second argument. Now consider
the fuzzy subseX € P(2 x I) defined by

a =

NX(aay) = {

N[ D=

f%y ca=1

forall a € 2, y € I. We notice that this is the same choice of fuzzy set as used in the
proof of Th-35, equation (131). In fact, it is now routine work to show that

Sox.o=38" (183)
So.x,v; =St (184)

(We simply need to recognize that the above cases are analogous to that of computing
Q(X, @) in parta. of the proof of Th-35.)
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Therefore

Q(8) = Q(sh) by Th-35
= Q(5,x,v¢) by (184)
=Fa(Q)(X,Ys) by Def. 55
< Fo(Q)(X, 9) by (2-5)
= QS x.0) by Def. 55
= Q8" by (183)
=Q(9"), by Th-35

which finishes the proof of the lemma.

Lemma 26 Consider a choice af € K. Then
S¥(v) € S(v")

forall v,+" € Twithy < +'.

Proof SupposeS € K and~v,+’ € I with v < ~/ are given. In particulayy < 1.
Hence by Def. 56,

S¥(v) = il S(y") by Def. 56 andy < 1
Y vy
= (N{S(Y") 7" > 74" #4}H) N SH)
CS().

Lemma 27 Suppose? : K — I satisfies(2-2) and (2-3). For a given choice of
S € K, we defines; € K by

# . _
sin={ 500 150 (185)

for all v € 1. If Fq satisfiegZ-6), then

a. Q(S;) = Q(s%);
b. Q(S) = Q(S)).

Proof Consider a choice a2 : K — I which satisfiesQ-2) and {2-3). We then
know from L-3 thatF, coincides with M for all two-valued quantifiers. We also
know from Th-12 thatM is a standard DFS. In particular, it induces the standard
extension principle. We notice that the induced extension principle depends on two-
valued quantifiers only, see Def. 16. Therefdfg induces the standard extension
principle as well.
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Now let us assume that (Z-6) is valid f@r We consider a choice of € K and assume
thatS; € Kis given by (185). Let us now define a mapping2 x I x I — 2 x I by

g(c,z1,22) = (¢, 21) (186)
forall c € 2, z1, 25 € 1. In addition, let us define a fuzzy subséte 73(2 x I xI)by
1 . —

5 : CcC = 0
1 1
s+3529 @ c=120<2xn
C,21,%22) = 202 ’ 187
nx(e 21, 22) %22 cc=1,21=0,20 <1 ( )
0 : else

forall c € 2, z1, 25 € 1. | now investigate some cut ranges. kot 0, we obtain from
Def. 31 and (187) that

X(’)“i“ = X> ={(1,21,22) : 21 > 22}

X =X_1=({0} xIxI)U{(1,21,22) : 21 > 22} .

>

Nl D=

Similarly for+ > 0,

X,Iynin:X ={(1,21,22) : 21 > 22 > v}

2%4—%7
X = X>l,lw = ({0} xIxI)U{(1,21,22) : 21 > 22t U{(1,0,22) : 20 > 1 — ~v}.
2 2

In turn by Def. 15 and (186),

g(X5"™) = {1} x (0,1] (188)

9(Xg™) = ({0} x ) U ({1} x (0,1]) (189)
and fory > 0,

g™ = {1} x (7. 1] (190)

Gme) = ({0} x U ({1} x I). (191)
In the following, | abbreviatd” = §(X). It is apparent from (3) that

1
3 c=0
= 192

forall c € 2, z; € 1. Hence by Def. 31,

Vgmin = Vo1 ={1}x(0,1] (193)

2
Vot =V_o1 = ({0} xHu ({1} xI) (194)
=2

and fory > 0,

it=vo = {1 <l (195)

Vi = ({0} x H U ({1} x I). (196)

We are now prepared to prove both parts of the lemma.
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a.: Q(S1) = Q(s).
In order to show this, we define a fuzzy quantifigr P(2 x I) — I by

QYY) = Qunt v/ (Y") (197)

forallY € P(2 x I), where
Y ={z€1:(0,2) €Y} (198)
Y'={2€1:(1,2) €eY}. (199)

Based on an an arbitrary choicesgfe S(0), the semi-fuzzy quantifie@, : P(I) —
I, z € 1, are defined by

z o oy =0,z2¢€5%0)

m_ )zt ye>0,2€8Se),ye €Y’
Q-0 = Doy >0,2€ 8 (ye),ye Y (200)
zo : else
forall Y € P(I), where | have abbreviated
ye = inf Y. (201)

In order to show thasy.; x = S¥, itis convenient to prove the following subsumption
first, Spog.x (7) € S*(v) for all v € I. In the case that = 0, we havey, = 0 for all

Y e{9(Z2): Z € To(X)}, see (188), (189). Now consider= inf Y'. By (200), we
haveQ(Y) = Q.(Y") = zif z € $¥(0),i.e.Q(Y) = z € S%(0). In the remaining
case that ¢ S*(0), we obtainQ(Y) = Q.(Y") = z € S(0) C S#(0). Now consider
~ > 0. Theny, € [0,~]. Depending orr = inf Y, one of the following cases applies.
If yo = 0andz € S*(0), thenQ(Y) = Q.(Y") = z € S¥0) C St(y). If y, > 0,

2 € S(ye) andy, € Y7, thenQ(Y) = Q.(Y") = z € S(y) C S(7) € S*(7). If

ye >0,z € S*(ye) andy, ¢ Y, thenQ(Y) = Q.(Y") = z € S*(ye) C S*(7). In
the remaining case®(Y) = Q. (Y") = zp € S(0) C S*(v).

Now we prove the converse subsumption, §itz+) C Sgog,x () forall v € 1. Hence
lety € T be given and considerc S*(v). It is apparent from (188) and (189) (in the
case thaty = 0) or (190) and (191) (in the case that> 0) thatY = {(0,2)} U ({1} x
(7,1]) e {g(Z) : Z € T,(X)}. We notice that by (198)nf Y’ = inf{z} = z and by
(199),y, = inf Y” = inf(y, 1] = +. Becausey, = v ¢ Y, we obtain from (197) and
(200) thatQ(Y) = Q.(Y") = z because € S*(y) = S*(y,). Summarizing, | have
shown that

Sgog.x = S*. (202)
Next | will show thatSQ’g;(X) = S1. Hence lety € 1. | first prove thatS‘Q’g;(X)(y) C
S1(7). If v = 0, theny, = 0 forall Y e T5(3(X)) = To(V), see (193), (194) and
(201). Let us abbreviate = inf Y”. If z € S¥(0) = S1(0), thenQ(Y) = Q.(Y") =
z € S1(0) by (197) and (200). It ¢ S*(0), thenQ(Y) = Q.(Y") = 2, € S(0) C
S4(0) = S1(0) by (197) and (200). Now we consider the case that 0. Then
ye € [0,7] by (195) and (196). I, < ~, we either hav&)(Y) = Q. (Y") = 2z €
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5(0) € S(v) = S1(7), or QYY) = Q.(Y") = z € S(ye) € S(y) = Su(y), or
QY)=Q.(Y") =z € S*(y) C S(y) = S1(7) by L-26 becausg, < ~. Finally if
ye = 7, theny, € Y by (195) and (196). Hence by (197) and (200), eitf)é¢t") =
Q.(Y") =z, wherez € S(y) = S1(7),0r Q(Y) = Q. (Y") = 20 € S(0) C S(y) =
S1(7). This finishes the proof thﬁQ é(x)(v) C Si(v) forall v € 1. to see that the
converse subsumption also holds, we consider a choige®f andz € Sy(y). We
notice that by (193) and (194) (in the case that 0) or (195) and (196) (in the case
thaty > 0), we can choos& = {(0,2)} U [y,1] € T;(§(X)) = T;(V). For this
choice ofY, we clearly obtairinf Y’ = inf{z} = z andinf Y = inf[y, 1] = ~. By
assumption, it holds that € S1(vy). Hence ify = 0, thenQ(Y) = Q.(Y") = =
because € S;(0) = S#(0) by (185). In the remaining case that> 0, we also obtain
thatQ(Y) = Q.(Y") = 2~ becausey, € Y andz € S1(y) = S(v), again by (185).
Hence the converse subsumption relationship also holds, and we can summarize these
results as

SQ,gx(X) =9. (203)
We conclude that
Q81) =S, 7 ) by (203)
= Fa(Q)(9(X)) by Def. 55
= Fa(Qo9)(X) by (Z-6)
= Q(Sp05,x) by Def. 55
=Q(s), by (202)

which finishes the proof of pagt.

b.: Q(S) = Q(S1).
In order to proof the second part of the lemma, replace the definition atfein
parta. with the following modified definition:

z ¢ oy=0,y€Y" z€ S0)
m ) oz yu=0,y¢Y" z€ 5(0)
Q-(Y") = z o ye>0,2€S(ye) (204)
zo : else

forall Y € P(I), assuming again some arbitrary choicegf S(0). The definition
of  in terms of these modifie@.’s and the definitions of”, Y andy, remain un-
changed, see (197), (198), (199) and (201), respectively.

In the following, | prove thaTSQ 2x) = S1. To this end, | first consider the sub-

g
sumptionSQ Q(X)(v) C S1(7). In the case thay = 0, it is apparent from (193)

and (194) thaty, = 0 for each choice oft’ € T5(3(X)) = To(V). Recalling
(197) and (204), the following cases may apply.yif ¢ Y andz € S%(0), then
QYY) =Q.(Y") = 2z € §%0) = S1(0) by (185). Ify, ¢ Y” andz € S(0), then
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QYY) = Q.(Y") = z € S(0) C S*(0) = S1(0). If neither of these conditions ap-
ply, thenQ(Y) = Q.(Y") = z, € S(0) C S*(0) = S1(0). Next we consider the
case thaty > 0. Theny, € [0,~]. We already know that fog, = 0, we obtain that
QY) € 51(0) C Si(7). If yy € (0,], then eitherQ(Y) = Q.(Y") = = € S(y) C
S() = S1(y) orQ(Y) = Q.(Y") = 29 € S(0) C S(y) = S1(v). Hence indeed
SQ,Q(X)(V) C Si(y) for all v € I. As concerns the converse inequation, consider a
choice ofy € Tandz € Si(y). We notice thatt” = {(0,2)} U ({1} x [y,1]) €
ﬂ(é(X)) = 7,(V) by (193) and (194) (in the case that= 0) or by (195) and
(196) (in the case thay > 0). We then obtain thainf Y’ = inf{z} = z and
ye = inf Y = inf[y,1] = ~. If v = 0, we conclude from (197), (204) aride Y
thatQ(Y) = Q.(Y") = z becauser € S;(0) = S*(0) = S*(y,). If v > 0, then
QYY) = Q.(Y") = z because: € S1(y) = S(y) = S(ye). Hence the converse
inequation also holds, which finishes the proof that

S = SQ,g(X) . (205)
It remains to be shown that).; x = S. Again, | first prove thatsy.; x () € S(7)
for all v € I. Hence lety € I be given. Ify = 0, then we obtain from (188)
and (189) that, = 0. In addition,y, ¢ Y” = (0, 1] regardless of the choice of
Y € {9(2) : Z € To(X)}. Hence ifz € S(0), thenQ(Y) = Q.(Y") = z € S(0)
by (197) and (204). Otherwise we obtai{Y) = Q.(Y") = 2z € S(0). Now we
consider the case thgt > 0. Theny, € [0,~] by (190) and (191). Ify = 0, then
we either have)(Y) = Q.(Y") = z € S(0) C S(y),0rQ(Y) = Q. (Y") =z €
S4(0) C S(v) by L-26, orQ(Y) = Q.(Y") = 2 € S(0) C S(y). If v > 0, we
obtain from (197) and (204) that eithé(Y) = Q.(Y") = z € S(y¢) C S(v) or
QYY) =Q,(Y") =z € S(0) C S(v). Inany caseQ(Y) € S(v), as desired. This
proves thatSy.;, x (v) € S(y) for all v € 1. To establish the converse inequation,
we again considety € I and a choice ot € S(v). We notice that by (188) and
(189) (in the case that = 0) or by (190) and (191) (in the case that> 0), we may
chooseY” = {(0,2)} U ({1} x (v,1]) € {g(Z) : Z € T,(X)}. Again, we obtain that
inf Y’ = inf{z} = zandY” = (v, 1], i.e.y, = inf(v, 1] = 4. In the case that = 0,
we then obtain from (197) and (204) th@tY') = Q.(Y") = z because € S(0) =
S(ye). In the case that > 0, we similarly obtain thaQ(Y) = Q.(Y") = z because
z € S(v) = S(ye). This finishes the proof of the converse inequation, and we can
summarize these inequations as stating that

S = Sgogx - (206)
Therefore
Q(S) = (S0, x) by (206)
= Fa(Q o g)(X) by Def. 55
= Fo(Q)(3(X)) by (Z-6)
= Q(SQ ;(X)) by Def. 55
= Q(51), by (205)

i.e. partb. of the lemma holds, as desired.
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Lemma 28 Suppos€) : K — T is a given aggregation mapping which satisf{i@s2)
and (Q2-3). If F satisfieqZ-6), then() satisfieg(2-4).

Proof This is now trivial because
Q(S) =Q(S1) by L-27, partb.
=0(S). by L-27, parta.

Proof of Theorem 36

The results of the preceeding lemmata can be summarized as statirfg-tab((2-5)

are necessary fafg, to be a DFS: Q-1) is known to be necessary fdr, to satisfy
(Z-1) by L-20. Lemma L-22 shows tha®(3) is necessary fafF, to be a DFS. Lemma
L-23 shows thatF, can only be a DFS if it induces the standard negation, and L-24
hence proves thatX-2) is necessary fofq, to be a DFS. Lemma L-25 shows that
(©2-5) is necessary faofFg to satisfy (Z-5). Finally, lemma L-28 proves th&t-4) is
necessary forF, to be a DFS, by relation this condition to (Z-6). This finishes the
proof that (2-1)—(2-5) are necessary foFg to be a DFS.

A.6 Proof of Theorem 37

Let¢( : T — I be given and defin® : K — T by (34), i.e.
Q) =&(Ts, Ls)
forall S € K. Now consider a semi-fuzzy quantifir : P(E)" — I and a choice
of fuzzy arguments(y, ..., X,, € P(E). We notice that
To.x1,...x,(y) =sup{Q(Y1,...,Y,): Y1,...,Y,) € T,(Xq,..., Xn)}
= sup 50,x,,....X, (7)
by Def. 44, Def. 51 and (35), and similarly
Loxy,..x, () =mf{QYr,....Y,) : (Y1,...,Y,) € T,(Xy1,..., X,)}
= inf S x,...x.(7)
for all v € T by (36), i.e.

TQ, X1, Xn = SUPSQ, X,..., X, (207)
Lox,..x, =infS x, .. x, (208)
Therefore
Fe(Q)( X1, Xn) =8(To.x1,.. X0 Lo.x1,. X)) by Def. 46
=&(sup S0, x,....x,.inf So.x, ... x,) by (207), (208)
= Q(5%,x1,...x..) by (34)
= Fa(Q)(X1,..., Xn). by Def. 55



A.7 Proof of Theorem 38

Lemma 29 Suppos€ : T — Iis given and) : K — I is defined in terms of by
(34). For (T, L) € T, we defineS(+ 1 : I — P(I) by

Srn() =[LO), T, (209)

forall v € I. ThenS(+ 1) € K, Tg,,, =T, Ls,,, = Landhence&(T, L) =
Q(S(T,1))-

Proof By Def. 45, 1(0) < T(0), i.e. St 1)(0) = [L(0), T(0)] # @. In addition,
we have L (y') < L(y) andT(y') > T(y) whenevery’ > ~, i.e. St 1)(7) =
[L(7), T(M] € [L(Y), T(OY)] = ScT,1)(7'). HenceS(t 1y € K by Def. 52. Now
considery € 1. We clearly have

Tser () =supScr.15(7) by (35)
= sup[L(7), T(7)] by (209)
=T()
and similarly
J-S(T,L) (’7) = inf S(T,l) (’7) by (36)
= inf[L(7), T(9)] by (209)
=1(v),
i.e.
T="Ts+., (210)
L=ls+.)- (211)
Therefore
§(T7 J—) = S(TS(TYL) b J—S(T,L)) by (210)' (211)
=QST.1) by (34)
as desired.

Lemma 30 Let(T,_Ll) e T be given. Then

TH(y) = sup (S(1.1))*(7)
J—ﬁ(’Y) = inf (S(T7L))u(7) )

forally € [0,1).
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Proof  For brevity, | writeS = S+ 1. Let us first considef . Becausey < 1, we
obtain

THy) = lim T(v) by Def. 35
vy =yt
=inf{T():v >~} by [9, Th-43, p. 44]
=inf{sup S(¥') : 7' >~} by L-29,
ie.
T¥(y) = inf{sup S(') : 7' > 7} . (212)

Now | show that
THy) = supn{S(Y) 17 > 7} (213)
Considers > 0. Then there exists € N{S(v') : v/ > ~} such that
z>supn{S():v >~} —«. (214)

Because: € N{S(v) : v/ > v}, we apparently have

sup S(v') > =z (215)
forally" > ~,i.e.
TH(7) = infsup{S(v') : 7' >~} by (212)
>z by (215)
>supN{S(Y):v >~} —«. by (214)

¢ — 0 proves the desired inequation (213). Let us now show that the reverse inequation
also holds, i.e.

TH) <supn{S() 17" >} (216)
Considero < T#(v). The proof is by contradiction; hence let us assume that
supN{S(Y): v >~} < a. (217)

Then for allz > «, there existsy, > ~ such that ¢ S(v.). BecauseS(y') C S(v.)
forall v < 4" < 4., this proves that ¢ S(v') for all v < 4/ < ~.. Recalling that by
(209),5(v) is an intervalS(~) = [L(), T ()], we deduce that

2 ¢ S()

forall 2/ € [z,1] andy < v' < ~.. Hencesup S(y') < z forall v < v' < ~. and for
all z > a,i.e.

TH(y) = inf{sup S(v') : 7' > 7} by (212)
< a,
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which contradicts with the choice of < T*#(v). Hence the assumption (217) is false;
instead it holds that

supN{S(Y): v >~} > «a.

Becauser < T*(v) was arbitrarily chosen, this proves thapN{S(y') : v’ > v} >
T#(v), i.e. inequation (216) holds. Combining (213) and (216), we conclude that

THy) = supN{S(¥) : 7' > 7} = sup 5*() (218)
forall v € [0,1) by Def. 56. The proof that
b¥(7) = inf S*(7)
for all v € [0, 1) is completely analogous.
Lemma 3l Let(T, L) e T be given. Then
T°(7) = sup (S(7,1))"(7)
L*(y) = inf (S(r,1)" (),

forall v € 1.

Proof  For brevity, | writeS = S+ ;). The case thaf = 0 is trivial because we then
have

T?(0) = T(0) = sup S(0) = sup S°(0)
by Def. 35, L-29 and Def. 56. For the same reason we have

1°(0) = L(0) = inf S(0) = inf S°(0).

Hence lety > 0. Let us first considef”. Becausey > 0, we obtain

T°(y) = 7/11_}11;77'(7) by Def. 35
=sup{T(Y):v <~} by [9, Th-43, p. 44]
=sup{sup S(7') : v <~} by L-29,
ie.
T°(7) = sup{sup S(7') : 7' <} (219)

Now | show that
T'(7) = supU{S(Y) : 7/ <~} (220)
Consider= > 0. Then there exists € U{S(y') : 7/ <~} with

z>supU{S(H): v <~} —e. (221)
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In particular, there existg” < v with z € S(y”). Hence

T’(y) = sup{sup S(v') : ¥ < 7} by (219)
> sup S(v") because/” < v
>z because € S(v")
>supU{SH) v <~} —¢ by (221).

e — 0 proves the desired inequation (220). Let us now show that the reverse inequation
also holds, i.e.

T’ (y) < supU{S(Y) 17/ <7} (222)
Hence let agaia > 0. Then there exists” < ~ such that
sup S(7") > T°() = 5, (223)
which is apparent from (219). In turn, there exists S(v") such that
z>supS(')—§. (224)
We conclude that there existss U{S(7') : 7/ <~} 2 S(y”) with

z>supS(v') - § by (224)
>T(H) —¢. by (223)

Because > 0 was arbitrary, this proves that (222) holds. Combining (220) and (222),
we conclude that

T'(7) =supU{S(Y) : 7 <7} = sup $°()
for all v € [0,1) by Def. 56. The proof that
L°(7) = inf $°(v)
forall v € [0,1) is analogous.
Lemma 32 LetS € K be given. Then

Ts(7) < Tge(7) < (Ts)*(7)
(Ls) (1) < Lgt(7) < Ls(v),

forall v € [0,1).

Proof  Let us first consider the case ©f. Becausey < 1, S*(v) can be rewritten as

St =n{S() v >} (225)
by Def. 56. We know from Def. 52 that(y) C S(+') for all ' > ~. Therefore

S(v) SN{SH) v >~} =S (y)
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and in turn,
Ts(y) =supS(7) <supS*(y) = Tg:(v)
Ls(y) =infS(y) > inf S*(7) = Lgs(7)

by (35) and (36) becausg(y) C S*(v). As concerns the remaining two inequations
to be proven, I first show that

(Ts) (7) > supN{S() : 7' >~} (226)

which proves thafl g:(v) < (Ts)ﬁ(q) because of (225). Hence let us notice that for
v <1, (Tg)*(7) becomes

(Ts)'(7) = lim Ts(v) by Def. 35
v =yt
=inf{Ts(y): v >~} by [9, Th-43, p. 44]
=inf{sup S(v') : 7' >~} by L-29.
Therefore
(Ts)*(7) = inf{sup S(v') : v/ > 7} . (227)

To see that (226) holds, consider- 0. Then there exists € N{S(v’) : 4/ > v} such
that

z>supnN{S(y):9 >~} —e. (228)
Because: € N{S(v) : v/ > v}, we apparently have
sup S(v') > 2 (229)
forally" > ~,i.e.
(Ts)*(7) = infsup{S(v') : 7' > 7} by (227)
>z by (229)
>supnN{S(H):9 >~} —e. by (228)

e — 0 proves the desired inequation (226).
The proof that

(Ls)f(v) < Ls:(7)
for all v € [0, 1) is completely analogous to that of (226).

Lemma 33 Let{ : T — I be given and suppoge: K — I is defined in terms of
according to(34). If

(T, L) =¢(T", 1) (230)

forall (T,L1),(T’, L") € T with
T() <T'(7) <THR) (231)
L) < (1) < L() (232)

for all v € [0, 1), thenQ2 satisfieq2-4).
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Proof LetS € K be given. By L-32,
Ts() < Tes(v) < (Ts) () (233)
(Ls)* () < Lg:(7) < L(v) (234)

forall v € [0,1), i.e. the conditions (231) and (232) are fulfilled and by the assumed
property (230),

§(Tgt, Lgr) =&(Ts, Ls). (235)
Therefore
Q(9) =¢&(Ts, Ls) by Th-37
=&(Tgt, Lgt) by (235)
=05, by Th-37

i.e. () satisfies 2-4), as desired.

Lemma 34 a. If f : T — Iis nonincreasing, then
A<y,

b. If f : T — Iis a constant mapping, theff = f* = f.

c. If f: I — Iis nondecreasing, then

f<f<rh
Proof See [9, L-39, p.117].

Lemma 35 Suppos€ : T — T is given and : K — I is defined in terms of
according to(34). If

§(T°, L5 =¢(T%, 1) (236)
forall (T, L) € T and¢ satisfieqX-5), then
§(T, L) =¢(7", 1)
wheneveT, L), (T', L) € T with

T < T/ < T (237)
1t< 1< 1P, (238)
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Proof Let(T,L1),(T’,L") € T be given such that (237) and (238) hold. Then
§(TH L") =&(T°, L% by (236)
< (T, 1) by (X-5), (237), (238)
< &(TH 1), by (X-5), (237), (238)
i.e.
E(T!, L) = &(TH, 1%). (239)

We notice that{T, 1) itself is a legal choice fofT’, L’) which satisfies (237) and
(238), see L-34. Hence we obtain as a special case that

E(T, L) =¢(TH L) (240)
Combining (239) and (240) yields the desiggd, 1) = &(T’, L7).

Lemma 36 Suppos€ : T — I is given and : K — I is defined in terms of
according to(34). If

E(T7, LF) =€(T L") (241)
forall (T, L) € T and¢ satisfiegX-5), then
§(T1,L1) =&(To, L)

wheneve(T, L1), (T2, L2) € T satisfyT1|j,1) = T2lp,1) @and Li]jo,1) = L2|j0,1)-

Proof ConsidenT, L) € T and defingT’, L) € T by

T ={ ;7 72 (242)
1'(y) { c ] (243)

for all v € I. We then obtain from Def. 35 and L-34 that” = T°, 1”* = 1° and

T <T< T

J_/?i <1< J_’b
Hence by L-35,

T, 1) =¢(T", 1. (244)

Now let (Tl, Ll), (Tg, Lg) € T with T1|[071) = T2|[O¢1) andLl\[O,l) = L2|[071). We
notice that in this case, the results of the construction (242) coincidé f@and T,
i.e.

T/ =T, . (245)
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Similarly, the results of the construction (243) on and_L, coincide, i.e.

1,/ =1, (246)
Therefore
(T, L) =&(T¢, 1) by (244)
=¢(T2', L2) by (245), (246)
=¢(To, La). by (244)

Lemma 37 Suppos€ : T — Tis given and2 : K — T is defined in terms of
according to(34). If

TP, L) =¢(TH L) (247)

forall (T, L) € T and¢ satisfiegX-5), thenQ2 satisfieq(2-4).

Proof Let(T,Ll),(T’, L") € T be given with

T <T'(y) < THw) (248)
L) < L'(7) < L(v) (249)
forall v € [0,1). Define(T”, L") € T by
e ={ 1) 25 (250)
17(4) ={ LR (251)

for all v € L. Itis then apparent from (248), (249) and L-34 that
—l—//b < T < —|—//ﬁ
J_//ﬂ < |'< J_//b

i.e. L-35 is applicable. We also notice that'|y 1y = T/jo,1y and_L"|jo.1) = Lljo,1),
which is apparent from (250) and (251). Therefore L-36 is applicable. We may hence
proceed as follows.

f(Ta L) = S(Tﬁa LH) by L-36
=T, 1), by L-35

This proves that fulfills the property (230) required by L-33. The lemma is hence
applicable, and we deduce tHatsatisfies 2-4).
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Proof of Theorem 38

Suppos€ : T — Tis given and2 : K — T is defined in terms of according
to equation (34). We shall consider all entailments claimed by the theorem in turn,
splitting each equivalence into two separate entailments.

(X-1) entails (©2-1).

Supposet satisfies (X-1) and consider somee I. Let S € K be the mapping
defined byS(v) = {a} for all v € 1. It is then apparent from (35) and (36) that
Ts(y) =sup{a} =aandLlg(y) =inf{a} =aforally €1, ie.

TS = LS =Cq - (252)
Therefore
Q(S) =&(Ts, Ls) by (34)
= &(cq,Ca) by (252)
=a, by (X-1)

i.e. () satisfies Q-1).

(©2-1) entails (X-1)
Suppos? satisfies -1) and considefc,, ¢,) € T. In order to show thag(c,,c,) =
a, we notice thatS._ ..y as defined by (209) becomes

S(ca,ca)(V) = [Ca('Y)aCa('Y)] = [ava'] = {a} (253)
for all v € I. Therefore

&(CasCa) = Q(S(Cmca)) by L-29
—a, by (©-1), (253)

i.e. (X-1) holds, as desired.

(X-2) entails (2-2)
Supposé€ satisfies (X-2). Now consider a choice 8fS’ € K with

S'()={1-z:2€S()} (254)
forall v € I. Then
Ts(7) =supS'(y) by (35)
=sup{l—=z:2€S5(v)} by (254)
=1—1inf S(y)
—1- 1s() by (36)
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and similarly

Ls(v) =inf S'(v)
=inf{l —z:2€ S5(y)}

=1—supS(y)
=1- TS’(’Y)v
forally €1, i.e.
Tg=1—1g
lg=1-Tg.

Hence

Q(S") =¢(Tsr, Lsr)
= 5(1 —1lg,1— TS)
=1-¢(Ts, Ls)
=1-Q(5),

i.e. satisfies -2).

(92-2) entails (X-2)

by (36)
by (254)

by (35)

(255)
(256)

by (34)

by (255), (256)
by (X-2)

by (34)

Let us assume that satisfies 2-2). We consider a choice ¢f", 1) € T. Then

Sa—11-1()=[1-T(),1—=L()] by (209)
={l-z:2€[L(y), T},
ie.
Sa-1ai-m()={1-2z:2€ 857 1(7)} (257)
for all v € I. Therefore
E1-L1-T)=Q>Sa-11-1)) by L-29

=1-Q(5T,1)) by (©2-2), (257)
=1-¢&(T,1), by L-29

which proves thaf satisfies (X-2).

(X-3) entails (92-3)

Supposé€ satisfies (X-3) and consider a choice®f K with 1 € S(0) andS(y) C
{0, 1} for all v € 1. Itis then apparent from (35) thats(v) = sup S(y) = 1 for all

vel,ie.

ngcl.
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In addition, we notice that by (36),s(vy) = inf S(y) € {0,1} for all v € I because
S(vy) € {0,1}. Hence

~

Ts(m c{o,1}. (259)
Finally, we observe that
(Lg)) =inf{y €I: Lg(y) =0} by (12)
= inf{y € I:inf S(y) = 0} by (36)
=inf{yel:0e€ S(v)} becauses () C {0,1}
= s(0), by Def. 53
ie.
(L)) = s(0). (260)
Therefore
Q(8) =¢&(Ts, Ls) by (34)
— 1411 by (258), (259) and (X-3)
=1+ 150). by (260)

This proves thaf2 satisfies -3), as desired.

(Q-3) entails (X-3) Let us assume tha? satisfies (-3). Now consider a choice of
(c1,1) € Twith L(I) C {0,1}. We define

S ={1tu{L() v <} (261)

forall v € I. Then clearlyc; = Tgand L = 1g by (35) and (36). In addition,
1 € S(0) and apparenthf(y) C {0,1} for all v € I becauseL(v) € {0,1} for all
~" € 1. Hence (2-3) applies taS. Finally

s(0) =inf{y€I:0€ S(v)} by Def. 53
=inf{yel: L(y)=0} by (261)
=17, by (12)
ie.
19 =5(0). (262)
Hence
(T, 1)
=Q(9) by Th-37 becausé = Tg, L = 1g
=3 +35(0) by (2-3)
=3+11). by (262)

This finishes the proof thdtsatisfies (X-3).
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The conjunction of (X-2), (X-4) and (X-5) entails (2-4)
Let (T, L) € T. We notice that
(1—1)f=1—1t,

this is apparent from Def. 35 because fox 1,

(1- L) = lim (1-1(7)

vy =t

=1- lim L(y)
v =yt

=1-1%(v).
(The case that = 1 is uncritical). Similarly
(1—1)Y=1-1",
because fory > 0,

1-1)(7) = lim (1-1(v))

Y=y

=1- lim L(y)
Y=y

=1-L"(7).
(The case that = 0 is uncritical). Hence

E(T7, LF) = &(TF, L%
=1-¢(1—1%1-T%
=1-¢((1-0f1-TH
=1-¢((1-1),1-TF
=1-¢1—-1"1-TF
= £(TF, 1%).

(263)
by Def. 35
by Def. 35

(264)
by Def. 35
by Def. 35

by [11, L-20, p. 56]
by (X-2)
by (263)
by [11, L-20, p. 56]
by (264)
by (X-2)

This proves thaf satisfies the precondition stated in lemma L-37. We may hence apply

the lemma and deduce thatsatisfies Q-4).

(©2-4) entails (X-4)

Supposd? satisfies -4). Now considef T, L) € T. We abbreviate

S =511y,

see (209). We further choose somec S(0) and defineS’, 5" : T — P(I) by

. {S(0)
SM{WMUM%M

§() = { g‘z(g) N [L(), 1]
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for all v € 1. It is apparent from the definition &', S” in terms ofS € K and the
fact that L is nondecreasing and < z, thatS’,S” € K as well. | now show that
Tg = Tb, Tgr = T andlg, = 1Lg» = L. To see thafl g, = Tb, let us first
consider the case that= 0. We then have

T5:(0) = sup 5'(0) by (35)
= sup S(0) by Def. 56
— T(0) by L-29
= T°(0). by Def. 35

In the case that > 0, we recall that by L-31,
T(7) =sup S°(7). (267)

We then haves’ (v)N[z0, 1] = S°(y)N |20, 1] from (265). Becausg, € S(0) C S°(7)
andz, € S’(), we conclude that

sup S”(y) = sup §°(v) N [20, 1]
=sup S’(y) N [20,1]
=sup S'(7).

Hence
To(7) =supS'(y) =sup S°(7) = T°(7)
by (267) and (35). Combining this with the cage- 0, | have shown that
Tg =T°. (268)

As concernsL g/, we notice that in the nontrivial case that> 0,

Loily) = int '(7) by (39)
— inf §”(7) U [L(y), 20] by (265)
= min(inf $°(7), L(v))
=1(7),

becauses”(y) C S(v) by L-13 and hencénf S°(y) > inf S(y) = L(v) by L-29.
Therefore

g =1. (269)

Next we consideiT s». The case thay = 1 is trivial. Hence let us consider < 1.
We notice that by L-30,

THy) =Te:(7)- (270)
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Becausel () < zy, we can then proceed as follows:

Tsr(v) = sup S¥(y) N [L(7), 1] by (266)
= sup S*(y) N 20, 1] becausel (v) < zg
= sup S*(v) because, € S*(v)
= Ts:(7) by (35)
=THy). by (270)

This proves that
Tgr=TE, (271)

Concerningl s/, the case that = 1 is again trivial. Fory < 1, we deduce that

L (y) = inf S¥() N [L(y),1] by (266), (36)
=infS*(7v)N[L(y), T(y)]  because, € S(v) andzy < T(v)
= inf S*(7) N S(v) by (209)
= inf S(v) becauses”(v) C S(v) by L-13
=1(y), by L-29
i.e. indeed
lgr=1. (272)

We further notice thag”(y) C S’(y) C S*(y) andS®(y) € S”(y) C S*(y). Thisis
apparent from (265), (266) and L-13. We can hence apply L-16 to conclude that
Q(S") = Q(S) = Q(5"). (273)
Putting the pieces together,
T, 1) =&(Ts, L) by (268), (269)

= Q(S") by Th-37

= Q(9") by (273)

= g(TS//)lS//) by Th'37

=£(S%,1). by (271) and (272)

Hence (X-4) holds, as desired.

(X-5) entails (©2-5)
Suppos€ satisfies (X-5) and lef, S’ € K be given whereS C S’. Now consider
~ € 1. For eacte > 0, there existz € S(v) such that

z>supS(y) —e. (274)
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Becauses C ', there exists’ € S'(y) with 2’ > z, see Def. 57. Hence
supS'(y) > 2" > z>supS(y) —¢
by (274).e — 0 yields
Ts(y) =supS'(y) 2 supS(y) = Ts(v) (275)

by (35). By similar reasoning, we know that for each- 0 there exists:’ € S’(v)
with

2 <infS'(v) +¢. (276)

BecauseS C S’, we deduce from Def. 57 that there exists S(v) with z < 2/
Hence

Ls(v) =inf S(y) by (36)
<z because € S(v)
<7 by choice ofz
<infS'(y)+e by (276)
=lg(y) +e. by (36)
e — 0 yields
Ls(v) < Ls(v). (277)
Therefore
Q(S) =&(Ts, Ls) by Th-37
<&(Tg,Lls) by (X-5), (275) and (277)
= Q9. by Th-37

Hence? satisfies 2-5), as desired.

(©2-5) entails (X-5)
Let us assume that satisfies 2-5). Now considefT, L), (T', L) € Twith T < T’
andl < 1’. Fory € I, we obtain from (209) that

ST () =1LO), T
and

Serrin() =L, T'()].

Considerz € Sit,1)(7). Then clearlyz < T(y) < T'(y) € S(t/,11(7) because
T < T'. On the other hand, for' € St/ 1/)(7) we havez’ > 1'(y) > L(v) €
S(T,1)(7) becausel. < 1'. Becausey € I was arbitrarily chosen, this proves that

Sty E S, (278)
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by Def. 57. Therefore

§(T, L) =Q(5,1)) by L-29
< QST 11) by (2-5), (278)
= g(T/7 J-/) 5 by L-29

i.e. (X-b) is valid for¢.

A.8 Proof of Theorem 39

In order to prove that conditiorfX—), ¢ € {1,...,5}, isindependent of the remaining
conditions, we need to show that there exist§2aQFM which validates all of @ — 1)—

(€2 — 5) except for (2 — 7). We can profit from Th-38 which permits us to reduce the
independence proof to the independence proof of (X-1)—(X-5). These conditions have
already been shown to be independent, see theorem Th-23.

(Q-1) is independent of the remaining conditions We know from Th-23 that there
exists a choice of : T — I wich satisfies all ‘X-conditions’ except for (X-1). From
Th-37, we know thatF; is an Fo-QFM, i.e. F; = Fq if we defineQ? : K — 1
by (34). Now we utilize Th-38. By part a. of the theore®-{) fails because (X-1)
fails. In addition, we know from parts b., c., d.1, and e. of the theorem fh)(
(©2-3), (2-4) and (2-5) hold because (X-2), (X-3), (X-4) and (X-5) hold. Hengg
demonstrates thaf)1) is independent of the other conditions.

(Q-2) is independent of the remaining conditions In this case, | recall theViz-
QFM used to prove the independence of the ‘B-condition’ (B-2) in [9, Th-66, p. 51]. It
is defined in terms of the followingz_9) : B — L.

3 +3Bp(2f-1) : feB*
feB2 (279)

Bi-2)(f) = %
3—3BY(1-2f) : feB~
for all f € B. This QFM is known to satisfy all ‘B-conditions’ except for (B-2). We
recall thatMp,,,_, = F¢ provided we defing(T, L) = Bp_z)(med; (T, L)) for
2

all (T, L) € T, see Th-22. We conclude from Th-24 tifagatisfies all ‘X-conditions’
except for (X-2). Now we defin€ : K — T in terms of¢ according to (34). Then
Q fails to satisfy (2-2) by part b. of Th-38. By parts a., c., and e. of the theor@m,
is known to satisfy @-1), (2-3) and (2-5) becausé€ satisfies (X-1), (X-3) and (X-5),
respectively. As concern§)4), we observe that satisfies the preconditions of lemma
L-37. Hence satisfies 2-4). This finishes the independence proof farZ).

(©-3) is independent of the remaining conditions In this case, we recall that by
Th-23 there exists a choice gf : T — I such that all ‘x-conditions’ except for
(X-3) are satisfied. From Th-37, we know thgg is anFo-QFM, i.e. F¢ = Fq for
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Q : K — I defined by (34). Again we apply Th-38. By part c. of the theorem3]
fails because (X-3) fails. By parts a., b., d.1, and e. of the theorem, we knowtiaf (
(Q-2), (2-4) and 2-5) hold because (X-1), (X-2), (X-4) and (X-5) hold. Hengg
proves that{Q-3) is independent of the other conditions.

(Q-4) is independent of the remaining conditions By Th-23, there exist§ : T —

I which satisfies all ‘x-conditions’ except for (X-4). Because (X-4) fails, we obtain by
contraposition from part d.2 of Th-38 thd2{4) fails. The remaining(2-conditions’
(2-1), (2-2), (2-3) and {2-5) are known to hold from parts a., b., c., and e. of the
theorem, respectively. This proves the independencg-af)(

(Q-5) is independent of the remaining conditions To this end, we define a mapping

BEB%}) :H — I by

0 . *
BEB5)(f)={ 1 : ;2;1 (280)

We further defineB_5) : B — T in terms of B, _., according to equation (18).
Bs_5) is known to satisfy (B-1), (B-2), (B-3) and 88-4) and to violate (B-5). By
Th-24, the mapping : T — T defined by&(T, L) = Bp_s5)(meds (T, L)) for

2

all (T, 1) € T satisfies (X-1), (X-2), (X-3) and (X-4), but violates (X-5). As usual,
we definef) : K — T in terms of¢ according to (34). By Th-38) violates 2-5),
but it satisfies Q-1), (2-2) and 2-3). We notice thaf? satisfies the precondition of
lemma L-33. Hencé) satisfies (2-4), i.e. condition {2-5) is indeed independent of
(2-1)-(2-4), as desired.

A.9 Proof of Theorem 40

Let@ : P(E)" — Ibe given and consider a choice of fuzzy argumeéds. . ., X,, €
P(E). We know from Th-32.a tha%, x, .. x, (0) # @. Hence there exists a choice
of zg € S, x,.....x,, (0). We notice that by Th-32.y € So.x,,... x, (v) forall y € L.
We hence obtain that

Q. X1, Xn (ZO)

=inf{yel:z € S x,,  x,(7)} byDef 54

=infI because; € 5 x,...x, (v) forally eI
=0.

Thereforezy € sg.x,....x, *(0),i.e.50 x,...x, 1(0) # , as desired.

A.10 Proof of Theorem 41

Lemma 38 Lets € L be given and suppose thét: I — P(I) is defined by
S(v) ={zel:v=s(2)} (281)
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forall v € 1. ThenS € K. Let us further denote the mapping defined in term§ of
according to Def. 53 by’ : I — I. Thens’ = s.

Proof Lets € IL be given and supposeis defined by (281). | first show that € K.
By Def. 51,571(0) # &, i.e. there exists, € I with s(z9) = 0. By (281),2y € S(0),
in particularS(0) # @. Now lety,~’ € T with v’ > ~. Then trivially

{zel:y>s(2)} C{zel:vy >s(2)}.

HenceS(vy) C S(v') by (281). This finishes the proof thate K, see Def. 52.
Now suppose’ is defined fromS by Def. 53. Then for alk € I,

s'(z)=inf{y€l:z€ S(y)} by Def. 53
=inf{yel:vy>s(z)} by (281)
= inf[s(z2), 1]
= s(z).

This proves that’ = s.

Proof of Theorem 41

Considers € L and suppose that : I — P(I) is defined by (37). We know from
L-38 that inde~ed5“ € K. Further suppose th& : P(2 x I) — I is defined by (27)
and thatX € P(2 x I) is the fuzzy subset defined by (33). We then obtain from Th-33
that

Hence by L-38 and Def. 54,= sg x.

A.11 Proof of Theorem 42

Lemma 39 LetS € K be given and supposec L is defined in terms of according
to Def. 53. Further letS’ € K be defined in terms of according to equatiorf281).
ThenS’ = St.

Proof Immediate. Considey € I. Then

S'(7)={z€l:v>s(2)} by (281)
={z€l:v>inf{y €l:2€ S(y'}} byDef 53
={z€l: forally >~,2€ S(7)}  because(y') C S(v") fory" <~"
={zel:zen{S(H): v >~}}
=N{S() 9" >~}
= S%(v). by Def. 56
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This is also correct foty = 1 if we stipulate thatn{S(v') : v/ > 1} = @z SH) =
,Y/
I

Lemma 40 LetQ), Q) : K — I be given. ThetFg = Fq if and only ifQ) = Q'.

Proof If Q = §, then trivially 7, = Fq.. It remains to be shown th& # ¢
entails thatF, # Fqo.. Hence suppose th& # . Then there exists a choice of
S € K such that

Q(S) £ (). (282)

We now defing) : P(2 x I) — I by (27) and further defin& € 75(2 x I) by (33).
Then by Th-33,

S=Sx- (283)
Therefore
Fa(Q)(X) = Q(%,x) by Def. 55
= Q(S) by (283)
# Q'(9) by (282)
= '(%,x) by (283)
= For(Q)(X). by Def. 55

HenceFq # Fq/, as we intended to show.
Lemma 41 Letw : L — I be given and defin@ : K — I by
Q(S) = w(s) (284)
for all S € K, wheres is defined in terms of according to Def. 53. Theft satisfies
(Q-4).
Proof Expanding Def. 53, we obtain for the givéhe K that
s(z) =inf{yeIl:z e S(y)} (285)

forall z € 1. Inthe case of*, | denote the mapping defined by Def. 5343y T — 1.
We then obtain

s(z2) =inf{y €I: 2z € S¥(7)} (286)

Let us recall that due to lemma L-18(y) C S*(v) for all v € 1. It is hence apparent
from (285) and (286) that

s%(z) < s(2) (287)



for all z € I. As concerns the reverse inequatign) < s*(z), we expands* in (286)
according to Def. 56, thus

s'(z) =inf{y eI:2€n{S(Y):+ >~}} (288)
Now considekr > 0. By (288), there exists € I such that
v <st(z)+ £ (289)

and forally’ > v, z € S(v'). Hence lety” = v+ 5. Theny” > v, hencez € S(7").
In addition,” < s*(z) + ¢ by (289). This proves that

s(z) =inf{yeI:ze S(y)} by (285)
<A because € S(v")
< s%(z) +e.

¢ — 0yields the desired(z) < s¥(z) for all z € I. Combining this with (287) finishes
the proof thats = s*.

Proof of Theorem 42

a. Suppos€) : K — T satisfies -4) and further suppose that : . — T is
defined by (40). In order to prove that, = Fq, we first define)’ : K — I by

Q' (S) = w(s) (290)

for all S € K, wheres is defined by Def. 53. It is then apparent from Def. 55 and
Def. 61 that

Fo=Far . (291)

Now let.S € K be given, assume is defined in terms of by Def. 53 and further
assume tha$’ € K is defined in terms of by (41). Then

' (S) = w(s) by (290)
= Q(s") by (40)
=05 by L-39
=Q(9). by (Q-4)

Hence) = Q andFq = F,, by (291).

b. Suppose? : K — I does not satisfy({-4) and consider an arbitrary choice of
w:L — 1. We define®Y’ : K — T by

' (S) = w(s)
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for all S € K, wheres is defined by Def. 53. We then know from Def. 55 and Def. 61
that

Fo = For. (292)

In addition,?’ is known to satisfy Q-4) by L-41. Now assume thaf, = F,,. Then
alsoF, = Fo by (292). Applying L-40, we conclude th& = Q'. But 2 is known
to violate (2-4), while )’ satisfies -4). Hence the assumption th&, = F, is
false. Because was arbitrarily chosen, this proves that there isanol. — T with
Fa = F,,i.e.Fqis not anF,-QFM.

A.12 Proof of Theorem 43

Consider a givew : . — I and suppose th&t : K — I is defined in terms of
according to (38). We consider the cases a.—e. of the theorem in turn.

a. Let us first show thaf)'s satisfying (2-1) entails thatv satisfies ¢-1). Hence
suppose that({-1) holds forQ2 and consider a choice efc L such that=1([0,1)) =
{a} for somea € 1, i.e.s(a) = a ands(z) = 1 forall z € I\ {a} by Def. 60. We
have to show that(s) = a. To this end, we first notice that

w(s) = Q9" (293)
whereS’ € K is defined by
S/(V)Z{ZGI:W>5(Z)}:{§OL} zi}

This is apparent from L-38 and (38). We further notice that

S = s* (294)
for S € K defined by
S(v) =A{a}
for all ¥ € I. This is immediate from Def. 56. Therefore
w(s) = Q") by (293)
=Q(S%) by (294)
=Q(9) by L-41
=a, by (2-1)

which proves thav satisfies ¢-1).

It remains to be shown that the converse entailment also holds. Hence suppose that
w satisfies ¢-1). Now consider a choice & € K such that there exists € I with

S(y) = {a} forall v € I. Then

s(z) =inf{yeI:z e S(y)} by Def. 53
_J 0 z=a
11 z#a
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forallz € I,i.e.s71([0,1)) = {a}. Hence(S) = w(s) = a by (38) and ¢-1), i.e.
satisfies 2-1).

b. Again | prove the equivalence a2¢2) and (-2) by considering both implications
separately. Hence let us assume thattisfies -2); it must be shown that satisfies
(w-2). Considen, s’ € L where

s'(z) = s(1 —2) (295)
for all z € 1. In accordance with (281), | define
S() ={z€l:7>s(2)} (296)
S'(y)y={z€l:v>5(2)} (297)
forally € I. Then
S'(y)={z€l:v>5'(2)} by (297)
={zel:v>s(1—-2)} by (295)
={l-z€el:v>s(2)} by substitution
={l-z:2€S5")} by (296)
forally € 1, i.e.5 andS’ are related in the way required b{). Therefore
w(s’') =Q(S") by L-38, (38)
=1-Q(9) by (Q-2)
=1-w(s), by L-38, (38)

which proves thab satisfies ¢-2).
To see thatw-2) entails (2-2), suppose that satisfies ¢-2) and consider a choice of
S,5" € Kwith

S ={1—2:2€S50) (298)

for all v € 1. For the mappings ands’ defined by Def. 53 in terms of and .S’
respectively, we then obtain

s(z) =inf{yel:ze S(y)} (299)
and
s'(z)=inf{yeIl:z€ S'(v)} by Def. 53
=inf{yel:1—2z¢€S(y)} by (298)
=s(1-2), by (299)

for all z € I. Hences ands’ are related in the way required by-@). We conclude
that

Q) = w(s') by (38)
=1-w(s) by (w-2)
=1-0Q(9). by (38)
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c. Nextwe prove the equivalence Qfsatisfying (2-3) andw satisfying (v-3). Hence
suppose {-3) is valid for 2 and consider a choice of € L with s(1) = 0 and
s71([0,1)) € {0,1},i.e.s(z) = 1 forall z € (0,1). DefineS € K by

_ Ay <s(0)
so={ iy © 1530
for all v € I. Then the mapping defined in terms.$faccording to Def. 53 coincides
with s. Therefore
w(s) = Q(S) by (38)
=3 +35(0). by (2-3)
To see that-3) entails (2-3), suppose that satisfies ¢-3) and considelS € K
with 1 € S(0) andS(y) C {0,1} for all v+ € I. Then the mapping defined by
Def. 53 in terms ofS apparently satisfies(1) = 0 ands(z) = 1 for all z € (0,1),
i.e.s71([0,1)) C {0,1}. Hences satisfies the requirements for application ©fJ),
and
Q(S) = w(s) by (38)
=3 +3500). by (w-3)

d. The claim that every) : K — I defined in terms of some : .. — I according
to equation (38) has already been proven in lemma L-41.

e. Finally we prove the equivalence dR{5) and (v-4), again by splitting it into two
implications to be proven separately. Hence let us assumétbatisfies 2-5). We
now consider a choice af s’ € IL with s C s’. In accordance with (281), | define

S(y)={z€l:y=s(2)} (300)
S' (M) ={z€l:7>5(2)} (301)
for all v € I. We now obtain from Def. 59 and (300)/(301) that
S*(y) = {z € I : there exist’ < z < 2 withy > s(2/) andy > s(2")}  (302)
S (y) = {z € I : there exist’ < z < 2" with v > §/(z/) andy > s'(2”)}, (303)
for all 4 € I. ThereforeS*, $'* € K become

SH ()

=n{S*(y) 7' >}

= {z eI:forally >+, there exist’ < z < z” with+’ > s(z’) andy’ > s(z")}
(304)

5% ()

=n{S*(y) 7' >}

={zeI:forally > ~,thereexist’ < z <z’ with~+' > §'(z') andy’ > §'(z"")}
(305)
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for all v € I, see Def. 56 and (302)/(303). Let us now show ﬁ?ﬁtg S’iu. We shall
consider the two conditions in in turn which are imposed by Def. 57§3nand5’jtﬁ
in order to haves** C S’iﬁ. Hence lety € T be given and let € Siﬁ(y). | will show

that there exists’ € S’iﬁ(y) with 2’ > 2. To this end, let us first recall thél’iu(o) B)
5'1(0) D 5’(0) # @ by L-13, Def. 59 and Def. 52. Lefj denote an arbitrary element

zh € §'(0). If z < 2}, then apparently), € 5'(v) € S} (y) C S’iﬁ(y). Hence

z' = z| is an admissible choice of with 2’ > z andz’ € S’iﬁ(fy). In the remaining
case that > z{, consider a choice of’ > . Abbreviatingy” = (v ++')/2, we
apparently have

v > > . (306)

From (304) andy”” > v, we deduce that € S*(1"), i.e. there exist; < z < z, with
z1 € S(v") andzy € S(v"). Hence by (300) and (306),

v > > s(z). (307)
Now we notice that by Def. 6%, C s’ entails that
inf{s'(z') : 2/ > 20} < s(22). (308)
Becausey’ > s(z3) by (307), we conclude from (308) that there exist$> 2, with
s'(Z) <9

It is then immediate from (301) that € S’(y’). Now considerz. By assumption,
z > z{ for z{, € S'(+'). In addition,z < zo < 2’ for 2’ € S’(y'). Hence by Def. 59,
z € S’i(y’). Because/’ > ~ was arbitrary, this proves thate S’i(fy’) forall v > ~,

ie.zen{S): v >~} = S’in(fy). Therefore:’ = 2 is an admissable choice of
z'with 2’ > zandz’ € S’iﬁ(v).

Next | consider the second condition f6¢" C S’Iu. Hence lety € T and letz’ €
S’in(y). | will show that there exists Siﬁ(y) with z < z’. Again, we first observe

that$t*(0) 2 S*(0) D S(0) # @, and assume a choice of some elemgnt S(0).
If 2/ > 2, thenz = zy is an admissible choice afwith z < 2’ andzy € S(y) C

Siﬁ(y). In the remaining case that < z;, we consider’ > ~ and again abbreviate
" = (v++')/2. We then deduce from (305) antl > ~ that there exist; < 2’ < 2,
with z1, 2o € S’(v"). Hence by (301),

Y > A" 28 (). (309)
At this point we recall that by Def. 62,C s’ entails
inf{s(z) : 2 < 2z} <§'(21) (310)
From this we may conclude that there exists z; with

s(z) <+
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becausey’ > s'(z1) by (309). In turn, we obtain from (300) thate S(+’). Now
considerz’. We know that: < z; < 2/ for z € S(+/). In addition, we have’ < z,
for o € S(v) by assumption. Hence by Def. 59, ¢ S*(y'). Becausey’ > v was

arbitrary, 2’ € St(y') forall v/ > 7, i.e.2’ € N{St(v') : v/ > 7} = St (7). Hence
z = 7' is a legal choice of with » < 2’ andz € Siu(w). This finishes the proof that
the defining conditions for

st ¢ gt (311)

are satisfied, see Def. 57. Therefore

w(s) = Q(S) by L-38, (38)
< (s by (2-5), (311)
=w(s). by L-38, (38)

Hencew satisfies ¢-4), i.e. £2-5) entails (-4), as desired.

Finally let us prove thatv's satisfying (-4) entails that? satisfies 2-5). Hence
assume thatu{-4) is valid for w and suppose that, S’ € K satisfyS T S’. In
accordance with Def. 53, we define

s(z) =inf{yel:ze S(v)} (312)
s'(z)=inf{yel:2€ 5 ()} (313)

forall z € I. Now letz € I and choose some > 0. We conclude from (312) that
there exists

v<s(z)+e (314)

suchthat € S(v). Because C ', there exists” > z with 2"/ € S’(~), see Def. 57.
Hence

s'(2") < by (313)
<s(z)+e by (314)
and in turn,
inf{s'(z'): 2/ > 2} <5'(2") < s(z) +e¢.
e — 0 yields

inf{s'(z') : 2 > 2z} < s(2). (315)

To prove the second condition imposed in Def. 624df s’ to hold, consider’ € 1
and choose some> 0. By (313), there exists

y<s()+e (316)
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with 2/ € S’(«). Becauses C S’, we obtain from Def. 57 that there exist$ < 2’
with 2”7 € S(v). Hence

s(2") < by (312)
<) +e. by (316)
In particular
inf{s(z):2 <2’} <s(2") < () +e.
¢ — 0yields
inf{s(z) : 2 < 2'} <§'(2)). (317)
By Def. 62, (315) and (317) prove that_ s’. Therefore
Q(S) = w(s) by (38)
< w(s) by (w-4)
= Q(5") by (38),

i.e. (2-5) is indeed valid fof2.

A.13 Proof of Theorem 44

Supposev : . — I satisfies ¢-1)—(w-4). Then() : K — I defined by (38) satisfies
(©2-1)-(2-5). We apply Th-34 and conclude that, is a standard DFS. Finally, we
notice thatr,, = Fq by (39), i.e.F,, is a standard DFS, as desired.

A.14 Proof of Theorem 45

Supposev : . — I violates one of {-1)—(w-4). Thenf2 : K — I as defined by
(38) violates one ofy-1), (w-2), (Ww-3) or (v-4), see Th-43. Hencg, is not a DFS by
Th-36. ButF,, = Fq by (39), which proves thak,, is not a DFS.

A.15 Proof of Theorem 46

We know from Th-39 that{{-1)—(2-5) are independent. Hence for each choice of
i € {1,2,3,5}, there exists a choice 6f; : K — I which violates 2—) and satisfies
the remaining 2-conditions’, including 2-4). Because eacfi; satisfies -4), we
know that

Q(8) = wils) (318)

for all S € K ands defined in terms of according to Def. 53, where; is defined in
terms ofQ2; according to (40). This is apparent from (39), Th-42.a and L-40. Because
(318) holds, we can apply Th-43 and conclude that eachatisfies all w-conditions’
except for (-1); wo, satisfies all conditions except fap{2); w3 satisfies all conditions
except for (-3), and finallyws satisfies all conditions except fow{4). Hence the
conditions {-1)—(w-4) are indeed independent.
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A.16 Proof of Theorem 47

Let a choice ofs € L be given.

a. Tosee thatt < s, consider: € 1. Clearly

inf{s(z'): 2’ <2} < s(z) (319)
inf{s(z"): 2" > 2z} < s(2) (320)

Hence

st(z) = max(inf{s(2) : 2’ < z},inf{s(z") : 2" > 2}) by Def. 65
< max(s(z),s(z)) by (319), (320)
=s(z). by idempotence ofnax

Because: € I was arbitrary, this proves that < s.

b. We know from Def. 60 that~1(0) # o, i.e. there existsy € I with s(zp) = 0.
By part a. of the theorems} (zy) < s(zo) = 0, i.e.s*(zo) = 0. Hencest '(0) # @
andst € L by Def. 60.

c. To see that! is concave, consider < z5 < z3. Then
inf{s(z") : 2" > 2} <inf{s(z") : 2" > 23} (321)
because, < z3, and
inf{s(z") : 2/ <21} > inf{s(z) : 2’ < 22} (322)
because; < z5. Recalling from Def. 65 that
st(22) = max(inf{s(z’) : 2’ < zo},inf{s(z") : 2" > 2}), (323)

it is now convenient to discern two cases.

1. inf{s(2’) : 2’ < 29} > inf{s(z”) : 2’/ > 25}. Then

sH(z9) = inf{s(2') : 2/ < 20} by (323)
<inf{s(z'): 2" <z} by (322)
< max(inf{s(2’) : 2’ < z1},inf{s(z") : 2" > 21})
= st(z) by Def. 65

< max(si (z1), 81(23)) .
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2. inf{s(2') : 2/ < zo} < inf{s(z") : 2/ > z}. In this case

sH(z0) = inf{s(2") : 2" > 2} by (323)
<inf{s(z"): 2" > 23} by (321)
< max(inf{s(z’) : 2/ < z3},inf{s(2") : 2" > 23})
= s%(23) by Def. 65

< max(st(21), s%(23)) -

This finishes the proof that is concave.

A.17 Proof of Theorem 48

Letw : L — I be a given mapping which satisfies-4). We consider some choice
of s € L. Becausey-4) holds forw, we can prove that(s) = w(s*) by proving that
s C st ands? C s. Let us first show that C s*. Hence let: € I be given. Then

inf{s*(2'): 2/ > 2} < s*(2) < s(2) (324)

by Th-47, part a. This proves the first requirementfda st. To see that the second
condition is also fulfilled, let” € I. We have to prove that

inf{s(z): 2z <2’} <sH(2). (325)

Let us denote by, some element, € s~1(0) # @, which is known to exist by
Def. 60. If zg < 2/, then (325) is trivially true because in this case

inf{s(z): 2 <2} <s(z)=0<sHz).
In the remaining case thag > 2/, we apparently have
inf{s(2"): 2" > 2'} <s(2)=0. (326)
Therefore
sH(2') = max(inf{s(z") : 2" > 2'},inf{s(z) : 2 < 2'}) by Def. 65

= max(0,inf{s(z) : 2 < 2'}) by (326)
=inf{s(z) : 2 < 2'}. becausé is identity of max

In particular, (325) is valid. Combining (324) and (325) proves the desifed?*, see
Def. 65.
Next let us show that alse' C s. Firstly we notice that for alt’ € I,

st(z') < s(2),
again by Th-47, part a. Therefore
inf{s(2): 2 <2} < s*(2') < s(2). (327)
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This proves the second requirement of Def. 620 s. To see that the first require-
ment also holds, considere I. It must be shown that

inf{s(z'): 2/ > 2} < st(2). (328)

Hence let, € s~1(0) be an arbitrary element wit(zy) = 0, which is known to exist
by Def. 60. Ifzy > z, then (328) holds because

inf{s(z'): 2/ > 2z} < s(20) =0 < s¥(2).

In the remaining case thag < z, we observe that

inf{s(z) : 2’ <z} < s(20) =0. (329)
Therefore
st(z) = max(inf{s(2) : 2’ < z},inf{s(z) : 2’ > 2}) by Def. 65
= max(0,inf{s(z') : 2’ > z}) by (329)
=inf{s(z") : 2’ > z2}. becausé identity of max

In particular, (328) holds. It is then immediate from (327) and (328) that s
by Def. 62. Hences C s*, which entails thatu(s) < w(s*) becausev is assumed
to satisfy (,-4), ands* C s, which entails thatv(s¥) < w(s). We conclude that
w(s) = w(st), as desired.

A.18 Proof of Theorem 49

Lemma 42 Considers, s’ € L. If s < s, then it also holds that C s’.

Proof Suppose that, s’ € LL satisfys < s’. We consider some € I. We then know
from Def. 64 that there exists’ > z with

s'(2") < s(2).
Therefore
inf{s'(z') : 2/ > 2} < §'(2") < s(2). (330)
Now we consider somg € I. Again by Def. 64, there exists’ < 2’ with
s(2") < s(2).
In turn,
inf{s(z): 2 <2’} <s(2") <s(2). (331)
Hence both inequations (330) and (331) are valid, and we conclude from Def. 62 that

sCs.

Lemma 43 Lets € L be given and let, be an elementy € s71(0) # @.



Proof

a. Because > zy, we observe that

inf{s(2') : 2’ <z} < s(20) because, < z
=0, because, € s~ 1(0), i.e.s(zp) =0
ie.
inf{s(z) : 2’ <z} =0. (332)
Therefore

st(z) = max(inf{s(2) : 2/ > z},inf{s(z’) : 2/ < z}) by Def. 65

= max(inf{s(z’) : 2’ > 2},0) by (332)

=inf{s(z") : 2’ > 2}. becausé is identity of max
b. In this case, we conclude from< z, that

inf{s(z') : 2’ > 2z} < s(20) because, > z
=0. becausey € s~'(0),i.e.5(29) =0

Hence in this case
inf{s(z'): 2’ > 2} =0. (333)
We then obtain

st(z) = max(inf{s(2) : 2/ > z},inf{s(z’) : 2’ < z}) by Def. 65
= max(inf{s(z) : 2’ < z},0) by (333)
=inf{s(z") : 2’ < z2}. becausé is identity of max

Lemma 44 Considers,s’ € L withs C 5.
a. Letz, be an element), € '~ (0). Thens’i(z) < s(z) forall z > z{,.

b. Letz, be an elementy € s~1(0). Thens*(z) < s'(z) forall z < z.

Proof We recall from Def. 62 tha¢ C s’ entails that

inf{s'(z') : 2/ > 2} < s(2) (334)
inf{s(2'): 2/ <z} <5'(2), (335)

for all z € I. Now let us consider the two parts of the lemma.
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a. Inthis case,

s (2) = inf{s'(¢) : &' > 2} by L-43.a
< s(2) by (334).

b. The proof of this part is analogous. Hence

st(z) =inf{s(2) : 2/ < 2} by L-43.b
< §'(z). by (335)

Lemma 45 Lets, s’ € L be given withs C s'.

a. Letz, € &/~ '(0) be given and suppose> z). Thenst(z) = inf{s(z') : 2’ >

b. Letz, € s71(0) and suppose < zy. Thens'¥(z) = inf{s'(2') : 2’ < z}.

Proof It is helpful to observe that the above inequations (334) and (335) are valid in
this context, too. Now let us consider the parts of the lemma in turn.

a. Straightforward. We first notice that

inf{s(z'): 2’ <z} <inf{s(z'): 2 < 2} because|, < z
< () by (335)
=0, because), € s’ (0)
i.e.
inf{s(z) : 2/ <z} = (336)
Therefore
st(z)
= max(inf{s(z) : 2’ > z},inf{s(z') : 2/ < z2}) by Def. 65
= max(inf{s(z’) : 2’ > 2},0) by (336)
=inf{s(z'): 2’ > 2}, becausé is identity of max
as desired.

b. The proof of this case is analogous. Thus

inf{s'(z') : 2’ > 2z} <inf{s'(z') : 2’ > 2} because; > 2
< s(20) by (334)
=0, because, € s~ *(0)
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inf{s'(2):2' > 2} =0 (337)
Therefore
S/i (2)
= max(inf{s'(2') : 2’ < z},inf{s'(¢') : 2’ > 2}) by Def. 65
= max(inf{s'(z') : 2’ < z},0) by (337)
=inf{s'(2") : 2’ < z}. becausé is identity of max

Lemma 46 Suppose, s’ € L satisfys C s’. Thenst < s'*.

Proof Let us first show that for alt € I, there exists’ > z with

s < st(z). (338)
To see this, choose some elemeht s'~'(0), which is known to exist from Def. 60.
If 2 < 2, thens’*(2}) = 0 < st(2), i.e.2’ = 2 is an admissible choice of with

2 > zands'(z') < st(z), which proves that (338) is valid in this case. In the
remaining case that > z,, consider the following chain of (in)equations.

st(z) = inf{s()) : 2/ > 2} by L-45
> inf{inf{s'(z") : 2" > 7'} : 2/ > 2} by (334)
=inf{s'(2)) : 2/ > 2}
=s%2). by L-43

Hencez’ = z is an admissible choice af with 2’ > z ands*'(2/) < s¥(z), and (338)
is valid in this case as well.
Next we show that for alt’ € I, there exists < 2’ with

st(z) < 5. (339)
In this case, we choose some element s~1(0), which is again known to exist by
Def. 60. If 2/ > z, thenst(zg) = 0 < s¥'(2'), i.e. z = z is a legal choice of with

2 < 2/ andst(z) < s'*(2'). Hence (339) is valid. In the remaining case thiat z,
we deduce that

ST = inf{s'(z) : 2 < 2’} by L-45
> inf{inf{s(z"): 2" <z}:2 <z} by (335)
=inf{s(z) : 2 < 2’}
=st(2). by L-43

Hencez = 2’ is a suitable choice of with z < 2’ ands*(z) < s’i(z'), i.e. (339) is
valid in this case, too.
Finally, it is apparent from Def. 64 that (338) and (339) ensure the desireds’*.
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Proof of Theorem 49

Let us first notice that the conditioras andb. stated in the theorem are entailed by
(w-4). Hence suppose that : . — I satisfies ¢-4). Then for alls, s’ € L with

s < &', we recall that by L-42, it also holds thatC s’. Hencew(s) < w(s’) by (w-4),
i.e. conditiona. is valid, as desired. As concerns condition it has already been
shown in Th-48 that’s satisfying (,-4) entails thatv(s) = w(st), i.e. conditionb.
holds as well. This finishes the proof that conditienandb. are entailed by{-4).

Let us now prove the converse entailment. Hence supposa.thatlb. are valid and
considers, s’ € L with s C s’. Then

w(s) = w(st) by propertyb.
< w(s'i) by propertya. and L-46
=w(s). by propertyb.

Hence (-4) holds, as desired.

A.19 Proof of Theorem 50

Lemma 47 Considers € L and suppose’ € L is defined by'(z) = s(1 — z) for all
z € 1. Then it also holds that

s'i(z) =st1-2)

forall z € 1.

Proof Considerz € I. Then
Sli(Z)
= max(inf{s'(') : 2’ > z},inf{s'(z') : 2’ < z}) by Def. 65

= max(inf{s(1 —2') : 2’ > 2},

inf{s(1—2"):2' <z} by definition ofs’
= max(inf{s(z") : 2" <1 - 2},
inf{s(z"): 2" >1—2}) by substitution:” = 1 — 2’
=st(1-2), by Def. 65
as desired.

Lemma 48 Forall s,s" € L with §'(z) = s(1 — z) for all z € 1, it holds that

1,0.

T,0
s, =1—sx";

a.

11,0 T,0
b. s/, =1—s,".
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Proof Suppose, s’ € LL satisfy
§(z) =s(1 —2) (340)
forall z € 1.

a. To see that the equation of caaeholds, we simply notice that

s 10 = sup 3’1_1(0) by (42)
=sup{z €I: s'i(z) =0}
=sup{zel:st(1—2)=0} by L-47 and (340)
=sup{l — 2 €I:s*(2') =0} by substitutionz’ = 1 — 2
=1—inf{z €I:5%() =0}
1 sko by (43)

b. To see that the second equation also holds, we simply notice that (340) entails that
s(z) = s'(1—2)forall z € 1, i.e. the ‘roles’ ofs ands’ are interchangeable. Therefore

11—

=1-5]0. by parta. of the lemma

s )

Lemma 49 Forall s,s" € L with s'(z) = s(1 — z) for all z € 1, it holds that

* IV
N[ =
*IN
N[

e
V)
Il

»

*INA
N[—=
I

[Va)

* 1V
N[

Proof Let us first prove that pad. of the lemma is valid. Hence suppose thais
defined in terms of € LL as stated in the lemma. Then
1

§72 = inf{s'(2) : 2 > 3} by (47)
=inf{s(1—z2): 2> 1} by definition of s’
=inf{s(z') : 2/ < 1} by substitutionz’ =1 — 2
1
= 852 )

This also proves pati. becauses ands’ are interchangeable, i.e. it also holds that
s(z) =5 (1—z)forall z € 1.

Lemma 50 Suppose € L is concave, i.e. for alt; < z5 < z3, it holds that
s(z2) < max(s(z1),s(z3)). (341)

Thenst = s.
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Proof Leta choice ok € IL be given such that (341) holds. By Def. 60,}(0) # @.
We can hence choose somge I with s(zp) = 0. Now considerz € 1. If z > z,
then for allz’ > =z,

s(2) < max(s(z0),s(2")) by (341)
< max(0, 5(2)) because, € s~1(0)
=s(z), becausé is identity of max
i.e.
s(z) < s(2). (342)
Hence
inf{s(z'): 2/ > 2z} <inf{s(z) : 2/ > 2} by (342)
= inf{s(z)}
=s(2).

On the other hand; € {2z’ € I: 2 > 2z} and hencénf{s(z') : 2’ > z} < s(z).
Combining both inequations, we obtain that

inf{s(z'): 2" > 2} = s(2). (343)
Therefore
st(z) = inf{s(2') : 2/ > z} by L-43
=s(z). by (343)

In the remaining case that< z,, we can proceed analogously. Then forAlK z,
we again have

s(z) < max(s(z0),s(z")) by (341)
< max(0,s(2)) because; € s~ 1(0)
=s(2'), becausé is identity of max
i.e.
s(z) < s(2). (344)
Therefore
inf{s(z') : 2’ <z} <inf{s(z): 2’ <z} by (344)
=inf{s(2)}
=s(z).

We again notice that € {z' € I : 2/ < z} and hencénf{s(z’) : 2/ < z} < s(z).
Combining both inequations proves that

inf{s(z"): 2’ <z} =s(2). (345)
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Therefore
st(z) = inf{s()) : 2/ < 2} by L-43
=s(z). by (345)

Lemma51 Forall s € L, stF = st

Proof By Th-47.c,s! is concave. Hence by L-56!" = st, as desired.

Lemma52 Forall s € L,

+T,0 T,0.
a. st =8,

b. sii"o a

= S

Proof Consider some € L. Concerninga., we notice that

-1

s =supstt (0) by (42)
—supst ' (0) by L-51
=510, by (42)
Similarly in the case ob.,
S0 Zinf st (0) by (43)
= inf st~} (0) by L-51
=50, by (43)

Lemma53 Forall s e L,

o8}

®

e

* 1V
ol
* 1V
N[

Il
»

*IA
[N
|

»

*INA

N [=

o
VA
-

Proof Consider a choice of € IL and denote by, an arbitrary element, €
s71(0).
First | prove part. of the lemma. This is trivial ity > % We then have

N[

s*2 =inf{s(z) : 2 > 3} by (47)
< s(20) becauseq > 1
=0, by choice ofz,
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2
*

N[—

s =0.

We recall that by Th-47.a5%(29) < s(20) = 0, i.e.

st(z0) = 0. (346)

Hence
> 1
122 —inf{st(2): 2 > %} by (47)
< SI(Z()) becauseo > %
ie.
1
5152 =0.

1

1
>z >3 -
22 =0 = s 2. Inthe remaining case thag < % we

This finishes the proof that
notice that

[N

=50 (347)

s 2

by (47) and L-43. For similar reasons, it holds that

1
s72 = gt (1), (348)

>
Sx (3) by (347)
=st(2) by L-51
1
=572, by (348)

1 1
P by L-49
1
_ =)
=35, by parta. of the lemma
1
— 152 by L-47 and L-49

Lemma 54 Forall s,s’ € L with s C ¢, it holds that

1 T,0.
7

*

T,0
a. s, <s

1,0 1,0
b, sy <s' 7.

*
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Proof Lets,s’ € L with s C s’ be given. We conclude from L-46 that < s'*,
i.e. for allz € I, there existg’ > z with

sH) < st2), (349)
and for allz’ € I, there exists < 2’ with
st(z) < (7). (350)

Based on these inequations, the lemma is straightforward. 1 first considea.case
the lemma. Now let > 0. Let us recall from (42) that, * = sup 8171(0). Hence
there exists: € st~ (0) with

z>s]0—¢. (351)
By (349), there exists
2>z (352)

with s'*(2/) < st(z). We notice thatst(z) < s(z) by Th-47.a and that(z) = 0
because € s—1(0). Hences'*(2/) = 0, i.e.

2 estT0). (353)
| conclude that
S0 =supst T (0) by (42)
> 2 because’ € 5’1_1(0) by (353)
> 2 by (352)
>s]0—¢. by (351)

£ — 0 proves the desires | " > s °.

To see that path. of the lemma also holds, we observe that s’ entails that’ C 3,
wheres, s’ € L are defined by(z) = s(1 — z) ands’(z) = s'(1 — z) forall z € L.
Therefore

siV=1-35/"° by L-48
<1-g§]"° by parta. of the lemma
=70, by L-48

Lemma55 Forall s,s’ € L withs < ¢, it holds that

N[=

a. s

* 1V
* 1V

rol—
IV
CIJ\

*IA
N[

IN
CIJ\

* 1A
N[
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Proof
all z € I, there existg’ > z with

and that for alk’ € I, there exists < z’ with
s(z) < §'(2).
As concerns pai. of the lemma, we first recall from (47) that

>
*

N[

sy 2 =inf{s(z) : z > %}
Now lete > 0. We conclude from (356) that there exists [%, 1] with

1
>_
s(z) <s:?+e.

By (354), there exists’ > z with s'(z’) < s(z), hence

>l
s(Z)<sc? +e

by (357). Therefore

1
5’52 =inf{s'(2) : 2 > 3} by (47)
< s'(2) because’ > z > 1
>1
<s:Z+e. by (358)

. sl >1
¢ — 0yields the desired’; 2 < s; 2.

[

Suppose that, s’ € L with s < s’ are given. We know from Def.

64 that for

(354)

(355)

(356)

(357)

(358)

Now let us consider pahi. of the lemma. We defing 5’ € L by 5(z) = s(1 — z) and
§'(z) = ¢'(1 — z) forall z € I. Itis then apparent from Def. 64 thatd s’ entails that

5’ < 5. Therefore

1 1
52 — 522 by L-49
>l
<§7? by parta. of the lemma
<3
=5%°. by L-49

Lemma 56 Forall s,s’ € L with s C s, it holds that

1 1
>= >=
=2 1=2.

a. sy ° =28y °,

1 1

<z <z
b. s:2 <s';2.
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1 1
Proof By L-55, (o)f 2 and(o)f 2 are monotonic with respect t9. By L-53, (e)
1

1 1
and(o)f 2 aret-invariant. We can hence apply Th-49 to deduce (h;ﬁ 2 and(e)
are monotonic with respect {0, as desired.

Proof of Theorem 50

By Th-44, it is sufficient forF,, = F,,, to be a standard DFS,{1)—(w-4) are valid
for wyy.

wys satisfies (w-1) Let us consider a choice afe L such that

s71([0,1)) = {a} (359)
for somea € I. Then
sH0 = inf st (0) by (43)
= inf s7*(0) by L-50 ands concave
= inf{a} by (359)
= a,’
ie.
st0=uq. (360)

By the same reasoning, we also obtain

s]0=a. (361)

1 1
Concerning the coefficientsskS 2 ands*Z 2, we obtain from (46) and (359) that

<% 1 : a>1
sy 2 =inf{s(z): 2 < 1} = { 2 (362)
2 0 : a< %
Similarly by (47) and (359),
> 1 : a<l!
s. 2 =sup{s(z):z2>1}= { 2 (363)
2 0 : a> %

1
Hence ifa > %, thens:i® — o > 1 ands=2 — 1 by (360) and (362). In turn, we

§1
obtain from Def. 67 that

(SIS

1

wyr(s) = min(s;% 2 + 1s7°2) = min(e, 2 + 3 - 1) = min(a,1) = a.
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1
Ifa< i thens!®=a<} ands- 2 — 1 by (361) and (363). In this case, we obtain
from Def. 67 that

1

1
>_
50 - %) =max(a, 5 — 3 - 1) = max(a,0) = a.

war(8) = max( ,%—%s

Ein?ty?if a =1, thens!? = s:" = 1 by (360) and (361). Thereforey(s) = 1 by
ef. 67.

wn satisfies (w-2) Lets € L be given and suppose théte L is defined bys'(z) =
s(1—2). If 7% > 1, then

1
wir(s') = min(s' 20, 1 + 15/52) by Def. 67

1

= min(1 — 5] 0, 1 4 1s77) by L-48, L-49
1

= min(1— s 01— (1 - 1s:2))

1
=1—max(s, ", 3 - %5*22) by De Morgan’s law
=1-wn(s), by Def. 67

where the last step holds because’ = 1 — s’j’o < % by L-48.
In the case that’, * < 1, we notice that* = 1 — s’ "° > 1 by L-48. Therefore

1
wir(s') = max(s', ", 53— 55’52) by Def. 67
1
= max(1 — -7, % — %852) by L-48, L-49
<1
=max(1 —s°1— (2 +1s02))
1
=1-min(s; % 2 + %sz) by De Morgan’s law
=1—-wn(s). by Def. 67
Finally if s/ < 1% <O thensy® =1-5"<1<1-5%=5]"byL-48,
Hencewy(s') = 5 = wa(s) by Def. 67. In particularyy (s') = 1 — was(s).

wyr satisfies (w-3) Consider a choice of € L with s(1) = 0 ands~1([0,1)) C
{0,1},i.e.s(z) = 1forall z € (0,1). We then obtain from Def. 65 that

0 poz=1
Si(z):{s(()) oz<1

for all z € I. Therefore
s]0 = sup 5171(0) =1 (364)

550 = inf st (0) = { ! 5(0)>0 (365)



by (42) and (43), resp. We further notice that

= inf{s(z) : 2 < 1} = 5(0), (366)

which is apparent from (46) and the assumed properties dh the following, we
discern two cases. K(0) = 0, thens:® = 0 by (365) ands, * = 1 by (364). Hence
by Def. 67,wn(s) = 3 = 3+ 2 -0 =1+ 15(0), as desired. In the remaining case

2
1. Therefore

1
3
thats(0) > 0, we know from (365) that; * =

1
2) by Def. 67

war(s) = min(s0, 3 + %sf
) by (365), (366)

This proves thatw-3) is indeed valid.

wy satisfies (w-4) Lets, s’ € L be given withs C s’. We know from L-54 and L-56
that

s]0 < s/ (367)
50 < 5" (368)
235 g7 (369)
sf% < S/*S% ) (370)

If /70 > Landsi® < 1, thenwy(s’) > 1 > wa(s) by Def. 67. Similarly if
§00> 1 50 < Lands[ " > 1, thenwa(s') = L = wa(s) by Def. 67. Hence
there are only two critical cases, viZ,* > s+ > L ands[* < &/[ " < L. Itis
sufficient to prove the monotonic behaviourugf; in the first case because the second
case can be reduced to the first one through negation, noting that’ if and only

if & C 5, wheres(z) = s(1 — z) ands’(z) = s'(1 — z) for all z € 1. Hence let us

consider the first case and assume that’ > s:° > 1. Then

N

war(s) = min(s; %, 1 + %sf ) by Def. 67
1
< min(s'7°, L+ 15/52) by (368), (370)
=wp(s). by Def. 67

This proves thaty-4) holds, as desired. | have hence shown thatsatisfies ¢-1)—
(w-4) and by Th-44F,, is a standard DFS.
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A.20 Proof of Theorem 51

To see thatFy, is not anF;-DFS, considesS, S’ € K defined by

_ [éal] IS i
S(”‘{ B s s o
/ o [§’1] v < o
sw-{ 1 15 @72

for all v € 1. We then obtain for the mappingss’ € L defined by Def. 53 in terms of
S andS’ that

0 z > %

s(z)=¢ 1 z> 3 (373)
1 z < %
0 z > %

s'(z)=14 1 z> 1 (374)
1 2< 3

for all z € I. Let us now consider the coefficients used in the definitiowpf We

notice thats, s’ are concave, i.est = s ands’* = s’ by L-50. Hence by (373), (374)
and (43),

500 = inf 5171(0) =infs ' (0) = inf[3,1] = 3 (375)
1 -
s’j’o = inf 5" (0) = inf s’ 1(O) =inf[3,1] =2 (376)
1 1
Fors*S 2 ands’*S 2, we obtain from (373), (374) and (46) that
<1
sy 2 =inf{s(z): 2 <3} =1 (377)
1
5’52 =inf{s'(2): 2 <3} =1. (378)
Therefore
1
wrr(s) =min(s0, L+ 457%) =min(3, 3 + 3 - ) =min(}, 5 = (379)
by Def. 67, (375) and (377). Similarly, we have
wp(s) = min(s'i"o, 3+ %s’fﬁ) =min(3,1+1-1)=min(3,1) =2 (380)

by Def. 67 and (376), (378). Now let us recall that by Th-33, there eQisp’ :
P(2 x I) — I and a fuzzy subset € P(2 x I) with

S =58x (381)
S' = Sor.x (382)
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By Th-41, we then have

5=50.x (383)
S/ = S5Q',X - (384)
We hence have
Fur(Q)(X) (so.x) = wn(s) = 2

and
Far(Q)(X) = wu(sgr.x) =wm(s) =
by Def. 61, (383), (384), (379) and (380). In particular,
Fu(Q)(X) # Fu(Q)(X). (385)
Now consider an arbitrary mappigg T — I. By Th-37,F; = Fq, where
Q(5) =¢(Ts, Ls)

forall S € K. In the present case ¢f S’ € K defined by (371) and (372), we obtain
from (35) and (36) that

Ts(y) =supS(y) =

Ls(y) =infS(v) =

N[ e
)
e Ll Ll

Ts(y) =supS'(y) =1

3 1
: 1 Y<3q
Lg(y)=infS'(y)=<¢ ¢ 4
g'(7) = inf 5°(7) Lo oysl
for all v € I. In particular,
(Ts,Ls)=(Ts, Lsr). (386)
Therefore
={(Ts, J—s) by (381)
=¢{(Ts, Ls) by (386)
= &(Tsy x> Loy x) by (382)
=F (Q N(X). by Th-37

HenceF:(Q)(X) = F¢(Q')(X) in every F-QFM, but Fi (Q)(X) # Fu(Q')(X)
by (385). This proves thak,, is not anF,-DFS.
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A.21 Proof of Theorem 52

Lemma57 Forall s,s" € L with s'(z) = s(1 — z) for all z € 1, it holds that
a s =1-s"
b. s’f"* =1- slT’*.

Proof Suppose that’ is defined in terms of € LL as stated in the lemma. We then
obtain that

s; " =sups’”([0,1)) by (44)
=sup{z €1:5'(2) < 1}
=sup{z€l:s(1—2)<1} because’(z) = s(1 — z)
=sup{l -2 €1:s(2) <1} by substutution’ =1 — 2

=1-inf{z' €I:s(2) <1}
=1—infs71([0,1))

—1—s". by (45)

This proves pard. of the lemma. As concerns pdrt, we notice that the roles afand
s’ are interchangeable, i.e. it also holds th@at) = s’'(1 — z) for all z € 1. Therefore

S =1 (- st

=1-5]". by parta. of the lemma

Lemma58 Forall s €L,

IT»* T,*.
1

a. s =57,

+L,* 1.,x
.
b. st7 =577,

Proof | first prove parta. of the lemma. Hence let € IL be given. Recalling that
st < s by Th-47, we deduce that

s;F =sup{z el:s(z) <1} by (44)
<sup{z €I:st(z) <1} because! < s
i I
= S'I‘l 5
ie.
s1% < silT’* : (387)



Let us choose somg € s~1(0). It is apparent from (44) that, < slT* hence also

zp < silT’* by (387). In the following, it is therefore sufficient to considee> z.
Then

st(z) =inf{s(2) : 2/ > 2} (388)
by L-43. Hence
st =sup{z eI inf{s(z'): 2/ > 2} < 1}. (389)
Now lete > 0. We conclude from (389) that there exists a choice afI with

SR (390)

z>s
and
inf{s(z) : 2’ >z < 1}. (391)

It is then apparent from (391) that there existse I with 2/ > z ands(z’) < 1.
Therefore

s; " =sup{z e€l:s(z) <1} by (44)
>z because(z') < 1
>t el by (390) and’ > =

e — 0vyieldss] ™ > s, . Recalling (387), we obtain the desired™ = st, ",
i.e. parta. of the lemma is valid. As concerns péart, let us defines’ € L by s'(z2) =
s(1—z)forall z € I. Then

s =1-g," by L-57
T,x
=1- s’i[1 by parta. of the lemma
= st by L-57 and L-47

Lemma59 Forall s,s’ € Lwiths <&/,

T 1T,
a. s, <sy’,

1% 7L %
b. s77" <77

Proof Suppose that, s’ € L with s < s'. | first show that para. of the lemma is
valid. Hence let > 0. Recalling thatslT’* = sups—1([0, 1)) by (44), there exists
z € Twith

s(z) <1 (392)



and
2>8 " —e. (393)

Itis then immediate from Def. 64 and< s’ that there exists’ > z with s'(2') < s(z).
Hencez' > s, — & by (393) ands’(2') < 1 by (392), i.e.z’ € s~ '([0,1)). We
conclude that

~—

§/17" = sups’”([0,1)) by (44)
> 2 because’ € s’ ([0,1))
> 5" —c.

¢ — 0 proves the desired | " > s/ *. )
To see that path. of the lemma holds as well, defises” € L by 5(z) = s(1 — z),
5.

s'(z) = §'(1 — z) forall z € I. Itis then obvious from Def. 64 and< s thats’ <
Therefore

Tt =1—5" by L-57
<1l- 5’?’* by parta. of present lemma
=7, by L-57

Lemma 60 Forall s,s’ € L with s C &, it holds that

T,*
a. s;

S

%

1T %
1
1 * 7L ,*
b. s3 1

IN

S

Proof By L-59, (s), ™" and(e);* are monotonic with respect to. By L-58, (s), **

and (o)f’* are alsof-invariant. We can hence apply Th-49 and conclude ([h}ﬂ’*
and(o)f’* are monotonic with respect (o, as stated in the lemma.

Proof of Theorem 52

By Th-44, it is sufficient forFp = F,,, to be a standard DFS thaf- satisfy (-1)—
(w-4). Hence let us consider these conditions in turn.

wp satisfies (w-1) Let us consider a choice ofe L. such that

s71([0,1)) = {a} (394)

for somea € 1. Let us recall from the proof of Th-50 that
sl =a. (395)
s;0=a, (396)
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1 1
see equations (360) and (361) above. Concerning the coefficsi;;ﬁtand 3*22, we
recall equations (362) and (363), viz

1 1 : > 1
so2 = “-2 (397)
0 : a S 3
1 1 1
622 = { N (398)
0 a> =
- 2
Finally we need to consider the coefficiea{s* ands;*, thus
si " =sups~1([0,1)) = sup{a} = a (399)
by (44) and (394), and
57 =infs71([0,1)) = inf{a} = a (400)

1

by (45) and (394).

Hence ifa > L, thensi* = a > 1, 5.2 = 1ands; ™" = a by (395), (397) and (399),
resp. In turn, we obtain from Def. 68 that

T 1

wp(s) = min(s;’ !

= min(a, 5 + % 1) = min(a,1) = a.

Ifa< 3, thens!®=a<i, 522 = 1 ands* = a by (396), (398) and (400), resp.
In this case, we obtain from Def. 68 that

1%

>
wp(s) = max(s;"", 5 — 3

1
sy ?) =max(a, 1 — 1 1) = max(a,0) = a.

1
2

Finally if a = 1, thens.” = s = L by (395) and (396). Therefotep(s) = & by

Def. 68. This completes the proof thap satisfies §-1).

wp satisfies (w-2) Lets € L be given and suppose thdte L is defined bys'(z) =
s(1—2). 1f &% > 1, then

1T %

wp(s’) =min(s'y ", 5 + %s’f ) by Def. 68

1

= min(1 — 53", 1 + 157°2) by L-57, L-49
1

= min(1 — s77%,1 — (3 - %8*22))

1
=1 —max(s;"", 1 — %sz) by De Morgan’s law
=1—-wp(s), by Def. 68
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where the last step holds because’ =1 —s';° < 1 by L-48.
In the case that’, * < 1, we notice that: * =1 — s/, "* > 1 by L-48. Therefore

1
wp(s') = max(s';"", i- 55’52) by Def. 68
T <3
=max(1 —s; 7, % — %5;2) by L-57, L-49
T <3
=max(l—s;",1—(5+ 35 2))
1
=1—min(s; ", 1 + %sz) by De Morgan’s law
=1—-wp(s). by Def. 68
Finally if /70 <1 <&/ [0 thensi® =1 -] <1 <150 =s]"byL-48.
Hencewp(s') = 3 = wp(s) by Def. 68. In particularwp(s’) = 1 — wp(s).

wp satisfies (w-3) Consider a choice of € L with s(1) = 0 ands~1([0,1)) C
{0,1}, i.e.s(z) = 1 forall z € (0,1). Let us notice that equations (364), (365) and
(366) are valid in the present case, too. Hence

J0=1 (401)
1.0 1 S(O) >0
_{ 0 s(0)= (402)
and
<l
sy 2 =5(0). (403)
As regards the coefficient ~*, we observe that
slT* =sups 1([0,1)) =1 (404)

by (44) because(1) = 0, i.e.1 € s71([0,1)). In the following, we discern two cases.
If s(0) = 0, thens:® = 0 by (402) ands,® = 1 by (401). Hence by Def. 68,
wp(s)=1=1+1.0=1+150), as desired. In the remaining case th) > 0,
we know from (402) that:" = 1. Therefore

N

wp(s) = min(s; ¥, 5 %sf ) by Def. 68
=min(1, 1 + 15(0)) by (403), (404)
=3+ 3s(0).

This proves that-3) is indeed valid.
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wp satisfies (w-4) Lets, s’ € L be given withs C s’. We know from L-54, L-56 and
L-60 that

sT0 <50 (405)

sh0 < /0 (406)
1 1

22 > 72 (407)
1 1

52 < T2 (408)

s < (409)

sy < ST (410)

If /77 > Landsy® < L, thenwp(s’) > 1 > wp(s) by Def. 68. Similarly if

§10 > 1 500 < Lands!? > L thenwp(s’) = L = wp(s) by Def. 68. Hence

there are only two critical cases, vig; " > si° > L ands, " < s/ < L. Like

in the case of Th-50, it is sufficient to prove the monotonic behaviour:oiih the first

case because the second case can be reduced to the first one through negation, again
noting thats C s if and only if 5 C 5, wheres(z) = s(1 — 2z) ands’(z) = s'(1 — 2)

for all z € I. Hence let us consider the first case and assumethdt > s:° > 5

Then

1
wp(s) = min(s, ¥, 14 %552) by Def. 68
1
< min(s', ", 1 + 15/52) by (408), (409)
=wp(s). by Def. 68

To sum upwp satisfies all conditions/-1)—(w-4). We can hence conclude from Th-44
that Fp is a standard DFS.

A.22 Proof of Theorem 53

To see thatFp is not anF,-DFS, we consider the same choice®%f’ € K, s, s’ € L
and@, Q" : P(2xI) — I, X € P(2 xI) as in the proof of Th-51. We already
know thatF¢ (Q)(X) = F¢(Q")(X) forall £ : T — I. HenceFp is not anF.-DFS

if we can show thatFp(Q)(X) # F»(Q')(X). We recall that the coefficients.”*,
1 1
s, sf2 ands’f2 are given by equations (375), (376), (377) and (378), respectively.

*

For the coefficientng’* ands’lT’*, we obtain from (44) and (373), (374) that

sy =sups 1([0,1)) =1 (411)
§1 =sups([0,1)) =1 (412)

159



because(1) = s/(1) = 0. Therefore

Fp(Q)(X) =wp(s9,x) by Def. 61
=wp(s) by (383)
1
— min(s]*, 1+ Ls2) by Def. 68 and (375)
=min(1,1 +1.1) by (411), (377)
5
8

and
Fr(Q")(X) = wp(sg,x) by Def. 61
=wp(s') by (384)
1
= min(s'; ", 1 + 15/57) by Def. 68 and (376)
=min(l,{ +1-1) by (412), (378)
=1.

In particularp(Q)(X) # Fp(Q')(X). HenceFp cannot be aiF¢-DFS.

A.23 Proof of Theorem 54
Lemma 61 Lets € L andz € st~ '(0) be given. Then

a. If z > zg, thenst(z) = inf{s(2) : 2’ > 2}.

b. If 2 < 2, thens*(2) = inf{s(2') : 2/ < z}.

Note. The lemma is very similar to L-43, but this timgis chosen frormi_l(o) and
not froms—1(0).

Proof Lets € LL be given and supposg is a choice ok € 5171(0) # . We shall
further choose someg, € s=*(0) # @. Now consider: € 1.

a.: z>z. Itisconvenient to discern two caseszIf z(, then
st(z) =inf{s(z) : 2/ < 2}
by L-43. In the remaining case that < z < z{, we notice that

inf{s(z'): 2/ <z} <inf{s(2'): 2’ < 2}
= s%(2) by L-43

=0, becauseq € st (0)
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inf{s(z) : 2’ <z} =0.
In addition, we know that! is concave, see Th-47.c. Hence

st(z) < max(s*(20), s*(2))) by Th-47.c
=0, becauset(zy) = st(z)) =0

st(z) =0.

Hences*(z) = 0 = inf{s(z’) : 2’ < z}.

b.: 2 < 2. Again we discern two cases. 4f< z{;, then we obtain from L-43 that
st(z) =inf{s(z) : 2/ < 2},
as desired. In the remaining case that- =z > z, we observe that

inf{s(z’) : 2" <z} < s(zp) because;, < z
=0, because;, € s~1(0)

i.e.inf{s(z) : 2/ <z} = 0. In addition, we have

st(z) = inf{s()) : 2 > 2} by L-43
<inf{s(z'): 2" > 2z} because; > =
= s*(2) by L-43
-0, because, € st (0)

i.e.s7(z) =0 =inf{s(z) : 2’ < 2}

Lemma 62 Forall s € L,

5 5 T On kAo

%) s O)N0 5] £

Proof It is apparent from Def. 69 that the equation stated in the lemma holds in
the case thatt ' (0) C [1,1] or st710) < |o, 3]. In the remaining case that both
st o) n L1 #o andst ' (0) N o, 1] # @, we conclude from the fact that is
concave by Th-47.c that

st(3)=0. (413)



Hence

1
2 =inf{s(z): 2 < %} = si(%) =0 (414)
by (46), L-61 and (413). Similarly

S*Z% =inf{s(z): 2 >3} =sH(L)=0 (415)
by (46), L-61 and (413). We also notice that
slT’*
— st by L-58
=supst ™ ([0,1)) by (44)
> sup st (0) by monotonicity ofsup
>}
becausa’ ' (0) N 3.1 #2,ie
57" > 1 (416)
By similar reasoning
sf"*
— gt by L-58
= inf st '([0,1)) by (45)
< inf st (0) by monotonicity ofinf
<}
becauset ' (0) N [0, 1] # @. Hence
spt <L (417)
We conclude that
min(s{ ", 1 + %SE%) = min(s, ", 1 +1.0) by (414)
=1 by (416)
= max(s; ", 1-1.0) by (417)
— max(si*, 1 — %sf%), by (415)

which coincides with the desired (s) = 3 by Def. 69.

Lemma 63 Forall s € L, wz(st) = wz(s).
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Proof Itis obvious from L-62 that

wz(s) = fls1 781, s

for all s € L, wheref : I* x P(I) — I is defined by

;50 (0) (418)

min(a, 3 + 3¢) eC[11]
fla,b,c,d,e) =< max(b, % — %e) : eCo, %] ande # {%} (419)
1 . else

2

forall a,b,c,d € I ande € P(I). We further notice that

1 _
(sH' =50 (420)
by L-51. Hence for alk € L
T,* 1,% <1 >1 -1
wz(sh) = f((s"), 7, (sN); L(sHZ2,(sH72, ()" (0)) by (419)
1 1 _
= f(s]*, st 552 572 st(0)) by L-58, L-53 and (420)
—wz(s), by (419)

as desired.
Lemma 64 Forall s,s" € L withs < ¢/, it holds thatwz(s) < wz(s).

Proof  To see this, consider a choicef’ € L with s < s'. Thensifl(o)ﬁ[%, 1] #

@ entails thats’rl(o) N [3,1] # @. Utilizing L-62, it is hence sufficient to discern
the following three cases.

sSTTHO) N[5, 1] # 2. Thens’rl(o) N[3,1] # @ as well. Hence
<1
wz(s) = min(s; *, 1 + 152°2) by L-62
1
< min(s’lT’*, 3+ %slf 2) by L-59, L-55
=wz(s). by L-62
stTHO) N L, 1] =@ and s (0) £ 2. Thens! ™' N[0, 1] # @, in particular

st =infst”'(0) < 1 (421)
by (45). By similar reasoning;,’rl(o) N[3,1] # o entails that
s'lT’* = sup 51’1(0) >1 (422)
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by (44). Therefore

1
wz(s) = max(s;™, 1 — %SEQ) by L-62
<1 by (421)

1
< min(s'; 7, 3 + %5’52) by (422)
=wz(s). by L-62

sPH0)NL, 1] = 2. Thenst ™ (0)N]
thatst ' (0) N[0, 1] # @ ands'* ' (0) N [0, 1] # @. Therefore

,1] = @ as well because < s’. We conclude

1
wz(s) = max(sy*, 3 — %S*ZQ) by L-62
1
< max(s'3", L — 1977) by L-59, L-55
=wz(s). by L-62

Proof of Theorem 54

| utilize Th-44 in order to prove thaft is a standard DFS by showing that satisfies
(w-1) to (w-4).

wz satisfies (w-1). Letus consider a choice ofc L such that

s71([0,1)) = {a} (423)

1 1
for somea € 1. As concerns the coefficiemsg? andsz , we recall equations (362)
and (363), viz

<1 1 : a>41

5*—2_{0 e (424)
Caxg

>1 1 : a<i

8*2:{0 . a>i (425)
azg

Finally as concerns the coeﬁ‘icien;tg’* andsf’*, we recall from (399) and (400) that
sit=a (426)
and

st =a. (427)



Let us further observe that
st=s, (428)
which is apparent from Def. 65 and (423). Therefore
st (0)=s71(0) = {a} (429)

by (428) and (423).
Hence ifa > 1, thenst ' (0) = {a} C [0, 1] by (429). Therefore

1
wz(s) = min(s, ¥, 2+ %sfz) by Def. 69
=min(a,: + 3 1) by (426) and (424)
=a.
In the case that = 1, st7H0) = {3} € [3,1] by (429) and hence
_ Teo1, 1.53
wz(s) =min(s; ", 5 + 55+ °) by Def. 69
=min(,1+1.0) by (426) and (424)
1
2

Finally in the case that < %, we know from (429) thast ' (0) = {a} C [0, 1.
Therefore

1
5% 2) by Def. 69
1) by (427), (425)

wz satisfies (w-2). Lets € IL be given and suppose thdte L is defined bys'(z) =
s(1—2). If st (0)N[L,1] £ 2, thens'™ ' (0) N[0, 1] # & by L-47. Therefore

1
wz(s') =min(s'y 7, 1 + %s'fz) by L-62

1

= min(1 — 5%, L + 1s72) by L-57, L-49
1

=min(l —s77",1— (1 — 1s72))

1
=1—max(s;™, 1 — %3*22) by De Morgan’s law
=1—wz(s). by L-62
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In the remaining case that  (0) N [0, ] # 1, we again conclude from L-47 that

2
70N [1,1] # @. Therefore

wyz(s') = max(s';"", i- %s'f ) by L-62
_ Te1 1.3
max(l —s; 7,5 — 55 °) by L-57, L-49
1
* <35
=max(l —s] %, 1— (1 +15°2))
1
=1—min(s; ", 1 + 5352) by De Morgan’s law
=1—-wz(s). by L-62

wz satisfies (w-3). Consider a choice of € L with s(1) = 0 ands~1([0,1)) C
{0,1},i.e.s(z) = 1 forall z € (0,1). Let us notice that equation (366) is valid in the
present case, too. Hence

<
Sx

2 = s(0). (430)
As regards the coel‘ficieﬁﬂ;r *, we recall from (404) that

s =1. (431)
Let us also notice that

So={ {1020 @32

In the following, we discern two cases. 4{0) = 0, thensi ' (0) ¢ [1,1] and
T7(0) Z [0, 3] by (432). Hencevz(s) = 3 = 1 + $s(0) by Def. 69.

In the remaining case that0) > 0, we know from (432) that! ~ (0) = {1} C [1,1].
Therefore

si

1
wyz(s) = min(s; ", i+ %552) by Def. 69
=min(1, 1 + 15(0)) by (430), (431)
=3+ 3s(0).

This proves thaty-3) is indeed valid.
wz satisfies (w-4). This is apparent from L-63 and L-64, recalling theorem Th-49.

A.24 Proof of Theorem 55

Lemma65 Forall s e L,
a. ifsi% > 1, thenwp(s) = wz(s);

b. ifs.* < 1. thenwp(s) = wz(s).
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Proof  Let us first consider case of the lemma, i.es;* > % By (43), this means
thats:® = inf s+ (0) > 1. Hences* ' (0) C [1,1] and
1
wp(s) = min(s, ¥, 3+ %555) by Def. 68
=wz(s). by Def. 69

Now we consider casb. of the lemma, i.es.” < 1. We observe thas.* =

sup st~ (0) < 1,in particularst ™~ (0) C [0, 1]. Therefore

1
2) by Def. 68
=wz(s). by Def. 69

Proof of Theorem 55
The very same example as in the proof of Th-53 can be used to show thiatnot

anF¢-DFS, noticing that in the example; ® = /70 = 3, i.e.wz(s) = wp(s) and
wz(s") = wp(s') by L-65.

A.25 Proof of Theorem 56
Lemma 66 Forall s € L, s¥(0) = s(0) ands(1) = s(1).

Proof To see this, considerc L. Clearly
sH(0) = inf{s(z) : z < 0} by L-43
inf{s(0)}

Similarly
st(1) = inf{s(z) : 2 > 1} by L-43

I
—-
=
—

—
@
—~
—
S~—
—

as desired.

Lemma 67 wp is t-invariant, i.e.wr(s) = wr(st) forall s € L.

Proof Definef : I* — T by

min(a, 3 +3¢) : b>a>1
f(a,b,e,d) =< max(b,i—1d) : a<b<i
i . else

2
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forall a,b,c,d € 1. Itis apparent from Def. 70 that

Fr(s) = f(s:%5.%,5(0),5(1)) (433)
for all s € L. Therefore
wr(sh) = f(s'7° 5/ 10, 51(0), 55(1) by (433)
= f(s3°,5]0, 5(0),5(1)) by L-52, L-66
= wgr(s) by (433)

forall s € L.

Lemma 68 wg is monotonic with respect tg, i.e. wheneves, s’ € L with s < ¢/, it
holds thatwr(s) < wgr(s’).

Proof Lets,s’ € L be given withs < s’. Hence by Def. 64,

for all z € I, there exists’ > » with s'(2") < s(z) (434)
forall 2’ € I, there exists < z with s(z) < s'(2) (435)

It is apparent from (434) that

s(1) > §'(1), (436)
and it is apparent from (435) that

$(0) < §'(0). (437)
Let us now recall that

st <80 (438)

sTO < s/ (439)

by L-54 and L-42. It is hence sufficient to discern the following five cases.

a:sy?> 1. Thens': % > 5 as well by (438). Hence

wr(s) = min(s0, + + 3s(0)) by Def. 70
< min(s'3"%, 1 4 15(0)) by (438), (437)
= wg(s). by Def. 70

b s'y”>1and s < Thenwg(s) < 3 < wr(s') by Def. 70.

1
o

c: 5" <L Thens!* < 1 also by (439). Hence
wr(s) = max(s, %, 1 — Is(1)) by Def. 70
< max(s', 7,1 = 15(1)) by (439), (436)
=wg(s). by Def. 70
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and s',° > 2and s/ ° < 1. Thenwg(s) < 3 = wg(s’) by Def. 70.

e:st® < land s[® > 1 Thensi® < lands)” > 1 aswell see (438) and

(439). Hencevgr(s) = 1 = wg(s’) by Def. 70, in particulatur(s) < wgr(s'), as
desired.

Proof of Theorem 56

By Th-44, we can show th&r = F,, .. is a standard DFS by proving that-()—(-4)
are valid forwg. Hence let us consider these conditions in turn.

wr satisfies (w-1). Letax € I be given and define € L by

0 : z==
S(z)_{ 1 : else

for all z € 1. Itis then apparent from L-43 that = s. Therefore

50 = inf 51_1(0) =infs™'(0) = inf{z} == (440)
sT0 =supst  (0) = sups~'(0) = sup{a} = (441)

by (43) and (42). In addition, we observe that

o= {0 2
we{t i
Hence ifz > 1, thensy* =z > L,i.e
wr(s) = min(s%, 1 + 35(0)) by Def. 70
= min(z, 5 + 3+ 1) by (440), (442)

In the case that = 3, we obtain from (440) and (441) that® = s/ =
hencewg(s) = 3 = z by Def. 70.
Finally in the case that < % we know from (441) that

, and

wr(s) = max(s] %, 1 — 1s5(1)) by Def. 70
= max(z, % — % 1) by (441), (443)
=z

i.e.wg satisfies ¢-1), as desired.
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wr, satisfies (w-2). Lets € L be given and defing € L by

§'(z) =s(1 —2), (444)
for all z € 1. In particular
s'(0) = s(1) (445)
s'(1) = s(0). (446)
Let us also recall from L-48 that " =1 — s] ® ands’|* =1 — s+°.
Hence ifs;* > 1, thens'[* = 1 — s3° < 1 and therefore
’ /T,0 1 1./
wgr(s') = max(s’, ", 5 — 55'(1)) by Def. 70
=max(1— s, 3 — £5(0)) by L-48 and (446)
=max(1 — s, 1 — (3 + 15(0)))
=1 —min(s;, % + 35(0)) by De Morgan’s Law
=1-—wg(s)

wg(s') = min(s'>, 3+ 35'(0)) by Def. 70
=min(1 — 5] % 3 + £s(1)) by L-48 and (445)
=min(l — 5[0, 1 (3 — §5(1)))
=1-max(s] ", 1 —15(1)) by De Morgan’s Law
=1—wg(s). by Def. 70
Finally in the case that,* > 1 ands:® < 1, we obtain from L-48 that') * =
10 < 1 Hencewg(s) = L andwg(s’) = 1 by

1—s+° > % ands’i"0 =1-—s,"
Def. 70. In particulatwg(s’) = 1 — wr(s).

wr satisfies (w-3). To see this, considere L with s71([0,1)) C {0,1} ands(1) =
0. We can choose, = 1 € s71(0). Hence for allz < 1,

st(z) = inf{s(z) : 2’ < 2} = 5(0)

by L-43, i.e.
$H(2) = { 2(0) i<l (447)
forall z € I, and
So={ 1y 1050 (449



Hence ifs(0) = 0, then

520 = inf st 1(0) by (43)
—infI by (448)
<3

and

5,0 = sup siil(()) by (43)
=supl by (448)
=1
>4,

i.e.wr(s)=3=3+4%-0=1+15(0) by Def. 70.
In the remaining case thaf0) > 0, we obtain from (43) and (448) that

sh0 —inf st (0) = inf{1} = 1. (449)
In particular,si’0 > % and hence
wr(s) = min(s°, 2+ 25(0)) by Def. 70
= min(1, % + %S(O)) by (449)
= % + %5(0) )

which completes the proof thatz satisfies ¢-3).
wr satisfies (w-4). This is apparent from L-67, L-68 and Th-49.

A.26 Proof of Theorem 57

To see thatFy is not anF,-DFS, considesS, S’ € K defined by

{1y s o<
s(v)—{ 1] - 72; (450)
s ={ ) 1151 (451)

for all v € I. We then obtain for the mappingss’ € IL defined by Def. 53 in terms of
S andS’ that

0 z=1
s(z)=inf{yel:zeS(y}=1¢ 2 z € (0,1) (452)
1 z=0
() =inffyel:ze S =4 © = 7 453
Y =iy eTse S =y | L) 453)
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for all = € 1. Let us now consider the coefficients used in the definitianafWe first
notice thats, s’ are concave, i.est = s ands’* = s’ by L-50. Hence by (452), (453)
and (43),

st0 = inf st (0) = infs1(0) = inf{1} = 1 (454)
S0 —inf s (0) = inf s’ H0) = inf{1} = 1 (455)
Therefore
wr(s) = min(s;7%, 3 + 15(0)) by Def. 70
=min(1,5 + % 1) by (454) and (452)
=1
and
wr(s') = min(s'+%, 1 4+ 15/(0)) by Def. 70
=min(1,5 +3-3) by (455) and (453)
= % 5
ie.
wr(s) =1 (456)
and
wr(s') =2. (457)

Now let us recall that by Th-33, there exi@gt Q" : P(2 x I) — I and a fuzzy subset
X € P(2 x I) with

S=5%x (458)

S =Sy x (459)
By Th-41, we then have

5= 50,x (460)

s =59 x - (461)

We hence have
Fr(Q)(X) = wr(sg,x) = wr(s) =1

and

Fr(Q)(X) = wr(sq x) = wr(s) =

PN
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by Def. 61, (460), (461), (456) and (457). In particular,
Fr(Q)(X) # Fr(Q)(X). (462)
Now consider an arbitrary mappigg T — I. By Th-37,F; = Fq, where
Q) =&(Ts, Ls)

forall S € K. In the present case ¢f S’ € K defined by (450) and (451), we obtain
from (35) and (36) that

Ts(y) =supS(y) =1

. v<3
Ls(y) =inf S(y) =
S ~ Z %
Tsr(y) =supS'(y) =1
1 v < 1
. / _ 2
ls'(W)—me(W)—{ 0 4sl
for all v € I. In particular,
(TSaJ—S) = (TS'aJ—S')' (463)
Therefore
Fe(@)(X) =&(Tsy x> Lsy x) by Th-37
=¢(Ts,Ls) by (458)
=¢(Ts,Lg) by (463)
=&(Tsy s Ly ) by (459)
= Fe(Q)(X). by Th-37

HenceF¢(Q)(X) = F¢(Q')(X) in every F¢-QFM, but Fr(Q)(X) # Fr(Q')(X)
by (462). This proves thaky, is not anf,-DFS.

A.27 Proof of Theorem 58

Lemma 69 Forall 5,5 € K, it holds thatS <. .S’ if and only if the following condi-
tions are satisfied for alf € I.

forall 2’ € §'(y) N[4, 1], there exists € S(v) N [3,2']; (464)
forall z € S(v) N (3, 1], there exists’ € S'(y) N [z, 1]; (465)
forall 2’ € §'(y) N[0, ], there exists € S(v) N [2, 3]; (466)
forall z € S(y) N[0, 1), there exists’ € 5'(y) N[0, z]. (467)
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Proof Letus first notice that (464)—(467) are entaileddy,..S’. To see this, consider
a choice ofS, 5’ € K with S <. 5". Forz’ € S'(v) N [3,1], we obtain from (52)
that there exists € S(v) with z <, 2’. We conclude from (5) and’ > % that

1 <z <72 iez e S(y)Nn|[L,2]. This proves that equation (464) holds. Now
considerz € S(v) N (1,1]. We know from (53) that there exist$ € S’(v) with

z <. 2. Itis then obvious from > 1 and (5) that’ > z. Hencez' € S'(v) N [z, 1],
and (465) is valid. As regards € S'(v) N [0, 1], we know from (52) that there
existsz € S(v) with z <. 2. We obtain from (5) and’ < ; thatz’ < z < 3.
Thereforez € S(y) N [2/,1]. In particular, equation (466) holds. Finally consider

z € S(y)N[0,1). By (53), %here exists’ € S’(y) with z <. 2. We then deduce from
(5) andz < 1 thatz’ < 2. Hencez’ € S'(y) N[0, z], which proves that equation (467)
is indeed valid. To sum up, | have shown that the conditions (464)—(467) are entailed
bysS=.95".

Now let us consider the converse entailment. Hence supposé tlate K satisfy
(464)—(467). It must be shown théit<. 5’, i.e. (53) and (52) must hold, see Def. 71. |
will first prove that (52) holds. Hence lete I and considet’ € S'(v). If 2’ € [3,1],
then there exists € S(v) N[4, 2] by (464). From (5) and < z < 2/, we obtain that
the given choice of € S(v) satisfies: <. 2’. In the remaining case that € [0, 1],
we conclude from (52) that there existse S(v) N [2/, 3]. We then obtain from (5)
andz' < z < % that the given choice of € S(~) satisfies: <. 2’. This proves that
condition (52) is valid.

As concerns (53), let € S(~) be given. Ifz € (%, 1], then (465) is applicable, which
states that there exist$ € S’() N [z, 1]. We then conclude from (5) anfl< z < 2’
that the given choice of € 5’(y) satisfies: <. 2’. In the case that = 3, consider a
choice ofz, € 5'(0) # @. By (5),z = 3 <.z} € S'(). Finally consider the case that
z € [0, ). Then (467) states that there existss S’(y) N [0, z]. We obtain from (5)
andz’ < z < 3 that the given choice of € S'(v) satisfies: <, z’. Hence condition
(53) is also valid. We conclude from Def. 71 thfatz. S’, as desired.

Lemma 70 Suppos€), Q' LP(E)" — I are semi-fuzzy quantifiers with <. Q’.
ThenforallXy,..., X, € P(E),

“%7Xl)"'7Xn = ‘S’Q’,Xl,...,X”

Proof Consider a choice of semi-fuzzy quantifi€)sQ’ : P(E)" — I with Q =<,
Q'. Further suppose thaXy,..., X, € ﬁ(E) is a choice of fuzzy arguments. |
will now show that the conditions (464)—(467) are valid foralle I. Hence con-
siderz’ € Sgr.x,,...x.(7) N [3,1]. Becauser € Sy xi,...x,(7), we conclude
from Def. 51 that there exists a choice@fi,...,Y,) € T,(Xy,..., X,,) with 2/ =
Q' Y1,....Y,) > % We then conclude from(Y3,...,Y,) <. Q'(Y1,...,Y,) and
(5) thatQ(Y1,....Y,) € [1,Q'(Y1,....Y,)] = [3.2/]. Hencez = Q(Y1,....Y,)
satisfies: € Sy, (x,,....x,,)(v) andz € [%, z'], i.e. condition (464) holds.
Now | consider (465). Hence lete S x,.... x,, (7)0(%, 1]. Because € S x, ...x,, (7),
we obtain from Def. 51 that = Q(Y3,...,Y,) for a choice of(Y3,...,Y,) €
T,(X1,...,X,). We conclude fromQ(Y1,....Y,) 2. Q' (Y1,...,Y,) and (5) that
Q' Y1,...,Y,) > Q(Y3,...,Y,). Hence the considered = Q'(Y3,...,Y,) satis-
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fiesz’ € 7,(X1,..., X,) andz’ € [z, 1], i.e. condition (465) holds, as desired.

As concerns condition (466), we proceed analogously. HeneééetSy: x, .. x,, (v)N
[0,3]. Then there exists a choice 6¥1,....Y,) € T,(X1,...,X,) with 2/ =
Q' (Y1,...,Y,). FromQ(Yy,...,Y,) X, Q'(Y1,...,Y,) and (5), we then obtain that
Q(Y1,....Y,) € [Q(Y1,....Y,), 3] = [#,1]. Hencez = Q(Y1,...,Y,) satisfies
z € 8,x,,..,.x, (7) andz € [2, 3], which proves that (466) is valid.

Finally | consider (467). Hence lete S x,...x,, () N[0, %). There exists a choice
of (Y1,....Y,) € T,(X1,...,X,) with z = Q(Y1,...,Y,,). We conclude from
Q(Yla BERE) Yn)jcQ,(Yh s ;Yn) and (5) than(Ylv s 7Yn) € [O, Q(Yla BERE) Yn)] -
[0,2]. Hencez' = Q'(Y1,...,Y,) satisfiesz’ € [0,z] andz’ € Sy, (), i.e. (467)
holds.

Hence the conditions stated in lemma L-69 are satisfied. We concludgthat . x, <.
%’axlr-wxn b

Proof of Theorem 58

Let2 : K — I be given and supposk, is the QFM defined by Def. 55.

a.: If Q propagates fuzziness, then Fq propagates fuzziness in quantifiers.

Hence let us assume th@tpropagates fuzziness. Now we consider a choice of semi-
fuzzy quantifiers), Q' : P(E)" — IwithQ <. Q’. Forall Xy,..., X, € P(E),

we then obtain that

Fa(@Q)(X1,..., Xn) = QS x,,....x,.) by Def. 55
=e USQ ,x1,. X)) by Def. 72, L-70
= Fa(Q)(X1,..., Xn). by Def. 55

HenceFq(Q) <. Fa(Q'), which proves thaf, propagates fuzziness in quantifiers.

b.: If Fq propagates fuzziness in quantifiers, then propagates fuzziness.

Hence suppose tha, propagates fuzziness in quantifiers and consifle’ € K
with S <. S’. It must be shown thd®(.S) <. Q(S’). To this end, we first notice that
there exist, € S(0), z; € S’(0) with

20 ¢ 20 - (468)

This is apparent from Def. 71 and Def. 52. We also notice that for &l I and all
z € S'(v), we can choose songg , € S(v) with

Cov e 2. (469)

This is immediate from (5), (464) of L-69 and (466). For similar reasons, there exist
choices of¢, , € S’(v) forallv € Tandz € S(v), such that

2=, (470)

Z,v
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We now define semi-fuzzy quantifiefs Q' : P(2 x I) — I by

z : z€8(w)
QYY) = { Cow : 2¢SWw),z€ 85 v) (471)
20 : z¢SWw),z¢ 5 (v)
{ z ;o z€ 8(v)
Q)= Lo+ 2¢ 8 (v),z€8w) 472)
20 z ¢ 5'(v),z ¢ S(v)
where
Y ={2€1:(0,2) €Y} (473)
Y/ ={zel:(1,2) €Y} (474)
z =infY’ (475)
v=supY” (476)

forall Y € P(2 x I). Next we consider the fuzzy subskte P(2 x I) defined by

1 a =
px(a,y) =19 1 (477)
{ % — %y :a=1
forall a € 2, y € 1. We recall from the proof of Th-33 that for= 0,

X=X | =0 (478)

>3
Xg™* =X_1 = ({0} xT) u{(1,0)} (479)

=2

by (91) and (92). Similarly fory > 0,
X,IYHmZXZ%+%’y=® (480)
X9 =X_1 1 = ({0} xDU ({1} x[0,7)) (481)

2727

by (93) (94). Let us now use these cut ranges to provedhiat = S. Hence lety € 1.
We first notice that

S(y) € S.x(v) - (482)

To see this, consider € S(y). If v = 0, thenY = {(0, 2),(1,0)} € To(X), see
(478), (479). For this choice df, we obtain that: = inf{z} = inf Y’ by (473)
andv = supY” = sup{0} = 0 = ~ by (474). HenceQ(Y) = z because: €
S(v) = S(v), see (471). Ity > 0, then we know from (480) and (481) that =
{(0,2)} U ({1} x [0,7v)) € 7,(X). For this choice of’, we obtainz = inf{z} =
inf Y’ andv = supY” = sup|0,v) = v by equations (473) and (474). We then
conclude fromz € S(v) and (471) that)(Y) = z. This finishes the proof of (482).
To see that the converse subsumpttdny (v) C S(v) also holds, consider a choice
of Y € 7,(X). Itis then apparent from (478) and (479) {if= 0) and (480), (481)
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(if v > 0) thatv = supY” € [0,~]. Let us again abbreviate= inf Y’. We observe
from (471) that eithe(Y) = z € S(v) C S(v),0r QYY) = (. € S(v) C S(),
orQ(Y) =z € S(0) C S(v). Inany case@(Y) € S(v). HenceSy x(v) C S(v)
by Def. 51, as desired. Combining this with (482) proves fagk () = S(v) for all
vel,ie.

So.x =85 (483)
Next | show thatSy, x = S’. Again lety € 1. In order to prove that
S'(y) € S x () (484)

considerz € S'(v). If v = 0, thenY = {(0,2),(1,0)} € To(X) by (478), (479).
We obtainz = inf{z} = infY’ by (473) andv = supY” = sup{0} = 0 = ~
by (474). HenceQ'(Y) = z because: € S'(v) = S'(v) by (472). Fory > 0
we obtain from (480) and (481) that = {(0,z2)} U ({1} x [0,7v)) € 7(X). This
choice ofY yieldsz = inf{z} = inf Y" andv = supY” = sup|0,v) = ~ by (473)
and (474). We deduce from € S’(v) and (472) that)’(Y) = z. Hence (484) is
valid. To see thaty  x(v) C S’(y) also holds, consider a choice f € 7, (X).
It is then apparent from (478) and (479) {if= 0) and (480), (481) (ify > 0) that
v=supY” € [0,7]. z = inf Y’ can assume arbitrary valuess I. We observe from
(472) that eithe)’(Y') = z € S'(v) € S'(y), orQ"(Y) = ¢, , € S'(v) € S'(v), or
Q' (Y)=2,€ 5(0) CS(vy). Inany caseQ)’(Y) € S’(). HenceSy  x (v) C S'(v)
by Def. 51. Recalling (484), we have shown thgt x (y) = S’(v) for all v € I, thus

Sorx =5 (485)

Finally we notice that) <. @’. To this end, we consider somé € P(2 x I). If

z € S(v)andz € S'(v), thenQ(Y) = z = Q'(Y) by (471) and (472). In particular,
Q(Y) 2. Q'(Y). Inthe case that € S(v) andz ¢ S'(V), thenQ(Y) = 2 2. (L, =
Q'(Y) by (471), (472) and (470). In the case that¢ S(v) andz € S'(v), we
obtain thatQ(Y) = (., <. z = Q'(Y) by (471), (472) and (469). In the remaining
case that ¢ S(v) andz ¢ S’(v), we conclude from (471), (472) and (468) that
QYY) =20 =. 2, =Q(Y). Hence indeed) =<, ', as desired. In particular, because
Fq is assumed to propagate fuzziness in quantifiers, we have

Fo(Q)(X) = Fo(Q)(X). (486)
Now we can put the pieces together.
Q(S) = Q(S%.x) by (483)
= Fa(@Q)(X) by Def. 55
= Fa(Q')(X) by (486)
= Q(Syr x) by Def. 55
=Q(5"). by (485)

Because the choice ¢f <. S’ was arbitrary, this proves th& propagates fuzziness,
as desired.
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A.28 Proof of Theorem 59

Lemma 71 Supposé) : K — I is a mapping such thgf2-2) is valid. If
() = Q(s* N [3,1]) (487)

forall S € Kwith S(0) C [3, 1], then it also holds that

1
27

Q) = s n o, 3])
forall S € K with 5(0) C [0, 3].

Proof LetS € K be given withS(0) C [0, ]. We defineS’ € K by
S ={l-2:2€8(y)} (488)
forally € I. Thens’(0) C [1,1] and hence
(S") = (s 5, 1)). (489)

We further defines*'(y) = {1 — z : z € St} forall y € L Itis then apparent from
Def. 59 that

st =gt (490)

We further defines” € Kby 5”(v) = {1—z: z € S*(y)n[0, 3]} forall y € I. Then
S"(V) ={l—-z:z€ 8 y) N0, 5}

={l-2:2€5%y),2 6[ 51}

) 2

:{I_Z:ZESi(’Yv [71]}
={Z:1-2eS¥y),7 € [%, 1]} by substitutionz’ = 1 — z
— {2 e85 (), e [L1]} by definition ofS*’
— {2 €5%),7 € [L1]} by (490)
= 5" n[5.1.
Therefore
Qs N[31) =1-2(5n0,3) (491)

by (©2-2). In turn
QSN0 4) =1-(5* N[5, 1)

=1-Q(5") by (487)
=1-(1-9(5)) by (488), (2-2)
=Q(S),

as desired.
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Lemma 72 Consider a choice df? : K — I which satisfieg2-2), (2-4) and (Q2-5).
Further suppose that

Q(S) = (St n[i, 1) (492)
forall S € K with 5(0) C [$,1]. Then
(S) = 4
whenevelS € K is such that5(0) N [3,1] # @ and S(0) N [0, 3] # 2.

Proof  SupposeS(0) € K satisfiesS(0) N [3,1] # @ andS(0) N [0, 1] # @. We
definesS’, S” by

SO =0

Sm_{ S(y) . >0 (493)
"o S(0)n[0,i] + y=0

i (7){ S(7) L >0 (494)

for all v € I. By the assumption oA, there exist—, 2z € S(0) with 2~ < £ < 2+,
Hencez* € S’(0) andz~ € S”(0), which shows tha’, S” € K. For the same
reasonS N [0, 3] € KandS N[, 1] € K, see Def. 52. We notice that
St = gt = gt (495)
which is obvious from Def. 56. Now defin® ;» € K by Sy »(y) = {3} forally € I.
Clearly
5"N[0,4]E S TS N[5, 1] (496)

BecauseS /2(v) = {1 — z : z € S1/2(7)}, we conclude from(Q-2) thatQ(S; /5) =
1-— Q(Sl/z), i.e.

QS1/2) = 3- (497)
Therefore
Q(8) = (S by (495), (2-4)
=Q(5'n[i,1]) by (492)
> Q(S1/2) by (496)
=1. by (497)
By similar reasoning
2(S) = (8" by (495), (2-4)
=Q(s"nJo,3]) by L-71
< Q(S12) by (496)
=1 by (497)

HenceQ(S) = 1, as desired.
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Lemma 73 Supposé) : K — I satisfieq2-2), (©2-4) and (Q2-5). If
QS) = Q(s* N [3,1]) (498)

forall S € K with 5(0) C [3,1], then() propagates fuzziness.
Proof LetS,S’ € K be given withS <, .5’. We shall discern three cases.

a.: S(0) C (4,1]. Itis then apparent fron§ <. 5" and Def. 71 that’(0) C (3,1] as
well. To see this, consider € S’(0). BecauseS =<, 5’, there exists € S(0) with

z=. 2. ButS(0) C (3,1],i.e.z > 1. It follows from (5) that=’ > = > 1. We hence
know from (498) that

Q(S) = (St n[i, 1) (499)

S = (s N[5, 1)). (500)
I will now show that

stn[d,c s nil,, (501)

according to definition Def. 57. Hence letc T and consider a choice ofc S*(y) N
[1,1]. By definition Def. 59, there exists > z with 2’ € S(v), in particularz’ €
S(v) N [3,1]. Inthe case that; > 1 we proceed as follows. We know fros=,. 5’
and Def. 71 that there exist§ € S’(v) with 2’ <, 2”. Because’ > 1, we conclude
from (5) thatz” > 2’ > z. In the remaining case that = 1, 1 < z < 2/ entails that
z = aswell. Then every” € 5'(y) N[}, 1] # o satisfies:” > » anyway. To sum
up, | have shown that for all € S*(y) N [4, 1], there exists” € S'(y) N [3,1] C
Sty n [1,1] with z < 2”. In order to prove (501), it remains to be shown that for
all 2/ € §*(y) N [4, 1], there exists: € S*(7) N [1,1] such that: < 2. To this end,
assume a choice af € S"*(y) N [1,1]. By Def. 59, there exist}, z; € S'(v) with
2} < 2/ < 2}. Because) > 2’ > 1, we conclude front <. S’ and Def. 71 that there
existszy € S(v) with z; <. 25, and hence < z, < 2} by (5).

If z5 < 2/, then we have found a = z, € S(v) N [%,1] C S*(y) N [3, 1] with the
desired properties. H, > 2/, we must proceed as follows.

e If 2 > 1, then we utilize that by <. S’ that there exists € S(v) with z <. 2{.
Hencel < z < 2{ by (5). In particular, there exists € S(y) N [5,1] C
Sty) N[5, 1] with z < 2f < 2.

e If 2{ < 3, we again use that there exists S(v) with z; <. 2{. In this case,

(5) yields thatz} < z; < i becausef < i. Hencez; < 1 < 2/ < z, and

we conclude from Def. 59 that € S*(v). Because’ > 1, this proves that
z € St n[3,1]. Therefore the choice of = 2’ satisfiesz € S* N [3,1] and

z < 2/, as desired.
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Hence both conditions of Def. 57 are satisfied, and we conclude that (501) is valid.
Hence by (2-5),

Q(S) <Q(9). (502)
Next we consider the mappirt§f’ € K defined byS”(y) = {3} for all v € I. Clearly
S'"v)={1—-2z:2¢€ 5"(y)} forall v € I. HenceQ(S") = 1 — Q(S”) by (Q-2),
i.e.Q(S”) = 3. Itis further apparent from Def. 57 that’ C S. Therefore

3 =Q(8") <Q(8) (503)

[ V)

by (Q-5). Combining (502) and (503) yields < Q(S) < Q(S’). Applying (5), we
obtain the intende€(S) <, Q(57).

b.: S(0) C [0,3). Lemma L-71 shows thd? satisfies a condition analogous to (498)
that is required to prove case The proof is analogous to that af, based on the
property described in the lemma.

c.: there exist z~,z" € S(0) with 2~ < 7 <z". Inthis case, we obtain from L-71
thatQ(S) = 3. Hence triviallyQ(S) <. ("), see (5).
Lemma 74 Suppose, Sz € K are defined by

Si(v) ={0, 3}
forall v € I. If Q : K — I propagates fuzziness and satisfi@s3), thenQ(S;) =
Q(S2) = 3.

Proof DefineSs € Kby S;(y) = {0,1} for all v € I. We observe that
QS3) =1 +1s3500=2+%-0=1 (504)

by (©2-3). We notice thatS; <. S3 by Def. 71. Becaus& propagates fuzziness, we
conclude thaf2(S1) <. Q(S;) = 4 by Def. 72 and (504). Henc®(S;) = 3 by (5).

By similar reasoning, we conclude from the appargnk . Ss; thatQ(S;) <. Q(S3) =

1. HenceQ)(S,) = 3, as desired.

Lemma 75 Suppose? : K — I satisfies(2-1), (©2-3) and (2-5). If there exists

S € Kwith S(0) C [3,1] andQ(S) # Q(S* N [3,1], thenQ does not propagate
fuzziness.

Proof Let(Q): K — I be a given mapping which satisfie@-@), (2-3) and {2-5).
Further suppose that there existe K with S(0) C [%,1] and

Q(S) #Q(S* N [i,1]. (505)
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In order to proof thaf2 does not propagate fuzziness, we first notice that

stnz 1] =S (506)
ScStni, 1] (507)
QST N [3,1) = AS12) = 3. (508)

whereS; »(v) = {3} for all v € I. This is apparent from Def. 71, Def. 59, Def. 57,
(©2-1) and 2-5). In turn, we conclude from (507) anf2{5) that

Q(S) < (St N [i,1]). (509)

In the following, let us discern two cases.

a:Q(S)> 1. Theni < Q(S) < Q(S5*N[3,1] by (509),i.e0(5) <. (St N[5, 1])
by (5). The following proof is by contradiction. Hence assume thgiropagates
fuzziness. We can then conclude from (506) that* N [1,1]) <. Q(S) as well.
Becausex. is a partial order, this entails th@(5* N [, 1]) = (S). This contradicts
(505). Hence the assumption thatpropagates fuzziness is false, if¢.does not
propagate fuzziness.

b. Q(S) < 3. In this case, conside$’ € K defined byS’(y) = {0, 3} for all
v € I. BecauseS(0) C [,1] andS(0) # @, we know that there exists) € [1,1]
with zg € S(y) for all v € 1. Itis hence apparent th&' C S by Def. 57. The
following argument is again by contradiction. Assume thapropagates fuzziness.
ThenQ(S’) = 4 by L-74,i.e.Q(S) > Q(S’) > 1. This conflicts with the assumption
of caseb. thatQ(S) < 3. Hencef2 does not propagate fuzziness.

Proof of Theorem 59

The condition orf2 is sufficient forQ) to propagate fuzziness by lemma L-73. It is
necessary fof) to propagate fuzziness by L-75.

A.29 Proof of Theorem 60

Lemma 76 Consider a quantifie) : P(E)" — Tand Xy,..., X, X],..., X/, €

P(E)withX; <. X/fori=1,...,n. ThenSy x,.... x, € SQ.X1 X1

Proof Itis known from [11, L-59, p. 105] thaX; <. X/, i € {1,...,n} entails that

T,(X:) 2 T,(X)) (510)

182



for all v € I. Therefore
SQ.x1,...x, (V)
={QMY1,....Y,) Y1 e T,(X1),...,Y, e T,(Xn)} by Def. 51
D {QY1,....Ya) Vi €T (X)),.... Y, € T,(X])} by (510)
= SQvX{w-wX:L (’}/) . by Def. 51

Becausey € I was arbitrary, we deduce from Def. 73 titat x, ... x, € Sg.x;,....x:-

3

S

Proof of Theorem 60

Let2 : K — I be given and supposk, is the QFM defined by Def. 55.

a.: If Q propagates unspecificity, then  Fq propagates fuzziness in arguments.

Hence let us assume th@tpropagates unspecificity. Now we consider a semi-fuzzy
quantifier@ : P(E)" — I and choices of arguments;,..., X,,, X,..., X/, €
P(E) with X; <, X! foralli=1,...,n.

fQ(Q)(levXn) = Q(‘SQ,Xl,,Xn) by Def. 55
= QS,x1,..x1) by Def. 74, L-76
= Fa(Q)(X1,...,X}). by Def. 55

HenceFq(Q)(X1,...,X,) = Fa(Q)(X1,..., X)), which proves thatF, propa-
gates fuzziness in arguments.

b.: If Fo propagates fuzziness in arguments, then 2 propagates unspecificity.
Hence suppose th&&, propagates fuzziness in arguments and consiéf € K
with S € 9, i.e.

S'(y) € S(v) (511)

for all v € I. We must prove tha®(S) <. Q(S’). To this end, we first choose some
20 € S’(0) # @. Noticing thatS € S’ entailsS(0) 2 S’(0), we also have, € S(0).
Based on this choice af), | define a semi-fuzzy quantifi€p : P({*} U (2 x I)) —

I as follows, where{x} is an arbitrary singleton set with ¢ 2 x I. ForallY €
{x} U (2 x I),

z : z€SWw),x€eY
QY)=< z : ze€S8Ww),*x¢Y (512)
zo : else
where
Y ={yel:(0,y) €Y} (513)
Y'={yel:(l,y)eY} (514)
z =infY’ (515)
v=supY”. (516)
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In addition, | define fuzzy subsef§, X’ € P({x} U (2 x I)) by

3 e=x

px(e) =< % e = (0,y) forsomey € 1 (517)
11y e = (1,y) for somey € 1
0 e =%

px(e) =% % e = (0,y) for somey € I (518)
1-1y e = (1,y) forsomey € 1

forall e € {*} U (2 x I). Itis immediate from these definitions that (e) <. px-(e)
foralle € {x} U (2 xI),i.e.

X=X
We hence deduce froth, propagating fuzziness in arguments that
Fa(Q)(X) 2. Fa(Q)(X'). (519)

Next we investigate the cut ranges. Foe 0, we obtain from Def. 31 and (517), (518)
that

v X, =2 (520)
g = X,1 = {=}U ({0} x DU{(1.0)} (521)
i _ X, -0 (522)
XE =X 1= ({0} x DU{(L,0)). (523)

Now we consider the case that> 0. We then obtain from Def. 31 and (517), (518)
that

" - (524)
23+37
. 273
X ox, o (526)
X=X 1 1= ({0 < DUL}x[0,7) (527)

Based on these cut ranges, | now prove that S, x. Hence lety € 1. Firstly let us
observe that

S(v) € S%.x(v)- (528)

To see this, consider € S(v). If v = 0, thenY = {x,(0,2),(1,0)} € To(X),
see (520), (521). For this choice Bf, we obtain that = inf{z} = inf Y’ by (513)
andv = supY” = sup{0} = 0 = ~ by (514). HenceQ(Y) = z because: ¢
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S(v) = S(y) andx € Y, see (512). Ity > 0, then we know from (524) and (525)
thatY = {*,(0,2)} U ({1} x [0,v)) € 7,(X). For this choice oft", we obtain
z = inf{z} = infY" andv = supY” = sup|0,v) = v by equations (513) and
(514). We then conclude from € S(v), * € Y and (512) thaQ(Y) = 2. This
finishes the proof of (528). To see that the converse subsumftion(y) € S(v)
also holds, consider a choice Bfe 7, (X). Itis then apparent from (520) and (521)
(if v = 0) and (524), (525) (ify > 0) thatv = supY” € [0,7]. Let us again
abbreviate: = inf Y'. We observe from (512) that eithe{(Y") = z € S(v) C S(v),
orQ(Y) =z € 5 (v) C S(v) by (511), orQ(Y) = 2o € S(0) C S(v). In any case,
Q(Y) € S(v). HenceSy, x(v) € S(v) by Def. 51, as desired. Combining this with
(528) proves thaty x () = S(y) forally €1, i.e.

S.x =95. (529)
Next | prove thatS’” = S5 x-. Let againy € I. In order to prove that
S'(7) € So.x7 (7) (530)

considerz € S’(y). If v = 0, thenY = {(0,2),(1,0)} € To(X’) by (522), (523).
We obtainz = inf{z} = inf Y’ by (513) andv = supY” = sup{0} = 0 = ~ by
(514). HenceR(Y) = z because: € S’(v) = S'(v) andx ¢ Y, see (512). For
v > 0 we obtain from (526) and (527) that = {(0,2)} U ({1} x [0,7)) € T,(X).
This choice ofY yields z = inf{z} = inf Y' andv = supY” = sup[0,7) = ~v
by (513) and (514). We deduce frome S’(v), x ¢ Y and (512) thaQ(Y") = =.
Hence (530) is valid. To see th&t x/(y) C S’(v) also holds, consider a choice of
Y € T,(X’). Itis then apparent from (522) and (523) {if= 0) and (526), (527) (if
v > 0) thatv = supY” € [0,~7] andx ¢ Y; z = inf Y’ can assume arbitrary values
z € I. We observe from (512) and¢ Y that eitherQ(Y) = z € S'(v) C S'(v) or
QYY) =2z € 5(0) CS(y). Inany caseQ(Y’) € 5'(y). HenceSy x/(v) C S'(v)
by Def. 51. Recalling (530), we have shown thgtx- (y) = S’(v) for all v € I, thus

So.x =5 (531)
Based on these auxiliary results, we can now proceed as follows.
Q(S) = 2%, x) by (529)
= Fa(Q)(X) by Def. 55
= Fa(Q)(X') by (519)
=Q(S%.x') by Def. 55
=Q(9). by (531)

A.30 Proof of Theorem 61

Lemma 77 LetQ) : K — I be a given mapping which satisfi¢3-2). If Q satisfies
conditionb. of theorem Th-61, thef? also satisfies the following condition. For all
s € Kwith S(0) C [0, 3], it holds thatQ(S) = Q(S5’), whereS’ € K is defined by

[0,2] : 2z*€S(y)

5'(7) ={ 0.2+ 2" ¢ S(7) (532)
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for all v € I, wherez* = z*(+) abbreviates

2" =supS(y). (533)

Proof  Supposes € K satisfiesS(0) C [0, 1]. We defineS; € K by
S1(7) ={1-z:2€5()} (534)

for all v € 1. We further defines” € K according to (532), an§’ € K according to
(54). Itis apparent from these equations and (534) that

S'(y)={l-2z:2€ 57} (535)

for all v € I. Noticing thatS; (0) C [3, 1], we hence obtain

Q(S) = 1 - Q(Sy) by (2-2)
=1-90(9)) by conditionb. of Th-61
= (s, by (535)

as desired.

Lemma 78 Suppos€? : K — I satisfies(2-2), (2-4) and (2-5). If Q satisfies
conditionb. of theorem Th-61, thef also satisfies the following condition. For all
S e Kwith S(0) N [4,1] # @ andS(0) N[0, 1] # @, it holds thatQ(S) = 3.

Proof  To see this, conside$ € K with 5(0) N [1,1] # @ andS(0) N [0, 3] # @.
We defineSt, S~ : T — P(I) by

B SO)n[i,1] + y=0
S*(w)—{ 0 S (536)
[ sOn0.Y =0
s (v)—{ S0 o (537)

forally € I Itis apparent front (0)N[3, 1] # @ andS(0)N[0, 1] # @ thatS*, S~ €
K by Def. 52. We further defing’", S’ € K by (54) and (532), respectively. Finally,
we defineS” € K by

S"(y) =1 (538)

for all v € I. Itis then apparent frontY-2) andS” (y) = {1 — z : z € S”(y)} for all
~ € Ithat

0" = 1. (539)
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Noticing thatS’~ C S”, we hence obtain

Q(S) = Q(57) by (537) and L-18
=Q(5'"7) by L-77
< Q(s") by (§2-5)
1. by (539)

In a similar way, we obtain fron$”’ C S’ that

Q(9) = Q(ST) by (536) and L-18
= Q'™ by conditiona. of Th-61
> Q(S") by (Q-5)
~ 1 by (539)

We conclude tha®(5) = 3.

Proof of Theorem 61

Consider a choice d? : K — I which satisfiesQ-1), (2-2), (2-4) and (2-5).

Condition b. of the theorem entails condition a.: To see this, let us suppose tléat
satisfies conditiot. of the theorem. We have to show tl§apropagates unspecificity.
Hence letS,, S; € K be given withS; € 5o, i.e.

S2(7) € S1(7) (540)

for all v € I. 1 will discern three cases in the proof tHa¢S;) <. Q(S2).

Firstly if S1(0)N[3, 1] # @ andS1(0)N[0, 3] # @, thenQ(S1) = 3 <. Q(S2), which
is apparent from L-78 and (5).

In the second case th&§(0) C [, 1], we observe from (540) that (0) C [4,1] as

well. We defineS] andS), according to equation (54) in terms 6f and.Ss, respec-
tively. It is then apparent from (540) and (54) ti#§tC S, and hence

Q(81) = Q(57) < Q(S3) = Q(S2) (541)

by (©2-5) and the assumption th&t satisfies conditiom. of the theorem. We further
defineS) € K by

ST Uiz}
forally € I. Because; (0) C [3, 1] andS;(0) # @, we conclude tha; (0)N[3, 1] #
@. HenceSy C S; by Def. 57. Therefore
Q(S1) < QSY) by (2-5)
by L-78

N[—
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Hencel < Q(S;) < Q(S2) by (541), i.e£2(S1) <. Q(S2) by (5).

Finally in the case tha$(0) C [0, 1], we defineS{(y) = {1 —z: z € Si(y)} and
Sh(y) = {1 —2z: 2z € Sy(y)} for all v € I. We can then conclude from the second
case and({-2) that

1—Q(S)) = S} = QSH) = 1 — S5).

It is then apparent from (5) th&t(S;) <. Q(S2).

Condition a. of the theorem entails condition b.: To see that conditiob. of the
theorem holds whenever. holds, let us assume th@tpropagates unspecificity. Now
considerS € K with S(0) C [3,1] and defineS’ by (54). It is then apparent that
S(y) C S'(y) forally €1,i.e.5" € S and hence

Q(8') <. Q(S). (542)

BecauseS(0) C [4, 1], we can choose somg > 1 with 2o € S(0). We defineS” €
Kby S”(v) = {20} for all v € 1. Then clearlyS € S” and hence&2(S) <, Q(S5").
In additionQ(S”) = zy > 1 by (Q-1). Hence2(S) > 1 by (5). Combining this with

(542), we obtain that

(") < Q(S), (543)
which is apparent from (5). We now notice from (54) and Def. 57 that S’. Hence
Q(S) < Q2(8"). Combining this with (543) yields the desirex(S") = Q(S).

A.31 Proof of Theorem 62

Lemma 79 Supposev : L — Tis given and : K — I is defined in terms ab by
(38). If 2 propagates fuzziness, therpropagates fuzziness.

Proof Considers, s’ € I with s <, s’. We defineS, S’ € K by

S(y)={z €1:7 > s(2)}
() =fzeliv =5 (2)}.

for all v € I. Next let us prove tha$ <. .S’. Hence lety € T and considet € S(v),
i.e.v > s(z). We know from (56) that there exist$ € I with 2 <, 2’ ands’(2') <
s(z) <~. Hencez' € S'(y) andz =<, 2’. This proves that condition (53) holds.

Now consider some’ € S’(), i.e.y > s'(2’). We know from (57) that there exists
z € Twith z <. 2’ ands(z) < §'(2’). In particular,y > s(z); hencez € S(v). This
proves that condition (52) also holds; we conclude from Def. 718hat S’. Because
Q is assumed to propagate fuzzineSss,. S’ entails that

Q(S) <. Q(9"). (544)
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Therefore

w(s) = Q(S) by (39)
= Q(5) by (544)
=w(s). by (39)

Hencew propagates fuzziness by Def. 76, as desired.

Lemma 80 Supposev : . — T has the following property. l§, s’ € L satisfy
forall z € I, inf{s'(2) : 2 <. 2'} < s(2) (545)

and
forall 2’ € I,inf{s(z) : z <. 2"} < s'(2'), (546)

thenw(s) <. w(s’). Further suppose tha® : K — I is defined by(38). Then(
propagates fuzziness.

Proof Suppose that : . — I has the properties stated in the lemma. In order to
prove that(2 propagates fuzziness, we consider a choics,¢f’ € K with S <. 5".
We defines, s’ € L in terms ofS, S’, viz

s(z)=inf{yeI:ze S(v)} (547)
s'(z)=inf{yel:2€ 5 ()} (548)
for all z € I. To see that (545) is satisfied, considee I and lety > s(z). Then
z € S(v) by (547). By (53), there exists € S’(v) with z <. 2’. Because: € S’(y),
we conclude from (548) that(z’) < ~. Becausey > s(z) was arbitrary, this proves
that
inf{s'(z') : 2 <. 2'} < s(2),

i.e. (545) is satisfied. To see that (546) holds as well, consider I. Then for all
v > §'(2'), 2/ € S'(v) by (548). We hence know from (52) that there exists S(v)
with z <. 2’. In particular,z € S(~) entails thats(z) < ~. Becausey > s'(z') was
arbitrary, this proves that

inf{s(z) : 2 %.2'} <s'(7).

Hence (546) is valid, too. From the assumptiornuostated in the lemma we deduce
that

w(s) 2. w(s'). (549)
Therefore
Q(S) = w(s) by L-38, (38)
= w(s') by (549)
—Q(s). by L-38, (38)

This proves thaf2 propagates fuzziness, as desired.
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Lemma 81 Suppose, s’ € L are related by(545)and (546). Then there existy, €
_ —1
st 1(0), z) € s'H7(0) with 2o <. 24

Proof Choose some, € s~1(0). Then alsazy € st~ ' (0) by Th-47.a. Ifzy = 5

-1 -
& (0) # o satisfieszg = 1 =, z(, see (5). In the case

choose some}/ € s'~'(0). If 2/ > z, thenz{] is a proper choice for

then any choice of{ € s

thatzo > 1,
. 1

2, because’! < ¢ entails that(] € s/ (0), and because/ > z, > 1 entails that

20 <. 24 by (6). If 2z < zo, however, we proceed as follows. we know that

0 = s(z) because, € s~1(0)
> inf{s'(2') : 20 2. 2"} by (545)
=inf{s'(2') : 2/ > 20} by zo > 3 and (5)
= st'(2), by L-43

i.e.st'(z0) = 0. Hencez| = z is a proper choice for) with 2o <. 2, andst () =
Finally let us consider the case that < Again choose some] € ' (0 )

{ < zg, then we are done because in th|s cgse- z( is a proper choice of], wh|ch
SatISerSS'i(ZO) = 0 andz =<, z{. In the remaining case thaf > z,, we notice that

s'i(zo) =inf{s'(2'): 2/ < 2} by L-43
=inf{s'(2") : 20 2. 2’} by 2o < 3 and L-43
< s(20) by (545)
=0, because, € s~1(0)

i.e.s'*(20) = 0. Hencez), = z, is an admissible choice af, which satisfies’? (z})) =
0 andzy =, z{,, as desired.

Lemma 82 Supposs, s’ € L satisfy the conditior545). Further suppose thaty
_ —1
st 1(0), 2y € st (0) are given withzy <. z(. Then for allz € I,

a. Ifz > 1 andz) < z, thens'* (2) < s(z);

b. If 2 > 1 andz{ > z thenz <, 2{ ands’i(z(')) < st(2);
c. Ifz =1 thenz <.z, ands'(z)) < st(2);

d Ifz < % andz| < z, thenz =<, 2|, ands’i(zo) < st(2);
e. Ifz < }andz) >z thens'*(z) < s(2).

— —1
Proof We know from L-81 that there exist, < s* 1(0), z) € st (0) with 2020+
Now let us consider somec 1.
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a: If 2> }andz < z, then

s (2) = inf{s'(¢) : &' > 2} by L-61
=inf{s'(2") : 2 <. 2"} by (5) andz > 3
< s(z). by (545)

b.c.andd.:. Immediate from (5) and’*(z}) = 0.

e. If z < {andz) > zthen

$H(2) = inf{s'(¢) : ' < 2} by L-61
=inf{s'(z') : 2 %, 2’} by (5) because < 1
< s(z). by (545)

Lemma 83 Suppose, s’ € L satisfy the conditior{545). Further suppose thaty €
_ -1

st 1(0), 2y € st (0) are given withz, <, 2. Then for allz € 1,
a. If 2 > 1 andz) < z, thens’ (z) < s(2);

b. If 2 < J andz) > z thens'* (z) < st(2).
Proof Letz €I be given.

a:z>Land 2 <z Supposej < i. We then deduce from, <, 2} and (5) that
2o € [2(, 3]. In particular,zg < z. In the remaining case thaf > 1, we obtain from
20 =. z) and (5) thaty € [3, z0], and agairn, < z) < z. Hence in both case$ < z.

Therefore

st(z) =inf{s(2) : 2/ > 2} by L-61
> inf{s'*(2') : 2/ > 2} by L-82.a
_ gt by L-43
=sY2). by L-51

b:z < Land zp > 2 If 2{ € (2, 1], thenz =, z{ entails thatzg € [2{, 1] by
(5). In particularz, > z. In the remaining case tha} € [1,1], z, <. 2 entalils that
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2o € [4,20] by (5). In particularzg > 1 > 2. Hence in both cases > z. Therefore

st(z) = inf{s(2') : 2/ < 2} by L-61
> inf{s’* (/) : ¢/ < 2} by L-82.e
= s'ﬂ(z) by L-43
= s*(z). by L-51

Lemma 84 Suppose, s’ € LL satisfy the conditiorf546). Further suppose thaty €
_ —1
st 1(O), z) € s't(0) are given withzg <, z,. Then forallz’ €1,

a. If2/ > L andz € (2/,1], thenst(z) < §/'(2');
b. If 2/ > 1 andz € [, 2/], thenzy <. 2" andst(z) < s
c. If2/ > 1andz € [0, 1), thens* (1) < s'(2);
d. If2/ < andz € [0,2'), thenst(z') < §/'(');
e. If2/ < 1andz € [/, 1], thenst(z) < s
f. If 2/ < 1 andz € (3,1], thens?(3) < §/'(/).
Proof
a:z >1and z € (<,1]. Thenz >z > 1. Therefore

sH(2') = inf{s(z) : 2 < 2’} by L-61
=min(inf{s(z) : z € [1, 2]}, inf{s(2) : 2 € [0, 1)})
<inf{s(z):z € [3,2]}
=inf{s(z): 2 <. 2’} by (5) because’ > 1
<s'(7). by (546)

Hence indeed!(z’) < s/(2').

b 2 > %and z € [3,2]. We conclude from{ < z, < 2’ thatz; <. 2’ by (5). The
claim of partb. is then immediate from?(z,) = 0 < s'*(2).

c. 2z >%and z €[0,4). Because, < 3, we may proceed as follows.

st(3) =inf{s(2) : 2 > 3} by L-61
<inf{s(z):z € [3,2]}
=inf{s(z) : 2 <. 7'} by (5) because > 1
<s'(2). by (546)
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Hences*(1) < s'(2') holds, as desired.

d.: 2 < 3and z €[0,2'). Thenz; < z < 2, see (5). Therefore

sH2) = inf{s(z") : 2" > '} by L-61
<inf{s(z"): 2" € [/, 3]}
=inf{s(z") : 2" <. 2} by (5) because’ < 3
<s'(2). by (546)

This proves that indeed (2') < s'(2/).

e.2 < tand 2 €[, 4]. Thenz <z < 3. Hencez =, 2’ by (5). The claim of
parte. is then immediate froma*(zy) = 0 < s'*(2).

f.2 < iand 2 € (5,1 Becausey > 2/, we can proceed as follows.

sH(3) =inf{s(2) : 2 < 3} by L-61
<inf{s(z):z €[, 3]}
=inf{s(z) : 2 <. 2'} by (5) because’ < 3
<s'(2). by (546)

Thereforest(3) < s/(2’), i.e. the claim of part. is valid, as desired.

Lemma 85 Suppose, s’ € L satisfy the conditior{546). Further suppose thaty €
_ -1
st 1(0), 2y € st (0) are given withzy <. z{,. Then for allz’ € 1,

a. Ifz/ > % andz, € (#/,1], thens*(z') < s’i(z’);
b. If 2/ > Landz, € [0, 1), thens(1) < s (2');
c. If2/ < Landz € [0,2), thens!(2) < s'*(2/);

d. If 2/ < Landz e (1,1], thenst (1) < s (2').

Proof Consider’ € I.
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a:z' >%and z € (2,1]. We observe that by (5} =<, z; andzy > 2’ > 1 implies
thatz), > zy > z’. Therefore
ST = inf{s' (") : 2 < 2} by L-61
= min(inf{s'(2") : 2" €
inf{s'(2") : 2
> min(inf{s*(2") : 2" € [, 2]}, s*(3)) by L-84.a and L-84.f
=inf{st(2"): 2" € [},
> inf{st(2") : 2" < 7'}
= sii(z’) by L-43
= sH(2). by L-51

This proves the claim of pakt. thatst(z') < s'*(z).

b.. 2/ > % and 20 € [0,%). In this case, we obtain from, =<. z; and (5) thatz;, <
zo < 3. In particularz(, < 2’. Therefore
s’i(z’) =inf{s'(2"): 2" > '} by L-61
> inf{s*(3): 2" > 2/} by L-84.c
= inf{s*(3)}
= s'(3).

This proves the desired (1) < s'*(2/).

c.. 2/ < Land 2 €0,2). Inthiscase, we have, < z; < 2’ < %, which is apparent
from zp =<, 2}, and (5). In particulat|, < z’. Therefore

$H() = inf{s' (") : " > '} by L-61
= min(inf{s'(z") : 2" € [/, §)},
inf{s'(") : 2" € [1,1]})
> min(inf{s*(2") : 2" € [/, 1)}, s} (3)} by L-84.c, L-84.d
= inf{s*(2") : 2" € [/, 3]}
> inf{st(2") : 2" > 2’}
= sii(z’) by L-43
=st(2). by L-51

This proves that?(z') < s'*(2).
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d.: 2 < % and z € (3,1]. Then we know frome, <. z( and (5) that:), > zo > 1.
In particular,z’ < z{. Therefore

S = inf{s' (") : 2" < 2} by L-61
> inf{si(%) 22 <A by L-84.f
= 1nf{si(%)}

=),
Hences' (1) < s'*(2/), as desired.

Lemma 86 Suppose, s’ € L satisfy condition§545)and (546). Thens* <, s't,

Proof We first notice that by L-81, there exis} € 5171(0), 2y € 5’1_1(0) such
thatzp <. z,. We then obtain from L-82.b/c and L-83.a/b that (56) holdssfors'*.

In addition, we obtain from L-84.b/e and L-85.a-d that (57) hoIdSSﬁots’i. Hence
st <. s'* by Def. 75, as desired.

Proof of Theorem 62

Supposey : L — Tis *-invariant, i.ew(s*) = w(s) for all s € L.

a.: If F,, propagates fuzziness in quantifiers, then  w propagates fuzziness. Tosee
this, assume thak,, propagates fuzziness in quantifiers. Let us recall fhat= Fq

by (39), provided we defin@ by (38). We hence know from Th-58 th@tpropagates
fuzziness. In turn, lemma L-79 permits us to conclude éhptopagates fuzziness, as
desired.

b.: If w propagates fuzziness, then F,, propagates fuzziness in quantifiers. Con-
sider a choice of, s’ € L which satisfies (545) and (546). Theh=. s'* by L-86,
i.e.

w(st) 2, w(s™) (550)

becausev is assumed to propagate fuzziness. Hence

w(s) = w(s) by assumption that be*-invariant
= w(s') by (550)
=w(s'). by assumption that be*-invariant

Hencew fulfills the preconditons of lemma L-80. We conclude tlat K — I
defined by (38) propagates fuzziness. Hefgepropagates fuzziness in quantifiers by
Th-58. ButF, = Fq by (39), i.e.F,, propagates fuzziness in quantifiers.

195



A.32 Proof of Theorem 63

Lemma 87 Lets € L be given withs—!(0) C [, 1] and suppose’ € L is defined by

s'(2) = { ii(z) z i i (551)
for all z € 1. Abbreviating
S'(1)={z€l:v>5(2)} (552)
S"(y) ={z €1:7>s'(2)} (553)
for all v € 1, it holds that
S'(v)=8"(v)n[z.1]
forall v € [0,1).
Proof | first show that
S'(v) € S8"(v)N (5,1 (554)
forall v < 1. Hence lety < 1 andz € S’(y). Then
7> 5'(2) (555)

which is apparent from (552). Becaus¢z’) = 1 > ~ for all 2’ < by (551), we
conclude from (555) that

2> (556)

N

Therefores’(z) = s*(z) by (551). We hence obtain from (555) that> s*(z). In turn,
we conclude from (553) that € 5”(v). This proves that € S”(v) N [4, 1] because
z > 1 by (556). Hence indeefl’(v) € S”(y) N[, 1], i.e. (554) holds, as desired.
To see that

§"(v)N[3,1] €S (v) (557)

is also valid for ally < 1, considerz € 5”(v) N [%,1]. Thenz > 1 andz € 5" (v),
hence

v 2 sH(2). (558)

Because: > 1, we conclude from (551) that(z) = s*(z), hencey > s/(z) by (558).
Inturnz € S'(y) by (552), which finishes the proof of (557).
Combining (554) and (557), we finally obtain the desifé¢ty) = S”(v) N [, 1] for

allv < 1.
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Lemma 88 Supposev : . — T is a given mapping which satisfi¢s-1) to (w-4).
Further suppose tha2 : K — I is defined in terms of according to equation
(38). If Q2 propagates fuzziness, therhas the following property. For akk € I with

s71(0) C [3,1], it holds thatw(s) = w(s'), where
s'(z) = { ) ) . i z (559)

forall z € 1.

Proof Letw : . — I be the given mapping which satisfies-{) to (w-4) and
suppose? : K — I is defined in terms of according to (38). In order to prove the
claim of the lemma, we assume tifapropagates fuzziness. Now consider a choice of
s € L with s7*(0) C [4,1] and defines’ : I — I by (559). It is then apparent from

s7H0)N[3,1] # o thats’ ' (0) # @, i.e.s’ € L. We defines’, $”, S* € K by

S'(9) = {z ey (=)} (560)
S"(7) ={zel:y2s'(2)} (561)
S (7) = { ggﬁ)” 21 128 (562)

for all v € I. We notice that for alty € I, S*(+y) is convex in the sense that< b < ¢
anda, c € S*(v) entail thath € S*(+). Therefore

St = 5%, (563)
which is apparent from Def. 59. We also notice from (561) and (562) that
5 n[3,1]=5"n[3,1]. (564)

Therefore

S
&
I
)

by (560), (38) and L-38
) by L-87
by (564)
by (563)
by Th-59
by (561), (562) and L-18
by (561), (38) and L-38
by Th-48
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Lemma 89 Supposev : . — T is a given mapping which satisfiés-1) to (w-4).
LetQ2 : K — I be defined in terms af according to(38). If 2 propagates fuzziness,
thenw(s) = 1 forall s € L with s=1(0) N [$,1] # @ ands~(0) N [0, 3] # 2.

-2
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Proof To see this, definé € K by
S(y) ={z€1:7 > s(2)} (565)

for all y € I. ThenS(0) = s~*(0), henceS(0) N [3,1] # @ andS(0) N [0, 5] # @.
We conclude from L-72 that

Q) =3. (566)
Therefore
w(s) = Q(S) by (565), (38) and L-38
=1. by (566)

Lemma 90 Suppose : . — I satisfieqw-1), (w-2) and (w-4). Then conditiorl. is
equivalent to the conjunction of conditos and2.b: are equivalent.

1. Forall s € L with s=1(0) N [$, 1] # @, it holds thatw(s) = w(s’), where

p st(z) @ z>1
forall z € I;
2.a Foralls € L withs~1(0) C [, 1], it holds thatw(s) = w(s’), wheres’ € L is
defined as irt.;
2.b Foralls € Lwiths™*(0) N [§,1] # @ ands~1(0) N [0, ] # @, it holds that
w(s) = 3.
Proof

1. entails 2.a:  This is trivially the case becaugea is an apparent weakening bf

1. entails 2.b:  To see this, supposefulfills 1. and consider a choice efc 1L with
s710)N[3,1] # @ ands~1(0) N [0, 3] # @. We defines’, s” : T — I by

st(z z>41

Z<§

1 z>

" _ 2
(2) {si(z) 2<d

for all = € I. Itis apparent froms=1(0) N [3,1] # @ thats’ € L. Similarly, we
conclude froms—1(0) N [0, 3] # @ thats” € LL. We notice that

w(s) =w(s") (567)
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by 1., and also
w(s) = w(s") (568)
which is apparent from. and (v-2). Now let us defing; € L by
2

=10 1]
forall z € I. Apparentlys% C s’ and hence
w(s) = w(s) by (567)
> w(s1) by (w-4)
=3 2 by (w-1)

i.e.w(s) > %. By similar reasoning, we conclude frosti C s; that
2

w(s) = w(s") by (568)
<w(s1) by (w-4)
2
=1, by (w-1)
i.e.w(s) < 3. Combining this with the former inequation yield$s) = 3
The conjunction of 2.a and 2.b entails 1.: Let us assume that botha and2.b are

valid. Now consides € L with s=(0) N [3,1] # @ and defines’ € L by

st(z) @ z>1
"(z) = — 569
#(2) {1 i (569)
forall z € I.
If s=1N[0,1) =, thens™! C [1,1]. Hencew(s) = w(s’) by 2.a, as desired.
In the remaining case that! (0) N [0, 1) # @, we conclude fron2.b that

w(s) = % . (570)

In order to show thab(s’) = 1 as well, we considet = 3. We know thats~!(0) N
[1,1] # @, hence there exists" with s(z7) = 0 andz* > 1. Henceinf{s(z) : z >
11<s(zT) =0, ie.

inf{s(z) :2>3}=0 (571)
By similar reasoning, we conclude frosm! (0) N [0, 1] # @ that there exists~ with
s(z7)=0andz~ < 1. Thereforeinf{s(z) 1z < %} s(z7) =0, i.e.

inf{s(z) : z = (572)
We conclude from (571), (572) and Def. 65 tbé{t% = 0. By (569),s

0. Hences’ '(0) N [3,1] # @ ands' ' (0) N [0, 1] # 2, i.e.w(s')
2.b and (570).

=<
N[
N

w
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Lemma 91 LetS € K be given. Defing, s* € LL by
s(z) =inf{yeI:ze S(y)} (573)
s*(2) =inf{y € 1: 2z € S*(y)} (574)

forall z € I. Thenst = s*.

Proof Considerz € I. | will show thats#(z) = s*(z) by proving both inequations
st(z) < s*(z) andst(z) > s*(2).

a.: st(z) < s*(z). Considery > s*(z). Thenz € S*(y) by (574). By Def. 59 there
existz~, 2zt € S(v/) with

27 <z<zt. (575)

Because:—, 2™ € S(v'), we conclude from (573) that

s(z7) < (576)
s(zh) <. (577)
We can hence proceed as follows.
inf{s(z'): 2’ <z} <s(27) by (575)
<7 by (576)
and siimilarly
inf{s(z'): 2’ > 2} < s(z™") by (575)
<. by (577)

Hence by Def. 65,
st(z) = max(inf{s(2) : 2’ < z},inf{s(z') : 2’ > 2}) <.

Because) > s*(z) was arbitrarily chosen, this proves thafz) < s*(z).

b.: s*(2) > s*(z). Hence lety’ > s*(z). Recalling thats*(z) = max(inf{s(z’) :

2 < z},inf{s(z’) : 2/ > z}) by Def. 65, we conclude that there exist, 2" € I

with s(27) < 7/, 2= < 2, s(z7) < 7/ andzt > z. Itis apparent from (573)
thats(z7) < +" ands(zt) < 4/ entail thatz—, 2" € S(y’). Hence by Def. 59,
z € S%(4). Inturn, we obtain from (574) that*(z) < +'. Becausey > si(z) was

arbitrarily chosen, this proves the desirgédz) < s*(z).

Lemma 92 Supposev : . — I satisfieqw-1) to (w-4). Further suppose that for all
s € Lwith s71(0) N [$, 1] # @, it holds thatw(s) = w(s’), where

SiZ Lz
S,(Z)_{ (2) + 22

1 Doz <

IR NI

for all z € I. Then the mappin@ : K — I defined by(38) propagates fuzziness.

200



Proof Letw : L. — I be a mapping with the properties stated in the lemma and
suppose thdt is defined in terms ab according to equation (38). In order to prove that
Q propagates fuzziness, it is sufficient to show has) = Q(S* N [3, 1]) whenever
5(0) C [4,1], see Th-59. Hence let a choice $fe K with S(0) C [1, 1] be given.

We defines € L by

s(z) =inf{yeI:ze S(y)} (578)
for all z € I. We further defing’, s*, s™ € L by
s'(z) = { ii(z) Zi i (579)
s*(z) =inf{y €T1: 2z € S¥(y)} (580)
st(z) = { i*(z) ii i (581)
for all z € I. We notice that
st(z)=inf{y eI:z € S*(y) N[, 1]} (582)
for all z € I, which is apparent from (581) and (580). Therefore
Q(s)
= w(s) by (38), (578)
=w(s) by (579) and assumed property.of
=w(s™) by L-91
=Q(stn[3,1)). by (582), (38)

Proof of Theorem 63

Letw : . — I be a given mapping which satisfies-{)—(w-4) and suppose€) :

K — I is defined in terms ob according to equation (38). | first prove that the con-
dition stated in the theorem is sufficient forto propagate fuzziness. Hence suppose
that the condition (58) holds for afl€ L with s~1(0) N[5, 1] # @. We may then con-

clude from lemma L-92 th&® propagates fuzziness. In turn, we conclude from Th-58
that ¥, = Fq propagates fuzziness in quantifiers. Finally, we conclude from Th-62
thatw propagates fuzziness, as desired. To see that the condition stated in the theorem
is also necessary for to propagate fuzziness, suppes@ropagates fuzziness. Then

Q also propagates fuzziness by Th-62 and Th-58. We conclude from L-88, L-89 and
L-90 thatw satisfies condition (58) for all € L with s=1(0) N [1, 1] # @.

A.33 Proof of Theorem 64

Letw : L — I be a given mapping. Thef,, = Fq, provided we defin€ : K — I
by equation (38). We already know from Th-60 tifa = F propagates fuzziness
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in arguments if and only if2 propagates unspecificity. Hence we can prove fhat
propagates fuzziness in arguments if and only fifropagates unspecificity by showing
thatw propagates unspecificity if and only(¥ propagates unspecificity.

a.: If Q propagates unspecificity, then  w propagates unspecificity. Hence suppose
thatQ) propagates unspecificity, i.8. € S’ implies thatQ2(S) <, 2(5’), see Def. 74.
Now considers, s’ € L with s < s’. We abbreviate

S(y)={2€l:y>s(2)}
S'(M)={s€l:v>5'(2)}

It is apparent from these definitions and) < s'(z) for all z € TthatS(y) 2 S'(v)
forally €1,i.e.S € S’ by Def. 73. Becausg is assumed to propagate unspecificity,
we obtain that

Q) = US"). (583)
Therefore
w(s) = Q(S) by (39)
= Q(5) by (583)
=w(s). by (39)

b.: If w propagates unspecificity, then ) propagates unspecificity. To see this, let
us assume that propagates unspecificity, i.e(s) <. w(s’) whenevers < s’. Now
considerS, S’ € Kwith S € S’. We defines, s’ € L by
s(z) =inf{ye€el:ze S(v)} (584)
s'(z)=inf{yel:2€ 5 ()} (585)

for all z € I. Now we recall that by Def. 73(y) D S’(v) for all v € 1. Hence for all
zel,

{vel:zeS()}2{yel:ze S5 ()},

which proves that(z) < s'(z), see (584) and (585). Becausés assumed to propa-
gate unspecificity, we conclude from Def. 77 that

w(s) 2 w(s'). (586)
Therefore
Q(S) = w(s) by L-38, (38)
<. w(s) by (586)
= Q(s"). by L-38, (38)
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A.34 Proof of Theorem 65

Lemma 93 Suppose € L is given ands’ € L is defined by59). Then

v )0 T zZ22> 2
S(Z)_{si(z) D2 < 2

for all z € I, wherez is an arbitrary element, € s~1(0).

Proof To see this, consider> zy. Then

§'(z) =inf{s(z) : 2’ <z} by (59)
< s(z0) because; < z
=0, because; € s~ 1(0)

i.e. indeeds’(z) = 0. In the remaining case that< zy, we obtain that

s'(z) =inf{s(z’) : 2’ <z} by (59)
= si(z) , by L-43

as desired.

Lemma 94 Supposev : . — I satisfies(w-1). If w propagates unspecificity, then
w(s) > 1 wheneves € L satisfiess—! N [1,1] # .

Proof Letw : L — I be a mapping which satisfies{1). Further suppose that
propagates unspecificity. Now lete L with s~*(0) N [3, 1] be given. We may hence
choose some, > 1 with s(zp) = 0. We defines’ € L by

N )0 z=2
S(Z)_{l . else

forall z € I. Thens < ¢, i.e.

W(s) 2o w(s) (587)
because propagates unspecificity. In addition, we know thét') = zo > % because
w satisfies ¢-1). In turn, we conclude from (5) and (587) thiat< w(s) < zo, in

i 1
particularw(s) > 3.

Lemma 95 Supposev : L. — I satisfies(w-2) and (w-4). If w fulfills condition
b. stated in Th-65, thew(s) > 1 wheneves € L satisfiess™(0) N [3,1] # @.

Proof Letw : L — I be a mapping which satisfies{) as well as-4) and also
fulfills condition b. of Th-65. Now consides € L with s71(0) N [3,1] # @. We
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defines’ € LL by (59), and we further defing’ € L by s”(z) = 0forall z € 1. Itis
then apparent frons’ (z) = s”(1 — z) for all z € I and (-2) that

w(s")=1. (588)

It is further clear from Def. 62 that’ C s’. Hence

w(s) = w(s") by assumed conditiob. of Th-65
> w(s”) by (w-4)
—1 by (588)

Proof of Theorem 65

Letw : . — I be a given mapping which satisfies-1), (w-2) and (v-4).

Condition b. entails condition a. of the theorem: To see that conditiob. is suffi-
cient forw to propagate unspecificity, suppose thasatisfies the condition and con-
sidersy, s2 € L with s; < s5. In order to prove thab(s;) <. w(s2), | discern two
cases.

Firstly in the case that; ' (0) N [3,1] # @, we know froms; < s, thats; " (0) N
[%, 1] # @ as well. We shall defing, s, according to equation (59) in terms afand
s9, respectively. We notice that < s, entails thats; * < s,%, see Def. 65. Itis hence
clear from L-93 and Def. 62 that; C s5. In turn, we conclude from the assumed
propertyb. and (v-4) that

w(s1) = w(s1) < w(sy) = w(sa)-

On the other hand, we know from L-95 asg’(0) N [3,1] # @ thatw(s;) >
Hencel < w(s1) < w(s2), i.e.w(s1) 2. w(s2) by (5).

In the remaining case thag ' (0) N [3,1] = @, we know thats; *(0) N [0, 3] # @
becauses; ' (0) # @ by Def. 60. This case can hence be reduced to the proof of the
previous case by utilizing condition{2).

N

Condition b. is entailed by condition a. of the theorem: In order to prove that con-
dition b. is also necessary far to propagate unspecificity, suppose thairopagates
unspecificity and considere L with s—!(0)N[1,1] # . Further suppose that € L
is defined by (59). It is apparent from (59) that< s and hence

w(s') %o w(s) (589)

becausev propagates unspecificity. We conclude fremt(0) N [%, 1] # @ and L-
94 thatw(s) > 1. Combining this with (589), it is then apparent from (5) tHat
w(s") < w(s), in particular

w(s") <wl(s). (590)



We further notice L-93 and Def. 62 that C s’ and hence
w(s) = w(sh) < w(s)
by (w-4) and Th-48. Recalling the converse inequation (590), this provesthat=

w(s’).

A.35 Proof of Theorem 66

Lemma 96 Lets € L with s=1(0) N [3,1] # @ be given and suppose thete L is
1

defined by(58). Thens'=2 — s

Proof ~ Straightforward. Because'(0) N [4,1] # @, there existsyy > 3 with
s(z0) = 0. Hence

s'fé =inf{s'(2) : 2 < § by (46)
= min(inf{s'(z) : z < 1},5'(3))
— min(inf{1}, s*(3)) by (58)
= sH(3)
=inf{s(z): 2 < 1} by L-43 becausg < z,
_ 53 by (58)

Lemma 97 Lets € L withs~1(0)N[1,1] # @ be given and supposé € L is defined

in terms ofs according to(58). Thens’ = s'*.

Proof  To see this, we choose somg> 1 with s(zp) = 0. We notice that’(zy) =
s*(z0) = 0 by (58) and Th-47.a. Now for all > z,

st(2) = inf{s'(z') : 2 > 2} by L-43
=inf{s*(2') : 2’ > 2} by (58)
= st (2) by L-43
= s¥(2) by L-51
=45(z2). by (58)

In the case that € [1, z), we first notice that

st(3)
= st(1) by L-51
=inf{st(2): 2 < 3}, by L-43
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si(%) =inf{s*(z): 2 < i}, (591)
Therefore
§H(2) = inf{s'(¢) : ' < 2} by L-43
= min(inf{s'(z) : 2’ € [1,2]},inf{s'(z) : 2" € [0, 3)})
= min(inf{s*(¢') : 2’ € [3, 2]}, inf{1}) by (58)

inf{s*(z') : 2’ € [3,2]}
min(inf{s¥(z') : 2’ € (3, 2]}, s%(3))

"€ (4,2}, inf{s*(z') : 2 €[0,3]}) by (591)

min(inf{s*(2) : 2
inf{s*(2'): 2/ < 2}

= sii(z) by L-43
= st(2) by L-51
=5'(2). by (58)

In the remaining case that< % we obtain that

§H(2) = inf{s'(¢) : 2/ < 2} by L-43
— inf{1} by (58)
=1
= 5(2), by (58)

which completes the proof of the lemma.

Lemma 98 Lets € L with s~1(0) N [3,1] # @ be given and suppose thete L is
defined in terms of according to(58).

a. Ifsi% > 1 thens's " = 537
1,0 1 /L0 1

Proof Suppose that, s’ are chosen as stated in the lemma. Then

s’ = inf 5'171(0) by (43)
=infs'~'(0) by L-97
= min(inf ' (0) N [%, 1], inf s~ (0) N[0, 1))
= min(inf 3171(0) N[3,1],inf @) by (58)
= min(inf s* ' (0) N [}, 1],1)



$ 0 =infst T (0) N [3,1] (592)
In casea. of the lemma we have;* > 1, i.e.infst ' (0) > 3 by (43). Hence
st71(0) C [, 1], in particulars® " (0) N [1, 1] = s~ (0). Combining this with (592)
and (43) yields the desired* = inf s~ (0) = s;-°.

0
In caseb. of the lemma, it holds that: " < 1, i.e.inf s~ (0) < L by (43). Now

lete > 0. Then there exists; € st '(0), i.e.sf(z) = 0, with z < i+e In

addition, we know that~(0) N [1,1] # @. We can hence choosg > i with

st(z0) = s(zp) = 0. Without loss of generality, we may assume that< z,. Now

considerz = max(1,z). We conclude fromx; < 2 < 29 and Th-47.c that*(z) <

max(st(z1),5%(20)) = max(0,0) = 0. Hences*(z) = 0, i.e.z € 81_1(0). Because
z > 3, it also holds that € st o) N [1,1]. We conclude frome; < £ + ¢ and
z = max(z1, 3) thatz < £ + ¢ as well. Hence

$ 0 =infst T (0) N [L,1] by (592)
<s because’(z) = 0 andz > 1
< % +e.
¢ — Oyieldss';* < 1. Noticing that
$ 00 =infst T (0) N [3,1] by (592)
> inf[3, 1]
_1
2
we indeed obtair’; "’ = 1, as desired.

Lemma 99 Lets € L with s~1(0) N [3,1] # @ be given and suppose thete L is
defined by(58). Thens’|* = s, .

Proof Because~'(0)N[3,1] # @, there exists, > 3 with s(zo) = 0, in particular
20 € st~ (0). We now observe that

S1H0) = & 7H0) by L-97
=5t 0) N[5 by (58)

Hences'! " (0) C s* " (0), which entails that

-1 _
10 =supst (0) < supst 1(O) =50, (593)
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On the other hand

sT0=supst ' (0) by (42)
=supst ™ (0)N[z0,1] because, € st (0)
<supst (0)N[3,1] because < z
=sups’ ' (0) by (58)
—sups’t(0) by L-97
=500 by (42)

Combining this with (593) yields the desiret| * = s, *°.

Proof of Theorem 66

We know from Th-50 thatf,, is a DFS. Hencevy, satisfies ¢-1)—(w-4) by Th-45.

In particularw,, is *-invariant by Th-48. Hence Th-62 and Th-63 are applicable, and
we can show thaf,, propagates fuzziness in quantifiers by proving that fos alllL

with s71(0) N[5, 1] # @, it holds thatvy (s) = was ("), wheres’ is defined by (58).
Hence lets € L with s71(0) N [}, 1] # @. Then there existsy > 1 with s(z) = 0.
Hence

5] =sup 81_1(0) by (42)
> sup s~ (0) by Th-47.a
> 20 because, € s~ *(0)
> 1
Z3

b

ie. s 0 > % Recalling Def. 67, it is hence sufficient to consider the following two
cases.

st%>1  Then

1
war(s) = min(s0, 14+ %sfz) by Def. 67
1
= min(s'2, L4 1552) by L-98.a and L-96
— wn(s). by (58)

1

s’ < %, In this casewy/(s) = 1 by Def. 67. As concerns’, we know from

L-98.b thats';* = 1, and we know from L-99 that'[* = s/ > 1. Hence
wnm(s') = & = wa(s) by Def. 67.
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A.36 Proof of Theorem 67

1

Lemma 100 Lets € L be given withs=*(0) N [4,1] # @ and suppose’ € L is
1
defined in terms of according to(59). Thens'=2 = 552

S
Sx

Proof Becauses—1(0) N

[1,1] # @, there exists > £ with s(z) = 0. Recalling
thatst < s, we also have?(z

o) = 0. Therefore

s 2 =inf{s'(2): 2 < 3} by (46)
=inf{s*(2) : 2 < 3} by L-93
= st(2) by L-43
=st(3) by L-51
=inf{s(z) : 2z < 1} by L-43
1
= 552 .

Lemma 101 Lets € L be given and supposé € L is defined in terms of according
to (59). Thens'*

Proof Letzy € s~1(0) # @. Thens’(z) = 0 by L-93, i.e.z, € s/ (0). Hence for
z Z 20,

§H(2) < 5(2) by Th-47.a
—o, by L-93

i.e.s'f(z) = 0 = ¢/(2). In the remaining case that< z,, we compute

s (z) = inf{s'(2) : 2/ < 2} by L-43
=inf{st()): 2/ < 2} by L-93
= sii(z) by L-43
= st(2) by L-51
=5'(z), by L-93

which completes the proof of the lemma.

Lemma 102 Lets € IL be given and supposé € L is defined in terms of according
to (59). Thens' " = s°
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Proof To see this, consider € L and assume’ € L is defined by (59). Let, be
some element, € s~1(0) # @. In particular,zy € si_l(o) by Th-47.a. In turn, we
conclude that, € 5171(0) N [0, zo] and hence

inf st (0) < (594)
inf s+~ (0) = inf s* " (0) N[0, 2] - (595)
Therefore
S0 —inf st (0) by (43)

=infs' "' (0) by L-101

= min(inf s~ (0) N [0, 1], inf s~ (0) N [0, 20))

= min(inf[z, 1], inf s* ' (0) N[0, z0]) by L-93

= min(zo, inf s 1(O)) by (595)

— inf st (0) by (594)

=50, by (43)

Lemma 103 Lets € IL be given and supposé € L is defined in terms of according
to (59). Thens’, ° = 1.

Proof Choose some, € s~1(0) # @. Then

s'(1) =inf{s(z) : 2 < 1} by (59)

< s(20) becausey <1

=0, because, € s~ 1(0)
i.e.s’(1) =0and

1es0). (596)
Therefore
—1
s’:’o = sup s’* (0) by (42)
>1 by (596),

i.e.s,® =1, as desired.

Proof of Theorem 67

We know from Th-50 thaf,, is a DFS and hence satisfies-{) to (v-4) by Th-45. In
particular,w,, is *-invariant by Th-48. Hence Th-64 and Th-65 are applicable, which
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allow us to show thatF;; propagates fuzziness in arguments by proving that for all
s € Lwith s71(0) N[}, 1] # @, it holds thatvy (s) = was(s'), wheres’ is defined by
(59).

Hence lets € L with s~1(0)N|
to (59). Because~'(0) N [3,1

, 1] # @ be given and defing in terms ofs according
# @, there exists > 1 with s(z) = 0. Hence

N

)

510 =supst (0) by (42)
> sup s~ *(0) by Th-47.a
> 20 because, € s~ 1(0)
>3

i.e.s, 0> % Recalling Def. 67, there are only two cases left to consider.

a:si®>1. Then
<l
wir(s) = min(s;0, 1 + 1s72) by Def. 67
1,0 <3
=min(s',", 5 + 55’5 ?) by L-100 and L-102
=wp(s). by Def. 67

b.: si° < i. In this case, we conclude from Def. 67 that;(s) = 3 because
si” > 1. Considerings’, we firstly know from L-102 that’; " = s° < 1. In
addition, we know from L-103 that,* = 1. Hencewn(s') = 1 = wn(s) by

Def. 67, which completes the proof.

*

A.37 Proof of Theorem 68

Lemma 104 Lets € L with s~1(0) N [1,1] # @ be given and suppose théte L is

defined in terms of according to(58). Thens’lT’* = slT*

Proof To see this, we first notice that there exis§s> % with s(z9) = 0, which is

immediate froms—*(0) N [3, 1] # @. In particularz, € s~*([0,1)) and

2 € st ([0,1)). (597)

Because > % this of course entails that

zest([0,1)N[L,1]. (598)
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Therefore

s = (st), by L-58
=supst ([0,1)) by (44)
=supst([0,1)) N[5, 1] by (598)
= max(sup siil([(),

1
= max(sup s’ ([0,1)) N [%,1],sups’ " ([0,1))N[0,1)) by (58)

= sup s’_l([O7 1))

g Tx
=5, .

Proof of Theorem 68

We know from Th-52, Th-45 and Th-48 thatr satisfies ¢-1)—(w-4) and thatwp

is *-invariant. Therefore Th-62 and Th-63 are applicable, i.e. we can show/hat
propagates fuzziness in quantifiers by proving that fos allL with s~*(0) N [%, 1] #
@, it holds thatvp(s) = wp(s’), wheres’ is defined by (58).

Hence lets € L with s71(0) N [}, 1] # @. Then there existsy > 1 with s(z) = 0.
By the same reasoning as in the proof of Th-66, this entailssthdt > % Recalling
Def. 68, it is hence sufficient to consider the following two cases.

a:s”> 1. Then

1
wp(s) = min(s; ", 2 + %552) by Def. 68
1
—min(s'] ", 1 + 155 2) by L-104 and L-96
= wp(s'). by Def. 68

b s-° < 1. In this case, we recall that by Def. 68,° < 1 ands, " > 1 entall
thatwp(s) = 1. As concerns’, we know from L-98.b that’,;* = 1, and we know
from L-99 thats’, * = s/°* > 1. Hencewp(s') = L = wp(s) by Def. 68.

A.38 Proof of Theorem 69

In order to prove thatFp does not propagate fuzziness in arguments, we can utilize
that 7p is a DFS by Th-52 and hence satisfies1)—(v-4) by Th-45. We can there-
fore apply theorems Th-64 and Th-65. In order to show thatdoes not propagate
fuzziness in arguments it is hence sufficient to prove that there existsL. with
s71(0) N [5,1] # @ andwp(s) # wp(s’), wheres’ € L is defined by (59). To this
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end, let us define € L by

1 z > 5
s(z)=¢ 0 : ze€(2,1] (599)
1 : z2<35

It is then immediate from (43), (44) and (46) that

510 = inf st (0) = inf(2, 4] =

— W

—~
aleo
[SIFS

51" = sups~'([0,1)) = sup 4

1
so% =inf{s(z): 2 < 1} =inf{1} = 1.

3

We conclude from Def. 68 that
wp(s) =min(2, 5 + 31) =min(3,1) = 1. (600)
Now let us consides’ defined by (59), i.e.

0 : z>
1 : z<

s'(z) =inf{s(z'): 2/ <z} = {

alw arjw

for all z € I, which is straightforward from (599). In this case we obtain from (43),
(44) and (46) that

1 .
0 =infst(0) =inf(3,1] =2

s'1 " =supsT([0,1)) = sup(2,1] = 1

1
<
*

S

(SIS

/
S

=inf{s(z) 1z < i} =inf{1} =1.

Hence by Def. 68 and (600)
wp(s) =min(l, 5§ +3-1)=1# 3 =wp(s).

We conclude from Th-65 and Th-64 th&t does not propagate fuzziness in arguments.

A.39 Proof of Theorem 70

We know from Th-54, Th-45 and Th-48 that; satisfies ¢-1)—(w-4) and thatwp
is *-invariant. Therefore Th-62 and Th-63 are applicable, i.e. we can showFhat
propagates fuzziness in quantifiers by proving that fos alllL with s=*(0) N[5, 1] #
@, it holds thatvp(s) = wp(s’), wheres’ is defined by (58).

Hence lets € L with s71(0) N [3,1] # @. Becauses—'(0) C st71(0) by Th-47.a,
we hence know thadi_l(o) N [3,1] # @. Considerings’ defined by (58), we recall
from L-97 thats’* = s’. We further notice that'(z) = ¥ for all z € [1,1]. Hence
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1
<_
wz(s) = mln(slT’*, % + %3*_2)
T <3
=min(s'y, ", 5 + 355 2)

(0) N [$,1] # @. Therefore

by L-62

by L-104 and L-96
by L-62

i.e. Fz propagates fuzziness in quantifiers, as desired.

A.40 Proof of Theorem 71

By utilizing L-65, the very same example as in the proof of theorem Th-69 proves that
wy fails to propagate unspecificity, i.&z does not propagate fuzziness in arguments
by Th-64.

A.41 Proof of Theorem 72

In order to prove thaFr does not propagate fuzziness in quantifiers, we recallkthat
satisfies ¢-1)—(w-4) by Th-56 and Th-45. In particulay is f-invariant by Th-48.
Hence Th-62 and Th-63 are applicable, and we can proveZRdails to propagate

fuzziness in quantifiers by showing that there exists L with s=*(0) N [3,1] # @
andwgr(s) # wr(s’), wheres’ is defined in terms af according to (58).
To see this, consider € 1L defined by
0 z=1
= 601
5(2) { o (601)
for all z € I. We observe that is concave, i.e.
st=s (602)
by L-50. Hences’ € LL as defined by (58) becomes
0 z=1
s(z)=1 3 ;<z<1 (603)
1 z < %
for all z € I. We notice that’ is concave as well, hence
st=¢ (604)
by L-50. We hence obtain for the coefficient’ that
570 = inf siil(O) =infs™1(0) = inf{1} =1 (605)

by (43), (602) and (601). Similarly, we conclude from (43), (604) and (603) that

/L.,0

-1
$T%=1infs'" (0)=infs' '(0) =inf{1} =1. (606)
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Hence

wr(s) = min(s;%, 3 + 15(0)) by Def. 70
= min(l,% % . %) by (605), (601)
-1
and
wr(s') = min(s'-, 14+15(0) by Def. 70
=min(1, +1-1) by (606), (603)
=1.
Hencewgr(s) = # 1 = wg(s'), which completes the proof tha#z does not

3
4
propagate fuzziness in quantifiers.

A.42 Proof of Theorem 73

By Th-64, we can reduce the proof #f; propagating fuzziness in arguments to the
proof thatwg propagates unspecificity. In turn, Th-65 permits us to simplify the proof
thatwpr propagates unspecificity to showing that(s) = wg(s’) for all s € L with
s71(0) N [3,1] # @, wheres’ € L is defined by (59). To see that this condition is
satisfied bywg, we first notice that =*(0) N [$, 1] # @ entails that there exists > 2

with s(zo) = 0. In particular

T,0

S, (0) > sups~*(0) > zp > (607)

= sup st %

by Th-47.a and (42). It is hence sufficient to discern the following two cases.

st0> 1 Thens’s” = si% > 1. We also notice that

s'(0) = inf{s(z) : 2 < 0} by (59)
= inf{s(0)}
= 8(0) )
ie.
s'(0) = s(0). (608)
Therefore
wr(s') = min(s',°, 1 + 15'(0)) by Def. 70
= min(s;°, 3 + £5(0)) by L-102 and (608)
= wg(s). by Def. 70
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st0 < Recalling thats, * > 3 by (607), we then conclude from Def. 70 that
wr(s) = 1. As concernsy, we first notice that’; * = s3° < 1 by L-102. In

addition, we know from L-103 that’, * = 1 > 1. Hencewg(s') = 1 = wg(s) by
Def. 70.

1
5

A.43 Proof of Theorem 74

Let @ be a collection of mappings € @, Q2 : K — I and let
F= {.7:9 : Qe @} (609)

be the corresponding collection of QFMs.

To see that® is specificity consistent whenevéris specificity consistent, suppose
thatlF is specificity consistent and consider a choic&'af K. By Th-33, there exists
a semi-fuzzy quantifie) : P(2 x I) — I and a fuzzy subseX € P(2 x I) with

So.x =95 (610)
BecauseF is specificity consistent, we know from Def. 25 that
{Fa(@)(X): FoeF} CA (611)

for a choice of4 € {[0, 1], [3,1]}. Therefore

{Q2(9) : Q € @} = {Q(%,x) : 2 € @} by (610)
={Fa(Q)(X): Q2 c @} by Def. 55
={Fa(Q)(X) : Fo € F} by (609)
CA

for a choice ofA € {[0, 3], [3, 1]}, see (611). Becaus# € K was arbitrarily chosen,
this proves thafQ is specificity consistent according to Def. 78.

To see thaff is specificity consistent whenev& is specificity consistent, consider a
semi-fuzzy quantifief) : P(E)" — Iand a choice of fuzzy arguments, ..., X,, €
P(E). Then

{Q5%,x1,..,x,) 1 R E@}C A (612)
for a choice of4 € {[0, 1], [3, 1]} according to Def. 78. Therefore

{Fa(Q)(Xy, ..., X,) : Fo € F}

= {Fa(Q)(X1,...,X,) : Qe @} by (609)
= {8, x1,..,x,) : 2 € @} by Def. 55
CA

for a choice ofA € {[0, 3],[3. 1]}, see (612). HencE is specificity consistent by
Def. 25.

216



A.44 Proof of Theorem 75

Lemma 105 Let() : K — I be a given mapping which satisfi€Q-5). Further
suppose thaf2(S) = 1 for all S € K with 5(0) N [$, 1] # @ and S(0) N [0, 3] # 2.

Then for allS € K,

Proof  To see thaa. holds, consider a choice 6f€ K with 5(0) C [3, 1] and define
S’ € Kby
S'(y) =8 u{sz}
forall v € I. Then
Q(s") =3 (613)

because’(0) N [3,1] D {1} # @ ands’(0) N [0, 3] 2 {3} # @. Letus also notice
that

s'CS. (614)

This is immediate from Def. 57: firsthg(y) C S’(v) entails that for all: € S(y),
there existsy’ € S’(y) with 2’ < z becauses’ = z is a suitable choice. Secondly
if 2/ € 5(7), then there exists € S(v) with z > 2’. This is apparent for’ # 1,
where againr = 2’ is a suitable choice. In the remaining case tHat % we notice
that S(0) C [3,1] and S(0) # @ ensures the existence of somg € S(0) with
zo > % = 2. Hence (614) is indeed valid. We conclude that

Q(s) = (") by (2-5), (614)

=1, by (613)

as desired.
The proof of part. of the lemma is completely analogous to that of gartin this
case, we use the apparent inequatol S’, whereS(0) C [0, 3], and S’ is defined
as above.

Proof of Theorem 75

Suppose tha® is a collection of mapping® : K — I with the properties stated in
the theorem and defirfe = {Fq, : Q € @}. To see thaF is specificity consistent, we
utilize theorem Th-74. It is hence sufficient to prove tiais specificity consistent.
Hence letS € K be given. We discern three cases.

5(0) C [3,1]. Then€)(S) > 1 for all Q € @ by parta. of L-105, i.e.
(0(): S e @} C[4,1].
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S(0) € [0,4]. Then(S) < 1 forall @ € @ by partb. of L-105, i.e.

2

{QS): S e @} co,1].

S(0)N[3,1] # @ and S(0)N[0,3] # @. ThenQ(S) = ; forall @ € @ by the
assumption of2. In particular,

{Q8): 5 € @) = {4} € [4,1].

Hence{Q(S) : S € @} C A for a choice of4 € {[0, 1], [3,1]}. This proves thaf®
is specificity consistent by Def. 78.

A.45 Proof of Theorem 76

Let Q, Q) € K be given. Let us first prove thad, <, Fo whenever <. Q. Hence
suppose tha? <. " and consider some semi-fuzzy quantifigr P(E)" — I and
a choice of fuzzy argument set§ , ..., X,, € P(F). Then

Fao(Q)(X1,. ., Xn) = Q% x,....x,.) by Def. 55
=V (S9.x,...x,) becausé) <,

= Fo (Q)(X1,..., X,).
To see that the reverse relationship also holds, suppos&that. Fqo: and consider a

choice ofS € K. By Th-33, there exists a semi-fuzzy quantifigr P(2 x I) — I
and a fuzzy subset € P(2 x I) with

Sox =8. (615)
Therefore
Q(S) = 2(S.x) by (615)
= Fa(Q)(X) by Def. 55
=c For (Q)(X) becauseFq, <. For
=Q'(Se.x) by Def. 55
=Q'(9). by (615)

A.46 Proof of Theorem 77

LetQ, Q) : K — I be given mappings which satisfQ2{2) and 2-5). Further suppose
thatQ(S) = 3 = Q'(S) wheneverS € K hasS(0)N[3, 1] # @ andS(0)N[0, 1] # .
To see thaf2 <. €' if and only if Q(S) < @/(S) for all S € K with S(0) C [, 1], |
first prove that the latter property is entailed by former. Hence supposé€ that’
and consider som§ € K with $(0) C [3,1]. Then

(S) =

1
2
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by L-105. In addition
Q) 2. Y (9)

becausé2 <. . We conclude from (5) tha} < Q(5) < @/(S), in particular2(S) <
/(S), as desired.

In order to prove the converse implication, let us assume@&y < Q'(.S) for all

S € Kwith $(0) C [5,1]. To see thaf) <. &', consider a choice of € K. If
5(0) € [3,1], thenl < Q(S) < Q'(S) by L-105 and the assumed propertysdand
Q. HenceQ)(S) <. V(S) by (5). The case that(0) C [0, 1] can be reduced to the
previous case by means ¢{). Finally if 5(0) N [$,1] # @ andS(0) N [0, 3] # 2,
thenQ(S) = 1 by the assumed property £f In particularQ)(S) <. '(S) by (5).

-2
A.47 Proof of Theorem 78

Letw be a collection of mappings € w, w : L. — T and let
F={F, wew} (616)

be the corresponding collection of QFMs as defined by Def. 61.

To see thatw is specificity consistent whenev&ris specificity consistent, suppose
that[F is specificity consistent and consider a choice ef L. By Th-41, there exists a
semi-fuzzy quantifie€) : P(2 x I) — I and a fuzzy subset’ € P(2 x I) with

50,x =S. (617)
BecausdF is specificity consistent, we know from Def. 25 that
{Fo(@)(X): FLeF}CA (618)
for a choice of4 € {[0, 1], [3,1]}. Therefore
{w(s) 1w e w} ={w(sgx) : winw} by (617)
={F,(Q)(X):w e w} by Def. 61
={F.(Q)(X): F, e F} by (616)

cA

for a choice of4 € {[0, 3], [3,1]}, see (618). Becausec L was arbitrarily chosen,
this proves thaty is specificity consistent according to Def. 80.

To see thal" is specificity consistent whenever is specificity consistent, consider a
semi-fuzzy quantifie) : P(F)" — I and a choice of fuzzy argumems, ..., X,, €

P(E). Then
{wlsgx,..x,) i wew} C A (619)
for a choice of4 € {[0, 1], [3, 1]} according to Def. 80. Therefore
{Fo(@)(Xy,..., Xp) : oy € F}

={F,(Q)(X1,...,Xp) 1w € w} by (616)
={w(s,x,,..x,) W € w} by Def. 61
CA
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for a choice ofd € {[0, 3], [3, 1]}, see (619). HencE is specificity consistent by
Def. 25.

A.48 Proof of Theorem 79

Lemma 106 Letw : L. — I be a given mapping which satisfigs-4). Further
suppose that(s) = 1 forall s € Lwiths~1(0)N[3,1] # @ ands~1(0)N[0, 1] # 2.
Then for alls € L,

Proof Let a choice ofv : . — I be given which satisfiesu€4) and has the addi-
tional property stated in the lemma, ie(s) = 1 whenevers—(0) N [3,1] # @ and
s 0N [0, 4] £ 2.

To see thaa. holds, consider somee L with s=(0) C [3,1] and defines’ € L by
, s(z) z %
= 620
s'(z { 0 a= 1 (620)

forall z € I. Thens' '(0) N [3,1] 2 {1} # @ands’ ' (0) N [0,3] 2 {1} # @.
Hence

w(s) =12 (621)

by the assumed special propertywf We further notice that’ < s. To see this,
considerz € I. It is apparent from (620) that = z is a legal choice ot’ < 2
with ¢'(z") < s(z). Similarly, it holds that for all:’ € I, there exists: > 2’ with
s(z) < s/(2'). This is apparent for’ # %, whenz = 2/ is a suitable choice for. In
the case that’ = 1, we utilize thats=!(0) C [%,1] ands~!(0) # @. Hence there
existszg € s71(0) with zp > 3 = 2’ ands(z9) = 0 < §'(2’). We conclude that
indeeds’ < s by Def. 64. In turn we obtain from L-42 that C s. We conclude that

w(s) > w(s") by (w-4)
by (621)

1
5 .
This completes the proof of paat of the lemma. The proof of pati. is entirely

analogous. In this case, we have' (0) C [0, 3] and hence C s’, wheres’ is defined
as above. This permits us to conclude thét) < w(s’) = 3, as desired.

Proof of Theorem 79

Suppose thaty is a collection of mappings : L. — I with the properties stated in
the theorem and defifié= {F,, : w € @}. To see thaF is specificity consistent, we
utilize theorem Th-78. It is hence sufficient to prove thats specificity consistent.
Hence lets € L be given. We discern three cases.
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s71(0) C [4,1]. Thenw(s) > 1 for all w € w by parta. of L-106, i.e.

{w(s) :sew} C [%,1].

s71(0) € [0,4]. Thenw(s) < 1 for all w € w by partb. of L-106, i.e.
{w(s):sew} C0,3].

sTH0)N[4,1] # @ and s7'(0)N[0,1] # @. Thenw(s) = i for all w € w by the
assumption ow. In particular,

{w(s) s ew}={3} C[5,1].

Hence{w(s) : s € w} C A for a choice ofd € {[0, 3], 5, 1]}. This proves that is
specificity consistent by Def. 80.

A.49 Proof of Theorem 80

Consider a choice a@f : .. — I which satisfies-1)—(w-4). Let us also suppose that
the corresponding QFNF,, defined by Def. 61 propagates fuzziness in quantifiers,
i.e.w propagates fuzziness by Th-62.

Now lets € L be given withs~1(0) N[5, 1] # @ ands~*(0) N [0, 5] # @. We define

s, 8", 8" st s € Lby

z€40,1}

0
/ —
s'(z) = { 1 else (622)
0 : ze{i1}
"(z2) = 27 623
(2 { 1 else (623)
0 z¢€{0,1}
" — ' 2 624
() { 1 else (624)
st(z) @ z>1
+(,) — =2 625
#e) { 1 oa<d (629
1 Doz > %
“(2) = 626
for all z € I. We first observe that
w(s) =1 (627)

which is apparent from (622) and+{2). We then notice that’ <. s/, see (622), (623)
and Def. 75. Hence/(s”) <. w(s') becauses propagates fuzziness. Buts’) = 1,
hence

w(s") =14 (628)
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by (5). We further notice that™ C s”, which is apparent from Def. 64 and L-42.
Hence

w(s) = w(s™) by Th-63
<w(s") by (w-4)
=1 by (628)

The remaining proof thab(s) < % is analogous. In this case, we first notice that
" <. ¢'; hencew(s") <. w(s’) becausev propagates fuzziness. We then conclude
fromw(s’) = 5 that

w(s") =1 (629)

as well. We further notice that” C s—, which is apparent from Def. 64 and L-42.
Hence

w(s) =w(s™) by Th-63 and ¢-2)
> w(s") by (w-4)
=1. by (629)

A.50 Proof of Theorem 81

The claim of the theorem is an immediate consequence of Th-80 and Th-79.

A.51 Proof of Theorem 82

Letw : . — T be a given mapping which satisfies-{)—(w-4). Further suppose
that the DFSF,, defined in terms ofv according to Def. 61 propagates fuzziness in
arguments, i.ew propagates unspecificity by Th-64.

Now lets € LL be given withs=*(0) N [3,1] # @ ands~*(0) N [0, 3] # @. Then

Si(%) -0 (630)
by Def. 65. We defing’ € L by
0 : =1
() = o
1 Lz 7é 5
forall z € 1. Itis then apparent frord/ (z) = s’(1 — z) for all z € I and (v-2) that
w(s)=3. (631)
We notice from (630) that! < s’. Hencew(s) <. w(s’) becausev propagates un-

=
specificity. Butw(s’) = £ by (631). Therefores(s) = 3 by (5), as desired.

A.52 Proof of Theorem 83

The claim of the theorem is an immediate consequence of Th-82 and Th-79.
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A.53 Proof of Theorem 84

Letw,w’ : L — I be given and suppose tha}, and 7, are defined by Def. 61.

| first prove thatF, <. F.» wheneverw =<, «w’. Hence suppose that <, v’ and
consider a semi-fuzzy quantifi€} : P(E)" — I and a choice of fuzzy arguments
X1,...,X, € P(E). Then

Fo@)(X1,..., Xpn) =w(sQ.x,...x,) by Def. 61
=W (50.X1,....%,) by Def. 81
:FOJ'(Q)(XlaaXn)y byDef 61
as desired.

To see thatv <, w’ wheneverF,, <. F.-, suppose that the latter condition holds and
considers € IL. By Th-41, there exist§) : P(2 x I) — I andX € P(2 x I) with

5Q,Xx =S. (632)
Hence
w(s) = w(sQ,x) by (632)
= FL(Q)(X) by Def. 61
= Fur (Q)(X) by Def. 81
=uw'(sQ,x) by Def. 61
=uw'(s). by (632)

A.54 Proof of Theorem 85
Lemma 107 Letw : . — I be a mapping which satisfi€s-4). Further suppose

thatw(s) = 3 forall s € Lwiths71(0) N [3,1] # @ ands~1(0) N [0, 3] # @. Then
forall s € L,

a. if s (0) C [§, 1), thenw(s) > ;
b. if s~ (0) € [0, 4], thenuw(s) < &;

c. ifsiTH(0) N[, 1] # @ andst ' (0)N [0, 1] # &, thenw(s) = L.

Proof Letw : L. — I be a given mapping which fulfills the requirements of the
lemma.

&
—~
»
~—
I
&
—
VA
A+
~—

by Th-48
by L-106.a

Y]

223



w(s) = w(s?) by Th-48
1 by L-106.b

c: st (0)N[L,1] # @ and s£T(0)N[0,1] # 2. In this casew(st) = I by the
assumed property of. Hencew(s) = w(st) = 3 by Th-48.

Proof of Theorem 85

Letw,w’ : L — I be given mappings which satisfy4{2) and (v-4). Further suppose
thatw(s) = 1 = w'(s) whenevers € L hass~(0)N[1,1] # @ ands~1(0) N[0, 5] #
. To see that <, ' if and only ifw(s) < w’(s) for all s € L with st~ (0) C [1,1],

| first prove that the latter property is entailed by former. Hence suppose tHat.’
and consider somee L with s~ (0) C [3,1]. Then

W'(s) >

N

by L-107. In addition
w(s) Zcw'(s)

becausev <, w’. We conclude from (5) tha} < w(s) < w’(s), in particularw(s) <
w'(s), as desired.

In order to prove the converse implication, let us assumedfiat < «’(s) for all

s € L with st 7(0) C [1,1]. To see thatv <. ', consider a choice of € L.

If s71(0) C [1,1], then} < w(s) < w/(s) by L-107 and the assumed property
of w andw’. Hencew(s) <, w'(s) by (5). The case thatt ' (0) C [0, 1] can be
reduced to the previous case by meanswe). Finally if s~ (0) N [3,1] # @ and
st7H0) n o, 3] # @, thenw(s) = 3 by the assumed property of. In particular

w(s) X w'(s) by (5).

A.55 Proof of Theorem 86

Lemma 108 Supposev : L. — I propagates fuzziness and satisfiesl)—(w-4).
1

<_
Thenw(s) < 5 + 3s; 2 forall s € L.
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Proof Definesy, ss € L by

0 z=1
s1(z) = 1 : z€(0,1) (633)
<l
5% 2 z=0
0 z=
1
s2(2) =1 552 ¢ zell) (634)
1 z < %
ie.
i > 1
s2(2) = { si(z) ooz : (635)
1 z 5

for all z € I. Let us now show that C s»:

o Letz € I. Theninf{sz(2') : 2’ > 2} =0 < s(2).

o Let 2/ € I. We must show thainf{s(z) : z < 2’} < s2(2'). If 2/ = 1,
then any choice of € s71(0) # @ satisfiesz < 2’ ands(z) = 0. Hence
inf{s(z) : 2 < 1} = 0 < s5(1). Inthe case that’ € [%,1), we simply observe
that

inf{s(z): 2 < 2’}

<inf{s(z): 2 < 3} because’ > 3
<1

=5, 2 by (46)

= s0(2). by (634)

Finally if z < 1, then triviallyinf{s(z) : = < 2’} <1 = s5(2).

This proves that indeedlC s, by Def. 62, and

w(s) < w(s2) by (w-4)
= w(s1) by (635) and Th-63
=5 +351(0) by (w-3)
1
— 14102, by (633)

Lemma 199 Supposev : L. — 1 satisfies(w-1) and (w-4). Then for alls € L,
w(s) < s; .
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Proof Letw : L. — I be a given mapping which satisfies-{) and (v-4). Now
considers € L. We defines’ € LL by

SI(Z) _ O . z = S;r’* (636)
1 : else

for all z € I. We first notice that < s’.

o letz eI If z > slT* thens(z) = 1, see (44). Hence’ = 2 is a proper
choice ofz’ with 2z’ > z ands’(z’) = 1 < 1 = s(z). In the remaining case that
z < SI’*, 2 = s;—* is a choice of’ with 2’ > z ands’(2') = 0 < s(z).

o Now considers’ € I. If 2/ > s, ™, thenz = 2’ satisfiesz < 2’ ands(z) =
1 <1 = ¢(2), see (44). In the case that = s; *, we choose some €
s710) # @. Clearlyz < sups—1(0) < sups1([0,1)) = s; " = 2. In
addition,s(z) = 0 < &/(z'). Finally if 2/ < s; %, thenz = 2’ has the desired
properties: < 2z’ ands(z) <1 = s'(2/).

Hence indeed < s’, in particulars C s’ by L-42. Therefore
w(s) <w(s) by (w-4)
=5 " by (w-1) and (636)

Proof of Theorem 86

It has been shown in Th-54 and Th-70 tifgt is a DFS and propagates fuzziness in
guantifiers. Hence ; satisfies ¢-1)—(w-4) by Th-45 and propagates fuzziness by Th-
62. Now consider anotheF,,-DFS which propagates fuzziness in quantifiers,d.e.
satisfies ¢-1)—(-4) and propagates fuzziness. Utilizing Th-84, Th-80 and Th-85,
we can prove thafF,, <. Fz by showing thatu(s) < wgz(s) for all s € L with
st7H0) [1,1]. Hence let such a choice ste given. Then

1

w(s) < min(s; ", 2 + 1s5.2) by L-109 and L-108
=wyz(s). by Def. 69

Hencew(s) < wz(s) holds for alls € L with st~ '(0) C [1,1], ie. F, 2. Fz.
BecauseF,, was an arbitraryF,,-DFS which propagates fuzziness in quantifiers, this

proves thatF is indeed the most specifi€,,-DFS which propagates fuzziness in
guantifiers.

A.56 Proof of Theorem 87

Lemma 110 Supposev : L. — I satisfies(w-3) and (w-4). Then for alls € L,
w(s) < 3+ 1s(0).
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Proof To see this, defing’ € L by
0 coz=1
sz)=1¢ 1 : z€(0,1) (637)

Let us now notice that < s;

e Let z € I. Then there exists’ > 2 with /(') < s(z), viz 2’ = 1 yields
§'(z") =0 < s(z).

e Let 2z’ € I. Then there exists < 2z’ with s(z) < §'(2'). This is apparent for
2/ =1, wherezy € s71(0) # @ is a suitable choice for. Forz’ € [0,1), we
can choose = 0 because(0) < s'(z) by (637).

Hences < s’ by Def. 64. Recalling L-42, this proves thatt s’. Therefore

w(s) < w(s) by (w-4)
=3 +35'(0) by (w-3)
=1+ 150). by (637)

Lemma 111 Suppose : . — I propagates unspecificity and further satisfiesl),
(w-2) and (w-4). Then for alls € L, w(s) < si™°.

Proof Consider > 0. Recalling (43), there exists € 8171(0) with

r<st¥4e. (638)
Now we defines; € LL by
wo {0
for all z € 1. We further defing, € L by (59), i.e.
wr={ 8 5 5

for all z € I. We notice that C s-:

e Considerz € I. Theninf{sz(2') : 2’ > z} < s2(1) = 0, i.e.inf{sa(2') : 2’ >
z} =0 < s(2).

e Now letz’ € I. In the case that’ > x, we utilize that: € sifl(o), ie.

max(inf{s(2') : 2’ > x},inf{s(2') : 2’ < z}) = s*(z) =0
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by Def. 65. In particulainf{s(z) : z < 2} = 0. Because’ > z, we conclude
thatinf{s(z) : z < 2’} < inf{s(z) : z < z} = 0 < §'(’). In the remaining
case that’ < z, it trivially holds thatinf{s(z) : z < 2’} < 1 = s2(2’) by
(640).

Hence indeed C s, by Def. 65. We conclude that

w(s) < w(s2) by (w-4)
=w(s1) by Th-65
=x by (w-1)
<504 ¢, by (638)

£ — 0yieldsw(s) < s3°.

Proof of Theorem 87

We already know from Th-56 and Th-73 tha}; is a DFS and propagates fuzziness
in arguments, i.ewg satisfies ¢-1)—(w-4) by Th-45 and propagates unspecificity by
Th-64. Now consider anothéf, -DFS which propagates fuzziness in argumentsyi.e.
satisfies ¢-1)—(w-4) and propagates unspecificity. Utilizing Th-84, Th-82 and Th-85,
we can prove thafF,, <. Fr by showing thatu(s) < wgr(s) for all s € L with
st C [1,1]. Hence let such a choice sbe given. Ifsi® > 1 then

2 g 2

w(s) < min(s%, 2 + 15(0)) by L-111 and L-110

= wg(s). by Def. 70

In the case that:* = L, we obtain that

w(s) < s0 by L-111
=3 by assumption
= wg(s) by Def. 70

where the last equation holds becas$é > s;° = 1.

It is apparent that the casg¢ "’ < % is not possible here because’ = inf si_l(o)
by (43), butst ' (0) C [1,1] by assumption os. Hencew(s) < wg(s) holds for
all s € L with st~1(0) C [1,1], i.e. F, 2. Fr. Becausef,, was an arbitraryF,,-
DFS which propagates fuzziness in arguments, this provestihad indeed the most
specificF,,-DFS which propagates fuzziness in arguments.

A.57 Proof of Theorem 88

We already know from Th-50, Th-66 and Th-67 th&f; is a DFS and propagates
fuzziness both in quantifiers and arguments, d.g. satisfies ¢-1)—(w-4) by Th-45,
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propagates fuzziness by Th-62 and propagates unspecificity by Th-64. Now consider
anotherF,,-DFS which propagates fuzziness both in quantifiers and arguments, i.e.
satisfies ¢-1)—(w-4), and propagates fuzziness as well as unspecificity. Utilizing Th-
84, Th-82 and Th-85, we can prove tifat <. 7, by showing thatu(s) < wy,(s) for

all s € L with st~ (0) C [4,1]. Hence let such a choice sfbe given. Ifs:® > 1,

then

1,0
* 9

* AN
(SIS
—

w(s)

IN

min(s by L-111 and L-108
wa(s)- by Def. 67

=
N

In the case that,** = L, we obtain that

w(s) < 0 by L-111
=1 by assumption
= wp(s) by Def. 67

where the last equation holds becau$é > 5% = 1.

The cases;’ < 1 is not possible here becausg® = inf s~ (0) by (43), but

st7H0) ¢ [3,1] by assumption om. Hencew(s) < wy(s) holds for alls € L

with 31_1(0) C [1,1],i.e. F, =, Far. BecauseF,, was an arbitraryF,,-DFS which
propagates fuzziness both in quantifiers and arguments, this provés thsithe most
specificF,,-DFS which propagates fuzziness both in quantifiers and arguments.

A.58 Proof of Theorem 89

In order to conduct the proof that;; is the least specifi&,, -DFS, I first make explicit

the exact shape of the mapping : . — I which corresponds t&';; : H — 1,

and hence results My = F,,,. We know that such mapping exists from Th-22,
Th-37 and Th-42, where the last theorem is applicable by Th-13 and Th-36. The
reformulation will be performed in a number of steps which take us fdmto By,

then to&;, from there ta)y, and finally fromQy to the desired.

Lemma 112 The DFSMy; can be rewritten as\y; = Mp,, whereBBy : B — Tis
defined by
max(3 + 17, f) + feBT
By(f) = min(% — % ST,ff‘) . feB (641)
1
% : feB2
forall f € B.

Proof Considerf € B. In order to prove the claim of the theorem, we must show
that By is the mapping defined by equation (18). It is convenient to discern three cases
which correspond to the case distinction in (18).
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a.. f € BT. Inthis case, we first observe that

2f -1t

=sup{y €I:2f(y)-1=1} by (15)
=sup{y €I: f(v) =1} (apparent)
= fi by (15)
and
(2f = 1)
= lim 2f(v) - 1) by (14)
——2(Wﬁgngv))—-1 (apparent)
=2f -1, by (14)
i.e.
2f = 1) = £ (642)
2f -1y =2ff - 1. (643)
Therefore
By (f) = max(§ + 3 f11, f7) by (641)
=max(3 + 3/, 5 + 32/ 1)) (apparent)
=max(§+5(2f - 1).", 5 +32f—1);) by (642), (643)
=1+ fmax((2f — 1)1, 2f - 1)}) (apparent)
=3+3Bu(2f-1), by Def. 41

i.e. By is defined in accordance with (18).

b.. f € B~. This case can be treated analogously. We notice that

(1—-2nH

=sup{y €I:1-2f(y) =1} by (15)
=sup{y € I: f(7) =0} (apparent)
=f! by (16)
and

(1-2f)

= lim (1-2f(7)) by (14)

=1-2 lir? f(v) (apparent)

Pl
=1-2f7, by (14)
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(1—2f)" = £ (644)
(1-2f)y=2f - 1. (645)
Consequently
By(f) =min(z — 3£, f7) by (641)

=min(3 — 3 /21,3 — (1 —-2f))) (apparent)

=min(; —5(1-2/)", 5 = 5(1-20)}) by (644), (645)

= 3 — smax((1-2f)", (1 - 2f)}) (apparent)

=3 —3Bu(l-2f). by Def. 41

Hence we obtain the desired equation (18) in this case as well.

1 . . . .
c. f € B2. In this case, we immediately look Uy (f) = % from (641), which
corresponds to the result required by (18).

Lemma 113 My can be represented asly = F¢,, where{y; : T — T is defined
by

max(5 + %J_iTJ_T) : L(0)> 1
Eo(T,L) =14 min(d 17915« T(0O)<i (646)
3 : L(0)< 3 <T(0)
forall (T, 1) e T.
Proof Recalling Th-22 and L-112, we simply need to show that
§u(T, L) =Bu(/f) (647)
forall (T, L) € T, wheref € B abbreviates
f=med: (T,1). (648)
2

Hence let us consider a choice(@f, L) € T. It is useful to split the proof according
to the cases discerned in the definitior¢ pf

a.: 1(0) > 3. Thenin particulaT (0) > 1(0) > 1 as well and by Def. 33,
f=med; (T,L)eB". (649)
2

Noticing thatT(y) > T(0) > 1 for all v € I becauseT is nondecreasing, we obtain
from Def. 23 that in this case,

fy) = med (T(7), L(7)) = max(L(7), 3) (650)
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for all v € I. Let us now consider the coefficients used to defineFirstly

i
=sup{yel: L(y) =1} by (15)
= sup{y € I: max(L(y),3) =1}
=sup{yel: f(y) =1} by (648) and (650)
=fi! by (15)
and
max (L7, %)
= max( lim 1(7), 3) by (14)
y—1-
= lim max(L(v),3)
y—1-
= f1. by (650) and (14)
To sum up,
1= (651)
max(L], 2) f1- (652)

Based on these results, we obtain that

Eo(T,1)
max( J_” 10 by (646)
= max(5 + —J_lT ,max(L], 1)) becausd + 1 1}" > 1
=max(3 + 3111, f7) by (651) and (652)
= Bu(f). by (641), (649)

Hence equation (647) is satisfied in case

In this case, we can proceed in a similar way. We first notice that

b.. T(0) < 3.
T(0) < 3 as well and hence by Def. 33,

1(0) <

f=med; (T,L)eB™. (653)
2

Observing thatl () < 1(0) < 3 for all v € I becausel is nonincreasing, we hence
obtain from Def. 23 that in cade,

f(v) = med1 (T (7), L(7)) = min(T(v), ) (654)

N[
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for all v € 1. Again, we relate the coefficients used to defipeto the coefficients
used to defind;;. In this case, the relevant coefficients are

T

=sup{y € I: T(y) =0}
=sup{y € I: min(T(y)
=sup{y €I: f(y) =0}
=f

1
)2

) =0}

and

* 1

min(T7, 5

)

In other words
TOT — fOT

min(T7, %

)=1.
From this it is immediate that
)
33T
— 179 min(T7,

1
0
_% *Tafl*)

= min(
1

2

2
1

2

)

= min(

= min(

by (16)

by (648) and (654)
by (16)

by (14)

by (654)

by (14)

(655)
(656)

by (646)
becausd — 179 <1
by (655) and (656)
by (641), (653)

Hence again equation (647) is satisfied, as desired.

1

1(0) < 1 < T(0).
med 1 (T(0), 1(0))
2

C..

1
3

In this case, we obtain from Def. 23 and (648) tligh) =
1
Hence by Def. 33f € B2. In turn, we obtain from (646)

and (641) thaty (T, L) = % = By (f). Hence (647) is valid in case again, which

completes the proof of the lemma.

In order to link the resulting?;; with a corresponding?;; : K — I, we need

[0,1

*

two additional coefficients
according to

s = inf35([0,1))

s = inf35((0,1]) .
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Based on these coefficients, we can now conveniently express the desired mapping
QU K— 1.

Lemma 114 My can be written as\y = Fq,,, where()y : K — I is defined by

max(3 + %SLO’U, sy ¢ inf S(0) > z
Qu(9) = min(1 — %sio’l],s;r’*) : supS(0) < 3 (659)
3 :inf S(0) < & < supS(0)

for all [ € K, ands is defined front' according to Def. 53.
Proof Recalling theorem Th-37 and building on the previous lemma L-113, it is suf-
ficient to show thaf)y satisfies (34), i.e.

Qu(S) =&u(T,1) (660)

forall S € K, whereT = Tg and_L = L g are defined by (35) and (36), respectively.
Hence letS € K be given. | first relate the coefficients used in the definitiogoto
those used for defining . Firstly

4
= lim 1(7) by (14)
y—1-
=inf{L(y):v <1} becausel nonincreasing
= inf{inf S(vy) : v < 1} by (36)
= inf{z € I : there existsy < 1 s.th.z € S(v)}
=inf{z eI:s(z) <1} apparent from Def. 53
= infs1([0,1))
=577, by (45)

and by similar reasoning

T
= lim T(y) by (14)
y—1—
=sup{T(y):v<1} becausel nondecreasing
= sup{sup S(v) : v < 1} by (35)
= sup{z € I : there existy < 1 s.th.z € S(v)}
=sup{z €Il:s(z) <1} apparent from Def. 53
=sups ([0,1))
=5 " by (44)
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We further notice that

i

=sup{y el: L(y) =1} by (15)

=inf{yel: L(y) <1} becausel is nonincreasing
=inf{y €I:inf S(vy) <1} by (36)

= inf{y € I : there exists < 1 s.th.z € S(v)}

=inf{inf{y eI:2€ 5(y)}: 2 <1}

inf{s(z): z < 1}

inf ([0, 1)) by Def. 15
=Y, by (657)

and analogously

T

=sup{y €I:T(y) =0} by (16)

=inf{yel: T(y) >0} becausél nondecreasing
= inf{y € I:sup S(y) > 0} by (35)

= inf{y € I: there exists > 0 s.th.z € S(v)}
=inf{inf{y€l:2€ S(y)}:2z>0}
= inf{s(z) : > 0}

= inf 5((0, 1]) by Def. 15
=501 by (658)
To sum up,
L= (661)
Tr=s " (662)
11T = gl (663)
TOT = (01 (664)

In order to prove that (660) is valid, it is now convenient to discern three cases that
parallel the definition of2;.

a. inf S(0) > 1. Itis then immediate from (36) that(0) > 3 as well. Therefore

Qp(S) = max(L + 1 o) by (659)
=max(§ + 3117, 17) by (661), (663)
as desired.
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b.: supS(0) < &. In this case, we obtain from (35) that(0) < 3 as well. Conse-
quently

Q(S) = min(L — L% ) by (659)
=min(3 — 1T, T7) by (662), (664)
=&u(T,1). by (646)

c.. inf S(0) < 3 < supS(0). In this remaining case, we observe from (35) and (36)

that L (0) < 3 < T(0). Hence by (659) and (6460 (S) = 1 = &u (T, L).

The above definition of2;; can then easily be transformed into our target mapping
wy L — 1.

Lemma 115 The DFSMy can be expressed a8ty = F,,,, wherewy : L — Tis
defined by

max(% + %s[*o’l)7sf"*) : inf S(0) > %
wy(s) =4 min(L - %s£0’1}7s]—’*) : supS(0) < 3 (665)
% : inf S(0) < % < sup S(0)

forall s € L, andS is defined according to equati@B7), i.e.S(v) = {z : v > s(z)}
forall v € 1.

Proof ~We first recall from the previous lemma L-114 thet; = Fq,,. Itis hence
sufficient to show thatF,,, = Fq,. It is now convenient to utilize theorem Th-
42, which is applicable by Th-13 and Th-36. The theorem statesAhat= F,,,
provided thatuy; satisfies

wu(s) = Q(S) (666)

for all s € L, whereS € K is defined by (41). To see this, Iete 1. and suppose
thatS € K is defined by (41). Further suppose tkate L is defined in terms of
according to Def. 53. Then

Qu(S)
max(5 + %s’&o’l), ST ¢ inf S(0) > 3
= min(% — %s/ﬁo’u,sq’*) sup S(0) < % by (659)
5 : inf S(0) < & < sup 5(0)
max(% + %SLO’I), sf"*) : inf S(0) > %
=14 min(j — %sio’l], SI*) : supS(0) < 3 by L-38,s = &’
5 : inf S(0) < 1 < sup S(0)
=wy(s). by (665)

Hence (666) is indeed valid, as desired.
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This completes the chain of lemmata concerned with reformulationd gf which
finally lead to the explicit representation 8y as an*,,-DFS, based on the mapping
wy defined by (665). In order to prove the theorem, | need some additional observa-
tions related to the greatest lower specificity bound onfiheDFSes. It is convenient
to introduce some abbreviations. The class off/a)tDFSes will be denotedl,,. We
know from Th-6 thafF,, has a greatest lower specificity bousid;,, which can be
expressed as

Fen(Q)( X1, ..., Xp) = m%{fw(Q)(Xl, o X)) Fy €FL Y (667)

for all semi-fuzzy quantifiers) : P(E)" — I and fuzzy argumentX,,..., X,, €

P(E). We now introduce the mapping,;, : L — I, defined by
wgib(s) =mi{w(s) :w € I" satisfies ¢-1)—(w-4)} (668)
for all s € L. Itis then apparent that

fglb(Q)(Xl, .. 7Xn)

= my {Fu(Q)(X1,..., X,) : Fuy € By} by (667)
=m1 {F.(Q)(X1,..., Xy) : w € I" satisfies¢-1)~(-4)} by Th-45
=my{w(sx,,..x,) W E I" satisfies @-1)—(w-4)} by Def. 61
= Welb (5Q,X1,...,X,,) by (668)
and hence by Def. 61,
Fan(Q) (X1, Xp) = Fu (Q)(X1, ..., X) (669)

for all semi-fuzzy quantifiers) : P(E)" — I and all choices of fuzzy arguments

Xi,..., X, € P(E). This proves that the least specifi¢,-DFS is anF,,-DFS itself,
viz the DFS defined in terms afyy,.

Proof of Theorem 89

We already know from (669) that the least specHig¢DFS can be expressed &gy, =
Fuogn- Recalling from L-115 thatMy = F,,,, we can hence prove the theorem by
showing thatu;y = wg,. To this end, let us first notice th&,, € F., by Th-13 and
L-115. ButFg, is the greatest lower specificity bound Bp, henceFg, <. Fo,, . By
equation (669), this means thay, , <. F., . Now utilizing Th-84, we deduce that

Welb S WU - (670)

Observing that<. is a partial order, it only remains to be shown that <. wgip

as well. The proof is greatly simplified by Th-85, and it is worthwhile showing that
the theorem is applicable. We first recall from Th-20 thay, = F,, propagates
fuzziness in quantifiers. Hence by Th-80,

wy(s) = % (671)
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forall s € L with s7*(0) N [3,1] # @ ands~'(0) N [0, 3] # @. We then conclude
from the abovevg, <. wy that

wglb (S) = % (672)

forall s € L with s71(0)N[3, 1] # @ ands~1(0)N[0, 1] # @, becausesg,(s) 2.5 =
wy (s) is only possible fotg,(s) = 3, see (5). This proves that the precondition of
Th-85 is indeed satisfied. We can hence apply the theorem and reduce the proof of

wy = welp, to the proof that

wu(8) < weib(s) (673)

forall s € L with st~ (0) C [2,1]. Hence let such a choice sfc L be given. Further
suppose tha$' € K is defined by (37), i.eS(y) = {z : v > s(z)} forall v € I. We
first notice that

S(0)={z€1:02>s(2)} by (37)
={z€l:s(z) =0} because €1
=s71(0)

C st7(0) by Th-47a
< (3.1,

by the assumption on the choice ofc L. We hence know thaf < inf S(0) <
sup S(0). This permits us to restrict the proof to the following two cases.

a.: inf S(0) = 1. Thenwy(s) = % by (665). We conclude from (670) and (5) that
wgib(s) = 3 as well. In particulaty (s) < wgb(s), as desired.

b.: inf S(0) > 1. We then look up from (665) that (s) = max(L + 15! s1%).

In order to prove the desiredy; (s) < wg(s), it is hence sufficient to show that both
inequationsogy, (s) > 51" andwgn (s) > i+ %sLO’l) are valid.

As concerns the first inequation, it is useful to introduce an additional mappind.
defined by

0 : z=s""
s'(2) = ' ! (674)
1 : else

for all z € I. As | will now show, this choice ok’ satisfiess’ < s. Hence let

us consider the preconditions stated in Def. 64. In order to prove preconditfon
s’ 4 s, letz € Ibe given; it must be verified that there exists> » with s(2') < §'(z).

e if 2 # 577, thens(z') < s(z) = 1 by (674). Hence’ = z is a suitable choice
of 2/ > z with s(2') < §/(2);
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o if 2= sf"*, then

z =inf s71[0,1) by (45)
<infs71(0)
<

for an arbitrary choice of’ € s71(0) # 9, see Def. 60. We then obtaiz’) =
0 < s(z), as desired.

Next | prove preconditiof. stated in Def. 64. Hence let € I be given; it must be
shown that there exists< 2’ with s/(z) < s(2). This is apparent i’ > s;*; in this
casez = s; " is a suitable choice which resultsifz) = 0 < s(z'), see (674). In the
remaining case that' < si*, we know from (45) that’ < inf s~1([0,1)). Hence
2" ¢ s71([0,1)), which proves that(z’) = 1. In other wordsz = 2’ is a suitable
choice ofz < 2’ whichresults ins’(z) < 1 = s(z’). Because both of the preconditions
are valid, we conclude from Def. 64 thatinde€dd s. In turn, we conclude from L-42
thats’ C s. Becausev,;, is known to satisfy-1) and (-4), this proves that

weib(5) = wan(s') = 5177, (675)

i.e. the first inequation is valid.

In order to finish the proof, we must still show that the second inequatigy{s) >

L4 150V s valid. I will treat separately the following two cases.

e In the case that(1) > 0, we conclude froms=1(0) # @ that there exists

zo € [0,1) with s(z9) = 0. Consequently”!) = inf 5(]0,1)) < s(z9) = 0,

ie. s = 0. In particulari + %sLO’U = 1. Now we recall thatuy (s)

max(: + s s*) by the assumed choice of and hencev (s) >

In turn, we deduce from (670) and (5) thati,(s) € [, wu(s)], in particular

s = 1 < g (s), as desired.

¢ In the remaining case thaf1l) = 0, we consider the mapping € L defined by

0 coz=1
s'(z) = 1 : 2€(0,1) (676)
[0,1) | _
Sk : z2z=0

for all z € I. As | will now show, it then holds that’ C s. To prove this, we
need to address the preconditiansandb. for s’ C s stated in Def. 62. Hence
let z € I. Theninf{s(z’) : 2/ > 2z} < s(1) = 0 < §(z), which validates
preconditiona. As to the other condition, we assume a choiceoE [. If

z' =1, theninf{s'(z) : 2 < 2’} = inf{s'(2) : 2 < 1} < (1) =0 < s(1).

In the second case that < 1, we obtain thainf{s'(z) : z < 2’} < §'(0) =
inf{s(z") : 2’ < 1} < s(2’). Hence both preconditions of Def. 62 are valid, and
we conclude that’ T s. Becausevg, is known to satisfy-3) and (v-4), this

proves thatugy, (s) > wep(s') = 3 + 15/(0) =  + L0V,
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This completes the proof thai;(s) < wg,(s) in the main caseé. of the proof, i.e. in

the case thainf S(0) > 3. Hence the desired inequation (673) is valid for alE
L with s~ (0) C [1,1], and application of Th-85 yields the desireg <. wg,.
Combining this with (670), we hence conclude that = wg,. Becauser,,, is
known to be the least specifig,,-DFS, and becaus#1y is known to coincide with
F.u» this proves that it is in fact the known mod#&ff;;, which is the least specific

F.-DFS.

A.59 Proof of Theorem 90

Lemma 116 Forall S € K,

Ts=Tgo
J_S = J_5D .

Proof To see this, lef € K be given and lety € I. Then

Tsa(y) = sup S7(y) by (35)
= sup[inf S(7), sup S(v)] by Def. 82
= sup S(7)
=Ts(7) by (35)

and similarly

Lgo(y) = inf $(y) by (36)
= inf[inf S(v), sup S(v)] by Def. 82
= inf S(v)
=Ls(v). by (36)

Becausey € I was arbitrary, this proves thatso = Tg andLgo = Lg, as desired.

Proof of Theorem 90

Let Q2 : K — I be a given mapping anfl, the QFM defined by Def. 55.

If Fois an F¢-QFM, then Qis P-invariant.  Hence suppose thaf, is anF:-QFM,
i.e. there existg : T — I with

Fao=F¢. (677)

Now considerS € K. By Th-33, there exist), @’ : P(2xI) — T andX €

P(2 x I) with

So.x =S (678)
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and

Sorx =S5 (679)
Hence
Q(9) = 2(%,x) by (678)
= Fa(Q)(X) by Def. 55
= Fe(Q)(X) by (677)
=¢(To,x,Lo.x) by Def. 46
=&(Tsy.xrL55.x) by (25), (26), (35) and (36)
=¢(Ts,Ls) by (678)
=&(Tgo, Lgn) by L-116
=&(Tsy L5y x) by (679)
=&(Tor x, Lo x) by (25), (26), (35) and (36)
=Fe(Q)(X) by Def. 46
= Fa(Q')(X) by (677)
= (S x) by Def. 55
=Q(sY). by (679)

Hencef is indeed--invariant.

If Qis "-invariant, then Fq isan F.-QFM. Hence let us assume thais “-invariant.
We definet : T — I by

T, L) =90(S) (680)
forall (T, L) € T, where
S(y) =[L(), TM)] (681)
for all v € I. We observe that for af € K,
S7(7) = [inf S(7),5up S(7)] = [Ls(7), Ts ()]
for all v € 1. This is apparent from Def. 82, (35) and (36). Hence forSadt K,
&(T, 1) =9(sY) (682)

by (680) and (681). To see tha, = F¢, consider a semi-fuzzy quantifi€p :
P(E)" — I and a choice of fuzzy argument séfs, . .., X,, € P(E). Then

Fa(Q)(X1,..., Xn) = QS0 x:,....X,.) by Def. 55
= Q(So.x1,.x.)") becausé? is P-invariant
=&(Tsgx,xnr LS0.x, . x, ) DY (682)
=&(Tox,. . x.Loxi..x,) by(25),(26), (35)and (36)
= Fe(Q)(X1,..., Xn). by Def. 46
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A.60 Proof of Theorem 91

Lemma 117 Forall S € Kandy €I, S¥(y) C SY(v).

Proof To see this, lef € K andy ¢ I be given and consider somec S*(y). Then
by Def. 59, there exist’, 2’/ € S(v) with 2’ < z < 2”. Henceinf S(v) < 2z’ < zand
sup S(y) > 2" > 2. Becauser € S*(v) was arbitrary, we conclude thatf S(v) <

z < supS(y) for all z € S%, i.e.inf S(v) < inf S¥(y) andsup S(y) > sup S*(v).

BecauseS*(y) C [inf S*(v),sup S*(v)], this permits us to conclude that () C

[inf S¥(v),sup S*(v)] C [inf S(7),sup S(v)], i.e. Si(y) € SY(v) by Def. 82, as
desired.

Lemma 118 Forall S € Kand ally € I, (inf S(v),sup S(y)) € S*(v).

Proof LetS € K and~y € I be given. Now considet € (inf S(v),sup S(v)).
Because: > inf S(y), there exists:’ € S(v) with inf S(y) < 2z’ < z. Similarly
because: < sup S(y), there exists” € S(v) with z < 2” < supS(y). Hence
z € S*(~) by Def. 59.

Lemma 119 Forall S € Kandy € I, SY() \ S*(y) C {inf S(v),sup S(7)}.

Proof Itisimmediate from Def. 82 thaf™(v)\S*(vy) C SP(v) = [inf S(7),sup S(7)].
In order to prove the lemma, it is hence sufficient to show thétS(~), sup S(v)) C
S*(). This has already been proven in L-119.

Lemma 120 LetS € K,y € Iandé > 0 be given. Then

a. there exists’ € S*(v) withsup S(v) — 2’ < 3;

b. there exists’ € S*(v) with 2/ — inf S(v) < 2.
Proof

a.. If inf S(v) = sup S(v), thenz’ = sup S(v) yieldssup S(vy) — 2/ =0 < %. In

addition,z’ € S*(v). This is apparent becaugaef S(y) = sup S(y) = 2’ entails that
S(v) = {#'}, and becaus&(y) C S*(v). In the case thainf S(y) # sup S(v),

we conclude fromS(y) D S(0) # @ that in factinf S(y) < supS(vy). Hence
(inf S(v),sup S()) is nonempty, and we can choosec (inf S(v),sup S()) with

supS(y) — 2’ < % This completes the proof of paat noticing thatz’ € S*(v) by

L-118.

b.: If inf S(y) = supS(y), thenz’ = inf S(v) yieldsz’ — inf S(vy) = 0 < g. In
addition,z’ € S*(~). In the remaining case thatf S(v) # sup S(v), we again con-
clude fromS(y) 2 S(0) # @ thatinf S(vy) < sup S(7y). Hence(inf S(v),sup S(7v))
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is nonempty, and we can choosee (inf S(v),sup S(v)) with 2’ — inf S(7) < 3.
This provesh. because agairl € S*(v) by L-118.

Lemma 121 LetS € Kandd > 0 be given and suppose thgt Q' : P(2 x I) — I
are defined by

QYY) = Qv (Y") (683)
Q'(Y) = Qe (Y") (684)

forall Y € P(2 x I), whereY”, Y € P(I) are defined by28) and (29), respectively.
We assume an arbitrary but fixed choicezgf € S(0). The semi-fuzzy quantifiers
Q. : P(I) — I are then defined by

z z € Stsup V")
Q.Y ={ 2 : zeS%supY”)\ St(supY”) (685)
20 : z2¢ S9(supY"”)

forall Y € P(I), where the
2 e S*(v) (686)
are chosen such that
2" =2 < §, (687)

which is possible by L-119 and L-120. The semi-fuzzy quant@iersP(I) — I are
defined by

z : zeS9supY”)

le(yll) = { 0 oz % SD(sup Y”) (688)

forall Y € P(I). We further suppose th& € 75(2 x I) is defined as irf33).
ThenSy x = 5%, Sy x = SY andd(Q, Q') < 4.

Proof

So.x =St We first recall equations (91), (92), i.e. for= 0,
Xpin—X ;=9 (689)
>2
Xy =X_1= ({0} xHyUu {(1,0)}. (690)

[N

In the case that > 0, we recall equations (93) and (94), viz

xXmin = X — 2 (691)

, = {0} x DU ({1} = [0,7)). (692)

>

N[ =

+

X = X

1

2

1
2

N
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In order to prove the claim that, x = S*, I first show that
SH) € Sa.x (7). (693)

Hence let us consider a choice of € S*(y). In the case thay = 0, it hence
holds thatz € S*(0). Now we considery’ = {(0,2),(1,0)} € 7Zo(X), which
hasinf Y’ = inf{z} = z andY” = {0}, see (28) and (29). Therefor@(Y’) =
Q.(Y") = Q.({0}). Because: € S*(0) = S*(sup{0}), equation (685) applies,
Le.Q(Y) = Q.({0}) = =

Next we consider the case that> 0. We can then choose

Y ={(0,2)} U ({1} x[0,7))-

For this choice oft” € 7, (X), we obtaininf Y’ = inf{z} = z andY"” = [0,~) by
(28) and (29), i.esupY” = ~. HenceQ(Y) = Q.([0,7)) = z by (683) and (685)
because € S*(v) by assumption. This completes the proof of (693).

It remains to be shown that, x () C S*(v) forally € L.

Let us first consider the case that= 0. Hence let” € 7;(X) be given. We abbreviate
z = infY’ € L. ltis apparent from (689) and (690) that we either h&Ve= & or
Y” = {0}. Inany casesupY” = 0.

o If z € Si(y) = S%0), thenQ(Y) = Q.(Y") = z € 5¥(0) by (683) and (685).

e Inthe case that € SY(0) \ S*(0), we obtain from (683), (685) and (686) that
Qly) = Q.(Y") = 2 € S¥0).

e Finally if z ¢ SZ(0), thenQ(Y) = Q.(Y") = 2 € S(0) C S*(0) by (683)
and (685).

In any case, we obtain thg(Y) € S#(0) forall Y € 7o(X), i.e. S, x(0) C S*(0)
by Def. 51.

Let us now show thaf, x (7) C S*(v) also holds in the case that> 0. Hence let
~ > 0 and consider som¥ € 7. (X). Again we abbreviate = inf Y’ € I. We also
notice that by (691) and (692),< supY"” < ~.

o If 2 € Si(supY”), then

QYY) =Q.(Y") by (683)
=z by (685)
€ St(supY”) by assumption
C St(y). becauseup V" < v

o If z€ S9(supY”)\ St(supY”), then

QYY) =Q.(Y") by (683)
=7 by (685)
e S*supY") by (686)
C S*v). becauseupY” <
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o If z ¢ S9(supY”), then

QYY) =Q.(Y") by (683)
= 2 by (685)
€ S(0) by choice ofz
C S(v) by Def. 52
C Si(v). apparent from Def. 59

HenceQ(Y) € S*(y) forall Y € 7,(X), i.e. So.x C S*(v). Combining this with
(693), we obtain thasy x (v) = S*(y) forally € I,i.e.5 x = S*.

a: Sy.x = SY. We observe thaf)’ andQ’, as defined by (684) and (688) result from
the very same construction that has been used in Th-33, equations (27) and (30)/(31),
substitutingS™ for S. Hence by Th-335,, x = S", as desired.

b.: d(Q,Q") < é. To see this, consider somé € P(2 x I) and let us abbreviate
z=infY'. ThenQ(Y) = Q.(Y") andQ’'(Y) = Q. (Y") by (683) and (684).

If 2 € St(supY”), thenz € S (supY”) as well, see L-117. Heno@(Y) =
Q.(Y") =z = Q.(Y") = Q'(Y) by (685) and (688), .6Q(Y) — Q'(Y)| = 0.

In the case that ¢ SY(supY”), we obtain from (685) and (688) th(Y) =
Q.(Y") =z = QLY") = Q(Y). Hence|Q(Y) — Q' (Y)| = 0in this case,
too.

In the remaining case that € S™(v) \ S*(y), we obtain from (685) thaQ(Y) =
Q-(Y") =2 andQ'(Y) = Q.(Y") = 2. HencelQ(Y) — Q'(Y)| = |z — 2| < S by
(687).

We conclude that

d(Q,Q") =sup{|Q(Y) - Q'(Y)|: Y e P(2xI)}  by(7)
by above reasoning
because > 0

AN
(SIS

Proof of Theorem 91

Suppose thaf) : K — I is ant-invariant mapping. The proof is by contraposition.
Hence let us assume thét, is not anF¢-QFM; it must be shown thaky, is not Q-
continuous.

BecauseFy, is not anF:-QFM, we know from Th-90 tha® is not"-invariant. Hence
there existsS € K with Q(S) # Q(SY). We may hence choose

e=Q(8) —Q(ST)| > 0. (694)
Let us define the semi-fuzzy quantifi@’ : P(2 x I) — I according to (684). Ac-

cording to Def. 28, we can prove thé&t, is not Q-continuous by proving that for all
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d > 0, there exist®) : P(2 x I) — T with d(Q, Q") < d butd(Fa(Q), Fo(Q')) >
E.
Hence lety > 0 and define) : P(2 x I) — I by (683). We can then apply L-121 to
conclude thatl(Q, Q") < 6 and
So.x = 5* (695)
Sorx = S- (696)

for the choice ofX € 75(2 x I) defined by (33). Therefore

d(Fa(Q), Fa(Q"))
= sup{|Fa(Q)(Z) - Fa(Q)(Z)| : Z€ P(2xT)} by (8)

> |Fo(Q)(X) — Fol(Q)(X))| becauseX € P(2 x I
= [Q(Se.x) — QS . x)| by Def. 55

= [Q(S") - Q(s7)| by (695), (696)

= 1Q(S) — (S| becausé is *-invariant
2 €. by (694)

This completes the proof thaf, fails to be Q-continuous.
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B Proofs of theorems in chapter 5
B.1 Proof of Theorem 92

Lemma 122 LetE # @ be some base set and, ..., X,, € P(E), wheren > 0.

Further suppose thak € P({1, ..., n} x E) is defined by
px(i,e) = px,(e) (697)
foralli e {1, ..., n} ande € E. ThenDx, . x, = Dx.
Proof Let us associate with each choice(df,...,Y,) € P(E)" a corresponding
subsett” € P({1, ..., n} x E),
Y ={(i,e):ie{l, ...,n}teeY;}. (698)

Itis apparent thatY;,...,Y,) — Y is a bijection. In addition,

EYl ~~~~~ Yn((Xla"'aXﬂ))
= ‘/_Til min(inf{ux, (e) : € € Y;},
inf{l — px,(e) : e ¢ Y;}) by Def. 83
= min(min{inf px,(e) ;e € Y;} : i € {1, ..., n}},
min{inf{l —px,(e):e ¢ Vi}:i € {1, ..., n}})
= min(inf{ux,(e):i € {1, ..., n}e €Y},
inf{l —pux,(e):i€{l, ..., n},eé¢Y;})
= min(inf{ux(i,e) : i € {1, ..., n},e € V;},
inf{l —px(i,e):ie{l, ...,n},e¢ Y} by (697)
= min(inf{ux (i,€) : (i,e) € Y}, inf{l — ux(i,e) : (i,e) ¢ Y}) by (698)
=Ey(X),
ie.
Zv, v, (X1, X)) =Ev(X). (699)
Therefore
Dx, .. x,
={Ey,, v, (X1,....X,):11,....Y, € P(E)} byDef. 84
={E&xv(X): (N,....,Ys) € P(E)} by (699)
={Ey(X): Y eP{l, ...,n} x E)} as(Y1,...,Y,) — Y bijection
— Dy, by Def. 84
as desired.

247



Lemma 123 LetF # @ be some base setadd,,..., X, € ﬁ(E) wheren > 0. We
abbreviate

(700)

fori=1,...,n,and
Ty :EY+ ”_,YTT(Xla"'vX’rL)' (701)

1
Thenr, > 3.

Proof In the case that = 0, there is only one possible choice of fuzzy arguments,
viz the empty tuplez. Applying thea-cut at% to the arguments in the empty tuple

is a vacuous operation which again returns the empty tuple. We hence obtain that
ry =29 (2) = 1. In particularr . > 3, as desired.

As concerns the remaining cases that 0, it is apparent from L-122 and (700) that

it is sufficient to consider the cage= 1 only. Hence letZ # & be a base set and

X € P(E). Then

T+
= min(inf{ux(e) : e € Y, },inf{l — ux(e) : e ¢ Y;'}) by Def. 83, (701)
= min(inf{ux(e) : e € XZ%}’
{1~ px(e) e ¢ X,1)) by (700)
= min(inf{px(e) : e € E,ux(e) > 1},
inf{l — px(e) :e € E,ux(e) < 3}) by Def. 29
min(inf{% ce€ E ux(e) > %},
inf{1:e€ E, ux(e) <i})

Y

)

N[—=

as desired.

Lemma 124 Let E # & be some base set ant;,..., X, € 75(E) wheren >
0. Further assume that;", i = 1,...,n, andr, are defined by700)and (701),
respectively. Then

By, v, (X1, ., X)) <

[N

for all (Y1,...,Y,) € P(E) with (Y1,...,Y,) # (Y;",...,Y;}). In particular,
Evy, Vo (X1, X)) Sy

Proof The casen = 0 is trivial. In this case, there is only one possible choice
of fuzzy arguments, i.e. the empty tuple. The condition of the lemma then becomes
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vacuous because there are no fuzzy arguments beyond that defined by (700).

In the remaining case that > 0, we can again utilize L-122, which permits us to
restrict attention to the case that indeee- 1 (this is apparent from (697) and (700)).
Hence letE # @ be some base set and féte P(E). Now consider som¥ < P(E),

Y #Y*. Theneithe \ YT £ gorY*T\Y # @.

Inthe case that” \ Y™ # &, choose some’ € Y \ Y*. Because’ ¢ Y+, we know
from (700) and Def. 29 that

px(e) < 1. (702)
Hence
Ey(X) = min(inf{px(e) : e € Y}, inf{l — ux(e) : e ¢ Y}) by Def. 83
<inf{ux(e):e€Y}

< px(e) because’ € Y
<1 by (702)
In the remaining case that* \ Y # @, let us choose som& € Y\ Y # @. Then
px(e”) > 5. (703)

by (700) and Def. 29. Hence

Ey(X) = min(inf{ux(e) :e € Y}, inf{l — ux(e) : e ¢ Y})
<inf{l —px(e):e¢ Y}

<1-—pux(e) because” ¢ Y
< % ) by (703)
The second claim of the lemma that, vy, (Xi,...,X,) < ry is then apparent

fromZy (X) < 1 <r, seel-123.

Lemma 125 Let EF # @ be some base seXi,..., X, € 75(E), and suppose that
Y;",i=1,...,n,andr, are defined by700)and(701), respectively. If, > % then

Eyl _____ yn(Xh...,Xn)<1—7“+ (704)
forall (Y1,...,Y,) € P(E)" with (Y,...,Y,) # (Y;©,...,Y,F).

? n

Proof The condition of the lemma again becomes vacuous=f 0. Hence suppose
thatn > 0. By the same reasoning as above, we conclude from L-122 that it is suf-
ficient to consider the case that= 1. Hence letE' # @ be some base set and let
X € P(FE). Further suppose that* andr. are defined by (700) and (701), respec-
tively.

Now conside” € P(E),Y # Y. TheneitheW "\ Y # gorY \ YT # 2.

In the former case, there existsc Y+ with e’ ¢ Y. Because’ € YT,

ry = min(inf{ux(e) :e € YT}, inf{l — pux(e): e ¢ YT}) by Def. 83, (701)
<inf{ux(e):e€e Yt}
< px(€), because’ ¢ Y
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px(e) >ry. (705)
Hence
Ey(X) = min(inf{ux(e) e € Y}, inf{l —ux(e): e ¢ Y})
<inf{l —px(e):eg¢Y}
<1-—pux(e) because’ ¢ Y
<17y, by (705)
In the remaining case that\ Y+ # @, there existg” € Y with ¢’ ¢ Y+. Therefore
r+ = min(inf{ux(e) e € YT}, inf{l — ux(e) : e ¢ Y}) by Def. 83, (701)
<inf{l —px(e):e¢ YT}
<1-—px("), because” ¢ Y

px(e”) <1—ry. (706)
Hence
Ey(X) = min(inf{px(e) : e € Y},inf{l — ux(e) : e ¢ Y}) by Def. 83
<inf{ux(e):e€Y}
< px(e”) because” € Y
<1-r,. by (706)
This proves that indeefly (X) <1 —r,.

Lemma 126 Suppose thall # & is some base set andy, ..., X, € P( ) where
n > 0. Further letr. be defined by701) ThenDx, . x, N [%, 1] ={ry}.

Proof In the case that = 0, we simply notice that the only possible choice of
X1,...,X, is the empty tuple, which results iﬁé,o) = {1} and henc&x,, . x, N

[1,1] = {1} n[5,1] = {1} = r; in this case. Fom > 0, then, we already
know from L-123 thatr, > 1 andr, = Sy, v (X1, X,) € Dx,ox,-

Hence{r,} C Dx,.. x, N [;,1]. Now considerr € Dx, .x, Withr # 7,

i.e. there existvy,...,Y, € P(E) with (Yi,...,Y,) # (V;F ...,Y,;L) andr =

Evi.. (Yl,...,Yn).

In the case that, = —, we apply L-124 to conclude that< ; Because # r, by

assumption, it in fact ‘holds that< 3. Inparticulary ¢ Dx, .. x, N[3,1] and indeed

Dx,,..x, Nz.1] = {r4}.
In the remaining case that. > % we apply L-125 and conclude that

r=Zy, v.(Xi,. Xp) <1—ry <3,
Hence again ¢ Dx, .. x, N [3,1], which proves the desireBx, .. x, N[5, 1] =

{r+}.
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Lemma 127 LetF # @ be some base seX;;,..., X, € ﬁ(E), and suppose that,
is defined by(701) If r, > 1, thensup Dx \ {r;} =1 —r4.

Proof Inthe case that = 0, the claim of the lemma is apparent becaise. . . , X,
coincides with the empty tupl®x,  x, = D,éo) = {1}. In particularr, = 1 and
Dg))\{hr} = @. This proves thatup Déo)\{r+} =supvoid=0=1-1=1-—ry4,
as desired. In the remaining cases that 0, it is again clear from L-122 that only the
casen = 1 must be considered.

Hence letE # @ and X € P(FE) be given and suppose that > % We already
know from L-125 thatDx \ {r} C [0,1 —r4], and henceup Dx \ {ry} <1—ry.

It remains to be shown thatip Dx \ {r;} > 1 — r. We now recall from (701) that
eitherr; = inf{ux(e) : e € YT} orry = inf{l — ux(e) : e ¢ Y}. Itis hence
useful to discern two cases.

a.:ry =inf{ux(e):e€ Yt}
In the case that’ ™ = @, it trivially holds that
l—ry=1-info=1-1=0<supDx \{ry}.

Hence suppose thatt # & and consider some > 0. Then there exists’ ¢ Y+
with

re <px(e)<ry+e. (707)
We abbreviate
Y=Y\ {}. (708)
It is then apparent that
ro = min(inf{ux(e) :e € YT}, inf{l — pux(e) :e ¢ YT}) by (701), Def. 83

< min(inf{ux(e) :e € YT\ {e'}},inf{l — ux(e) :e ¢ YT}),
i.e.
r. < min(inf{ux(e) : e € Y},inf{l — ux(e) :e € YT}) (709)

by (708). Hence

1—rp > Ey(X) by L-125
= min(inf{ux(e) : e € Y},
inf{l —ux(e):e¢Y}) by Def. 83

= min{inf{ux(e) : e € Y},

inf{l —px(e):e¢VY,e£e},1—pux(e’)} because’ ¢ Y by (708)
= min{inf{ux(e) : e € Y},

inf{l —px(e):ed YT} 1—ux(e)}. by (708)
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Because of (709), we conclude that px(e’) <1 —r; and hence
Ey(X) = px(€).

In turn, we obtain from (707) th&y (X) > 1—r; —¢. Becaus&y (X ) € Dx \{r+},
this proves thatup Dx \ {r;+} > Ey (X) > 1 —r4 +¢. Because > 0 was arbitrarily
chosen, we conclude thaip Dx \ {ry} > 1 —r;.

b.. ry =inf{l —pux(e):eg Y1}
In the case that’ ™ = E, it trivially holds that

l—ry=1—-info=1-1=0<supDx \ {ry}.

Hence suppose thatt # F and consider some> 0. Then there exists' € £\ Y
with

ry <1—px()<ry+e. (710)

We abbreviate
Y =v+ul{e). (711)

Then obviously
1—ry
<ry because; > 3
= min(inf{ux(e) e € YT}, inf{l — ux(e):e ¢ YT}) by (701), Def. 83
< min(inf{ux(e) :e € YT}, inf{l —ux(e):e ¢ YT e#£e'}),
l.e.

1—ry <min(inf{ux(e):e € Y\ {e}},inf{l —px(e):e ¢ Y}) (712)
by (711). We also notice that

1—ry >Ey(X) by L-125
= min(inf{ux(e) : e € Y},
inf{l —px(e):eg¢Y}) by Def. 83

= min{inf{ux(e) : e € Y \ {€'}},
inf{l —ux(e):eé¢ Y} ux(e)}. because’ €Y by (711)

Recalling (712), we conclude that that (') <1 —r, and
v (X) = px(€). (713)

In turn, we obtain from (710) th&y (X ) = ux(e”’) > 1 —r; —e. Becaus&y (X) €
Dx \ {r+}, we deduce that

supDx \{r+} > Ey(X)>1—rp —¢.
e — Ovyieldssup Dx \ {r+} > 1 —ry, as desired.

Lemma 128 LetFE # @ be some base set and [§, ..., X,, € P(E) wheren > 0.
ThenforallD’ C Dx, . x, withD' # @, inf D’ € Dx, _ x

n"
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Proof The claimis vacuous fof = 0, and for similar reasons as above, it is sufficient
to restrict attention te = 1 in order to cover the remaining cases. HenceXet
‘P(E) and suppose thd’ C Dx, D’ #+ .

We first treat the case thatf D’ > 1. ThenD’ C [1,1],i.e.D’ = D'n[4,1] C
DN [i 1] = {r}} by L-126. Becausd)’ # @ by assumption, we conclude that
D’ = {r;}andinf D’ = r; € Dx by L-123.

In the remaining case thatf D’ < % we abbreviate
r=infD’. (714)
We now definél” € P(E) by
Y={e€E:ux(e)elrz)U(l—-r1l]}. (715)

In order to prove that = Zy (X), let us first show thaE, (X) > r. We first notice
that

inf{ux(e) :pxe)>1—r}>1—r>r (716)

because = inf D’ < % For similar reasons

inf{ux(e) : px(e) € [r,5)} > r (717)
inf{l —px(e):px(e) <r}>1—r>r (718)
inf{1 — px(e) : px(e) €[5, 1 —r]} > 7. (719)
Therefore
Ey(X)

= min(inf{ux(e) : e € Y},inf{l — px(e):e ¢ Y}) by Def. 83
= min{inf{ux(e) : ux(e) >1—r},
inf{px (e) : px(e) € [ 5)},
inf{1 - jx(e) : px(e) <},
) €

inf{1 — px(e): pux(e) € [3,1—7]}}
> by (716)(719)

It remains to be shown th&, (X) < r. To this end, we consider a choiceaf> 0.
Because' < 1, 1 —r > 0. Without loss of generality, we can hence assumedtlist
chosen small enough that

e<i—r. (720)
Recalling thatD’ # @ andr = inf D’ by (714), there exists’ € D’ with
r<r’<r+4%5. (721)
Because’ € D' C Dy, there existy” € P(E) with

r = Ey/(X) . (722)



We now notice that eitheEy(X) = inf{ux(e) : e € Y’} or Zy/(X) = inf{l —
ux(e) : e ¢ Y'}, see Def. 83. It proves useful to treat these cases separately.

In the case thaEy (X) = inf{ux(e) : e € Y'}, there existg’ € Y/ with ux(e’) <
Ey/(X) + §. Hence

r<pux(e)<Ey(X)+s<r+e<i (723)
by (720)—~(722). Hencgx (¢') € [r, 3),1.e.¢’ € Y by (715). Therefore
Ey(X) = min(inf{ux(e) e € Y},inf{1 — ux(e): e ¢ Y}) by Def. 83
<inf{px(e):ecY}
<pux(e), because’ ¢ Y

Ey(X) <r+e (724)
by (723).

In the remaining case th&,(X) = inf{l — ux(e) : e ¢ Y'}, there existe” €
E\Y'}withl —pux(e”) < Ey/(X) + § <r+¢,see (721) and (722). Hence

px(e)>1—r—e>1 (725)

by (720). On the other hand< =y (X) < 1 — ux(e”) by (721), (722) and Def. 83.
Consequently

px e’y <1—r. (726)
We conclude from (715), (725) and (726) thét¢ Y. Therefore
Ey(X) = min(inf{ux(e) e € Y},inf{1l — ux(e): e ¢ Y}) by Def. 83

<inf{l —px(e):e¢ Y}
<1—pux(), because’ € Y

Ey(X)<r+e (727)

by (725).

Hence in both casegy (X) < r + ¢ by (724) and (727), respectivelye — 0
yields Ey (X) <= inf D’. This completes the proof that there exi3fse P(F)
with Ey (X) = inf D', i.e.inf D" € Dx by Def. 84.

Proof of Theorem 92

Let £ # @ be some base set add,..., X, € ﬁ(E). We know from L-126 that
Dx,...x, N[3,1] = {ry}, wherer, is defined by (701). We further know from L-

thatr, > % we know from L-127 thatup DXlX \ {r+} = 1 —r;. Hence

Dx, ... x, € Dby Def. 85, as desired.
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B.2 Proof of Theorem 93

Lemma 129 For all semi-fuzzy quantifier® : P(E)" — T and all Xy,..., X,, €
P(E),

U{4g.x,,..x,(2) 1z €1} = Dx, . x, -

Proof LetQ:P(E)" — IandXy,..., X, € P(E) be given. Then

U{AQsXI:Han (Z) A I}

=U{{Ey,. . v,.(X1,.... X)) : QY1,...,Y,) =2}z €I} by Def. 86
={Ey, v, (X1,...,Xpn): Q(Y1,...,Y,) = z for some z € I}
={Ey,. v, (X1,....X,): Y7,....Y,, e P(E)}

= DX1,.H,X,L . by Def. 84

Proof of Theorem 93

Let@ : P(E)" — I be a semi-fuzzy quantifier. Further suppose that fuzzy argument
setsXy,..., X, € P(E) are given. To see thadg x,.... x,, € A, we first notice that

U{AQ~,X1 _____ Xn (Z) A I} = DXl,...,Xn eD (728)

by L-129 and Th-92. Recalling Def. 87, it remains to be shown that for,afl € I,
sup A(z) > 1 andsup A(z') > 1 entails that: = 2’
Hence let us choosg,", ..., Y, € P(E) according to (700) and suppose thatis

) n

defined in terms of th&,™ according to (701).
If r. =1, thenDx, . x, C[0,%] by L-124. Hence by (728)up A x,.... x, (2) <

% forall z € I, i.e. we are done because the above condition is vacuous in this case.
In the remaining case that > 1, we know from L-123 and L-127 thaf", ..., Y,

n

is the only choice of crisp subsets wity.+ .+ (X1, ..., X,) = r, and that for all

Yi,...,Y, € P(E) with (Yl,...7Yn) 7& (Y1+,...7Yn+), EYL‘..,Y,L(Xla-'an) <
1—ry < 3. Hencez = Q(Y;",...,Y,) is the only choice of € I with

and for allz’ # z, sup A x,,....x, (2) < 1 —ry < 3, as desired.

B.3 Proof of Theorem 94

Let a choice ofA € A be given andD(A) = U{A(z) : z € T}.

a. D(A) = {1}.
Then A(zy) = {1} and A(z) = @ for z # z,, see Def. 87. Now we consider
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Q: P({*})O — I defined byQ (@) = z;, whereg is the empty tuple. Becausgis
defined on the empty tuple only adg(@) = z.., we obtain

A, (z1) = (E9) ()} by Def. 86
= {1} by Def. 83
= A(z4)

and
AL (2) =@ = A(z)

for z # 2. Hence indeedl = Aﬁf?z, as desired.

b. D(A) # {1}. B
In this case, let us suppose th@t: P(I x I) — I andX € P(I € I) are defined
by (69) and (66), respectively. In order to prove that= A, x, we consider some
zo € I. Let us now prove in turn thadg x (z0) C A(z0) andA(zp) C Ag, x (#0).

a.. AQ,)((Z()) - A(Zo)

To see this, considery € Ag x(z0). By Def. 86, there existy e P(I x I) with
" =Ey(X)=roandQ(Y) = z. Nowletz' =inf{z € I: (z,7) € Y, 19 € A(2)}
as in (68). We can then conclude frap{Y") = z, and (69) that eithe®(Y") = ((ro),
orQ(Y) # ((ro), in which case&(Y) = 2.

e In the former case we hence obtain= Q(Y) = ((rg). Itis then immediate
from (64) thatro € A(¢(ro)) = A(20).

e In the second case we conclude from (69) 8h@") # ((ro) thatry € A(2')
andQ(Y) = 2'. Because, = Q(Y) = 2/, this proves the desireg € A(z).

b.: A(ZQ) - Any(Zo).

To see this, consider, € A(z). Recalling Def. 86, we must show that there exists
Y € P(I xI)with Q(Y) = zp and=y (X) = r. In the following, it is beneficial to
discern two main cases.

b.1: ro > %
In this case, we know from Def. 85 that
o =Ty . (729)
Now considey” = &. Then
r=Ey(X) by (67)
=inf{l — px(z,r) : z,r € I} by Def. 83

=min(inf{l —r:zeI,r e A(z) \ {r+}},
inf{l—r_:zelr¢ A(z)Vr=ry})
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' =min(inf{l —r:zeLre A(z)\ {r+}},

inf{l—r_:zelr¢g A(z)Vr=ry}) (730)

Now we recall from (729) and the assumption of casethatr, = r, > 3. Therefore

inf{l—r:zelLre A)\{ry}}=1—-supDA)\{rs}=1-1—ry)=r4

(731)
by (62) and Def. 85. In addition
inf{l—r_:zelr¢e A(z)Vr=r })=inf{l—r_}=1-—r_ (732)
because there existse I with . € A(z). Combining these results,
r=min(inf{l —r:z e Lre A(z) \ {ry}},
inf{l—r_:zelLr¢ A(z)Vr=ri}) by (730)
=min(ry,l —r_)
=7y by (65)
=7y. by (729)
This finishes the proof that
r=rg=ry. (733)

It remains to be shown th&(Y) = zo. Becausey = r, € A(zp) andry > 0, we
conclude from Def. 87 that is the only choice of € I with

ro=r4 € A(2). (734)
Hence
((ro) = 2o (735)
by (64). We first deduce from (68) ant = & that
2 =inf{z€l:(z,7)eYandr € A(z)} =info =1.
Hence ifr, € A(1), then

QY) = by (69)
— 2. by (734)

In the remaining case that ¢ A(1), the result is

Q(Y) = ((ro) by (69)
= 2. by (735)

Hence indeed’ = o andQ(Y") = 2, i.e.79 € Ag x(z0), as desired.
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b.2: ro < %
In this case, we definE € P(I x I) by

Y = {(z0,70)} U{(2,7) : 1 EA(z)ﬂ(ro,%]}. (736)

To see thaty = Zy (X)), we first consideinf{ux(z,7) : (z,7) € Y}. Based on
(736), we can rewrite this as

inf{pux(z,7): (z,7) € Y} = min(ux (20,70), inf{pux (z,7) : r € A(z) N (ro, 5]}) .
(737)

As concerngux (2o, ro), we reason as follows.

e If g = 3, thenry = r = 3, which is immediate from Def. 85. Consequently
px(z0,m0) = 3 by (66)
=79. by assumption omng

e If ro < i, thenry # r, because, > 1. We can hence conclude frorg €
A(zp) thatrg € A(zp)\{r+}. Inturn, we obtain from (66) thatx (2o, z0) = ro.

Hence

px (z0,70) = 70 - (738)
Let us now turn tdnf{ux (z,7) : 7 € A(z) N (ro, 3]}.
e lfrg =ry = % then(TO,%] = (%»%] = @ and hencenf{ux(z,7) : r €
A(z) N (ro, 3]} =inf@ =1>ro.
o If rg <7y =3, then
inf{px(z,r) : r € A(2) N (rg, 1])
= min(inf{ux (z, %) : % € A(2)},

inf{pix(z,7) : 7 € A(2) N (0, 3)})
= min(inf{l —r_ : % € A(2)},

inf{r : r € A(z) N (ro, 1)}) by (66)
=min(inf{3 : 3 € A(2)},inf{r: r € A(z) N (ro,3)}) by (65)andr; =1
> 1. because, < %

o If 1y > 3, thenA(z) N[0, 4] = A(z) \ {r4}, see Def. 85. Hence

inf{px(z,7): r € A(z) N (ro, 3]}

=inf{r : r € A(2) N (ro, 3]} by (66)
Z To .

258



This proves that
inf{pux (2,7) 1 € A(2) N (ro, 3]} > 70 (739)
Combining (738) and (739), we obtain from (737) that
inf{px(z,r): (z,7) €Y} =10. (740)
Next we focus on

inf{l — ux(z,r): (2,7) ¢ Y}
—inf{1— jux(z7) i 7 ¢ A() 0 (70, 1] A (207) # (20,70)}
by (736). Noticing thaty € A(zg) , we can further decompose this into
inf{l — px(z,7): (z,7) ¢ Y} = min(inf{l — px(z,7) : r € A(z) AT > 1},
inf{l — px(z,r):re A(z) Ar<mg
/\(Z,T) 7é (ZO7TO)}7

inf{ux(z,7):r ¢ A(z)}}.
(741)

Let us now consider thinf-subexpressions in turn. As concein${1 — px(z,r) :
r € A(z) Ar > £}, we obtain the following.

e if ;. = 3, thenD(A) C [0, 3] by Def. 85 and hencenf{1 — pux(z,7) : r €
A(z)Ar> L =info=1>r.

e if rp > 1,thenD(A4)N[3,1] = {r;} and hence

inf{l — px(z,r):r € A(z) Ar > 1}

—inf{1—r_} by (66)

>1-(1-ry) by (65)

=r,

> % by assumption of this case
>

Summarizing,
inf{1 — px(z,r):r € A(z) AT > 1} > 1o} (742)

Let us now turn tanf{1 — ux(z,7) : v € A(z) Ar < rog A (z,7) # (20,70) }

e If =1, thenr, = 1, which is apparent from Def. 85. Hence

1 - px(er) =1-1 by (66)

1—
1
2
r

by assumption of present case

IN

To .
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o If r < I, thenr < ry because; > . Hencer € A(z) entails thatr €

A(z)\ {r+}, i.e.ux(z,r) =r < ro by (66). In particulan — ux (z,7) > 9.

(SIS

These results can be summarized as
inf{l — ux(z,r):re A(z) Ar <roA(z,7) # (20,70)} > 10. (743)

Finally we considetinf{1l — ux(z,7) : r ¢ A(z)}}. Hence letz,r € I such that
r ¢ A(z). Then

1= () =1 -7 by (66)
> 1 (1-ry) by (65)
= T‘Jr
>1 by Def. 85
>
Therefore
inf{l — ux(z,r):r ¢ A(2)} >rg. (744)

Recalling (741), we can now utilize inequations (742), (743) and (744) to conclude
that

inf{l — px(z,7): (z,7) ¢ Y} >rg. (745)
This finally proves the desired

Ey(X) = min(inf{ux (z,7) : (2,7) € Y},
inf{l — px(z,7): (z,7) ¢ Y}) by Def. 83
=10, by (740), (745)

/
r =

(1]

v (X) =0 (746)

by (67). It remains to be shown th@(Y") = z,. To this end, we simply notice that

2 =inf{z: (2,7) €Y A1 € A(2)} by (68)
=inf{z: (z,70) €Y Arg € A(2)} by (746)
=20

HenceY € P(I x I) as defined by (736) indeed yields (X) = r, and
QYY) = 2o, (747)

i.e.rg € Ag x(z0)-
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B.4 Proof of Theorem 95

Let D € D be given.

a. D={1}.
In this case, consider the empty tuglec P({*})°. Then
DY = EV(@): v e P({x})"} by Def. 84

= E@(@) Y e {o}} (unique empty tuple)

= (=5 (@)}

={1}. by Def. 83
b.: D # {1}.
In this case we defind : T — P(I) by

D =1
A(z):{ e 27,&1 (748)

for all z € 1. Itis then apparent from Def. 87 that € A. Now let us defineX

P(I x I) by (66). Then by Th-944 = Ay x. Hence

D=U{A(z):z €1} by (748) (749)
= D(A) by (62) (750)
= D(Ag x) by Th-94 (751)
= Dx, by L-129 and (62) (752)

as desired.

B.5 Proof of Theorem 96

In order to prove the theorem, it is useful to introduce a slightly stronger condition on
1 : A — I, which states that for alil € A,

If VL (A) = {z} for somez € Tandr; = 1, theny(A) = =. (¥-1)

The new condition is apparently stronger tharl). Conversely, it is entailed by/€1)
in the case that-5) is valid as well.

Lemma 130 Suppose thap : A — T satisfieq-1) and (y)-5). Theny also satisfies
(¥-1').

Proof To see this, considet € A with VL (A4) = {z'} for somez’ € Tandr; = 1.
We defined’ € A by
. — A
A’(z):{ {1} : z==2

& : else
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for all z € 1. It is then immediate from Def. 91 that
BA =HA. (753)

In addition,A” apparently ha®(A’) = {1} andzy = 2z, (A') = 2/, see (63), i.e4(-1)
is applicable. Therefore

Y(A) = H(BA) by (4-5)
= (B4 by (753)
= §(4') by (4-5)
— . by (4-1)

Lemma 131 LetF # @ be given anch € N. Then for allYy,...,Y,,Z1,...,Z, €
P(E),

= (z Z) = 1 : Y,=Zforallie {1, ...,n}
YL YA eSS A 0 Y £ Z; forsomei € {1, ..., n}.
Proof To see this, we notice that for alle F,

0 : eeY,ande ¢ Z;
: eeY;ande € Z;

1 :
0z.vi(€) = 1 : e¢VY,ande ¢ Z; (754)
0 : eé¢Y,andec€ Z;
by (60). Therefore
2y, v, (Z1,...,Z,) =inf{dz, v,(e) :e€ E,i=1,...,n} by (61)
1 Z =Y forallie{l, ..., n}
{ 0 : Z;#Y;forsomei e {1, ..., n}, by (754)

as desired.

Lemma 132 Suppose) : A — I satisfieqy-1'). Then for all semi-fuzzy quantifiers
Q:P(E)" — LU(Fy)(Q) = Q-

n

Proof Leta semi-fuzzy quantifief : P(E)" — I and a choice ofrisparguments

Z1,...,Z, € P(E)begiven. We then know from L-131th8y, . 7, (Z1,...,2Z,) =
1, in particularl € Ag z, ... z, (%), where
2=Q(Z4,.... Zn), (755)
and hence
ry=1. (756)
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We also know from L-131 thaEy, . v, (Z1,...,Z,) = 0 forall (Yi,...,Y,) #
(Z1,...,%Zy). Inparticulardg z, ...z, (2') C{0} forall 2’ e I\ {2}, i.e.

VL(4g.7....2,) = {7} (757)

Combining (756)—(757), we observe thdy) 7, . 7, satisfies the requirements of
(-1'). Hence

¢(AQ7Z1 ----- Zn) =z= Q(Zlvan) (758)
by (755). Therefore we obtain the desired
Fp@) (21, Zn) = Y(Ag,(z,....20)) by Def. 88

Proof of Theorem 96

We recall from L-130 that) also satisfiesiy(-1'). The theorem is hence entailed by
L-132, because (Z-1) requiréq F,)(Q) = Q only in the case that € {0,1}.

B.6 Proof of Theorem 97

Lemma 133 LetF # & be some base set,c Nand X;,..., X, € 75(E). Then for
allyy,...,Y, € P(E), the following are equivalent.

a. (Y1,....Y,) e To(Xq,..., X,);
b. Evi,v (X1, Xn) > 3.

Proof
a.—b.:
Suppose thafYy, ..., Y,) € To(X;,. .., X,). Hence by Def. 31,
Xi 1CY, C X 1,
>3 23
fori =1,...,n. Recalling Def. 29, we conclude that
px;(e) > 3 (759)

forall e € Y;. In addition, we conclude fron5(7;> C Y; and Def. 30 thatx, () < %

N[=

and hence

1 - px,(e) > 3, (760)
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forall e ¢ Y;. Therefore
By, v, (X, X))
min(inf{ux,(e) ;e € Y;},1 —ux,(e) : e ¢ Y}) by Def. 83
by (759), (760)

>3
—

NI ﬂ

>

b

as desired.

gu_p)?)-ése thaEy, ..y, (X1,...,Xn) = 3. ThenZy,(X;) > s foralli =1,...,n
(see Def. 83), which in turn yields
inf{px,(e):e€ Y} > 1 (761)
inf{l — px,(e):e¢ Vi} > &. (762)
Now consider some € Y;. We then obtain from (761) thaty, (¢) > 1,i.e.e € Xiz%
by Def. 29. In particulae € X,;"** by Def. 31. This proves that
Y, C X5, (763)
Next we considee € Xig““, i.e.e € Xi>% andux, (e) > % by Def. 31 and Def. 30.
We hence know that
1—px,(e) < 3. (764)
The proof that € Y; is by contradiction. Hence suppose that Y;. Then
mf{1 — () : ¢ ¢ Vi)
<1-—ux,(e) because ¢ Y; for the givene
<1 by (764)

This contradicts (762). Hence the assumpton Y; is false, i.ee € Y;. This proves
that

X, Cy;. (765)
Combining (763) and (765), we obtain from Def. 31 that € 7,(X;). Because
i € {1, ..., n} was arbitrary, this finishes the proof of the desif&d,...,Y,) €
%(le s 7Xn)

Lemma 134 LetFE # @ be some base set,c Nand X,..., X, € ﬁ(E). Further
suppose thaty, ..., Y, € P(F) is a choice of crisp subsets &f We abbreviate

v =max(0,1 - 28y, v, (X1,...,Xy)). (766)
Then
M,....Y,) e Ty (Xq,..., Xy)

forall v/ > ~.
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Proof To see this, lefX;,..., X, € ﬁ(E) andYy,...,Y, € P(F) be given. Let us
now considery defined by equation (766).

In the case that = 0, we know from (766) thaEy, ...y, (X1, ..., X,) > 5. We now
recall L-133, which states thaf,...,Y, € 75(X4,...,X,) in this case. Noticing
that7o(X4,...,X,) € 7/ (Xq,..., X,) forall 4/ > 0, this proves the claim of the
present lemma.

Now let us consider the remaining case that 0. Then (766) can be simplified as
follows.

Y=1-28y, v, (X1,..., Xn). (767)

In other wordsEy; ...y, (X1, ..., X,) = 2 — 2y and hence
inf{ux,(e) e €Y} > % - %'y (768)
inf{1 —px,(e) s e ¢ Yi} 2 5 — 57, (769)

which is immediate from Def. 83.
Now lety’ > v be given. First we consider somec Y;. Thenux,(e) > 3 — v >
= Xigl,a" by Def. 30 and Def. 31. This

1 — 1+ by (768). Hencee € X; 1 1,

>2727
proves that

Y € X5 (770)
Finally we consider € X;7/™", i.e.e € Xij1,1, and henceuy, (e) > 1 + 14/ by

=272
Def. 31 and Def. 29. In particular
l-px () <5-37<3- 37 (771)

The proof thate € Y; is by contradiction. Hence let us assume to the contrary that
e ¢Y;. Then

v=1-28y, v, (X1,..., X») by (767)
<1-—2inf{l —ux,(e'): e ¢Y;} apparent from Def. 83
<1-—2(1-pux,(e)) because ¢ Y; for the givene
<1-2(1— 1) by (771)
=1-1+v
=r.

Hencey < v, a contradiction. This prove that the assumptioh Y; is false, in fact it
holds thate € Y;. Because € X;2)™ was arbitrarily chosen, this proves that

XmmCY;. (772)
Combining equations (770) and (772), we obtain from Def. 31 Hhat 7,/ (X;).
Because € {1, ..., n} was arbitrary, this completes the proof tii&%,...,Y,) €
T (X1,..., Xy).

265



Lemma 135 Suppose thabl # @ is some base setankl;,..., X, € ﬁ(E), n € N,
Further letY;,...,Y, € P(E) be given. We again abbreviate
v, (X1,...,Xn)). (773)

,,,,,

Then

forall v/ < ~.

Proof The claim of the lemma is vacuous+f= 0. Hence suppose that> 0 and
consider a choice of’ < ~. In this case, (773) reduces to

vy=1-28y, _v,(X1,...,Xn).

Hence

Eyviy, (X1, Xn) =3 —37v<3—37. (774)
Let us also notice that
Sy (X) = igl min(inf{six, (e) : e € Y;},inf{1 — pux,(e) : e ¢ V;}) by Def. 83

= min(Z\1 inf{ux,(e): e € Y}, ./_T<1 inf{l — ux,(e):e¢ Y:}).

It is hence sufficient to discern the following two cases.

a: Ey,..y,(X1,...,X,) = igl inf{x,(e) : e € Vi}.

In this case, we can deduce from (774) that there exists(1, ..., n} ande’ € Y;

with px, (') < & — 14/, Hencee' ¢ Xi_1 1 2 X5 for the givene’ € Y;,
_2_

see Def. 29 and Def. 31. In particulaf ¢ X;7**. By Def. 31, this proves that

Y; ¢ T,,(X;), which results inY,...,Y,) ¢ T/(X1,..., Xp) = T (X;) X -

T,(X,), as desired.

b.: EYl,.H,Yn (Xl, ey Xn) = z‘i\ll 1nf{1 — KX, (6) e ¢ Y;}

In this case, we conclude from (774) that there exists{1, ..., n} ande’ € E\ Y;
H 1 1 H 1 1 min

with 1 —px, (') < 5 — 357, i.e.ux,(¢') > 5 +357'. Hencee' € X¢>%+%7, C X

by Def. 30 and Def. 31. Because¢ Y;, it witnesses the failure oX'iif,‘“ CY;. Hence

Y; ¢ 7,,(X;) by Def. 3l and inturn(Yy, ..., Y,) ¢ 7,(X1, ..., X,,).

Lemma 136 LetE # @ be some base seX;,..., X, € 75(E), Yi,....Y, € P(E)
andy € L If (Y1,...,Y,) € T,(X1,..., Xn), thenZy, .y, (X1,..., Xn) > 3 —17.
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Proof Let (Y1,...,Y,) € 7,(X1,...,X,) be given. The proof is by contradic-

tion. Hence let us assume that/ e (X1, X)) < 53— gviey <1 -
v, ..y, (X1,...,Xy). Thisis onIy possible it — 25y, v, (X1,...,X,) >0,
hencel — ZEyh___7yn(X1,...,Xn) = max(0,1 — 28y, vy, (X1,...,X,)) in this

case. We can hence apply L-135 and conclude @at. .., Y,) ¢ 7,(X1,..., X,),

a contradiction. Hence the assumption thagt, v, (X1,...,X,) < 3 — 37 is false,

and itindeed holds th&y, v, (X1,...,Xy) > % - 37

Lemma 137 LetQ : P(E)" — I, X1,..., X, € P(E) andz € I be given. Then
forall v > s(Ag,x,,....x,)(2), 2 € S9.x1,..x,. (7).

Proof

a.:sup Ag.xy,..x, (2) < 3
Then (80) reduces t&(Ag x,,...x,)(z) =1 —2sup Ay x, ... x,(z) > 0, andy’ >
s(Ag,x,,....x, )(z) can be reformulated into

% — %’y <sup Ag.x,...x,(2). (775)

We first consider the special case thgt x, .. x, () = @. Then apparently

supAg x,,..x,(2)=0 and  s(4gx, .x,)(2)=1,

i.e. the condition is vacuous becauge> 1 is not possible for’ € 1.

Hence let us assume thay x, . x, ( ) # @. Recalling (775), this entails that there
existsr € Ag x,....x, (z) with 1 — 1+ <r <sup Ag x,,... x, (). By Def. 86, then,
there existg7,...,Y, € P(E) with

QY],....Y)) ==z (776)
53— 37 <EByyvy(Xi,., X)) =71 <supAg x,...x,(2). (777)
We conclude from (777) that

’Y >1—2\_4y/ ’’’’’ y/(Xl,...,Xn):max(O ].—2._,y/ y/(Xl,...,Xn)).

Hence L-134 is applicable, from which we obtain thgf,...,Y))) € 7x,. . x, (7).
In turn, we conclude from Def. 51 that = Q(Y/,...,Y,)) € So x,,..x,.(7), as
desired.

.....

b.: sup Ag.x, ... x, () > 3.
In this case, we know from (80) that

s(AQ.x;,....x,)(2) = 0. (778)
We then know from L-123 and L-124 that

supAQ Xq,. ( ) =Tr4y = EY1+ Y,fr (Xl, Ce. ,X") (779)
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and
QY T,....Y ) =z, (780)

whereY,", ... Y, € P(E) are defined by (700). In particular, we notice from (779)
that=y+ .+ (X1,..., X,) > 5. Hence

Y. ) e (X, X)) ST (Xay e, X)) (781)

by L-133 and Def. 31. Combining (780) and (781), we obtain from Def. 51hat
QY ...,Y.") € S.x,...x,(7), as desired.

Lemma 138 LetQ : P(E)" — I, X1,..., X, € P(E) andz € I be given.
Ify" <s(Ag.x,...x,)(2), thenz ¢ S x, ....x, (7).

Proof The claim of the lemma is vacuoussif4g x, ... x, )(2) = 0. Hence suppose
thatS(AQ7X1,m7Xn)(Z) >0, i.e.

s(Ag.x,...x,)(z)=1—=2-supdg x,...x,(2) >0 (782)
by (80). Now let
v < s(Ag.x,...x,) =1—2supAg x,...x,(2). (783)
| will show that for all (Y7,....Y,) € Q7' (2), (Y1,....Y,) ¢ T, (X1,...,Xn).
Hence consider a choice 6¥1,...,Y,) € @~ !(z). Then
sup Ag, x,,....x,

= sup{Zyy,. v/ (X1,.... Xn) : (Y{,....Y,)) € Q7' (2)} by Def. 86

n

2 Eylv--an(Xl’ BRE) Xn) .
Hencel — 28y, vy, (X1,...,X,) >1—2sup 4g x,,...x, (2) andin turn,

maX(O, 1-— 25Y17"')Yn (X17 . ,Xn)) > maX(O7 1- QSllp AQ’XI""’X" (Z))
=1-2sup 4y x,,...x,(?)

by (80) and (782). We then obtain from (783) that
7 < max(0,1 — 2%y, vy, (X1,...,Xn)).
Hence by L-135,
Y1,....Y) ¢ Ty (Xy,..., X,) .

Becaus€Y,...,Y,) € Q7'(z) was arbitrary, this proves that¢ Sy x,...x,. (7).
see Def. 51.
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Proof of Theorem 97

LetQ : P(E)" — TandXi,..., X, € P(E) be given. Further let € I. Let us
now apply the results of the previous lemmata. We know from L-137 that

inf{y €I:z € S.x,,...x, (1)} < (Ao, x,,...,x,)(2) - (784)
We further known from L-138 that
inf{y €I:z€ S x,,..x,(7)} > s(A9.x,,...x,,)(2) - (785)
Therefore
5Q,x1,...x, (2) =inf{y €1:2 € Sy x,,... x, (V)} by Def. 54
= s(A9,x,,...,x,)(2) s by (784), (785)
as desired.

B.7 Proof of Theorem 98

Letw : L — I be given and suppose that: A — T is defined by (81). In order to
prove thatF,, = F,, we consider a semi-fuzzy quantifigr: P(E)" — I and fuzzy

argumentsXy, ..., X, € P(E). Then

Fo(@)(X1,..., Xn) =w(sgx,,...x,) by Def. 61
= w(s(4g,xy,....x,)) by Th-97
= (Ag,x1,...X,,) by (81)
= Fp(Q)(X1,..., Xy). by Def. 88

B.8 Proof of Theorem 99

Lemma 139 Consider a semi-fuzzy quantifi§ : P(E)" — I and a choice of
X1,...,Xn € P(E). Then

AQ.xi,.x.(2) = A9 xy,.. x, (1 — 2).

forall z € 1.

Proof  Straightforward.

AQ X, (2)

={Evi. v, (X1,..., X)) : (Y1,...,Y,) € -Q7'(2)} by Def. 86
={Zv. v, (X1, ., X)) : (Y1,..., ) €Q (1 —2)} Def.9,—z=1-2z
= Ag.x1,..x, (1 —2). by Def. 86
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Proof of Theorem 99

We first notice that by Th-5, all standard DFSes coincide on two-valued quantifiers. It
is hence sufficient to show théf,, coincide with an arbitrary standard DFS on two-
valued quantifiers. In the following, it will be convenient to show tifat coincides

Now let a two-valued quantifief) : P(E)" — 2 and a choice of\y,..., X,, €

P(E) be given. Becaus@ is two-valued, we know that

Ao xy o x,(2) ={Evi v,(X1,.... X)) : (V1,...,Y,) €Q7 M (2)} =2 (786)
for all z € (0,1). Hence either; € Ag x,,.. x,(1)orry € Ao x,,.. x,(0). We

shall consider these cases in turn.

a.ry € AQ,Xl ,,,,, Xﬂ,(l)-
Recalling (786), we observe that{3) is applicable, which lets us deduce that

Y(AQ.x,,....x,) =1 —sup Ag x,,....x, (0). (787)

We further notice that, € Ag x,
L-124. Therefore

1 —2sup Ag x,,....x, (0) = max(0,1 — 2sup Ag x, ... x,,(0)) = s(4g x,.... x,)(0),

..........

(788)
see (80). We now proceed as follows.
f¢(Q)<X1a aXn) = w(AQ,Xl,,XT,) by Def. 88

=1-sup 4y x,,..x,(0) by (787)
=3+ 35(1—2sup Ao x,....x,, (0))
=5+ 35(A0.x,..x,)(0) by (788)
=3+ 350.x1,...%, (0) by Th-97
=wp(.x1,...X,,) by (w-3), Th-52
=Fr(Q)(X1,..., X4), by Def. 61

as desired.

b. i € Ag.x,,...x,, (0).

In this case, we consider the standard negatich: P(E)" — 2 of Q. Clearly
Ag.x,,..x,(2) = @ for z € (0,1) because-Q is two-valued. In additionr; €
Ag.x,....x,(0)entails that. € A x,... x, (1), see L-139. Itis then apparent from
the proof of parg. of the present lemma that

Fo(=Q)(X1,..., Xn) =Fr(-Q)(Xy,.... X,). (789)
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Therefore

Fp(@Q)( X1, Xn) = ¥(Ag, x4, x,) by Def. 88
=1-9(Aq.x,..x,) by (»-2) and L-139
=1-Fyp(-Q)(X1,...,Xy) by Def. 88
=1-Fp(=Q)(X1,...,Xy) by (789)

=1-(1-F(Q)(X1,...,X,)) byTh-52, Th-2
=Fp(Q)(X1,..., Xy).

B.9 Proof of Theorem 100

Suppose that) : A — T satisfies {-2) and {-3). Now let ' # @ be some base

set and consider somec E. Thenr, : P(E) — 2 is a two-valued quantifier, see
Def. 6. Hence

Fy(me) = Fp(me) by Th-99, Th-52 and Th-5
=T . by Th-52 and (Z-2)

B.10 Proof of Theorem 101

Lemma 140 LetE # @ be some base seX, € P(E) andY € P(E). Then

Proof To see this, consider the following chain of equations.

Ey (X)
= min(inf{ux(e) : e € Y},

inf{ux(e) :e¢Y}) by Def. 83
= min(inf{l — p-x(e): e € Y},

inf{u-x(e):eg¢Y}) by def. of fuzzy complement X
= min(inf{l — p_x(e) : e ¢ =Y},

inf{p-x(e):ee€Y}) by def. of crisp complementY
=Zy(—X). by Def. 83

Lemma 141 LetE # @ be some base seX1,..., X, € P(E)andYi,....Y, €
P(E) wheren > 0. Then

vV (X1, Xno1, 7 X)) = Byq v, (X, X))
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Proof  Straightforward:

By Yoo, (X1s o X1, X))

- min(z1 =y (X)), By, (—X00)) by Def. 83
- min(’zl1 =y (X)), By, (X)) by L-140
= Eyy (X1ae e X0 by Def. 83

Lemma 142 LetQ : P(E)" — I be a semi-fuzzy quantifier of arity > 0 and let
X1,...,X, € P(E). Then

Ag— X1, X0 = A0, X1, X1, =X -

Proof Let us first observe that for a givenc I,

Ag- x4, x,(2)

={Zy, v, (X1, X)) (Y, V) €(Q-) 71 (2)} by Def. 86
={Eyvi ve-v, (X1, X)) s (Y, V) € Q7H(2)) by Def. 10
=y v, (X1, X1, X0) s (Y1, V) € Q7H(2)) byL-141
=A0. X1, X0 1, -Xn(2) . by Def. 86

Because: € I was arbitrary, this proves thaly - x,. . x, = 40,x,,...X,,_1,-X,,» &S
desired.

Proof of Theorem 101

Suppose thap : A — I satisfies {-2) and (/-3). We then know from Th-99 that
induces the standard negation. Nowd(gt P(E)" — I be a semi-fuzzy quantifier
of arityn > 0 and letX;,..., X,, € P(E). Then

Fu(QO)(Xq,..., X,) =v(Ago,x,,...x) by Def. 88
= Y(AQ-. X1, X0) by Def. 11
=1-9(4g-x,,..x.) by L-139 and {-2)
=1-9Y(Ag.x,,... X0 1,-X,) by L-142

=1- flP(Q)(Xl? tee 7XTL*17_'Xn) by Def. 88
= —Fp(Q)(X1, .o X1, X))

This completes the proof thé, satisfies (Z-3).
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B.11 Proof of Theorem 102

Suppose that) : A — T satisfies {-5). In order to see that/(5') is valid, we
considerA € A. We notice that for alt € I,

sup 0 A(z) = min(sup A(2), 1) = BHA(2)

and hence

which is apparent from Def. 90 and Def. 91. Because I was arbitrary, this proves
that

BOA=HA.

Hencey(A) = ¢(BA) = ¢(BO A) = ¢ (0O A), because) satisfies {-5).

B.12 Proof of Theorem 103

Lemma 143 Let E # @ be some base seX;, X, € P(E) andY;,Y, € P(E).
Further abbreviateX = X; U X5 andY = Y; UY5. Then

Zy(X) > By, v, (X1, Xo).

Proof Let us recall from (61) that

Ey(X)=inf{dx y(e):e € E}
EYl,Yz (Xl,XQ) = inf{min(éxhyl (6), 6X2,Y2 (6)) e e E}

It is hence sufficient to show thak y (e) > min(dx, v, (e),dx,,v,(e)) foralle € E.
Hence consider € E. Itis convenient to discern the following four cases.

a.. e ¢ Y; and e ¢ Ys.
Hencee ¢ Y = Y; UY5. Therefore

dxy(e)=1—pux(e) by (60) ande ¢ YV
=1—max(px, (e), ux,(e)) becauseX = X; U X,
=min(1 — px, (e),1 — px,(e)) by De Morgan’s law
= min(dx, v, (e),0x,,v,(e)) . by (60),e ¢ X; ande ¢ X5
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b. ee€Y;and e ¢ Y.
In this caseg € Y = Y; U Y5. Therefore

ox,y(e) = px(e) by (60) ance € Y
= max(ux, (), px,(€)) becauseX = X; U X,
> px, (€)
> min(ux, (€), 1 — px, (€))
=min(dx, v, (€),0x, v, (€)) - by (60),e € Y; ande ¢ Y3

c.. e ¢ Y; and e € Y.
The proof of this case is analogous to thabof exchanging the roles of, Y; and
X, Ys.

d: eeYiand e e Ys.
In this caseg € Y = Y7 UY5. Hence

5. () = px (e) by (60).¢ € ¥
= max(px, (e), ux,(e)) becauseX = X; U X,
> min(px, (€), px, (€))
=min(dx,. v, (€),0x, v, (€)), by (60),e € Y; ande € Y3

which completes the proof of the lemma.

Lemma 144 Let E # @ be some base sef; € P(E) and X = Xl U X5, where

X1, X, € P(E). Furter suppose thaEy (X) > r for a givenr € [0, 1]. Then there
existYy, Ys € P(E) withY =Y, UY, anduy17y2 (Xl,Xg) >r.

Proof Let us abbreviate

Vi ={e€Y :ux,(e) > pux,(e)Vux,(e) > 1}

={eeY :pux,(e) >min(uy,(e), %)} : (790)
YV, ={e€Y :pux,(>)ux,(e)Vux,(e) > 3}

={e €Y :pux,(e) > min(ux,(e),3)} (791)

ClearlyY; C Y andY> C Y, henceY; UY> C Y. Now considee € Y. If ux, (e) >
lx,(e), thene € Y7 and hencee € Y7 UYa. If ux, (e) < px,(e), thene € s
and hence: € Y; U Y,. This proves that” C Y; U Y;. Combining this with the
aboveY; UY; C Y, we obtain the desirel = Y; U Y5. It remains to be shown that
Zy, v, (X1, Xo) > 7. To this end, let us first prove tha, (X;) > r. By (61), itis
sufficient to show thaix, y,(e) > r for all e € E. Hence lete € E. We notice from
Ey(X) > rand (61) that

5X7y (6) 2 r. (792)

We shall discern the following cases.
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a: eeYand uy, (e) > ux,(e).
In this case we know from (790) thate Y; and hence

Gx, v (€) = ux, () by (60)
= max(px, (e), tx,(€)) by assumption of case
= ux(e) becauseX = X; U X,
=dx,y(e) by (60) ande € Y
>r. by (792)

b. ecYand ux,(e) > 3.

Again, we know from (790) that € Y;. Hence

5X1,Y1 (6) = KX, (6) by (60)
> 1 by assumption of cade
>,

because < % by assumption of the lemma.

c. e€Y,pux,(e) < px,(e) and px, (e) < 1.
Thene ¢ Y; by (790). Therefore

ox1,vi(e) =1 — px,(e) by (60)
> % by assumption of case
>,

again recalling that < % by assumption of the lemma.

d: e¢Y.
In this case, we obtain from (790) thatt Y;. Hence
Ox, v (€) = 1= pix, () by (60)

> min(1 — pux, (€)1 pix, (e))
=1 —max(px, (), ux,(€)) by De Morgan’s law
=1—px(e) becauseX = X; U X,
=dx,y(e) by (60) ande ¢ Y
>r. by (792)

This proves that indeedx, y,(e) > r for all e € E, and hence&y, (X1) > r
by (61). By the very same reasoning, it can be shown Bhg{ X>) > r as well,
noticing the apparent symmetry between (790) and (791). Hepge, (X1, X3) =
min(Zy, (X1), 2y, (X2)) > r, as desired.

Lemma 145 Suppose) : A — 1 satisfies(y-2), (v-3) and (y-5'). Then for all
Q:P(E)" — Iofarityn >0andall Xy,..., X1,

DAQU7X1 77777 Xnt1 = DAQ7X1 ~~~~~ KXn—1,XnUXn41 -
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Proof To see this, let € I. We can then show that

O AQU7X1;~~~«,Xn+1 (Z) =0 AQ;X1,~~~7Xn717XnUXn+1 (Z)

by proving that the set on the left hand side of the equation is contained in the set on
the right hand side and vice versa.

a: 0AQu,xy,.. X1 (2) COAQ X1, . X1, XnUX 4 (2)-

We consider € 0 Agu, x,.,..., X, (2). We then know from Def. 90 that< 1 and that
there exists’ € Agu, x,,....x... (2) with < /. In turn, we obtain from Def. 86 that
there exist(Y1, ..., Yni1) € QU N (z) With Ey, v, (X1, oo, Xpgr) = 177 > 7.
Now we setY,) =Y, UY,;1 andX/, = X, U X,,+1. Then

Q(}/la n 1, TL) lea-"7Yn717YnUYn+l)
== QU(Yh PN ,Yn+1)
=z
becaus€Y:, ..., Y, 1) has been chosen fro@U™ ' (z). We conclude that
(Y1,..., Y, 1,Y)eQ(2).
Let us now investigate” = Ey, .y, , v/ (Xi1,...,X,_1,X]). We proceed as fol-

lows.
1 !
r _'_‘Yh 7Yn 1,Y, (X17~-~7Xn—1aXn)

= min( 'i\l Y X;, EYA, (X;L)) by Def. 83
> min(’f_Kl Y Xo, min(Zy, (X,), Ey, (Xns1)) by L-143
= Eyl n+1(X1,... Xn+1). by Def. 83

Hence there exist8” € Ag x,.. x,. . x,UX.(2) With 7/ > ¢/ > r. Because
r < 3, we conclude from Def. 90 that € Ay x,,... x,_.,X,Ux.;. (2). Because
r € OAgu,x,.....x,.+. (2) Was arbitrarily chosen, this proves that indeed

DAQU X1,.. n+1( ) c DAQ X1y Xn— 17XnUXn+1(Z)'

b.: |:]AQJQ ----- Xn—1,XnUXn41 (Z) c DAQval ----- Xn+1 (z)
Again, we abbreviat&], = X,,UX,, 1. Now consider € O Ag, x,,...,x.._ 1,Xnuxn+1( ).

We then know from Def. 90 that < and that there exist&yy,...,Y,-1,Y)) €
Q1(z) with

T/ :Eyl _____ Yn_hyy;/(Xl,...,anl,Xé) 2 r. (793)
In particular

Yl,»---,Yn_l,ng(Xl;~«~,Xn71,X;l) by Def. 83
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We can now apply lemma L-144, which establishes the existentg,df, 11 € P(E)
withY,! =Y, UY,,4+1 and

E}/n_}/n_'_1 (Xn, Xn+1) Z T. (794)
Therefore
'_‘Y17~~-7Y71,+1(X17 aXn+1)
n+1

="A Ex (X)) by Def. 83
n—1 n+1

= min("A Sy, (X3), A ViX,)
n—1

= Inin(y_i\1 Zy; (X ), 2Y,,Yoi1 (Xn, Xn—i—l)) by Def. 83
n—1

> min( A By, (X;),r) by (794)

i=1

> min(min(ni\ By, (X5), By, (X)), 7)

= min(EYIw--;Yn—leA (Xl, - 7Xn—17 X,:L), ’I”) by Def. 83
—r. by (793)

Hencer” = 2y, ...y, ., (>)r. We further notice that

QU(Yh ce- 7Yn71) = Q(Yla ey Yoo, Y U YnJrl)
= Q(Yla . '7Yn717Yri) =z,

e.(Y1,...,Y,1) € QU '(2). Itis then apparent from Def. 86 that

r’ GAQUXL n+1( )

Because” > r andr < , this proves the desirede 0 Agu. x,..... x,,.. (2)-

Proof of Theorem 103

Suppose thap : A — I satisfies {-2), (1>-3) and (/-5'). We then know from Th-99
that 7, induces the standard fuzzy disjunctidp (V) = v, wherezVy = max(z, y).
Now consider a semi-fuzzy quantifi€r: P(E)" — I of arityn > 0 and a choice of

fuzzy arguments(y, ..., X,,+1 € P(E). Then

Fyp(QU)(X1,..., Xnt1) = V(AQu.x1 0 Xnsr) by Def. 88
= Y(0AQu X1, Xni1) by (1)-5')
= (04X, X0 1, X UX41) by L-145
= ¢(AQ,X1,...,Xn,1,XnUXn+1) by (1)-5")

:fw(Q>(X1’7Xn717XnUXn+1) by Def 88

HenceF, satisfies (Z-4), as desired.
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B.13 Proof of Theorem 104

Lety : A — I be a mapping which satisfieg{4). Now consider a choice of semi-
fuzzy quantifiersQ, Q' : P(E)" — I such thatQ < Q’. In order to prove that
Fp(Q) < Fy(Q'), letXq,..., X, € P(E) be a choice of fuzzy arguments. We now
comparedg x, ... x, andAy: x, ... x,,-

Hence letz € I and consider some € 4j x,,.. x, (z). By Def. 86, there exists a
choiceofYy,...,Y, € P(E)withr =Zy, vy, (X1,...,X,)andz = Q(Y1,...,Y,).
Because) < @', we know that:’ = Q'(Y1,...,Y,) > 2. Further noticing that
r = Ey,, v, (X1,...,X,), we obtain from Def. 86 that € Ay x, . x,(z) for
z' > z. Hence conditiora. of Def. 89 is satisfied.

To see that conditiob. of Def. 89 is also satisfied, consider sonfec I andr €
Ao x,,...x, (7). By Def. 86, there existy, ..., Y, € P(E)withz' = Q'(Y1,...,Y,)
andr = Zy, vy, (X1,...,X,). Becaus&) < @', we obtain forz = Q(Y1,...,Y,)
thatz < 2’. Recalling Def. 861 € Ag x,.....x, (2).

Hence both conditions stated in Def. 89 are valid, and

,,,,,

Ao xy,..x, & Ay X1, X, - (795)
Therefore
f¢(Q)(X1,,Xn) :ql)(AQ,XL,...,Xn) by Def. 88
< Y(Agr xi,.,x0) by (795) and {-4)
:fw(Q’)(Xl,...,Xn). by Def. 88

B.14 Proof of Theorem 105

Lemma 146 LetQ : P(E)" — I be a semi-fuzzy quantifier agd: {1, ..., n} —
{1, ..., n} apermutation. Further suppose th@t : P(E)" — T is defined by

forall Y1,...,Y, € P(E). Then
Fp(@) (X, Xn) = Fp(@Q)(Xpa), - Xpn))
forall Xi,..., X, € P(E).

Proof We first notice that

EY1;~~-7Yn (X17 s ’XTL)

=min{=y,(X;) i € {1, ..., n}} by Def. 83
=min{Zy,, (X)) i € {1, ..., n}}  Bispermutationofl, ..., n}
= Sy Yoo (X8@)s -+ X)) by Def. 83
ie.
E'Y17~--1Yn (Xl, e ,Xn) = EYB(1)7'“~,YB(7L) (Xﬂ(l)7 N ,Xﬁ(n)) (797)
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forallYy,...,Y, € P(E). Now letz € I. In order to prove that
A 1, x0 (2) € AQ X500y X i (2) 4 (798)
letr € Ay x,....x, (z). By Def. 86, there existy, ..., Y, € P(E) with
Q/(Yl,...,Yn):Z and Eyl ,_“’Yn(Xl,..an):’f'.
Now consideKYp(y), . .., Ys(,)) € P(E)". We know from (796) an@)’ (Y1, ..., Y,) =
zthatQ(Ysay, - -, Y(n)) = 2. In addition, we know from (797) that
EYB(1)7~--7YL—](71,) (X,g(l), . ,Xﬁ(n)) = EYl,...,Yn (Xl, e ,Xn) =7T.

Hence indeea € Aq x, ... x4, (), Which proves that (798) is valid. It remains to
be shown that

AQ X501y Xy (2) € Agr xy,.x0 (2) (799)
Hence letr € Ag x,....Xs.,(2). By Def. 86, there existi,...,Y, € P(E)
with Q(Y1,...,Y,) = z andZy, v, (Xga), .-, Xm)) = r. We now define
Z\,..., 7y € P(E) by

Zj = Yg-1()) (800)
forj € {1, ..., n}. In particular
Yi=Y5-166) = Zp00) (801)
foralli € {1, ..., n}. Therefore
Q/(Zl,...7Zn) ZQ(Z5(1)7...,Z[3(”)) by (796)
=Zz.

We also notice that

Ez1,02a (X1, Xn) = Bz, 2500 (K1) - - X)) by (797)
=2y, (Xgay, - Xam)) by (801)

Hencer € Ay x,,.. x, (%), and (799) holds, as desired. Combining (798) and (799)
then proves the equation

AQ Xy X = AQ, X 501)0 0 Xy 5 (802)
noticing thatz € I was arbitrary. Therefore
fw(Ql)(Xla“-vXn) :1/1(14@’,)(1 ..... Xn) by Def. 88
= (A0, X501y X () by (802)
= Fp(Q)( Xy, Xam)) - by Def. 88

Lemma 147 Suppose) : A — I satisfies(y-2), (¢-3) and (-5). Then for all
Q:P(E)" — Iofarityn > 0, F,(QN) = Fyu(Q)N.
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Proof To see this, we observe that
QN = Q~U—-7,—7,
and
Fup(Q)N = Fy(Q)~U~Tp =7y .

ThereforeF,, (QN) = Fy(Q-U-7,—7,) = Fy(Q)-U-T,-1, = Fy(Q)N, Where
the middle equation is known to hold from Th-103, Th-99, L-142 and L-146.

Proof of Theorem 105

Lety : A — T be given andf suppose that-@), (x-3), (x)-4) and {/-5') are valid.
In order to show thafF,, satisfies (Z-5), let us consider a semi-fuzzy quantifjer
P(E)" — 1. Further suppose th&} is nonincreasing in its-th argument. It has
to be shown thatF,,(Q) is nonincreasing in its-th argument as well. Hence let

X1,..., X, X}, € 75(E) with X,, C X,,1;. In particular

X, = X, NX, (803)
Xpi1 = X, UX] . (804)

Let us also notice thaD’s being nonincreasing in the-th argument entails that
QN> QU (805)
which is apparent from Def. 14. Therefore

Fp@Q)(X1,...,. X)) = Fp(X1,..., X1, X, N X)) by (803)

(
= Fyp(@QN(X1,...,Xn1,X,, X)) byDef. 12
= Fp(QN)(X1,..., Xn-1, Xy, X;,) byL-147
> Fyp(QU)(X1,..., X, 1,Xn, X)) by Th-104 and (805)
= Fp(QU(X1,..., Xn_1,X,, X)) byTh-103
=Fu(Q)( X1y, Xn_1,X,UX].) byDef. 12
=Fy(@Q)(X1,..., Xy). by (804)

B.15 Proof of Theorem 106

Lemma 148 LetE, E’' #+ @ be given base sets arfd: E — E’. Then
EY(X) < E]?(y)(f(X))

forall X € P(E) andY € P(E).
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Proof We first observe that for al’ € f(Y), there existsy € f~'(¢’) such that
eg € Y. Therefore

px () =sup{ux(e):ee f'(e)} by (3)
F(X)
> nx(eo) because, € f'(¢))
=dx,v(eo) by (60) andeg € Y
and hence
pa o () >Ex(Y), (806)
F(X)

recalling (61).
Next we consider the case thdtc E’, e ¢ f(Y). We then know from Def. 15 that
f~1(e")NY = @, and hence

(SX’y(e) =1- ,U)((e) (807)
foralle € f~1(¢’), see (60). Therefore

L—p- () =1—suplux(e):ee f()} by (3

F(X)
=inf{l — ux(e):ec fH)} by De Morgan’s law
=inf{dxy(e):ec f ()} by (807)
> inf{éx y(e):e€ E},
and by (61),
I—ps ()2 Ep(X). (808)
F(X)
Finally
Ef(y)(f(X))
=min(inf{u» (¢):e € f(Y)},
F(X)
inf{l—pux (e):e ¢ fY)}) by Def. 83
F(x)
> Zy(X). by (806) and (808)

Lemma 149 Let E,E’ # & be given base set§) : P(E')" — 1, f1,..., fn :
E— E'andXy,..., X, € P(E). Then

- (z)<8 -

Qo X fi X1y Xn Q1 (X1)eensf(X)

(2)

forall z € 1.
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Proof Letr € AQ Then there existy,...,Y, € P(F) with

oglﬁ,,xl,...,xn(z)'
QUAM), -+, fa(Xn)) = 2z @ndZy, v, (X1,..., X,) = r. HenceZ; = fi(Yi)
(¢ =1,...,n)satisfyQ(Zy,...,Z,) = z. From L-148 and Def. 83, we know that

¥ = Zg .z (fi(X1), ... fu(Xn) > By,..v,(X1,...,X,) = r. Hence there

..........

existsr’ € A P (z) with +/ > r. Because € A« . (2)
Q.f1(X1) e, fr (X ) Qo X JirX1, X

was chosen arbitrarily, this proves that

sup A = P z)>sup A n . z). (809)
Q.,fl(xn....,fn(Xn)( ) Qo x i, )

Therefore

~

(2)

"o
Qo X fi X1, Xn
iz

= min(sup AQO 5 f’thy--an(Z), %) by (73) and (75)
<min(4 =z P (2), %) by (809)

Q. f1(X1)se o fn(Xn)
=0 (2). by (73) and (75)

Q1 (X1) s fn (X)

Lemma150 LetE,E' # @, f:E —s E', X € P(E)andZ € P(E'). Then

~

min(2z(£(X)), 1) < sup{Sy (X) : f(¥) = 2}

Proof Suppose that ¢ Im f, i.e. there exists’ € Z with f~!(e) = @. Then

=2(f(X)) < P ) by Def. 83
—suplux(e)iee U} by (3)
=sup @ because '(e) = @
=0,
i.e.
=Z2(f(X)) = 0. (810)

Hence trivially

sup{Ey (X) : F(¥) = Z} > 0 = min(0, ) = min(2(f(X)), 3).

Now let us consider the remaining case that Im f = {f(e) : e € E}, i.e. for all
e ez,

I # 2. (811)



It is then sufficient to show that for adl > 0 there exists” € P(E) with f(Y) =7
and=y (X) > r — ¢, wherer = min(2(f(X)), 3).
To see this, we first introduce abbreviations
V=f2)={ecE:fle)cZ} (812)
V={eeV:ux(e)>3Vux(e)> ufz(X)(f(e)) —c}. (813)

It is immediate from (812) and Def. 15 thAtV) = Z. We then obtain front’ C V/
that f(Y) C Z. Now considere’ € Z. By (811), f~!(¢’) # @. In particular
{ux(e) : e € f71(e/)} # @. We may hence conclude that there exists f~*(¢’)
with x (eo) > sup{ux(e) : e € f~' ()} —&. Hence by (3)px (eo) > MXX(()‘?/)—E-
This proves that, € Y, see (813). Recalling that € f~1(¢), i.e. f(eg) = €', we
then obtain that’ € f(Y). Because’ € Z was arbitrary, this proves that C f(Y).

Combining this with the above inequation yields the desﬁeﬁ) =
Now considek € Y. We discern two cases.

a. If ux(e) > 3, then
Sxyle)=pux(e)>i>r>r—c¢
by (60) and above definition of

b. If ux(e) >ps (f(e)) —e, then
F(X)

dxyv(e) =pux(e) by (60) because € Y

>uz (fle)—e¢ by assumption of case b.
F(X)

> Z,(f(X)) —e,

which is apparent from Def. 83 and (3) because Y entails thatf(e) €
f(Y) = Z. We then proceed as follows.

Sxy(€) > Z4(f(X)) -
in(Z (f( X)),

— €.

)—¢

NJIH

Y
ﬂB

Hence indeed
5X7y(€) >r—e (814)

foralle e Y.
Now suppose that ¢ Y. Again, it is convenient to discern two cases.
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e cdV.
Then in particularf (e) ¢ Z, recalling equation (812). Abbreviating = f(e),
we obtain
dxy(e) =1—px(e) by (60)
>inf{l — ux(e”): " € f7H()} becausef(e) = ¢’
=1—sup{ux(e’):e” € f1()}  byDeMorgan's law

=1—pu: ((€) by (3)
F(X)
=0x (e') by (60) ande’ ¢ V
1(x),2
> 22 (f(X)) by (61)
> min(Zz(£(X)), 3)
=7
>r—&

* c€ V() < fandux(e) <px (f(O) —e.
This case is trivial because

Sxyle)=1—px(e)>3>r>r—c.

We have thus shown that

dxy(e)>r—e (815)
foralle € E\'Y. Therefore
ExY)=inf{dxy(e):e€ E} by (61)
>r—¢, by (814), (815)

as desired.

Lemma 151 Let E,E’ # @ be given base set§) : P(E')" — 1, f1,...,fn :
E — F andX,,..., X, € P(E). Then

ETH 2 2 Z) S ETH noo~ (Z)
Q. f1(X1),es fr (X) Qo X fisXis Xn
forall z € 1.
Proof We notice that
B - 2 (z) = min(sup A = 2 (2),3) by (73), (75)
Q»fl(Xl) 1111 fn(Xn) nyl(Xl) ~~~~~ n(Xn)
=sup{min(r,3):r €A 2 (2)}.

Q,f1(X1),e s fn(Xn)
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The claim of the lemma can hence be proven by showing that

~ i . )
Qoig1 fis X1, Xn (Z) - Inln(n 2)

forallre A = p (2)}. Hence consider such choicerofBy Def. 86, there
Q’fl(xl):""fn(xn)

eXiStZi, ..., Zn € P(EVWIthQZi,..., Zn = zandSz,. 7 (f1(X1)s- .. fu(Xp)) =
r. Now

su A n oo~ z
p QO,XI fi7X1;<~~7Xn( )
=

=sup{Ey,, v, (X1,..., X,) :

QUAMNL), ... fa(Yy)) = 2}
> sup{Zy;,..v, (X1,..., X,):

AV =2y fa(Yo) = Za}
= sup{iZ\1 vy, (X;) :

J?1(Y1) = Z1~-~,E(Yn) =Zn}

= _/}1 sup{Zy, (X;) : ﬁ-(Yi) =7} because th&; can be
chosen independently

> A Z2,(fi(X) by L-150

=Zz1,2, (1(X1), o fulX0)) - by Def. 83

Proof of Theorem 106

Let B, E' # @ be given base set§) : P(E')" — 1, f1,..., f, : E — E’and and
X1,...,X, € P(E). The theorem is now a corollary of L-149 and L-151, which state
that

Qo X JiXioXn T Q Fi (X)) fa(Xn)
Hence by (74) and Def. 91,
B, —@ - L (816)
Qo X Ji:Xup X Q,f1(X1)se-, fn(Xn)
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Finally

ﬂ(Qoﬁﬁ)(Xl,---,Xn):w( by Def. 88

by (v-5), (74)

Q,f1(X1)se s, fn(Xn)
=Y(A4 s ) by (-5), (74)
Q.f1(X1),- s fn(Xn)

= fw(Q)(fl (X1),..-, fn(Xn)) . by Def. 88

B.16 Proof of Theorem 107

Suppose) : A — I satisfies {-1)—@/-5). Then by Th-102y satisfies {-5') as well.
We obtain from Th-96, Th-100, Th-101, Th-103, Th-105 and Th-106asatisfies
(Z2-1), (Z2-2), (Z-3), (Z-4), (Z-5) and (Z-6), respectively. By Def. 1F, is a DFS.
The proof is completed by recalling Th-99, from which we obtain tRatis indeed a
standard DFS.

B.17 Proof of Theorem 108

I will prove the theorem by contraposition. Hence let: A — I be given and
suppose that) does not satisfy-1). Then there existal € A with D(A) = {1}
andy(A) # zy. BecauseD(A) = U{A(z) : z € I} = {1}, we know that-, = 1.
By Th-93 and Def. 87, then, there exists a uniguec I with1 = r, € A(z,), and
A(z)N (1 —ry, 1] = A(2) N (0,1] for z # z;. BecauseD(A) = {1}, this proves that
A(z) = forz # z,.

We now define) : P({+})° — I by Q(@) = z,, where@ is the empty tuple. It
is then apparent from Def. 86 thalfy ), (z1.) = {1} andAY),(z) = @ for z # z,.

Hence (033 = A. We can then proceed as follows.

Fu(Q)(2) = ¥(A5)) by Def. 88
=Y(A) becausel = A} ),
#* 24 by assumption
=Q(92).

This proves thaf,, does not satisfy (Z-1).
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B.18 Proof of Theorem 109

Lemma 152 Suppose thaf,, satisfies(Z-2) and letz € I. Further suppose that

A € Ais defined by
{z} oz=1
A(z) =< @ : z2€(0,1)
{1—-2} : 2=0
forall z € I. Them)(A4) = «.
Proof Let us consider the quantifier, : P({x}) — I. We define a fuzzy argument

set, X € P({x}), by ux(x) = z. BecauseP({x}) = {@, {*}} andr.(2) = 0,
7. ({*}) = 1 by Def. 6, we obtain the following results ot x.

A, x(1) ={Ey(X) : m.(Y) =1} by Def. 86
= {E{*}(X)} by Def. 6
={ux(x)} by Def. 83
=z by definition of X
=A(1). by assumption

Forz = 0, we have

A x(0) ={Ey(X) : m.(Y) =0} by Def. 86
={Ez(X)} by Def. 6
=1l-z by definition of X
= A(0). by assumption
Finally if z € (0,1), then
Ar. x(2) ={Ey(X) : m(Y) = 2} by Def. 86
=g becauser, two-valued
=A(z). by assumption of the lemma

To sum up, | have shown that

A=A x. (817)
Therefore
PY(A) = P(4Ar. x) by (817)

= Fy(m)(X) by Def. 88

=7 (X) by (2-2)

= ux(*) by Def. 7

=z, by definition of X
as desired.
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Proof of Theorem 109

Lety : A — I be given and suppose thaj, satisfies (Z-2). In order to show tht,
induces the standard negation, let us first recall the definition of induced fuzzy truth
functions, i.e.Fy(—)(z) = Fy(Q-)(n(z)) for all z € I, see Def. 8. Abbreviating

Q = Q-, and definingX € P({1}) by
px(l) =z (818)

for the givenz € 1, it is hence sufficient to show th&f, (Q)(X) = 1 — =, where

Q :P({1}) — 2is given by

1 : Y=0

an={ 4 yIf, (819)
forall Y € P({1}), see again Def. 8. Let us now considgj, x. It is convenient to
abbreviate

¥=1-x. (820)
We then obtain for = 1,
Agx(1) = {Zy(X): Q(Y) =1} by Def. 86
={=x(X)} see (819)
={1—-pux(1)} by Def. 83
={l—-=z} by (818)
= {2'}. by (820)
Forz = 0, we have
Ag,x(0) ={Ev(X) : Q(Y) = 0} by Def. 86
={E(X)} see (819)
={ux(1)} by Def. 83
= {z} by (818)
={l1-(1-2)} becausd — x involutive
={1-2'}. by (820)
In the remaining case thate (0, 1),
Ao x(z) ={Ev(X): QYY) =z} by Def. 86
=0. because) two-valued
To sum up,
{z'} z=1
Ao x(z) =1 @ z€(0,1) (821)
{1-2'} z=0



for all z € 1. Therefore

Fo() (@) = Fy(Q)(X) by Def. 8
= (Ag,x) by Def. 88
= by L-152 and (821)
=1—=x. by (820)

B.19 Proof of Theorem 110

Lemma 153 Lety : A — I be given and suppose thaj, satisfiefZ-1) and(Z-2).
If 7, violates(y-2), then there existg : P(I x I) — I with F,(-Q) # ~Fy(Q).

Proof To see this, suppose thatdoes not satisfyt{-2). Then there exisfi, A’ € A
with A’(z) = A(1 — z) forall z € Tand

Y(A) # 1 —(A). (822)

Let us assume thad(A) = {1}. ThenD(A4’) = {1} as well and NVA) = {z},
NV(A’) = {1 — z} for somez € 1. Let us now observe that satisfies {-1), which
is known from Th-108. Therefor¢/(A) = z =1 — (1 — z) = 1 — ¥(A’), which
contradicts (825). HencB(A) # {1}. By Th-94, then, there exi§}) : P(I xI) — I
andX € P(I x I) with

Agx =A. (823)

Now consider~@Q. ThenA.g x(z) = Ag x(1 — z) = A(1 — z) by L-139 and (823).
Hence

Agx=4 (824)
We now proceed as follows.
Fp(-Q)X = (Aq,x) by Def. 88
=(A") by (824)
#1—1(A) by (822)
=1-9(4g,x) by (823)
=1-F,(Q)X, by Def. 88

as desired.

Proof of Theorem 110
Consider a choice ap : A — I such thatF,; satisfies (Z-1) and (Z-2). The claim of

the theorem will be proven by contraposition. Hence supposey/tliates not satisfy
(x-2); it must then be shown th&,, does not satisfy (Z-3). More specifically, it must
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be shown thatF,, is not compatible with dualisation based on the standard negation,
becauseF,, is known to induce the standard negation, see Th-109.

Hence suppose that violates (/-2). By L-153, there exist§) : P(I x I) — I and

X € P(I x I) with

Fup(=Q)(X) # ~Fu(Q)(X) . (825)
Hence
Fy(QU)(=X) = ¢ (40, -x) by Def. 88
=¢Y(A.g--x by Def. 11
= (A.g—-x) by L-142
= (A9 x) because- involutive
# (Ag x) by (825)
= ~Fy(Q)(X) by Def. 88
= -Fy(Q)(——X) because- involutive
= Fu(Q)O(—X). by Def. 11

HenceF, (QO) # F,(Q)O, which completes the proof tha, does not satisfy (Z-3).

B.20 Proof of Theorem 111

Lemma 154 Lety : A — I andz € I be given and suppose th&t, satisfieqZ-2).
DefineA € A by

{z,min(z,1 —z)} : z=1

A(z):{@ : 2€(0,1)
{1-2z} toz2=0

forall z € I. Them)(A4) = «.
Proof

ala> 1.
To see that)(A) = x, we consider the projection quantifief : {a,b} — 2 and the
fuzzy subseX € P({a,b}) defined by

px(a) = px(b) =z. (826)

We notice thaP ({a, b}) = {@, {a}, {b}, {a,b}} andn, (&) = 7, ({b}) = 0, 7, ({a}) =
ma({a,b}) = 1 by Def. 6. Therefore

ma'(0) = {2, {b}} (827)
ma (1) = {{a}, {a,b}} (828)
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and

T, H(2) =@ (829)
In turn
Ar, x(0)
={Ey(X): Y €, 1 (0)} by Def. 86
={Es(X),En(X)} by (827)
= {min(1 — px(a), 1 — px (b)),
min(1 — px(a), px ()} by Def. 83
={min(1 — 2,1 — z),min(1 — z,x)} by (826)
= {1 —z,min(z,1 — )}
={1—-=z}. by assumption: >
Forz = 1, we obtain
Ar, x(1)
={Ev(X):Y en, (1)} by Def. 86
= {E{j(X), Efapy (X)} by (828)
— {min(px(a),1 - px (), min(ux (a), px (b))} by Def. 83
= {min(z,1 — z), min(z, z)} by (826)

= {z,min(z,1 — x)}
Finally if z € (0,1), then

A, x(2) ={Ev(X): Y e, 1 (2)} by Def. 86
=g. by (829)

Hence

forall z € I. In turn

Y(A) = (Ar, x) by (830)
= Fy(m,)(X) by Def. 88
= Tq(X) by (Z-2)
= ux(a) by Def. 7
=z. by (826)
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b.. z < 1. Inthiscasemin(z,1—x) = . HenceA as defined in the lemma becomes
{z} oz=1
A(z) =< @ : z2€(0,1)
{1-z} : 2z=0
forall z € I. The desired)(A) = =z is then already known from L-152.
Proof of Theorem 111
Lety : A — I be given. We shall assume thasatisfies (Z-2) and that the induced

disjunctionv = F,(V) is ans-norm. Now consider: € I. We abbreviateX =
n(z,x),i.e.

px(l) =px(2) ==, (831)
Further suppose th& = Q. : P({1,2}) — 2 is defined as in Def. 8. Then
vV =Fy(Q)X) =v(Ag.x)- (832)
As concerngg x, it is apparent that
Ag.x(1) ={Ev(X): Q(Y) =1} by Def. 86
={E1(X), Eq21(X), Eq1,23(X)} by definition of@

= {min(ux (1),1 - px (2)),
min(1 — px (1), px(2)),
min(ux (1), px(2))} by Def. 83
= {min(z,1 — z), min(1 — z,z), min(z,z)} by (831)

= {z,min(z,1 —x)}.

Forz = 0, we obtain

Ag.x(0) = {2y (X) : Q(Y) = 0} by Def. 86
={Ex(X)} by definition of@Q
={min(1 — px(1),1 — pux(2))} by Def. 83
={min(1 — 2,1 — 2)} by (831)
—{1-u}

In the remaining case thate (0, 1), it is apparent from Def. 86 and the fact tliais
two-valued thatd, x (z) = @. Hence

{ {z,min(z,1 —z)} : z=1
Ao x(z) = %) : 2€(0,1)
{1-2z} o z2=0

for all z € I. Itis now immediate from (832) and L-154 thatv = = ¢(4g x) = .
Hence the induced fuzzy disjunctionis an idempotens-norm. It is well-known
thatVv = max is the only idempoten¢-norm, see e.g. [13, Th-3.14, p.77]. HengEg
induces the standard disjunctiow y = 2y = max(z, y) forall 2,y € I, as desired.
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B.21 Proof of Theorem 112

Lemma 155 Letiy : A — I be given andd € A with D(A) = {1}. Further suppose
that someV € P(I) is given such that

infY € N (833)

forall Y C N withY # @. If F, satisfieqZ-1), theny(A) = (A"), whered’ € A
is defined by

o | A(z) : z¢ N
Alz) = { A()U{0} : zeN (834)
forall z € I
Proof  To see this, we defin@ : P({x})" — Iby Q(@) = z,. Then
§, =4 (835)
by Th-94, and in turn
P(A) = p(AS)) by Def. 86
= Fy(Q)(@) by Def. 88
=Q(2) by (Z-1),
ie.
Y(A) =24 . (836)
We further defing)’ : P(N) — I by
/ v Y #£o
em={" I y75 (837)
forallY € P(N), where
v=v(Y)=infY. (838)
ThenQ'@ = 24 andEg)(Q) =1, ie.
1 € Aé;/?g(2+) .

ForY # @, Q'(Y) = v by (837) and (833). In additioR!" () = 0, see Def. 83.
Therefore

0e Aé;,)’g(u) .
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These results can be summarized as stating that

{071} : Z:Z+7Z+¢N

O y_J {1} z=z20 €N
Agiz?) = {0}  : zeN,z#z;
o : z¢ N,z# 24

for all z € I, in other words:

Ay =4 (839)
and hence
P(A') = P(AS) ) by (839)
= Fy(Q")(9) by Def. 88
=Q'(2) by (z-1)
=z by (837)
=(4), by (836)
as desired.

Lemma 156 Lety : A — I be a given mapping such th&,; induces the standard
extension principle and satisfié&-6). Further suppose that somé € P(I) is given
such that

infY € N (840)

forallY C N,Y # @. ThenforallA € A, ¢)(A) = ¢(A"), whered’ € A is defined
by

I A(Z) Lz ¢ N
Alz) = { A(z)u{0} : zeN (841)

forall z € I.

Proof The case thaD(A) = {1} has already been considered in lemma L-155.
Hence suppose th&(A) # {1}. Then

A= Ao x (842)
where@ : P(E) — I, E = I x Lis defined by (69), an € ﬁ(E) is defined by
(66), see Th-94.

Now let B/ = ({1} x E) U ({2} x N). We define))’ : P(E’) — I by

o Q) Y N2} xN)=o
Q(Y):{inf{zeN:(2,z)eY’} YA« N £ (843)
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forall Y’ € P(E’), whereY € P(FE) abbreviates
Y ={(z,r) € E:(1,z,7) €Y'} (844)
We denote by : P(FE) — P(E’) the injection
Jjlz,r)=(1,2,7) (845)

forall z,r € I. Let us notice that for a giveri € P(E), Y andY’ = j(Y) are related
by (844). This proves that

Q=Qoj. (846)

Now we consideﬁ‘(X) € P(E'), based on our previous choice &fc P(E) accord-
ing to equation (66). Recalling (3§(X) is the fuzzy subset defined by

0= { O DT e

forall (c,e) € E'.
Now consider a choice &f" € P(E’) and letY” be defined by (844). Itis then apparent
from (845) that

(z,r)eY & (1,z,7) €Y',
for all z,r € I. Recalling (60) and (847), this proves that

9 (1,277") = 5X,Y(Z,T) (848)
3(X), Y’

for all z, 7 € I. We notice that for alt”” € P(E’) with Y’ N ({2} x N) = &,

Ey(3(X))
= inf{dx (c,e): (c,e) € E'} by (61)
J(X), Y’
= min(inf{4x (1,z,7): (1,2,7) € E'},
J(X), Y’
inf{é;(x) Y’(27e) : (2,e) € E'}) because’ = ({1} x E)U ({2} x N)
=min(inf{dx vy (z,7) : (2,7) € E},
inf{1 — W(x)@’ e):e€N}) by (848) and (60)
j

= min(inf{dx y (z,7) : (z,7) € E},
inf{l1 - 0:ee N}) by (847)
=min(inf{dx y(z,7) : (z,7) € E},1)
=inf{dx y(z,7): (2,7) € E},
i.e.

Ey(3(X)) = Ev(X). (849)



In the remaining case that N ({2} x N) # &, there existe, € N with (2,¢9) € Y.
Hence

Zy/((X)) = nf{s: _ (c.e): (ce) € E'} by (61)
J(X), Y’
< 4= (2,¢e0) becaus€2,ey) € E
J(X), Y’
=[x )(2, €o) by (60) becausé2, eq) € Y’
J(X
=0. by (847)

We conclude that
Ey/(3(X)) =0 (850)

in this case.
Now let zo € I. Based on the above observations, it is now easy to prove that

A x  (20) = A'(20). Toseethatd'(z9) CA =+ (20), consideny € A'(zp).
Q,§(X) Q,§(X)

a. If rg € A(z), then we know from (842) that there exists € P(E) with
QYY) = z andZy (X) = ro. AbbreviatingY’ = Y, we notice that’”’ and
Y are related by equation (844). In additidfi N ({2} x N) = @. Hence
v+ (j(X)) = Ey (X) = ro by (849) andy'(Y") = Q(Y) = z by (846). From
Def. 86, then, we obtain tha € A ;( (20).

Q'3 (X)

b. If ro ¢ A(z0), thenro = 0 by (841) andzy € N. Now considely” = {(2, z)}.

We then have)'(Y') = zo by (843). In addition=y/(5(X)) = 0 = r¢ by

(850). Henceindeeth € A = (zp).
Q5 (X)

Itremainsto be shownthat - (z9) C A'(20). Henceconsider, € A =  (20).
Q".5(X) X Q.§(X)
By Def. 86, there existy” € P(E’) with Zy (j(X)) = ro andQ’(Y") = z.

a. IfY' n({2} x N) = @, thenz = Q(Y') = Q(Y) by (844) andr, =

Ey/(](X)) = Ey(X) by (849), i.e.’l“o S AQ’X(Z()) = A(Zo) - AI(ZU), see
(842) and (841). Henca, € A’(z).

b. fY'N({2}xN) # @,thenzg = Q(Y’) = inf Z,whereZ = {z € N : (2,2) €
Y’, see (843). Clearly C N andZ # & becaus&@” N ({2} x N) # &. Hence
by (840),inf Z € N. Becausey = Q(Y’) = inf Z, this proves that, € N.
We further notice that, = Zy/(j(X)) = 0 by (850). Equation (841) then
shows that indeedy = 0 € A’(2p) because, € N.

These results can be summarized as stating4hat (z9) € A’(zp). Combining
Q.3 (X)

this with the earlier result that’(zg) € A = (z0) and noticing that, € I was
Q",J(X)

296



arbitrary, we obtain the desired

A=A4 . (851)
Q.3 (X)
Now we proceed as follows.

V(A4) = Y(Ag,x) by (842)
= ¥(4g,x) by (846)
= Fy(Q' 0 J)(X) by Def. 88
= Fu(@)((X)) by (2-6)
=¢pA 2 ) by Def. 88

Q,j(X)

= y(4'), by (851)

which completes the proof of the lemma.

In order to prove the theorem Th-112, we further need an observatiodfow. .. x,,
behaves with respect to the symmetric differeficeFor a given base sét and fuzzy
subsetsXy, Xs € P(E), X;AXs € P(E) is defined by

X1 AX, (6) = max(min(MX1 (6), 1- 125:¢) <€)>7 min(l —HX, (6), X, (e)>)

foralle € E. Here we shall only need the case that the second argument is crisp.
Hence consideX € P(E) andA € P(E). In this case X A A becomes

pxaate) ={ 120 A (352)

forall e € E. Let us now state thaly x,
ence in this special case.

x,, IS compatible to symmetric set differ-

7777

Lemma 157 Let E # @ be some base seK € P(E) andY, A € P(E). Then
Eyaa(XAA) =2y (X).

297



Proof  Straightforward.

Eyaa(XAA)
= min(inf{uxaa(e) : e € YAA},
inf{l — pxaale):e ¢ YAA}) by Def. 83

=min{inf{ux(e):e ¢ A,e € YAA},
inf{l —px(e):e€ A,e e YAA},
inf{l —pux(e):e¢ Aje ¢ YAA},
inf{ux(e):ec A,e ¢ YAA}} by (852)
= min{inf{ux(e):e ¢ A,e e Y},
inf{l —px(e):e€c Ae¢ Y},
inf{l—pux(e):e¢ Aje ¢ Y},

inf{pux(e):ec A,ecY}} by def. of crisp set difference
= min(inf{ux(e) : e € Y},

inf{l —pux(e):e¢Y}) because forakk,e € Aore ¢ A
=Zy(X). by Def. 83

Lemma 158 Let@ : P(E)" — I be a quantifier of arityn > 0, X1,...,X,, €
P(E)and A € P(E). Further suppose thap’ : P(E)" — T is defined by

Q' (Y1,....Yn) =Q(Y1,..., Y, AA) (853)
forall Yi,...,Y,, € P(E). Then
AQ,aXI ,,,, X'n, = AQ,Xl ,,,, XHAA

forall Xi,..., X, € P(E).

Proof To see this, let € I. Then

Aqr xy,..x, (2)
:{Ey1 _____ yn(Xl,...,Xn) :Q’(Yl,...,Yn) :z} by Def. 86
={Ey, v, (X1,.... X)) : Q(Y1,..., Y, AA) =z} by (853)

= {Zy,.. viaa(X1, .., X,AA) : Q(Ya, ..., Y,AA) =z} by Def. 83, L-157
={Zs.z. (X1, Xn DA Q(Z4, ..., Zy) = 2}

where the last equation is obtained from the substitutign= Y3,...,Z2,_ 1 =
Y,.1,Z, = Y,AA. This step is valid becausg, — Y, AA = Z, is a bijec-
tion, with obvious inverseZ,, — Z,AA = Y,,. Recalling Def. 86, this proves that
Ao xy,..x,(2) = Ao.x,,....x,ra(2). Because € I was arbitrary, we conclude that
AQ/7X1 ..... X, = AQ7X1 ..... X,AA, QS desired.
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Lemma 159 Lety : A — I be given and suppose thay, induces the standard fuzzy
disjunction and the standard extension principleZ]f satisfieqZ-4) and (Z-6), then

P(A") = p(A)
forall A € A, where
o | A(R) D oz2H 2
Alz) = { A(zp)U{l—=ry} z:zi (854)

forall z € I.

Proof The claim of the lemma is trivial it — . € A(z;), in which cased’ = A
and hencep(A4) = ¥(A’). In particular, this covers the case that = 1 where
1—T+:1—%:%€A(Z+)

Hence let us assume that > § and1 — r, ¢ A(z,). Itis apparent from L-156 that
without loss of generality, we may further assume that

0€ Az) (855)

forall z € I. In particular0 € D(A) and henceD(A) # {1}. In addition, we obtain
that0 € A(zy). Becausd — r, ¢ A(zy) by assumption, we only need to consider
the case that, # 1.

In order to prove the claim of the lemma, we introduce a suitable choice of semi-
fuzzy quantifiers and fuzzy arguments, which permit us to reduce the lemma to fulfill-
ment of (Z-4).

To this end, we shall suppose thiat D(A) — I and¢’ : D(A’) — I are chosen
such that

r e A(¢(r)) forallr € D(A) (856)
re A(C(r) forallr € D(A"). (857)

It is apparent from (854) and (62) th&X(A’) \ {1 —r.} C D(A) C D(A’). We can
hence assume that

C(ry=""(r) forallr € D(A) (858)
In the following, we abbreviate_ = 0. It is then clear from (855) andl, # 1 that
r_=0e€D(A)NI[0,1—7ry). (859)

In particular, congition (65) is satisfied by . Based orr_ = 0, we now define fuzzy
subsetsY, X’ € P(I x I) by

r oreA(z)\ {ry}

px(z,r) =< r_ :oré Az) (860)
l—r_ : r=ry,z=24
ro o oreA)\{r+}

pxo(mr) =4 1o ¢ v A() (861)
Ty o T=Ty,2=24
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ro: oreAlz)\{rs}

ux(z,r)=4¢ 0 : ré¢Az) (862)
1 @ r=ry,z=24
ros e AR\ {re)

ux (z,r)=<¢ 0 : ré¢A(z) (863)
ry =Ty, 2=24

because_ = 0. GivenY € P(I x I), we abbreviate

P =y (X) (864)
Z=inf{z €1:(2,7") e YA{(24,r+)},7 =7"(YV) € A(2)} (865)

Based orx’ andr’, we then defing) : P(I x I) — I by

Z :or' e A(Y)

QM={ {y + g

forall Y € P(I x I). In the following, let us suppose that* € P(I x I) is defined
by (66), choosing_ = 0 as above. We then know from Th-94 that

A« x-=A4A (867)

becauseD(A) # {1}. Observing thatX* = XA{(z,,r4)}, and converselX =
X*A{(z4,r+)}, we can then conclude from L-158 that

Ag.x = Ag-x- = A. (868)

Next we prove thatlg x, x» = A’. To see this, let; € I be given.

(866)

a. We first consider the subsumptioff (z9) C Agu x,x’(20). Hence letry €
A’(zp). We shall discern three cases.

al If rg =ry thenzy = z; by Def. 87 because; > %. Now conside © = X 1
=2

andY*' = X' 1. ThenY* = {(zy,r)} andY*' = {(z4,r;)} = Y, which is
=2
apparent from (862), (863), Def. 29 and Def. 87. We notice that

inf{l —r:reA(z)\ {ry}}

=1—sup{r:reAz)\{rys}} by De Morgan’s law
— 1~ sup D(A)\ {r4) by (62)
—1—(1—ry), by Def. 85
i.e.
inf{l—r:reAl)\{ry}} =r+. (869)
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Hence

Ey+(X)

=min(pux (z4,74), inf{1 — px(z,7) : (z,7) # (24,74)}) by Def. 83
=min{l,inf{l —r:r € A(z)\ {r+}},inf{1 -0:r ¢ A(z)}} by (862)
=inf{l —r:re A(z)\ {ry}},

ie.
Ey+(X)=rg (870)
by (869). By similar reasoning,
Ey+(X)
=min(px (z4,r4), nf{1 — px:(2,7) = (2,7) # (24,74)}) by Def. 83

=min{ry,inf{l —r:re€ A(z) \ {r:}},inf{1 —-0:r ¢ A(2)}} by (863)
=min(ry,inf{l —r:r e A(z)\ {r+}})
=min(ry,r4), by (869)

ie.
Eye (X)) =ry.
Combining this with (870), we obtain from Def. 83 that
Ey+ y+ (X, X') = min(Ey+(X),Ey+ (X)) = min(ry,ry) =ry . (871)

As concerns the quantification result, we notice thaty +, Y *+') = Q(Y tuy ') =

Q(Y*) becaus& ™ = Y+ Now letY*+" = X*_,. Then
=2
24 = 24(4)

= 2, (Ag- x-) by (868)

=Q*(v+" by L-123

=Q(V"),
ie.

QY™) =2y (872)

which is apparent from the definitions @fand@*, noticing that
Y = YA {(z4,r4)}.
Hence indeed
QUY T YY) =QY ) =2 =2 (873)

and=y+ y+ (X, X') =ry =7, i.€.79 € Agu,x,x(20), as desired.
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a.2 Now suppose thaty = z, andry = 1 — r,; we then know from (854) that
ro € A'(20). Inthis case we le¥ = Y+ = {(z,r,)} as above and”’ = @. Then

Eg(X') =inf{l — pux/(z,7) : 2,7 € I} by Def. 83
=min(inf{l —r:r € A(z) \ {r+}},
inf{l1-0:r¢ A(z)},1—ry} by (863)
=min{ry,1,1 —ry}, by (869)
ie.
Ep(X)=1-ry (874)

because, > 1. Therefore

EY+,®(X-X/) = min(Ey+(X),Eg (X)) by Def. 83
=min(ry, 1 —r4) by (870), (874)
=1-=ry, because > 1

i.e.2y+ »(X.X") = ro. As concerns the quantification result, we notice that
QUYT,2)=Q(YTUZ)=Q(Y") =2 = 2,

see (872). This proves thaf € Agu, x,x’(20), see Def. 86.

a.3 Inthe remaining case thétg, ro) # (z4,74+) and(zo,79) # (24,1 — r4), let
Y ={(z0,70), (z4,7+) U {(2,7) : 7 € A(2) N (ro, %]} (875)

We notice thaly A{(z;,r4)} = Y*, whereY* is defined by (736). Therefore

Sy (X) = Ey- (X*) by L-157
Hence
To
= Ey(X)
=inf{dxy(z,7): 2,7 €1} by (61)

=min(inf{dx vy (z,7) : 2,7 € L, (2,7) # (24,7+) },
0x,y (24:7+))
=min(inf{dx y(z,7) : 2,7 € L,(z,7) # (24,7+)},1). by (60), (875), (862)

We conclude that in fact

ro =inf{dx v (z,7): 2,7 € L, (2,7) # (24,74+)}. (876)
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As concernsX’, we compute
Ey(X')
=inf{ox yv(z,7r):2,r €I} by (61)
=min(inf{dx/ y(z,7) : 2,7 € L, (z,7) # (24,74) },
ox7y(24,74))
=min(inf{ox y(z,7): z,7 € L, (2,7) # (24,7+) },

ry) by (862), (863)
= min(rg, r4) by (876)
=T0.

ThereforeZy y (X, X’) = min(Ey (X), Ey (X')) = min(rg,r9) = ro. We further
notice thatQU(Y,Y) = Q(Y UY) = Q(Y) = Q*(Y™*) = 29 by (747). Hence again
ro € Agu, X, X'

This completes the proof of claim that

A/(Zo) g AQU,X,X’(ZO) . (877)

b. Now let us prove the converse subsumptidn, x, x(z0) € A’(20), by consid-
ering a choice ofy € Agyu, x,x/. By Def. 86, then, there exidt, Y’ € P(I x I) with
QU(Y, Y’) = 20 andEyvy/ (X, X’) =T79.
bl Y =Y"={(z,ry)}andY’ =Y+ = {(z;,74)}, then

ro = Eyy (X, X') =14

by (871) andzy = QU(Y,Y’) = z, by (873). r. € A’(z,) entails the desired
ro € A'(20).

b2 IfY =YY" = {(z24,74)} andY’ = &, thenZy(X) = r; by (870) and
Ey/(X')=1-r because
Sy (X')
=E5(X") by assumptiory” = &
=inf{l — pux/(z,7): z,7r € I} by Def. 83

min{inf{1 — px/(z,7) : 7 € A(2) \ {ry}},
inf{l — px:(z,7) : 7 ¢ A(2)},

1—px(zg,re)} by splittinginf-expression
= min{inf{l —r:r € A(2) \ {r+}},

inf{1-0:r¢ A(z)},1—ry} by (863)
=min{r;,1,1 —r;} by (869)
=1-r,. because; > %

303



Hencerq = Ey,y(X, X') = min(ry,1—r) = 1 —ry, again noticing that. > 1.
As concerns the quantification result, = QU(Y,Y’) = QU(Y T, @) = QYT U
@) =Q(Y ") =21 by (872). Butrg =1 — 1 € A'(z4) = A'(2) is apparent from
(854).

b3 fY =gandY’' =Y+ ={(z,r.)} then

Ey (X)
=Zg(X) by assumptiolt” = @
=inf{l — px(z,r): z,r € I} by Def. 83

= min{inf{l — pux(z,7): r € A(z) \ {r+}},
inf{l — px(z,7):r ¢ A(z)},

1—pux(ze,r4)} by splittinginf-expression
=min{inf{l —r:r € A(2) \ {r+}},

inf{l1—-0:r¢ A(2)},1 -1} by (862)
= min{ry, 1,0} by (869)

=0.

In particularro = EY,Y’(Xv X/) = mil’l(Ey ()()7 Sy (X/)) = min(O, EYI(X/)) =0.
Butrg = 0 € A(z) is known from (855), andi(zy) C A’(zo) is apparent from (854).
Hence indeed; € A’(z).

b.4 For all other choices of, Y’ € P(I x I), we know tha UY” # {(z4,r4)} =
Y+ =Y+’ Consequently

EYUYI (X) <1- 4 (878)
by L-125 becaus&y+ (X) = ry for YT = X In addition, we then know that
eitherY # Y+ orY’ # Y+ and hence

>3
Tro = Ey7y/(X, X/) S 1-— T+, (879)

again by L-125. We shall utilize these inequations in a minute. In the following, it is
convenient to discern two subcases.
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b.4.i If (Z+7T+) ¢ Y, then

Ey,y (X, X') = min(Ey (X), Ey/ (X)) by Def. 83
< Zy(X)
=inf{dxy(z,7): 2,1 eI} by (61)
< Ox,y(24,74)
=1—px(z4,74) by (60)
—1-1 by (862)
=0.

We conclude thaty = =y v/ (X, X’) = 0. Hencery € A’(z,) by (855).

b.4.ii Inthe casethatz,,r,) € Y, we know thafz;,r,) € Y UY". Now consider
z,r € L. For(z,r) = (24, r+), we then obtain fronjz,, 7, ) € Y UY’ that
dx,yuy (z,7) =0xyuy (24,74) = px(z4,74) =1 (880)

see (862). Inturn

min(dx v (z,7),0x v/ (z,7))

=min(dx,y (24,74),6x7,y (24,74+)) by assumptioniz, r) = (z4,74)
=min(1,0x: v/ (z4,74)) by (880)

=0x vy (24,74)

> min(ixo(4,7), 1~ (2, 74)) by (60)

=min(rp,1—r4) by (863)
=1-7rp, because, > 3
ie.
min(dx.y (z,7),0x: v/ (z,7) > 1 —ry . (881)
Now consider(z,r) # (z4,74+). Then
px(z,r) = px(z,7), (882)

see (862) and (863). We further notice that

/’LX(27T):,U/X'('27T) < 1—7"+ < % (883)
in this case, which is apparent from (882), (863), Def. 87:and- % In the following,
it is convenient to discern four cases for the givenr) # (z4, 7).

— If (z,7) e Yand(z,r) € Y/, then(z,r) e Y UY’ and

ox,yuyr(2,1) = px(2,7) by (60)
=min(ux(z,7), ux(z,7)) by idempotence afnin
= HliIl(/J,X (Zr T)v 2. ¢ (Z7 T)) ) by (882)
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dxyvuy(z,r) =min(dx v(z,7),0x v (2,7)) (884)

by (60).

— If(z,7) €Y and(z,r) ¢ Y', then(z,r) € Y UY"’ and hence

ox,yuy (2, 1) = px(z,7) by (60)
= HllIl(,uX (Zv T)v 1- /LX(Za T)) by (883)
=min(pux(z,7),1 — ux(z,1)), by (882)
and again
(;X,YUY/ (Z7 T) = mln(6XY (Zv T)a 6X’,Y/ (Z, T)) (885)

by (60).

— If (z,7) ¢ Yand(z,r) € Y, then(z,r) € Y UY". Therefore

ox,yuy(2,7) = px(z,7) by (60)
= mln(l - :uX(Z7T)7,uX(ZaT)) by (883)
:miD(l—/},x(Z,T),MX/(Z,T)). by (882)

By (60), then,

6X,YUY’ (Z, ’I”) = IniIl((‘)‘X,y(Z7 ’I"), (SX/,Y/(Z, T)) . (886)

— Finallyif (z,7) ¢ Y and(z,r) ¢ Y’, then(z,r) ¢ Y UY" as well. Hence

dxyuy/(z,r) =1—px(zr) by (60)
=min(l — ux(z,7r),1 — ux(z,1)) by idempotence ofnin
=min(l — ux(z,7),1 — pux/(z,7)), by (882)

ox,yuy'(z,r) =0xy(21),0x v (2,7)) (887)

by (60). Therefore

inf{éxyuy(z,7) : (2,7) # (24,74)}
= inf{min(dx y (z,7),0x/ v/ (2,7)) : (z,7) # (z4,74+)} (888)
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by (884)—(887).
We can now put the pieces together, in order to handle the remainingy dase

Eyuy(X)
=inf{dx yuy(z,r): z,r €I} by (61)
= min(inf{dx yuy'(2z,7) : (z,7) # (z4,74+)},
Ox yuy (z+,74)) by splittinginf-expression
= min(inf{dx yuy/ (2, 1) : (z,7) # (z4,74+)},1) by (880)
=inf{dx vuy/(z,7): (2,7) # (24,74)}, becausd is identity of min
ie.

Eyuy(X) = inf{min(dx,y (2,7),0x7,y (2, 7)) : (2,7) # (24, 74)} (889)
by (888) and in particular
inf{min(dx,y (2,7), 0x',y/(2,7)) : (z,7) # (z4,74)} <1 =1y (890)
by (878). Therefore

Eyy (X, X')

=min(Zy (X), Ey/ (X)) by Def. 83
=min(inf{0x y (z,7) : z,7 € I},inf{dx/ y/(z,7) : 2,7 € I}) by (61)

= inf{min(dx y (z,7),dx" v (2,7)) : z,7 € I}

= min(inf{min(dx vy (2,7),0x/ v/ (2,7)) : (z,7) # (24,7+) },

min(dx,y (z4,7+), 0x v (24,74))) by splittinginf-
expression
=inf{min(dx v (z,7),dx v/ (2,7)) : (z,7) # (24,74)}. by (881), (890)
Hence
ro = Ey,y (X, X') = Eyuy/(X) (891)

by (889). Because alsg = QU(Y,Y’) = Q(Y UY’), we know from Def. 86 that
ro € Ag.x. ButA = Ay x by (868), hencey € A(zy). We further notice from (854)
that A’(z9) C A(zo). Hence indeed, € A’(z), which completes the proof of case
b.4.ii.

Noticing thatry € Agu, x,x(z0) was arbitrarily chosen, we hence know that

Aou.x,x'(20) € A'(20) .

Combining this with (877), we obtain thaly, x x'(z0) = A’(z0). Becausey € I
was arbitrary, we conclude that

Aguxx = A" (892)
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Based on these preparations, the claim of the lemma is now apparent from the following
reasoning.

P(A") = P(Aqu x.x7) by (892)
= Fy(QU)(X, X") by Def. 88
= Fyp(Q)(X UX) by (Z-4)
= Fy(Q)(X) becauseX’ C X, see (862) and (863)
= (Ag,x) by Def. 88
=1(4), by (868)
as desired.

Lemma 160 Lety : A — I be given and suppose thé&}, induces the standard fuzzy
disjunction and the standard extension principleZ]f satisfiegZ-4) and (Z-6), then

B(A) = p(A)

forall A € A, where

/ _ Az CozF 2y
v@={ U o § I (893)

forall z € I.

Proof Consider a choice ofl € A and suppose that’ € A is defined by (893). By
L-159, we can assume without loss of generality that

1-— ry € A(Z+) 5 (894)

wherer, referstory = r,(A) andzy = 2, (A) as usual. In particular, we then know
thatl —r, € D(A) and inturn,D(A) # {1}. We can further assume without loss of
generality that, > % This is apparent because (893) yiells= A’ in the case that
r4 = 3, and hence the claim of the lemma is trivially fulfilled.

In the following, we assume a choice ¢f D(A) — I and¢’ : D(A’) — I such
that

r e A(¢(r)) forallr € D(A) (895)
re AC(r) for all r € D(A') (896)
C(r)y=""(r) forallr € D(A)ND(A’). (897)

It is apparent from (62) and (893) that suitable’ exist. Let us now defin&, X’ e

P xI)by

=1, L e (898)
_ px(z,1) (z,7) # (24,74)
e ‘{ ! (17 = (z174) (%69
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forall z,r € I. We define : P(I x I) — I by

o ={ L L nEA (900)
where

' =1r'(Y) = Ey(X) (901)

Z=2(Y)=inf{ze€l:(z,r) €Y, =r"(Y) € A(z)} (902)

forallY € P(I x I).
Now we considefdg xux’ andAgu, x, x/. As concernsdg xux+, we first notice from
(898) and (899) that

X'cx, (903)
in particularX = XUX’" andAg xux’ = Ag,x. We also know thaD(A4) # {1}. We

hence notice thad and X are defined in accordance with the corresponding definitions
in Th-94b., which yields the desired

Ag,xux' =Agx =A. (904)

It remains to be shown thalgyy x,x» = A’. Hence considet, € 1.

a. |first prove the subsumption

A'(z0) € Aqu,x.x(20) - (905)
To see this, lety € A'(z0).
al Inthe casethaty = ri(A4’) = 1, we know thaty = z. We now consider
(YY) ="y =(X ) (906)

see (700). Itis then apparent from (898), (899),= r,(4) > % and L-125 that

V={(z4,74)} =Y. (907)
Therefore
Ey(X)
= mln(lnf{,ux (ZJra TJr)}v
inf{l — ux(z,r): (z,7) # (z4,74)}) by Def. 83 and (907)
> min(ry,inf{l — max(r,1 —ry) : (z,7) # (24,74+)}) by (898)
= min(ry, inf{min(1 —r, 7y ) : (2,7) # (z24,74)}), by De Morgan'’s law
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Ey(X)=r4 (908)
by L-125; and
Ey(X')
— min(inf{jux: (74,74},
inf{l — px/(z,7): (2,r) # (z4,74)}) by Def. 83 and (907)
> min(3,inf{1 — max(r,1 —ry): (z,7) # (24,74+)}) by (899)
= min(3, inf{min(1 — r,ry) : (z,7) # (24,74)}) by De Morgan’s law
=3 by L-125

i.e.Ey’y/ (X, X/) = mil’l(Ey(X), =y (X/)) > min(r+, %) = % Because
EY,Y’(Xv X/) < /‘X/(z+v7n+) = %
by Def. 83 and (899), this proves that

Ey/(X) =3 (909)
and in turn,
Eyy (X, X) =13. (910)
Hence indeed, = 1 = r, (A’) € Ey,y/ (X, X’). In addition
QU(Y,Y') =Q(Y uY") by Def. 12
=Q(X_1UX'_1) by definition of Y, Y’
25 25
=Q(XU X’>l) (property ofa-cuts)
=2
= Q(X,1) by (903)
=QY) by definition of Y’

=zt by (900)

because in this case = r, by (901) and (906), and heneé = z,. To sum up,

| have shown that, = 3 € Eyy/(X,X') andQU(Y,Y’) = 24 = 2, i.€. 5 €

Agu,x,x(z0) by Def. 86, as desired.

a.2 Now suppose thaty # r,. We can then conclude from € A’(z) and (893)
thatry € A(zp) as well. In addition,

ro <1l—rg (911)

by (893) and L-125, recalling the abbreviation = r,(A). We now defineY” ¢
P xI)by

Y = {(z0,70)} U{(2,7) : 7 € A(2) N (ro, 3]} . (912)
Let us first show thaEy (X) = rp.
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a.2.i Letus begin with the case th@t, ) € Y. We observe that
px (20,70) = 70 (913)
by (898) because, € A(zp). In addition,

inf{px(z,7): r € A(z) N (ro, 3]}
= inf{r : there existy: € Is.t.r € A(z) N (ro, 3]}, by (898)

inf{pux(z,7):r € A(z) N (ro, 3]} > 70 (914)
Recalling that

inf{ux(z,7r): (z,r) €Y}
= min({px (z0,70), iInf{pux(z,7) : 7 € A(z) N (ro, %]}) )

we hence obtain from (913) and (914) that

by (912)

inf{ux(z,r): (z,r) €Y} =rp. (915)

a.2.ii Now let us consider the case thatr) ¢ Y. Then

inf{l — px(z,r): (z,7) ¢ Y}
= min{inf{l — ux(z,r) : r ¢ A(2)},
inf{l — px(z,7): 7 € A(z) N [0,70]},
inf{l — px(z,r):r € A(z) N [5,1]}}, by (912)

inf{l — ux(z,r): (z,7) ¢ Y}

= min{inf{l — ux(z,7) : r ¢ A(2)},
inf{1 — pux(z,7): 7€ A(z) N [0,70]},
1—px(z4,74)}-

(916)

We shall consider these subexpressions in turn.

— Firstly
inf{l — pux(z,7):7r ¢ A(2)}
=inf{l—(1—ry):r¢ A(2)} by (898)
=inf{ry :r ¢ A(2)}

+

(VAR
-

9

N[

in particular

inf{l — ux(z,r):r ¢ A(2)} >rg. (917)
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— Secondly,
inf{l — px(z,r) :r e A(z) N[0,70]}

=inf{l—r:re A(z)N[0,r9)} by (898)
>inf{l—r:re[0,r)}
= inf(1 — rg, 1]
= 1 —To
>1-(1-ry) by (911)
=1- T4+
>, by (911)
ie.
inf{l — ux(z,r):r € A(z)N[0,79]} > 79 . (918)
— Finally
1 —px(20,m0) =1 —10 > 70 (919)

by (898) andry € A(z), and noticing that, < 1.
These results can be summarized as stating that

inf{l — ux(z,r): (2,7r) ¢Y} >rg (920)

in casea.2.ii, which is straightforward from equations (916)—(919). The above results
can then be combined to yield

Ey(X) = min(inf{ux(z,7) : (z,7) € Y}, inf{l — ux(z,7) : (z,7) ¢ Y}) =1,

(921)
see Def. 83, (915), and (920).
Next we prove thaEy (X') = rq as well.
a.2.iii In order to treat the case th@at, ) € Y, we first notice that
px(ro, 20) = px (r0,20) = To (922)

becausézg,rq) # (z4,74), see (899) and (913). In addition
inf{px: (z,7) 17 € A(2) N (ro, 3]}
=inf{ux(z,r) : r € A(z) N (ro, %]}
by (899) because € (ry, 3] entails that < ... Hence from (914),
inf{px:(z,7) 17 € A(2) N (ro, 3]} =70 (923)
In turn, (912), (922) and (923) prove that

inf{ux/(z,7): (z,r) €Y}
= min(px (20, 70), inf{pux: (z,7) : 7 € A(z) N (1o, 5]}) (924)
=T7T0-
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a.2.iv. We now consider the case that ) ¢ Y. Then
inf{l — px/(z,7) : (z,7) ¢ Y}
= min(inf{l — px/(z,7) : r ¢ A(2)},
inf{l — px/(z,7) : r € A(z) N[0,79)},
inf{l — px/(z,7) :r € A(z) N[5, 1]}} by (912)
= min(inf{1 — ux(z,7r) : v ¢ A(2)},
inf{l — ux(z,r):r € A(z)N[0,79)},
1 —px(24,74)} by (899), L-125
= min(inf{l — px(z,7) : r ¢ A(2)},
inf{l — pux(z,r):r € A(z)N[0,79)},
1} by (899)
and hence
inf{l — pux/(2z,7): (2,7) €Y} >rg (925)
by (917), (918) and recalling thag < 3.
It is now apparent from Def. 83, (924) and (925) that
Ey(X/) =T0-
Combining this with (921) yields
Ey7y(X, X/) = min(To, 7“0) =T7T0- (926)

It remains to be shown th&@U(Y,Y) = z,. To see this, we first observe thdt=
Ey (X) = ro by (901) and (921). Hence

2 =inf{z: (2,r") € Y,r' € A(2)} by (902)
=inf{z: (z,r0) €Y,r9g € A(2)} because’ = r
= inf{zo}, by (912)
ie.
2 =2z. (927)
Consequently
QUY,Y)=Q(Y UY) by Def. 12
=Q(Y)
=2, by (900) and~’ = rq € A(z0)
ie.
QU(Y,Y) =z (928)

by (927). Recalling Def. 86, (926) and (928) prove thate Aoy x, x/(20). Hence
(905) is valid, as desired.
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b. Nextwe consider the converse subsumption,
AQU,X,X/ (Zo) g A,(ZO) . (929)

Hence letry € Agu,x,x/(20). By Def. 86, then, there exidt,Y’ € P(I x I) with
QUY,Y") = zp and=y y/ (X, X’) = ro. In the following, it is convenient to discern
a number of cases.

bl Y =Y*=X_1andY =Y+ = X'_1,ieV =Y = {(z,ry)} by

1
>§ 5
(907), thenY UY’ = {(z4,74+)} = Y*. Hence
Eyuy(X) = Ey+(X) becaus&¢ * =Y UY’
=7, by (908)

for rp = ri(Ag x), and henceyy = z1(Ag,x) = 24(A) = z; by L-123 and
L-124 because > i, and recalling equation (904). We further recall that=

Eyv,y/(X,X’) = 1 by (910). Butry = 1 € A'(z;) is immediate from (893).

b.2 The next case to consider¥§ = Y+ = {(z;,r;)} andY’ = @. Then again
YUY ={(z24,7r4)} =Yt and hence;, = QU(Y,Y") =Q(Y UY') =Q(Y ") =
z4 by the same reasoning. In this case, we I&yv€X) = r, and

Ey/(X")

=Ex(X")

=inf{dx: z(z,7): 2,7 €I} by (61)
=inf{l — pux/(z,7): 2,7 € I} by (60)

min(inf{l — px:(z,r) : 2,7 € I},1 — px:(z4,r4+)) by splittinginf-expression
(z,r):z,r €I}, 1-3) by (899)

min(inf{1 — px(z,7) : z,r €I}, 3)
(2,7)

min(inf{l — px/(z,7

= min(inf{l — px/(z,7) : 2,7 € I}, ux/ (24,74)) by (899)
=min(inf{dx' v(z,7) : z,r € I},0x/ v(z4,7r4)) by (60),V = {(z4,r4+)}
=inf{dx/ v(z,7): 2,7 €I}

—E (V) by (61)

=1 by (909)

Hencery = Zy,y/(X,X’) = min(ry, 3) = % andz, = z; in this case. We again
notice from (893) thatg = 1 € A’(z;) = A’(z) in this case.
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b.3 Now we consider the case thit= @ andY’ = Y+ = {(z,,r})}. We first
observe that

nf{1 = px (2,7 (2,7) # (24,74)}
=inf{dxy+(2,7): (2,7) # (24,74)} by (60),Yt = {(z4,71)}
> inf{dx y+(2,7): 2,7 €I}

=5y (X) by (61)
=T+, by (908)
ie.
inf{l — px(z,7) : (2,7) # (z4,74)} 2 74 (930)

Therefore
Eo(X)
=inf{dx z(z,1):2,r €I} by (61)
= min(inf{1 — px(z,7) : (z,7) # (24,74)},

1= jix(24.74) by (60)
= min(inf{1 — pux(z,7) : (2,7) # (z4,74)},1 —r;) by (898)
=1-ry. by (930) because — r; < 7y

Let us now recall from (909) tha, (X’) = 1. Hencery = Zyy/ (X, X’) =
min(Zy (X),Ey/(X’)) = min(l — r4, 3) = 1 — ry in this case. We notice that
againzg = QU(Y,Y’) = Q(Y ") = 2, as in the previous cases. We can now utilize
(894)to conclude thaty = 1 —r; € A(z4) = A(2p). Itis then immediate from (893)
thatro € A'(z9) as well.

b.4 Finally we consider the case tHaUY" # {(z4,74)} = Y+. We first need some
observation omin(dx y (z,r), dx: v/ (z,7), for givenz,r € I. Hence let, r € I.

b.4i |If (z,r) = (24,r4), then

min(dx,y (24, 74+), 0x7,y7 (24, 74))

— min(dxy (4,7+), 1) by (60), (899)
> min(min(px (24, 7+), 1 = px (24,74)), 3) by (60)
= min(min(r,,1 —ry), %) , by (898)
i.e.
min(dx y(z,r),0x v/ (z,1) > 1—14 (931)

in this case because. > % by assumption.
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b.4.ii Inremaining case thdt,r) # (z4,ry), we first observe that
/Jx(Z,T‘) = NX'(Zar) (932)

for (z,7) # (24, r+), which is immediate from (898) and (899). It is now convenient
to discern four subcases.

— Firstlyif (z4,71) e Y and(z4,ry) € Y/, then(z;,r;) € YUY’ as well, and

min(éx,y(z, 7'), (5X/’y/ (Z, 7“))

= min(ux (=,7), px (2,7)) by (60)
=min(ux(z,7), px(z,7)) by (932)

= ux(z,r) by idempotence afnin
=dxyuy'(z,7). by (60)

— Secondly if(z,r) € Y and(z,r) ¢ Y’, then agair(z,r) € Y UY’ and

min(dx,y(z,7),0x" v/ (2,7))

=min(ux(z,7),1 — pux/(z,7)) by (60)

min(ux(z,7),1 — pux(z,7)) by (932)

= ux(z,7) becausg:x (z,7) < 3 by (898)
=0xyuy'(z,7). by (60)

— Nextif (z,7) ¢ Y and(z,r) € Y, then in particulafz,r) € Y UY”’ and hence

min((;x’y(z, T’), §X/7y/ (Z, 7”))

=min(l — px(z,7), px:(2,7)) by (60)

min(1 — px(z,7), px(z,7)) by (932)

= ux(z,7) becausg.x (z,r) < % by (898)
=0x yuy(z,7). by (60)

— Finallyif (z,7) ¢ Y and(z,r) ¢ Y’, then(z,r) ¢ Y UY" as well. Therefore

min(dx,y (z,7),0x/ vy (2,71))

=min(l — pux(z,7),1 — pux/(z,71)) by (60)
=1-—max(pux(z,7), px(z,1)) by De Morgan’s law
=1—pxux/(z,7)

—1— px () by (903)
=dxyuy(z,1). by (60)

These findings can be summarized as stating that

inf{min(dx y (z,7),0x v/ (z,7)) : (z,7) # (24,7+)}

=inf{dx yvuy/(z,7): (2,7) # (24,74)}. (933)
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We are now prepared to finish the proof thiaf, x x+(z0) C A’(z0). Hence consider
the remaining case.4 thatY UY’ # {(z4,r+)} =Y.

— If (z4,74) ¢ YUY, then we obtain from a simple computation that

EY,Y’ (X7 X/)
=min(inf{dx y (z,7) : 2,7 € I},
inf{dx: y/(z,7) : z,7 € I}) by Def. 83 and (60)

= inf{min(dx y (z,7),dx vy (2,7)) : z,r € I}
= min(inf{min(dx y (z,7),dx" v/ (z,7))
s (z,r) # (24,74) ) by splittinginf-expression
min(dx,y (z4,74), 0x7 v/ (24,7+)))
— min(inf{dx.y oy (2 7) : (2,7) # (24,74},
min(1 — px(z4,74),1 — px (24,74))) by (933) and (60)

and hence
Eyﬁ//(X, X/)
=min(inf{dx yuy'(z,7) : (z,7) # (24,71)},
1 —max(pux (z4,7+), bx (z4,74))) by De Morgan’s law
=min(inf{dx yuy'(2,7) : (2,7) # (z4,74)},
1= px(z4,74)) by (903)
= min(inf{dx yuy'(z,7) : (z,7) # (24,71)},
Sxyuy (z4,74)) by (60) becauséz; 7. ) ¢ Y UY’
=inf{dxyvuy/(z,7): z,rel}
— Sy (X). by (61)

— In the remaining case that U Y’ # Y+ and(z4,r4) € Y UY’, we conclude
fromEy+(X) =ry andY UY’ # Y that

Eyuy (X)) <1—ry. (934)
Therefore

L —ry > Eyuy(X)
= min(inf{dx,yuy'(z,7) : (2,7) # (24,71}, 6x,yuy (24,74)) by (61)
= min(inf{0x yuy(2,7) : (z,7) # (24, 74) }, px (24, 74)) by (60)
= min(inf{dx yuy/(2,7) : (z,7) # (z4,74)},74) . by (898)

Because, > % > 1 —r4, this proves that

Eyuy(X) =inf{ox yuy(z,7) : (z,7) # (24,74)} - (935)
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Hence

Ey,y (X, X')
=min(inf{ox y(z,7) : z,r € I},
inf{dx/ y/(z,7): z,r € 1}) by Def. 83 and (61)

= inf{min(dx y (z,7),0x v/ (2,7)) : 2,7 € I}
= min(inf{min(dx y (2, 7),dx v/ (z,7))
s (z,r) # (24,74) 1 by splittinginf-expression
min(0x,y (24,74), 0xy (24, 74)))

=min(inf{0x yuy'(z,7) : (z,7) # (24,74)},

min(0x,y (z+,74),0x7 v (24+,74))) by (933)
= min(Ey vy (X), min(dx,y (24,74),0x7,v/(24,74)) by (935)
=Eyuy(X). by (931) and (934)

We conclude thaEy_y/(X) = Eyy/(X,X’) = ry in the considered case that
YUY’ #Y*. Inaddition,Q(Y UY’) = QU(Y,Y’) = 2. Hencerg € Ag x(20) =
A(zp) by Def. 86 and (904). Becausg # r.., we obtain from (893) that, € A’(z)
as well.

This finishes the proof of palt. that A x, x/ (20) € A’(z0) for all zp € I. Combin-
ing this with (905), we obtain the desired

A= Aqux xr - (936)
To see how this proves the lemma, consider the following reasoning.
V(A') =(Agu,x,x7) by (936)
= Fyp(QU)(X, X") by Def. 88
= Fy(Q)(X UX') by (Z-4)
= Fy(Q)(X) by (903)
= (40, x) by Def. 88
= P(A). by (904)

Hencey(A’) = ¢¥(A), as desired.

Proof of Theorem 112

Lety : A — I be a given mapping and suppose t#atinduces the standard fuzzy
disjunction and the standard extension principle. Further suppose that (Z-4) and (Z-6)
are valid. We now consider sorak € A. In order to prove thap(Ag) = (0 Ao), it

is convenient to define a special choicedt A in terms ofAg, viz

— AO(Z) Lz 7& z
A(z) —{ (Ao(z)\ fr ) U (L} & 2oz (937)
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for all z € 1. Itis then apparent from Def. 90 that
OAg=0A. (938)
In addition,Aq and A are related by (893), and hence
¥(Ag) = 1p(A) (939)
by L-160. We further notice that, (4) = 3, and hence
A(z) COA(2)

for all z € I, which is immediate from Def. 90.
We now recall Th-94. Noticing tha} = r(4) € D(A), we clearly haveD(A) #

{1}. Hence by parb. of the theorem, we can construst ¢ P(I xI) andQ :
P(I x I) — I with

Agx =A. (940)

Recalling this construction, we can choese= 1 here, see (65). Hence the definition
of X € P(I x I) becomes

r e A(z)
r¢ Alz)

forall z,r € I, see (66). We further assume a choicé€ ofD(A) — I which satisfies
property (64). For a giveli € P(I x I), we shall then assume the usual definition of
r=r'(Y), 2 =2(Y)andQ(Y), as stated by (67), (68) and (69), respectively. In the
following, we introduce a second fuzzy subséte 75(1 x I), which we define by

ux(z,r) = { (941)

= 3

fr o redA(®)
”X’(“){§ ¢ DA (942)

forall z,r € I. We know that, (A) = 1 and hence € [J A(z) entails that < r, =
1. Therefore

MX<Z7 T) < % (943)
pxo(z) < 4 (944)

for all z,r € L. In addition,r < r, = 1 forallr € D(J A) entails thatX’ C X and
in turn,

XuX'=X. (945)
We are now interested iigu x, x7. Hence lety € I. In order to prove that

Agu,x,x'(20) = 0 A(20) ,
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a. |first consider the subsumption

O A(z0) C Agu,x,x(20) - (946)

Hence letro € O A(z9). Then there exists; € A(z) with 1o < r;. We define
Y e P(IxI) by

Y ={(20,70), (20,71)} U{(2,7) : € A(2) N (11, %]} (947)

We now consider’ = r/(Y). Some preparations are necessary to determine the precise
result obtained for’.

a.l Letus begin with the case ¢, r) € Y. We first notice that
inf{px(z,7) : v € A(z) N (r1, 3]}
> inf{r:r € A(z) N (r1, 3]} by (941) andD(4) C [0, 3]

> inf(rl, %] 5

inf{ux(z,7):r € A(z) N (ry, %]} > (948)

It is now convenient to discern two subcases.

a.li |If rg € A(zp), then

inf{ux(z,r): (2,r) €Y}

= min{px (20, 70), x (20,71),

inf{px(z,7):r € A(z) N (r1, 3]}} by (947)

= min{rg, r1,inf{ux(z,7) : r € A(z) N (r1, %}}}, by (941) andg, 1 € A(zo)

ie.
inf{ux(z,r): (z,r) €Y} =1 (949)

by (948) and recalling thaty < r;.

a.lii Inthe remaining case tha ¢ A(zo),
inf{ux(z,7r):(2,7) €Y}

= min{sux (20, 70), kx (20,71),
inf{ux(z,7):r € A(z) N (r, %]}} by (947)
= min{%,rl,

inf{px(z,7):r € A(z) N (r1, 3]}}, by (941) andrg & A(z), r1 € A(z0)

inf{ux(z,r): (z,7r) €Y} =1 (950)
by (948) and noticing that; < 1 = 7, (A).
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a.2 Now we consider the case that r) ¢ Y. We need some preparations.

a2i: (z,r)¢Y andr ¢ A(z).

If r > 1, thenr ¢ A(z) for anyz € I becauser € A(z) entails that < r, = 1.

Hence forr > 1, ux(z,7) = 5. Because sucte, r) exists, we know that

sup{px (z,7) : (2,7) & {(20,70), (20,71)},7 & A(2)} > 5.

On the other handyx (z,r) < max(r, 1) = 3 forr < 1, which is clear from (941)
1

andr, (A) = 5. Hence
Sup{NX(Z7r) : (Z,T) ¢ {(207T0)7 (207 7“1)},7“ ¢ A(Z)} < % )
and we may summarize this as

Sup{:uX(Z?r) : (Z,?“) ¢ {(2077ﬁ0)7 (ZO,Tl)}’T ¢ A(Z)} = % (951)

a.2ii. (z,7) ¢ Y andr € A(z).

Next we consider the case that r) ¢ {(z0,70), (20,71)}, 7 ¢ (1, 3] andr € A(z).
Becauser € A(z) C D(A4) C [0,r4] = [0, 1], we know thatr < 1 and hence
px(z,7) =r < 1 by (941). This proves that

sup{ux(z,7) : (z,r) ¢ {(z0,70), (z0,71)},7 & (r1, %],r € A(z)} < % (952)
In turn we combine cases2.i anda.2.ii, and thus obtain

sup{px(z,7): (2,7) €Y}
= max(sup{px (2,7) : (2,7) & {(20,70), (20,71)}, 7 & A(2)},
sup{px (z,7) : (2,7) & {(20,70), (20,71)},7 ¢ (r1, 5], 7 € A(2)}) by (947)

sup{pix (z,7) : (2,7) €V} = 5
by (951), (952). In particular
inf{l - px(z,7): (27) € Y} = 1 —sup{px(z,r): (z,7) ¢ Y} = 3 (953)
by De Morgan’s law. Consideringy (X ), we recall that

Ey(X) = min(inf{ux(z,7) : (2,7) € Y},

inf{l — ux(z,r): (z,r) ¢ Y}) by Def. 83
and hence
= N ro : To € A(Zo)
r=ErX)= { r1 : ro ¢ A(zo) (954)
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by (67), (949), (950) and (953).

Next we focus or:’ = 2/(Y'), as defined by (68). Ify € A(zp), thenr’ = ry by
(954). We hence know from (947) thétz,r') : (2,7") € Y} = {(2,70) : (2,70) €
Y} = {(z0,70)}, because; > ry. Hence in this case,

A(2)} =inf{z20} = 29

, we recall that’ = r; by (954).
(z,7m1) : (z,m1) € Y} = {(20,71)}

Z=inf{zel:(z,r)eY,r =1

(Y) e
by (68). In the remaining case thag ¢ A(z)
Therefore (947) yield$(z, ') : (z,7') € Y} ={
Hence again

=inf{z €I: (z,r") € Y,r' =7'(Y) € A(2)} = inf{z0} = 29
by (68). This completes the proof that in both cases,
2 =z. (955)

Next we consideEy (X).

a.3 Letus start with the case ¢f, ) € Y. We observe that

inf{px:(z,7) 1 v € A(2) N (r1, 3]}

=inf{pux(z,7):r € A(z) N (r1, 3]} by (941), (942)
becaused(z) C J A(z). Therefore
inf{ux(z,7) € A(2) N (r, 4]} > 7 (956)

by (948). We can hence compute

inf{ux/ (z,7): (z,7) €Y}

= min{ux(z0,70), tx(20,71),

inf{px (z,7): v € A(z) N (r1, 3]}} by (947)
=min{ro, r1, inf{px/(z,7) : r € A(z) N (r1, 3]}}, by (942)
i.e.
inf{ux (z,7): (z,7) €Y} =19 (957)

by (956) and recalling thaty < r;.
a.4 Now we treat the case thet, r) ¢ Y. We shall split the proof into two subcases.

adi: (z,r)¢Y andr ¢ A(z).

We recall thatD(A) N (3,1] = @ because, = 3. Hence by Def. 90D (0] A) N
(%, 1] =z aswell, i.e.ifr > % thenr ¢ 0 A(z), regardless of € 1. By (942), then,
we conclude that.x: (z,7) = 5 whenever > L. In particular

sup{px: (2,7) : (2,7) & {(20,70), (20, 71)},7 ¢ A(2)} > pxo(1,1) = 5
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On the other handyx/(z,r) < max(r, 3) = 4 for r < 1. Hence

Sup{ﬂX/ (Z7T) : (Z,T) ¢ {(ZOvTO)v (ZO7T1)}7T ¢ A(Z)} < % .
Combining this with the former result yields
sup{ux:(z,7) : (z,7) & {(20,70), (20,71)},7 & A(2)} = % (958)

adi.. (z,r)¢ Y andr ¢ A(z).
In the remaining case that,r) ¢ {(z0,70), (20,71)}, 7 ¢ (r1,3] an
we know from (941) thapx (z,7) = r. We conclude fromA(z) g
r € JA(z) as well; henceux/ (z,7) =r = px(z,7) and
Sup{MX’(Zvr) : (Z7T) ¢ {(ZO7T0)7 (20,7"1)},7“ ¢ (7’1, %]77‘ € A(Z)}
=sup{ux(z,r): (z,7) ¢ {(z0,70), (z0,71)},7 & (r1, %],r € A(z)}.

Recalling (952), then, this becomes

sup{px(z,7) : (z,7) & {(20,70), (20,71)},7 & (r1,5],7 € A(z)} < 5. (959)

Now we combine the results af4.i anda.4.ii. Thus

Sup{MX' (Z7T) : (Z,T) ¢ Y}
= max(sup{px(z,7) : (2,7) & {(20,70), (z0,m1)}, 7 & A(2)},
%

sup{px(z,7) : (2,7) & {(20,70), (20,71) }, 7 & (71, 5],
re A(2)})

/\m
VD>
.—r/—\

by (947)

by (958), (959)

1

2

and by De Morgan’s law,
f{1 — e (2,7) : (2,7) ¢ V) = 1—sup{px(z,7) : (z,7) § Yy = 1. (960)

In order to comput&y (X’), we recall that

Sy (X') = min(inf{px/(z,7) : (2,7) € Y},
inf{l — ux/(z,7): (2,7) ¢Y}). by Def. 83

Therefore
Ey (X/) =70, (961)

which is apparent from (957) and (960). Based on this result, we now obtain

Ey’y (X, XI) = mm(Ey(X) Ey(X/)) by Def. 83
= min(Ey (X), 7o) by (961)
and hence
Eyy (X, X') =1, (962)
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recalling thatry < r; and=y (X) > ro by (954).

Finally we consider the quantification resdf{Y’). We notice that”’ € A(zy) =
A(z"), see (954) and (955). Hen@J(Y,Y) = Q(YUY) = Q(Y) = 2, by (69). Be-
cause&yy (X, X') = ro by (962), we conclude from Def. 86 that € Agu, x,x' (20).
Noticing thatr, € O A(zo) was arbitrarily chosen, this proves that the subsumption
(946) is indeed valid.

b. It remains to be shown that

Aqu,x,x'(20) € O A(z20) - (963)

To see this, lety € Agu x,x/(%0). By Def. 86, there exist, Y’ € P(I x I) with
zo = QU(Y,Y") andry = Ey,y+ (X, X’). In the following, | will show thatry < r’ =
r(YUY’).

The proof requires some preparations, and we must relaiéix y (e),d0x/ y+(z,r)
to dx yuy(z,r) for arbitraryz, r € I.

Hence letz, r € 1. Itis convenient to discern four cases.

b.l1 If (z,r) € Y and(z,r) € Y/, then(z,7) € Y UY’ and hence

min(dx,y(z,7),0x/ vy (2,7))

=min(ux(z,7), px(z,7)) by (60)

= px(z,71) apparent from (945)
< px(z,7) by (945)

=0x yuy'(z,7). by (60)

b.2 Inthe second caseth@t,r) € Y and(z,r) ¢ Y’, we again havéz, r) € YUY’
and hence

min(dx v (2,7),0x v/ (z,1))

— min(ux (27,1 o (217)) by (60)
— ux(zr) by (943), (944)
=dx,yuy(z,7). by (60)

b.3 In the third case thatz,r) ¢ Y and(z,r) € Y’, it again holds tha{z,r) €
Y UY’. Therefore

min(dx y(z,7),0x v/ (z,7))

=min(l — px(z,7), ux(z,1)) by (60)

= px(z,7) by (943), (944)
< px(z7) by (945)

= 5X,yUy/ (Z, T’) . by (60)
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b.4 Finallyif (z,r) ¢ Y and(z,7) ¢ Y’, then(z,r) ¢ Y UY" as well. Therefore

min(dx,y (z,7),0x/ v (2,71))

=min(l — ux(z,7),1 — pux/(z,7)) by (60)
=1-—max(ux(z,7), px(z,1)) by De Morgan’s law
=1-pux(zr) by (945)
=dx,yuy(z,7). by (60)
The results obtained for these four cases can be summarized as
min(dx y(2z,7),0x v/ (2,71)) < dxyuy (2 7) (964)
forall z,r € 1. Therefore
ro = Ey.yv/ (X, X’) by assumption oi, Y’
=min(inf{ox y(z,7) : 2,7 € I},
inf{dx/ y/(z,7):zrel}) by Def. 83 and (61)
= inf{min(dx y (z,7),0x v/ (2,7)) : z,r € I}
<inf{oxyuy/(z,7r):z7rel} by (964)
=Eyuy(X), by (61)
ie.
ro = Ey,y/ (X, X') < Eyuy(X) =71, (965)

wherer’ abbreviates’ = /(Y UY”), see (67). Let us further notice that
QY UY') =QuUY,Y') = 2, (966)
by assumption oy, Y’ € P(I x I). Now consider
Z=inf{zel:r € A(2),(z,7) e YUY},

as defined by (68). It is convenient to discern two cases, in accordance with the defini-
tion of ), see (69).

— Inthe first case that’ € A(r’), we obtain from (69) thaty = Q(Y UY"’) = 2/
Hencer’ € A(z). Becausey < ' by (965), we conclude from Def. 90 that indeed
o € A(Z())

— Inthe remaining case that ¢ A(r’), we know from (69) that, = Q(Y UY”) =
¢(r"). We then deduce from (64) that € A(¢(r")) = A(z). Becausey < 7’ by
(965), Def. 90 again proves that € 0 A(zp), as desired.

Because € Agu,x,x’(z0) was arbitrarily chosen, this proves that subsumption (963)
of partb. is indeed valid. Combining this with our earlier result (946) of @artwe
have proven thall A(zp) = Agu,x,x'(20) forall zp € I, i.e.

Agux x» =0A. (967)
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Based on this findings, it is now easy to prove the claim of the theorem. We simply
notice that

¥(Ao) = ¥ (A) by (939)
= (Ao, x) by (940)
= (Ag,xux’) by (945)
= Fp(@Q)(X UX) by Def. 88
= Fyp(QU)(X, X") by (Z-4)
= (Agu,x,x7) by Def. 88
=¢(@dA4) by (967)
= (0 4). by (938)

Hence indeed (A4y) = (0 Ap), as desired.

B.22 Proof of Theorem 113

Lety : A — I be given and suppose tha}, induces the standard disjunction and the
standard extension principle. Further supposedtsitisfies (Z-4) and (Z-6). In order
to prove that{-5) is valid, we consideA, € A. In terms ofA4,, we defined; € A by

Ai(2) = Ao(2) U {0} (968)
for all z € 1. We further defined € A by
A=0A4. (969)
It is then apparent from Def. 91 that
BA, = BA. (970)
In addition, it is clear from (969), Def. 90 aride A;(z) for all z € I, that
0€ A(z) (971)
for all z € T as well. We further notice that
7‘+:7"+(A):% (972)
and
A(z) € {[0,BA(2)), [0, BA(2)]} (973)

which is apparent from (969) and Def. 90. In particular, because r, € A(z4),
this entails that

Alz) = BA(z) = [0, 3]. (974)
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It is further immediate from Def. 91 that
A(z) CHA(z) (975)

for all z € I. Recalling that, (4) = r(BA) = 1, we further know from Def. 87
that

D(A) =0, 3] (976)
and

D(84) = [0, 3]. (977)

In dependence oA, we now defineX € P(I x I x I) by
{ s rcBA(z),s<r
px(z,rs)=< r  reAlz),s=r (978)
0 : else
for all z,7, s € I. We definef : I> — 12 by
flz,r8) = (2,7) (979)
for all z,r, s € I. We shall further abbreviate
X' = f(X) (980)
As | will now show, it then holds that

meen =15 0 T EEa0) 1)

for all z,r € I. To see this, consider,r € I. Then
MX’(Z7 7“)
=sup{ux(z,rs):sel} by (980), (3) and (979)
= max{sup{ux(z,r,s) : r € BA(z),s < r},
sup{ux(z,r,7): 7 € A(2)}

sup{pux(z,m,8):s>rV(ré A(z) Ns=r)
vr ¢ BA(z)}

= max{sup{s: r € BA(z),s < r},sup{r:r € A(z)},0}, by (978)

by splittinginf-expression

ie.
pux (z,7) = max(sup{s : r € HA(z),s < r},sup{r:r € A(z)}). (982)
Now in the case that € A(z), thenr € BBA(z) also and hence

px(z,7) = max(sup|0,r),r) by (982)
= max(r,r)

=T.
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In the case that € HA(z) \ A(z), we obtain that

px(z,7) = max(sup[0,r), sup &) by (982)
= max(r, 0)
=r.
Finally if » ¢ BBA(z), thenr ¢ A(z) either. Hence
ux(z,7) = max(sup &, sup &) by (982)
= max(0,0)
—0
This completes the proof that (981) is indeed valid.

Let us now return to the task of defining a suitable quantifier. For a givere
P(I x I), we abbreviate

r = TI(YI) = EY’(X/) , (983)

Z=2Y")={z€l:(z)eY r e BA(2)} (984)
and

Z=2Y)=ifZ=inf{zel: (z,7) €Y' )" € BA(2)}. (985)

We further notice that because of the specific propertied,ahe( : D(HA) — I
as known from the construction used in Thi®4an be replaced by the constant,
because

re A(zy) = BA(24) (986)
forallr € D(HA), see (974), (976) and (977). We now defipe P(I x I) — I by

o) { Gy L UEHIES e
forall Y’ € P(I x I). Let us now show that
Ag x =HA. (988)
Hence letzy € 1. We first consider the subsumption
BHA(z0) C Ag,x(20) - (989)
To see this, we considep € EHA(z). In dependence ormy, we define
Y' = {(20,70)} - (990)
Let us now notice that
pxe(z,7) < 5 (991)
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for all z,r € I, which is clear from (981) and (977). Therefore

vy (X'
zyn(lin()ux/(zo,ro),inf{l —px(z,7): (z,7) # (20,70)} by Def. 83 and (990)
= min(_ro_,inf{l = o (2,1) s (57) £ Gosro)}) by (990)
<3 >3
=To,
ie.
r =1 (992)
by (983). As concerng = Z(Y'), we hence obtain that
Z=A{z€l:(z,r)eY' r eBA(2)} by (984)
={z€l:(z,r) €{(20,70)},70 € BA(2)}, by (990) and (992)
ie.
7= {2}, (993)

Thereforez’ = inf Z = inf{zy} = 2¢. Because’ = ro € HA(z9) = HA(2') by
assumption and’ = zy € {20} = Z, we conclude from (987) th&(Y’) = 2’ = z.
Hence indeea, € Ag x/(z0) by Def. 86, i.e. (989) holds, as desired.

In order to prepare the proof of the converse subsumption

Ag,x(z0) C BA(20), (994)
we first need to show that
T+(AQ,X’) = % . (995)
To this end, we observe that
/
X 2%
={(z,r) €T : px/(2,7) > 3} by Def. 29
:{(2771) €I2 :/J’X’(Zvr) 2 %}7 by(ggl)
i.e.
X’Z% = {(z, %) : % € BA(2)} (996)
by (981). Therefore
4+ (Ag,x7)
=Ex , (X by L-124
=]
= min(inf{px/(z,3) : 5 € BA(2)},
inf{l — px/(z,7): 1 ¢ BA(z) Vr# 3}) by Def. 83 and (996)

= min(3,inf{1 — px/(z,7): § ¢ BA(z) Vr # 1}) because € BA(zy)

[u

2
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noticing thatinf{1 — px/(z,7) : + ¢ BA(z) Vr # 1} > 1 by (991). This proves that
(995) is valid, and we can now focus on (994).
Hence letry € Ag x/(z0). By Def. 86, there exist¥” € P(I x I) such that

ro = Zy(X) (997)
20=Q(Y) (998)

Let us abbreviate’ = »'(Y’), Z = Z(Y’) andz’ = 2/(Y”’) as usual. Then
7"/ = Ey/ (X/) =T0 (999)

by (983) and (997). We now consider two cases: either HA(z') andz’ € Z; or

r' ¢ A(Z')orz ¢ Z.

In the case that’ € BA(2') andz’ € Z, we obtain from (987) and (998) thay =
Q') = 2. Hencer’ € BA(Z') entails that”’ € EHA(z,) as well. Finally we apply
(999), which yields the desired result = r' € HA(zy).

In the remaining case that ¢ HA(2') or 2’ ¢ Z, we obtain from (987) and (998) that
zo = Q(Y') = z;. We then observe from (995) and L-124 that< r (4g, x/) = 1.
Hencer, € [0, %] =HA(z4) = HBA(2) by (974). This completes the proof that (994)
is valid. Recalling our former result (989), it is then obvious that equation (988) holds,
as desired.

Next we prove thaﬁQof’X = A. To see this, lety € I be given. We first consider the
subsumption

A(z0) € Ay, 7 x(20) - (1000)
Hence letry € A(zp). We define
Y = {(z0,70,70)} - (1001)
and
Y = (V) = {(z0,70)} (1002)
We now observe that
px(z,1,8) < 5, (1003)

for all z, r, s € I, which is apparent from (978), (976) and (977). Therefore
Ey(X)

N|—
v

<

= min(ux (20, 70,70), inf{l — pux(z,7,5) : by Def. 83 and (1001)

(z,7,8) # (20,70,70)})

= px (20,70, $0) ,

(1]

y(X) =m0 (1004)
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becauseux (zo,70,70) = ro by (978), andro € A(zy) by assumption. Recalling
(1003), it is now apparent that

Ey (X!
_ H(lin()uX/(zO, ro),inf{1 — jix: (2,7) : (2,7) % (20,70)}) by Def. 83 and (1002)
<3 >3
= px+(20,70) ,
ie.
r=r"(Y")=Ey/(X") =g (1005)

by (983), (981) and noticing thap € EHA(z) by (975). We then obtain that

2 =2(Y")
=inf{z €l: (z,7") €Y', 7' € A(2)} by (985)
=inf{z € I: (2,79) € {(20,70)}, 70 € A(2)} by (1005) and (1002)
= inf{Zo} y
and hence

2=z (1006)

Because”’ = rg € A(z9) = A(2') C HA(2') by (1005), (1006), (975) and the
assumption thaty, € A(zg), we conclude from (987) thdt) o f)(Y) = Q(f(Y)) =
Q') = 2/ = z5. Combining this with the above result (1004) tf&t(X) = ro,
we obtain from Def. 86 that, € AQO?AX(ZOL as desired. Becausg € A(zp) was
arbitrary, this proves that subsumption (1000) is indeed valid.

It remains to be shown that the converse subsumption is also valid, i.e.

AQof,X(ZO) g A(Zo) . (1007)
I will first show that
T+(%of,x) = % (1008)
Hence let us observe that
Xz%
={(z,r,5) € : ux(z,1,8) > %} by Def. 29
={(z,7,8) € : ux(z,7,8) = %}, by (1003)
i.e.
XZ% ={(z, %, %) : % € A(z)} (1009)
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by (981). Therefore

7“+(AQO£X)
—=x , (X) by L-124
=)
=min(inf{px(z, %,1): 1 € A(2)},
inf{l — px(z,r,8): 2 ¢ A)Vr£3Vs#1}) by Def. 83 and (1009)

V
=min(4,inf{l — px(z,r,8): 5§ ¢ A(z) Vr# 3 Vs#1}) by(978)and
1
5 =11 € A(zy)

)

N

noticing thatinf{1 — px(z,7,s) : 1 ¢ A(z) Vr # £ Vs # 1} > 1 by (1003). This
proves that (1008) is valid. We can hence turn attention to (1007).

To see that (1007) holds, consider € A, ((z0). By Def. 86, then, there exists
Y € P(I x I xI)such that

=y (X) = 1o (1010)
QYY) =(QoNHY) =z, (1011)

whereY”’ abbreviates
Y' = f(Y). (1012)

In order to prove the desired (1007), we now make some observationshaw(z, r)
relates tanf{dx: y(z,r,s) : s € I} for (z,r) € Y.

Hence letz, r € I be given and suppose that ) € Y’. Then there exists € T with
(z,7,8) €Y, see (1012). Hence

inf{ux(z,r,s):s€l (z,m,5) € Y} < pux(z,7138)
becauséz,r, ) € Y, which proves that
inf{ux(z,r,8):s€l,(z,rs) €Y} < %, (1013)
see (1003). We further notice that
inf{l — px(z,r,s):s €l (z,rs) ¢Y}>1, (1014)
which is apparent from (1003). Therefore

inf{dx v (2,7 5):sel}
= min(inf{ux(z,7,9) : s €L, (2z,r,s) € Y},

inf{l — px(z,r,8):s €I (2,18 ¢Y}) by (60)
=inf{ux(z,r,s):s €l (z,rs) €Y}, by (1013) and (1014)

inf{dx v (2,7 s):se€l} <px(zr,38) (1015)
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becauséz,r, §) € Y by assumption. It is now convenient to discern three subcases. If
r € A(z) ands = r, thenux (z,7,8) = pux(z,r,r) = r by (978). Hence

inf{dx y(z,m ) :s€el}
< ix(zm, ) by (1015)

=7.

If r € OA(z) ands < r, thenux (2,7, §) = § by (978). Therefore

inf{dx y(z,1):sel} (1016)
< pux(zr8) by (1015) (1017)
=3 by (978) (1018)
<r. by assumption (1019)

In the remaining case that¢ (] A(z), orr € JA(z) \ A(z) ands > r, orr € A(z)
ands > r, we notice thaj.x (z,r, §) = 0 by (978). This proves that

inf{dx y (2,7, ):s€l}
< px(z,1,5) by (1015)
=0. by (978)

We can summarize these results as stating that

{ [0,r] : 7€ A(z)
inf{dx y(zrs):selteqs [0,r) : reBA(2)\A(2) (1020)
{0} : else
In particular,
inf{dx y(z,r ) :s€l} € Az) (1021)

by (971) and noticing that € BA(z) \ A(z) entails that- = HA(z), becaused(z)
satisfies (973).

Now let us return to the original goal of proving (1007). In the following, | will use the
usual abbreviations' = r'(Y’), Z = Z(Y’) andz’ = 2/(Y”’). It is now convenient to
discern two cases, in parallel with the two cases in the definitiap oy (987).

Inthe first case that € HA(z') andz’ € Z, we conclude from (984) that’,»’') € Y’
andr’ € BBA(Z'). In turn, we conclude froniz’, ') € Y’ and (1021) that

inf{0x y(z',r',s): s €I} € A(Z).
Noticing that
=inf{dxy(z,79):2,rsel} by (61)

<inf{éxy(',7",s): s €I},
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we hence obtain from (973) that
ro € A(Z) (1022)

as well. Due to the assumption of the present caserthatBA(2’) andz’ € Z, we

look up from (987) that, = Q(Y”) = 2’ by (1011). Substituting this intey € A(z’)
yields the desired, € A(z).

It remains to be shown thay € A(zg) in the case that’ ¢ HA(z') or 2’ ¢ Z.

We then obtain from (987) and (1011) that = Q(Y’) = z,. Noticing thatr, <
ri(Agerx) = 1 by (1008), it is then immediate from (974) thgte A(z4) = A(zo).

This completes the proof of (1007). Recalling the former result stated in (1000), we
have hence shown that

AQofA}X =A. (1023)

Based on these preparations, the proof of the theorem now reduces to the simple com-
putation

)(BA) = (BA) by (970)
=(Ag.x1) by (988)
= Fp(Q)(X") by Def. 88
= Fu(Q)(f(X)) by (980)
= F4(Qo )(X) by (2-6)
= (Ap7.x) by Def. 88
= (A) by (1023)
= (A;) by (969) and Th-112
= 1h(Ap). by (968) and L-156

Hence we have succeeded in proving the claim of the theorem, and it indeed holds that
PY(BAg) = (Ao forall Ag € A.

B.23 Proof of Theorem 114

Lety : A — I be a given mapping which satisfieg-6). Further suppose thé,
satisfies (Z-2). To see that given these propertiesatisfies {-3) as well, we consider
a choice of4, € A with NV(A4p) C {0,1} andry € Ap(1), i.e.zy = 21 (Ag) = 1.
In particular, we then know from L-124 that

sup Ag(0) < % (1024)
and hence
BAo(0) = min(sup Ag(0), 1) = sup Ay (0) (1025)
by (73). Therefore
[0, sup Ap(0)] z=0
BAy(z) ={ {0} . ze(0,1) (1026)
[0, 1] oz=1
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for all z € I, which is apparent from Def. 91 and (1025), W) C {0,1}, and
z4(Ag) = 1,i.e.sup Ag(1) = ry > 5. We now defined € A by

{{supAo(O)} : z2=0

A(z) = z€(0,1) (1027)

%) :
{1} oz =1
for all z € 1. Itis then clear from Def. 91 that

{ [0,sup Ap(0)] : z2=0
BA(z) = ¢ {0} : z2€(0,1)
[0, 1] oz=1

]
for all z € I, and hence

HA = B4,. (1028)

We now consider a two-element et b}. Let us define a fuzzy subs&t € P({a, b})
by

pix (a) =1 —sup Ao(0) (1029)
px () = 3. (1030)
We notice that
E5(X) = min(1 — (1 —sup 4p(0)),1 — ) = sup 4y (0) (1031)
E(ay(X) = min(1 — sup 49(0), 3) = 3 (1032)
E(p3(X) = min(1 — (1 — sup Ag(0)), 3) = sup Ao (0) (1033)
E{a,b}(X) = min(1 — sup Ay (0), %) = % (1034)

by Def. 83, (1024), (1029) and (1030).
Now we consider the projection quantifieg : P({a,b}) — 2. It is apparent from
Def. 6 that(r,) ~*(0) = {@, {b}}. Hence by Def. 86,

Ar, x(0) = {Ea(X), Eq (X))} = {sup Ao (0)} = A(0)

by (1031), (1033) and (1027). We further notice tifat) (1) = {{a},{a,b}}.
Therefore

Aﬂ'a,X(l) = {E{a}(X)ﬂa{a,b}(X)} = {%} = A(l) y

see (1032), (1034) and (1027). Finally:ife (0,1), then(r,)~!(z) = @ becauser,
is two-valued. Thereforel,, x(z) = @ = A(z) in this case, recalling Def. 86 and
(2027). To sum up, we have shown that

A x = A. (1035)
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We can hence proceed as follows.

¥(Ag) = ¥ (EBAy) by (-5)
= p(HA) by (1028)
=1(4) by (1-5)
= Y(4Ar, x) by (1035)
= Fy(m,)(X) by Def. 88
= 7, (X) by (Z-2)
= pux(a) by Def. 7
=1 —sup Ap(0), by (1029)

i.e.(Ap) = 1 — sup Ap(0), as desired. Becausé, with NV(4y) C {0,1} and
z4+ = 1 was arbitrary, this proves thap{3) is indeed valid.

B.24 Proof of Theorem 115

Lety : A — I be a given mapping which satisfies-b). Further suppose th&i, is
monotonic. Hence for all semi-fuzzy quantifi€ps, Q; : P(E)" — 1,

Fyp(Qo) < Fy(Qr) (1036)

provided that)y < Q. To see that) satisfies{-4), we consider a choice ofy, A; €
A such that

AgC Ay, (1037)
It is then apparent from Def. 91 and Def. 89 that
BHA, C B4, (1038)

as well. In particular, we hence know from Def. 89 that for:AlE I andr € A, (2'),
there exists € Twith z < 2z’ andr € BA(z). In other words, there exists a mapping
k: I x I — I such that

k(z,r) <z (1039)
and

r € BAg(k(z,1)) (1040)

forall z,r € Twithr € HA;(z). We shall utilize the mapping in a minute.

Next we notice thaty (HAo) = ry(BA;) = 3. ThereforeD(BA.) # {1}, ¢ €

{0,1}. We can hence defin&,, X; € 75(1 x I) by (66) and in accordance with part
b. of Th-94, viz

: € HA,
px.(27) :{ g : glse ) (1041)
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for ¢ € {0,1}, noticing thatr_ = 0 is a legal choice of-_ in (65) becaus® <
D(HA.). We recall the coefficients (67) and (68). F&, ¢ € {0,1}, andY, €
P(I x I), these become

=r(Ye) = By, (Xe) (1042)
=z.(Yo)=inf{z €1:(z,7)) € Y,r. € BA.(2)}. (1043)

C

We now notice that the constant . = z (A.) is a legal choice fo¢, in (64) because
HAc(z4,) = 0,7 (BA.)] = [0,3] and D(BA4,) = [0,3]. We can hence define
Q. : P(I x I) — Iin accordance to (69) by

y 2 s rleBA(Z)
Qe(Ye) = { Zy. @ else (1044)
forall Y. € P(I x I) andc € {0,1}. Hence by Th-94,
Agr x, = HA, (1045)

for ¢ € {0,1}. Based onX, and X;, we now defineX € P(I x I x 2) by
/Lx(Z,T, C) = MX. (Z,?") (1046)

forall z,» € Tandc € {0,1}. For a givenY € P(I x I x 2), we denote by¥y =
Yo(Y), Y1 =Y1(Y) € P(I x I) the crisp sets defined by

Y. ={(z,r):(2,m,¢c) €Y} (1047)
for ¢ € {0,1}. We further abbreviate

ch+ =X = {(Zv %) : % € BHAC(Z)} (1048)

for c € {0,1}, see (1041).
We now define semi-fuzzy quantifiefy, Q1 : P(I x I x 2) — I by

Q1Y) =Q1(Y1) (1049)
[ Q) e
Qo(Y) { (0L (Y).Ey (X)) - else (1050)

forallY € P(I x I x 2). As | will now show, it holds that
Ag..x = BA, (1051)

for c € {0,1}. Hence letc € {0,1} and—c = 1 — ¢. Recalling (1045), it is sufficient
to show that

Ag..x = Ag.x. -

Now let zy € I. | first show that

Agr x.(20) € Ag. x(20) - (1052)
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Hence lety € BQ. X (z). By Def. 86, there exist§” € P(I x I) such that

20 = QLY (1053)
ro = Ey(X.). (1054)
Now conside¥” € P(I x I x 2), defined by
Y ={(z,r,¢): (z,7) €Y'} U{(2,7,—¢) : (z,7) € Y }. (1055)
It is then apparent from (1047) that
Y =Y. =Y. (Y). (1056)

Therefore
inf{dx v (z,7c):2z,rel}
= min(inf{px(z,7,¢) : z,r €I,(z,r,¢) €Y},

inf{l — pprc(:)z,r €I, (2,7,¢) ¢ Y}) by (60)
= min(inf{ux,(z,7) : (2,r) € Y.},

inf{l — px_(z,7): (z,7) ¢ Ye}) by (1046), (1055)
=inf{dx, v, (z,7): 2z rel} by (60)
= Ey,(X¢) by Def. 83
— 5y (X,) by (1056)

ie.
inf{dx y(z,rc):z,rel}=rg (1057)

by (1054). We further notice that
inf{dx y(z,7,—c) : z,r € I}
= min(inf{ux(z,7,—c) : z,r € I, (z,r,—¢) € Y},
inf{l — px(z,r,—c) : z,r € I, (z,7,7¢) ¢ Y}) by (60)
=min(inf{ux__(z,7): (z,7) € Xﬁczé},

inf{l — px__(z,7): (2,7) ¢ XﬁCZ%}) by (1046), (1055)

}) by Def. 29

=min(inf{pux_ (z,7): z,r €e Lux_ (z,7) > %},
inf{l —px_(z,r):z,r €Lpux_ (2,7) < %

and hence
inf{dx,y(z,7,mc): z,r €I} > 1. (1058)
Therefore
Ex(Y)
=inf{dx vy (z,7v):2z,r € Lve 2} by (61)
= min(inf{dx y(z,7,¢) : 2,7 € I},
inf{ox y (2,1 —c): z,r € I}) by splittinginf-expression

= min(ro, inf{ox y(z,7,—c¢) : z,r € 1}), by (1057)
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which proves that

Zx(Y) =ro (1059)
becausery € Ay x.(20) = HAc(z) C D(HA:) = [0, 3] by (1045), (62) and
Def. 91. Hence < 3 < inf{dx,y(z,7,—c) : z,7 € I} by (1058). In the case that
¢ = 1, we directly obtain from (1049) tha®.(Y) = Q1(Y) = Q) (Y1) = QL(Y.).
In the case that = 0, we first observe that; = Y;(Y) = Y1+, which is apparent
from (1047), (1055) and (1048). Therefate(Y) = Qo(Y) = Q4(Yo) = QL(Y:) by
(1050), i.eQ.(Y) = QL(Y:) is valid for both choices of € {0,1}. Inturn,Q.(Y) =
QL(Y.) = QL(Y') = 2o by (1056) and (1053). Hence indeegl € Ay x(z0) by
Def. 86.
It remains to be shown that the converse subsumptipny (z0) € Ag:, x.(20) is also
valid. Hence lety € Ag, x(20). By Def. 86, then, there exisis € P(I x I x 2)
such that

O |

ro = Ey (X) (1060)
20 = Q(Y). (1061)

In the following, it is convenient to discern two cases. In the first case that either,
orc = 0andY; = Y;", we obtain from (1049) and (1050) resp. thatY) = Q.(Y,).
Recalling (1061), this proves that

20 = QC(Y) = Q::(Yc) ’ (1062)

whereY, = Y.(Y), see (1047). Let us abbreviate = Zy_(X.). It is apparent
from (1062) and Def. 86 that, € Ag/ x.(z0). Inturn, we obtain from (1045) that
r. € HA.. We now observe that that

T« = Ey, (Xc)
= min(inf{ux,(z,7) : (z,r) € Y.},
inf{1—pux_ (z,7):(2,r) ¢ Yo.}) by Def. 83
> min{inf{ux_(z,7): (z,7) € Y.},
nf{ 1 pix, (57) : (,7)  Yel,
inf{ux_,(z,7): (2,7) € Y.},
inf{ 1= o, (5,7) £ (27) ¢ Yo}
= min{inf{pux(z,7,¢): 2,7 € I, (z,1,¢) €Y},
inf{l — pux(z,r,c): z,r €L, (z,1m,¢) ¢ Y},
inf{ux(z,r,-c): z,r €I, (z,r,—c) €Y},
inf{l — pux(z,r,—c): z,r €1, (z,7,-c) ¢ Y}} by (1046), (1047)
= min(inf{ux(z,7,v) : (z,r,v) € Y},
inf{l — pux(z,r,v): (z,7,0) ¢ Y})
=Ey(X), by Def. 83
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i.e.r. > ro by (1060). Recalling Def. 91, we conclude frome BA.(zy) andry <
r. thatrg € HAq(20) as well. Because of (1045), this proves that Ag: x.(z20), as
desired. In particular, we have shown that

Ag..x (20) € Agy,x.(20) = BA(20) (1063)

in the case that either= 1, orc = 0 andY; = Y;", again recalling (1045).
Now we consider the remaining case that 0 andY; # Yfr. We abbreviate

z1=0Q1(Y). (1064)

We then know from (1063) that

ro = Ey (X) € HA1(21) - (1065)
Therefore

Qc(Y) = Qo(Y) because = 0
=r(Q1(Y),Zy (X)), by (1050) becaus¥; # Y;"

ie.

20 = Qc(Y) = K(z1,70) (1066)

by (1060), (1061) and (1064). In particular,

ro € BAo(k(z1,70)) by (1040) and (1065)
— Ay (20) by (1066)
— Agy (20) by (1045)
= A, (70) -

This finishes the proof that the subsumptidg, x (z0) € Ag: x.(20) is valid in the
second case as well; it hence holds unconditionally forcfar {0,1} and arbitrary

zo € I. Combining this with our former result stated in (1052) and recalling that
Aqr x, = HBA. by (1045), we hence obtain the desitdgd, x = HA, for c € {0, 1},

i.e. (1051) is indeed valid.

Let us now notice thaf)y < Q;. To see this, considér € P(I x I x 2). We will
treat separately two cases. Firstlyif(Y') = Y;", then

Q1Y) =Qi(11 by (1049)
=Q1(Yy") by assumption that; = Y;*
= 24 (4g; x) by (1048) and L-124
= 24 (BA), by (1045)
and hence
QYY) =1 (1067)

340



becauser; (4;) = 1, see (63) and Def. 91. As concer@s(Y), then, we obtain

that
Qo(Y) = Qp(Yo) by (1050)

< 24(Ag;, x) by Th-93 and Def. 87

=z (BA) by (1045)

=1 see (63) and Def. 91

=Q:1(Y), by (1067)
and hence indee@,(Y) < Q:(Y). In the remaining case thaf (Y) # Y, we
notice that

Qo(Y) = w(Q1(Y), By (X)) by (1050)
S Ql(Y) )

where the last step is apparent from (1039), bec&iiseX) € Ay, x(Q:1(Y)) =
HA1(Q1(Y)) by Def. 86 and (1045). To sum up, | have shown afY) < Q1(Y)
regardless o € P(I x I x 2), and hence

Qo < Q1. (1068)
Therefore
¥(Ao) = ¥ (BA) by (1-5)
= Y(Aq,,x) by (1051)
= Fyp(Qo)(X) by Def. 88
< Fy(Q1)(X) by (1036) and (1068)
=¥(4Ag, x) by Def. 88
= (BA;) by (1051)
=(A1). by (-5)

HenceA, C A; entails that)(Ap) < ¥(A;), and the desired property{4) is indeed
valid.

B.25 Proof of Theorem 116

Lety : A — I be given and suppose thaj, is a DFS. We then know from Def. 17
that 7, satisfies (Z-1)—(Z-6). Now let us show thatsatisfies {-1)—(@)-5). We shall
consider these conditions in turn.

) satisfies (i-1).
This is apparent from Th-108 becauBg satisfies (Z-1).

¢ satisfies (1-2).
This claim is immediate from Th-110 becauBg is known to satisfy (Z-1), (Z-2) and
(Z-3).
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1 satisfies (¥-5).

To this end, we recall from Th-1 that the induced disjunction of the DESis an
s-norm. In turn, we obtain from Th-111 theft, induces the standard disjunction
x Vy = max(z,y). Itis then apparent from earlier work [9, Th-17.a, p. 20 and Th-
25, p. 25] thatF,, also induces the standard extension principle. Bec#&issatisfies
(Z-4) and (Z-6), we can hence conclude with Th-113 thatatisfies {-5).

1 satisfies (y-3).
Knowing thaty satisfies {-5), we can now apply Th-114 and conclude from the fact
that F,, satisfies (Z-2) that indeed satisfies/(-3).

1 satisfies (y-4).
To see this, we again utilize thatsatisfies {»-5). In addition, we know from Th-3 that
the DFSF,;, is monotonic. Hence Th-115 is applicable,;amdeed satisfies/(-4).

To sum up, | have shown that #, is a DFS, then) satisfies {-1)—()-5). Hence
(¢-1)-(@-5) are indeed necessary {8y, to be a DFS.

B.26 Proof of Theorem 117

Considerd € A and letz € I. Then

FHA(z)

= min(sup A(z), 3) by (73)

=1 min(2-sup A(z),1)

=1 -min(l1— (1-2-supA(z)),1—(1-1))

= 5(1 —max(1 — 2 - sup A(2),0)) by De Morgan’s law
=1—1.max(0,1 -2 supA(2))

=35 s(A)(2), by (80)

which proves (82). As concerns (83), we discern two cases. Firsthpifi(z) < %
then

s(4)(2)

=max(0,1 — 2 - sup A(z)) by (80)
=1-2-supA(z) becauseup A(z) < 1
=1—2-min(sup A(z), 3) becauseup A(z) < 1
=1-2-BA(2). by (73)
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In the remaining case thatip A(z) > 1,

s(A)(2)

= max(0,1 — 2 -sup A(z)) by (80)

=0 becauseup A(z) > 1
=1-2. %

=1-2 min(sup A(z), 1) becauseup A(z) > 1
—1-2-BA(z). by (73)

Hence indeed(A)(z) = 1 — 2 - A(z), regardless ofup A(z). This completes the
proof that (83) is valid, as desired.

B.27 Proof of Theorem 118

Lety : A — I be given and suppose thatsatisfies {-5). Further assume that
w : L — Tis defined by (84). We further defing : A — T according to (81), i.e.

P (A) = w(s(4)) (1069)
forall A € A. Now consider: € 1. Then
Ayay(2) = [0, 5 — 55(A)(2)] by (85)
= (0,3 — 3(1 — 284(2))] by (83)
=1[0,1 — 1 + BA(2)]
= [07 EEA(Z)]
= HA(2). by Def. 91
Because < I was arbitrary, this proves that
Aga) =BA. (1070)
We notice that
V' (A)
=w(s(A)) by (1069)
=P (Asa)) by (84)
= (@A), by (1070)
and hence
Y= (1071)
by (1)-5), noticing thatd € A was arbitrarily chosen. Therefore
Fop =Fyp by (1071)
=F., by Th-98
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as desired.
The claim of the theorem that aH,,-DFSes areF,,-DFSes is then apparent from Th-
116, because satisfies {-5) wheneverF, is a DFS.

B.28 Proof of Theorem 119

Lemma 161 Forall A € A, BHA = BA and@HA = HA.

Proof To see this, considet € A and letz € I. Then

sup BA(z) = HA(2) by (76)
= min(sup A(2), 3), by (73)
ie.
supBA(z) < 1. (1072)
Therefore
FBEA(2) = min(sup BA(z), 1) by (73)
= sup HA(z) by (1072)
= BA(z), by (76)
and hence
MmA = B4, (1073)

i.e. the first claim of the lemma is valid. As regards the second claim, we notice that

BBA(z) = [0, BBA(2)] by Def. 91
= [0,BA(2)] by (1073)
= BA(2). by Def. 91

Because: € I was arbitrary, this proves thEitHA = HA, as desired.

Lemma 162 Letw : L. — I be given and suppose that= ¢ : A — I is defined
by (81). Themy satisfieqt)-5).

Proof To see this, considet € A. Further letz € I. Then

s(A)(z) =1 — 2A(2) by (83)
=1 — 28MA(2) by L-161
= s(HA)(2) by (83).

Because: was arbitrary, we conclude that

s(A) = s(BA). (1074)

344



In turn

P(A) = w(s(4)) by (81)
= w(s(BA)) by (1074)
— (B4, by (81)

Hencey(HA) = ¢(A) for all A € A, which proves thaty-5) is indeed valid.

Lemma 163 Lety, v’ : A — I be given and suppose th&y, = F,. Theny = ¢/’

Proof To see this, consided € A. By Th-94, there exist§) : P(E)" — I and
X1,..., X, € P(E) with

A=A x,,. x,- (1075)
Therefore
Y(A) = ¥(4g,x,,..,x.) by (1075)
= Fyp(Q)(X1,...,Xn) by assumption thak,, = Fy.
=U'(Ag,x1,... ) by Def. 88
=¢'(4). by (1075)

Hence indeed)(A) = ¢(A’). Becaused € A was arbitrary, this proves that= ¢.

Proof of Theorem 119

Considerw : L. — I. We then know from Th-98 thak,, = F,,, provided we define
¥ : A — T by (81). In addition, we know from L-162 that this particular choice of
1 satisfies {-5). We now recall from L-163 thap is only mappingy’ : A — 1
which results inF,, = F,,. This proves that ever§,,-QFM is anF,;,-QFM based on

a mapping) : A — I which satisfies-5).

To see that the converse subsumption also holds, consider a chajce &f — I
which satisfies-5). We then obtain from Th-118 th&,, is anF,,-QFM. Hence all
F,-QFMs based on a mappingthat satisfiesy-5) are indeed,,-QFMs, as desired.

B.29 Proof of Theorem 120

Lemma 164 Letw : L — I be given and suppose that= ¢ : A — I is defined
by (81). If w satisfieqw-1), theny satisfiegy-1).

Proof In order to prove that) satisfies {-1), we consider a choice of € I with
D(A) = {1}. Itis then immediate from Def. 87 that

A@:{g}zj;Z. (1076)
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As concerng(A), we hence obtain in the case that 2,

s(A)(z4) = max(0,1 — 2 - sup A(z41)) by (80)
= max(0,1 — 2 -sup{1}) by (1076)
=max(0,1—-2-1)
= max(0,—1)
-0,

and in the case that# z,,

$(A)(z4+) = max(0,1 — 2 - sup A(z)) by (80)

=max(0,1 — 2 - sup @) by (1076)

(

(
=max(0,1 —2-0)

(0,1)

= max
=1.

This proves that

s ={ 9T

zF# 2y

(s(A)7H([0,1)) = {24} (1077)

Therefore

P(A4) = w(s(4))

=Z4.

by (81)

by (w-1) and (1077)

Becaused with D(A) = {1} was arbitrary, this completes the proof thasatisfies
(¥-1).

Lemma 165 Letw : L. — I be given and suppose that= ¢ : A — I is defined
by (81). If w satisfieqw-2), theny satisfiegy-2).

Proof Hence letd, A’ € A be given and suppose that
A(z) = A'(1-2) (1078)
for all z € 1. Then apparently
sup A(z) =sup A'(1 — 2) (1079)

for all z € I. Therefore

s(A)(z) = max(0,1 — 2 - sup A(z))

=max(0,1 —2-sup A'(1 —z2)),

by (80)
by (1079)
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and hence

s(A)(z) = s(A)(1 — 2) (1080)
by (80). The claim of the lemma is then apparent from the following reasoning.
P(A) = w(s(A)) by (81)
=1-w(s(4") by (w-2) and (1080)
=1 (4. by (81)

Hence {/-2) is indeed valid, as desired.
Lemma 166 Letw : L. — I be given and suppose that= ¢ : A — I is defined
by (81). If w satisfieqw-3), theny satisfiegy-3).

Proof To see this, consider a choice4fe A with NV(A) C {0,1} andr; € A(1).
We then know from (78) that

Az) =@ (1081)
forall z € (0,1). In addition,r, € A(1) andr, > 1 entails that, = 1 and
sup A(1) > % . (1082)
Therefore
s(A)(1) = max(0,1 — 2 - sup A(1)) by (80)
=0. by (1082)
In addition, we know that for € (0, 1),
s(A)(z) = max(0,1 — 2 - sup A(z)) by (80)
=max(0,1 — 2 - sup @) by (1081)
= max(0,1 —2-0)
= max(0,1)
=1.

To sum up, | have shown thatA4)(1) = 0 and(s(A))~1([0,1)) C {0,1}, as required
by (w-3). We further notice that

sup A(0) < % (1083)
becausd) # 1 = z; and hencer < 1 —r, < i forallr € A(0), see Def. 87.
Therefore
P(A) = w(s(4)) by (81)
=3 +35(4)(0) by (w-3)
=1+ 1 -max(0,1—2supA(0)) by (80)
=1+ 1(1-2-supA(0)) by (1083)
=1+1—supA(0)
=1—sup A(0).
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Hencey satisfies {-3), as desired.

Lemma 167 Letw : L. — I be given and suppose that= ¢ : A — I is defined
by (81). If w satisfieqw-4), theny satisfieqvy-4).

Proof LetA, A’ € A be given and suppose that

AC A (1084)

As | will now prove, this entails that(A) C s(A’). By Def. 62, then, it must be shown
that

a. forallz € I, inf{s(A4") (') : 2’ > z} < s(A4)(2);
b. forallz’ € I,inf{s(A)(z) : z < 2’} < s(A")(2").

We shall consider these conditions in turn. As concerns conditipwe recall from
(80) thats(A)(z) = max(0,1—2-sup A(z)). Inthe case that(z) = &, sup A(z) =0
and in turn,s(A)(z) = max(0,1 — 2-0) = 1. Hence triviallyinf{s(A")(z’) : 2’ >
z} < s(A)(z) becauses(A')(z') < 1forall 2’ € I,i.e.inf{s(A")(z") : 2’ > z} < 1.
In the remaining case that(z) # @, we considee > 0. BecauseA(z) # @, there
existsrg € A(z) such that

r>sup A(z) — 5. (1085)

By Def. 89, we conclude froml T A’ that there existsy > z with ry € A’(2p). In
particular,

sup A'(z9) > 1o > sup A(z) — § (1086)
and hence

s(A")(z0)

= max(0,1 — 2 -sup A’(29))

< max(0,1 —2(sup A(z) — §5))

=max(0,1 —2-sup A(z) +¢)

< max(g,1 —2-sup A(z) +¢)

=max(0,1—2-sup A(z)) +¢

=s(A)(z)+¢
Therefore

inf{s(A")(z") : 2 > 2z} < s(A")(20) because, > 2

¢ — 0 then yields



i.e. conditiona. is valid. To see that conditiob. is valid as well, considet’ € 1.
We recall from (80) that(A)'(z') = max(0,1 — 2 - sup A’(2’)). In the following,
we again discern two cases. FirstlyAf(z’) = @, thensup A’(z’) = 0 and hence
5(A)' (') = max(0,1 — 2-0) = 1. We then obtain froms(A)(z) < 1forall z € T
thatinf{s(A4)(z) : z < 2’} < 1 = s(A)'(%'), as desired. In the remaining case that
A'(z") # 2, we considee > 0. Becaused'(z’) # @, there exists,y € A’(z’) such
that

g

ro >sup A'(2") — 5.

Becaused C A’, we now obtain from Def. 89 that there exisis < 2’ with ry €
A(zp). In particular

sup A(zo) > ro > sup A(2') — §, (1087)
for the givenzy < 2’. Therefore

inf{s(A)(z): 2 <2}

< s(A)(20) because, < 2’/
= max(0,1 —2-sup A(2p)) by (80)
<max(0,1—2-(supA'(z') — 5)) by (1088)
=max(0,1 —2-sup A'(2) + ¢)

< max(e,1 —2-sup A'(') +¢)

=max(0,1 — 2 -sup A'(2)) + ¢,

inf{s(A)(z) : 2 < 2} < s(A)(2') +e
by (80). Because > 0 was arbitrarily chosen, we conclude that
inf{s(A)(2) : z < 2/} < s(A)(2)).
To sum up, both conditioa. andb. of Def. 62 are satisfied, which proves that
s(A) Es(A). (1088)
The claim of the lemma is then obvious from the following computation.

Y(A) = w(s(A)) by (81)
<w(s(4") by (w-4) and (1088)

=(A). by (81)

Lemma 168 Lety : A — T andw : L. — 1 be given. Further suppose that
satisfieqv-5). Then the following conditions are equivalent:

a. v is defined in terms @b according to(81);
b. wis defined in terms ap according to(84).
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Proof Suppose that is defined in terms of according to (81), i.e. conditioa. is
satisfied.

To see thab. is valid as well, let us consider' : I. — I, defined by (84) in terms
of 1. We can then show that is defined in terms of) according to (84) by proving
thatw = w’. Hence lets € L. By Th-41, there exist§) : P(IxI) — I and

X € P(I x I) such that

5= 50X - (1089)
We can hence proceed as follows.
w(s) = w(sQ,x) by (1089)
= F,(Q)(X) by Def. 61
= Fu(Q)(X) by Th-98
= F. (Q)(X) by Th-118 and)-5)
=uw'(s0,x) by Def. 61
=d'(s). by (1089)

Now let us show that conditioln. entails conditiora. Hence suppose thatis defined
in terms ofy according to (84). We now considéef : A — I, defined according to
(81) in terms ofw. Apparently, we can show that holds by proving that) = 1’.
Hence letA € A. Then by Th-94, there exist3 : P(E)" — TandXy,..., X, €

P(E) with

A=A x,,.. X, - (1090)
Therefore
Y(A) =¥(Ag.x,,..x,) by (1090)
= Fyp(Q)(X1,. .., Xn) by Def. 88
= Fu(Q)(X1,..., Xy) by Th-118, (/-5)
= Fypr (Q)(X1,..., Xn) by Th-98
=¢'(Ag,x1,...,x,) by Def. 88
=1'(A). by (1090)

Hencey = ', which completes the proof that conditibn is entailed by condition
a.

Lemma 169 Letw : L — I be given and suppose that= ¢ : A — I is defined
by (81). If ¢ satisfieq-1), thenw satisfieqw-1).

Proof  To see this, let € LL be given withs=*([0, 1)) = {a} for somea € I. In other
words,

s(z)=1 (1091)



for all z € T with z # a. We can then conclude from Def. 60 that

s(a) =0. (1092)
Therefore
As(2) = 10,5 — §5(2)] by (85)
0,i-1.00 : z=a
= by (1091) and (1092
0411 s s7a, y (1090) and (1052)
ie.
[0, %] z=a
As(2) = 1093
(=) { O : zsa (1093)
for all z € I. Now considerd € A, defined by
[ A1} z=ua
A(z) = { o ita (1094)
for all z € 1. Itis then apparent from Def. 91, (1093) and (1094) that
As =HA. (1095)
In addition,D(A) = {1} andz (A) = a. Therefore
w(s) = ¥(Ay) by Th-118 and L-168
= 1(HA) by (1095)
=1(A) by (¢-5)
=24 by (¢-1)
=a.

Hencew indeed satisfies.(-1).

Lemma 170 Letw : L — I be given and suppose that= ¢ : A — I is defined
by (81). If ¢ satisfieqvy-2), thenw satisfieqw-2).

Proof Hence consides, s’ € IL with
s'(z) = s(1 —2) (1096)
for all z € 1. We then obtain from (85) that
Av(2) =105 - 35()] = [0,5 - 3s(1 - 2)] = A1 - 2) (1097)
for all z € 1. Therefore
w(s') =P(As) by Th-118 and L-168
=1-19(4) by (¥-2)
=1—w(s). by Th-118 and L-168
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Lemma 171 Letw : L — I be given and suppose that= ¢ : A — I is defined
by (81). If ¢ satisfieqv-3), thenw satisfieqw-3).

Proof Hence lets € 1L be given. Further suppose that
s(1)=0 (1098)

ands~1([0,1)) C {0,1}. Then in particular

s(z)=1 (1099)
forall z € (0,1). Therefore
As(2) = [0, 5 — 35(2)] by (85)
=< [0, -3-1] z€(0,1) by (1098), (1099)
0.1-10 ¢ :-1
and hence

0,2 —150)] : 2=0
As(z) =< {0} : z2€(0,1) (1100)
[0, 3] oz=1

for all z € 1. We now defined € A by

{1 -1s500)} : 2z=0
A(z) =< @ : z€(0,1) (1101)

{%} o oz=1
for all z € I. Itis then apparent from Def. 91, (1100) and (1101) that
As =HA. (1102)

We further notice that NY4) C {0,1} andr; = 1 € A(1), i.e. (4-3) is applicable.
The claim of the lemma can hence be proven as follows.

w(s) = 1(4s) by Th-118 and L-168
= (EBA) by (1102)
=1(4) by (1-5)
=1—sup A(0) by (1-3)
=1 (3 —35(0)) by (1101)
=5 +35(0),

i.e.w satisfies ¢-3).
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Lemma 172 Letty : A — I be a given mapping which satisfiés-4). Consider
someA € A and suppose that’ : I — P(I) is defined by

/ 0,a(2)] : a(z) € BA(2)
va={ 00 | o) s (1109
where

a(z) =aa(z) = min(sup{@A(z’) 12 < z},sup{@A(z') 12>z}, (1104)

forall z € I. ThenAd’ € A andy(A") = y(BA).

Proof | first prove thatA’ € A. To this end, we notice that, (HA) = 1, which is
apparent from Def. 91. Hence there existse I with 3 € BHA(Z+) andBHA(z )
[0, 1] for all > € L. In turn, we obtain from (76) thaBA(z,) = 1 andBA(z) < L f
all z € 1. Recalling (1104), it is then apparent thet:;) = 3 anda( ) < 5 for aII
z € L. In particular,

A'(z4) =10,3) (1105)
and

Al(z) € [0,3] (1106)
for all z € I. We hence observe from (1103) tHatA") N [3,1] = {3}, i.e.r (4A') =
1. In addition, we conclude from (1105) and (1106) thetd’) = [0, 1]. In particular,
if D' C D(A’) =[0,3] andD’ # @, theninf D’ € [0, 5] and hencénf D" € D(A').

We conclude from Def. 85 thab(A’) € D. Because, (4’) = 3, this directly proves
thatA’ € A, see Def. 87.

It remains to be shown that(A’) = ¢ (EBA). To this end, | first prove that’ C BHA.
By Def. 89, we must now show that

a. forallz e Tand allr € A'(2), there exists’ > z with r € HA(Z');

b. forallz’ € Tand allr € HA(Z'), there exists < 2’ withr € A'(z).

Let us first consider condition.; hence letz € T andr € A’(z). It is now use-
ful to discern two cases. I(z) € HA(z) then A’(2) = [0,a(z)] by (1103) and
hencer < a(z). On the other handBA(z) = [0, HA(z)] by Def. 91; hencex(z) €
HA(z) entails that(z) < BA(z). Hencer < a(z) < BA(z), which proves that
€ [0,8A(z)] = BA(z). This proves that = 2’ is a valid choice for.’ > = with
r € HA(Z'), i.e. conditiona. holds.
In the remaining case thatz) ¢ BHA(z), we know from (1103) thatl’(z) = [0, a(z)).
Hencer € A’(z) entails that < «(z). In particular,a(z) > 0. We now recall from
(1104) thata(z) = min(sup{BA(2') : 2/ < z},sup{BA(Z') : 2/ > z}). In particu-
lar, sup{MBA(z') : 2 > z} > a(z) > 0, and hence

(BAG) 2 > 2} # 2. (1107)
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In addition,sup{HA(z') : 2’ > z} > a(z) > r. Recalling (1107), then, we conclude
that there exists’ > z with BA(z') > r. Hencer € [0, A(z')] = BA(2’) for the
givenz’ > z, see Def. 91. This proves that conditianis valid in the second case as
well, i.e. it holds unconditionally.

Next we turn to conditio. stated above. | first show that

BA(z) C A'(2) (1108)

for all = € 1. This is apparent if we notice from (1104) thatz) > HA(z). In
the case that(z) > BA(z), we hence obtain from Def. 91 and (1103) thdt) ¢
[0,A(z)] = BA(z) and hencéBA(z) = [0,A(z)] C [0,a(z)) = A'(z) because
a(z) > BA(z). In the remaining case that(z) = HA(z), we clearly havey(z) =
BHA(z) € [0,A(z)] = BA(z), see Def. 91. Hencel’(z) = [0,a(z)] by (1103)
and in turn,BA(z) = [0,8A(z)] = [0,a(z)] = A'(z) by Def. 91, in particular
HA(z) C A'(z). This proves that (1108) is indeed valid.

Based on this result, it is now trivial to show that conditimnis satisfied. Hence let
z' e Tandr € BA(Z'). Thenr € A'(2') by (1108). Hence = 2’ is a valid choice for
z < z' whichresults in- € A'(z).

| have shown that both preconditioasandb. for A’ C HA are fulfilled. Hence

A'CHBA
by Def. 89. We can then conclude from-4) that
B(A') < p(BA). (1109)
Next | prove thatHA C A’. Again by Def. 89, this can be shown by proving that

a. forallz € Tand allr € BA(z), there exists’ > z with r € A’(2');

b. forallz’ e Tand allr € A'(2’), there exists < 2’ with r € HA(z).

Conditiona. is again trivial. To see this, considere I andr € HA(z). By (1108),
then, we know thai € A’(z). Hencez’ = z is a valid choice forz’ > z with
re A'(?).

Now we consider conditiom.; hence letz’ € Tandr € A’(z'). Itis convenient
to discern two cases. Firstly #(z') € HA(Z'), then we know from (1103) that
A'(Z") = [0,a(z)] and hence € A’(Z’) entalls thatr < «(z’). In turn, we know
from Def. 91 thafBA(z') = [0, EHA(2')]; hencen(z') € HA(Z') andr < a(z') entails
thatr < BA(2') and hence € BA(2) as well. This proves that = 2/ is a legal
choice forz < 2z’ with » € HA(z), and conditiorb. holds.

In the remaining case that(z') ¢ BA(z), we conclude fromBA(z) = [0, HA(z)]
thata(z') > BA(z), see Def. 91. In particulary(z') > 0. Recalling from (1104)
thata(z') = min(sup{BA(z) : z < 2’},sup{BA(z) : z > 2'}), we hence know that
sup{HA(z) : 2 < 2/} > a(2') > 0, and hence

(BA(z): 2< 2V 4+ o. (1110)
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In addition,
sup{BA(z) : 2 < 2’} > a(z) > 7, (11112)

because: € A'(z’) = [0, a(2’)), which is apparent from (1103) and the assumption
a(z') ¢ BA(Z'). Recalling (1110) and (1111), then, we conclude that there exists
z <z with BA(z) > r. Hencer € [0,HA(z)] = HA(z) for the givenz < 2/, see
Def. 91. This proves that conditidn is valid in the second case as well.
We hence conclude from Def. 89 that
HALC A'.

In turn, we conclude from-4) that

Y(BA) < (A (1112)

Combining inequations (1109) and (1112), we then obtaintfat’) = «(BA), as
desired.

Lemma 173 Letty : A — I be a given mapping which satisfigs-4) and (y-5).
Consider somel € A and suppose that? : T — P(I) is defined by

A (2) = [0,a(2)] (1113)

for all z € I, wherea(z) is defined by{1104) ThenA! € A andvy(A*) = (HA).

Proof Let A’ € A be defined by (1103). Then apparently = HA’. In particular,
At ¢ A, and

P(AY) = p(BA) becaused® = HA’
= y(4") by (1-5)
=(A). by L-172

Lemma 174 Forall s € L, (A,)* = Aty

Proof To see this, let € . andz € I. We notice that

@As(z) = min(sup 44(2), %) by (73)
= min(sup|0, % - %s(z)}, %) by (85)
— min(} - Js(2), ).
and hence
BA(z) = 1 — Ls(2) (1114)



because(z) € I. Therefore

aa, (z) = min(sup{HBA,(z') : 2/ < 2}, sup{HA,(2) : 2’ > 2}) by (1104)
= mln(sup{— —1s(2) 1 2 < 2},sup{f — 3s(2) 1 2 > 2}) by (1114)
=min( — Linf{s(z) : 2’ < 2}, 1 — Linf{s( ">z}

)z
—1_1lma mf{s(z') ¢ <2} inf{s(2) : 4 > 2},

ie.
aa,(z) =% - 1st(z). (1115)
by Def. 65. In turn
(A (2) = [0, 4, ()] by (1113)
=1[0.5 - 35'(2)] by (1115)
= Ay (2) - by (85)

Because: < I was arbitrarily chosen, this proves tf(ats)ﬁ = A1), as desired.

Lemma 175 Letw : L — I be given and suppose that= v : A — T is defined
by (81). If v satisfieqy-4), thenw is *-invariant, i.e.w(s) = w(s?) forall s € LL.

Proof We recall from L-162 that) is B-invariant, i.e.y satisfies {-5). Because)
also satisfiesyf-4) by assumption, we know that lemma L-173 is applicable. The proof
of the lemma hence reduces to the following simple computation.

w(s) = ¥(As) by Th-118 and L-168
= Y (HA,) by (-5)
= ¢((4,)") by L-173
= P(Asty) by L-174
= w(st). by Th-118 and L-168

Becauses € L was arbitrary, this proves thatis indeedt-invariant.

Lemma 176 Letw : L — I be given and suppose that= ¢ : A — I is defined
by (81). If ¢ satisfieq-4), thenw satisfieqw-4).

Proof We already know from L-175 that is *-invariant. Recalling Th-49, we can
hence reduce the proof af{4) to the proof of the simpler condition that
w(s) <w(s)
for every choice of, s’ € L with s < &'.
Hence consides, s’ € L with s < s’. Let us recall from (85) thatl,, A, € A are
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defined by
— 1s(2)] (1116)
Ag(2) = [07 % - %S/(Z)] (1117)

forall z € 1. Let us now prove thati, C A,,. We must hence show that

a. forallz e Tand allr € A4(2), there exists’ > z withr € Ay (2');

b. forallz’ e Tand allr € Ay (2'), there existg < 2/ with r € A,(z2);

see Def. 89. | first prove that conditi@n is satisfied. Hence let € T andr € A4(z).

Thenr < % — —s( ) by (1116). We now recall that by Def. 64,< s’ entails that

there exists’ > zWIth s'(2") < s(2). In parucular— —15(2)) > 3 —1s(z) > rand

hencer € [0, 3 — 15/(z)] = Ay (2') for the givenz’ > z, see (1117) This completes
the proof that conditior. is satisfied. As concerr‘m, we consider some’ € T and

r € Ay (2'). Hence by (1117) € [0,1 — 15'(2")], in particularr <i- %s’(z’)
By Def. 64, we can conclude from< s’ that there exists < 2’ with s( ) < §'(2).
Hencel — 1s(z) > 3 — 15'(2/) > r and hence € [0, 3 — 15(2)] = A(2) for the
givenz < 2/, see (1116). This proves that conditibnis valld as well. Because both

preconditions stated in Def. 89 are satisfied, we conclude that

A, T A (1118)
Therefore
w(s) = P(Ay) by Th-118 and L-168
< Y(As) by (¢-4) and (1118)
=w(s by Th-118 and L-168
w(

)
This proves thab(s) < w(s’) whenever < s’. Recalling that is alsot-invariant, we
can apply Th-49 and conclude thats) < w(s’) whenevers C s’. Hencew satisfies
(w-4), as desired.

Proof of Theorem 120

Considerw : . — I and suppose that : A — I is defined by (81). We then
know from L-162 that) satisfies {-5). In particular, pare. of the theorem is valid.
As concerns parta.—d., the claimed equivalences are apparent from the following
lemmata:

a. L-164 and L-169;
b. L-165 and L-170;
L-166 and L-171;
d. L-167 and L-176,

o

which are applicable becauges known to satisfy{-5).
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B.30 Proof of Theorem 121

The only condition that still requires some work is-5); the independence of the other
conditions is clear from Th-46 and Th-120. In order to prove ti#ab) is independent
of (v-1)—@-4), we consider the following choice afy : A — I, defined by

0(A) oA)>1
vm(A) =< uw(d) : w(d) <3 (1119)
i 0(A) < 1 <u(A)

0(A) = { max(inf NV(A4),1 —supU{A(z) : 2 < 1}) : A(1)N %, 1]# @

max(inf NV (A4), sup A(1)) : A)N5,1]=2
(1120)
u(A) = min(supNV(A), supU{A(z) : 2 > 0}) : A(0)N[3,1]# 2
| min(supNV(A),1 — sup A(0)) c A0)N[3 1) =2
(1121)

forall A € A.
To see that)g is well-defined, we first make some observations on how the computa-
tion of ¢(A) andu(A) can be simplified.

Lemma 177 Forall A € A,

a. It A0) N [L,1] # @, thenf(A) = sup A(1);

b. If A(0) # @ andA(1) N [L,1] = @, thenl(A) = sup A(1);

c. IfA(0) # @ andA(1) N [1,1] # @, thenl(A) =1 —sup U{A(2) : z < 1};
d. If A(0) N [5,1] = @ and A(1) = @, then/(A) = inf NV (A).

Proof ~ We first consider case. Hence letA € A be given withA(0) N [3,1] # @.
In particular,A(0) # @. We hence know from (78) that

inf NV(4) =0. (1122)
In addition, Def. 87 permits us to conclude froff0) N[$, 1] # @ thatA(0)N[5,1] =
{re}-
o If A1) N[L,1] # 2, thenA( )N [3,1] = {r4} as well. We hence conclude
from Def. 87 thatr = 5. In partlcular =ry € A(0), 3 =74 € A(1) and
A(z) C [0, 4] for all = € I. This entails that
sup A(1) = 1, (1123)
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and also that
supU{A(z) 1z <1} = 3. (1124)
In turn,

L(A) = max(inf NV(A),1 —supU{A(2) : 2 < 1}) by (1120)

— max(0, 3) by (1122) and (1124)
1

=2
=sup A(1). by (1123)

o If A(1)N[4,1] = @, then

£(A) = max(inf NV(A),sup A(1)) by (1120)
= max(0,sup A(1)) by (1122)
=sup A(1).

Now we consider casb. Hence suppose that(0) # @ andA(1) N [3,1] = @.
Becaused(0) # @, we know from (78) thainf NV (A) = 0. Itis then immediate from
(1120) that/(A) = max(inf NV (A), sup A(1)) = max(0,sup A(1)) = sup A(1), as
desired.

As concerns paxt., suppose thatl(0) # @ andA(1)N[1,1] # @. Then in particular
inf NV(A) = 0 by (78) and hence

0(A) = max(inf NV(A),1 —supU{A(2) : 2 < 1}) by (1120)
=max(0,1 —supU{A(z) : z < 1}) becausénf NV(A) =0
=1-supU{A(z) : z < 1}.
Finally let us prove that pard. of the lemma is also valid. Hence suppose that
A(0)N[3,1] = @ andA(1) = @. Then clearlysup A(1) = 0 andA(1) N [3,1] =

@. It is hence immediate from (1120) thétA) = max(inf NV(A),sup A(1)) =
max(inf NV(4),0) = inf NV(A4).

Lemma 178 Forall A € A,

a. IfA
1 — sup A(0);

)
[5,1] # @ and A(1) # @, thenu(A) = sup{A(z) : z > 0};
)

0) =2 andA(1) N [3,1] = @, thenu(A) = supNV(4).
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Proof Analogous to the proof of L-177. As concerns casewe considerd € A
with A(1) N [3,1] # @. In particular,A(1) # @. We hence know from (78) that

supNV(A) =1. (1125)
In addition, we observe from Def. 87 that1)N[2, 1] # @ entails thatd(1) N[5, 1] =
{rs+}.

e If A(0)N[4,1] # @, thenA(0) N [3,1] = {r} } as well. We hence obtain from
Def. 87 thatr, = 1. In particular,} = r, € A(0), 1 = r. € A(1) and
A(z) € [0, 3] for all z € 1. Again, this entails that

sup A(0) = % , (1126)
and also that
supU{A(2) 1z >0} = 3. (1127)
In turn,
u(A) = min(sup NV (A4),supU{A(z) : z > 0}) by (1121)
= min(1, 1) by (1125) and (1127)
-3
=1—sup A(0). by (1126)
o If A(0)N[5,1] = @, then
u(A) = min(sup NV (A), 1 — sup A(0)) by (1121)
= min(1,1 — sup A(0)) by (1125)
=1—sup A(0).

Now we address patt. of the lemma. Hence suppose th#t0) N [3,1] = @ and
A(1) # @. BecauseA(1) # @, we know from (78) thatup NV (A) = 1. Itis then
immediate from (1121) that(A4) = min(supNV(A),1 — sup A(0)) = min(1,1 —
sup A(0)) =1 — sup A(0).

In order to prove part. of the lemma, suppose thd(0) N [1,1] # @ andA(1) # @.
Thenl € NV(A) by (78) and henceup NV (A) = 1. Therefore

u(A) = min(supNV(A),supU{A(z) : 2 > 0}) by (1121)
= min(1,sup U{A(z) : z > 0}) becauseupNV(4) =1
=supU{A(z) : z > 0}.

It remains to be shown that claith of the lemma is also valid. Hence assume that
A(0) = @ andA(1) N [3,1] = @. Thenl —sup A(0) = 1 andA(0) N [1,1] = @.

We therefore obtain from (1121) tha{A) = min(supNV(A),1 — sup A(0)) =
min(sup NV (A4),1) = supNV(A), as desired.

Based on these results concerniifg) andu(A), it is now easy to prove thaig is
well-defined. Recalling (1119), we simply need to show that

Lemma 179 Forall A € A, ¢(A) < u(A).
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Proof To see this, considet € A. It is then convenient to discern four main cases.

a. A(0)N[3,1] #@and A(1)N[3,1] # 2.
In this case, we know from Def. 87 that = 1 and

sup A(0) = sup A(1) = 1. (1128)
Therefore
£(A) = sup A(1) by L-177.a
=3 by (1128)
=1—sup A(0) by (1128)
=u(A). by L-178.a

b.: A0)N[5,1]#@and A(1)N [}, 1] =o.
We discern two subcases. FirstlyAd{1) # &, then

0(A) =sup A(1) by L-177.a
<supU{A(z) : z > 0}
— u(A). by L-178.c

In the remaining case that(1) = &, we simply notice that

L(A) =sup A(1) by L-177.a
=0 by assumption that (1) = @
<u(A).

ct A(0)N[i, 1] =oand A(1)N[L,1] # 2.
We again discern two subcases. Firstlylif0) # &, then

L(A)=1—supU{A(z) : z < 1} by L-177.c
< 1—sup A(0)
— u(A). by L-178.a

In the remaining case that(0) = &, we simply notice that

L(A) <1
=1—sup A(0) by assumption that(0) = @
=u(4). by L-178.a

d: A0)N[i,1]=oand A()N [}, 1] =o.
In order to handle this case, we will consider four subcases.
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Firstly if A(0) = @ andA(1) = &, then

L(A) = infNV(4) by L-177
< supNV(A) because NVA) # o
= u(A). by L-178.d

Secondly ifA(0) = @ and A(1) # @, then

(A) <1 becausé(A) € I by (1120)
=1 —sup A(0) becaused(0) = @
=u(A4). by L-178.b
Thirdly if A(0) # @ andA(1) = &, then
£(A) =sup A(1) by L-177.b
=0 by assumption that (1) = @
<u(A). because:(A) € I by (1121)

Finally if A(0) # @ andA(1) # @, then

L(A) =sup A(1) by L-177.b
<i becausei(1) N [3,1] =&
<1 —sup A(0) becaused(0) N [1,1] =@
= u(A), by L-178.b

which completes the proof thétA) < u(A).

I now state some lemmata which facilitate the proof thatsatisfies all {)-conditions’
except for {4-5).

Lemma 180 Let A € A be given and suppose thétd) = u(A). Thenyg(A) =
L(A).

Proof  Itis convenient to discern three cases. Firstlg(ifl) > 1, then
vm(A4) = £(A)

by (1119). In the second case tiiatl) < 1, we know thatu(A) = ¢(A) < 1 as well.
Hence

Ym(A) = u(4) = ((4)
by (1119). In the remaining case thét) = u(A) = 1, we obtain from (1119) that
vm(A) =5 =(4),
which completes the proof thaig(A) = ¢(A), as desired.

Lemma 181 Forall A, A’ € Awith A T A’, £(A) < ¢(A") andu(A) < u(A').
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Proof To see this, considet, A’ € A with A C A’. Itis then clear from Def. 89 and
NV(A)={z€l:A(z) #2},NV(A)={z€1: A'(z) # 2} that

inf NV(A) < inf NV(4') (1129)
and

supNV(A) < supNV(4'). (1130)
In addition,A C A’ entails that

A(1) C A'(1)
A(0) 2 A'(0)
U{A(z) : 2 >0} CU{A'(2) : 2 > 0}

and
U{A(z) : 2 <1} DU{A(2) : 2 < 1}.
Therefore
sup A(1) < sup A’(1) (1131)
1 —sup A(0) <1 —sup A’'(0) (1132)
supU{A(2) : 2 > 0} <supU{A'(z) : 2 > 0} (1133)
and
1—supU{A(2): 2 <1} <1—supU{A'(2): 2 < 1}. (1134)

Now we considef(A) vs./(A"). We notice that due to the above resdiftl) C A’(1),
A(1)N[1,1] # o entails thatd’ (1) N [$, 1] # @. Itis hence sufficient to consider the
following three cases.

a. A(1)N[3,1] # @andA’(1) N [3,1] # @. Then

0(A) = max(inf NV(A4),1 —supU{A(z) : z < 1}) by (1120)
< max(inf NV(4’),1 —supU{A'(z) : z < 1}) by (1129) and (1134)
— oA by (1120)

b. A(1)N[i,1] = @andA’(1)N[1,1] # @. Inthis case, we notice that (4) €
A'(1) entails thatA’(z) C [0,1 — r;.(A")] C [0,1] for all = < 1. Therefore
sup{A’(z) : z < 1} < 3, and in turnl — sup{A4’(z) : = < 1} > 3. Onthe
other handA(1)N[3, 1] = o entails thakup A(1) < 1. We can hence combine
these results, which yields

sup A(1) < % <1—sup{A'(2): 2 < 1}. (1135)
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Therefore

£(A) = max(inf NV(A), sup A(1)) by (1120)
< max(inf NV(A"),1 —supU{A4’(z) : 2 < 1}) by (1129) and (1135)
=(A"). by (1120)

c. A(1)N[i,1] =@ and4’(1)N[},1] = @. Then

£(A) = max(inf NV(A),sup A(1)) by (1120)
< max(inf NV (A"), sup A'(1)) by (1129) and (1131)
=((A"). by (1120)

This completes the proof thafA) < ¢(A’). We now turn tou(A) as compared
to u(A’). Itis then worth noticing that the above resdif0) > A’(0) ensures that
A'(0)N[3,1] # o only if A(0)N[4,1] # @. Itis hence sufficient to consider the
following three cases.

a. A(0)N[i,1] # @andA’(0)N [3,1] # @. Then

u(A) = min(sup NV (A4), sup U{A(2) : z > 0}) by (1121)
< min(supNV(A"),supU{A’(z) : 2 > 0}) by (1130), (1133)
= u(A4). by (1121)

b. A(0)N[1,1] # @ andA’(0) N [1,1] = @. In this case, we know that, (4) €
A(0) and henced(z) C [0,1 — ry(A)] € [0, 3] forall z > 0. In particular
sup U{A(2) : z > 0} < £. We further observe that— sup 4’(0) > £ because
A’(0)N[3,1] = @ and henceup A’(0) < 1. These findings can be summarized
by

supU{A(2) : 2 >0} < 5 <1 —supA'(0). (1136)
Therefore
u(A) = min(sup NV (A4),supU{A(z) : z > 0}) by (1121)

< min(supNV(A’),1 — sup 4(0)) by (1130) and (1136)
=u(A). by (1121)

c. A(0)N[i,1] =@ and4’(0)N[3,1] = @. Then

u(A) = min(sup NV (A),1 — sup A(0)) by (1121)
< min(sup NV (4’),1 — sup A’(0)) by (1130) and (1132)
=u(A). by (1121)

Henceu(A) < u(A’) wheneverd C A’, as desired.
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Lemma 182 LetA € A be given and suppose thdt € A is defined by

Al(z) = A(1 - 2) (1137)
forall z € I. Then

(A =1—u(A)
and

w(A) =1-£(A).

Proof We first consider the claim of the lemma tlfa#’) = 1 — u(A). To this end,
we observe that

NV(A) ={z€1: A(z) # 2} by (78)
={zel: A(1-2) #£ o} by (1137)
={1-72":2 eA(Y) # o} by substitutionz’ = 1 — 2
={1-2":2 eNV(4)}. by (78)
Therefore

inf NV(A") = inf{l — 2" : 2/ € NV(4)}
=1-—sup{z’ : 2’ € NV(A)},

inf NV(A") =1 —supNV(A). (1138)
In addition,
1—supU{A'(z) : 2 <1} =1—supU{A(1 —2): 2 < 1}
by (1137), and hence
1—supU{A'(z) : 2 <1} =1 —supU{A(2) : z > 0}. (1139)
We further notice that
sup A’(1) =sup A(0) =1 — (1 — sup A(0)), (1140)
again by (1137), which also results.iti(1) N [3,1] = A(0) N [3
AN 1]#£0 < AO0)N[3,1]#2. (1141)

5, 1], and hence

It is therefore sufficient to prove the following two casesAlf1) N [3,1] # @, then
A(0) N [$,1] # @ by (1141). Therefore
((A") = max(inf NV(4"),1 —supU{A'(z) : 2 < 1}) by (1120)
= max(1 —supNV(A4),1 —supU{A(z) : z > 0}) by (1138) and (1139)
=1 —min(supNV(A4),sup U{A(z) : z > 0}) by De Morgan’s law
=1-—u(A). by (1121)
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In the second case that(1)N[3, 1] = @, we know from (1141) that(0)N([3,1] = @
as well. Therefore

¢(A") = max(inf NV (A"),sup A'(1)) by (1120)
= max(1 —supNV(A4),1 — (1 —sup A(0))) by (1138) and (1140)
=1 —min(supNV(A),1 — sup A(0)) by De Morgan’s law
=1-—u(A). by (1121)

This finishes the proof tha A’) = u(A). The second claim that(A’) = 1 — ¢(A)
is reducible to the first one, noticing tha{z) = A(1 — (1 — z)) = A’(1 — 2) for all
z € 1. Hence

0(A)=1—u(A)
by the first claim of the lemma, which in turn proves the desited’) = 1 — ¢(A).

Lemma 183 Forall A € A,

a. Ifu(4) >
b. If¢(A) <

Proof As concerns pad. of the lemma, we make use of the inequatioA) < u(A)
proven in L-179. It is hence sufficient to discern the following caseg. 4f ¢(A) <
u(A), thenyg(A) = ((A) > % by (1119). In the remaining case thatd) > 3 and
((A) < %, we obtain from (1119) thatm(A) = 1. Hencea. is indeed valid. As
concerns pat., we can now profit from L-182, which permits us to reduce the proof

of b. to that of paria. by means of negation.

Lemma 184 The condition(v-5) is independent ofy-1)y-4).

Proof | will show that @-5) is independent of the remaining conditions by proving
thatym : A — I, defined by (1119), satisfieg{1)—()-4), and violatesy-5).

g satisfies (y-1).

To see this, consider a choice af € A with D(A) = {1}. Thenr, = 1 and by
Def. 87, D(A)(z) C [0,1 — z] = {0} for all z # z,. Becausd ¢ D(A), we
conclude that

A(z>:{ {1} z2=24

g zFzy
for all z € I. Hence by (78), NVA) = {z;} and in turn,

inf NV(A) =supNV(4) =z . (1142)
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Therefore

zy = inf NV(A4) by (1142)
< (A) by (1120)
< u(A) by L-179
<supNV(A) by (1121)
=z,. by (1142)

In other words/(A) = u(A) = z,. Thereforeym(A) = 2, by L-180, i.e. {-1)
holds, as desired.

g satisfies (y-2)

Hence letA € A be given and definel’ € A by A'(z) = A(1 — z) forall z € 1.
Thent(A') =1 — u(A) andu(A’) = 1 — ¢(A), see L-182. Hence if(A4) > 1, then
u(A) =1—-{(4) < L andyg(4’) = u(4’) =1 —((A) =1 — ¥m(A) by (1119).
In the second case thatA4) < 3, we know that/(A’) = 1 — u(A) > § and hence
Ym(A') = L(A") =1 —u(A) =1 — ¢m(A4) by (1119). Finally if/(4) < 5 < u(A),
thenl — u(A4) < 2 < 1—((A) and hence(4’) < 1 < u(A’) as well, see L-182.
Thereforeym(A4’) = 3 = 1 — 3 =1 — ¢m(A4) by (1119). This completes the proof
thatym(A') =1 — vg(A4), i.e. @-2) is indeed valid.

g satisfies (y-3).

In order to prove this, we considet € A with NV(A) C {0,1} andz; = 1,
i.e. A(1) N [0,1] # @. In particular,] € NV(4) and henceupNV(4) = 1. We
now consider two cases.

o A(0)=o.
Then NV(A) = {1}, i.e.
inf NV(A) =1, (1143)
and
UWA(z): 2 <1} =@,
in particular
1—supU{A(z):z2<1}=1. (1144)
Therefore
£(A) = max(inf NV(A),1 —supU{A(2) : 2 < 1}) by (1120)
= max(1,1) by (1143) and (1144)

=1.

As far asu(A) is concerned, we obtain from L-178 thatd) = 1 —sup A(0) =
1 —sup@ = 1. Hencel(A) = u(A) = 1 and by L-180,yg(A) = 1 =
1 —sup A(0), as desired.
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e A(0) # 2.
Then NV(4) = {0, 1}, and hence

inf NV(A) = 0. (1145)
As concerng(A), we then obtain that
L(A) =1—supU{A(z) : z < 1} by L-177.c
=1—sup A(0),
because NYA) = {0,1} and henceJ{A(z) : z < 1} = AO)UW{@ : z €

(0,1)} = A(0).

Now let us considet,(A). In this caseyu(A) = 1 —sup A(0) is immediate from
part a. of lemma L-178. Hence agaifd) = u(A) = 1 — sup A(0) and by
L-180,¢m(A) = £(A) = 1 — sup A(0).

This proves thatgm(A) = 1 —sup A(0) in both possible cases, i#g indeed satisfies
(1-3).

Pm satisfies (y-4).

Hence letA, A’ € A be given and suppose thdtE A’. We then know from L-181
that((A) < ¢(A’) andu(A) < u(A’). Itis hence sufficient to consider the following
cases.

a. If¢(A) > L, then/(A)’ > 1 as well. Hence

Ym(A) = ((A) by (1119)
< (A" by L-181
= g(A"). by (1119)
b. If u(4) < & andu(A’) > 1, then
Ym(A) = u(A) by (1119)
<1 by assumption of cade
<yg(A). by L-183.a

c. Ifu(A) < 1 andu(A’) < 1, then

Y@(A) = u(A) by (1119)
< u(A) by L-181
= g(A"). by (1119)
d. Finally if £(A) < 3 < u(A), then in particulas < u(A)’ by L-181. Therefore
vm(A) =3 by (1119)
< Ym(A'). by L-183.a

To sum up, | have shown thdig(A) < ¥gm(A’) wheneverd, A’ € A satisfyA C A’.
This proves that)g satisfies {(-4).
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g violates (¥-5).
Hence consided € A, defined by

{1} : z= 2
wo={ 52
for all z € 1. Because)g is already known to satisfy/(-1), we conclude that
Ym(A) = 3.

As concernsBA, we observe from Def. 91 that

0,1 : z=

BA(z) = { 0 24

Wi Wi

for all z € I. Hence NV EHA) = I and

inf NV(BA) =0,
supNV(BA) =1.

In addition,lBA(1) N [$, 1] = @ and consequently
((BBA) = max(inf NV (BA), supEHA(1)) = max(0,sup{0}) = 0
by (1120). Becaus®A(0) N [3,1] = @ as well, we obtain from (1121) that
u(BA) = min(sup NV(BA), 1 — supEBA(0)) = min(1,1 —sup{0}) = 1.
Hence0 = ¢(A) < 1 <1 =wu(8HA) and by (1119),
Y (BA) = 3.

To sum up, | have shown thaits(A) = 2 # 1 = ym(HBA), i.e. A witnesses the failure
of ¢y with respect to4-5).

Proof of Theorem 121

It is apparent from the independence ©f1)—(w-4), as stated in Th-46, and theorem
Th-120, that each of{-1), (x-2), (-3) and ¢-4) is independent of the remaining four
conditions in {)-1)—@/-5). As concernsy®-5), it has already been shown in L-184 that
this condition is independent of)¢1)—(-4).

B.31 Proof of Theorem 122
ConsiderA € A. To see thatfy € X, we discern the cases that either = % or

Ty > %
Firstly in the case that, = £, then we know from Def. 87 thab(A4) N [%,1] = {$}.
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By (62), there exists, € Iwith § € A(z;), andA(z) C [0, 5] for all z € I. Hence
fa(z4) =sup A(z4) = 5 for z = 2, and fa(z) < sup[0, 3] = 3 for all otherz € L.
Hence conditions. andb. of Def. 95 are satisfied, and inde¢d € X.

In the remaining case that. > 1, we know from Def. 87 that, € A(zy) for a
unique choice ot € I. Noticing thatA(z;) N [3,1] € D(A) N [3,1] = {ry} by
Def. 87, (62) and Def. 85, this proves thét(z;) = sup A(z) = ry, and condition
a. stated in Def. 95 is satisfied. Because > 3, we further know from Def. 87 that
ry & A(z) forz € I\ {z4} and henceA(z) C D(A)\{r;+} € [0,1—r;] by (62) and
Def. 85. In particulatfs (z) = sup A(z) < sup[0,1 —r,] = 1 — r,. Hence condition
b. stated in Def. 95 is satisfied as well’, affig € X, as desired.

Of course, this also proves th# x,,...x, € X for a given semi-fuzzy quantifier

Q : P(E)" — Tand fuzzy argumentX, ..., X,, € P(E), becausey, x,.. x
Jag x, .x, by Def. 94, and/; x, .. x, € A by Th-93.

n

B.32 Proof of Theorem 123

Considerf € X and letz; € I be chosen such that, = f(zy). We defineA; :
I— P(I) by

0, 1=ry)U{ry}  z=2
e ={ s 7 R (1146)

forall z € 1.

In order to show thatl; € A, we first consideiD(Ay). Becausef(z) < 1 —ry. for
all z # z, by conditionb. of Def. 95, we know thatd ¢(z) € [0,1 —ry] C Af(zy)
for all z # 2, see (1146). Hence by (62D(A;) = U{As(2): z € I} = Ay(z4) =
[0,1—r ]JU{r;}. We notice thaD(A;)N[L,1] = {r,} because > %. We further
notice thatinf D’ € D for all D’ C D(Ay) with D’ # @, which is apparent because
D(Ay)is aunion of closed intervals. In additionyif > %, thensup D(A)\{r;} =
sup([0,1 —r4JU{ry}) \ {r+} =sup0,1 —r;] =1 —r,. HenceD(Ay) € D by
Def. 85.

In order to prove thatd; € A, suppose that,z’ € I satisfysup Af(z) > 1 and
sup As(z') > 1. By (1146), this means that(z) > 1 and f(2) > 1. We then
conclude from conditior. of Def. 95 thatf(z) = r; > 1. In addition, we conclude
from partb. of Def. 95 that either’ = z or f(z') <1 —r, < i. But we know that
f(z') > %, hencez = 2/, and conditiorb. of Def. 87 is satisfied, as desired. This
completes the proof that; € A.

Next | prove that this particular choice of; € A results inf = fa,. To see this,
considerz € I. Itis then apparent from (1146) thaip A;(z) = f(z), and hence
fa;(z) = f(z) by Def. 93. Because € I was arbitrary, this proves thgt= f4, for
A; € A as defined by (1146).

Note that this also proves the second claim of the theorem concerning the existence of
Q:PE) —TIandXy,...,X, € P(E)with f = fy.x,,.. x,. Thisis because
by Th-94, there exis@ and X1, ..., X, with Ay = Ag x, ... x,. Hencef = fa, =
fAQ7X1 _____ X, = fQ,Xl,...,Xn by Def. 94.
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B.33 Proof of Theorem 124

Lety : X — I be given and suppose that A — T is defined by (87). Then for all
Q:PE)" —TIandXy,..., X, € P(E),

f@(Q)(Xh s 7Xn) = <P(fQ,X1 ..... Xn) by Def. 96
= 0(fag x,..x,) by Def. 94
= Y(4Q,x1,...X.,.) by (87)
= Fp(Q)( X1, ..., Xn) by Def. 88

Becaus&) and Xy, ..., X,, were arbitrary, this proves th&, = 7, as desired.

B.34 Proof of Theorem 125

Suppose thap : A — T satisfies {-5) and lety : X — T be defined by (88). Now
consider a choice af) : P(E)" — IandXj,..., X, € P(E). Further letz € L.
We now consider equation (89). In the case thdt) < % this equation yields

A (2) = [0, fa(2)]

and henceup Ay, (z) = fa(z) < 5. Inturn,

A, (2) = min(sup Ay, (2), 3) = min(fa(2), 3) = fa(2) (1147)
by (73). In addition, we conclude fromi(z) < 1 and fa(z) = sup A(z) < 1 by
Def. 93 that

@A(z) = min(sup A(z), 3) = sup A(z) = fa(z). (1148)
Therefore
BAp, (2) = [0,HA, (2)] by Def. 91
= [0, fa(2)] by (1147)
= [0, BA(2)] by (1148)
= HA(2). by Def. 91

In the remaining case thatip A(z) > % we obtain from (89) and Def. 93 that
Ap(2) =10,1 —sup A(2)] U {sup A(2)} (1149)

becausefs(z) = sup A(z) > 1. Therefore

BAy, (2) =HB([0,1 —sup A(2)] U {sup A(z)}) by psi.ablo.phi.-1

= [0, 1] becauseup A(z) > 1

= HA(2) . by Def. 91 becausep A(z) >
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Recalling our above result concerned with the casesthatd(z) < %, we have suc-
ceeded to show th&@ A, () = HA(z) for all z € I, and hence

BA;, = BA. (1150)
Therefore
Fp@)(X1,..., Xn) =¥(A9,x,,...x0) by Def. 88
= (B4Ag x,.... x,) by (1-5)
=v®BAp, ) by (1150)
= V(A5 k) by (1-5)
= ¢(AfQ,x1 ..... X, ) by Def. 94
= 0(fo,x1,.., %) by (88)

B.35 Proof of Theorem 126

Lemma 185 Considery : X — I and suppose that : A — I is defined in terms
of ¢ according to(87). Theny is defined in termg according to(88).

Proof To see this, considef € X. | will now prove that
= fa,, (1151)

whereA; € A is defined by (89). Hence considee 1. If f(z) > 1, then

fa,(2) = sup Ay (2) by Def. 93
=sup[0,1 — f(2)] U{f(2)} by (89)
= f(2),
because(z) > % by assumption. In the remaining case tfiét) < % we compute
fa;(z) = sup Af(2) by Def. 93
= sup|0, f(z)] by (89)
= f(2).

Because: € I was arbitrary, this proves thg, = f, i.e. equation (1151) is indeed
valid. In turn

o(f) = o(fa,) by (1151)
= ¢(Af) ’ by (87)

i.e. equation (88) holds, as desired.
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In order to relate the monotonicity conditiong-4) and (-4), we need a convex-
ification construction om\. For all A € A, let us hence defind* : T — P(I)

by
AM(2) = (U{A(Z) : 2/ < 2) N (U{A(Z) : 2/ > 2}), (1152)

for all z € I. It is apparent from Def. 87 that indeetd € A. In addition, it is obvious
from (1152) that

A(z) C A (2) (1153)
forall z € 1.

Lemma 186 For all A € A, it both holds thatd C A and A* C A.

Proof To see thatd C A*, we consider both conditions of Def. 89. Firstly tet I
andr € A(z). Thenz’ = zis an admissable choice fof > » with » ¢ A*(2’) because

r € A(z) C A¥(z) = A*(2') by (1153). As concerns the second condition zlet I
andr € A%(2’). We now observe from (1152) that(z') C U{A(z) : z < 2}
Thereforer € A(z') entails thatr € U{A(z) : z < z’}. In turn, this proves that there
existsz < z/ with » € A(z). Because both preconditions of Def. 89 are satisfied, we
conclude thatd C A%,

It remains to be shown that! C A. Again we consider both preconditions of Def. 89.
As concerns the first condition, lete T andr € A*. Itis then immediate from (1152)
that A*(z) C U{A(Z) : 2/ > z}. Hencer € A¥(z) entails that there existg > z
with » € A(z’). In other words, condition. of Def. 89 is satisfied. Now let us address
the second precondition. We considére I andr € A(z’). Thenz = 2’ is a legal
choice forz < 2’ which satisfiesr € A(z') = A(z) C Ai(z), i.e.r € Ai(z) by
(1153), as desired. Because both preconditions of Def. 89 are valid, we deduce that in
fact AT C A.

Lemma 187 Suppose that : A — I satisfiegy-4). Themy is *-invariant, i.e.
»(A) = ¢(A)

forall A € A.

Proof ~We know from L-186 thatd C A* andA* C A. Hencey(A) < ¢(A%) and

Y(AY) < (A) by (-4), i.e.p(A) = ¢(A), as desired.

Lemma 188 Letf, f/ € X be given and suppose thAt_ f'. Thenr (f) = r(f').

Proof Let f, f' € X be given and suppose that (f) # r(f'). | will show that

f C f"is not possible in this case.

Suppose that, (f) > r(f’). By Def. 95, there exists; = z(f) € Twithr,(f) =
f(z4). We now recall from pard. of Def. 97 that the condition

sup{f'(2) : 2’ = 24} = f(24) = r4(f) (1154)
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is necessary fof C f’. However,

p(f() 2 > 21}

<sup{f'(z):z €I}

= max(f'(z1 (f')),sup{f'(z) : 2 # 2. (f")}) by splittingsup-expression

= max(ry (f'),sup{f'(2) : 2 # 2. (f")}) by Def. 95.a

=7, (f) by Def. 95.b because, (f') > %
<ry(f). by assumption

This demonstrates that condition (1154) is not valid, which is a necessary precondition
of fC f".

Now we consider the remaining case that /) > .. (f). We recall from Def. 95 that
there exists:y = z; (f') with r.(f') = f'(z4). Itis then immediate from Def. 97

that the following condition is necessary ffiC f’, viz

sup{f(z) 1z < 24} = f'(24), (1155)

which is a specialization of Def. 97. As | will now show, this condition is not valid.
This is because

sup{f(2) : = < 24}
<sup{f(z):z €I}
= max(f(z4(f)),sup{f(2) : z # 2+ (f)}) by splittingsup-expression

= max(ri(f),sup{/f(2) : 2 # 2. (f)}) by Def. 95
——
>1 <1-r (f)<3
=71+(f)
<ry(f). by assumption

Hence (1155) is indeed violated, which proves that f’ is not possible.
To sum up, | have shown thgtC f’ does not hold if- (f) # . (f’). This proves
thatr (f) = ro(f’) is entailed byf C f’, as desired.

Let us now introduce another construction &n For all A € A, we defineA! :
I— P(I) by

AR(2) = A(2) U {sup A(2)}, (1156)
for all z € 1. Itis then apparent from Def. 87 antic A thatA" € A as well.

Lemma 189 Considery : X — I and suppose thap : A — T is defined in terms
of ¢ according to(87). Theny is f-invariant, i.e.y)(A%) = ¢(A) forall A € A.
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Proof To see this, lefd € A be given. Now consider some< 1. Then

fa(z) = sup A(2) by Def. 93
= sup(A(2) U {sup A(2)})
= sup A%(z) by (1156)
= fau(2). by Def. 93.
Because: € I was arbitrary, this proves that
Ja = fae - (1157)
In turn
Y(AT) = o(far) by (87)
= o(fa) by (1157)
=1(A). by (87)

In the following, we also need an additional constructionXonFor all f € X, we
defineft: I — I by

fH2) = min(sup{f () : 2/ < z},sup{f(¢') : 2’ > 2}), (1158)
forall z € L.

Lemma 190 Considerf € X and suppose that, = f(z,) for a givenz, € I. Then
forall z €1,

a. if z <z, thenf(z) = sup{f(z') : 2/ < z};
b. if 2 > 2y, thenf*(z) = sup{f(z') : 2’ > z}.

Proof We recall from Def. 95 that
re=flz4) > % (1159)
and
f)<1—ry <ry (1160)

forallz e I\ {z}.
Now consider a given € I. In order to prove casa. of the lemma, we suppose that
z < zy. Then

sup{f(z'): 2’ > 2z}
=max(f(zy),sup{f(z'): 2’ > 2,2’ #2,}) by splittingsup-expression
=max( 7y ,sup{f(z'): 2 > 2,2 #2.}) by (1159), (1160)

—

A%
N[

<

N[

:’r‘+
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and
sup{f(): 2/ <z} <ry
by (1159) and (1160). Hence
fH(z) = min(sup{ (=) : ' > 2}, sup{f(z) : ' < 2}) by (1158)

=ry <rg
=sup{f(z'): 2 < z}.

Caseb. of the lemma is proven analogously. We then have> 2, and hence
sup{f(z') : 2/ < z} = ry by (1159) and (1160). On the other hardp{f(z’) :
2’ >z} <ry. Thereforef*(z) = min(sup{f(z’) : 2’ > z},sup{f (') : 2/ < z}) =
min(sup{f(z') : 2’ > z},ry) = sup{f(z) : 2 > z}, as desired.

Lemma 191 Let f € X be given and suppose thdt; € A is defined in terms of
according to equatiorf89). We further assume a choice of € I with f(z;) > 1.
Then for allzy € 1,

a. Ifzg > 2, thenA ¥ (z) = U{As(2) : 2/ > 2);
b. If 2 < zy, thenA ¥ (z0) = U{A;(2') : 2/ < 2}

Proof  Letus recall from Def. 95 that, = f(z4) > 1, andf(z) < 1—r; whenever
z# zy. Henceforallz € I\ {2},

Ap(2) = [0, f(R € 0, ry ] U{re} = [0, fz)IU{f(z0)} = Af(24) . (1161)

In order to prove pard., let us now suppose tha > =, . We then know from (1161)
that

U{Af(2') 1 2/ < 20} = (U{Af(2") : 2/ < 20,2 # 24 }) U Ap(24), becausey <z
and hence
U{Af(2") : 2" <20} = Ap(2y) (1162)

by (1161). On the other hand, the subsumption stated in (1161) entaild that C
Ay (z4 ) forall 2’ > zy. Therefore

U{Af(2') : 2" > 20} C Ap(24). (1163)
In turn,

Art(z0) = (U{Ap(2)) 1 2/ > 20}) N (UfAs(2)) : 2/ < 20}) by (1152)

= (U{As(z") : 2 > 20}) N Ap(24) by (1162)
=U{As(Z")NAf(z4): 2 > 20} by distributivity
=U{As(2") : 2" > 20}, by (1163)

376



as desired. In the remaining cdsethatz; < z,, we can proceed analogously. By
similar reasoning as above, one then shows that

U{As(2)) 1 2" = 20} = Ap(z4)
and
U{Af(2') 1 2 <20} C Af(24).

Based on these results, it is then easy to finish the proofdfzg) = U{A(2') :
2" < zp}, again utilizing the distributivity of set operations and the law of absorption.

Lemma 192 Forall f € X,

b
Ay = (A"
Proof Letzy € I be given.

a.: Agpi(20) C (A7)¥(20).
To see this, considet, € A:(z). We abbreviate, = r, (f). Itis now convenient
to discern the following two cases.

In the first case thaty = r, andr,. > 3, we know from Def. 95 that, = f(z;)
for a unique choice of . € Tandthatf(z) < 1—r, < r, forall z # z,.. We observe
that forz > z,,

=sup{f(z'): 2" >z} by L-190

by Def. 95, because, < 2’ < z. For similar reasons, we obtain thgit(z) < 1 —r
in the case that < z,. Hencef*(z) = r, is possible only it = z, . In fact, we then
have:

fHzg) =sup{f(z): 2/ > 24} by L-190
= max(f(z4),sup{f(z') : 2 > 24 }) by Def. 95
——
o1 <1
232 =32
= f(z4).

We can hence conclude frorg = ry > 1 thatzy = 2. HenceAy(zy) = Af(zy) =
[0,1 —ry] U {rs} by (89). Itis then obvious fronf(z) < 1 —r, forall z # 24
and from (1152) thati ;¥ (zp) = [0,1 — 4] U {r, } as well. It is apparent from our
assumptiony > $ thatry = sup([0,1 — r4] U {ry}). Therefore

A (20) = 0,1 = r] U {ry ), (1164)
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and in particularrg = . € Afih(2+) = Afj;h(zo), as desired.

Next we consider the remaining case that£ r . It is then apparent from Def. 95
and (89) thaty < 1 — ry. In the special case thay = z,, we hence already know

from (1164) that indeed, € Afih(zo). Hence suppose that # z,. Itis then
apparent from L-190 andl(z') < 1 — r, for all 2’ # 2, as ensured by Def. 95, that
in fact

fHz0) <1—rg. (1165)
Hence by (89),
Ayi(z0) = [0, f*(20)],
and in particular
ro < fH(z0).

We now observe from (89) that € A;(z), regardless ot € I. In particular0 €
Af(zp). This proves that, € A¢(zo) in the special case thag = 0. Hence suppose
thatry > 0. It is now convenient to discern two more cases.

In the case thaty > =, we know from L-190 that

FH(z0) = sup{f(') : #' = 20} (1166)

We can then consider somé € [0,7(). In particular,”” < f*(z) and by (1166),
fH(z0) = sup{f(2') : 2/ > 20} > 0. Hence there exists > z, with

f&) > (1167)

Becauser’ > z > z;, we also know thaf (z’) <1 —ry < 1. Therefored;(z') =
[0, f(2")]. In turn, we conclude from’ > z, and (1167) that

[0,7] € [0, f(2)] = Az (') S U{As(2) : 2 > 2} (1168)
Because’ < 1 —r,, we also know from (89) and, < z, that
(0,71 C[0,1—ry] C Afp(z4) CU{Af(2) : 2 < 20} . (1169)
Recalling (1152), this proves that
0,71 € (UfA7(2) : 2 = 20}) N (U{A5(2) : 2 < z0}) = Af¥(z0).
Because’ < rq was arbitrarily chosen, we conclude that
[0,70) € Af*(20).

In particular,s = sup A;*(29) > ro. Let us now recall from (89) that ever(z),
z # z4, iIs a closed interval of the forrft, a]. Becausey, # z,, we hence obtain
from L-191 thatAfi(zo) is a union of closed intervals of the above form. Hence
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A¢*(20) has one of the following formsd ;¥ (z9) = [0,s) or As¥(zy) = [0, 5], where

s = sup A;¥(29) as above. In any casd,*(z9) U {s} = [0, s]. Recalling (1156), this
proves thamfih(ZO) = [0, s], wheres > r. In particularry € Afih(zo), as desired.

The proof of the remaining case that < z. is completely analogous to the above
prove of the case;, > z;,. We again utilize L-190, which in this case states that
fH(z0) = sup{f (') : 2/ < z}. Apart from reversal of the inequations (considering

z' < zg instead ofz’ > zj), the present case can hence be proven in the same way as
the case > 2.

b.: (A7) (20) C Agsey(20).

To see this, considet € A ().

Let us first suppose that = 2. We notice thatd;(z) C [0,1 — 4] forall z # z;
andA;(z,) = [0,1 — r;] U {r, } by Def. 95 and (89). Thereforé*(2,) = [0,1 —
’I"+] U {’I’+} and

A (2) = 0,1 = r] U {ry) (1170)

as well, see (1152) and (1156).
We further deduce fronf(z,) = r, and (1158) thaif*(z, ) = r, as well. By (89),
then, we obtain that

Api(z4) =[0,1 = riJU{ry}

because, > 1. Combining this with (1170) results i ;+(z4.) = Afiu(z+). In

particularrg € Ay:(20) andzy = 2 entail thatry € Afiu(zo).
Let us now treat the remaining case that~ z . Let us recall from (89) and Def. 95
thatAs(z) = [0, f(z)] forall z # z. Hence forzg > 2z,

At (z0)
=U{As(2) : 2" > 20} by L-191
= U{[0, f(2")] : 2" > 20} by (89) and Def. 95 becausg < zy
C [0,sup{f(=') : #' > z0}]
=10, f*(20)], by L-190
and forzg < zy,
Ag(20)
=U{As(7) : 2/ < 20} by L-191
= U{[0, f(2")] : 2" < 20} by (89) and Def. 95 becausg > zg
C [0,sup{f(2') : 2’ < 20}]
= [0, f¥(20)] - by L-190

To sum up, | have shown that for al} # =,

Ast(z0) C [0, f*(20)] -
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In particularsup A *(20) < f¥(20), i.e.sup As*(20) € [0, f*(20)]. Recalling (1156),
this proves thaﬂfih(ZO) C [0, f*(20)]. Let us further notice that

sup{f(2'): 2’ # 2} by L-190 andz # 24
-y by Def. 95

Hence by (89),A/:(z0) = [0, f*(20)], i.€. Afih(zo) C [0, fH(20)] = Ay:(20). In
particular,rg € Afih(zo) entails thatry € A+ (20), which completes the proof of part
b. of the lemma.

Lemma 193 Lety : X — I be given and suppose that: A — 1 is defined by
(87). If ¢ satisfiegy-4), theny is *-invariant, i.e.o(f*) = ¢(f) forall f € X.

Proof To see this, lef € X. Then

o(f*) =(Apr) by L-185
= (A by L-192
=(Ay) by L-189, L-187
=o(f). by L-185

In the following, we introduce a preordet on X. For all f, /' € X, let us write
f < f"if and only if the following two conditions are satisfied.

a.: forallz € I, there exists’ > z with f'(z") > f(2); (1171)
b.: for all 2’ € 1, there exists < 2’ with f(z) > f'(2'). (1172)

Lemma 194 Letf, f’ € X be given and suppose that— f’. Thenf* < f/*,

Proof  In order to prove this, we first observe that(f}) = r, (f) andr, (f'*) =
r+(f"), which is apparent from (1158). In addition, we know from L-188 that f’
entails that (f) = 7. (f’). To sum up, there exists. € I with

re=re(f) =) = () = (). (1173)
It is also worth noticing that
FHer) = flze) =14 (1174)
and
Fre) = Fle) =y (1175)

wherezy = 2, (f) andz,’ = 2, (f’), which is apparent from (1158) and the fact that
the maximum off is achieved at.. .
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Let us now consider the preconditions (1171) and (1172)of f”t in turn.
To see that (1171) holds, suppose that I. In the case that < 2" = z, (f'), we
proceed as follows.

FHz) < re(fh) by Def. 95
=r(f) by (1173)
= f'(z4") see Def. 95
= (=) by (1175)

Hencez’ = z,/ is a legal choice of’ > z with fi(z) < f'*(2/).
In the remaining case that> 2z ('),

FH2) = sup{f' () : 2 > 2} by L-190
=sup{sup{f(z"): 2" >2'}: 2 >z}
>sup{f(z'): 2 >z} by Def. 97
> fH(z), by (1158)

i.e.z' = z is a suitable choice of > z with f/*(2/) > f%(z), as desired.
Now we focus on (1172). Hence considérc I. In the case that, = 2, (f) < 2/,

Flag) =1y by (1174)
=rp () by (1173)
> (). see Def. 95

Hencez = z, is a suitable choice of < 2’ with f(z) > f*(2/).
Finally if z4 = z4.(f) > 2/, then

fHZ) =sup{f(z) : 2 < '} by L-190
=sup{sup{f(z"): 2" <z} :2 <2}
>sup{f(z): 2 <2} by Def. 97
> ). by (1158)

This proves that = 2/ is a legal choice of < 2’ with f#(z) > f'*(2’). Because both
preconditions (1171) and (1172) are satisfied, we conclude the d§§i|§@”’i.

Lemma 195 Letf, f* € X be given and suppose thAtd f’. Thenf C f’ as well.

Proof Hence letf, f/ € X with f < f’ be given. | first show that conditioa. of
Def. 97 is satisfied. Hence lete I be given. We then know from (1171) that there
existszg > z with f/(z9) > f(z). In particular
sup{f'(z') : 2/ > 2} > f'(20) becauseg > 2
> f(2). by (1171)
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Now let us discuss conditiolp. of Def. 97. Hence consider € 1. By (1172), then,
there exists; < 2z’ with f(z1) > f/(2'). Therefore

sup{f(z): 2 <2’} < f(=) because; < 2’/
> f'(¢). by (1172)

This completes the proof that both preconditions of Def. 97 are valid; hence indeed

FET.

Lemma 196 Lety : X — I be given and suppose that: A — I, defined by87),
satisfieqw-4). Then for allf, /' € X,

e(f) < o(f') (1176)

provided thatf < f’.

Proof Hence letf, f// € X with f < f’ be given. We then know from L-195 that
f C f’. Hence L-188 is applicable, and

re =14(f) =ry(f). (1177)

| will now show thatAy T Ay, by proving that conditions. andb. of Def. 89 are
fulfilled by As, Ay

To see that conditioa. holds, consider € L. If f(z) > 1,i.e. f(z) = r;(f), then
Asr(z) = 0,1 —r ] U {ry} by (89) and (1177). We then conclude from (1171) that
there exists’ > z with f/(z') > f(z). Because . (f') = r4 by (1177), this is only
possible iff'(z") = r4. Hence by (89)A (2) = [0,1 —r4] U {r+} = As(2). In
particular,r € A (z) entails that- € Ay (2’) for the givenz” > z, as desired.

In the remaining case thd{z) < 3, we know from (89) thati ;(z) = [0, f(z)]. From
(1171), we obtain that there exists > z with f/(z’) > f(z). Hencel0, f(z)] C
[0, f'(#)] € Ay (2'). In particularr € A;(z) = [0, f(z)] entails that € Ay (z') for
the givenz’ > z. This completes the proof that conditianof Def. 89 holds.

We now discuss conditiob. of Def. 89. Hence let’ € I be given. Iff/(z) > %
ie. f'(#') = r+(f), thenthend (2') = [0,1 — r4] U {r+} by (89) and (1177). We
obtain from (1172) that there exists< 2’ with f(z) > f/(z’). Because(f) = r+
by (1177), this is only possible if(z) = r as well. Hence by (89)4,(z) = [0,1 —
ry]U{ry} = Ap(2'). In particular,r € Ay (2') entails that € A (z) for the given
z < 7.

Finally in the case that’(z’) < 3, (89) results ind s/ (z’) = [0, f/(z’)]. From (1172),
we obtain that there exists< z’ with f(z) > f’(z’). Hencel0, f'(z")] C [0, f(2)] C
As(z). In particularr € Ay (2') = [0, f'(2')] entails thatr € A;(z) for the given

z < 2'. Hence conditiorb. of Def. 89 holds as well. This completes the proof that
indeed

A;C Ay (1178)
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Consequently

o(f) =¢(Ay) by L-185, (88)
< (Ap) by (¥-4) and (1178)
=o(f"), by L-185, (88)

i.e. f < f’ entails thato(f) < (), as claimed by the lemma.

Proof of Theorem 126

Considerp : X — I and suppose that : A — I is defined by (87). We shall prove
the equivalences stated in the theorem in due turn. For convenience, every equivalence
will be split into two implications, which are proven separately.

a.l: If p satisfies (p-1) then ) satisfies (y-1).

To see this, suppose thatsatisfies ¢-1) and considerd € A with D(A) = {1},
i.e. A(zy) = {1} and A(z) = @ for all z # z,. Itis then apparent from Def. 93 that
fa(zy) = sup A(z4) = sup{1} = 1 and f4(z) = sup A(z) = sup@ = 0 for all

z # z4. Hence

fA(Z){é z=1z4

z# 24
for all z € L. In particularf=1((0,1]) = {z+} andf(z+) = 1. Therefore

W(A) = o(fa) by (87)
=z by (¢-1)

a.2: If ¢ satisfies (i-1) then ¢ satisfies (p-1).
Hence suppose that satisfies {-1) and letf € X be given such that=*((0,1]) =
{z+}andf(zy) = 1. We now defined € A by

A(z>:{ {1} 2=24

g . else
for all z € I. Itis then apparent from Def. 93 that
Ja=1T1. (1179)

We further notice that, (A) coincides with the given,, andD(A) = {1}, i.e. >-1)
is applicable. Therefore

o(f) = o(fa) by (1179)
=Y(A) by (87)
=Z+. by (y-1)
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b.1: If ¢ satisfies (¢-2) then 1) satisfies (i-2).
Hence suppose thatsatisfies ¢-2) and let4, A’ € A be given such that

Al(z) = A1 - 2) (1180)
forall z € 1.
Now we considerfy’(z) vs. fa(z) for a givenz € 1. Apparently
fa'(z) = sup A'(z) by Def. 93
=sup A(1l —2) by (1180)
= fa(l—=2). by Def. 93

Because: € I was arbitrary, this proves thgt’(z) = fa(1 — z) for all z € 1, and
(p-2) is applicable. Consequently

Y(A) = o(far) by (87)
=1-p(fa) by (»-2)
=1—p(A). by (87)

b.2: If ¢ satisfies (¢-2) then ¢ satisfies (p-2).
To see this, assume thatsatisfies {-2) and consideyf, ' € X with

Fl2)=f1-2) (1181)
for all z € 1. As | will now prove, this entails that
Af/(Z) = Af(l — Z) (1182)

N[

for all z € I. Hence let: € I. In the case thaf’(z) > 1, thenf(1 — 2) = f'(z) >
as well. Therefore

Ap(2) = (0,1 = f()]U{f' ()} by (89)
=[0,1-f1-2)]U{f(1-2)} by (1181)
=A;(1-2). by (89)

In the remaining case that(z) < 1, we conclude from (1181) thaf(1 — z) =
f'(2) < 1 as well. Hence

Ap(2) = [0, f'(2)] by (89)
= [0, f(1 - 2)] by (1181)
=A;(1-2). by (89)

Because: € I was arbitrary, this proves that; (z) = A;(1 — 2) for all z € 1,
i.e. (-2) is applicable. Hence

o(f') =¢(Ay) by L-185, (88)
=1-9(4y) by (-2)
=1-p(f). by L-185 and (88)
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c.1l: If ¢ satisfies (p-3) then ) satisfies (y-3).

Hence suppose that satisfies ¢-3) and consided € A with NV(A4) C {0,1} and

ry € A(1). HenceA(z) = o for all z € (0,1), see (78). Recalling Def. 93, this
proves thatfs(z) = supA(z) = sup@ = 0 for all z € (0,1). In other words,
fa7*((0,1]) € {0,1}. Because, € A(1) andr, > 1, we further obtain from
Def. 93 thatf, (1) = sup A(1) > r; > 1. Summarizing these results, we have shown
that (p-3) is applicable tgfs, and hence

¢(fa) =1 — fa(0) =1 —sup A(0) (1183)
by Def. 93. In turn
V(A) = p(fa) by (87)
=1—sup A(0), by (1183)

i.e. -3) holds, as desired.

c.2: If 1) satisfies (y-3) then ¢ satisfies (p-3).
Suppose that) satisfies {-3) and considerf € X with f~1((0,1]) € {0,1} and
f(1) > 4. We defined € A by

{ {f(0)} : 2=0
Az)=< @ : z€(0,1) (1184)
01— FOIULFQ)} ¢ 2=1

for all z € 1. Itis then apparent from Def. 93 that
f=1ra. (1185)

In addition, N(A) = {0,1} by (78) andr(A) = f(1) € A(1). Hence {-3) is
applicable, and

P(A) =1—-sup A(0) =1— f(0) (1186)

by (1184). This proves that

o(f) = o(fa) by (1185)
=P(A) by (87)
=1— f(0), by (1186)

i.e. (p-3) is indeed valid.

d.1: If ¢ satisfies (y-4)then o satisfies (y-4).
Let us assume that fulfills (o-4) and suppose that, A’ € A satisfyA C A’. | now
show that

Ja € far. (1187)
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To see that conditiom. of Def. 97 is satisfied, consider € I. If A(z) = @, then
fa(z) = sup A(z) = sup@ = 0 and hence triviallsup{fa/(z’) : 2/’ > 2z} > 0 =
fa(z). In the remaining case that(z) # @, lete > 0. Becausefs(z) = sup A(z),
there exists € A(z) withr > fa(z)—e. Recalling Def. 89, we conclude froh C A’
that there exists(, > z with r € A(z(). Hencefa (z)) = sup A’'(2{) >r > fa — ¢

for this choice ofz, > z, and in turn
sup{far(2') : 2 = 2} = far(20) > fa(z) — €
because|, > z. £ — 0 then yields the desired

sup{fur() : 2/ > 2} = fu(2),

i.e. conditiona. of Def. 97 is satisfied. Let us now consider the second condition of
Def. 97. Hence let’ € L. If A’(') = @, thenfy' (') = sup A’(2') = sup@ = 0,

see Def. 93. It then holds trivially thatip{f4(z) : z < 2’} > 0 = fa(2'). In

the remaining case that’(z’) # @, lete > 0. Then there exists € A’(z") with

r > sup A'(2') — e = fa(2') — ¢, see Def. 93. Recalling conditidn of Def. 89,

we conclude fromd C A’ that there existy < 2z’ with » € A(zp). In particular
sup A(zp) > r and hence4(z9) > r > fa (') — ¢, cf. Def. 93. Becausgy < 2/,

sup{fa(z) : 2 < 2'} > fa(z0) > far(z) — €.

Noticing thate > 0 was chosen arbitrarily, we hence deduce that f4(z) : z <
z'} > fa(2). This proves that the second condition of Def. 97 is also satisfied; which
permits us to deduce that (1187) is indeed valid. Therefore

B(A) = o(fa) by (87)
< (i) by (-4) and (1187)
= Y(4), by (87)

as desired.

d.2: If ¢ satisfies (y-4) then ¢ satisfies (p-4).
Hence suppose that){4) is valid for the giverw. In order to prove thap satisfies
(p-4), we consider, /' € Xwith f C f’. We then know from L-194 that

frart (1188)
Therefore
o(f) = e(f?) by L-193
< o(f™M by L-196 and (1188)
= o(f, by L-193

i.e. ¢ indeed satisfiesf-4).
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e.l: If ¢ satisfies (p-5) then ) satisfies (i-5).
Suppose thap satisfies ¢-5) and consider somé € A. Then for allz € I,

falz) = sup A(2) (1189)
by Def. 93, and
faa(z) = sup|0, BA(z)] by Def. 93 and Def. 91
= BA(z)
= min(sup A(z), %) by (73)
=min(fa(2), 3). by (1189)
Hence (p-5) is applicable, and
¢(fa) = ¢(fma) - (1190)
This in turn proves the desired
V(A) = p(fa) by (87)
= ¢(fima) by (1190)
= ¢(BA4), by (87)

i.e.vy indeed satisfies/(-5).

e.2: If ¢ satisfies (¢-5) then  satisfies (p-5).
To see this, let us assume thasatisfies {-5). Now considelf € X and defingf’ € X
by

f'(2) = min(f(2), 1) (1191)
for all z € 1. Recalling (89),f and f’ apparently result in
[0, £(2)] D f(2) <3
A = 1192
1) { 01— FEIULFEY ) > L (1192)
and
Ay (2) = [0, f'(2)] (1193)
for all z € I. Now expandingf’(z) by (1191), we obtain
Ay (2) = [0,min(f(2), 3)] by (1191), (1193)
= [0, min(sup Af(z), 3)] by (1192)
=HBAs(z2). by Def. 91

Because: € I was arbitrarily chosen, this proves that

Ay =BA;. (1194)
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Therefore

o(f) =v(Ay) by L-185 and (88)
=1p(BAy) by (:-5)
= 1p(Ap) by (1194)
=o(f), by L-185 and (88)

which completes the proof thap{5) holds provided thau{-5) is valid.

B.36 Proof of Theorem 127

Lety : X — I be given and suppose thasatisfies ¢-1)—(p-5). We then know from
Th-126 that the mapping : A — I defined by (87) satisfies/f1)—(@-5). In turn,

we conclude from Th-107 th&f,, is a standard DFS. BuE, = F,, by Th-124, which
proves thatF, is indeed a standard DFS.

B.37 Proof of Theorem 128

Let ¢ : X — I be given and suppose that, is a DFS. Let us defing : A — I
in terms ofp according to (87). We then know tha#, = F,, i.e. 7, is a DFS.
Hence Th-116 states thatsatisfies {»-1)—(@)-5). In turn, we obtain from Th-126 that
p satisfies ¢-1)—(p-5), as desired.

B.38 Proof of Theorem 129

The independence of most of the-tonditions’ of the remaining conditions is apparent
from Th-126 and Th-121. In fact the only condition the independence of which needs
to be verified separately i9{5). To see that£-5) is independent off-1), (p-2), (»-3)

and (p-4), we introduce a mapping. : X — I which satisfies all of these conditions
except for (»-5). Hence let us define a number of coefficients based on a giver

() = max(inf £72((0,1]),1 —sup f([0,1))) : f(1)=r, (1105)
max(inf f1((0, 1)), f(1)) 2 () #Fry

u(f) = { min(sup f1((0, 1), sup (0, 1)+ F(0) =7 (1196)
min(sup f1((0,1)), 1= f(0)  : f(0) #ry

a=a(f)=2-ry(f) -1 (1197)

for all f € X, wherer, = r(f). Interms of these coefficients, we then define
wx: X — Ihy

a-l(f)+ 1 —a)ulf) : Uf)>3
po(f) =4 arulf)+(1—a)l(f) + u(f)<} (1198)
% : é(f) < % < U(f)
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for all f € X. In the following, | will first prove thatp, is well-defined, by showing
that¢(f) < u(f) for all f € X, as required by (1198). To this end, we need some
observations on how the computation/@f) andu(f) can be simplified.

Lemma 197 Let f € X be given. Then

a. if f(0) #0andf(1) # ry, thenl(f) = f(1);

b. if £(0) # 0 and f(1) = r., then¢(f) = 1 — sup ([0, 1));
c. if £(1) = 0, thent(f) = inf f~1((0,1)).

Proof

a.. f(0) #0and f(1) # r4.
Then0 € £~1((0, 1]) and hence

inf f71((0,1]) = 0. (1199)
Therefore
U(f) = max(inf ~((0,1]), £(1)) by (1195)
= max(0, f(1)) by (1199)

=f(1).

b.: f(0)#0and f(1) =r,. Thenagai € f~1((0,1]) and hence

inf £71((0,1]) = 0. (1200)
Inturn
0(f) = max(inf £~1((0,1]),1 — sup f([0,1))) by (1195)

= max(0,1 — sup f([0,1))) by (1200)

— 1 —sup F([0,1)).
c: f(1)=0
Then clearlyf(1) # r.. because > 1. Therefore

((f) = max(inf f71((0,1]), f(1)) by (1195)
= max(inf £71((0,1]),0) by assumption that(1) = 0

— inf £71((0,1)).

In the case ofi( f), we obtain similar results.

389



Lemma 198 Let f € X be given. Then

a. if f(1) #0and f(0) # r4, thenu(f) =1 — f(0);

b. if f(1) # 0and f(0) = r4, thenu(f) = sup f((0, 1]);
c. if £(0) = 0, thenu(f) = sup f~1((0,1]).

Proof

a.. f(1)#0and f(0) # ry.
Thenl € £1((0,1]) and hence

sup £71((0,1]) = 1. (1201)
Therefore
u(f) = min(sup f~1((0,1]),1 = £(0)) by (1196)
=min(1,1 — f(0)) by (1201)

=1-f(0).

b.: f(1) #0and f(0)=r4. Thenagain € f~!((0,1]) and hence

sup f1((0,1]) = 1. (1202)
In turn
u(f) = min(sup £ ((0, 1]), sup £((0,1])) by (1196)
= min(1, sup f(((L 1)) by (1202)
= sup £((0,1]) .
c.:. f(0)=0

Then in particularf (0) # r because > 1. Therefore

u(f) = min(sup f71((0,1]),1 - £(0)) by (1196)
= min(sup f~*((0,1]), 1) by assumption thaf(0) = 0
= sup f~1((0,1]).

Lemma 199 ¢, is well-defined, i.e. for alf € X, ¢(f) < u(f).

Proof To see this, consideff € X. It is convenient to discern the following cases.
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a.. f(0)=ryand f(1) =0.

Then
of)=fQQ) by L-197a
=0 by assumption
<u(f).
b.: f(0) =7, f(1) #r+ and f(1) # 0.
Then
L f) = f(1) by L-197a
< sup £((0, 1)) becausd € (0,1] andf(1) € £((0,1])
=u(f). by L-198b

c.. f(0)=ryand f(1) =ry4.
We then know from Def. 95 that, = % Therefore

o~

(f)=1—sup f([0,1)) by L-197b
=1-—ry see Def. 95
=ry because; = 3
= sup £((0,1]) see Def. 95
=u(f). by L-198b
d.: f(0)=0and f(1) =ry4.
Thenl € f~1((0,1]) and hence
sup f71((0,1]) = 1. (1203)
In particular
(f) <1
= sup £71((0,1]) by (1203)
=u(f). by L-198¢

e.l f(0) #0, f(0) #ry and f(1) = ry.
Then

~

¢(f)=1—sup f([0,1)) by L-197b
<1-f(0) becaus® < [0,1) and hence’(0) € f([0,1))
=u(f). by L-198a
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f. f(0)=0and f(1) =

Then
0(f) = inf £71((0,1]) by L-197¢
< sup £71((0,1]) becausg’((0,1]) # &
=u(f). by L-198c

9.0 f(0)=0and f(1) #0, f(1) # r+.
Thenl € £~1((0,1]) and hence

sup f1((0,1]) = 1. (1204)
Therefore
of) <1
=sup f~1((0,1]) by (1204)
=u(f). by L-198¢

h.: f(0) #0, f(0) #r4 and f(1) =0.

Then
L0 f) = f(1) by L-197a
=0 by assumption orf
< u(f).
i f(0) #0, f(0) #ry, f(1) #0and f(1) #ry.
Then
of) = f(1) by L-197a
<1l-ry by Def. 95 becaus¢(1) # ry
<r, because; > 1
<1-f(0) by Def. 95 becaus¢(0) # r
=u(f). by L-198a

Lemma 200 Letf € X be given and suppose thétf) = u(f). Thenp.(f) = £(f).

Proof  Itis useful to discern three cases. Firstly(ff) > 3, then

@x(f) = al(f) + (1 = a)u(f) by (1198)
=al(f)+ (1 —a)(f) by assumption
= al(f) +U(f) — al(f)

= ().
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In the case that(f) = 1, we directly obtain from (1198) that. (f) = § = ¢(f).
Finally if £(f) < 3, then in particulaw(f) = ¢(f) <  and hence

e (f) = au(f) + (1 —a)l(f) by (1198)
=al(f)+ (1 —a)l(f) by assumption
= al(f) +L(f) — al(f)
=L(f),

as desired.

Lemma 201 Letf € X be given and suppose that € X is defined by
fl(z)=f(1-2) (1205)

forall z € I. Then

Proof To see this, we first notice that

(1) = £(0), (1206)
f(0)=f1). (1207)
This is apparent from (1205). In addition, we observe that
FH0,1) = {z: f(2) > 0} by definition of inverse images
={z:f(1-2)>0} by (1205)
={1-2":f(z) >0} by substitution:’ = 1 — z

={l-z:ze{: f())>0}},
and hence
FHO) = {1-2:z€ F71((0,1))} (1208)

This proves that

inf f/71((0,1])) =inf{l —z: 2z € f((0,1])} =1 —sup £~1((0,1])  (1209)
and

sup f'1((0,1]) = sup{l — z: z € f71((0,1))} =1 —inf f71((0,1])  (1210)
Finally

sup f/([0,1)) = sup{f'(z) : z € [0,1)} by Def. 15
=sup{f(z):z € (0,1]}, by (1205)
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sup f([0, 1)) sup £((0, 1)), (1211)
and similarly
sup f/((0,1]) = sup{f'(z) : z € (0,1]} by Def. 15
=sup{f(z):z€[0,1)}, by (1205)
which shows that
sup f/((0,1]) = sup f([0,1)). (1212)

We can now put the pieces together, and prove thatgpartthe lemma is valid.
Firstly if f(1) = r4, then we know from (1206) thaf(0) = f'(1) = r as well,
where | have abbreviated = r f, noticing thatr, (f) = r (f'). Therefore

0(f") = max(inf £/~ ((0,1]),1 — sup f/(0,1))) by (1195)
= max(1 —sup £1((0,1]),1 — sup f((O, 1])) by (1209), (1211)
=1 — min(sup f~1((0,1]),sup £((0,1])) by De Morgan'’s law
=1—u(f). by (1196)

In the remaining case thgt (1) # r,, we again conclude fronf(0) = f/(1) that
f(0) # ry as well. Therefore

U(f") = max(inf /'~ ((0,1]), /(1)) by (1195)
= max(l —sup f1((0,1]), £(0)) by (1206) and (1209)
= max(1 —sup £71((0,1]),1 — (1 — £(0))) becausd — z involution
=1 —min(sup f~1((0,1]),1 — £(0)) by De Morgan’s law
=1—u(f). by (1196)

This completes the proof of paat of the lemma. As concerns pdit, we proceed as
follows.

w(f)=1-(1-u(f)) becausd — x involution
= 1))

by parta. of the lemma, utilizing thaf (z) = f(1—(1—=2)) = f'(1—=z) forall z € 1,
which is apparent from (1205).

Lemma 202 Forall f € X,

a. ((f*) = 0(f);
b. u(f*) = u(f);
a(f¥) = a(f); and in particular
d. .(f1) = @u(f).

~—

.O
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Proof Consider som¢ € X.

a.: ((f*) = U(f).

We first notice from (1158) that, (f*) = r.(f); in the following, | will hence
abbreviate both coefficients as. Re/c\alling (1195), is then sufficient to show that
inf £+ ((0,1]) = inf f~1((0,1]), sup fH([0,1)) = sup f([0, 1)), and (1) = £(1).

As concernsnf £ 7((0,1]), we first recall thatf¥ > f and hencef*™ " ((0,1]) 2
£71((0,1]). Hence

inf £171((0,1]) < inf £71((0,1]). (1213)

Now let us consider the converse inequation. ¢ et 0. Becausef*(z,) = ry > 0,
we know thatfi_l((o, 1]) # @. Hence there exists € I with

1z >0 (1214)
and
2 < inf fF7((0,1]) +¢. (1215)
Itis apparent from (1158) that
sup{f(z): 2 < 2'} > f(¢). (1216)

Recalling (1214), we can choose somec (0, f*(2')). By (1216), then, there exists
2" e Twith 2" <7, ie.

2 < inf fF((0,1]) + € (1217)
by (1215); and with the additional property th&t") > +/, in particular
f(z")>0.
We hence know that” € f=1((0,1]). In turn by (1217),
inf £71((0,1]) < 2 < inf f£((0,1]) + €. (1218)

¢ — 0 then proves thainf £~1((0,1]) < 2" < inf £+~ ((0, 1]). Recalling (1213), we
have hence shown that indeed

inf £=1((0,1]) = inf f*~((0,1]).

~

Now let us turn attention teup ﬁ([o, 1)) vs.sup f([0,1)). We first observe that

sup f1(0,1)) > sup ([0, 1)) (1219)

because* > f. Now let us show that the converse inequation is also valid. Hence let
e > 0. Then there exists, € [0,1) with

FH(z0) > sup fH([0,1)) — 5 . (1220)
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By (1158), then, we know that
sup{f(z) : 2 < 20} > f*(20) -

In particular, there exists; € [0, zp] with

f(z1) > sup{f(z) : 2 < 20} — 5,

f(z1) > sup f5([0,1)) — ¢

by (1220). Because, € [0, zp] C [0, 1), we conclude that

o~

sup £([0,1)) = sup{f(2) : 2 € [0,1)} > f(21) > sup f5([0, 1)) — .

Noticing thats > 0 was arbitrarily chosen, this proves that in fact

~

sup £([0,1)) > sup f1([0,1)).

~

Combining this with (1219), we hence obtain thap f([0,1)) = supﬁ([o, 1)).
Now let us discusg*(1) vs. f(1). In this case, we simply observe that

1) =sup{f(z): 2 > 1} by L-190 (1221)
=sup{f(1)} because <1 (1222)
= f(1), (1223)

as desired. This finishes the proof tfiaf*) = ¢(f) becausé(e) only depends on the
coefficients discussed above, and these coefficients have been shownitwémant.

b.: u(f*) = u(f).
To see this, suppose thft /7 € X are defined by

f(z)=f(1-2) (1224)
f'(z) = 11— 2) (1225)
forall z € I. Then
FH(2) = min(sup{f'(2') : 2’ < 2},
sup{f'(z') : 2/ > 2} by (1158)

= min(sup{f(1 —2') : 2’ <z},

sup{f(1—2"): 2" > z}) by (1224)
=min(sup{f(z"): 2" >1 -z},

sup{f(z") : 2" <1-2}) substituting:” =1 — 2’
=ff1-2), by (1158)
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and hence

@) = 1) (1226)
by (1225). Therefore
u(fH) =1—£0(f" by L-201 and (1225)
=1—0(f" by (1226)
=1-4(f) by parta. of the lemma
=u(f). by L-201 and (1224)

c.: a(f*) = a(f).
This is apparent from (1197) and (f*) = r, (f). Hencea(f*) = 2r (f*) -1 =
2ro(f) —1=«a(f), as desired.

d.:@u (%) = ¢ (/).

We already know from pagt.—c. of the lemma that( f), u(f) anda(f) are*-invariant.
Now ¢, is a function of these coefficients, which is apparent from (1198). Hence
is *-invariant as well, and indeeg. (f*) = . (f).

Lemma 203 Letf, f’ € X be given and suppose thatd f’. Then

a. ((f)

IN

er);
u(f) <u(f');

c. a(f) = a(f');

d. . (f) < @u(f").

Proof

a. L(f) <L(f').
| first show that

inf £71((0,1]) < inf f'~1((0,1]) . (1227)

Hence let > 0. Becausg” ' ((0, 1]) # @, there exists’ € Twith 2’ € f'~'((0,1]),
ie.

fiZ)>0 (1228)
and

2 < inf f71((0,1)) +e. (1229)
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By (1172), there exists < 2z’ with f(z) > f’(z’). We then conclude from (1228) that
f(z) > 0and hence € f~1((0, 1]). In addition, we conclude from (1229) that

< <inf f/7H(0,1]) + &
and hence
inf £71((0,1]) < z < inf £/~ ((0,1]) + &

because € f~1((0,1]). ¢ — 0 then proves the target inequation (1227).
| next prove that

sup £([0,1)) > sup f/([0,1)). (1230)
Hence let: > 0. Becausef’([0,1)) # @, there exists: € f/([0,1)) with r >
sup f/(]0,1)) — . In turn, we obtain from Def. 15 that there existsc [0, 1) with
F(Z)=r>supf/([0,1)) —¢. (1231)
By (1172), then, there exists< 2’ with f(z) > f/(2). In particularz € [0,1) and
hencef(z) € f([0,1)). This proves that
sup f([0,1)) > f(2) = f'(=') > sup f/([0, 1)) — ¢, (1232)

see (1231). The desired inequation (1230) is then obtained-fo0.
Let us further observe that

f) < (1) (1233)

This is apparent from (1171), which states the existencé of 1 with f(1) < f/(2').
But 2’ is restricted to the unit rangg € [0, 1]. Hence in fact’ = 1 and consequently
f() < f'(1),i.e. (1233) is satisfied.

Finally we recall from L-195 thaf C f’. Hence L-188 is applicable, and

re =1r4(f) =r+(f). (1234)

Taking into account (1195), (1233) and (1234), it is now sufficient to consider the
following cases.
Firstly if f(1) < ry andf’(1) < ry,

¢(f) = max(inf f~((0,1]), (1)) by (1195)
< max(inf f/~1((0,1]), (1)) by (1227) and (1233)
=0(f). by (1195)
Secondly iff(1) < r andf’(1) = r4, then
0(f) = max(inf f71((0,1]), £(1)) by (1195)
< max(inf f7((0,1]), 3) by Def. 95 becausg(1) # r,
< max(inf f'7((0,1]), 3) by (1227)
< max(inf '~ ((0,1]), 1 = sup f((0,1))),
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where the last step is apparent from Def. 95, becgt&e = r, and hence’(z) <
1—r, forall z # 1. From this, we obtain that /) < ¢(f’), which is immediate from
f'(1) = r4 and (1195).

Finally if f(1) =r, andf’(1) = r4, then

((f) = max(inf f71((0,1]),1 —sup £([0,1)) by (1195)
< max(inf £/~ "((0,1]),1 —sup f/([0,1))) by (1227) and (1230)
= ). by (1195)

This completes the proof of paat, i.e. f < f/ entails tha?’(f) < ¢(f’), as desired.
b.: u(f) < ulf).

To see this, defing,, f{ € X by f1(z) = f(1—2)andf(z) = f'(1—=z)forall z € 1.
It is then apparent fronf < f/ that

fidh. (1235)
Therefore
u(f) =1-L(f1) by L-201
<1-4f]) by parta. of the lemma
=u(f), by L-201
as desired.
c.. a(f) = a(f).
To this end, we simply notice that
o(f) =2ri(f) -1 by (1197)
=2r,(f)—1 by (1234)
=a(f’). by (1197)

d.t s (f) < @u(f).

We know from the previous parts of the lemma and L-199 t0#} < ¢(f') < u(f’)
and{(f) < u(f) < u(f’). In addition, we know that.(f) = «(f’); this coefficient
will hence be abbreviated as Due to the above inequations, it is sufficient to discern
the following cases.

If ¢(f) > 3, then¢(f’) > 3 as well and hence

@i (f) = al(f) + (1 — a)u(f) by (1198)
<al(f)+ (1 —a)ulf) by partsa., b. of the lemma
= p.(f). by (1198)
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If u(f’) > 3 andé(f) < 3, thenp.(f) < & < p.(f’), which is clear from (1198).
Finally if u(f’) < 1, thenu(f) < 1 as well. Hence

p«(f) = au(f) + (1 —a)i(f) by (1198)
<au(f)+ 1 —a)l(f) by partsa., b. of the lemma
= p.(f'). by (1198)

Lemma 204 Suppose thap : X — I is f-invariant and monotonic with respect to
<, i.e.

o(f*) = o(f) (1236)
forall f € X, and

o(f) < olf) (1237)

wheneverf < f’. Theny satisfieqp-4).

Proof Hence letf, f' € X with f C f’ be given. We then know from L-194 that

fragt, (1238)
This proves the desired
o(f) = () by (1236)
< o(f' by (1238) and (1237)
=o(f). by (1236)

Lemma 205 The conditiony-5) is independent ofp-1)p-4).

Proof In order to prove this, | show that, : X — I as defined by (1198) satisfies
(¢-1)—(p-4) and fails on ¢-5).

a.. o, satisfies (p-1).
Hence considef € X with f=1((0,1]) = {24} andf(z;) = 1. Then in particular

inf f71((0,1]) = sup f1((0,1]) = 24 - (1239)
In the case that; = 0, we know from L-197a that

Lf)=f(1)=0. (1240)
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In addition, f(z) = 0 for all z > 0 entails thatsup f~!((0,1]) = sup@ = 0 and

~

sup f((0,1]) = sup{0} = 0. Therefore
u(f) = min(sup f~1((0,1]),sup ]?((O7 1])) = min(0,0) =0 (1241)

by (1196). In turn

P« (f) = au(f) + (1 = a)l(f) by (1198)
—a-0+(1—a)-0 by (1240), (1241) =0
=24 .

In the case that, = 1, we know from Def. 95 and, = 1 that f(z) = 0 for all
z €10,1). Thereforef~1((0,1]) = {1} and

inf f71((0,1]) = 1.

In addition

~

sup f[0,1) = sup{0} =0.
We conclude that
0(f) = max(inf £72((0,1]),1 — sup f[0,1)) = max(1,1) = 1 (1242)

by (1195). As concerng(f), we obtain from L-19& that

u(f)=1—-f0)=1-0=1. (1243)
Hence in this case,
e« (f) = al(f) + (1 — a)u(f) by (1198)
=a-1+4(1—-a)-1 by (1242), (1243)

=1

=Z4.

In the remaining case that, € (0, 1), we conclude from Def. 95 and, = 1 that
f(0)=0andf(1) = 0. Hence by L-19% and (1239),

0(f) = inf F7H((0,1]) = 24 .
We further obtain from L-198.and (1239) that
0(f) = sup f7H((0,1]) = 24 .

We can then apply lemma L-200 and conclude thatf) = ¢(f) = z.
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b.: ¢. satisfies (¢-2).

Hence letf € X and suppose that € X is defined byf’(z) = f(1 —z) forall z € I.
Then apparently- (') = r+(f). In particular,a(f’") = a(f), see (1197). In the
following, | will hence abbreviatee = «(f) = a(f’).

Now suppose that( /') > 1. We then know from L-20b thatu(f) = 1 —£(f’) <
Therefore

pe(f1) = al(f') + (1 = Ju(f) by (1198)
=a(l —u(f)) + (1 —a)(1 - £(f)) by L-201
=a—au(f) +(1-a)=(1-a)(f)
= 1= (au(f) + (1 = a)l(f))
=1-p.(f). by (1198)

Now suppose that(f’) < 3. We then know from L-20& that((f) = 1 —u(f’) >
Therefore

eu(f) = au(f) + (1 - a)l(f) by (1198)
=a(1—-4(f)+ (1 —a)1—u(f)) by L-201
=a—al(f) +(1—a)~ (1-a)u(f)
=1—(al(f) + (1 = a)u(f))
=1-9.(f). by (1198)

In the remaining case thdf /') < = < wu(f’), we know from L-201 that(f) =

L—u(f') <32 <1-4(f)=u(f)aswell. Hencep,(f') =2 =1-1 =1—p,(f)
by (1198).

1
5

N[

1
2
S

C.. v, satisfies (p-3).

To see this, considef € X with f=1((0,1]) € {0,1} and f(1) > 1. Hencef(1) =
r. andl € £71((0,1]). In the following | discern two main cases.

If £(0) =0,thenf=1((0,1]) = {1}. In particular

inf f71((0,1]) = sup f*((0,1]) = 1. (1244)
In addition, f~1((0,1]) = {1} means thaf(z) = 0 for all z < 1. Hence

o~

sup f([0,1)) = sup{0} =0. (1245)
It therefore holds that
((f) = max(inf f71((0,1]),1—sup f([0,1)) by (1195)
= max(1,1 - 0) by (1244), (1245)
=1
and
u(f) = sup £7((0, 1)) by L-198¢
1. by (1244)
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By applying L-200, we obtain the desired (f) =1=1—-0=1— f(0).
Next we consider the case thg0) > 0. Thenf~*((0,1]) = {0, 1}, i.e.

inf f71((0,1]) =0 (1246)
sup f1((0,1]) = 1. (1247)

Recalling thatf(z) = 0 for all z € (0, 1) by assumption, it is further apparent that

~

sup f([0,1)) = sup{f(0),0} = f(0). (1248)
Therefore
0(f) =1 —sup f([0,1)) by L-197b
=1-f(0) by (1248)

As concerns(f), we observe that(f) = 1 — f(0) by L-198a, provided thatf (0) #
r,. If on the other andf(0) = r, then we know from Def. 95 and the assumption
that f(1) = r, thatindeed-, = 1. Recalling thatf(z) = 0 for all z € (0, 1), we then
obtain that

~

sup f((07 1]) = sup{f(1)70} = f(l) =T+ (1249)
Therefore
u(f) = sup f((0,1)) by L-198b
=7y by (1249)
=1-ry because, = 1
=1-£(0).

This completes the proof that f) = 1 — f(0) regardless of (0). Recalling the above
result that’(f) = 1 — f(0) as well, we can hence apply L-200 and conclude that
v« (f) =1— f(0). This proves thap, indeed satisfies4-3).

d.: ¢. satisfies (p-4).

This is apparent from the above lemmata: L-202 statesghas o*-invariant, and L-
203 states thap, is monotonic with respect tgl. Hence lemma L-204 is applicable,
and we conclude that, satisfies ¢-4).

e.: ¢, violates (p-5).
To see this, considef € X defined by

3 L4
4 5
=4 1 ¢« ze{d ) (1250)
0 else
for all z € I. Then clearly
F7H0,1) = {2,3,1}. (1251)



Therefore

((f) =inf f71((0,1]) = 2 (1252)
by L-197c and (1251). In addition

u(f) = sup £1((0,1]) = 1 (1253)

by L-198¢ and (1251). Let us further notice from (1250) that = r,.(f) = 2 and
hencea = a(f) = 3 by (1197). Becausé&(f) = 2 > 1, we then obtain from (1198)
that

e(f)=al(fHH+(1-au(f)=%1-2+1.1=30+1=12. (1254)

Now considerf’ € X defined by

N[

forallz €1, i.e.

1 _ 4
2 F=5
=55+ zefd 1} (1255)
0 else
by (1250). We observe that again
FIHO) = {8.4.1
Becausef’(1) = 0, we hence obtain from L-193 that
((f) =inf f/71((0,1]) = 2. (1256)

We further obtain from L-198 tha
u(f') =sup f1((0,1]) = 1. (1257)

Let us now notice from (1255) that, (f’) = 1. Hencea/ = a(f’) = 0 by (1197),
and consequently

eu(f1) = Uf") + (1 = u(f) = u(f) =1 (1258)

by (1198), (1256), (1257) and recalling thet= 0. To sum up, equations (1254) and
(1258) prove thatp,(f') = 1 # 2 = ¢.(f) althoughf’(z) = min(f(z), 3) for all

z € 1. Hence condition-5) is not valid in the case ap.. Because all otherg-
conditions’ are satisfied by, this completes the proof that conditiop-b) is indeed
independent of the remaining conditions.
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Proof of Theorem 129

We know from Th-121 that-1), (-2), (»-3) and ¢/-4) are independent of the
remaining %-conditions’ of (-1)—@-5). Hence there exisp; : A — 1, j €
{1,2,3,4}, which violate condition-5) and satisfy all conditions/(-k), wherek €
{1,2,3,4,5} \ {j}. In particular, every), satisfies {-5). Let us now definey, :

X — I relative toy; according to (88). We then know from L-185 and Th-126 that
everyy;, j € {1,2,3,4}, violates condition ¢-5) and satisfies all other conditions
(p-k), wherek € {1,2,3,4,5} \ {j}. This proves that£-1), (p-2), (¢-3), and (o-4)

are each independent of the other conditiongsif—(p-5).

It remains to be shown thai{5) is independent of4-1)—(p-4). This condition has
been treated separately, and | simply refer to L-205.

B.39 Proof of Theorem 130

Lemma 206 LetE # @ be given X € P(E) andY € P(E). Then for alle € E,
O(px(e), xy(e)) = min(20x,y(e),1).

Proof Considerz € Tandy € {0,1}.

If y =1andz < %, then2z < 1 and hencenin(2z,1) = 2z = 0(z, y);

If y =1andz > 1, then2z > 1 and hencenin(2z,1) = 1 = 0(z, y);

If y = 0andz < i, then2 — 2z > 1 and hencenin(2 — 2z,1) = 1 = 0(z, y);

If y = 0andz > 3, then2 — 2z < 1 and hencenin(2 — 2z,1) = 2 — 2z =
0(z, y).

Combining these cases, this proves that

| min(2z,1) Doy=1
0@, y) = { min(2 — 2z,1) : y=0 (1259)

forallz € Iandy € {0,1}. Now consider a choice & # @, X € P(E),Y € P(E)
ande € E. Then

O(px(e); xv(e))

min@px(e)1) ¢ xy(e)=1
- { min(2 /iXQ px(e),1) i: (e)=0 by (1259)
min(2 px (e), 1) : e€Y
N { min(2gX_ ux(e),1l) : e¢Y by (1)
= HllIl(2 5)(7)/(6)7 1) s by (60)

as desired.

Lemma 207 LetE # @, X € P(E)andY € P(E) be given. The®(X,Y) =
min(2=x(Y),1).
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Proof  Straightforward:

O(X,Y) =inf{0(ux(e), xy(e)): e € E} by Def. 100
= inf{min(2dx y(e),1) : e € E} by L-206
=min(2inf{dx y(e):e € E}, 1) (apparent)
=min(2Z2x(Y), 1). by Def. 83

Lemma 208 Let £ # & be given,n € N and consider a choice oky,..., X,, €
P(E), Y1,...,Y, € P(E). Then

min O(X;, Y;) = min(2Zy, .y, (X1, ..., Xn),1).

i=1
Proof Trivial consequence of the previous lemma.

min ©(X;, Y;)

n

= In_l{l min(2 2y, (X;),1) by L-207
= min(2 - I_nﬁ{l Ey,(Xi),1) (apparent)
=min(2Z8y, .y, (X1,...,Xn),1). by Def. 83

Lemma209 Let@ : P(E)" — I be a semi-fuzzy quantifier ant;,..., X,, €
‘P(FE) a choice of fuzzy arguments. Then foral I,

Q.(X1,...,X,) =min(2fo.x,...x,(2),1).

Proof Apparent from a simple computation.

Q:-(X1,....X,)
- Sup{I_nfi{l@(Xi, Y)): (Ya,....Y) € Q71 (2)} by Def. 101
= Sup{min(2EY1 ....... (Xh s 7Xn)7 1) :

(Yi,...,Yn) € Q7 '(2)} by L-208
=min(2sup{=y,,....v, (X1,..., X»n):

(Y1,...,Y,) € Q7 (2)}, 1) (obvious)
= min(2 fQ,Xl,...,Xn(Z)7 1) . by Def. 94
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Proof of Theorem 130

Let a QFM.F be given and suppose that conditianis satisfied. Hence there exists
¢ : X — I with F = F,, which satisfies-5). For a given) : P(E)" — I and
X1,..., X, € P(E), let us abbreviate

F'(2) = min(fo.x,...x, (2), 3) (1260)

for all z € I. We then know from ¢-5) and Def. 96 thatF,(Q)(X1,...,X,) =
o(fo.x,...x,) = ¢(f). Noticing that

F(2) = imin(2 fo x,, %, (2),1) = 3Q. (X1, ..., X)),

this completes the proof th&f,, can be defined in terms q}z

Now consider the converse situation ttfatan be defined in terms OTL. Hence there
exists a mapping: : I' — I such that

F@Q)(X1,.... Xy) = G((Q:(X1, ..., Xn))zc1) (1261)

for all semi-fuzzy quantifiers) : P(E)" — I and choices of fuzzy arguments
Xi,...,Xn € P(E). In order to see thaf is anF*,-QFM based on a choice of
o which satisfies$-5), we now defing : X — I by

o(f) = G(min(2f,1)), (1262)

for all f € X. Now consider a choice @) : P(E)" — IandXy,..., X, € P(E).
Then

FoQ)( X1, ., Xn) = o(fo.x,....x,,) by Def. 96
= G(min(2fg,x,,...x.,, 1)) by (1262)
= G((Q=(X1,. ., Xn))zex) by L-209
=F(Q)(Xy1,...,X,). by (1261)

HenceF is indeed arF,,-QFM. It remains to be shown thap{5) is satisfied. Hence
let f € X be given. Then

p(min(f, 3))

G (min(2(min(f, %), 1))) by (1262)

= G(2min(f, 3)) becausenin(f, 1) < 1
= G(min(2f,1)) (apparent)
=o(f). by (1262)

Hencey indeed satisfies4-5), as desired.
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