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1

Abstract

DFS theory offers an axiomatic approach to fuzzy quantification. It attempts to characterise ‘rea-
sonable’ models of fuzzy quantifiers in terms of formal conditions imposed on a fuzzification
mapping. In this way, a large number of linguistically motivated adequacy criteria can be guaran-
teed to hold for all models of DFS theory, the so-called called determiner fuzzification schemes
or DFSes for short. The report improves upon existing work on DFS theory by developing an
alternative axiom system of only six basic axioms. The new axiom set is shown to be equivalent to
the original one. A subclass of DFSes calledMB-DFSes is then introduced which can be defined
in terms of a three-valued cutting mechanism. Based on an investigation of this mechanism, it
becomes possible to prove that the new DFS axioms form an independent axiom system.
In addition, a number of novel properties of fuzzification mechanisms are discussed and examples
ofMB-DFSes are investigated from this perspective. A particularly well-behaved DFS is being
presented and its special properties as well as their uniqueness are established. This model can be
shown to generalize the Sugeno integral (and hence the FG-count approach to fuzzy quantification)
to the case of nonmonotonic and arbitrary multiplace quantifiers.
The report is intended as a technical reference and its purpose is to provide the proofs for a num-
ber of results related to DFS theory. The style of presentation is therefore rather technical and
presentation order is guided by the natural order of the proofs.
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1 DFS Theory: A Review of Concepts

DFS theory [9] is an axiomatic theory of fuzzy natural language (NL) quantification. It aims at
providing linguistically adequate models for approximate quantifiers likealmost all, as well as for
quantification involving fuzzy arguments as inall tall swedes are rich. Unlike existing approaches
to fuzzy quantification [27, 14, 24, 25], DFS theory does not rest on Zadeh’s proposal of represent-
ing fuzzy quantifiers as fuzzy subsets of the non-negative reals (absolute kind like “about 10”) or
as fuzzy subsets of the unit interval (proportional kind like “more than 30 percent”). Consequently,
DFS theory cannot rely on Zadeh’s proposal of evaluating quantifying statements “Q X’s are A’s”
by a fuzzy comparison of cardinalities “card A is Q”. This departure from other work on fuzzy
quantification is a consequence of negative results concerning the linguistic adequacy of existing
approaches, which became apparent when an evaluation of these approaches based on criteria from
linguistics was carried out [10]. In particular, none of these approaches provides a satisfying model
of two-place quantification, as inmany tall people are lucky, where both the restrictiontall people
and the scopeluckycan be fuzzy. In order to overcome this problem of existing approaches and to
guarantee a proper treatment of fuzzy multiplace quantification, DFS theory does not share their
representation of fuzzy quantifiers by fuzzy numbers and abandons the search for an appropriate
measure for the cardinality of fuzzy sets, because cardinality information is not sufficient to evalu-
ate all quantifying expressions of interest.1 Instead, we will assume the framework provided by the
currentlinguistic theory of NL quantification, the theory of generalized quantifiers (TGQ [1, 2]),
which has been developed independently of fuzzy set theory, and hence provides a conceptually
rather different view of natural language quantification.
We shall introduce two-valued quantifiers in concordance with TGQ:

Definition 1 (Two-valued generalized quantifiers)
An n-ary generalized quantifieron a base setE 6= ∅ is a mappingQ : P(E)n -2 = {0, 1},
whereP(E) is the powerset (set of subsets) ofE.

A two-valued quantifier hence assigns to eachn-tuple of crisp subsetsX1, . . . , Xn ∈ P(E) a
two-valued quantification resultQ(X1, . . . , Xn) ∈ 2. Well-known examples are

∀E(X) = 1⇔ X = E

∃E(X) = 1⇔ X 6= ∅
allE(X1, X2) = 1⇔ X1 ⊆ X2

some E(X1, X2) = 1⇔ X1 ∩X2 6= ∅
at least k E(X1, X2) = 1⇔ |X1 ∩X2| ≥ k .

Whenever the base set is clear from the context, we drop the subscriptE; |•| denotes cardinalityand
∩ denotes intersectionX ∩ Y = {e ∈ E : e ∈ X ande ∈ Y }. For finiteE, we can define
proportional quantifiers like

[rate ≥ r](X1, X2) = 1⇔ |X1 ∩X2| ≥ r |X1|
[rate > r](X1, X2) = 1⇔ |X1 ∩X2| > r |X1|

for r ∈ I,X1, X2 ∈ P(E). For example, “at least 30 percent of theX ’s areY ’s” can be expressed
as[rate ≥ 0.3](X, Y ), while [rate > 0.4] is suited to model “more than 40 percent”. By thescope

1As we shall see later, it is possible to recover the cardinality-based approach to fuzzy quantification in the case of
quantitative one-place quantifiers, see Th-129.
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of an NL quantifier we denote the argument occupied by the verbal phrase (e.g. “sleep” in “all
men sleep”); by convention, the scope is the last argument of a quantifier. The first argument of
a two-place quantifier is itsrestriction. The two-place use of a two-place quantifier, like in “most
X’s are Y’s” is called itsrestricted use, while its one-place use (relative to the whole domainE,
like in “most elements of the domain areY ”) is its unrestricted use. For example, the unrestricted
use ofall : P(E)2 -2 is modelled by∀ : P(E) -2, which has∀(X) = all(E,X).
TGQ has classified the wealth of quantificational phenomena in natural languages in order to un-
veil universal properties shared by quantifiers in all natural languages, or to single out classes of
quantifiers with specific properties (we shall describe some of these properties below). However,
an extension to the continuous-valued case, in order to better capture the meaning of approxi-
mate quantifiers like “many” or “about ten”, has not been an issue for TGQ. In addition, TGQ
has ignored the problem of providing a convincing interpretation for quantifying statements in the
presence of fuzziness, i.e. in the frequent case that the arguments of the quantifier are occupied by
concepts like “tall” or “cloudy” which do not possess sharply defined boundaries.

Hence let us introduce the fuzzy framework. SupposeE is a given set. A fuzzy subsetX ∈ P̃(E)

of E assigns to eache ∈ E a membership gradeµX(e) ∈ I = [0, 1]; we denote byP̃(E) the
set of all fuzzy subsets (fuzzy powerset) ofE. ApparentlyP̃(E) ∼= IE, whereIE denotes the
set of membership functionsµX : E -I. Some authors identify fuzzy subsets and membership
functions, i.e. stipulatẽP(E) = IE. In the present sequel, I will not enforce this identification. It
will be convenient to assume that every crisp subsetX ∈ P(E) can be considered a special case
of fuzzy subset ofE (when identifying fuzzy subsets and membership functions, we would have
to view the characteristic function ofX as a special case of fuzzy subset).

Definition 2 (Fuzzy generalized quantifiers)
An n-ary fuzzy quantifierQ̃ on a base setE 6= ∅ is a mappingQ̃ : P̃(E)

n
-I which to each

n-tuple of fuzzy subsetsX1, . . . , Xn ∈ P̃(E) assigns a gradual result̃Q(X1, . . . , Xn) ∈ I.2

An example iss̃ome (X1, X2) = sup{min(µX1(e), µX2(e)) : e ∈ E}, for all X ∈ P̃(E). How
can we justify that this operator is a good model of the NL quantifier “some”? How can we
describe characteristics of fuzzy quantifiers and how can we locate a fuzzy quantifier based on
a description of desired properties? Fuzzy quantifiers are possibly too rich a set of operators to
investigate this question directly. Few intuitions apply to the behaviour of quantifiers in the case
that the arguments are fuzzy, and the familiar concept ofcardinality of crisp sets, which makes it
easy to define quantifiers on crisp arguments, is no longer available.

We therefore have to introduce some kind ofsimplified descriptionof the essential aspects of
a fuzzy quantifier. In order to comply with linguistic theory, this representation should be rich
enough to embed all two-valued quantifiers of TGQ.

Definition 3 (Semi-fuzzy quantifiers)
Ann-ary semi-fuzzy quantifieron a base setE 6= ∅ is a mappingQ : P(E)n -I which to each
n-tuple ofcrispsubsetsX1, . . . , Xn ∈ P(E) assigns a gradual resultQ(X1, . . . , Xn) ∈ I.3

2This definition closely resembles Zadeh’s [28, pp.756] alternative view of fuzzy quantifiers as fuzzy second-order
predicates, but models these as mappings in order to simplify notation. In addition, we permit for arbitraryn ∈ N.
The above definition ofn-ary fuzzy quantifiers, originally dubbedfuzzy determiners, has first been used in in [9, p. 6].

3The concept of semi-fuzzy quantifiers (originally dubbed “fuzzy pre-determiners”) has been introduced in [9,
p. 7].



1 DFS THEORY: A REVIEW OF CONCEPTS 5

Semi-fuzzy quantifiers are half-way between two-valued quantifiers and fuzzy quantifiers because
they have crisp input and fuzzy (gradual) output. In particular, every two-valued quantifier of
TGQ is a semi-fuzzy quantifier by definition. To provide an example, a possible definition of the
semi-fuzzy quantifieralmost all : P(E)2 -I is

almost all (X1, X2) =

{
falmost all(

|X1∩X2|
|X1| ) : X1 6= ∅

1 : else
(1)

wherefalmost all(z) = S(z, 0.7, 0.9), using Zadeh’sS-function (see Fig. 1). Unlike the represen-
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Figure 1: A possible definition offalmost all

tations chosen by existing approaches to fuzzy quantification, semi-fuzzy quantifiers can express
genuine multiplace quantification (arbitraryn); they are not restricted to the absolute and propor-
tional types; they are not necessarily quantitative (in the sense of automorphism-invariance); and
there is no a priori restriction to finite domains. Compared to fuzzy quantifiers, the main benefit
of introducing semi-fuzzy quantifiers is conceptual simplicity due to the restriction to crisp argu-
ment sets, which usually makes it easy to understand the input-output behavior of a semi-fuzzy
quantifier. Most importantly, we have the familiar concept of crisp cardinality available, which is
of invaluable help in defining the quantifiers of interest. However, being half-way between two-
valued generalized quantifiers and fuzzy quantifiers, semi-fuzzy quantifiers do not accept fuzzy
input, and we have to make use of a fuzzification mechanism which transports these to fuzzy
quantifiers.

Definition 4 (Quantifier Fuzzification Mechanism)
A quantifier fuzzification mechanism4(QFM)F assigns to every semi-fuzzy quantifier

Q : P(E)n -I

a corresponding fuzzy quantifier

F(Q) : P̃(E)
n
-I

of the same arityn and on the same base setE.

By modelling approaches to fuzzy quantification as instances of quantifier fuzzification mecha-
nisms, we can express linguistic adequacy conditions on “intended” approaches in terms of preser-
vation and homomorphism properties of the corresponding fuzzification mappings [9, 10].

To this end, we first need to introduce several concepts related to (semi-) fuzzy quantifiers.
4originally called “determiner fuzzification mechanism” in [9, p. 9].
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Definition 5 (Underlying semi-fuzzy quantifier)
SupposẽQ : P̃(E)

n
-I is a fuzzy quantifier. ByU(Q̃) : P(E)n -I we denote theunderlying

semi-fuzzy quantifier, viz.

U(Q̃)(Y1, . . . , Yn) = Q̃(Y1, . . . , Yn) (2)

for all crispsubsetsY1, . . . , Yn ∈ P(E).

Every reasonable QFMF should correctly generalise the semi-fuzzy quantifiers to which it is
applied, i.e. for allQ : P(E)n -I, we should have

F(Q)(Y1, . . . , Yn) = Q(Y1, . . . , Yn) (3)

for all crispargumentsY1, . . . , Yn ∈ P(E), or equivalently:U(F(Q)) = Q.
Let us now consider a special case of quantifiers, called projection quantifiers. SupposeE is a set
of persons and John∈ E. We can then express the membership assessment “Is John contained in
Y ?”, whereY is a crisp subsetY ∈ P(E), by computingχY (John), whereχY : P(E) -I is the
characteristic function

χY (e) =

{
1 : e ∈ Y
0 : e /∈ Y . (4)

for all Y ∈ P(E), e ∈ E. Similarly, we can evaluate the fuzzy membership assessment “To which
grade is John contained inX?”, whereX ∈ P̃(E) is a fuzzy subset ofE, by computingµX(John).
Abstracting from argument sets, we obtain the following definitions of projection quantifiers:

Definition 6 (Projection quantifiers)
SupposeE 6= ∅ is given ande ∈ E. Theprojection quantifierπe : P(E) -2 is defined by
πe(Y ) = χY (e), for all Y ∈ P(E).

In the case of fuzzy projection quantifiers, we replace the characteristic function with the member-
ship function of the fuzzy argument set:

Definition 7 (Fuzzy projection quantifiers)
For all base setsE 6= ∅ and all e ∈ E, thefuzzy projection quantifier̃πe : P̃(E) -I is defined
by π̃e(X) = µX(e), for all X ∈ P̃(E).

It is apparent from the relationship of these quantifiers with crisp / fuzzy membership assessments
that π̃e is the proper fuzzy counterpart ofπe, and we should haveF(πe) = π̃e in every reasonable
QFM. Hence for the crisp subsetmarried ∈ P(E),

πJohn(married ) =

{
1 : John∈ married
0 : else

and we should also have thatF(πJohn)(lucky ) = π̃John(lucky ) = µlucky (John), wherelucky ∈
P̃(E) is the fuzzy subset of lucky people.
We expect that our framework not only provides an interpretation for quantifiers, but also for
the propositional part of the logic. We therefore need to associate a suitable choice of fuzzy
conjunction, fuzzy disjunction etc. with a given QFMF . By a canonical construction, which we
describe now,F induces a unique fuzzy operator for each of the propositional connectives (see [9]
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for more details). Let{∗} be an arbitrary singleton set. We denote byπ∗ the projection quantifier
π∗ : P({∗}) -2 defined by Def. 6, i.e.π∗(Y ) = χY (∗), whereχY is the characteristic function
of Y ∈ P({∗}) (see above). Similarly, we denote bỹπ∗ the fuzzy projection quantifier̃π∗ :

P̃({∗}) -I defined by Def. 7, i.e. the bijectioñπ∗(X) = µX(∗), whereµX is the membership
function ofX ∈ P̃({∗}).

Definition 8 (Induced truth functions)
Supposef is a semi-fuzzy truth function, i.e. a mappingf : 2n -I (e.g., two-valued con-
junction f = ∧ or two-valued disjunctionf = ∨). We can viewf as a semi-fuzzy quantifier
f ∗ : P({∗})n -I by defining

f∗(X1, . . . , Xn) = f(π∗(X1), . . . , π∗(Xn)) .

By applyingF , f ∗ is generalized to a fuzzy quantifierF(f ∗) : P̃({∗})
n
-I, from which we

obtain a fuzzy truth functioñF(f) : In -I,

F̃(f)(x1, . . . xn) = F(f∗)(π̃−1
∗ (x1), . . . , π̃−1

∗ (xn))

for all x1, . . . , xn ∈ I.

WheneverF is understood from context, we shall abbreviateF̃(f) asf̃ . By pointwise application
of the induced negatioñ¬ = F̃(¬), conjunction∧̃ = F̃(∧), and disjunctioñ∨ = F̃(∨), F also
induces a unique choice of fuzzy complement¬̃, fuzzy intersectioñ∩, and fuzzy unioñ∪:

Definition 9 (Induced operations on fuzzy sets)
SupposeF is a QFM, andE is some set.F induces fuzzy set operators

¬̃ = F̃(¬) : P̃(E) - P̃(E)

∩̃ = F̃(∩) : P̃(E)× P̃(E) - P̃(E)

∪̃ = F̃(∪) : P̃(E)× P̃(E) - P̃(E)

which are pointwise defined by

µ¬̃X(e) = ¬̃µX(e)

µX1∩̃X2
(e) = µX1(v) ∧̃ µX2(e)

µX1∪̃X2
(e) = µX1(v) ∨̃ µX2(e)

for all X, X1, X2 ∈ P̃(E) ande ∈ E.5

In the following, we will assume that an arbitrary but fixed choice of these connectives and fuzzy
set operations is given.

In analogy to the external negation¬Q of a two-valued quantifierQ : P(E)n -2 in TGQ [8,
p.236], we shall now introduce the external negation of (semi-)fuzzy quantifiers.

5The ambiguous use of̃¬ both as designating fuzzy negation and fuzzy complementation should not create con-
fusion because the fuzzy negation¬̃ : I - I applies to gradual truth valuesx ∈ I, while the fuzzy complement
¬̃ : P̃(E) - P̃(E) applies to fuzzy subsetsX ∈ P̃(E) of a given setE. (Likewise for our notation of two-valued
negation¬ : 2 -2 and crisp complementation¬ : P(E) -P(E)).
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Definition 10 (External negation)
For every semi-fuzzy quantifierQ : P(E)n -I, the external negatioñ¬Q : P(E)n -I is
defined by

(¬̃Q)(X1, . . . , Xn) = ¬̃(Q(X1, . . . , Xn))

for all X1, . . . , Xn ∈ P(E). In the case of fuzzy quantifiers̃Q : P̃(E)
n
-I, the external negation

¬̃ Q̃ : P̃(E)
n
-I is defined analogously, based onX1, . . . , Xn ∈ P̃(E).

In addition to the external negation¬Q of a two-valued quantifier, TGQ discerns another type of
negation, which corresponds to theantonymor internal negationQ¬ of a two-valued quantifier
[8, p. 237]. Here we prefer the terminternal complementationbecause the construction involves
to complementation of one of the argument sets.

Definition 11 (Internal complementation)
For every semi-fuzzy quantifierQ : P(E)n -I of arity n > 0, theantonymQ¬ : P(E)n -I is
defined by

Q¬(X1, . . . , Xn) = Q(X1, . . . , Xn−1,¬Xn)

for all X1, . . . , Xn ∈ P(E), where¬Xn denotes complementation. The definition of the antonym
Q̃¬̃ of a fuzzy quantifier̃Q is analogous, but the fuzzy complement¬̃must be used, andX1, . . . , Xn ∈
P̃(E).

TGQ also knows the concept of thedualof a two-valued quantifier (written asQ� in my notation),
which is the antonym of the negation of a quantifier (or equivalently, the negation of the antonym)
[8, p. 238].

Definition 12 (Dualisation)
For all semi-fuzzy quantifiersQ : P(E)n -I of arity n > 0, the dualQ�̃ : P(E)n -I is
defined byQ�̃ = ¬̃Q¬. In the case of a fuzzy quantifier̃Q : P̃(E)

n
-I, we use an analogous

definition, i.e.Q̃�̃ = ¬̃ Q̃¬̃.

For example,less than n is the negation ofat least n , no is the antonym ofall , andsome is
the dual ofall . It is straightforward to require that a QFM be compatible with these constructions,
i.e. we desire thatF(less than n ) be the negation ofF(at least n ), F(no) be the antonym of
F(all), andF(some ) be the dual ofF(all). We hence say thatF is compatible with negation,
antonyms, and dualisation, ifF(¬Q) = ¬F(Q), F(Q¬) = F(Q)¬ andF(Q�̃) = F(Q)�̃, re-
spectively.
For example, compatibility with antonyms means thatF(all)(rich , ¬̃ lucky ) = F(no)(rich , lucky ).
Similarly, preservation of external negation ensures that

F(at most 10 )(young , rich ) = ¬̃ F(more than 10 )(young , rich ) ,

as desired.
For all n ∈ N andi ∈ {1, . . . , n}, we define thetranspositionτi : {1, . . . , n} -{1, . . . , n}
by

τi(k) =


n : k = i
i : k = n
k : else
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for all k ∈ {1, . . . , n}. It is apparent that each of theseτi is self-inverse, i.e.

τi = τ−1
i , (5)

and that each permutation, i.e. bijectionβ : {1, . . . , n} -{1, . . . , n}, can be expressed by
a sequence of such transpositions. We utilize these transpositions to effect permutations of the
arguments positions:

Definition 13 (Argument transpositions)
SupposeQ : P(E)n -I is a semi-fuzzy quantifier,n > 0 and i ∈ {0, . . . , n}. By Qτi :
P(E)n -I we denote the semi-fuzzy quantifier defined by

Qτi(X1, . . . , Xn) = Q(X1, . . . , Xi−1, Xn, Xi+1, . . . , Xn−1, Xi) ,

for all (X1, . . . , Xn) ∈ P(E)n. In the case of fuzzy quantifiers̃Q : P̃(E)
n
-I, we define

Q̃τi : P̃(E)
n
-I analogously.

We require that every “reasonable” QFMF be compatible with argument transpositions, i.e. when-
everQ : P(E)n -I and i ∈ {1, . . . , n} are given, thenF(Qτi) = F(Q)τi. Because every
permutation can be expressed as a sequence of transpositions, this also ensures thatF commutes
with arbitrary permutations of the arguments of a quantifier. In particular, symmetry properties
of a quantifierQ carry over to its fuzzified analogonF(Q). HenceF(some )(rich , young ) =
F(some )(young , rich ), i.e. the meaning of “some rich people are young” and “some young
people are rich” coincide.

Quantifying natural language expressions can involve composite quantifiers like “many married
X ’s areY ”, a construction known asadjectival restriction[8, p. 247].6 The construction cor-
responds to an intersection with the extension of the adjective, thusmany (X ∩ married , Y ).
Adjectival restriction can hence be decomposed into the constructions of intersecting argument
sets and the insertion of constant arguments likemarried . Let us first consider intersections of
argument sets.

Definition 14 (Internal meets)
SupposeQ : P(E)n -I is a semi-fuzzy quantifier,n > 0. The semi-fuzzy quantifierQ∩ :
P(E)n+1 -I is defined by

Q∩(X1, . . . , Xn+1) = Q(X1, . . . , Xn−1, Xn ∩Xn+1) ,

for all (X1, . . . , Xn+1) ∈ P(E)n+1. In the case of a fuzzy quantifiers̃Q : P̃(E)
n
-I, Q̃∩̃ :

P̃(E)
n+1

-I is defined analogously.

In order to allow for a compositional interpretation of composite quantifiers like “allX ’s are
Y ’s andZ ′s”, we require that a QFMF be compatible with intersections of the argument sets,
i.e. wheneverQ : P(E)n -I is a semi-fuzzy quantifier of arityn > 0, thenF(Q∩) = F(Q)∩̃.
For example, the semi-fuzzy quantifierall∩, which hasall∩(X, Y, Z) = all(X, Y ∩ Z) for crisp
X, Y, Z ∈ P(E), should be mapped toF(all)∩̃, i.e. for all fuzzy subsetsX,Y, Z ∈ P̃(E),
F(all∪)(X,Y, Z) = F(all)(X, Y ∩̃ Z). Similarly, we desire thatF(some ) = F(∃)∩̃, because
the two-place quantifiersome can be expressed assome = ∃∩.

6in this case, restriction of the first argument by the crisp adjective “married”.
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Definition 15 (Argument insertion)
SupposeQ : P(E)n -I is a semi-fuzzy quantifier,n > 0, andA ∈ P(E). By Q/A :
P(E)n−1 -I we denote the semi-fuzzy quantifier defined by

Q/A(X1, . . . , Xn−1) = Q(X1, . . . , Xn−1, A)

for all X1, . . . , Xn−1 ∈ P(E). (Analogous definition of̃Q/A for fuzzy quantifiers).

The main application of argument insertion is that of modelling adjectival restriction by a crisp
adjective. For example, ifmarried ∈ P(E) is extension of the crisp adjective “married”, then
Q′ = many τ1∩/married τ1, i.e.Q′(X, Y ) = many (married ∩ X, Y ), models the composite
quantifier “many marriedX ’s areY ’s”. If a QFM F is compatible with argument insertion, then
F(Q′)(rich , lucky ) = F(many )(married ∩̃ rich , lucky ), as desired. Let us remark that adjecti-
val restriction with afuzzyadjective cannot be modelled directly. This is because we cannot insert
a fuzzy argumentA into a semi-fuzzy quantifier.

Definition 16 (Monotonicity in arguments)
A semi-fuzzy quantifierQ : P(E)n -I is said to benonincreasingin its i-th argument (i ∈
{1, . . . , n}, n > 0) iff for all X1, . . . , Xn, X

′
i ∈ P(E) such thatXi ⊆ X ′i,

Q(X1, . . . , Xn) ≥ Q(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn) .

Nondecreasing monotonicity ofQ is defined by changing ‘≥’ to ‘≤’ in the above inequation. On
fuzzy quantifiers̃Q : P̃(E)

n
-I, we use an analog definition, whereX1, . . . , Xn, X

′
i ∈ P̃(E),

and “⊆” is the fuzzy inclusion relation, i.e.X ⊆ X ′ iff µX(e) ≤ µX′(e) for all e ∈ E.

For example,all is nonincreasing in the first and nondecreasing in the second argument.most is
nondecreasing in its second argument, etc. It is natural to require that monotonicity properties of
a quantifier in its arguments be preserved when applying a QFMF . For example, we expect that
F(all) is nonincreasing in the first and nondecreasing in the second argument.

Definition 17
Every mappingf : E -E ′ uniquely determines apowerset function̂f : P(E) -P(E ′), which
is defined bŷf(X) = {f(e) : e ∈ X}, for all X ∈ P(E).

The underlying mechanism which transportsf to f̂ can be generalized to the case of fuzzy sets
and is then called anextension principle.

Definition 18
An extension principleE ,

(f : E -E ′) 7→ (E(f) : P̃(E) - P̃(E ′)),

assigns to each mappingf : E -E ′ (whereE, E ′ 6= ∅), a corresponding mappingE(f) :

P̃(E) - P̃(E ′).

Notes

• The case thatE = ∅ or E ′ = ∅ has been excluded because it is irrelevant in this context.
However, every extension principle (in the sense of the above definition) can be extended
to a “full” extension principle which is also defined in the caseE = ∅ or E ′ = ∅ in the
obvious way, cf. [9, p. 20].
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• Similarly, a generalisation to extension principles forn-ary mappings is obvious but irrele-
vant to our purposes.

Definition 19 (Induced extension principle)
SupposeF is a QFM.F induces an extension principlêF which to eachf : E -E ′ (where
E, E ′ 6= ∅) assigns the mappinĝF(f) : P̃(E) - P̃(E ′) defined by

µF̂(f)(X)(e
′) = F(χf̂(•)(e

′))(X) ,

for all X ∈ P̃(E), e′ ∈ E ′.

The most prominent definition of an extension principle has been proposed by Zadeh [26]:

Definition 20

Thestandard extension principle
ˆ̂

(•) is defined by

µ ˆ
f̂(X)

(e′) = sup{µX(e) : e ∈ f−1(e′)} ,

for all f : E -E ′,X ∈ P̃(E) ande′ ∈ E ′.

We can use the extension principle to construct quantifiers.

Definition 21 (Functional application)
SupposeQ : P(E)n -I andf1, . . . , fn : E ′ -E are given (E ′ 6= ∅). We define the semi-fuzzy
quantifierQ′ : P(E ′)n -I by

Q′ = Q ◦
n
×
i=1

f̂i, i.e.

Q′(Y1, . . . , Yn) = Q(f̂1(Y1), . . . , f̂n(Yn)),

for Y1, . . . , Yn ∈ P(E ′). In the case of a fuzzy quantifier̃Q : P̃(E)
n
-I, we define the fuzzy

quantifierQ̃′ : P(E ′)n -I by

Q̃′ = F(Q) ◦
n
×
i=1
F̂(fi), i.e.

Q̃′(X1, . . . , Xn) = F(Q)(F̂(f1)(Y1), . . . , F̂(fn)(Xn)),

for all X1, . . . , Xn ∈ P̃(E).

It is natural to require that a QFMF be compatible with its induced extension principle, i.e.F(Q′) =

Q̃′, or equivalently

F(Q ◦
n
×
i=1

f̂i) = F(Q) ◦
n
×
i=1
F̂(fi) . (6)

Equation (6) hence establishes a relation between powerset functions and the induced extension
principleF̂ . It is of particular importance to DFS theory because it is the only axiom which relates
the behaviour ofF on different domainsE, E ′.
The following definition of the DFS axioms summarises our above considerations on reasonable
QFMs.7

7The DFS axioms have first been presented in [9, p. 22], which also provides ample motivation for the axioms.
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Definition 22 (DFS: Determiner Fuzzification Scheme)
A QFMF is called adeterminer fuzzification scheme (DFS)iff the following axioms are satisfied
for all semi-fuzzy quantifiersQ : P(E)n -I.

Preservation of constants U(F(Q)) = Q if n = 0 (DFS 1)

Compatibility withπ∗ F(π∗) = π̃∗ (DFS 2)

External negation F(¬̃Q) = ¬̃ F(Q) (DFS 3)

Argument transposition F(Qτi) = F(Q)τi if i ∈ {1, . . . , n} (DFS 4)

Internal complementation F(Q¬) = F(Q)¬̃ if n > 0 (DFS 5)

Internal meets F(Q∩) = F(Q)∩̃ if n > 0 (DFS 6)

Argument insertion F(Q/A) = F(Q)/A if n > 0, A crisp (DFS 7)

Preservation of monotonicity Q noninc. inn-th arg⇒ F(Q) noninc. inn-th arg,n > 0
(DFS 8)

Functional application F(Q ◦
n
×
i=1

f̂i) = F(Q) ◦
n
×
i=1
F̂(fi) (DFS 9)

wheref1, . . . , fn : E ′ -E, E ′ 6= ∅.
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2 Some properties of DFSes

Here we review some properties of DFS which are crucial for the proofs to follow. Almost all
propositions are cited from [9], and the appropriate reference to their proofs will be given. The
only new results presented here are concerned with the interpretation of existential and universal
quantifiers in DFSes. We will profit from work of Thiele [20] and give a precise description of the
corresponding fuzzy quantifiers.

2.1 Correct generalisation

Let us firstly establish thatF(Q) coincides with the original semi-fuzzy quantifierQ when all
arguments are crisp sets, i.e. thatF(Q) consistently extendsQ.

Theorem 1 (Correct generalisation)
SupposeF is a DFS andQ : P(E)n -I is ann-ary semi-fuzzy quantifier. ThenU(F(Q)) = Q,
i.e. for all crispsubsetsY1, . . . , Yn ∈ P(E),

F(Q)(Y1, . . . , Yn) = Q(Y1, . . . , Yn) .

(Proof: see [9, Th-1, p. 27])

For example, ifE is a set of persons, andwomen , married ∈ P(E) are the crisp sets of “women”
and “married persons” inE, then

F(some )(women , married ) = some (women , married ) ,

i.e. the “fuzzy some” obtained by applyingF coincides with the (original) “crisp some” whenever
the latter is defined, which is of course highly desirable.

2.2 Properties of the induced truth functions

Let us now turn to the fuzzy truth functions induced by a DFS. As for negation, the standard choice
in fuzzy logic is certainly¬ : I -I, defined by¬x = 1− x for all x ∈ I.
The essential properties of this and other reasonable negation operators are captured by the follow-
ing definition.

Definition 23 (Strong negation)
¬̃ : I -I is called astrong negation operatoriff it satisfies

a. ¬̃ 0 = 1 (boundary condition)

b. ¬̃x1 ≥ ¬̃x2 for all x1, x2 ∈ I such thatx1 < x2 (i.e. ¬̃ is monotonically decreasing)

c. ¬̃ ◦ ¬̃ = idI (i.e. ¬̃ is involutive).

Note. Whenever the standard negation¬x = 1 − x is being assumed, we shall drop the ‘tilde’-
notation. Hence the standard fuzzy complement is denoted¬X, whereµ¬X(e) = 1 − µX(e).
Similarly, the external negation of a (semi-) fuzzy quantifier with respect to the standard negation
is written¬Q, and the antonym of a fuzzy quantifier with respect to the standard fuzzy complement
is written asQ̃¬.
With conjunction, there are several common choices in fuzzy logic (although the standard is cer-
tainly ∧ = min). All of these belong to the class oft-norms, which seems to capture what one
would expect of a reasonable conjunction operator.
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Definition 24 ( t-norms)
A mapping̃∧ : I× I -I is called at-norm iff it satisfies the following conditions.

a. x ∧̃ 0 = 0, for all x ∈ I

b. x ∧̃ 1 = x, for all x ∈ I (identity)

c. x1 ∧̃ x2 = x2 ∧̃ x1 for all x1, x2 ∈ I (commutativity)

d. If x1 ≤ x′1, thenx1 ∧̃ x2 ≤ x′1 ∧̃ x2, for all x1, x
′
1, x2 ∈ I (i.e. ∧̃ is nondecreasing)

e. (x1 ∧̃ x2) ∧̃ x3 = x1 ∧̃ (x2 ∧̃ x3), for all x1, x2, x3 ∈ I (associativity).

The dual concept oft-norm is that of ans-norm, which expresses the essential properties of fuzzy
disjunction operators (cf. Schweizer & Sklar [16]).

Definition 25 ( s-norms)
∨̃ : I× I -I is called ans-norm iff it satisfies the following conditions.

a. x ∨̃ 1 = 1, for all x ∈ I

b. x ∨̃ 0 = x, for all x ∈ I

c. x1 ∨̃ x2 = x2 ∨̃ x1 for all x1, x2 ∈ I (commutativity)

d. If x1 ≤ x′1, thenx1 ∨̃x2 ≤ x′1 ∨̃x2, for all x1, x
′
1, x2 ∈ I (i.e. ∨̃ is monotonically increasing)

e. (x1 ∨̃ x2) ∨̃ x3 = x1 ∨̃ (x2 ∨̃ x3), for all x1, x2, x3 ∈ I (associativity).

The induced truth functions of DFSes can be shown to belong to these classes of “reasonable”
choices:

Theorem 2
In every DFSF ,

a. F̃(id2) = idI is the identity truth function;

b. ¬̃ = F̃(¬) is a strong negation operator;

c. ∧̃ = F̃(∧) is a t-norm;

d. x1 ∨̃ x2 = ¬̃(¬̃x1 ∧̃ ¬̃x2), i.e. ∨̃ is the duals-norm of∧̃ under¬̃,

e. x1 →̃ x2 = ¬̃x1 ∨̃ x2, where→̃ = F̃→.

(Proof: A.1, p.81+)

The fuzzy disjunction induced byF is therefore definable in terms of̃∧ and ¬̃, and the fuzzy
implication induced byF is definable in terms of̃∨ and¬̃ (and hence also in terms of∧̃ and¬̃).8

A similar point can be made about all other two-place logical connectives except for antivalence
xor and equivalence↔ (see remarks on p. 29 and [9, p. 52]).

8In particular, if¬x = 1 − x is the standard negation and∨ = max is the standard fuzzy disjunction, we obtain
the Kleene-Dienes implicationx→ y = max(1− x, y).
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2.3 Preservation of argument structure

We shall now discuss homomorphism properties of DFSes with respect to operations on the argu-
ment sets.

We already know from (DFS 3) and (DFS 5) that every DFS is compatible with external negation
and formation of antonyms. Because of its compatibility with argument transpositions (DFS 4), we
conclude that every DFS is compatible with complementation in arbitrary argument positions. Let
us also remark that every DFS is compatible with dualisation, which is immediate from (DFS 3)
and (DFS 5):

Theorem 3
Every DFSF is compatible with dualisation, i.e. wheneverQ : P(E)n -I is a semi-fuzzy quan-
tifier of arity n > 0, then

F(Q�̃) = F(Q)�̃ .

HenceF(all)(lucky , tall ) = ¬̃ F(some )(lucky , ¬̃ tall ), i.e. the meanings of “all lucky persons
are tall” and “it is not the case that some lucky person is not tall” coincide.

Definition 26 (Internal joins)
SupposeQ : P(E)n -I is a semi-fuzzy quantifier of arityn > 0. The semi-fuzzy quantifier
Q∪ : P(E)n+1 -I is defined by

Q∪(X1, . . . , Xn+1) = Q(X1, . . . , Xn−1, Xn ∪Xn+1) ,

for all X1, . . . , Xn+1 ∈ P(E). In the case of fuzzy quantifiers,̃Q∪̃ : P̃(E)
n+1

-I is defined
analogously.

In order to allow for a compositional interpretation of composite quantifiers like “allX ’s areY ’s
orZ ′s”, we desire that a QFMF be compatible with unions of the argument sets:

Theorem 4 (Internal joins)
SupposeF is a DFS andQ : P(E)n -I is a semi-fuzzy quantifier (n > 0). Then

F(Q∪) = F(Q)∪̃ .

(Proof: see [9, Th-8, p. 32])

For example, the semi-fuzzy quantifierall∪, which hasall∪(X, Y, Z) = all(X, Y ∪ Z) for crisp
X, Y, Z ∈ P(E), should be mapped toF(all)∪̃, i.e. for all fuzzy subsetsX,Y, Z ∈ P̃(E),
F(all∪)(X,Y, Z) = F(all)(X,Y ∪̃ Z).
Let us also remark that by (DFS 4), this property generalises to unions in arbitrary argument posi-
tions.

We already know from (DFS 5) that every DFS is compatible with argument-wise complemen-
tation. Let us now establish thatF respects even more fine-grained application of the negation
operator.
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Definition 27
SupposeQ : P(E)n -I is a semi-fuzzy quantifier (n > 0) andA ∈ P(E) a crisp subset ofE.
ByQ4A : P(E)n -I we denote the semi-fuzzy quantifier defined by

Q4A(X1, . . . , Xn) = Q(X1, . . . , Xn−1, Xn4A)

for all X1, . . . , Xn ∈ P(E), where4 denotes the symmetrical set difference. For fuzzy quantifiers
Q̃, we defineQ̃4̃A analogously, where the fuzzy symmetrical differenceX1 4̃ X2 ∈ P̃(E) is
defined byµX14̃X2

(e) = µX1(e) x̃or µX2(e) for all e ∈ E.

Theorem 5
SupposeF is a DFS. Then for every semi-fuzzy quantifierQ : P(E)n -I (n > 0) and every
crisp subsetA ∈ P(E), F(Q4A) = F(Q) 4̃ A .
(Proof: see [9, Th-9, p. 35])

2.4 Monotonicity properties

Theorem 6 (Monotonicity in i-th argument)
SupposeF is a DFS andQ : P(E)n -I. ThenQ is monotonically nondecreasing (nonincreas-
ing) in its i-th argument (i ≤ n) if and only ifF(Q) is monotonically nondecreasing (nonincreas-
ing) in its i-th argument.
(Proof: see [9, Th-4, p. 28])

For example,some : P(E)2 -2 is monotonically nondecreasing in both arguments. By the
theorem, then,F(some ) : P̃(E) × P̃(E) -I is nondecreasing in both arguments also. In
particular,

F(some )(young men , very tall ) ≤ F(some )(men , tall ) ,

i.e. “some young men are very tall” entails “some men are tall”, ifyoung men ⊆ men and
very tall ⊆ tall .
Let us now state that every DFS preserves monotonicity properties of semi-fuzzy quantifiers even
if these hold only locally.

Definition 28 (Local monotonicity)
SupposeQ : P(E)n -I andU, V ∈ P(E)n are given. We say thatQ is locally nondecreasing
in the range(U, V ) iff for all X1, . . . , Xn, X

′
1, . . . , X

′
n ∈ P(E) such thatUi ⊆ Xi ⊆ X ′i ⊆ Vi

(i = 1, . . . , n), we haveQ(X1, . . . , Xn) ≤ Q(X ′1, . . . , X
′
n). We will say thatQ is locally non-

increasing in the range(U, V ) if under the same conditions,Q(X1, . . . , Xn) ≤ Q(X ′1, . . . , X
′
n).

On fuzzy quantifiers, local monotonicity is defined analogously, butX1, . . . , Xn, X
′
1, . . . , X

′
n are

taken fromP̃(E), and ‘⊆’ is the fuzzy inclusion relation.

Theorem 7 (Preservation of local monotonicity)
SupposeF is a DFS,Q : P(E)n -I a semi-fuzzy quantifier andU, V ∈ P(E)n. ThenQ
is locally nondecreasing (nonincreasing) in the range(U, V ) iff F(Q) is locally nondecreasing
(nonincreasing) in the range(U, V ).
(Proof: see [9, Th-12, p. 36])
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To present an example, consider the proportional quantifier

more than 10 percent = [rate > 0.1] : P(E)2 -I .

The quantifier is neither nonincreasing nor nondecreasing in its first argument. Nevertheless, some
characteristics of the quantifier express themselves in its local monotonicity properties. For exam-
ple, supposeA,B ∈ P(E) are subsets ofE andA 6= ∅. Thenmore than 10 percent is locally
nonincreasing in the range((A,B), (A ∪ ¬B,B)), and it is locally nondecreasing in the range
((A,B), (A∪B,B)). The theorem ensures that such characteristics of a quantifier which become
visible through its local monotonicity properties be preserved when applying a DFS.
DFSes can also be shown to bemonotonicin the sense of preserving inequations between quanti-
fiers. Let us firstly define a partial order≤ on (semi-)fuzzy quantifiers.

Definition 29
SupposeQ, Q′ : P(E)n -I are semi-fuzzy quantifiers. Let us writeQ ≤ Q′ iff for all X1, . . . , Xn ∈
P(E), Q(X1, . . . , Xn) ≤ Q′(X1, . . . , Xn). On fuzzy quantifiers, we define≤ analogously, where
X1, . . . , Xn ∈ P̃(E).

For example,[rate > 0.5] ≤ [rate > 0.2], which reflects our intuition that “more than 50 percent
of theX ’s areY ” is a stronger condition than “more than 20 percent of theX ’s areY ”.

Theorem 8
SupposeF is a DFS andQ, Q′ : P(E)n -I are semi-fuzzy quantifiers. ThenQ ≤ Q′ if and only
if F(Q) ≤ F(Q′) .
(Proof: see [9, Th-13, p. 36])

The theorem ensures that inequations between quantifiers carry over to the corresponding fuzzy
quantifiers. Hence

F(more than 50 percent )(blonde , tall ) ≤ F(more than 20 percent )(blonde , tall ) ,

as desired.

Definition 30
SupposeQ1, Q2 : P(E)n -I are semi-fuzzy quantifiers andU, V ∈ P(E)n. We say thatQ1 is
(not necessarily strictly) smaller thanQ2 in the range(U, V ), in symbols:Q1≤(U, V )Q2, iff for all
X1, . . . , Xn ∈ P(E) such thatU1 ⊆ X1 ⊆ V1, . . . ,Un ⊆ Xn ⊆ Vn,

Q1(X1, . . . , Xn) ≤ Q2(X1, . . . , Xn) .

On fuzzy quantifiers, we definẽQ1 ≤(U, V ) Q̃2 analogously, butX1, . . . , Xn ∈ P̃(E), and ‘⊆’
denotes the fuzzy inclusion relation.

Every DFS preserves inequations between quantifiers even if these hold only locally.

Theorem 9
SupposeF is a DFS,Q1, Q2 : P(E)n -I andU, V ∈ P(E)n. Then

Q1 ≤(U, V ) Q2 ⇔ F(Q1)≤(U, V ) F(Q2) .

(Proof: see [9, Th-14, p. 37])
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For example, the two-place quantifierall is smaller thansome whenever the first argument is
nonempty, i.e.

all ≤(({e},E}), (E,E)) some ,

for all e ∈ E. The theorem ensures that such local inequations are preserved when applying a
DFS. In particular, iftall , lucky ∈ P̃(E) are fuzzy subsets ofE andtall has nonempty support,
then

all(tall , lucky ) ≤ some (tall , lucky ) ,

as desired.

2.5 Miscellaneous Properties

Theorem 10 (Projection quantifiers)
LetF be a DFS,E 6= ∅ a base set andn ∈ N. Then for alle ∈ E,

F(πe) = π̃e .

(Proof: see [9, Th-15, p. 37])

Hence in the example domainE = {John, Lucas, Mary}, the crisp projection quantifierjohn =

πJohn : P(E) -2 would be mapped tõπJohn : P̃(E) -I, as desired.

The following theorem simplifies proofs related to the induced negation operator of a DFS.

Theorem 11
Suppose a QFMF satisfies(DFS 2), i.e. F(π∗) = π̃∗, and¬′ : I -I is a mapping such that for
all semi-fuzzy quantifiersQ : P(E)n -I,

F(¬′Q) = ¬′F(Q) .

Then¬′ = F̃(¬), i.e.¬′ is is the negation operator induced byF .
(Proof: see [9, Th-10, p. 35])

A similar point can be made about conjunction:

Theorem 12
Suppose a QFMF satisfies(DFS 2), i.e.F(π∗) = π̃∗, and∧′ : I -I is a mapping such that for
all semi-fuzzy quantifiersQ : P(E)n -I,

F(Q∩) = F(Q)∩′ ,

where∩′ is the fuzzy intersection corresponding to∧′. Then∧′ = F̃(∧), i.e.∧′ is the conjunction
operator induced byF .
(Proof: see [9, Th-11, p. 35])
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2.6 Properties of the induced extension principle

Theorem 13 ( F̂ is functorial)
SupposeF is a DFS andF̂ the extension principle induced byF . Then for allf : E -E ′,
g : E ′ -E ′′ (whereE 6= ∅, E ′ 6= ∅, E ′′ 6= ∅),

a. F̂(g ◦ f) = F̂(g) ◦ F̂(f)

b. F̂(idE) = idP̃(E)

(Proof: see [9, Th-16, p. 38])

The induced extension principles of all DFSes coincide on injective mappings.

Theorem 14 (Extension of injections)
SupposeF is a DFS andf : E -E ′ is an injection. Then for allX ∈ P̃(E), v ∈ E ′,

µF̂(f)(X)(v) =

{
µX(f−1(v)) : v ∈ Im f
0 : v /∈ Im f

(Proof: see [9, Th-17, p. 38])

Definition 31 (Quantitative semi-fuzzy quantifier)
A semi-fuzzy quantifierQ : P(E)n -I is called quantitativeiff for all automorphisms9 β :
E -E and allY1, . . . , Yn ∈ P(E),

Q(Y1, . . . , Yn) = Q(β̂(Y1), . . . , β̂(Yn)) .

For example,at least k is quantitative, while the projection quantifierjohn = πJohn is not (when-
everE is not a singleton).

Definition 32 (Quantitative fuzzy quantifier)
A fuzzy quantifier̃Q : P̃(E)

n
-I is said to bequantitativeiff for all automorphismsβ : E -E

and allX1, . . . , Xn ∈ P̃(E),

Q̃(X1, . . . , Xn) = Q̃(
ˆ̂
β(X1), . . . ,

ˆ̂
β(Xn)) ,

where ˆ̂
β : P̃(E) - P̃(E) is obtained by applying the standard extension principle.

By Th-14, the induced extension principles of all DFSes coincide on injective mappings. There-
fore, the explicit mention of the standard extension principle in the above definition doesnot limit
its applicability to any particular choice of extension principle.

Theorem 15 (Preservation of quantitativity)
SupposeF is a DFS. For all semi-fuzzy quantifiersQ : P(E)n -I, Q is quantitative if and only
if F(Q) is quantitative.
(Proof: see [9, Th-18, p. 39])

9i.e. bijections ofE into itself
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For example, the quantitative quantifiersall , some and at least k are mapped to quantitative
semi-fuzzy quantifiersF(all), F(some ) andF(at least k ), respectively. On the other hand, the
non-quantitative projection quantifierjohn = πJohn is mapped to the fuzzy projection quantifier
F(john ) = π̃John, which is also non-quantitative.
We will now establish that a DFS is compatible with exactly one extension principle.

Theorem 16
SupposeF is a DFS andE an extension principle such that for every semi-fuzzy quantifierQ :

P(E ′)n -I and all f1 : E -E ′, . . . , fn : E -E ′, F(Q ◦
n
×
i=1

f̂i) = F(Q) ◦
n
×
i=1
E(fi) . Then

F̂ = E .
(Proof: see [9, Th-19, p. 39])

The extension principlêF of a DFSF is uniquely determined by the fuzzy existential quantifiers
F(∃) = F(∃E) : P̃(E) -I induced byF . The converse can also be shown: the fuzzy existential
quantifiers obtained from a DFSF are uniquely determined by its extension principleF̂ .

Theorem 17
SupposeF is a DFS.

a. For every mappingf : E -E ′ and all e′ ∈ E ′, µF̂(f)(•)(e
′) = F(∃)∩̃/f−1(e′) .

b. If E 6= ∅ and∃ = ∃E : P(E) -2, thenF(∃) = π̃∗ ◦ F̂(!) , where{∗} is an arbitrary
singleton set and! : E -{∗} is the mapping defined by!(x) = ∗ for all x ∈ E.

(Proof: A.2, p.81+)

A notion closely related to extension principles is that offuzzy inverse images. Let us first recall
the concept of inverse images in the crisp case:

Definition 33 (Inverse Images)
Supposef : E -E ′ is a mapping. The inverse image mappingf−1 : P(E ′) -P(E) is defined
byf−1(V ) = {e ∈ E : f(e) ∈ V } , for all V ∈ P(E ′).

Unlike in the case of extension principles, there is only one reasonable definition of fuzzy inverse
images:

Definition 34 (Standard Fuzzy Inverse Images)

Supposef : E -E ′ is a mapping. The fuzzy inverse image mappingˆ̂
f−1 : P̃(E ′) - P̃(E)

assigns to eachY ∈ P̃(E ′) the fuzzy subsetˆ̂f−1(Y ) ∈ P̃(E) defined by

µ ˆ
f̂−1(Y )

(x) = µY (f(x))

for all x ∈ E.

Now, every quantifier fuzzification mechanismF induces fuzzy inverse images by means of the
following construction.



2 SOME PROPERTIES OF DFSES 21

Definition 35
SupposeF is a quantifier fuzzification mechanism andf : E -E ′ is some mapping.F induces
a fuzzy inverse image mappinĝF−1(f) : P̃(E ′) - P̃(E) which to eachY ∈ P̃(E ′) assigns the
fuzzy subset̂F−1(f) defined by

µF̂−1(f)(Y )(e) = F(χf−1(•)(e))(Y ) .

It is now easily shown that ifF is a DFS, then its induced fuzzy inverse images coincide with the
above “reasonable” definition.

Theorem 18 (Induced fuzzy inverse images)
SupposeF is a DFS,f : E -E ′ is a mapping andY ∈ P̃(E ′). Then for all e ∈ E,
µF̂−1(f)(Y )(e) = µY (f(e)) .
(Proof: see [9, Th-23, p. 41])

2.7 Properties with respect to the standard quantifiers

Some first results on the interpretation of the standard quantifiers∀ and∃ in DFSes have been
proven in [9, p. 41+]:

Theorem 19
LetF be a DFS,E a non-empty set and∃ = ∃E : P(E) -2. Then for allX ∈ P̃(E),

a. F(∃)(∅) = 0, F(∃)(E) = 1

b. F(∃)(X ∩̃ {e}) = µX(e)

for all e ∈ E

c. F(∃)(X ∩̃ A) =
m

∨̃
i=1

µX(ai)

for all finiteA = {a1, . . . , am} ∈ P(E) (ai 6= aj if i 6= j)

d. F(∃)(X) ≥ sup

{
m

∨̃
i=1

µX(ai) : A = {a1, . . . , am} ∈ P(E) finite,ai 6= aj if i 6= j

}
In particular, if E is finite, i.e.E = {e1, . . . , em} where theei are pairwise distinct, then

F(∃)(X) =
m

∨̃
i=1

µX(ei) .

(Proof: see [9, Th-24, p. 41])

A similar point can be made about the dual case of the universal quantifier.
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Theorem 20
LetF be a DFS,E a non-empty set and∀ = ∀E : P(E) -2. Then for allX ∈ P̃(E),

a. F(∀)(∅) = 0, F(∀)(E) = 1

b. F(∀)(X ∪̃ ¬̃ {e}) = µX(e)

for all e ∈ E

c. F(∀)(X ∪̃ ¬̃A) =
m

∧̃
i=1

µX(ai)

for all finiteA = {a1, . . . , am} ∈ P(E) (ai 6= aj if i 6= j)

d. F(∀)(X) ≤ inf

{
m

∧̃
i=1

µX(ai) : A = {a1, . . . , am} ∈ P(E) finite,ai 6= aj if i 6= j

}
In particular, if E is finite, i.e.E = {e1, . . . , em} where theei are pairwise distinct, then

F(∀)(X) =
m

∧̃
i=1

µX(ei) .

(Proof: see [9, Th-26, p. 42])

In the following, we wish to improve upon this analysis by showing that in Th-19.c and Th-20.c,
the inequations can actually be replaced with an equality. To this end, we will utilize some results
due to Thiele [18, 19, 20]. Let us first introduce the concept of T-quantifiers and S-quantifiers
(adapted to our notation):

Definition 36 (T-quantifier)
A fuzzy quantifier̃Q : P̃(E) -I is called aT-quantifieriff Q̃ satisfies the following axioms:

a. For allX ∈ P̃(E) ande ∈ E,

Q̃(X ∪ ¬{e}) = µX(e)

b. For allX ∈ P̃(E) ande ∈ E,

Q̃(X ∩ ¬{e}) = 0

c. Q̃ is nondecreasing, i.e. for allX,X ′ ∈ P̃(E) such thatX ⊆ X ′,

Q̃(X) ≤ Q̃(X ′)

d. Q̃ is quantitative, i.e. for every automorphism (permutation)β : E -E,

Q̃ ◦ ˆ̂
β = Q̃ .

Note. In the definition,∩ is the standard fuzzy intersection based onmin, and∪ is the standard
fuzzy union based onmax. However, all fuzzy intersections based ont-norms and all fuzzy unions
based ons-norms will give the same results, because one of the arguments is a crisp subset ofE.
A dual definition is introduced for S-quantifiers:
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Definition 37 (S-quantifier)
A fuzzy quantifier̃Q : P̃(E) -I is called anS-quantifieriff Q̃ satisfies the following axioms:

a. For allX ∈ P̃(E) ande ∈ E,

Q̃(X ∪ {e}) = 1

b. For allX ∈ P̃(E) ande ∈ E,

Q̃(X ∩ {e}) = µX(e)

c. Q̃ is nondecreasing, i.e. for allX,X ′ ∈ P̃(E) such thatX ⊆ X ′,

Q̃(X) ≤ Q̃(X ′)

d. Q̃ is quantitative, i.e. for every automorphism (permutation)β : E -E,

Q̃ ◦ ˆ̂
β = Q̃ .

Note. An analogous point about∩ and∪ can be made in this case.
It is apparent from the following theorem that in every DFS, the fuzzy universal quantifier is a
T-quantifier, and the fuzzy existential quantifier is an S-quantifier:

Theorem 21 (T- and S-quantifiers in DFSes)
In every DFSF , the fuzzy universal quantifierF(∀E) is a T-quantifier, and the fuzzy existential
quantifierF(∃E) is an S-quantifier, for all non-empty base setsE.

(Proof: A.3, p.81+)

There is a close relationship between T-quantifiers andt-norms (and analogously between S-
quantifiers ands-norms).

Definition 38 ( ∧̃
Q̃

)

SupposẽQ : P̃(E) -I is a T-quantifier and|E| > 1. ∧̃Q̃ : I× I -I is defined by

x1 ∧̃Q̃ x2 = Q̃(X)

for all x1, x2 ∈ I, whereX ∈ P̃(E) is defined by

µX(e) =


x1 : e = e1

x2 : e = e2

1 : else
(7)

wheree1 6= e2, e1, e2 ∈ E are two arbitrary distinct elements ofE.

Note. It is evident by the quantitativity of T-quantifiers thatx1 ∧̃Q̃x2 does not depend on the choice
of e1, e2 ∈ E.
A dual definition will be used for S-quantifiers:
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Definition 39 ( ∨̃
Q̃

)

SupposẽQ : P̃(E) -I is an S-quantifier and|E| > 1. ∨̃Q̃ : I× I -I is defined by

x1 ∨̃Q̃ x2 = Q̃(X)

for all x1, x2 ∈ I, whereX ∈ P̃(E) is defined by

µX(e) =


x1 : e = e1

x2 : e = e2

0 : else
(8)

ande1 6= e2, e1, e2 ∈ E are two arbitrary distinct elements ofE.

Note. Again, the independence of∨̃Q̃ on the chosen elementse1, e2 ∈ E is apparent from the
quantitativity of S-quantifiers.
We can now benefit from the following theorem of Thiele (in our notation):

Theorem 22 (T-quantifier)
SupposẽQ : P̃(E) -I is a T-quantifier where|E| > 1. Then∧̃Q̃ is a t-norm, and

Q̃(X) = inf

{
m

∧̃Q̃
i=1

µX(ai) : A = {a1, . . . , am} ∈ P(E) finite,ai 6= aj if i 6= j

}

for all X ∈ P̃(E).
(See Thiele [18, Th-8.1, p.47])

A dual theorem holds for S-quantifiers:

Theorem 23 (S-quantifiers)
SupposẽQ : P̃(E) -I is a S-quantifier where|E| > 1. Then∨̃Q̃ is ans-norm, and

Q̃(X) = sup

{
m

∨̃Q̃
i=1

µX(ai) : A = {a1, . . . , am} ∈ P(E) finite,ai 6= aj if i 6= j

}

for all X ∈ P̃(E).
(See Thiele [18, Th-8.2, p.48])

Note. Some properties ofs-norm aggregation of infinite collections in the form expressed by the
theorem (and hence, as expressed by S-quantifiers) have been studied by Rovatti and Fantuzzi [15]
who view S-quantifiers as a special type of non-additive functionals.
Connecting theorems Th-23 and Th-23 with our earlier results on the interpretation of the standard
quantifiers in DFSes, we immediately obtain

Theorem 24 (Universal quantifiers in DFSes)
SupposeF is a DFS andE 6= ∅ is some base set. Then

F(∀)(X) = inf

{
m

∧̃
i=1

µX(ai) : A = {a1, . . . , am} ∈ P(E) finite,ai 6= aj if i 6= j

}
(Proof: A.4, p.82+)
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Theorem 25 (Existential quantifiers in DFSes)
SupposeF is a DFS andE is a non-empty base set. Then

F(∃)(X) = sup

{
m

∨̃
i=1

µX(ai) : A = {a1, . . . , am} ∈ P(E) finite,ai 6= aj if i 6= j

}
(Proof: A.5, p.82+)

This improves upon our analysis in Th-19 and Th-20 where we could only show that the fuzzy ex-
istential and universal quantifiers are bounded by the above expressions. In particular, the theorem
shows that in every DFS, the fuzzy existential and fuzzy quantifiers are uniquely determined by
the induced fuzzy disjunction and conjunction.

Theorem 26
SupposeF is a DFS,F̂ its induced extension principle and̃∨ = F̃(∨).

a. F̂ is uniquely determined bỹ∨;

b. ∨̃ is uniquely determined bŷF , viz.x1 ∨̃ x2 = (π̃∗ ◦ F̂(!))(X) for all x1, x2 ∈ I, where
X ∈ P̃({1, 2}) is defined byµX(1) = x1 andµX(2) = x2, {∗} is an arbitrary singleton set,
and! is the unique mapping! : {1, 2} -{∗}.

(Proof: A.6, p.82+)

In particular, ifF̂ =
ˆ̂

(•) is the standard extension principle, then∨̃ = max. Because I did not want
QFMs in which∨̃ 6= max to be a priori excluded from consideration, axiom (DFS 9) has been
stated in terms of the extension principlêF induced byF , rather than requiring the compatibility
of F to the standard extension principle.

2.8 Special subclasses of DFSes

We will now turn to subclasses of DFS models which satisfy some additional requirements.

Definition 40
Let ¬̃ : I -I be a strong negation operator. A DFSF is called a¬̃-DFS if its induced negation
coincides with̃¬, i.e. F̃(¬) = ¬̃ . In particular, we will callF a¬-DFS if it induces the standard
negation¬x = 1− x.

Definition 41
SupposeF is a DFS andσ : I -I a bijection. For every semi-fuzzy quantifierQ : P(E)n -I

and allX1, . . . , Xn ∈ P̃(E), we define

Fσ(Q)(X1, . . . , Xn) = σ−1F(σQ)(σX1, . . . , σXn) ,

whereσQ abbreviatesσ ◦Q, andσXi ∈ P̃(E) is the fuzzy subset withµσXi = σ ◦ µXi.

Theorem 27
If F is a DFS andσ : I -I an increasing bijection, thenFσ is a DFS.
(Proof: see [9, Th-27, p. 43])
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It is well-known [12, Th-3.7] that for every strong negation¬̃ : I -I there is a monotonically
increasing bijectionσ : I -I such that̃¬x = σ−1(1 − σ(x)) for all x ∈ I. The mappingσ is
called thegeneratorof ¬̃.

Theorem 28
SupposeF is a ¬̃-DFS andσ : I -I the generator of̃¬. ThenF ′ = Fσ−1

is a¬-DFS and
F = F ′σ.
(Proof: see [9, Th-28, p. 44])

This means that we can freely move from an arbitrary¬̃-DFS to a corresponding¬-DFS and vice
versa: in the following, we shall hence restrict attention to¬-DFSes.

In [9, Def. 32] the notion ofE-DFS has been introduced in order to classify DFSes according to
their induced extension principle, and a number of theorems have been proven forE-DFSes.

Definition 42 ( E-DFS)
A¬-DFSF which induces the extension principleE = F̂ will be called anE-DFS.

We can now utilize theorem Th-17 which establishes that the induced extension principle of a DFS
is uniquely determined by it induced disjunction, and that conversely the induced disjunction is
uniquely determined by the induced extension principle. In other words, if two DFSes induce the
same extension principle, then they also induce the same disjunction and vice versa. Because of
this equivalence, the following definition of̃∨-DFSes gives rise to the same classes of DFSes as
the definition ofE-DFSes.

Definition 43
A¬-DFSF which induces a fuzzy disjunctioñ∨ is called a∨̃-DFS.

In the following, we prefer to talk about̃∨-DFSes rather thanE-DFSes for reasons of simplicity.
By our above reasoning, all results established forE-DFSes in [9, p. 44+] carry over tõ∨-DFSes.

Theorem 29
SupposeJ is a non-empty index set and(Fj)j∈J is aJ -indexed collection of̃∨-DFSes. Further
suppose thatΨ : IJ -I satisfies the following conditions:

a. If f ∈ IJ is constant, i.e. if there is ac ∈ I such thatf(j) = c for all j ∈ J , thenΨ(f) = c.

b. Ψ(1 − f) = 1 − Ψ(f), where1 − f ∈ IJ is point-wise defined by(1 − f)(j) = 1 − f(j),
for all j ∈ J .

c. Ψ is monotonically nondecreasing, i.e. iff(j) ≤ g(j) for all j ∈ J , thenΨ(f) ≤ Ψ(g).

If we defineΨ[(Fj)j∈J ] by

Ψ[(Fj)j∈J ](Q)(X1, . . . , Xn) = Ψ((Fj(Q)(X1, . . . , Xn))j∈J )

for all semi-fuzzy quantifiersQ : P(E)n -I andX1, . . . , Xn ∈ P̃(E), thenΨ[(Fj)j∈J ] is a
∨̃-DFS.
(Proof: see [9, Th-29, p. 44])
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In particular, convex combinations (e.g., arithmetic mean) and stable symmetric sums [17] of∨̃-
DFSes are agaiñ∨-DFSes.

The¬-DFSes can be partially ordered by “specificity” or “cautiousness”, in the sense of closeness
to 1

2
. We shall define a partial order�c ⊆ I× I by

x�c y ⇔ y ≤ x ≤ 1
2

or 1
2
≤ x ≤ y , (9)

for all x, y ∈ I.10

Definition 44
SupposeF , F ′ are ¬-DFSes. We say thatF is consistently less specificthanF ′, in symbols:
F �c F ′, iff for all semi-fuzzy quantifiersQ : P(E)n -I and allX1, . . . , Xn ∈ P̃(E),

F(Q)(X1, . . . , Xn)�c F ′(Q)(X1, . . . , Xn) .

We now wish to establish the existence of consistently least specific∨̃-DFSes. In order to be able
to state the theorem, we firstly need to introduce thefuzzy medianm 1

2
.

Definition 45
Thefuzzy medianm 1

2
: I× I -I is defined by

m 1
2
(u1, u2) =


min(u1, u2) : min(u1, u2) > 1

2

max(u1, u2) : max(u1, u2) < 1
2

1
2

: else

m 1
2

is an associative mean operator [4] and the only stable (i.e. idempotent) associative symmetric
sum [17]. The fuzzy median can be generalised to an operatorP(I) -I which accepts arbitrary
subsets ofI as its arguments.

Definition 46
The generalised fuzzy medianm 1

2
: P(I) -I is defined by

m 1
2
X = m 1

2
(inf X, supX) ,

for all X ∈ P(I).

Note. The generalised fuzzy median is obviously related to median quantifiers, studied by Thiele
[21].

Theorem 30
Supposẽ∨ is ans-norm and(Fj)j∈J is aJ -indexed collection of̃∨-DFSes whereJ 6= ∅. Then
there exists a greatest lower specificity bound on(Fj)j∈J , i.e. a∨̃-DFSFglb such thatFglb �c Fj
for all j ∈ J (i.e.Fglb is a lower specificity bound), and for all other lower specificity boundsF ′,

10�c is Mukaidono’s ambiguity relation, see [13].
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F ′ �c Fglb.
Fglb is defined by

Fglb(Q)(X1, . . . , Xn) = m 1
2
{Fj(Q)(X1, . . . , Xn) : j ∈ J } ,

for all Q : P(E)n -I andX1, . . . , Xn ∈ P̃(E).
(Proof: A.7, p.82+)

In particular, the theorem asserts the existence of least specific∨̃-DFSes, i.e. whenever̃∨ is an
s-norm such that̃∨-DFSes exist, then there exists a least specific∨̃-DFS (just apply the above
theorem to the collection of all̃∨-DFSes).

Definition 47
A DFSF such that̃¬ = F̃(¬) and∨̃ = F̃(∨) is called a(¬̃, ∨̃)-DFS.

In the theory of generalized quantifiers there are constructionsQ ∧ Q′ andQ ∨ Q′ of forming
the conjunction (disjunction) of two-valued quantifiersQ,Q′ : P(E)n -2. We shall generalize
these constructions to (semi)-fuzzy quantifiers.

Definition 48
Supposẽ∧, ∨̃ : I × I -I are given. For all semi-fuzzy quantifiersQ, Q′ : P(E)n -I, the
conjunctionQ ∧̃ Q′ : P(E)n -I and the disjunctionQ ∨̃ Q′ : P(E)n -I of Q andQ′ are
defined by

(Q ∧̃Q′)(X1, . . . , Xn) = Q(X1, . . . , Xn) ∧̃Q′(X1, . . . , Xn)

(Q ∨̃Q′)(X1, . . . , Xn) = Q(X1, . . . , Xn) ∨̃Q′(X1, . . . , Xn)

for all X1, . . . , Xn ∈ P(E). For fuzzy quantifiers,̃Q ∧̃ Q̃′ andQ̃ ∨̃ Q̃′ are defined analogously.

In the following, we shall be concerned with(¬̃, max)-DFSes, i.e. DFSes which induce the stan-
dard disjunctionF̃(∨) = ∨ = max. In the case of(¬̃, max)-DFSes, we can establish a theorem
on conjunctions and disjunctions of (semi-)fuzzy quantifiers.

Theorem 31
SupposeF is a (¬̃, max)-DFS. Then for allQ, Q′ : P(E)n -I,

a. F(Q ∧Q′) ≤ F(Q) ∧ F(Q′)

b. F(Q ∨Q′) ≥ F(Q) ∨ F(Q′).

(Proof: see [9, Th-32, p. 48])

Note. Because the theorem refers to the standard fuzzy conjunction and disjunction, the construc-
tions on quantifiers have been writtenQ∧Q′ andQ∨Q′, omiting the ‘tilde’ notation for fuzzy con-
nectives. Similarly, the standard fuzzy intersection and standard fuzzy union will be writtenX∩Y
andX ∪Y , resp., whereµX∩Y (e) = min(µX(e), µY (e)) andµX∪Y (e) = max(µX(e), µY (e)). The
same conventions are stipulated for intersectionsQ̃∩ and unionsQ̃∪ of the arguments of a fuzzy
quantifier, as well as for dualsQ� of semi-fuzzy quantifiers or̃Q� of fuzzy quantifiers, based on
the standard negation.
We have so far not made any claims about the interpretation of↔̃ = F̃(↔) andx̃or = F̃(xor) in
a given DFSF .
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Theorem 32
SupposeF is a (¬̃, max)-DFS. Then for allx1, x2 ∈ I,

a. x1 ↔̃ x2 = (x1 ∧ x2) ∨ (¬̃x1 ∧ ¬̃x2)

b. x1 x̃or x2 = (x1 ∧ ¬̃x2) ∨ (¬̃x1 ∧ x2) .

(Proof: see [9, Th-33, p. 48])

Note. In the case of a¬-DFS, we obtain the equivalencex1 ↔ x2 = max(min(x1, x2),min(1 −
x1, 1 − x2)) and the antivalencex1 xor x2 = max(min(x1, 1 − x2),min(1 − x1, x2)). The cor-
responding fuzzy set difference is denotedX4Y , whereµX4Y (e) = µX(e) xor µY (e), and the
fuzzy quantifier which uses this particular fuzzy difference in its last argument is denotedQ̃4A.

Definition 49 (Standard DFS)
By astandard DFSwe denote a(¬,max)-DFS.

Standard DFS induce the standard connectives of fuzzy logic and by Th-26, they also induce
the standard extension principle.11 It has been remarked in [9, p.49] that the propositional part
of a standard DFS coincides with the well-known K-standard sequence logic of Dienes [6]. In
particular, the three-valued fragment is Kleene’s three-valued logic. Standard DFSes represent
a “boundary” case of DFSes because they induce the smallest fuzzy existential quantifiers, the
smallest extension principle, and the largest fuzzy universal quantifiers.

11Originally, standard DFSes have been introduced as the class of¬-DFSes which induce the standard extension
principle [9, p. 49], because it was not apparent at that point that this class of DFSes coincides with that of(¬,max)-
DFSes. Utilizing the new results presented in this report, we can now apply theorem Th-26 to conclude that every
(¬,max)-DFS is guaranteed to be a standard DFS (in the sense of inducing the standard extension principle), i.e. the
two classes indeed coincide.
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3 An Alternative Characterisation of DFSes

3.1 An Alternative Construction of Induced Connectives

In Def. 8, we have presented a canonical construction for obtaining induced fuzzy truth functions
F̃(f) : In -I for given semi-fuzzy truth functionsf : 2n -I. Basically, this construction
utilizes the bijection between the set of two-valued truth values2 = {0, 1} and the powerset
P({∗}) = {∅, {∗}} of an arbitrary singleton set{∗}. The semi-fuzzy truth functionf : 2n -I

was then transformed into a semi-fuzzy quantifierf ∗ : P̃({∗})
n
-I, to which the QFMF can

be applied. The resulting fuzzy quantifier was then transformed into a fuzzy truth function by uti-
lizing the bijection between the set of continuous truth values, i.e. the unit intervalI, and the fuzzy
powersetP̃({∗}) of a singleton set{∗}.
Although this construction is perfectly reasonable and gives the intended results, it has the disad-
vantage that the semi-fuzzy quantifierf ∗ associated withf is still ann-place quantifier. It would
be beneficial to use a construction which only involves monadic (one-place) quantifiers for two
reasons.

1. Existing approaches to fuzzy quantification like the FE-count approach [14] are often limited
to one-place or special forms of two-place quantification. It probably becomes easier to
discuss these approaches within our framework if the construction of induced connectives
involves one-place quantifiers only.

2. Because the proposed construction of induced connectives assignsn-place fuzzy truth func-
tions ton-place fuzzy quantifiers, we need those axioms which involve multiplace quan-
tification, viz argument transposition (DFS 4), internal meets (DFS 6), argument insertion
(DFS 7) and functional application (DFS 9) to establish the desired properties of the ba-
sic two-place truth functions like conjunction or disjunction. If we had a construction of
induced connectives which maps conjunction and disjunction to one-place quantifiers, we
might eliminate some of the axioms related to multi-place quantification, which only serve
to ensure a reasonable interpretation of the induced conjunction and disjunction.

These considerations have led us to introduce an alternative construction for induced fuzzy truth
functions. Both constructions will of course coincide in every DFS, but they might produce differ-
ent results if the QFM under consideration fails on some of the DFS axioms.

As the starting point for the alternative construction of induced connectives, let us observe that
2n andP({1, . . . , n}) are isomorphic. This is apparent if we recall that for every setA, 2A

(the set of characteristic functions ofA) andP(A) (the set of subsets ofA) are isomorphic, and
if we utilize the set-theoretic construction of natural numbers as0 = ∅, 1 = {0}, 2 = {0, 1},
n = {0, . . . , n− 1}. We then have2n ∼= P(n) = P({0, . . . , n− 1}). For convenience, as we have
numbered the arguments ofn-ary quantifiers from1 to n, rather than0 to n − 1, we shall replace
{0, . . . , n− 1} by the isomorphic{1, . . . , n}, to obtain2n ∼= P({1, . . . , n}), using the following
bijection.

Definition 50
For all n ∈ N, the bijectionη : 2n -P({1, . . . , n}) is defined by

η(x1, . . . , xn) = {k ∈ {1, . . . , n} : xk = 1} ,

for all x1, . . . , xn ∈ 2.
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An analogous construction is possible in the fuzzy case, where we haveIn ∼= P̃({1, . . . , n}):

Definition 51
For all n ∈ N, the bijectionη̃ : In - P̃({1, . . . , n}) is defined by

µη̃(x1,...,xn)(k) = xk

for all x1, . . . , xn ∈ I andk ∈ {1, . . . , n}.

(It is apparent that bothη andη̃ are indeed bijections). By making use ofη andη̃, we can transform
each semi-fuzzy truth functionf : 2n -I into a correspondingone-placesemi-fuzzy quantifier
Qf : P({1, . . . , n}) -I, applyF to obtainF(Qf ) : P̃({1, . . . , n}) -I, and translate this

into a fuzzy truth functioñF̃(f) : In -I:

Definition 52 (Alternative Construction of Induced Fuzzy Truth Functions)
SupposeF is a QFM andf is a semi-fuzzy truth function (i.e. a mappingf : 2n -I) of arity
n > 0. The semi-fuzzy quantifierQf : P({1, . . . , n}) -I is defined by

Qf (X) = f(η−1(X))

for all X ∈ P({1, . . . , n}). The induced fuzzy truth functioñ̃F(f) : In -I is defined by

˜̃F(f)(x1, . . . , xn) = F(Qf )(η̃(x1, . . . , xn)) ,

for all x1, . . . , xn ∈ I. If f : I0 -I is a nullary semi-fuzzy truth function (i.e., a constant),

we shall definẽF̃(f) : 20 -I by ˜̃F(f) = F̃(f), i.e. using the original construction of induced
connectives.

Notes

• The special treatment of nullary semi-fuzzy truth functions is necessary because in this case,
we would haveQf : P(∅) -I, which does not conform to our definition of semi-fuzzy
quantifiers and fuzzy quantifiers based on nonempty base-sets. Rather than adapting the
definition of semi-fuzzy and fuzzy quantifiers such as to allow for empty base sets, and hence
coverQf for nullary f , too, we prefer to treat the case of nullary truth functions separately,
i.e. by the original constructioñF .12

• WheneverF is understood from context, we shall abbreviate˜̃F(f) as ˜̃f ; in particular, we

will write ˜̃¬, ˜̃∧, ˜̃∨, ˜̃→ and˜̃↔ for the negation, conjunction, disjunction, implication and

equivalence, respectively, as obtained from˜̃F .

12Empty base sets are generally avoided in logic because for the empty domainE = ∅, the tautology∀xϕ→ ∃xϕ
fails.
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3.2 Equivalence of both Constructions with respect to DFSes

Having two constructions of induced fuzzy truth functions, which are both straightforward, we
would of course like to have that the results of both constructions coincide, at least if the QFMF
of interest is sufficiently well-behaved. As it turns out, the key tool for the proof that the original
and the new construction of induced connectives coincide in every DFS is thereductionof ann-
place quantifier to a monadic quantifier. We will see thatn-place quantification can be reduced to
one-place quantification on a suitable base set.
Why is it always possible to reducen-place quantification to one-place quantification? To see this,
let us recall that for arbitrary setsA,B,C, it always holds that

AB×C ∼= (AB)C ,

a relationship known as “currying”. We then have

P(E)n ∼= (2E)n ∼= 2E×n ∼= P(E × n) ∼= P(E × {1, . . . , n}) ,

and similarly

P̃(E)
n ∼= (IE)n ∼= IE×n ∼= P̃(E × n) ∼= P̃(E × {1, . . . , n}) .

For convenience, we have replacedE × n by E × {1, . . . , n}, which better suits our habit of
numbering the arguments of ann-place quantifier from1 to n (rather than from0 to n− 1).
This suggests that by exploiting the bijectionP(E)n ∼= P(E × {1, . . . , n}), n-place quantification
as expressed by someQ : P(E)n -I can be replaced by one-place quantification using a one-
place quantifier〈Q〉 : P(E × {1, . . . , n}) -I, and that converselyF(Q) : P̃(E)

n
-I can

always be recovered fromF(〈Q〉) : P̃(E × {1, . . . , n}) -I. To this end, let us introduce some
formal machinery.

Definition 53 ( En)
If E is some set andn ∈ N, we will abbreviate

En = E × {1, . . . , n} .

This is only to provide a short notation for the base sets of the resulting monadic quantifiers. For
n = 0, we obtain the empty productE0 = ∅.

Definition 54 ( ιn,Ei )
LetE be a given set,n ∈ N \ {0} andi ∈ {1, . . . , n}. By ιn,Ei : E -En we denote the inclusion
defined by

ιn,Ei (e) = (e, i) ,

for all e ∈ E.

Notes

• Being an inclusion,ιn,Ei is of course injective (one-to-one), a fact which we will use repeat-
edly. It is also apparent that

Im ιn,Ei = {(e, i) : e ∈ E} . (10)
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• the crisp extension (powerset mapping, see Def. 17) ofιn,Ei : E -En will be denoted by
ι̂ n,Ei : P(E) -P(En). The inverse image mapping ofιE,ni will be denoted(ι E,ni )−1 :
P(En) -P(E), cf. Def. 33.

• Let us also remark that for alln, n′ ∈ N such thati ≤ n, i ≤ n′,

ιn,Ei (e) = ιn
′,E
i (e) (11)

for all e ∈ E. We have only used the superscriptn in ιn,Ei because we wanted the notation
to disambiguate the codomain (or range) ofιn,Ei , viz En.

We can use these injections to define the monadic quantifier〈Q〉 of interest.

Definition 55 ( 〈Q〉)
LetQ : P(E)n -I an n-place semi-fuzzy quantifier, wheren > 0. The semi-fuzzy quantifier
〈Q〉 : P(En) -I is defined by

〈Q〉(X) = Q((ι n,E1 )−1(X), . . . , (ι n,En )−1(X))

for all X ∈ P(En).

For fuzzy quantifiers,〈Q̃〉 is defined similarly, using the fuzzy inverse image mapping(ˆ̂ι
n,E

i )−1 :

P̃(En) - P̃(E) of ιn,Ei :

Definition 56 ( 〈Q̃〉)
Let Q̃ : P̃(E)

n
-I a fuzzy quantifier,n > 0. The fuzzy quantifier〈Q̃〉 : P̃(En) -I is defined

by

Q̃(X) = Q̃((ˆ̂ι
n,E

1 )−1(X), . . . , (ˆ̂ι
n,E

n )−1(X)) ,

for all X ∈ P̃(En).

We now wish to establish the relationship between〈Q〉 andQ (semi-fuzzy case) and〈Q̃〉 andQ̃
(fuzzy case). In the fuzzy case, this will involve the use of the induced fuzzy disjunction (or union).
Let us first introduce a concise notation for iterated unions of a quantifier’s arguments:

Definition 57 ( Q∪k and Q̃˜̃∪k)
SupposeQ : P(E)n -I is a semi-fuzzy quantifier,n > 0 and k ∈ N \ {0}. The semi-fuzzy
quantifierQ∪k : P(E)n+k−1 -I is inductively defined as follows:

a. Q∪1 = Q;

b. Q∪k = Q∪k−1∪ if k > 1.

For fuzzy quantifiers̃Q : P̃(E)
n
-I, Q̃˜̃∪k : P̃(E)

n+k−1
-I is defined analogously.

Theorem 33 (Reduction to monadic semi-fuzzy quantifiers)
For every semi-fuzzy quantifierQ : P(E)n -I wheren > 0,

Q = 〈Q〉∪n ◦
n
×
i=1

ι̂ n,Ei .

(Proof: B.1, p.83+)
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Note. This demonstrates thatn-place crisp (or “semi-fuzzy”) quantification, wheren > 0, can
always be reduced to one-place quantification. Would we allow for empty base sets, this would
also go through forn = 0; we only had to exclude this case becauseE0 = ∅, i.e. in this case we
have〈Q〉 : P(∅) -I, which we reject as a semi-fuzzy quantifier because the base set is empty.

In the following, we will need a notation for multiple fuzzy disjunctions and fuzzy unions with
unambiguous bracketing order (we will not presuppose associativity).

Definition 58 ( [˜̃∨]
n

i=1 xi)

Let ˜̃∨ : I×I -I be a given mapping,n ∈ N\{0} andx1, . . . , xn ∈ I. [˜̃∨]
n

i=1 xi ∈ I is inductively
defined as follows.

a. [˜̃∨]
1

i=1 xi = x1.

b. [˜̃∨]
n

i=1 xi = x1
˜̃∨ [˜̃∨]

n−1

i=1 xi+1 if n > 1.

And similarly for a fuzzy unioñ̃∪:

Definition 59
Assumẽ̃∨ : I × I -I is some mapping and̃̃∪ is the fuzzy set operator element-wise defined

in terms of˜̃∨. Further supposeE is some set andX1, . . . , Xn ∈ P̃(E) are fuzzy subsets ofE.

[˜̃∪]
n

i=1 Xi ∈ P̃(E) is inductively defined by

a. [˜̃∪]
1

i=1 Xi = X1

b. [˜̃∪]
n

i=1 Xi = x1
˜̃∪ [˜̃∪]

n−1

i=1 Xi+1 if n > 1.

Notes

• [˜̃∪]
n

i=1 permits us to express multiple fuzzy unions with a uniquely defined bracketing order.

This is important when knowledge about the associativity of˜̃∨ (and hencẽ̃∪) is lacking. The
particular bracketing order chosen ensures that for every fuzzy quantifierQ̃ : P̃(E) -I,
n ∈ N \ {0} and allX1, . . . , Xn ∈ P̃(E),

Q̃˜̃∪n(X1, . . . , Xn) = Q̃(

n

[˜̃∪]
i=1

Xi) . (12)

• Because of the element-wise definition of˜̃∪ in terms of˜̃∨ and because of the parallel defini-

tions of [˜̃∨]
n

i=1 and[˜̃∪]
n

i=1, it is apparent that

µ
[˜̃∪]

n

i=1 Xi
(e) =

n

[˜̃∨]
i=1

µXi(e) . (13)

for all X1, . . . , Xn ∈ P̃(E), e ∈ E.

A theorem analogous to Th-33 can be proven in the fuzzy case:
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Theorem 34 (Reduction to monadic fuzzy quantifiers)

Supposẽ̃∨ : I× I -I hasx ˜̃∨ 0 = 0 ˜̃∨ x = x for all x ∈ I, and ˜̃∪ is the fuzzy union element-wise

defined in terms of̃̃∨. For every fuzzy quantifier̃Q : P̃(E)
n
-I, n > 0,

Q̃ = 〈Q̃〉˜̃∪n ◦ n
×
i=1

ˆ̂ι
n,E

i .

In other words,

Q̃(X1, . . . , Xn) = 〈Q̃〉(
n

[˜̃∪]
i=1

ˆ̂ι
n,E

i (Xi))

for all X1, . . . , Xn ∈ P̃(E).

(Proof: B.2, p.84+)

Note. The theorem shows that it is possible to reducen-place quantification to one-place quantifi-
cation in the fuzzy case as well. Nullary quantifiers (n = 0) had to be excluded for same reason
than with Th-33.

The central fact which we need for the subsequent proofs is the following:

Theorem 35
SupposeF is a QFM with the following properties:

a. x ∨̃ 0 = 0 ∨̃ x = x for all x ∈ I;

b. for all semi-fuzzy quantifiersQ : P̃(E)
n
-I wheren > 0,

F(Q∪) = F(Q)˜̃∪;

c. F satisfies(DFS 9)(functional application);

d. If E,E ′ are nonempty sets andf : E -E ′ is an injective mapping, then̂F(f) =
ˆ̂
f , i.e.F

coincides with the standard extension principle on injections.

Then for all semi-fuzzy quantifiersQ : P(E)n -I of arity n > 0,

F(〈Q〉) = 〈F(Q)〉 .

(Proof: B.3, p.86+)

Based on these results, it is now easy to prove the desired result that both constructions of induced
truth functions coincide in every DFS.

Theorem 36 (Equivalence of induced truth function constructions)
In every DFSF ,

F̃ =
˜̃F .

(Proof: B.4, p.87+)
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In the same way than with̃F , we can define fuzzy set operations˜̃∩ (induced fuzzy intersection),˜̃∪ (induced fuzzy union) and̃̃¬ (induced fuzzy complement) by element-wise applying˜̃∧, ˜̃∨ and˜̃¬ (the fuzzy negation), respectively. In turn, these can be used to define˜̃¬Q, Q˜̃¬ andQ˜̃∩ in the
straightforward way, i.e. simply by replacing̃¬ and∩̃ in Def. 10, Def. 11 and Def. 14 with̃̃¬ and˜̃∩. Other constructions like dualisationQ ˜̃� andQ̃ ˜̃�, intersections in argumentsQ˜̃∪, symmetrical

differenceQ̃ ˜̃4A based oñ̃xor, conjunctionQ ˜̃∧Q′ and disjunctionQ ˜̃∨Q′ are obtained analogously.
We can then ask if by adapting the definitions of¬̃Q, Q¬̃ andQ∩̃ to the new construction of
induced truth functions, we still obtain the same class of DFS models, or if the adapted axiom
system has different models as the original axiom set (based onF̃). Happily, nothing is altered, as
the next theorem states:

Theorem 37 (Adapting the DFS Axioms to the New Induced Connectives)
Let us denote by DFS’ the modified set of DFS axioms where¬̃ is replaced bỹ̃¬, and∩̃ is replaced

by ˜̃∩. DFS and DFS’ are equivalent, i.e. they possess the same models.
(Proof: B.5, p.89+)

3.3 The Revised Set of DFS Axioms

We have introduced an alternative construction of induced connectives of a QFM and shown that
it coincides with our original construction in every DFS. In addition, it has been shown that the
definition of DFSes is not altered if the DFS axioms are changed so that they are based on the

new constructions. The rationale was that the new construction˜̃F depends on the behaviour of
F for quantifiers of aritiesn ≤ 1 only. As we shall see, this renders it possible to prove the
desired properties of conjunction and disjunction without having to use some of the axioms which
express properties of multi-place quantifiers, viz. “argument insertion” (DFS 7) and “argument
transposition” (DFS 4). Based on the known properties of disjunction and conjunction, it can then
be shown that these axioms are dependent on the remaining axioms and can hence be eliminated,
to justify the reduced set of independent axioms. This reduction seems not to be possible with the
original definition of induced connectives. Let us now state the revised set of DFS axioms.

Definition 60 (Alternative Characterisation of DFSes)
The revised set of DFS axioms comprises the following conditions (Z-1) to (Z-6). For every semi-
fuzzy quantifierQ : P(E)n -I,

Correct generalisation U(F(Q)) = Q if n ≤ 1 (Z-1)

Projection quantifiers F(Q) = π̃e if there existse ∈ E s.th.Q = πe (Z-2)

Dualisation F(Q
˜̃�) = F(Q)

˜̃� n > 0 (Z-3)

Internal joins F(Q∪) = F(Q)˜̃∪ n > 0 (Z-4)

Preservation of monotonicityQ noninc. inn-th arg⇒ F(Q) noninc. inn-th arg,n > 0 (Z-5)

Functional application F(Q ◦
n
×
i=1

f̂i) = F(Q) ◦
n
×
i=1
F̂(fi) (Z-6)

wheref1, . . . , fn : E ′ -E, E ′ 6= ∅.

Compared to the original set of DFS axioms, DFS-1 (Preservation of constants) has been modified
to require proper generalisation in the casen = 1 as well. DFS-2 (Compatibility withπ∗) has
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been generalised to arbitrary projection quantifiersπe. DFS-3 (External negation) and DFS-5
(Internal Complementation) have been combined into the single axiom Z-3, which requires the
compatibility ofF with dualisation. DFS-4 (Argument transposition) has been omitted. DFS-6
(Internal meets) has been replaced with Z-4 (Internal joins), which states the compatibility ofF
with the dual construction. DFS-7 (Argument insertion) has been omitted. DFS-8 (Preservation
of monotonicity) and DFS-9 (functional application) have not been altered and become the new
axioms Z-5 and Z-6. In addition, the “old” constructioñF of induced fuzzy truth functions has

consistently been replaced with the “new” construction˜̃F .

3.4 Equivalence of Old and New Characterisation of DFSes

It is this revised axiom set (Z-1) to (Z-6) of which we intend to prove independency. However,
before doing this, we have to establish the equivalence of the “new” and “old” characterisation of
DFSes.

Theorem 38 (Equivalence of Characterisations)
For every QFMF , the following are equivalent:

a. F satisfies (DFS 1) to (DFS 9)

b. F satisfies (Z-1) to (Z-6)

(Proof: B.6, p.90+)
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4 Characterisation of the class of MB-DFSes

Having shown the equivalence of the new axiom set with the original set of DFS axioms, we are
now ready to investigate the independence of the revised axiom set. We are interested in estab-
lishing the independence of the axiom set because an independent axiom set provides aminimal
characterisation of DFSes, and hence simplifies proofs whether a given QFM is a DFS.

In order to show that the new axiom set is independent, we have to prove that none of the axioms
(Z-1) to (Z-6) is entailed by the remaining axioms. This can be done by showing that for each
(Z-i), there exists a QFMF which satisfies all axioms (Z-j), wherej 6= i, except for (Z-i).

In order to find suitable QFM candidates, we introduce the class ofMB-QFMs, i.e. the class of
QFMs definable in terms of three-valued cuts of argument sets and subsequent aggregation of quan-
tification results by applying the fuzzy median. We hence generalise the construction successfully
used in [9] to define DFSes. We then investigate necessary and sufficient conditions under which
the resulting QFMs satisfy each of (Z-1) to (Z-6). Based on these known properties ofMB-QFMs,
it will then be easy to construct the counterexamples needed for the independence proof. As a
by-product of this investigation, we obtain a characterisation of the class ofMB-DFSes in terms
of necessary and sufficient conditions on the aggregation mappingB.

In order to define the unrestricted class ofMB-QFMs, let us recall some concepts introduced in
[9]. We have decided to somewhat change notation in this report in order to clarify the distinction
between three-valued cuts and three-valued cut ranges (see below).

We shall first introduce some concepts related to three-valued subsets. We will model three-
valued subsets of a given base setE in a way analogous to fuzzy subsets, i.e. we shall as-
sume that each three-valued subsetX of E is uniquely characterised by its membership function
νX : E -{0, 1

2
, 1} (we use the symbolνX rather thanµX in order make unambiguous that the

membership function is three-valued). The collection of three-valued subsets of a givenE will
be denoted̆P (E); we shall assume that̆P (E) is a set, and clearly we havĕP (E) ∼= {0, 1

2
, 1}E.

As in the case of fuzzy subsets, it might be convenient to identify three-valued subsets and their
membership functions, i.e. to stipulatĕP (E) = {0, 1

2
, 1}E. However, we will again not enforce

this identification.

We shall assume that each crisp subsetX ∈ P(E) can be viewed as a three-valued subset of
E, and that each three-valued subsetX of E can be viewed as a fuzzy subset ofE. E.g., we
will at times use the same symbolX to denote a particular crisp subset ofE, as well as the
corresponding three-valued and fuzzy subsets. If one chooses to identify membership functions
and three-valued/fuzzy subsets, then the crisp subsetX is distinct from its representation as a
three-valued or fuzzy subset, which corresponds to its characteristic functionχX . In this case, it is
understood that the appropriate transformations (i.e., using characteristic function) are performed
wheneverX is substituted for a three-valued or fuzzy subset.

Our construction of DFSes in [9] relies heavily on the fact that each three-valued subsetX ∈ P̆ (E)
can be represented by a closed range of crisp subsets ofE as follows.

Definition 61 (Crisp range of a three-valued set)
SupposeE is some set andX ∈ P̆ (E) is a three-valued subset ofE. We associate withX crisp
subsetsXmin, Xmax ∈ P(E), defined by

Xmin = {e ∈ E : νX(e) = 1}
Xmax = {e ∈ E : νX(e) ≥ 1

2
} .
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Based onXmin andXmax, we associate withX a range of crisp setsT (X) ⊆ P(E) defined by

T (X) = {Y ∈ P(E) : Xmin ⊆ Y ⊆ Xmax} .

Now that we have the required concepts on three-valued sets available, we can turn to three-valued
cuts.

Definition 62 ( tγ(x))
For everyx ∈ I andγ ∈ I, the three-valued cut ofx at γ is defined by

tγ(x) =


1 : x ≥ 1

2
+ 1

2
γ

1
2

: 1
2
− 1

2
γ < x < 1

2
+ 1

2
γ

0 : x ≤ 1
2
− 1

2
γ

if γ > 0, and

t0(x) =


1 : x > 1

2
1
2

: x = 1
2

0 : x < 1
2

in the case thatγ = 0.

The cutting parameterγ can be conceived of as a degree of “cautiousness” because the larger
γ becomes, the closertγ(x) will approach the “undecided” result of1

2
. Hencetγ′(x) �c tγ(x)

wheneverγ ≤ γ′. The three-valued cut mechanism can be extended to three-valued cuts of fuzzy
subsets by applying it element-wise to the membership functions:

Definition 63 ( Tγ(X))
SupposeE is some set andX ∈ P̃(E) a subset ofE. The three-valued cut ofX at γ ∈ I is the
three-valued subsetTγ(X) ∈ P̆ (E) defined by

νTγ(X)(e) = tγ(µX(e)) ,

for all e ∈ E.

We will most often not need the three-valued cut directly, but rather the crisp range corresponding
to the cut, which can be represented by a pair ofα-cuts. The definition ofα-cuts and strictα-cuts
is a usual:

Definition 64 (Alpha cuts)
LetE be a given set,X ∈ P̃(E) a fuzzy subset ofE andα ∈ I. By (X)≥α ∈ P(E) we denote the
α-cut

(X)≥α = {x ∈ E : µX(x) ≥ α} .

Definition 65 (Strict alpha cuts)
LetX ∈ P̃(E) be given andα ∈ I. By(X)>α ∈ P(E) the strictα-cut

(X)>α = {x ∈ E : µX(x) > α} .
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Theα-cuts are related to the the crisp range of a three-valued cut as follows.

Definition 66 ( (X)min
γ , (X)max

γ , Tγ(X))

LetE some set,X ∈ P̃(E) a fuzzy subset ofE andγ ∈ I. (X)min
γ , (X)max

γ ∈ P(E) andTγ(X) ⊆
P(E) are defined by

(X)min
γ = (Tγ(X))min

(X)max
γ = (Tγ(X))max

Tγ(X) = T (Tγ(X)) = {Y : (X)min
γ ⊆ Y ⊆ (X)max

γ } .

Hence ifγ > 0, then

(X)min
γ = (X)

≥1
2

+
1
2
γ

(X)max
γ = (X)

>
1
2
−1

2
γ
,

and in the case thatγ = 0,

(X)min
0 = (X)

>
1
2

(X)max
0 = (X)

≥1
2
.

The basic idea is to view the crisp ranges corresponding to three-valued cuts of a fuzzy subset
as providing a number of alternatives to be checked. For example, in order to evaluate a semi-
fuzzy quantifierQ at a certain cut levelγ, we have to consider all choices ofQ(Y1, . . . , Yn), where
Yi ∈ Tγ(Xi). The set of results obtained in this way must then be aggregated to a single result in the
unit interval. The generalised fuzzy median introduced on p. 27 is particularly suited to carry out
this aggregation because the resulting fuzzification mechanisms are consistent with Kleene’s three-
valued logic. This is beneficial because the three-valued portion of each Standard-DFS corresponds
to Kleene’s three-valued logic, cf. [9, p.49].

We can use the crisp ranges which correspond to the three-valued cuts of a quantifier’s argument
sets to define a family of QFMs(•)γ, indexed by the cautiousness parameterγ ∈ I:

Definition 67 ( (•)γ)
For everyγ ∈ I, we denote by(•)γ the QFM defined by

Qγ(X1, . . . , Xn) = m 1
2
{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} ,

for all semi-fuzzy quantifiersQ : P(E)n -I.

Note. From Def. 46, it is apparent that for allQ : P(E)n -I,X1, . . . , Xn ∈ P̃(E) andγ ∈ I,

Qγ(X1, . . . , Xn) = m 1
2
(Qmin

γ (X1, . . . , Xn), Qmax
γ (X1, . . . , Xn)) (14)

whereQmin
γ , Qmax

γ are defined by

Qmin
γ (X1, . . . , Xn) = inf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} (15)

Qmax
γ (X1, . . . , Xn) = sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} . (16)
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This reformulation will be useful in some of the proofs to follow.

None of the QFMs(•)γ is a DFS, the fuzzy median suppresses too much structure. Neverthe-
less, these QFMs prove useful in defining DFSes. The basic idea is that in order to interpret
F(Q)(X1, . . . , Xn), we consider the results obtained at all levels of cautiousnessγ, i.e. theγ-
indexed family(Qγ(X1, . . . , Xn))γ∈I. We can then apply various aggregation operators on these
γ-indexed results to obtain new QFMs, which might be DFSes. We will use the symbolB for
such aggregation operators, and the resulting QFM will be denotedMB. In order to determine
the proper domain for the aggregation operator, we need to recall some monotonicity properties of
Qγ(X1, . . . , Xn).

Theorem 39 (Monotonicity properties of (•)γ)

LetQ : P(E)n -I a semi-fuzzy quantifier and(X1, . . . , Xn) ∈ P̃(E)
n
.

a. If Q0(X1, . . . , Xn) > 1
2
, thenQγ(X1, . . . , Xn) is monotonically nonincreasing inγ and

Qγ(X1, . . . , Xn) ≥ 1
2

for all γ ∈ I.

b. IfQ0(X1, . . . , Xn) = 1
2
, thenQγ(X1, . . . , Xn) = 1

2
for all γ ∈ I.

c. If Q0(X1, . . . , Xn) < 1
2
, thenQγ(X1, . . . , Xn) is monotonically nondecreasing inγ and

Qγ(X1, . . . , Xn) ≤ 1
2

for all γ ∈ I.

(Proof: see [9, Th-42, p. 61])

Definition 68 ( B)

B
+,B

1
2 ,B− andB ⊆ II are defined by

B
+ = {f ∈ II : f(0) > 1

2
andf(I) ⊆ [1

2
, 1] andf nonincreasing}

B

1
2 = {f ∈ II : f(x) = 1

2
for all x ∈ I }

B
− = {f ∈ II : f(0) < 1

2
andf(I) ⊆ [0, 1

2
] andf nondecreasing}

B = B+ ∪ B
1
2 ∪ B− .

Note. In the following, we shall denote byca : I -I the constant mapping

ca(x) = a , (17)

for all a, x ∈ I. Using this notation, apparentlyB
1
2 = {c1

2
}.

In terms of these abbreviations, we then have

Theorem 40
SupposeQ : P(E)n -I is a semi-fuzzy quantifier and(X1, . . . , Xn) ∈ P̃(E)

n
.

a. IfQ0(X1, . . . , Xn) > 1
2
, then(Qγ(X1, . . . , Xn))γ∈I ∈ B+;

b. IfQ0(X1, . . . , Xn) = 1
2
, then(Qγ(X1, . . . , Xn))γ∈I ∈ B

1
2 (i.e. constantly1

2
);

c. IfQ0(X1, . . . , Xn) < 1
2
, then(Qγ(X1, . . . , Xn))γ∈I ∈ B−.



4 CHARACTERISATION OF THE CLASS OFMB-DFSES 43

Proof: Apparent from Th-39.

In particular, we know that regardless ofQ : P(E)n -I and(X1, . . . , Xn) ∈ P̃(E)
n
,

(Qγ(X1, . . . , Xn))γ∈I ∈ B .

In addition, the setB is exhausted by(Qγ(X1, . . . , Xn))γ∈I in the sense that for eachf ∈ B there
exists choices ofQ andX1, . . . , Xn such thatf = (Qγ(X1, . . . , Xn))γ∈I, as we shall now state:

Theorem 41
Supposef is some mappingf ∈ B.

a. DefineQ : P(I) -I by

Q(Y ) = f(inf Y ) (Th-41.a.i)

for all Y ∈ P(I) and letX ∈ P̃(I) the fuzzy subset with membership function

µX(z) = 1
2

+ 1
2
z (Th-41.a.ii)

for all z ∈ I. Then

Qγ(X) = f(γ)

for all γ ∈ I.

b. DefineQ : P(I) -I by

Q(Y ) = f(supY ) (Th-41.b.i)

for all Y ∈ P(I) and letX ∈ P̃(I) the fuzzy subset with membership function

µX(z) = 1
2
− 1

2
z (Th-41.b.ii)

for all z ∈ I. Then

Qγ(X) = f(γ)

for all γ ∈ I.

(Proof: C.1, p.103+)

Let us now return to the original idea of aggregating over the results ofQγ(X1, . . . , Xn) for all
choices of the cautiousness parameter. By the above theorems, we know that a corresponding
aggregation operator must be defined onB, because(Qγ(X1, . . . , Xn))γ∈I ∈ B, and no smaller
setA ⊆ II will suffice. Relative to an aggregation operatorB : B -I, we define the QFMMB
which corresponds toB as follows.

Definition 69 ( MB)
SupposeB : B -I is given. The QFMMB is defined by

MB(Q)(X1, . . . , Xn) = B((Qγ(X1, . . . , Xn))γ∈I) ,

for all semi-fuzzy quantifiersQ : P(E)n -I andX1 . . . , Xn ∈ P̃(E).
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By the class ofMB-QFMs we mean the class of all QFMsMB defined in this way. It is apparent
that if we do not impose restrictions on admissible choices ofB, the resulting QFMs will often fail
to be DFSes. Let us now give an example of anMB-QFM which is a DFS.

Definition 70 ( M)
TheMB-QFMM is defined by

M(Q)(X1, . . . , Xn) =

∫ 1

0

Qγ(X1, . . . , Xn) dγ ,

for all semi-fuzzy quantifiersQ : P(E)n -I and argumentsX1, . . . , Xn ∈ P̃(E).

Theorem 42
M is a standard DFS.
(Proof: see [9, Th-44, p. 63])

We are now interested in stating necessary and sufficient conditions onB forMB to be a DFS. In
order to do so, we first need to introduce some constructions onB.

Definition 71
Supposef : I -I is a monotonic mapping (i.e., either nondecreasing or nonincreasing). The
mappingsf [, f ] : I -I are defined by:

f ] =

{
limy→x+ f(y) : x < 1
f(1) : x = 1

f [ =

{
limy→x− f(y) : x > 0
f(0) : x = 0

for all x ∈ I.

Notes

• It is apparent that iff ∈ B, thenf ] ∈ B andf [ ∈ B, which can be easily checked for the

casesf ∈ B+, f ∈ B− andf ∈ B
1
2 .

Let us remark thatf ] andf [ are well-defined, i.e. the limites in the above expressions exist, re-
gardless off . This is apparent from the following observation.

Theorem 43
Supposef : [a, b] - [c, d] is a mapping, wherea ≤ b, c ≤ d.

a. If f is nondecreasing, thenlim
x→z−

f(x) exists for allz ∈ (a, b], and

lim
x→z−

f(x) = sup{f(x) : x < z} .

b. If f is nondecreasing, thenlim
x→z+

f(x) exists for allz ∈ [a, b), and

lim
x→z+

f(x) = inf{f(x) : x > z} .
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c. If f is nonincreasing, thenlim
x→z−

f(x) exists for allz ∈ (a, b], and

lim
x→z−

f(x) = inf{f(x) : x < z} .

d. If f is nonincreasing, thenlim
x→z+

f(x) exists for allz ∈ [a, b), and

lim
x→z+

f(x) = sup{f(x) : x > z} .

(Proof: C.2, p.106+)

Let us also introduce a number of coefficients which describe certain aspects of a mappingf :
I -I.

Definition 72
Supposef : I -I is a monotone mapping (i.e., either nondecreasing or nonincreasing). We
define

f ∗0 = lim
γ→0+

f(γ) (18)

f 0
∗ = inf{γ ∈ I : f(γ) = 0} (19)

f
1
2
∗ = inf{γ ∈ I : f(γ) = 1

2
} (20)

f ∗1 = lim
γ→1−

f(γ) (21)

f 1
∗ = sup{γ ∈ I : f(γ) = 1} . (22)

As usual, we stipulate thatsup∅ = 0 and inf ∅ = 1.

Note. All limites in the definition of these coefficients are known to exist by Th-43.

Based on these concepts, we can now state a number of axioms governing the behaviour of rea-
sonable choices ofB.

Definition 73 (Axioms B-1 to B-5)
SupposeB : B -I is given. For allf, g ∈ B, we define the following conditions onB:

B(f) = f(0) if f is constant, i.e.f(x) = f(0) for all x ∈ I (B-1)

B(1− f) = 1− B(f) (B-2)

If f(I) ⊆ {0, 1
2
, 1}, then (B-3)

B(f) =


1
2

+ 1
2
f

1
2
∗ : f ∈ B+

1
2

: f ∈ B
1
2

1
2
− 1

2
f

1
2
∗ : f ∈ B−

B(f ]) = B(f [) (B-4)

If f ≤ g, thenB(f) ≤ B(g) (B-5)
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Let us briefly comment on the meaning of these conditions. (B-1) states thatB preserves con-
stants. In particular, allMB-QFMs such thatB satisfies (B-1) coincide on three-valued argument
sets. (B-2) expresses thatB is compatible to the standard negation1 − x. (B-3) ensures that all
conformingMB-QFMs coincide on three-valued quantifiers. (B-4) expresses some kind of in-
sensitivity property ofB, which turns out to be crucial with respect toMB satisfyingfunctional
application (Z-6). Finally, (B-5) expresses thatB is monotonic, i.e. application ofB preserves
inequations. Let us now investigate how these conditions onB are related to the DFS axioms. As
we shall see, (B-1) to (B-5) are necessary and sufficient forMB to be a DFS.

Theorem 44
If B : B -I satisfies(B-1), thenMB(Q)(X1, . . . , Xn) = M(Q)(X1, . . . , Xn) for all three-
valued argument setsX1, . . . , Xn ∈ P̆ (E).
(Proof: C.3, p.108+)

As a corollary, we obtain the following.

Theorem 45
If B : B -I satisfies(B-1), thenMB satisfies(Z-1).
(Proof: C.4, p.109+)

Theorem 46
If B : B -I satisfies(B-3), thenMB(Q) = M(Q) for all three-valued semi-fuzzy quantifiers
Q : P(E)n -{0, 1

2
, 1}.

(Proof: C.5, p.109+)

As a corollary, we then have

Theorem 47
If B : B -I satisfies(B-3), thenMB satisfies(Z-2).
(Proof: C.6, p.110+)

In addition, we know that ifB satisfies (B-3), theñ̃MB(¬) =
˜̃M(¬) = M̃(¬) = 1 − x and

similarly
˜̃MB(∧) = min and

˜̃MB(∨) = max. Because the induced extension principlêMB is
obtained from applyingMB to a two-valued quantifier, we also know that in this case,M̂B is the
standard extension principle.

Theorem 48
If B : B -I satisfies(B-2) and (B-3), thenMB satisfies(Z-3).
(Proof: C.7, p.110+)

Theorem 49
If B : B -I satisfies(B-3), thenMB satisfies(Z-4).
(Proof: C.8, p.112+)

Theorem 50
If B : B -I satisfies(B-5), thenMB satisfies(Z-5).
(Proof: C.9, p.115+)
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Theorem 51
If B : B -I satisfies(B-3), (B-4) and (B-5), thenMB satisfies(Z-6).
(Proof: C.10, p.116+)

We can summarise these results as follows:

Theorem 52
If B : B -I satisfies(B-1) to (B-5), thenMB is a Standard DFS.
(Proof: C.11, p.121+)

We hence know that the conditions (B-1) to (B-5) are sufficient forMB to be a DFS. Let us now
turn to the converse problem of showing that these conditions are also necessary forMB to be a
DFS.

Let us first observe the following. IfB satisfies (B-2), then apparentlyB is completely determined

by its behaviour onB+ ∪ B
1
2 : if f ∈ B−, then1 − f ∈ B+ and henceB(f) = 1 − B(1 − f). In

particular, everyB which satisfies (B-2) apparently hasB(c1
2
) = 1 − B(1 − c1

2
) = 1 − B(c1

2
),

i.e.B(c1
2
) = 1

2
.

Definition 74 (BB)
Let us denote byBB the set of thoseB : B -I with the following properties:

a. B satisfies(B-2)

b. B(f) ≥ 1
2

for all f ∈ B+.

It is apparent that allB such thatMB is a DFS are contained in BB, i.e. we can restrict attention to
BB without losing any of the models of interest. We shall formally establish this later (see p.50).
For thoseB contained in BB, we can give a more concise description.

Definition 75 ( H)
ByH ⊆ II we denote the set of nonincreasing mappingsf : I -I, f 6= c0, i.e.

H = {f ∈ II : f nonincreasing andf(0) > 0 } .

We can associate with eachB′ : H -I aB ∈ BB as follows:

B(f) =


1
2

+ 1
2
B′(2f − 1) : f ∈ B+

1
2

: f ∈ B
1
2

1
2
− 1

2
B′(1− 2f) : f ∈ B−

(23)

It is apparent that eachB constructed from someB′ satisfies (B-2).

On the other hand, we can associate with eachB ∈ BB the followingB′ : H -I:

B′(f) = 2B(1
2

+ 1
2
f)− 1 (24)

for all f ∈ H. These constructions are obviously inverse of each others, i.e. there is a one-to-one
correspondence betweenB′ and the set of thoseB : H -I which satisfy (B-2) and haveB(f) ≥ 1

2

for all f ∈ B+.
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In the case of the DFSM =MB∫ , for example, we have

B∫ (f) =

∫ 1

0

f(γ) dγ

for all f ∈ B, and similarly

B′∫ (g) =

∫ 1

0

g(γ) dγ ,

for all g ∈ H, which is apparent from Def. 70. If we restrict attention to the above subclass BB of
B’s, we can focus on properties of the correspondingB′’s in H:

Definition 76
SupposeB′ : H -I is given. For allf, g ∈ H, we define the following conditions onB′:

B′(f) = f(0) if f is constant, i.e.f(x) = f(0) for all x ∈ I (C-1)

If f(I) ⊆ {0, 1}, thenB′(f) = f 0
∗ , (C-2)

B′(f) = 0 if f̂((0, 1]) = {0} (C-3.a)

B′(f ]) = B′(f [) if f̂((0, 1]) 6= {0} (C-3.b)

If f ≤ g, thenB′(f) ≤ B′(g) (C-4)

Theorem 53
If B ∈ BB andB′ : H -I is the corresponding mapping as defined by(24), then the following
conditions are equivalent:

a. (B-1) and (C-1);

b. (B-3) and (C-2);

c. (B-4) and the conjunction of(C-3.a)and (C-3.b);

d. (B-5) and (C-4).

(Proof: C.12, p.121+)

Our introducing ofB′ is mainly a matter of convenience. We can now succintly define some
examples ofMB-QFMs.

Definition 77 ( M∗)
ByM∗ we denote theMB-QFM defined by

B∗′(f) = f 0
∗ · f ∗0 ,

for all f ∈ H, where the coefficientsf 0
∗ andf ∗0 are defined by(19)and (18), resp.

Theorem 54
M∗ is a standard DFS.
(Proof: see [9, Th-45, p. 63])
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Definition 78 ( M∗)
ByM∗ we denote theMB-QFM defined by

B′∗(f) = sup{x · f(x) : x ∈ I} ,

for all f ∈ H.

Theorem 55
M∗ is a standard DFS.
(Proof: see [9, Th-47, p. 64])

Let us now address the issue of whether B-1 to B-5 are necessary conditions forMB to be a DFS.

Theorem 56
If B : B -I does not satisfy(B-1), thenMB does not satisfy(Z-1).
(Proof: C.13, p.125+)

Theorem 57
If B : B -I does not satisfy(B-3), thenMB is not a DFS.
(Proof: C.14, p.125+)

As a corollary, we obtain that

Theorem 58
EveryMB-DFS is a standard DFS.
(Proof: C.15, p.137+)

Theorem 59
If B : B -I satisfies(B-3) but does not satisfy(B-2), thenMB does not satisfy(Z-3).
(Proof: C.16, p.137+)

Theorem 60
If B : B -I satisfies(B-3) but does not satisfy(B-4), thenMB does not satisfy(Z-6).
(Proof: C.17, p.138+)

Theorem 61
If B : B -I does not satisfy(B-5), thenMB does not satisfy(Z-5)
(Proof: C.18, p.138+)

Summarising these results, we obtain

Theorem 62
The conditions (B-1) to (B-5) are necessary and sufficient forMB to be a DFS.
(Proof: C.19, p.139+)

Based on these results, it is now easy to show that when restricting attention to BB, and hence
considering the simplified representationB′ : H -I of aMB-QFM, no QFMs of interest are
lost:
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Theorem 63
SupposeB : B -I is given. IfB /∈ BB, thenMB is not a DFS.
(Proof: C.20, p.139+)

Let us also observe that condition (C-3.a) is dependent on the other conditions.

Theorem 64
SupposeB′ : H -I is given andMB is defined in terms ofB′ according to equation(23) and
Def. 69. ThenMB is a DFS if and only ifB′ satisfies(C-1), (C-2), (C-3.b), and(C-4).
(Proof: C.21, p.140+)
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5 Independence Proof for the Revised Axiom Set

We have introduced the class ofMB-QFMs and we have provided necessary and sufficient con-
ditions forMB to be a DFS. More specifically, we have taken a closer look on the behaviour of
MB in case only some of the conditions (B-1) to (B-5) are satisfied, which will prove useful for
establishing the independence of the revised DFS axiom set. In order to prove that these axioms are
independent, we have to provide for each (Z-i) a QFMFi which satisfies all DFS axioms except
for (Z-i). Table 1 summarises our chances of usingMB-QFMs for this task, based on the above
theorems.

B MB
satisfies fails on guaranteed fails on
(B-2), (B-3), (B-4), (B-5) (B-1) all except (Z-1) (Correct generalisation) (Z-1)
(B-1), (B-3), (B-4), (B-5) (B-2) all except (Z-3) (Dualisation) (Z-3)
(B-1), (B-2), (B-3), (B-4) (B-5) all except (Z-5) (Preservation of monotonicity)(Z-5)
(B-1), (B-2), (B-3), (B-5) (B-4) all except (Z-6) (Functional application) (Z-6)

Table 1: Dependencies between (B-1) to (B-5) and revised DFS axioms

As indicated by the results in the table, there is a chance of usingMB-QFMs for proving the
independence of (Z-1), (Z-3), (Z-5) and (Z-6). We only need to find choices ofB : B -I which
violate one of (B-1), (B-2), (B-4) and (B-5) and satisfy all remaining ‘B-conditions’. In order to
prove the independence of (Z-2), anMB-QFM will be used which disvalidates (B-3); in this case,
I cannot rely on general results (as in the table above) and hence must prove for thisparticular
choice ofB that the remaining axioms are valid. Finally, the independence of (Z-4) from the other
axioms can be proven by piecewise combining two differentMB-QFMs, one for quantifiers of
arity n ≤ 1, and the other for quantifiers of arityn ≥ 2.

Hence let us firstly consider (Z-1), (Z-3), (Z-5) and (Z-6) (the cases covered by the above table).
Actually, what we shall prove is that the conditions (B-1) to (B-5) onB are independent. It will
then be a corollary that (Z-1), (Z-2), (Z-3), (Z-5) and (Z-6) are independent, too.

Theorem 65
(B-1) is independent of(B-2), (B-3), (B-4) and (B-5).
(Proof: D.1, p.140+)

Theorem 66
(B-2) is independent of(B-1), (B-3), (B-4) and (B-5).
(Proof: D.2, p.143+)

Theorem 67
(B-4) is independent of(B-1), (B-2), (B-3) and (B-5).
(Proof: D.3, p.146+)

Theorem 68
(B-5) is independent of(B-1), (B-2), (B-3) and (B-4).
(Proof: D.4, p.147+)

This immediately gives us the following:
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Theorem 69
Each of the following axioms of (Z-1) to (Z-6) is independent of the remaining axioms:

a. (Z-1),

b. (Z-3),

c. (Z-5),

d. (Z-6).

(Proof: D.5, p.150+)

Theorem 70
(B-3) is independent of(B-1), (B-2), (B-4) and (B-5).
(Proof: D.6, p.151+)

Hence the ‘B-conditions’ (B-1) to (B-5) provide a characterisation ofMB-DFSes through an in-
dependent axiom set. A similar point can be made about the reduced set of ‘C-conditions’:

Theorem 71
The conditions(C-1), (C-2), (C-3.b)and (C-4)are independent.
(Proof: D.7, p.153+)

Returning to the independence proof for (Z-1) to (Z-6), we can now utilize Th-70 to show that

Theorem 72
(Z-2) is independent of(Z-1) and (Z-3) to (Z-6).
(Proof: D.8, p.153+)

Theorem 73
(Z-4) is independent of(Z-1) to (Z-3) and (Z-5), (Z-6).
(Proof: D.9, p.167+)

This finishes the independence proof of the revised DFS axioms (Z-1) to (Z-6).



6 FURTHER PROPERTIES OF DFSES AND PRINCIPLED ADEQUACY BOUNDS 53

6 Further Properties of DFSes and Principled Adequacy Bounds

In order to be able to discuss certain aspects ofMB-DFSes, we shall now introduce a number
of novel concepts which describe specific properties of natural language quantifiers and further
adequacy conditions on QFMs. New results on properties of DFSes will also be presented, which
are now easy to prove because the improved, smaller set of DFS axioms (Z-1) to (Z-6) is available.
In addition, it will be shown that there are principled adequacy bounds on QFMs. For example, no
reasonable QFM can preserve general convexity properties of quantifiers.

6.1 Existence of Upper Specificity Bounds

In section 2.8, we have introduced the partial specificity order�c. In addition, a result concerning
the existence of greatest lower boundsFglb of collections of∨̃-DFSes has been established. We
shall now address the converse issue of most specific DFSes, i.e. least upper bounds with respect
to�c.

Definition 79
Supposẽ∨ is ans-norm and(Fj)j∈J is aJ -indexed collection of̃∨-DFSesFj, j ∈ J whereJ 6=
∅. (Fj)j∈J is calledspecificity consistentiff for all Q : P(E)n -I andX1, . . . , Xn ∈ P̃(E),
eitherRQ,X1,...,Xn ⊆ [0, 1

2
] or RQ,X1,...,Xn ⊆ [1

2
, 1], whereRQ,X1,...,Xn = {Fj(Q)(X1, . . . , Xn) :

j ∈ J }.

Theorem 74
Supposẽ∨ is ans-norm and(Fj)j∈J is aJ -indexed collection of̃∨-DFSes whereJ 6= ∅.

a. (Fj)j∈J has upper specificity bounds exactly if(Fj)j∈J is specificity consistent.

b. If (Fj)j∈J is specificity consistent, then its least upper specificity bound is the∨̃-DFSFlub

defined by

Flub(Q)(X1, . . . , Xn) =

{
supRQ,X1,...,Xn : RQ,X1,...,Xn ⊆ [1

2
, 1]

inf RQ,X1,...,Xn : RQ,X1,...,Xn ⊆ [0, 1
2
]

whereRQ,X1,...,Xn = {Fj(Q)(X1, . . . , Xn) : j ∈ J }.

(Proof: E.1, p.170+)

In the following, we shall discuss a number of additional adequacy criteria for approaches to fuzzy
quantification.

6.2 Continuity Conditions

Definition 80
We say that a QFMF is arg-continuousif and only if F maps allQ : P(E)n -I to con-
tinuous fuzzy quantifiersF(Q), i.e. for all X1, . . . , Xn ∈ P̃(E) and ε > 0 there existsδ >

0 such thatd(F(Q)(X1, . . . , Xn),F(Q)(X ′1, . . . , X
′
n)) < ε for all X ′1, . . . , X

′
n ∈ P̃(E) with

d((X1, . . . , Xn), (X ′1, . . . , X
′
n)) < δ; where

d((X1, . . . , Xn), (X ′1, . . . , X
′
n)) =

n
max
i=1

sup{|µXi(e)− µX′i(e)| : e ∈ E} . (25)
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Definition 81
We say that a QFMF is Q-continuousif and only if for each semi-fuzzy quantifierQ : P(E)n -I
and all ε > 0, there existsδ > 0 such thatd(F(Q),F(Q′)) < ε wheneverQ′ : P(E)n -I
satisfiesd(Q,Q′) < δ; where

d(Q,Q′) = sup{|Q(Y1, . . . , Yn)−Q′(Y1, . . . , Yn)| : Y1, . . . , Yn ∈ P(E)}

d(F(Q),F(Q′)) = sup{|F(Q)(X1, . . . , Xn)−F(Q′)(X1, . . . , Xn)| : X1, . . . , Xn ∈ P̃(E)} .

Arg-continuity means that a small change in the membership gradesµXi(e) of the argument sets
does not changeF(Q)(X1, . . . , Xn) drastically; it hence expresses an important robustness condi-
tion with respect to noise. Q-continuity captures an important aspect of robustness with respect to
imperfect knowledge about the precise definition of a quantifier; i.e. slightly different definitions
of Q will produce similar quantification results. Both condition are crucial to the utility of a DFS
and should be possessed by every practical model. They are not part of the DFS axioms because
we wanted to have DFSes for generalt-norms (including the discontinuous variety).

6.3 Propagation of Fuzziness

Finally, let us recall the specificity order�c ⊆ I × I defined by equation (9). We can extend
�c to fuzzy setsX ∈ P̃(E), semi-fuzzy quantifiersQ : P(E)n -I and fuzzy quantifiers̃Q :

P̃(E)
n
-I as follows:

X �c X ′ ⇐⇒ µX(e)�c µX′(e) for all e ∈ E;
Q�c Q′ ⇐⇒ Q(Y1, . . . , Yn)�c Q′(Y1, . . . , Yn) for all Y1, . . . , Yn ∈ P(E);

Q̃�c Q̃′ ⇐⇒ Q̃(X1, . . . , Xn)�c Q̃′(X1, . . . , Xn) for all X1, . . . , Xn ∈ P̃(E) .

Intuitively, we should expect that the quantification results become less specific when the quantifier
or the argument sets become less specific. In other words: the fuzzier the input, the fuzzier the
output.

Definition 82
We say that a QFMF propagates fuzziness in argumentsif and only if the following property is
satisfied for allQ : P(E)n -I andX1, . . . , Xn, X

′
1, . . . , X

′
n: If Xi �c X ′i for all i = 1, . . . , n,

thenF(Q)(X1, . . . , Xn)�c F(Q)(X ′1, . . . , X
′
n).

We say thatF propagates fuzziness in quantifiersif and only ifF(Q)�cF(Q′) wheneverQ�cQ′.

6.4 Contextuality

Let us now introduce another very fundamental adequacy condition on QFMs. SupposeX ∈ P̃(E)
is a fuzzy subset. Thesupportspp(X) ∈ P(E) and thecore, core(X) ∈ P(E) are defined by

spp(X) = {e ∈ E : µX(e) > 0} (26)

core(X) = {e ∈ E : µX(e) = 1} . (27)

spp(X) contains all elements which potentially belong toX and core(X) contains all elements
which fully belong toX. The interpretation of a fuzzy subsetX is hence ambiguous only with
respect to crisp subsetsY in the context range

cxt(X) = T1(X) = {Y ∈ P(E) : core(X) ⊆ Y ⊆ spp(Y )} . (28)



6 FURTHER PROPERTIES OF DFSES AND PRINCIPLED ADEQUACY BOUNDS 55

For example, letE = {a, b, c} and supposeX ∈ P̃(E) is the fuzzy subset

µX(e) =

{
1 : x = a or x = b
1
2

: x = c
(29)

The corresponding context range is

cxt(X) = {Y : {a, b} ⊆ Y ⊆ {a, b, c}} = {{a, b}, {a, b, c}} .

Now let us consider∃ : P(E) -2. Because∃({a, b}) = ∃({a, b, c}) = 1, ∃(Y ) = 1 for all crisp
subsets in the context ofX. We hence expect thatF(∃)(X) = 1: regardless of whether we assume
thatc ∈ X or c /∈ X, the quantification result is always equal to one.

Definition 83 (Contextually equal)
SupposeQ,Q′ : P(E)n -I are semi-fuzzy quantifiers andX1, . . . , Xn ∈ P̃(E). We say thatQ
andQ′ arecontextually equalrelative to(X1, . . . , Xn), in symbols:Q∼(X1,...,Xn) Q

′, if and only if

Q|cxt(X1)×···×cxt(Xn) = Q′|cxt(X1)×···×cxt(Xn) ,

i.e.

Q(Y1, . . . , Yn) = Q′(Y1, . . . , Yn)

for all Y1 ∈ cxt(X1), . . . , Yn ∈ cxt(Xn).

Note. It is apparent that for eachE 6= ∅, n ∈ N andX1, . . . , Xn ∈ P̃(E), ∼(X1,...,Xn) is an
equivalence relation on the set of all semi-fuzzy quantifiersQ : P(E)n -I.

Definition 84
A QFMF is said to becontextualiff for all Q,Q′ : P(E)n -I and every choice of fuzzy argument
setsX1, . . . , Xn ∈ P̃(E):

Q∼(X1,...,Xn) Q
′ ⇒ F(Q)(X1, . . . , Xn) = F(Q′)(X1, . . . , Xn) .

As illustrated by our motivating example, it is highly desirable that a QFM satisfies this very
elementary and fundamental adequacy condition. And indeed, every DFS can be shown to fulfill
this condition.

Theorem 75 (DFSes are contextual)
Every DFSF is contextual.
(Proof: E.2, p.173+)

6.5 Convexity

Definition 85 Convex quantifiers
SupposeQ : P(E)n -I is ann-ary semi-fuzzy quantifier such thatn > 0. Q is said to beconvex
in its i-th argument, wherei ∈ {1, . . . , n}, if and only if

Q(X1, . . . , Xn) ≥ min(Q(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn), Q(X1, . . . , Xi−1, X

′′
i , Xi+1, . . . , Xn))
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wheneverX1, . . . , Xn, X
′
i, X

′′
i ∈ P(E) andX ′i ⊆ Xi ⊆ X ′′i .

Similarly, a fuzzy quantifier̃Q : P̃(E)
n
-I of arity n > 0 is calledconvex in itsi-th argument,

wherei ∈ {1, . . . , n}, if and only if

Q̃(X1, . . . , Xn) ≥ min(Q̃(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn), Q̃(X1, . . . , Xi−1, X

′′
i , Xi+1, . . . , Xn))

wheneverX1, . . . , Xn, X
′
i, X

′′
i ∈ P̃(E) andX ′i ⊆ Xi ⊆ X ′′i , where ‘⊆’ is the fuzzy inclusion

relation.

Note. In the literature on TGQ, those quantifiers which I call ‘convex’ are usually dubbed ‘contin-
uous’, see e.g. [8, Def. 16, p. 250]. I have decided to change terminology because of the possible
ambiguity of ‘continuous’, which could also mean ‘smooth’.

Some well-known properties of convex quantifiers (in the sense of TGQ) carry over to convex
semi-fuzzy and convex fuzzy quantifier.

Theorem 76 (Conjunctions of convex semi-fuzzy quantifiers)
SupposeQ,Q′ : P(E)n -I are semi-fuzzy quantifiers of arityn > 0 which are convex in thei-th
argument, wherei ∈ {1, . . . , n}. Then the semi-fuzzy quantifierQ ∧Q′ : P(E)n -I, defined by

(Q ∧Q′)(X1, . . . , Xn) = min(Q(X1, . . . , Xn), Q′(X1, . . . , Xn))

for all X1, . . . , Xn ∈ P(E), is also convex in thei-th argument.
(Proof: E.3, p.174+)

Note. The theorem states that conjunctions of convex semi-fuzzy quantifiers are convex (provided
the standard fuzzy conjunction∧ = min is chosen). A similar point can be made about fuzzy
quantifiers.

Theorem 77 (Conjunctions of convex fuzzy quantifiers)
SupposeQ̃, Q̃′ : P̃(E)

n
-I are fuzzy quantifiers of arityn > 0 which are convex in thei-th

argument, wherei ∈ {1, . . . , n}. Then the fuzzy quantifier̃Q ∧ Q̃′ : P̃(E)
n
-I, defined by

(Q̃ ∧ Q̃′)(X1, . . . , Xn) = min(Q̃(X1, . . . , Xn), Q̃′(X1, . . . , Xn))

for all X1, . . . , Xn ∈ P̃(E), is also convex in thei-th argument.
(Proof: E.4, p.175+)

Let us also state that every convex semi-fuzzy quantifier can be decomposed into a conjunction of
a nonincreasing and a nondecreasing semi-fuzzy quantifier:

Theorem 78 (Decomposition of convex semi-fuzzy quantifiers)
A semi-fuzzy quantifierQ : P(E)n -I is convex in itsi-th argument,i ∈ {1, . . . , n}, if and
only if Q is the conjunction of a nondecreasing and a nonincreasing semi-fuzzy quantifier, i.e. if
there existQ+, Q− : P(E)n -I such thatQ+ is nondecreasing in itsi-th argument;Q− is
nonincreasing in itsi-th argument, andQ = Q+ ∧Q−.
(Proof: E.5, p.176+)

Again, a similar point can be made about fuzzy quantifiers:
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Theorem 79 (Decomposition of convex fuzzy quantifiers)
A fuzzy quantifier̃Q : P̃(E)

n
-I is convex in itsi-th argument,i ∈ {1, . . . , n}, if and only if

Q̃ is the conjunction of a nondecreasing and a nonincreasing fuzzy quantifier, i.e. if there exist
Q̃+, Q̃− : P̃(E)

n
-I such thatQ̃+ is nondecreasing in itsi-th argument;Q̃− is nonincreasing

in its i-th argument, and̃Q = Q̃+ ∧ Q̃−.
(Proof: E.6, p.178+)

We say that a QFMF preserves convexity iff convexity of a quantifier in its arguments is preserved
when applyingF .

Definition 86
Supposen ∈ N \ {0}. A QFMF is said topreserve convexity ofn-ary quantifiersif and only if
everyn-ary semi-fuzzy quantifierQ : P(E)n -I which is convex in itsi-th argument is mapped
to a fuzzy quantifierF(Q) which is also convex in itsi-th argument.
F is said topreserve convexityif F preserves the convexity ofn-ary quantifiers for alln > 0.

As we shall now see, preservation of convexity is an adequacy property which in this strong form
conflicts with other desirable properties.

Let us now provide a first hint that contextuality of a QFM excludes preservation of convexity.

Theorem 80
SupposeF is a contextual QFM with the following properties: for every base setE 6= ∅,

a. the quantifierO : P(E) -I, defined byO(Y ) = 0 for all Y ∈ P(E), is mapped to the
fuzzy quantifier defined byF(O)(X) = 0 for all X ∈ P̃(E);

b. IfX ∈ P̃(E) and there exists somee ∈ E such thatµX(e) > 0, thenF(∃)(X) > 0;

c. If X ∈ P̃(E) and there existse ∈ E such thatµX(e) < 1, thenF(∼∀)(X) > 0, where
∼∀ : P(E) -2 is the quantifier defined by

(∼∀)(Y ) =

{
1 : X 6= E
0 : X = E

ThenF does not preserve convexity of one-place quantifiersQ : P(E) -I on finite base sets
E 6= ∅.
(Proof: E.7, p.178+)

This means that even if we restrict to the simple case of one-place quantifiers, and even if we
restrict to the simple case of finite base sets, there is still no QFMF which satisfies the very
important adequacy conditions imposed by the theorem and at the same time preserves convexity
under these simplifying assumptions. In particular, there is no QFM which both satisfies these
fundamental adequacy conditions and also preserves convexity.

As a corollary, we obtain

Theorem 81 (No DFS preserves convexity)
SupposeF is a DFS. ThenF does not preserve convexity of one-place quantifiers on finite domains.
In particular,F does not preserve convexity.
(Proof: E.8, p.179+)
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Because contextuality is a rather fundamental condition, it seems to be advantageous to weaken our
requirements on the preservation of convexity properties, rather than compromising contextuality
or any of the other very elementary conditions.
To this end, we will restrict attention to a limited class of convex quantifiers, namely quantitative
convex quantifiers (see Def. 31 and Def. 32). Many natural language quantifiers are quantitative,
i.e. the limited class still covers most important quantifiers. Unfortunately, it turns out that restrict-
ing the condition of preserving convexity to quantitative quantifiers is still insufficient.
In order to state a corresponding theorem, let us first consider another important adequacy condi-
tion.

Definition 87
SupposeF is some QFM. We say thatF is compatible with cylindrical extensionsiff the following
condition holds for every semi-fuzzy quantifierQ : P(E)n -I. Whenevern′ ∈ N, n′ ≥ n;
i1, . . . , in ∈ {1, . . . , n′} such that1 ≤ i1 < i2 < · · · < in ≤ n′, andQ′ : P(E)n

′
-I is defined

by

Q′(Y1, . . . , Yn′) = Q(Yi1 , . . . , Yin)

for all Y1, . . . , Yn ∈ P(E), then

F(Q′)(X1, . . . , Xn′) = F(Q)(Xi1 , . . . , Xin) ,

for all X1, . . . , Xn ∈ P̃(E).

Note. This property of being compatible with cylindrical extensions is very fundamental. It simply
states that vacuous argument positions of a quantifier can be eliminated. For example, ifQ′ :
P(E)4 -I is a semi-fuzzy quantifier and if there exists a semi-fuzzy quantifierQ : P(E) -I
such thatQ′(Y1, Y2, Y3, Y4) = Q(Y3) for all Y1, . . . , Y4 ∈ P(E), then we know thatQ′ does not
really depend on all arguments; it is apparent that the choice ofY1, Y2 andY4 has no effect on
the quantification result. It is hence straightforward to require thatF(Q′)(X1, X2, X3, X4) =

F(Q)(X3) for all X1, . . . , X4 ∈ P̃(E), i.e.F(Q′) is also independent ofX1, X2, X4, and it can be
computed fromF(Q). Let us remark that every DFS fulfills this property:

Theorem 82
Every DFSF is compatible with cylindrical extensions.
(Proof: E.9, p.180+)

Theorem 83
SupposeF is a contextual QFM which is compatible with cylindrical extensions and satisfies the
following properties: for all base setsE 6= ∅,

a. the quantifierO : P(E) -I, defined byO(Y ) = 0 for all Y ∈ P(E), is mapped to the
fuzzy quantifier defined byF(O)(X) = 0 for all X ∈ P̃(E);

b. IfX ∈ P̃(E) and there exists somee ∈ E such thatµX(e) > 0, thenF(∃)(X) > 0;

c. If X ∈ P̃(E) and there exists somee ∈ E such thatµX(e′) = 0 for all e′ ∈ E \ {e} and
µX(e) < 1, thenF(∼∃)(X) > 0, where∼∃ : P(E) -2 is the quantifier defined by

(∼∃)(Y ) =

{
1 : X = ∅
0 : X 6= ∅
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ThenF does not preserve the convexity of quantitative semi-fuzzy quantifiers of arityn > 1 even
on finite base sets.
(Proof: E.10, p.180+)

Theorem 84
No DFS preserves the convexity of quantitative semi-fuzzy quantifiers of arityn > 1 in their
arguments.
(Proof: E.11, p.182+)

This leaves open the possibility that certain DFSes will preserve the convexity of quantitative semi-
fuzzy quantifiers of arityn = 1. For simplicity, we shall investigate this preservation property for
the case of finite domains only.

Definition 88
A QFMF is said toweakly preserve convexityiff F preserves the convexity of quantitative one-
place quantifiers on finite domains, i.e. wheneverQ : P(E) -I is a convex quantitative semi-
fuzzy quantifier such thatE 6= ∅ is finite, then the resulting fuzzy quantifierF(Q) is convex as
well.

In this case, we get positive results on the existence of DFSes that weakly preserve convexity. For
example, theMB-DFSMCX , to be introduced on page 62, can be shown to fulfill this adequacy
criterion.
In general, we have negative results concerning the preservation of convexity of quantitative two-
place quantifiers (see Th-84). However, as I will now show, it is possible for a DFS to preserve
convexity properties of two-place quantifiers in a special case of interest to natural language inter-
pretation.

Theorem 85
SupposeQ : P(E)2 -I is an absolute quantifier on a finite base set, i.e. there exists a quan-
titative one-place quantifierQ′ : P(E) -I such thatQ = Q′∩. If a DFSF has the property
of weakly preserving convexity andQ is convex in its arguments, thenF(Q) is also convex in its
arguments.
(Proof: E.12, p.182+)

6.6 Fuzzy Argument Insertion

In our comments on argument insertion (see page 10) we have remarked that adjectival restriction
with fuzzy adjectives cannot be modelled directly: ifA ∈ P̃(E) is a fuzzysubset ofE, then only
F(Q)/A is defined, but notQ/A. However, one can ask ifF(Q)/A can be represented by a
semi-fuzzy quantifierQ′, i.e. if there is aQ′ such that

F(Q)/A = F(Q′) . (30)

The obvious choice forQ′ is the following.

Definition 89 (Fuzzy Argument Insertion)
SupposeF is a QFM,Q : P(E)n+1 -I is a semi-fuzzy quantifier andA ∈ P̃(E) is a fuzzy
subset ofE. The semi-fuzzy quantifierQ /̃ A : P(E)n -I is defined by

Q /̃ A = U(F(Q)/A) ,
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i.e.

Q /̃ A(Y1, . . . , Yn) = F(Q)(Y1, . . . , Yn, A) ,

for all crisp subsetsY1, . . . , Yn ∈ P(E).

Notes

• Q /̃ A is written with the “tilde” notatioñ/ in order to emphasise that it depends on the
chosen QFMF .

• as already noted in [9, p. 54],Q′ = Q /̃ A is the only choice ofQ′ which possibly satisfies
(30), because anyQ′ which satisfiesF(Q′) = F(Q)/A also satisfies

Q′ = U(F(Q′)) = U(F(Q)/A) = Q /̃ A ,

which is apparent from Th-1.

Unfortunately,Q /̃ A is not necessarily a good model of the semi-fuzzy quantifier obtained from
Q by inserting a fuzzy argument set. This is becauseQ /̃ A is not guaranteed to fulfill (30) in a
particular QFM (not even in a DFS). Let us hence turn this equation into an adequacy condition
which ensures thatQ /̃ A conveys the intended meaning in a given QFMF :

Definition 90 (Compatibility with Fuzzy Argument Insertion)
SupposeF is a QFM. We say thatF is compatible with fuzzy argument insertioniff for every
semi-fuzzy quantifierQ : P(E)n -I of arity n > 0 and everyA ∈ P̃(E),

F(Q /̃ A) = F(Q)/A .

The main application of this property in natural language is that of adjectival restriction of a quan-
tifier by means of a fuzzy adjective. For example, supposeE is a set of people, andlucky ∈ P̃(E)
is the fuzzy subset of those people inE who are lucky. Further supposealmost all : P(E)2 -I
is a semi-fuzzy quantifier which models “almost all”. Finally, suppose the DFSF is chosen
as the model of fuzzy quantification. We can then construct the semi-fuzzy quantifierQ′ =
almost all ∩ /̃ lucky . If F is compatible with fuzzy argument insertion, then the semi-fuzzy
quantifierQ′ is guaranteed to adequately model the composite expression “almost all X’s are lucky
Y’s”, because

F(Q′)(X1, X2) = F(Q)(X, Y ∩̃ lucky )

for all fuzzy argumentsX, Y ∈ P̃(E), which (relative toF) is the proper expression for interpret-
ing “almost allX ’s are luckyY ’s” in the fuzzy case. Compatibility with fuzzy argument insertion
is a very restrictive adequacy condition. We shall present the unique standard DFS which fulfills
this condition on page 62 below.
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7 Properties of MB-DFSes

Let us now take a closer look atMB-DFSes. We will present more examples ofMB-DFSes,
discuss a number of properties shared by allMB-DFSes, and we will identify certainMB-DFSes
with special properties. For example, it will be proven whichMB-DFSes are the least and the
most specific. In addition, anMB-DFS calledMCX will be presented which can shown to exhibit
unique adequacy properties.
Let us first state a theorem which simplifies the comparison ofMB-DFSes with respect to speci-
ficity:

Theorem 86
SupposeB′1,B′2 : H -I are given. Further suppose thatB1,B2 ∈ BB are the mappings asso-
ciated withB′1 andB′2, respectively, according to equation(23), andMB1 ,MB2 are the corre-
sponding QFMs defined by Def. 69. ThenMB1 �cMB2 iff B′1 ≤ B′2.
(Proof: F.1, p.183+)

Next we shall investigate extreme cases ofMB-DFSes with respect to the specificity order.

Definition 91 ( MU )
ByMU we denote theMB-QFM defined by

B′U(f) = max(f 1
∗ , f

∗
1 )

for all f ∈ H, where the coefficientsf ∗1 andf 1
∗ are defined by equations(21)and (22), resp.

Theorem 87
Suppose⊕ : I2 -I is ans-norm andB′ : H -I is defined by

B′(f) = f 1
∗ ⊕ f ∗1 , (Th-87.a)

for all f ∈ H (see(22), (21) for the definition of the coefficientsf 1
∗ andf ∗1 , resp.). Further suppose

that B : B -I is defined in terms ofB′ according to equation(23), and thatMB is the QFM
defined in terms ofB according to Def. 69. The QFMMB is a standard DFS.
(Proof: F.2, p.184+)

Note. In particular,MU is a standard DFS.
MU is an extreme case ofMB-DFS in terms of specificity.

Theorem 88
MU is the least specificMB-DFS.
(Proof: F.3, p.190+)

Let us now consider the question of the existence of most specificMB-DFSes. We first observe
that

Theorem 89
AllMB-DFSes are specificity consistent standard DFSes.
(Proof: F.4, p.192+)

It is then immediate from Th-74 that there exists a least upper specificity boundFlub on the col-
lection of allMB-DFSes. As we will now show,Flub is in fact anMB-DFS.
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Theorem 90
Let (MBj)j∈J a J -indexed collection ofMB-DFSes whereJ 6= ∅. The least upper specificity
boundFlub of (MBj)j∈J is anMB-DFS.
(Proof: F.5, p.192+)

Definition 92 ( MS)
ByMS we denote theMB-QFM defined by

B′S(f) = min(f 0
∗ , f

∗
0 )

for all f ∈ H, using the same abbreviations than withM∗.

Theorem 91
SupposeB′ : H -I is defined by

B′(f) = f 0
∗ � f ∗0

for all f ∈ H, where� : I2 -I is a t-norm. Further suppose that the the QFMMB is defined in
terms ofB′ according to(23)and Def. 69. ThenMB is a standard DFS.
(Proof: F.6, p.195+)

Note. In particular,MS is a standard DFS.

MS also represents an extreme case ofMB-DFS in terms of specificity, as we shall now state:

Theorem 92
MS is the most specificMB-DFS.
(Proof: F.7, p.196+)

Definition 93 ( MCX )
ByMCX we denote theMB-QFM defined by

B′CX(f) = sup{min(x, f(x)) : x ∈ I}

for all f ∈ H.

Theorem 93
Suppose� : I2 -I is a continuoust-norm andB′ : H -I is defined by

B′(f) = sup{γ � f(γ) : γ ∈ I} (Th-93.a)

for all f ∈ H. Further suppose thatB : B -I is defined in terms ofB′ according to equation 23.
The QFMMB, defined by Def. 69, is a standard DFS.
(Proof: F.8, p.198+)

Note. In particular,MCX is a standard DFS.

As we shall see below,MCX is a DFS with unique properties. In order to carry out these proofs,
we need to observe that there are various ways of computingB′CX :
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Theorem 94
For all f ∈ H,

sup{min(x, f(x)) : x ∈ I}
= inf{max(x, f(x)) : x ∈ I}
= sup{x ∈ I : f(x) > x}
= inf{x ∈ I : f(x) < x}
=the uniquex s.th.f(y) > y for all y < x andf(y) < y for all y > x .

(Proof: F.9, p.202+)

In addition, we shall need some abbreviations. Given a base setE 6= ∅, a fuzzy subsetX ∈ P̃(E),
let us stipulate

|X|min
γ = |(X)min

γ | (31)

|X|max
γ = |(X)max

γ | (32)

for all γ ∈ I.

In order to establish these results, we need some more observations on quantitative quantifiers and
on quantitative convex quantifiers.

Theorem 95
SupposeQ : P(E) -I is a one-place semi-fuzzy quantifier on a finite base setE 6= ∅. ThenQ
is quantitative if and only if there exists a mappingq : {0, . . . , |E|} -I such that

Q(Y ) = q(|Y |) ,

for all Y ∈ P(E). q is defined by

q(j) = Q(Yj) (33)

for j ∈ {0, . . . , |E|}, whereYj ∈ P(E) is an arbitrary subset of cardinality|Yj| = j.
(Proof: F.10, p.205+)

Theorem 96
SupposeQ : P(E) -I is a quantitative semi-fuzzy quantifier on a finite base set andq :
{0, . . . , |E|} -I is defined by(33). ThenQ is convex if and only ifq has the following prop-
erty: wheneverj′, j, j′′ ∈ {0, . . . , |E|} andj′ ≤ j ≤ j′′, then

q(j) ≥ min(q(j′), q(j′′)) .

(Proof: F.11, p.206+)

Theorem 97
Supposem ∈ N \ {0} and q : {0, . . . ,m} has the following property: wheneverj′, j, j′′ ∈
{0, . . . , |E|} andj′ ≤ j ≤ j′′, thenq(j) ≥ min(q(j′), q(j′′)). Then there existsjpk ∈ {0, . . . ,m}
such that

q(j) ≤ q(j′)
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for all j ≤ j′′ ≤ jpk, and

q(j) ≥ q(j′)

for all jpk ≤ j ≤ j′.
(Proof: F.12, p.207+)

We need some more notation in order to be able to simplify the computation ofQγ(X) in the case
of quantitative quantifiers.

Definition 94
Supposem ∈ N andq : {0, . . . ,m} -I. For all `, u ∈ {0, . . . ,m}, we define

qmin(`, u) = min{q(j) : ` ≤ j ≤ u}
qmax(`, u) = max{q(j) : ` ≤ j ≤ u} .

Theorem 98
SupposeQ : P(E) -I is a one-place quantitative semi-fuzzy quantifier on a finite base set, and
assumeq : {0, . . . , |E|} -I is the mapping defined by(33). For all X ∈ P̃(E) andγ ∈ I,

Qmin
γ (X) = qmin(`, u)

Qmax
γ (X) = qmax(`, u)

where` = |X|min
γ γ andu = |X|max

γ γ. Hence

Qγ(X) = m 1
2
(qmin(`, u), qmax(`, u)) = m 1

2
{q(j) : |X|min

γ ≤ j ≤ |X|max
γ } .

(Proof: F.13, p.209+)

Theorem 99
SupposeQ : P(E) -I is a quantitative convex quantifier on a finite base set. Further suppose
q : {0, . . . , |E|} -I is the mapping defined by(33)andjpk ∈ {0, . . . , |E|} is chosen as in Th-97.
Then

qmin(`, u) = min(q(`), q(u))

qmax(`, u) =


q(`) : ` > jpk

q(u) : u < jpk

q(jpk) : ` ≤ jpk ≤ u

i.e.

Qmin
γ (X) = min(q(|X|min

γ ), q(|X|max
γ ))

Qmax
γ (X) =


q(|X|min

γ ) : |X|min
γ > jpk

q(|X|max
γ ) : |X|max

γ < jpk

q(jpk) : |X|min
γ ≤ jpk ≤ |X|max

γ

for all X ∈ P̃(E) andγ ∈ I.
(Proof: F.14, p.210+)
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Based on these theorems, it is now easy to show the following.

Theorem 100
The DFSMCX weakly preserves convexity.
(Proof: F.15, p.212+)

Theorem 101
SupposeMB is anMB-DFS. IfMB weakly preserves convexity, thenMCX �cMB.
(Proof: F.16, p.227+)

In addition to weakly preserving convexity,MCX can also be shown to be compatible with fuzzy
argument insertion.

Theorem 102
The DFSMCX is compatible with fuzzy argument insertion.
(Proof: F.17, p.231+)

As we shall see in the next section,MCX is in fact the only standard DFS which fulfills this
adequacy condition.
Now we shall discuss Q-continuity and arg-continuity ofMB-DFSes. Let us first make some
general observations how the continuity conditions are related to(•)γ.

Theorem 103
LetQ,Q′ : P(E)n -I be given. Thend(Qγ, Q

′
γ) ≤ d(Q,Q′) for all γ ∈ I.

(Proof: F.18, p.252+)

We can use this inequation to formulate a condition onB′ : H -I which is necessary and suffi-
cient forMB to be Q-continuous. To this end, we first define a metricd : H×H -I by

d(f, g) = sup{|f(γ)− g(γ)| : γ ∈ I} (34)

for all f, g ∈ H.

Theorem 104
SupposeMB is anMB-DFS andB′ is the corresponding mappingB′ : H -I.
MB is Q-continuous iff for allε > 0 there existsδ > 0 such that|B′(f) − B′(g)| < ε whenever
f, g ∈ H satisfyd(f, g) < δ.
(Proof: F.19, p.255+)

In the case of continuity in arguments, we need a different metric onH. Hence let us define
d′ : H×H -I by

d′(f, g) = sup{inf{γ′ − γ : γ′ ∈ I, max(f(γ′), g(γ′)) ≤ min(f(γ), g(γ))} : γ ∈ I} , (35)

for all f, g ∈ H.
We can now characterise the arg-continuousMB-DFSes in terms of the mappingsB′ : H -I as
follows.

Theorem 105
SupposeB′ : H -I satisfies(C-2), (C-3.b)and (C-4). Further suppose thatMB is defined in
terms ofB′ according to(23)and Def. 69. Then the following conditions are equivalent:



7 PROPERTIES OFMB-DFSES 66

a. MB is arg-continuous.

b. for all f ∈ H and all ε > 0, there existsδ > 0 such that|B′(f) − B′(g)| < ε whenever
d′(f, g) < δ.

(Proof: F.20, p.260+)

Sometimes the following sufficient condition is simpler to check.

Theorem 106
Let B′ : H -I be a given mapping which satisfies(C-2), (C-3.b) and (C-4). If for all ε > 0
there existsδ > 0 such thatB′(g) − B′(f) < ε wheneverf ≤ g andd′(f, g) < δ, thenMB is
arg-continuous.
(Proof: F.21, p.272+)

We shall now apply these theorems to establish or reject Q-continuity and arg-continuity of our
examples ofMB-DFSes.

Theorem 107
Suppose⊕ : I2 -I is ans-norm andB′ : H -I is defined by(Th-87.a). Further suppose that
B : B -I is defined in terms ofB′ according to equation(23), and thatMB is the QFM defined
in terms ofB according to Def. 69. The QFMMB is neither Q-continuous nor arg-continuous.
(Proof: F.22, p.273+)

In particular,MU fails on both continuity conditions.

Theorem 108
SupposeB′ : H -I is defined by

B′(f) = f 0
∗ � f ∗0

for all f ∈ H, where� : I2 -I is a t-norm. Further suppose that the the QFMMB is defined in
terms ofB′ according to(23)and Def. 69. ThenMB is neither Q-continuous nor arg-continuous.
(Proof: F.23, p.274+)

In particular,MS andM∗ fail on both continuity conditions. These results illustrate thatMU and
MS are only of theoretical interest, because they represent extreme cases in terms of specificity.
Due to their discontinuity, these models are not suited for applications. The DFSM∗ is also
impractical.
We shall now discuss practical models. In order to establish thatM is arg-continuous, we first
observe how the metricsd andd′ are related. To this end, we introduce the mapping(•)♦ : H -H

defined by

f♦(v) = inf{γ ∈ I : f(γ) < v} (36)

for all f ∈ H andv ∈ I. It is easily checked that indeedf♦ ∈ H wheneverf ∈ H. Let us now
utilize this definition to unveil the relationship between the metricsd andd′.

Theorem 109
For all f, g ∈ H,

d′(f, g) = d(f♦, g♦) .

(Proof: F.24, p.276+)



7 PROPERTIES OFMB-DFSES 67

It is now easy to show that the DFSM satisfies both continuity conditions:

Theorem 110
M is bothQ-continuous and arg-continuous.
(Proof: F.25, p.280+)

Theorem 111
Let� : I2 -I be a uniform continuoust-norm, i.e. for allε > 0, there existsδ > 0 such that
|x1 � y1 − x2 � y2| < ε wheneverx1, x2, y1, y2 ∈ I satisfy‖(x1, y1) − (x2, y2)‖ < δ. Further
suppose thatB′ : H -I is defined by equation(Th-93.a), and define the QFMMB in terms ofB′
according to(23)and Def. 69 as usual. ThenMB is bothQ-continuous and arg-continuous.
(Proof: F.26, p.282+)

In particular, the DFSMCX which exhibits the best theoretical properties, is indeed a good choice
for applications, because it satisfies both continuity conditions. The theorem also shows thatM∗,
presented on page 49, is a practical DFS.

Turning toMB-DFSes in general, we shall now investigate the two types of propagation of fuzzi-
ness, see Def. 82. With respect to these criteria,MB-DFSes represent a particularly well-behaved
subclass of standard DFSes:

Theorem 112
EveryMB-DFS propagates fuzziness in quantifiers.
(Proof: F.27, p.283+)

Theorem 113
EveryMB-DFS propagates fuzziness in arguments.
(Proof: F.28, p.286+)
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8 Upper and Lower Bounds on Quantification Results

In the following, we shall consider upper and lower bounds on the quantification results of DFSes.
These will prove useful in order to establish some novel theorems; for example, it becomes possible
to show that all standard DFSes coincide on two-valued quantifiers. In addition, this chapter will
further enhance the unique properties of the DFSMCX .
Let us firstly define infima and suprema of families of (semi-)fuzzy quantifiers.

Definition 95
SupposeE 6= ∅ a nonempty base set and a nonnegative numbern ∈ N are given. Further
let (Qj)j∈J be aJ -indexed family of semi-fuzzy quantifiersQj : P(E)n -I, whereJ is an
arbitrary index set. We define semi-fuzzy quantifiersinf{Qj : j ∈ J }, sup{Qj : j ∈ J } :
P(E)n -I by

(inf{Qj : j ∈ J })(Y1, . . . , Yn) = inf{Qj(Y1, . . . , Yn) : j ∈ J }
(sup{Qj : j ∈ J })(Y1, . . . , Yn) = sup{Qj(Y1, . . . , Yn) : j ∈ J }

for all Y1, . . . , Yn ∈ P(E).
In the case of fuzzy quantifiers̃Qj : P̃(E)

n
-I, the fuzzy quantifiersinf{Q̃j : j ∈ J }, sup{Q̃j :

j ∈ J } : P̃(E)
n
-I are defined analogously.

Theorem 114
Suppose a base setE 6= ∅ and an arityn ∈ N are given. Further assume thatJ is an arbitrary
index set and(Qj)j∈J is aJ -indexed family of semi-fuzzy quantifiersQj : P(E)n -I, j ∈ J .

a. In every DFSF ,

F(sup{Qj : j ∈ J }) ≥ sup{F(Qj) : j ∈ J }

b. In every DFSF ,

F(inf{Qj : j ∈ J }) ≤ inf{F(Qj) : j ∈ J } .

(Proof: G.1, p.288+)

We shall now consider a particular choice of upper and lower bounds on the quantification results
of a DFSF . Let us first define the upper bound and lower bounds on a semi-fuzzy quantifierQ in
a given argument range.

Definition 96
LetQ : P(E)n -I be a given semi-fuzzy quantifier andV,W ∈ P(E)n. We define

U(Q, V,W ) = sup{Q(Z1, . . . , Zn) : V1 ⊆ Z1 ⊆ W1, . . . , Vn ⊆ Zn ⊆ Wn}
L(Q, V,W ) = inf{Q(Z1, . . . , Zn) : V1 ⊆ Z1 ⊆ W1, . . . , Vn ⊆ Zn ⊆ Wn}

Definition 97 ( QLV,W , QUV,W )
SupposeQ : P(E)n -I is a semi-fuzzy quantifier andV,W ∈ P(E)n. We shall define semi-fuzzy
quantifiersQU

V,W , Q
L
V,W : P(E)n -I by

QU
V,W (Y1, . . . , Yn) =

{
U(Q, V,W ) : Vi ⊆ Yi ⊆ Wi, all i = 1, . . . , n
1 : else

QL
V,W (Y1, . . . , Yn) =

{
L(Q, V,W ) : Vi ⊆ Yi ⊆ Wi, all i = 1, . . . , n
0 : else

for all Y1, . . . , Yn ∈ P(E).



8 UPPER AND LOWER BOUNDS ON QUANTIFICATION RESULTS 70

Definition 98
LetF be a given QFM. For all semi-fuzzy quantifiersQ : P(E)n -I andV,W ∈ P(E)n, we
define fuzzy quantifiers̃QL

V,W , Q̃
U
V,W : P̃(E)

n
-I by

Q̃L
V,W = F(QL

V,W )

Q̃U
V,W = F(QU

V,W ) .

Definition 99 ( Q̃L, Q̃U )
SupposeQ : P(E)n -I is a semi-fuzzy quantifier andF is a QFM. The fuzzy quantifiers
Q̃U , Q̃L : P̃(E)

n
-I are defined by

Q̃U = inf{Q̃U
V,W : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn}

Q̃L = sup{Q̃L
V,W : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn}

for everyQ : P(E)n -I.

Theorem 115
In every DFSF and for every semi-fuzzy quantifierQ : P(E)n -I,

Q̃L ≤ F(Q) ≤ Q̃U .

(Proof: G.2, p.289+)

Next, let us take a closer look at the fuzzy quantifiersQ̃U
V,W andQ̃L

V,W . As it turns out, these can
be expressed in a rather simple form.
To this end, let us introduce some more notation.

Definition 100
For all a ∈ I, we define semi-fuzzy truth functionsba, pa : 2 -I by

ba(x) =

{
0 : x = 0
a : x = 1

pa(x) =

{
1 : x = 0
a : x = 1

If F is some given QFM, we shall abbreviate by
˜̃
ba, ˜̃pa : I -I the induced truth functions̃̃ba =˜̃F(ba) and˜̃pa =

˜̃F(pa).

Definition 101
Let a nonempty base setE be given andV,W ∈ P(E). The two-valued quantifierΞV,W :
P(E) -2 is defined by

ΞV,W (Y ) =

{
1 : V ⊆ Y ⊆ W
0 : else

for all Y ∈ P(E). Similarly ifV,W ∈ P(E)n for arbitrary n ∈ N, we defineΞV,W : P(E)n -2
by

ΞV,W (Y1, . . . , Yn) =
n
∧
i=1

ΞVi,Wi
(Yi) ,
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for all Y1, . . . , Yn ∈ P(E). Given a QFMF , we shall abbreviate

Ξ̃V,W = F(ΞV,W ) .

Let us first see how̃ΞV,W looks like whenF is a DFS.

Theorem 116
SupposeF is a DFS,E 6= ∅ is a base set andV,W ∈ P(E)n, n ∈ N, such thatVi ⊆ Wi for all
i = 1, . . . , n. Then for allX1, . . . , Xn ∈ P̃(E),

Ξ̃V,W (X1, . . . , Xn) =
n

∧̃
i=1
F(∀)(Zi)

where

Zi = (Xi
˜̃∪ (Wi \ Vi))

˜̃4¬Wi

i.e. theZi ∈ P̃(E) are defined by

µZi(e) =


µXi(e) : e ∈ Vi
1 : e ∈ Wi \ Vi˜̃¬µXi(e) : e /∈ Wi

for all e ∈ E.
(Proof: G.3, p.292+)

The relevance of these concepts becomes apparent from the next theorem.

Theorem 117
SupposeQ : P(E)n -I is a semi-fuzzy quantifier,V,W ∈ P(E)n andX1, . . . , Xn ∈ P̃(E).
Then in every DFSF ,

Q̃U
V,W (X1, . . . , Xn) = ˜̃pU(Q,V,W )(Ξ̃V,W (X1, . . . , Xn))

and

Q̃L
V,W (X1, . . . , Xn) =

˜̃
bL(Q,V,W )(Ξ̃V,W (X1, . . . , Xn)) .

(Proof: G.4, p.296+)

Next, we shall take a closer look at the interpretation of˜̃
ba and˜̃pa in certain DFSesF .

Theorem 118
In every DFSF ,

˜̃
ba(x) ≤ min(a, x)˜̃pa(x) ≥ max(a, ˜̃¬x)

for all a, x ∈ I.
(Proof: G.5, p.302+)
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This is sufficient to establish upper and lower bounds on the interpretation of certain quantifiers of
interest. For example, we are interested how absolute quantifiers like “at least k” are interpreted in
DFSes. First we need some more notation.

Definition 102
SupposeE 6= ∅ is a finite base set of cardinality|E| = m. For a fuzzy subsetX ∈ P̃(E),
let us denote byµ[j](X) ∈ I, j = 1, . . . ,m, the j-th largest membership value ofX (including
duplicates).13 We shall also stipulate thatµ[0](X) = 1 andµ[j](X) = 0 wheneverj > m.

Now let us turn attention to the following class of quantifiers.

Definition 103
SupposeE 6= ∅ is a base set andk ∈ N. The quantifier[≥ k] : P(E) -2 is defined by

[≥ k](Y ) =

{
1 : |Y | ≥ k
0 : else

for all Y ∈ P(E).

Theorem 119
LetE 6= ∅ be a given finite base set andk ∈ N. Then in every DFSF ,

µ[1](X) ˜̃∧ . . . ˜̃∧ µ[k](X) ≤ F([≥k])(X) ≤ µ[k](X) ˜̃∨ . . . ˜̃∨ µ[|E|](X) ,

for all X ∈ P̃(E).
(Proof: G.6, p.302+)

In the case of a standard DFS, we obtain

Theorem 120
Suppose thatF is a standard DFS,E 6= ∅ is a nonempty base set andk ∈ N. Then

F([≥k])(X) = sup{α ∈ I : |(X)≥α| ≥ k} ,

for all X ∈ P̃(E). In particular, ifE is finite, then

F([≥k])(X) = µk(X) .

(Proof: G.7, p.306+)

Theorem 121
Let a QFMF with the following properties be given:

a. 0 ˜̃∧ z = 0 for all z ∈ I;

b. 0 ˜̃∧ z = z for all z ∈ I;
13More formally, we can order the elements ofE such thatE = {e1, . . . , em} andµX(e1) ≥ · · · ≥ µX(em) and

then defineµ[j](X) = µX(ej).
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c. F satisfies(DFS 6);

d. F(π1) = π̃1, whereπ1 : P({1}) -2;

e. ˜̃¬ is a strong negation operator;

f. x1
˜̃∨ x2 = ˜̃¬(˜̃¬x1

˜̃∧ ˜̃¬x2) for all x1, x2 ∈ I (DeMorgan’s Law).

If F is compatible with fuzzy argument insertion, then˜̃
ba(x) = x ˜̃∧ a˜̃pa(x) = ˜̃¬x ˜̃∨ a

for all a, x ∈ I.
(Proof: G.8, p.307+)

Our main result onMCX is then the following:

Theorem 122
For every semi-fuzzy quantifierQ : P(E)n -I,

Q̃L =MCX(Q) = Q̃U .

(Proof: G.9, p.308+)

In particular, this means thatMCX is a concrete implementation of a so-called “substitution ap-
proach” to fuzzy quantification [22], i.e. the fuzzy quantifier is modelled by constructing an equiv-
alent logical formula.14 This is apparent is we simply expand̃QU andQ̃L in the above theorem:

Theorem 123
For everyQ : P(E)n -I andX1, . . . , Xn ∈ P̃(E),

MCX(Q)(X1, . . . , Xn)

= sup{Q̃L
V,W (X1, . . . , Xn) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn}

= inf{Q̃U
V,W (X1, . . . , Xn) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn}

where

Q̃L
V,W (X1, . . . , Xn)

= min(Ξ̃V,W (X1, . . . , Xn), inf{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, all i})
Q̃U
V,W (X1, . . . , Xn)

= max(1− Ξ̃V,W (X1, . . . , Xn), sup{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, all i})
Ξ̃V,W (X1, . . . , Xn)

=
n

min
i=1

min(inf{µXi(e) : e ∈ Vi}, inf{1− µXi(e) : e /∈ Wi}) .

(Proof: G.10, p.317+)
14In the finite case,inf andsup reduce to logical connectives∧ = max and∨ = min as usual. We need to allow for

occurrences of constantsQ(Y1, . . . , Yn) ∈ I in the resulting formula because the fuzzification mechanism is applied
to semi-fuzzy quantifiers, not only to two-valued quantifiers.
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Combining Th-122 with theorems Th-115 and Th-121, we can also conclude that

Theorem 124
MCX is the only standard DFS which is compatible with fuzzy argument insertion.
(Proof: G.11, p.318+)

Another direct consequence of the above results is the following:

Theorem 125
All standard DFSes coincide on two-valued quantifiers, i.e. wheneverQ : P(E)n -2 is a two-
valued quantifier,X1, . . . , Xn ∈ P̃(E) is a choice of fuzzy arguments andF ,F ′ are given standard
DFSes, then

F(Q)(X1, . . . , Xn) = F ′(Q)(X1, . . . , Xn) .

(Proof: G.12, p.319+)

Now let us establish some further results onMCX .

Definition 104
SupposeQ : P(E) -I is a nondecreasing semi-fuzzy quantifier andX ∈ P̃(E). TheSugeno
integral(S)

∫
X dQ is defined by

(S)

∫
X dQ = sup{min(α,Q((X)≥α)) : α ∈ I} .

Let us now state thatMCX properly generalises the Sugeno integral:

Theorem 126
SupposeQ : P(E) -I is nondecreasing. Then for allX ∈ P̃(E),

(S)

∫
X dQ =MCX(Q)(X) .

(Proof: G.13, p.320+)

HenceMCX coincides with the Sugeno integral whenever the latter is defined.
Another nice property ofMCX is that it does not ‘invent’ any new truth-values.MCX hence
combines well with ordinal scales of truth values provided these are closed under negation:

Theorem 127
Let Ω ⊂ I be a given set with the following properties:

• Ω is finite;

• if ω ∈ Ω, then1− ω ∈ Ω;

• {0, 1} ⊆ Ω.

Further suppose thatQ : P(E)n -Ω is a semi-fuzzy quantifier with quantification results inΩ

and thatX1, . . . , Xn ∈ P̃(E) areΩ-valued fuzzy subsets ofE, i.e.µXi(e) ∈ Ω for all i = 1, . . . , n
and all e ∈ E. ThenMCX(Q)(X1, . . . , Xn) ∈ Ω.
(Proof: G.14, p.321+)
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In practise, there is seldom perfect knowledge concerning the precise choice of numeric member-
ship degrees. As stated by the next theorem,MCX is robust with respect to changes in the numeric
membership degrees as long as these changes are symmetrical with respect to negation. Recalling
Def. 41, we can express this as follows.

Theorem 128
Supposeσ : I -I is a mapping with the following properties:

• σ is a bijection;

• σ is nondecreasing;

• σ is symmetrical with respect to negation, i.e.σ(1− x) = 1− σ(x) for all x ∈ I.

ThenMCX
σ =MCX .

(Proof: G.15, p.322+)

Let us now show that in the case ofMCX , we can use the followingfuzzy interval cardinalityto
evaluate quantitative one-place quantifiers.

Definition 105
For every fuzzy subsetX ∈ P̃(E), thefuzzy interval cardinality‖X‖iv ∈ P̃(N× N) is defined by

µ‖X‖iv(`, u) =

{
min(µ[`](X), 1− µ[u+1](X)) : ` ≤ u
0 : else

for all `, u ∈ N. (37)

Intuitively, µ‖X‖iv(`, u) expresses the degree to whichX has betweeǹ andu elements.
Recalling our abbreviationsqmin and qmax of definition Def. 94, we may express the result on
quantitative quantifiers as follows.

Theorem 129
For every quantitative one-place quantifierQ : P(E) -I on a finite base set and allX ∈ P̃(E),

MCX(Q)(X) = max{min(µ‖X‖iv(`, u), qmin(`, u)) : 0 ≤ ` ≤ u ≤ |E|}
= min{max(1− µ‖X‖iv(`, u), qmax(`, u)) : 0 ≤ ` ≤ u ≤ |E|} .

(Proof: G.16, p.324+)

Theorem 130
A quantitative one-place semi-fuzzy quantifierQ : P(E) -I on a finite base set is nondecreasing
(nonincreasing) if and only if the mappingq defined by(33) is nondecreasing (nonincreasing).
(Proof: G.17, p.326+)

Theorem 131
SupposeQ : P(E) -I is a quantitative one-place quantifier on a finite base set andq is the
mapping defined by(33). Then

qmin(`, u) = q(`) qmax(`, u) = q(u) if Q nondecreasing

qmin(`, u) = q(u) qmax(`, u) = q(`) if Q nonincreasing

(Proof: G.18, p.326+)
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Based on these concepts, it is now easy to establish the following theorem:

Theorem 132
SupposeQ : P(E)n -I is a nondecreasing quantitative one-place quantifier on a finite base set,
andq : {0, . . . , |E|} -I is the mapping defined by equation(33). Then for allX ∈ P̃(E),

MCX(Q)(X) = max{min(q(j), µ[j](X)) : 0 ≤ j ≤ |E|} ,

i.e.MCX consistently generalises the FG-count approach of [27, 23].
(Proof: G.19, p.326+)

Note. Actually, this is a corollary of Th-126, if we recall the known relationship between the
Sugeno integral and the FG-count approach, see [5].
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9 Conclusion

In the report, we have reviewed the basic concepts of DFS theory by introducing two-valued quan-
tifiers, fuzzy quantifiers, semi-fuzzy quantifiers and quantifier fuzzification mechanisms. We have
also addressed the question of well-behavedness of a quantifier fuzzification mechanism. Our ap-
proach is basically an algebraic one: rather than making any claims on ‘the meaning’ of a natural
language quantifier, and its corresponding model as a fuzzy quantifier, we assume that most (if not
all) important aspects of the meaning of a quantifier express in terms of its observable behaviour.
We have therefore considered several properties of semi-fuzzy quantifiers and fuzzy quantifiers
each of which captures some aspects of the behaviour of a quantifier. The properties presented are
sometimes borrowed from logic, but our prime source of these properties is the logico-linguistic
Theory of Generalized Quantifiers (TGQ), which has focused on those criteria which are essential
from a linguistic perspective. A ‘reasonable’ choice of QFM is expected to preserve the important
properties of all quantifiers (e.g. monotonicity properties).
In addition to preserving linguistic properties of quantifiers, we are interested in obtaining a sys-
tem which also preserves important relationships between quantifiers. The prime example are
functional relationships between quantifiers which are established by certain constructions (like
dualisation or negation). Compatibility with such constructions corresponds to the well-known
mathematical concept of a homomorphism (structure-preserving mapping). A slight pecularity of
these constructions is that some of these depend on the quantifier fuzzification mechanism chosen.
Our goal is to obtain a ‘self-consistent’ system in which such ‘induced’ constructions are inter-
preted in such a way that the quantifier fuzzification mechanism is compatible to its own induced
constructions.
When discussing fuzzy quantifiers, it should be kept in mind that supporting these onlyextends,
but does not replace, the propositional part of a fuzzy logic (i.e. fuzzy truth functions). In addition,
there is an obvious relationship between fuzzy quantifiers and extension principles; each QFM
gives rise to an induced set of fuzzy truth functions and an induced extension principle in a canon-
ical way. We can therefore judge the adequacy of a quantifier fuzzification mechanism not only by
considering its behaviour on fuzzy quantifiers; apart from the quantifier perspective, we can also
investigate the properties of the induced truth functions and the induced extension principle.
When compiling the ‘DFS axioms’ from all these adequacy conditions, which single out the spe-
cific subclass of ‘reasonable’ QFMs which qualify as DFSes (determiner fuzzification schemes), I
have tried to select aminimalset of conditions which entails all other important adequacy proper-
ties. The DFS axioms (DFS-1) to (DFS-9), as well as the revised set (Z-1) to (Z-6), might therefore
appear rather abstract and compressed at first sight. However, as illustrated by the findings on prop-
erties of DFSes in chapter two, these axioms fulfill their purpose of capturing a larger number of
desired adequacy properties in a condensed form. The reader interested in the motivation of these
axioms and in the proofs of the properties cited is invited to consult the original presentation of
DFS theory in [9]. The only novel material in chapter two is concerned with the interpretation of
existential and universal quantifiers in DFSes. By utilizing the results of H. Thiele, it was possible
to precisely characterise how these quantifiers are modelled in a DFS.

After portraying the most important properties of DFSes, we turn to the foundational question of
defining DFSes through an independent axiom set. The original axiom set (DFS-1) to (DFS-9)
still contains some subtle interdependencies some of which are caused with the use of multiplace
quantifiers in the construction of induced truth functions. It was therefore decided to replace the
original construction of induced fuzzy truth functions by an alternative definition which does not
depend on quantifiers of arities greater than one. The alternative definition is justified by the
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fact that it coincides with the original construction in all DFSes, as has been shown in the third
chapter. We can hence replace the old construction with the new one without altering the target
class of QFMs that qualify as DFSes. By exploiting the benefits of the new construction for induced
connectives, it was possible to replace the original DFS axioms with an equivalent axiom set (Z-1)
to (Z-6). In order to prove that the new axiom set is independent, we have introduced a special class
of QFMs definable in terms of a three-valued cutting mechanism(•)γ. These provide the required
candidate models which validate all of the axioms (Z-1) to (Z-6) except for one particular axiom,
thus proving its independence. To facilitate the independence proof, the dependencies between
certain conditions on the aggregation mappingsB and the ‘Z-conditions’ have been studied in
detail. In particular, we have provided a characterisation of the class ofMB-DFSes in terms of
necessary and sufficient conditions on the aggregation mapping. Based on these preparations, the
independence proof of the revised axiom system is straightforward.
After enhancing the foundations of DFS theory, a number of additional adequacy conditions have
been formalized and investigated. Some novel results on properties of DFSes have also been
presented. For example, we have introduced the notion of a specificity consistent∨̃-DFSes and
shown that a collection of such DFSes has an upper specificity bound exactly if it is specificity
consistent. This is important because one is often interested in obtaining as specific results as
possible. A formula which reveals the exact form of the least upper bound has also been presented.
Next, two continuity conditions on QFMs have been introduced, which capture distinct smoothness
or robustness considerations on QFMs: A QFM is Q-continuous if similar semi-fuzzy quantifiers
are mapped to similar fuzzy quantifiers, while it is arg-continuous if the resulting fuzzy quantifiers
are smooth (i.e. similar fuzzy argument sets map to similar results). These continuity conditions
have not been incorporated into the DFS axioms in order not to exclude certain boundary cases of
DFSes (e.g. DFSes which induce the drastic productt-norm, and are hence discontinuous in their
arguments). However, every practical model should possess these properties.
Apart from these continuity conditions, two additional properties have been formalized which are
concerned with the propagation of fuzziness. It seems reasonable to assume that whenever either
the quantifier or the argument sets become fuzzier, the computed quantification results should
become fuzzier, too. As we have seen, allMB-DFSes fulfill these properties, but other DFSes
may fall short of it.
We have also considered an insensitivity property called contextuality, and all DFSes have been
shown to satisfy this very elementary adequacy criterion. Unfortunately, contextuality conflicts
with another desirable property, viz. the preservation of convexity. It has been argued that un-
der conditions considerably weaker than the DFS axioms, it is not possible to preserve convexity
properties of a quantifier, not even of the quantitative variety. Only if one restricts attention to
quantitative one-place quantifiers on finite base sets, convexity properties can be preserved by
some DFSes (e.g.MCX).
Finally, we have discussed the construction of fuzzy argument insertion: A QFM compliant with
fuzzy argument insertion permits for a representation of intermediate quantifiers which result from
inserting a fuzzy argument into one of the argument positions through suitable semi-fuzzy quanti-
fiers. This property is important because it allows for a compositional interpretation of quantifiers
restricted by fuzzy adjectives; however, it is very restrictive. For example, we have shown that
among the class of standard DFSes, only a single model exists that fulfills this property, again the
DFSMCX .
Turning toMB-DFSes, we have shown these can be compared for specificity and used this to spell
out the most specific and least specificMB-DFSes. We have then introduced the particularly well-
behaved DFSMCX , and shown that it weakly preserves convexity and even complies with fuzzy
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argument insertion. Next we have presented necessary and sufficient conditions for anMB-DFS
to be Q-continuous or arg-continuos. Based on these conditions, it was then easily shown that
a number of DFSes (including the modelMCX) satisfy both continuity conditions, while other
MB-DFSes (in particular the most specific and least specific cases) fail to be continuous and are
hence not practical models.

In order to gain more knowledge on DFSes, and in particular the special role ofMCX , an apparent
way of obtaining upper and lower bounds on the quantification results of DFSes has been formal-
ized and investigated. In some cases, these bounds are specific enough to uniquely determine the
interpretation of a given quantifier (for example, this is the case with quantifiers of the typeat least
k, but only when restricting attention to standard DFSes). In the case of a DFS which fulfills the
condition on fuzzy argument insertion, the upper and lower bounds reduce to a particularly simple
form. This can be used to show that among all standard DFSes, onlyMCX is compatible with
fuzzy argument insertion. In addition, this uncovers thatMCX can be evaluated through (possibly
infinitary) logical formulas, and hence implements the so-called substitution approach to fuzzy
quantification.
Some other theorems are also apparent from this representation ofMCX . For example, it is eas-
ily shown thatMCX generalizes the Sugeno integral, and hence the FG-count approach to fuzzy
quantification. The representation ofMCX can be further simplified in the case of quantitative one-
place quantifiers. Using a suitable fuzzy interval cardinality measure, the quantification results of
MCX can be computed directly from interval cardinality information. Some further insensitivity
properties ofMCX can also be proven from this representation.
Finally, we were able to use these results to prove that all standard DFSes agree on two-valued
quantifiers, and in this case, they coincide with the well-known fuzzification mechanism proposed
by B.R. Gaines as a foundation for fuzzy reasoning [7].15

15This is apparent from [9, Th-59, p.77].
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Appendix

I have adopted the convention of calling any proposition which occurs in the main text atheorem,
and of calling any proposition which only occurs in the proofs alemma. Theorems are referred to
as Th-n, wheren is the number of the theorem, and lemmata are referred to as L-n, wheren is the
number of the lemma. Equations which are embedded in proofs are referred to as(n), wheren is
the number of the equation.

A Proofs of Theorems in Chapter 2

A.1 Proof of Theorem 2

The claim a. thatF̃(id2) = idI has been shown in [9, Th-2, p.27]. The claim b. that¬̃ is a
strong negation operator has been proven in [9, Th-3, p.28]. Finally, it has been shown in [9,
Th-6, p.30] and [9, Th-7, p.31] that̃∧ is a t-norm, ∨̃ is an s-norm and→̃ can be expressed as
x1 →̃ x2 = ¬̃x1 ∨̃ x2.

A.2 Proof of Theorem 17

The claim of part a. has been shown in [9, Th-21, p.40]. Part b. corresponds to [9, Th-22, p.40].

A.3 Proof of Theorem 21

SupposeE 6= ∅ is an arbitrary nonempty base set.

1. F(∀E) : P̃(E) -I is a T-quantifier. Let us consider the defining propertiesa. to d. of
Def. 36.

a. This property is ensured by Th-20.b;

b. This property is apparent from the fact that∀E : P(E) -I is constantly zero in the range
(∅, E ∩ ¬{e}). By Th-7,F(∀E) is locally constant in that range, too, and Th-1 tells us that
it is constantly zero in that range;

c. This property is ensured by Th-6;

d. This property is ensured by Th-15, noting that the crisp universal quantifier∀E : P(E) -2
is quantitative.

2. F(∃E) : P̃(E) -I is an S-quantifier. Here we consider the defining propertiesa. to d. of
Def. 37.

a. This property is apparent from the fact that∃E : P(E) -I is constantly one in the range
({e}, E). By Th-7,F(∃E) is locally constant in that range, too, and Th-1 tells us that it is
constantly one in that range;

b. This property is ensured by Th-19.b;

c. This property is ensured by Th-6;

d. This property is ensured by Th-15, noting that the crisp existential quantifier∃E : P(E) -2
is quantitative.



A PROOFS OF THEOREMS IN CHAPTER 2 82

A.4 Proof of Theorem 24

By Th-21,F(∀E) : P̃(E) -I is a T-quantifier. By Th-22,F(∀E) can be decomposed in the way
claimed by the theorem. The only claim which remains to be shown is that∧̃F(∀E) = ∧̃. But this
is apparent from Th-20.c and Def. 38.

A.5 Proof of Theorem 25

By Th-21,F(∃E) : P̃(E) -I is an S-quantifier. By Th-23,F(∃E) can be decomposed in the
form claimed by the theorem. Again, the only claim which remains to be shown is that∨̃F(∃E) = ∨̃.
This is obvious from Th-19 and Def. 39.

A.6 Proof of Theorem 26

SupposeF is a DFS.

a. By Th-17, the induced extension principlêF is uniquely determined by the interpretation of
existential quantifiers inF . Hence By Th-25, the interpretation of existential quantifiers inF is
uniquely determined by its induced disjunction∨̃. HenceF̂ is uniquely determined by the induced
disjunction∨̃.

b. See [9, Th-25, p. 41].

A.7 Proof of Theorem 30

It is apparent from Th-29 thatFglb is a ∨̃-DFS. It is also apparent fromm 1
2
X �c x for all x ∈ X

that Fglb �c Fj for all j ∈ J , i.e. Fglb is a lower specificity bound on(Fj)j∈J . It remains
to be shown thatFglb is a greatestlower bound. Hence letF a lower specificity bound on
(Fj)j∈J ; we shall assume thatF �c Fglb fails. Then there existsQ : P(E)n -I, X1, . . . , Xn ∈
P̃(E) such thatF(Q)(X1, . . . , Xn) �

c
Fglb(Q)(X1, . . . , Xn). We may assume without loss of

generality thatFglb(Q)(X1, . . . , Xn) ≥ 1
2

(otherwise, we might use¬Q rather thanQ). Then
F(Q)(X1, . . . , Xn)�

c
Fglb(Q)(X1, . . . , Xn) means that either

a. F(Q)(X1, . . . , Xn) > Fglb(Q)(X1, . . . , Xn), or

b. F(Q)(X1, . . . , Xn) < 1
2
.

We shall consider these cases in turn.

Case a.: F(Q)(X1, . . . , Xn) > Fglb(Q)(X1, . . . , Xn).
BecauseFglb(Q)(X1, . . . , Xn) ≥ 1

2
, we know from Def. 46, Def. 45 that

Fglb(Q)(X1, . . . , Xn) = m 1
2
{Fj(Q)(X1, . . . , Xn) : j ∈ J }

= max(1
2
, inf{Fj(Q)(X1, . . . , Xn) : j ∈ J } .

Hence for allε > 0, there existsj′ ∈ J such that

Fj′(Q)(X1, . . . , Xn) < Fglb(Q)(X1, . . . , Xn) + ε .
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In particular, substitutingε = F(Q)(X1, . . . , Xn) − Fglb(Q)(X1, . . . , Xn) > 0, we conclude that
there existsj′ ∈ J such that

Fj′(Q)(X1, . . . , Xn) < F(Q)(X1, . . . , Xn) .

BecauseF(Q)(X1, . . . , Xn) > 1
2
, this means thatF(Q)(X1, . . . , Xn) �

c
Fj′(Q)(X1, . . . , Xn),

cf. (9). Hence by Def. 44,F�
c
Fj′, which contradicts the assumption thatF be a lower specificity

bound on(Fj)j∈J .

Case b.: F(Q)(X1, . . . , Xn) < 1
2 .

In this case, we conclude fromFglb(Q)(X1, . . . , Xn) ≥ 1
2

and Def. 45, Def. 46 that

sup{Fj(Q)(X1, . . . , Xn) : j ∈ J } ≥ 1
2
.

Hence for allε > 0, there existsj′ ∈ J such that

Fj′(Q)(X1, . . . , Xn) > 1
2
− ε .

In particular, substitutingε = 1
2
− F(Q)(X1, . . . , Xn) > 0, we conclude that there existsj ∈ J

such that

Fj′(Q)(X1, . . . , Xn) > F(Q)(X1, . . . , Xn) .

BecauseF(Q)(X1, . . . , Xn) < 1
2
, this means by (9) that

F(Q)(X1, . . . , Xn)�
c
Fj′(Q)(X1, . . . , Xn)

and in turn,F �
c
Fj′ by Def. 44. HenceF is not a lower specificity bound on(Fj)j∈J .

B Proofs of Theorems in Chapter 3

B.1 Proof of Theorem 33

Let us first observe that by (10), we have

Im ιn,Ei ∩ Im ιn,Ej = ∅ (38)

if i 6= j, and hence

ι̂ n,Ei (Xi) ∩ Im ιn,Ej =

{
∅ : i 6= j

ι̂ n,Ej (Xj) : i = j
(39)

for all i, j ∈ {1, . . . , n} andX1, . . . , Xn ∈ P̃(E). Therefore

(ι n,Ej )−1(
n
∪
i=1

ι̂ n,Ei (Xi))

= (ι n,Ej )−1((
n
∪
i=1

ι̂ n,Ei (Xi)) ∩ Im ιn,Ej ) becausef−1(A) = f−1(A ∩ Im f)

= (ι n,Ej )−1(
n
∪
i=1

(ι̂ n,Ei (Xi) ∩ Im ιn,Ej )) by distributivity of∩ and∪

= (ι n,Ej )−1(ι̂ n,Ej (Xj)) by (39)

= Xj ,
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i.e.

(ι n,Ej )−1(
n
∪
i=1

ι̂ n,Ei (Xi)) = Xj . (40)

It is then apparent that

〈Q〉(
n
∪
i=1

ι̂ n,Ei (Xi))

= Q((ι n,E1 )−1(
n
∪
i=1

ι̂ n,Ei (Xi)), . . . , (ι
n,E
n )−1(

n
∪
i=1

ι̂ n,Ei (Xi))) by Def. 55

= Q(X1, . . . , Xn) by (40).

B.2 Proof of Theorem 34

Let us first state some lemmata which will facilitate the proof of the theorem.

Lemma 1
Let ˜̃∨ : I× I -I a mapping such that0 ˜̃∨ x = x ˜̃∨ 0 = x for all x ∈ I. Further letn ∈ N \ {0},
j ∈ {1, . . . , n} andxj ∈ I. If xi = 0 for all i 6= j, then

n

[˜̃∨]
i=1

xi = xj .

Proof By induction onn.

a. n = 1.

Thenj = 1 and hence

1

[˜̃∨]
i=1

xj = x1 by Def. 58.a

= xj .

b. n > 1. We will distinguish two cases.

1. j = 1. Then

n

[˜̃∨]
i=1

xi = x1
˜̃∨ n−1

[˜̃∨]
i=1

xi+1 by Def. 58.b

= x1
˜̃∨ n−1

[˜̃∨]
i=1

0 by condition onxi, j = 1

= x1
˜̃∨ 0 by induction hypothesis forn− 1

= x1 by condition oñ̃∨.
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2. j > 1. Then

n

[˜̃∨]
i=1

xi = x1
˜̃∨ n−1

[˜̃∨]
i=1

xi+1 by Def. 58.b

= 0 ˜̃∨ n−1

[˜̃∨]
i=1

xi+1 by assumption onxi andj > 1

=

n−1

[˜̃∨]
i=1

xi+1 by condition oñ̃∨

= xj by induction hypothesis forn− 1.

Lemma 2
Supposẽ̃∨ : I×I -I satisfiesx ˜̃∨0 = 0 ˜̃∨x = x for all x ∈ I. Further supposeE is a non-empty

set andn ∈ N \ {0}. For all X1, . . . , Xn ∈ P̃(E), [˜̃∪]
n

i=1
ˆ̂ι
n,E

i (Xi) ∈ P̃(En) is the fuzzy set with
membership degrees

µ
[˜̃∪]

n

i=1
ˆ
ι̂
n,E

i (Xi)
(e, j) = µXj(e) ,

for all (e, j) ∈ En.

Proof Let X1, . . . , Xn ∈ P̃(E) and (e, k) ∈ En be given. By the definition of the standard
extension principle,

µˆ
ι̂
n,E

i (Xi)
(e, j) =

{
µXi(e) : j = i
0 : j 6= i

(41)

for all i ∈ {1, . . . , n}, becauseιn,Ei is injective andIm ιn,Ei = {(e, i) : e ∈ E}.
In particular,xi = µˆ

ι̂
n,E

i (Xi)
(e, j) satisfies the condition of L-1, which shows that

n

[˜̃∨]
i=1

µˆ
ι̂
n,E

i (Xi)
(e, j) = µˆ

ι̂
n,E

j (Xj)
(e, j) = µXj(e) . (42)

for all (e, j) ∈ En. Hence

µ
[˜̃∪]

n

i=1
ˆ
ι̂
n,E

i (Xi)
(e, j)

=

n

[˜̃∨]
i=i

µˆ
ι̂
n,E

i (Xi)
(e, j) by (13)

= µXj(e) by (42),

which finishes the proof.
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Proof of Theorem 34

LetX ∈ P̃(En) andj ∈ {1, . . . , n}. Consider somee ∈ E.

µ
(
ˆ
ι̂
n,E

j )−1([˜̃∪]
n

i=1
ˆ
ι̂
n,E

i (Xi))
(e)

= µ
[˜̃∪]

n

i=1
ˆ
ι̂
n,E

i (Xi)
(ιn,Ej (e)) by Def. 34

= µ
[˜̃∪]

n

i=1
ˆ
ι̂
n,E

i (Xi)
(e, j) by Def. 54

= µXj(e) by L-2,

i.e.

(ˆ̂ι
n,E

j )−1(

n

[˜̃∪]
i=1

ˆ̂ι
n,E

i (Xi)) = Xj (43)

From this we obtain

〈Q̃〉(
n

[˜̃∪]
i=1

ˆ̂ι
n,E

i (Xi))

= Q̃((ˆ̂ι
n,E

1 )−1(X), . . . , (ˆ̂ι
n,E

n )−1(X)) by Def. 56

= Q̃(X1, . . . , Xn) by (43).

B.3 Proof of Theorem 35

An immediate consequence of Th-33 is the following lemma:

Lemma 3
SupposeF is a QFM with the following properties:

a. for all semi-fuzzy quantifiersQ : P(E)n -I of arity n > 0,

F(Q∪) = F(Q)˜̃∪ ; (44)

b. F satisfies(DFS 9)(functional application).

Then for every semi-fuzzy quantifierQ : P(E)n -I of arity n > 0,

F(Q) = F(〈Q〉)˜̃∪n ◦ n
×
i=1
F̂(ιn,Ei ) .

Notes

• The conditions of the lemma are of course satisfied by every DFSF .

• The lemma has been stated in somewhat more general form (rather than for DFSes only)
in order to allow for the case where we have limited knowledge about the properties ofF
beyond those mentioned in the theorem.
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Proof SupposeF satisfies the requirements of the lemma, and letQ : P(E)n -I an arbitrary
semi-fuzzy quantifier (n > 0). Then for allX1, . . . , Xn,

F(Q)(X1, . . . , Xn)

= F(〈Q〉∪n ◦
n
×
i=1

ι̂ n,Ei )(X1, . . . , Xn) by Th-33

= F(〈Q〉)∪̃n ◦
n
×
i=1
F̂(ιn,Ei )(X1, . . . , Xn) by (44), (DFS 9).

Proof of Theorem 35

ConsiderX ∈ P̃(En). WithX1 = (ˆ̂ι
n,E

1 )−1(X), . . . , Xn = (ˆ̂ι
n,E

n )−1(X) we have

X =

n

[˜̃∪]
i=1

ˆ̂ι
n,E

i (Xi) . (45)

Hence

F(〈Q〉)(X)

= F(〈Q〉)(
n

[˜̃∪]
i=1

ˆ̂ι
n,E

i (Xi)) by (45)

= F(Q)(X1, . . . , Xn) by L-3, (12)

= 〈F(Q)〉(
n

[˜̃∪]
i=1

ˆ̂ι
n,E

i (Xi)) by Th-34

= 〈F(Q)〉(X) by (45).

B.4 Proof of Theorem 36

Lemma 4
For all n ∈ N \ {0}, i ∈ {1, . . . , n} andZ ∈ P({)1, . . . , n},

(η−1(Z))i = πi(Z) .

Proof By the definition ofη (see Def. 50), it is apparent that

η−1(Z) = (χZ(1), . . . , χZ(n)) ,

for all Z ∈ P({1, . . . , n}). The claim of the lemma is obtained recalling that

πi(Z) = χZ(i)

by Def. 6.

Lemma 5
Supposef : 2n -I is a semi-fuzzy truth function with arityn > 0. Then

〈f ∗〉 = Qf ◦ %̂ ,

where% : {∗}n -{1, . . . , n} is defined by

%(∗, i) = i (46)

for all (∗, i) ∈ {∗}n.
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Proof Easy noting that for allW ∈ P({∗}n), i ∈ {1, . . . , n},

πi(%̂(W )) (47)

= χ%̂(W )(i) by Def. 6 (48)

= χW (∗, i) by Def. 17,% bijection,%−1(i) = (∗, i). (49)

On the other hand,

π∗((ι
n,{∗}
i )−1(W )) (50)

= χ
(ι
n,{∗}
i )−1(W )

(∗) by Def. 6 (51)

= χW (∗, i) by Def. 54, Def. 33,% bijection. (52)

Therefore

(Qf ◦ %̂)(W )

= Qf (%̂(W ))

= f(η−1(%̂(W ))) by Def. 52

= f(π1(%̂(W )), . . . , πn(%̂(W ))) by L-4

= f(χW (∗, 1), . . . , χW (∗, n)) by (49)

= f(π∗((ι
n,{∗}

1 )−1(W )), . . . , π∗((ι
n,{∗}
n )−1(W ))) by (52)

= 〈f〉(W ) by Def. 55.

Lemma 6
For all n ∈ N \ {0} andx1, . . . , xn ∈ I,

η̃(x1, . . . , xn) = ˆ̂%(

n

[˜̃∪]
i=1

ˆ̂ι
n,{∗}
i (π̃−1

∗ (xi)) ,

where% : {∗}n -{1, . . . , n} is defined as in L-5.

Proof To this end, let us observe that

µ ˆ
%̂([˜̃∪]

n

i=1
ˆ
ι̂
n,{∗}
i (π̃−1

∗ (xi)))
(j)

= µ
[˜̃∪]

n

i=1
ˆ
ι̂
n,{∗}
i (π̃−1

∗ (xi))
(∗, j) because% bijection,%−1(j) = (∗, j)

= µπ̃−1
∗ (xj)

(∗) by L-2

= xj by Def. 6

= µη̃(x1,...,xn)(j) by Def. 51.

Hence

µ ˆ
%̂([˜̃∪]

n

i=1
ˆ
ι̂
n,{∗}
i (π̃−1

∗ (xi)))
(j) = µη̃(x1,...,xn)(j)

for all n ∈ N \ {0}, j ∈ {1, . . . , n} andx1, . . . , xn ∈ I, i.e.

ˆ̂%(

n

[˜̃∪]
i=1

ˆ̂ι
n,{∗}
i (π̃−1

∗ (xi))) = η̃(x1, . . . , xn) .
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Proof of Theorem 36

Supposef : 2n -I is a semi-fuzzy truth function andx1, . . . , xn ∈ I. Then

F̃(f)(x1, . . . , xn)

= F(f ∗)(π̃−1
∗ (x1), . . . , π̃−1

∗ (xn)) by Def. 8

= 〈F(f ∗)〉˜̃∪n ◦ n
×
i=1
F̂(ι

n,{∗}
i )(π̃−1

∗ (xi)) by Th-34

= 〈F(f ∗)〉˜̃∪n ◦ n
×
i=1

ˆ̂ι
n,{∗}
i (π̃−1

∗ (xi)) by Th-14

= F(〈f ∗〉)˜̃∪n ◦ n
×
i=1

ˆ̂ι
n,{∗}
i (π̃−1

∗ (xi)) by Th-35

= F(Qf ◦ %̂)˜̃∪n ◦ n
×
i=1

ˆ̂ι
n,{∗}
i (π̃−1

∗ (xi)) by L-5

= F(Qf ) ◦ ˆ̂%˜̃∪n ◦ n
×
i=1

ˆ̂ι
n,{∗}
i (π̃−1

∗ (xi)) by (DFS 9), Th-14 (% injective)

= F(Qf )(η̃(x1, . . . , xn)) by L-6

=
˜̃F(f)(x1, . . . , xn) by Def. 52.

B.5 Proof of Theorem 37

a. SupposeF is a DFS (i.e. a model of the axiom set DFS). Then by Th-36,

F̃(¬) =
˜̃F(¬)

F̃(∧) =
˜̃F(∧) ,

i.e. DFS’ (wherẽ¬ is replaced bỹ̃¬, and∧̃ is replaced bỹ̃∧) coincides with DFS, of whichF is a
model by assumption.

b. SupposeF is a model of DFS’. Then in particular,F satisfies (DFS 2) (which coincides with
(DFS 2)’, because it does not refer to negation or conjunction). In addition,F satisfies (DFS 3)’,
i.e.

F(˜̃¬Q) = ˜̃¬F(Q)

for arbitrary semi-fuzzy quantifiersQ : P(E)n -I. The premises of Th-11 are hence satisfied,
according to which̃¬ = ˜̃¬, as desired, i.e. (DFS 3) holds forF . Becausẽ¬ = ˜̃¬, (DFS 5) and
(DFS 5)’ become identical, too, i.e. (DFS 5) is satisfied byF .
By similar reasoning, we observe thatF satisfies (DFS 6)’:

F(Q∩) = F(Q)˜̃∩
for all semi-fuzzy quantifiersQ : P(E)n -I of arity n > 0; in this case, the premises of Th-12

are satisfied, which tells us that˜̃∧ = ∧̃ and hence (DFS 6) holds.
All other axioms (DFSi)’ do not refer to the induced negation and induced conjunction and are
hence identical to the corresponding axiom (DFSi), which is then known to hold becauseF
satisfies all (DFSi)’ by assumption.
This finishes the proof thatF is a model of the original DFS axioms.
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B.6 Proof of Theorem 38

Let us first show that every QFM which satisfies the DFS axioms also satisfies Z-1 to Z-6.

Lemma 7
Every DFSF (i.e. model of the (DFS 1) to (DFS 9)) satisfies Z-1 to Z-6.

Proof

a. (Z-1) (correct generalisation) is apparent from Th-1.

b. (Z-2) (projection quantifiers) is immediate from Th-10.

c. (Z-3) (dualisation) is apparent from Th-3 and Th-36;

d. (Z-4) (internal joins) is known to hold from Th-4 and Th-36;

e. (Z-5) coincides with (DFS 8).

f. (Z-6) coincides with (DFS 9).

This finishes the proof that every DFS satisfies Z-1 to Z-6.
Let us now turn to the converse problem of showing that every model of Z-1 to Z-6 also satisfies
the original DFS axioms. We shall exploit that by Th-37, we can use DFS’ where the induced
negation and conjunction according to the “new” construction of induced connectives are used.
It is then apparent that the following DFS axioms hold:

Lemma 8
SupposeF is a QFM. IfF satisfies (Z-1) to (Z-6), thenF satisfies(DFS 1), (DFS 2), (DFS 8)and
(DFS 9).

Proof Trivial:

a. (DFS 1) is a subcase of (Z-1);

b. (DFS 2) is a subcase of (Z-2);

c. (DFS 8) coincides with (Z-5);

d. (DFS 9) coincides with (Z-6).

It remains to be shown that every model of Z-1 to Z-6 also satisfies (DFS 3), (DFS 4), (DFS 5),
(DFS 6) and (DFS 7).

Lemma 9
Supposef : E -E ′ is some mapping, whereE andE ′ are nonempty, and further supposeF is
a QFM which satisfies(Z-2). If e′ ∈ E ′ is such that

χf̂(•)(e
′) = πe (53)

for somee ∈ E, then

µF̂(f)(X)(e
′) = π̃e(X) ,

for all X ∈ P̃(E).
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Proof Trivial:

µF̂(f)(X)(e
′) = F(χf̂(•)(e

′))(X) by Def. 19

= F(πe)(X) by (53)

= π̃e(X) by (Z-2).

Lemma 10
Supposef : E -E ′ is some mapping, whereE,E ′ are nonempty, and supposeF is a QFM
which satisfies(Z-1) and (Z-5). Then for alle′ ∈ E ′ \ Im f ,

µF̂(f)(X)(e
′) = 0 ,

for all X ∈ P̃(E).

Proof Trivial:

If e′ ∈ E ′ \ Im f , then

χf̂(X)(e
′) = 0 (54)

for all X ∈ P(E), i.e. χf̂(•)(e
′) : P(E) -I is constantly zero. In particular, it is nonincreasing,

i.e.F(χf̂(•)(e
′)) is nonincreasing by (Z-5). We hence obtain:

µF̂(f)(X)(e
′) = F(χf̂(•)(e

′))(X) by Def. 19

≤ F(χf̂(•)(e
′))(∅) nonincreasing quantifier (see above)

= χf̂(∅)(e
′) by (Z-1)

= 0 by (54).

BecauseµF̂(f)(X)(e
′) ∈ I, i.e.µF̂(f)(X)(e

′) ≥ 0, this proves the claim.

From this, we obtain that the induced extension principle of a QFM which satisfies (Z-1), (Z-2)
and (Z-5) is guaranteed to behave as expected for injective mappings:

Lemma 11
SupposeF is a QFM which satisfies(Z-1), (Z-2) and (Z-5). Further let nonempty setsE, E ′ be

given. Iff : E -E ′ is injective, thenF̂(f) =
ˆ̂
f , i.e.

µF̂(f)(X)(e
′) =

{
µX(f−1(e′)) : e′ ∈ Im f
0 : e′ /∈ Im f

for all X ∈ E, e′ ∈ E ′.
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Proof

a. e′ ∈ Im f . Becausef is injective,e = f−1(e′) is the only element ofE such thatf(e) = e′.
Therefore

e′ ∈ f̂(X)⇔ e ∈ X

for all X ∈ P(E); in other words,

χf̂(X)(e
′) = πe(X)

for all X ∈ P(E). The preconditions of L-9 are satisfied, and we obtain

µF̂(f)(X)(e
′) = π̃e(X)

for all X ∈ P̃(E), as desired.

b. e′ /∈ Im f .

Then by L-10,

µF̂(f)(X)(e
′) = 0 .

Lemma 12 (Induced negation)

If a QFMF satisfies Z-1 to Z-6, theñ̃¬ =
˜̃F(¬) : I -I is a strong negation operator.

Proof

a. ˜̃¬ 0 = 1 and˜̃¬ 1 = 0 by (Z-1).

b. ˜̃¬ is monotonically nonincreasing by (Z-5) because¬ is nonincreasing.

c. ˜̃¬ ˜̃¬x = x for all x ∈ I, i.e. ˜̃¬ is involutive.

To see this, choose some singleton set{∗}. We then have

π∗
˜̃� = π∗ , (55)

because we already know bya. that ˜̃¬¬x = x for x ∈ {0, 1}. Hence

π̃∗ = F(π∗) by (Z-2)

= F(π∗
˜̃�) by (55)

= F(π∗)
˜̃� by (Z-3)

= π̃∗
˜̃� by (Z-2),
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i.e.

π̃∗ = π̃∗
˜̃� . (56)

Now letx ∈ I andX ∈ P̃({∗}), defined byµX(∗) = x. Then

x = µX(∗) by definition ofX

= π̃∗X by definition ofπ̃∗

= π̃∗
˜̃�X by (56)

= ˜̃¬ π̃∗(˜̃¬X) by definition of dualisation

= ˜̃¬ ˜̃¬x ,
where the last step is apparent because˜̃¬X ∈ P̃({∗}) hasµ˜̃¬X(∗) = ˜̃¬µX(∗) = ˜̃¬x and hence

π̃∗(˜̃¬X) = µ˜̃¬X(∗) = ˜̃¬x, i.e. ˜̃¬ π̃∗(˜̃¬X) = ˜̃¬ ˜̃¬x. This finishes the proof that̃̃¬ is a strong
negation operator.

Lemma 13

Q∨ = ∃{1,2} ,

where∃{1,2} : P({1, 2}) -2 is defined by

∃{1,2}(X) =

{
1 : X 6= ∅
0 : X = ∅

(57)

for all X ∈ P({1, 2}).

Proof Trivial, by checking all four choices ofX ∈ P({1, 2}).

Lemma 14 (Induced disjunction)

If a QFMF satisfies Z-1 to Z-6, theñ̃∨ =
˜̃F(∨) : I× I -I has the following properties:

a. x ˜̃∨ 0 = x, for all x ∈ I

b. x1
˜̃∨ x2 = x2

˜̃∨ x1 for all x1, x2 ∈ I (commutativity)

Note. This means that at this point, we have shown that˜̃∨ has certain important properties of an

s-norm. The remaining properties ofs-norms (x ˜̃∨ 1 = 1, nondecreasing monotonicity, and asso-
ciativity) also hold but we have dropped the proofs in the sake of brevity because these properties
will not be needed in the following.
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Proof

a. x ˜̃∨ 0 = x, for all x ∈ I

To this end, let us considerc1 : {1} -{1, 2}, defined byc1(1) = 1. Observing that

π1 = ∃{1,2} ◦ ĉ1 , (58)

we obtain by (Z-6) and (Z-2) that

π̃1 = F(∃{1,2}) ◦ F̂(c1) . (59)

Now let us consider̂F(c1) ∈ P̃({1, 2}).
Clearlyχĉ1(X)(1) = χX(1) = π1(X) for all X ∈ P({1}), i.e.

χĉ1(•)(1) = π1 . (60)

By L-9, we then have

µF̂(c1)(X)(1) = π̃1(X) (61)

for all X ∈ P̃({1}).
Furthermore2 /∈ Im c1 and hence by L-10,

µF̂(c1)(X)(2) = 0 (62)

for all X ∈ P̃({1}).
Combining this, we obtain for allx ∈ I,

x = π̃1(η̃(x)) by Def. 7, Def. 51

= F(∃{1,2})(F̂(c1)(η̃(x))) by (59)

= F(∃{1,2})(η̃(x, 0)) by (61), (62), Def. 51

= x ˜̃∨ 0 by Def. 52, L-13.

b. x1
˜̃∨ x2 = x2

˜̃∨ x1 for all x1, x2 ∈ I, i.e. ˜̃∨ is commutative.

To see this, let us first considerβ : {1, 2} -{1, 2} defined byβ(1) = 2, β(2) = 1. Then

χβ̂(Y )(1) =

{
1 : 2 ∈ Y
0 : 2 /∈ Y

for all Y ∈ P({1, 2}), i.e.

χβ̂(•)(1) = π2 . (63)

By analogous reasoning,

χβ̂(•)(2) = π1 . (64)
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Recalling the definition of the induced extension principle, we then have

µF̂(β)(X)(1) = F(χβ̂(•)(1))(X) by Def. 19

= F(π2)(X) by (63)

= π̃2(X) by (Z-2)

= µX(2) by Def. 7

for all X ∈ P̃({1, 2}), i.e.

µF̂(β)(X)(1) = µX(2) . (65)

By analogous reasoning using (64),

µF̂(β)(X)(2) = µX(1) . (66)

Let is now recall the alternative construction of induced connectives. For allx1, x2 ∈ I,

x1
˜̃∨ x2 = F(Q∨)(η̃(x1, x2)) by Def. 52

= F(∃{1,2})(η̃(x1, x2)) by L-13

= F(∃{1,2} ◦ β̂)(η̃(x1, x2)) because∃{1,2} quantitative,β automorphism

= F(∃{1,2})(F̂(β)(η̃(x1, x2))) by (Z-6)

= F(∃{1,2})(η̃(x2, x1)) by (65),(66) and Def. 51

= F(Q∨)(η̃(x2, x1)) by L-13

= x2
˜̃∨ x1 by Def. 52.

In order to prove that the new axiom system still entails (DFS 7), we will first state some lemmata.

Lemma 15
SupposeF is a QFM which satisfies Z-1 to Z-6 andQ : P(E) -I is a monadic semi-fuzzy
quantifier. Then for allA ∈ P(E),

F(Q/A) = F(Q)/A .

Proof Both F(Q/A) : P̃(E)
0
-I andF(Q)/A : P̃(E)

0
-I are nullary fuzzy quantifiers

and hence defined on the empty tuple∅ only. So let us check their behaviour on the empty
argument:

F(Q)/A(∅) = F(Q)(A) by Def. 15

= Q(A) by (Z-1)

= (Q/A)(∅) by Def. 15

= F(Q/A)(∅) by (Z-1).
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Lemma 16
SupposeQ : P(E)n -I is a semi-fuzzy quantifier of arityn > 1 andA ∈ P(E). Then

Q/A = 〈Q〉 ◦ ĥ ˜̃� ◦ k̂ ˜̃�∪n−1 ◦
n−1
×
i=1

ι̂ n−1,E
i (67)

where

E ′′ = En−1 ∪ {(e, n) : e ∈ A} , (68)

k : En−1
-E ′′ is the inclusion

k(e, i) = (e, i) (69)

for all (e, i) ∈ En−1, andh : E ′′ -En is the inclusion

h(e, i) = (e, i) (70)

for all (e, i) ∈ E ′′.

Proof Let us abbreviate

Z =
n−1
∪
i=1

ι̂ n−1,E
i (Xi) . (71)

We shall first take a closer look at some sets which will occur as subexpressions in the main proof
of the lemma. Clearly

k̂(¬Z) = k̂(En−1 \ Z) = En−1 \ Z (72)

by (69). BecauseA \ (A \B) = A ∩B, we have

En−1 \ (En−1 \ Z) = En−1 ∩ Z (73)

= Z becauseZ ⊆ En−1. (74)

Abbreviating

A′ = {(e, n) : e ∈ A} , (75)

and noting thatEn−1 ∩ A′ = ∅, in particular(En−1 \ Z) ∩ A′ = ∅, we further have

A′ \ (En−1 \ Z) = A′ . (76)

Combining this, we obtain that¬k̂(¬Z) ∈ P(E ′′) is the set

¬k̂(¬Z) = E ′′ \ k̂(¬Z)

= (En−1 ∪ A′) \ (En−1 \ Z) by (68), (72), (75)

= (En−1 \ (En−1 \ Z)) ∪ (A′ \ (En−1 \ Z)) byA \B = A ∩ ¬B and distributivity

= Z ∪ A′ by (74), (76)
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From this we obtain by (70),

ĥ(¬k̂(¬Z)) = Z ∪ A′ . (77)

Noting that

A′ = ι̂ n,Ei (A) ,

we may substituteXn = A and utilize (11) to obtain

ĥ(¬k̂(¬Z)) =
n
∪
i=1

ι̂ n,Ei (Xi) . (78)

Based on this equation, the proof of the lemma is now easy:

(〈Q〉 ◦ ĥ ˜̃� ◦ k̂ ˜̃�∪n−1 ◦
n−1
×
i=1

ι̂ n−1,E
i )(X1, . . . , Xn−1)

= (〈Q〉 ◦ ĥ ˜̃� ◦ k̂ ˜̃�)(Z) by (71)

= ˜̃¬(〈Q〉 ◦ ĥ ˜̃� ◦ k̂)(¬Z) by Def. 12

= ˜̃¬(〈Q〉 ◦ ĥ ˜̃�(k̂(¬Z)) by Def. 21

= ˜̃¬ ˜̃¬(〈Q〉 ◦ ĥ)(¬k̂(¬Z)) by Def. 12

= (〈Q〉 ◦ ĥ)(¬k̂(¬Z)) by L-12, ˜̃¬ involutive

= 〈Q〉(ĥ(¬k̂(¬Z))) by Def. 21

= 〈Q〉(
n
∪
i=1

ι̂ n,Ei (Xi)) by (78)

= Q(X1, . . . , Xn−1, A) by Th-33,Xn = A.

Lemma 17
SupposeF is a QFM which satisfies Z-1 to Z-6,Q : P(E)n -I is a semi-fuzzy quantifier of arity
n > 1, andA ∈ P(E). Then (using the same abbreviations as in the previous lemma),

〈F(Q)〉 ◦ ˆ̂
h
˜̃� ◦ ˆ̂

k
˜̃�˜̃∪n−1

◦
n−1
×
i=1

ˆ̂ι
n−1,E

i = 〈F(Q)〉˜̃∪n ◦ n
×
i=1

ˆ̂ι
n,E

i /A .

Proof LetX1, . . . , Xn−1 ∈ P̃(E) and let us abbreviate

X =

n−1

[˜̃∪]
i=1

ˆ̂ι
n−1,E

i (Xi) .

Then by L-2 and Def. 20,

µˆ
k̂(˜̃¬X)

(e, j) =

{ ˜̃¬µXj(e) : j 6= n
0 : j = n

(79)

for all (e, j) ∈ E ′′. Hence by L-12 (̃̃¬ involutive, ˜̃¬ 0 = 1),

µ˜̃¬ ˆ
k̂(˜̃¬X)

(e, j) =

{
µXj(e) : j 6= n
1 : j = n

(80)
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for all (e, j) ∈ E ′′. Therefore

µˆ
ĥ(˜̃¬ ˆ

k̂(˜̃¬X))
(e, j) =

{
µ˜̃¬ ˆ

k̂(˜̃¬X)
(e, j) : (e, j) ∈ E ′′

0 : else
(81)

=


µXj(e) : j 6= n
1 : j = n ande ∈ A
0 : j = n ande /∈ A

(82)

=

{
µXj(e) : j 6= n
χA(e) : j = n

(83)

= µ
[˜̃∪]

n

i=1
ˆ
ι̂
n,E

i (Xi)
(e, j) (84)

for all (e, j) ∈ En, where the last step holds by L-2 provided we substituteXn = A.

(〈F(Q)〉 ◦ ˆ̂
h
˜̃� ◦ ˆ̂

k
˜̃�˜̃∪n−1

◦
n−1
×
i=1

ˆ̂ι
n−1,E

i )(X1, . . . , Xn−1)

= (〈F(Q)〉 ◦ ˆ̂
h
˜̃� ◦ ˆ̂

k
˜̃�)(X) by (79), (12)

= ˜̃¬(〈F(Q)〉 ◦ ˆ̂
h
˜̃� ◦ ˆ̂

k)(˜̃¬X) by Def. 12

= ˜̃¬(〈F(Q)〉 ◦ ˆ̂
h
˜̃�)(

ˆ̂
k(˜̃¬X)) by Def. 21

= ˜̃¬ ˜̃¬(〈F(Q)〉 ◦ ˆ̂
h)(˜̃¬ ˆ̂

k(˜̃¬X)) by Def. 12

= (〈F(Q)〉 ◦ ˆ̂
h)(˜̃¬ ˆ̂

k(˜̃¬X)) by L-12, ˜̃¬ involutive

= 〈F(Q)〉(ˆ̂h(˜̃¬ ˆ̂
k(˜̃¬X))) by Def. 21

= 〈F(Q)〉(
n

[˜̃∪]
i=1

ˆ̂ι
n,E

i (Xi)) by (84),Xn = A

= (〈F(Q)〉˜̃∪n ◦ n
×
i=1

ˆ̂ι
n,E

i )(X1, . . . , Xn−1, A) by (12),Xn = A

= (〈F(Q)〉˜̃∪n ◦ n
×
i=1

ˆ̂ι
n,E

i /A)(X1, . . . , Xn−1) by Def. 15.

Lemma 18 (Argument insertion)
If a QFMF satisfies Z-1 to Z-6, then it also satisfies(DFS 7).
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Proof The casen = 1 is covered by L-15. Hence let us assume thatn > 1. Then, using the
abbreviations of L-16,

= F(Q/A)

= F(〈Q〉 ◦ ĥ ˜̃� ◦ k̂ ˜̃�∪n−1 ◦
n−1
×
i=1

ι̂ n−1,E
i ) by L-16

= F(〈Q〉) ◦ F̂(h)
˜̃� ◦ F̂(k)

˜̃�˜̃∪n−1

◦
n−1
×
i=1
F̂(ιn−1,E

i ) by (Z-3), (Z-6)

= F(〈Q〉 ◦ ĥ ˜̃� ◦ k̂ ˜̃�∪n−1 ◦
n−1
×
i=1

ι̂ n−1,E
i ) by L-11

= 〈F(Q)〉˜̃∪n ◦ n
×
i=1

ˆ̂ι
n,E

i /A by L-17

= F(Q)/A by Th-34.

Lemma 19 (External negation)
If a QFMF satisfies Z-1 to Z-6, then it also satisfies(DFS 3)’.

Proof LetQ : P(E)n -I a semi-fuzzy quantifier,n > 0. Then apparently˜̃¬Q = Q∪ ˜̃�/E . (85)

From this, we obtain

F(˜̃¬Q) = F(Q∪ ˜̃�/E) by (85)

= F(Q)∪̃ ˜̃�/E by L-18, (Z-3) and (Z-4)

= ˜̃¬F(Q) ,

where the last step hold because˜̃¬ 1 = 0 by L-12, i.e. ˜̃¬E = ∅, and becausex ˜̃∨ 0 = x by L-14,

i.e.X ˜̃∪∅ = X for all X ∈ P̃(E).

Lemma 20 (Internal complementation)
If a QFMF satisfies Z-1 to Z-6, then it also satisfies(DFS 5)’.

Proof LetQ : P(E)n -I a semi-fuzzy quantifier,n > 0. Becausẽ̃¬ is involutive by L-12, it
holds that

Q¬ = ˜̃¬Q ˜̃� . (86)

For the same reason,

F(Q)˜̃¬ = ˜̃¬F(Q)
˜̃� . (87)

Hence

F(Q¬) = F(˜̃¬Q ˜̃�) by (86)

= ˜̃¬F(Q)
˜̃� by L-19, (Z-3)

= F(Q)˜̃¬ by (87).



B PROOFS OF THEOREMS IN CHAPTER 3 100

Lemma 21
SupposeQ : P(E)n -I is a semi-fuzzy quantifier of arityn > 0 andi ∈ {1, . . . , n}. Then

〈Qτi〉 = 〈Q〉 ◦ β̂ ,

whereβ : En -En is defined by

β(e, j) = (e, τi(j)) , (88)

for all (e, j) ∈ En.

Proof Let us first observe that

(ι n,Ek )−1(β̂(X))

= {e ∈ E : (e, k) ∈ β̂(X)} by Def. 33, Def. 54

= {e ∈ E : β−1(e, k) ∈ X} by Def. 17,β bijective

= {e ∈ E : (e, τ−1
i (k)) ∈ X} by (88)

= {e ∈ E : (e, τi(k) ∈ X} by (5)

= (ι n,Eτi(k))
−1(X) .

i.e.

(ι n,Ek )−1(β̂(X)) = (ι n,Eτi(k))
−1(X) (89)

Therefore

(〈Q〉 ◦ β̂)(X)

= Q((ι n,E1 )−1(β̂(X)), . . . , (ι n,En )−1(β̂(X))) by Def. 55

= Q((ι n,Eτi(1))
−1(X), . . . , (ι n,Eτi(n))

−1(X)) by (89)

= (Qτi)((ι
n,E

1 )−1(X), . . . , (ι n,En )−1(X)) by Def. 13

= 〈Qτi〉(X) by Def. 55.

Lemma 22
Supposẽ̃∨ : I×I -I satisfiesx˜̃∨0 = 0˜̃∨x = x for all x ∈ I, and˜̃∪ is the fuzzy union elementwise

defined in terms of̃̃∨. Then for all base setsE 6= ∅ and alln ∈ N \ {0}, i ∈ {1, . . . , n},

ˆ̂
β(

n

[˜̃∪]
j=1

ˆ̂ι
n,E

j (Xj)) =

n

[˜̃∪]
j=1

ˆ̂ι
n,E

τi(j)
(Xj) ,

whereβ is defined as in L-21.
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Proof For all (e, k) ∈ En,

µ ˆ
β̂([˜̃∪]

n

j=1
ˆ
ι̂
n,E

j (Xj))
(e, k)

= µ
[˜̃∪]

n

j=1
ˆ
ι̂
n,E

j (Xj)
(β−1(e, k)) by Def. 20,β bijective

= µ
[˜̃∪]

n

j=1
ˆ
ι̂
n,E

j (Xj)
(e, τ−1

i (k)) by (88)

= µX
τ−1
i

(k)
(e) by L-2

= µXτi(k)
(e) by (5)

= µ
[˜̃∪]

n

j=1
ˆ
ι̂
n,E

j (Xτi(j))
(e, k) by L-2.

Lemma 23 (Argument transposition)
If a QFMF satisfies Z-1 to Z-6, then it also satisfies(DFS 4).

Proof

F(Qτi)

= F(〈Qτi〉∪n ◦
n
×
j=1

ι̂ n,Ej ) by Th-33

= F(〈Qτi〉)˜̃∪n ◦ n
×
j=1
F̂(ιn,Ej ) by (Z-4), (Z-6)

= F(〈Qτi〉)˜̃∪n ◦ n
×
j=1

ˆ̂ι
n,E

j by L-11

= F(〈Q〉 ◦ β̂)˜̃∪n ◦ n
×
j=1

ˆ̂ι
n,E

j by L-21

= F(〈Q〉) ◦ F̂(β)˜̃∪n ◦ n
×
j=1

ˆ̂ι
n,E

j by (Z-6)

= F(〈Q〉) ◦ ˆ̂
β ˜̃∪n ◦ n

×
j=1

ˆ̂ι
n,E

j by L-11,β injection

= 〈F(Q)〉 ◦ ˆ̂
β ˜̃∪n ◦ n

×
j=1

ˆ̂ι
n,E

j by Th-35

= 〈F(Q)〉˜̃∪n ◦ n
×
j=1

ˆ̂ι
n,E

j τi by L-22

= F(Q)τi by Def. 13.

Lemma 24
For all x1, x2 ∈ I and fuzzy complement operators defined by some˜̃¬ : I× I -I,

η̃(˜̃¬x1, ˜̃¬x2) = ˜̃¬ η̃(x1, x2) .
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Proof η̃(˜̃¬x1, ˜̃¬x2), ˜̃¬ η̃(x1, x2) ∈ P̃({1, 2}), i.e. we can show element-wise fore ∈ {1, 2} that
both fuzzy subsets coincide. Ife = 1,

µ˜̃¬ η̃(x1,x2)(1)

= ˜̃¬µη̃(x1,x2)(1) by Def. 9

= ˜̃¬x1 by Def. 51

= µη̃(˜̃¬x1,˜̃¬x2)(1) by Def. 51.

The casee = 2 is treated analogously.

Lemma 25 (Duality of ˜̃∧ and ˜̃∨)
SupposeF is a QFM which satisfies Z-1 to Z-6. Then for allx1, x2 ∈ I,

x1
˜̃∨ x2 = ˜̃¬(˜̃¬x1

˜̃∧ ˜̃¬x1)

x1
˜̃∧ x2 = ˜̃¬(˜̃¬x1

˜̃∨ ˜̃¬x2) .

Proof Let us first observe that by similar reasoning as in L-13, we have

Q∧ = ∀{1,2} , (90)

where∀{1,2} : P({1, 2}) -2 is defined by

∀{1,2}(X) =

{
1 : X = {1, 2}
0 : else

for all X ∈ P({1, 2}).
Let x1, x2 ∈ I. Then

x1
˜̃∨ x2 = F(Q∨)(η̃(x1, x2)) by Def. 52

= F(∃{1,2})(η̃(x1, x2)) by L-13

= F(∀{1,2}
˜̃�)(η̃(x1, x2)) by duality of∃ and∀, and˜̃¬ 0 = 1,˜̃¬ 1 = 0 (see L-12)

= F(∀{1,2})
˜̃�(η̃(x1, x2)) by (Z-3)

= ˜̃¬F(∀{1,2})˜̃¬(η̃(x1, x2)) by Def. 12

= ˜̃¬F(∀{1,2})(˜̃¬ η̃(x1, x2)) by Def. 10, Def. 11

= ˜̃¬F(∀{1,2})(η̃(˜̃¬x1, ˜̃¬x2)) by L-24

= ˜̃¬F(Q∧)(η̃(˜̃¬x1, ˜̃¬x2)) by (90)

= ˜̃¬(˜̃¬x1
˜̃∧ ˜̃¬x2) by Def. 52.

This proves the first equation. From this we obtain:

x1
˜̃∧ x2 = ˜̃¬ ˜̃¬(˜̃¬ ˜̃¬x1

˜̃∧ ˜̃¬ ˜̃¬x2) by L-12, ˜̃¬ is involutive

= ˜̃¬(˜̃¬x1
˜̃∨ ˜̃¬x2) by first equation of lemma.

Lemma 26 (Internal meets)
If a QFMF satisfies Z-1 to Z-6, then it also satisfies(DFS 6)’.



C PROOFS OF THEOREMS IN CHAPTER 4 103

Proof This is simple noting that

Q∩ = Q¬∪¬τn¬τn (91)

by De Morgan’s law.
Therefore

F(Q∩) = F(Q¬∪¬τn¬τn) by (91)

= F(Q)˜̃¬˜̃∪˜̃¬τn ˜̃¬τn by L-23, L-20, (Z-4)

= F(Q)˜̃∩ by L-25.

Proof of Theorem 38

L-7 shows that every model of the DFS axioms also satisfies Z-1 to Z-6.
As concerns the converse direction, a QFMF which satisfies Z-1 to Z-6 is known to fulfill

Axiom by Lemma
(DFS 1) L-8
(DFS 2) L-8
(DFS 3)’ L-19
(DFS 4) L-23
(DFS 5)’ L-20
(DFS 6)’ L-26
(DFS 7) L-18
(DFS 8) L-8
(DFS 9) L-8

Recalling that (DFSi) coincides with (DFSi)’ for i ∈ {1, 2, 4, 7, 8, 9}, this means thatF is a
model of DFS’. From Th-37, we obtain thatF is a model of the DFS axioms.

C Proofs of Theorems in Chapter 4

C.1 Proof of Theorem 41

a. Supposef ∈ B is some mapping andQ : P(I) -I andX ∈ P̃(I) are defined by (Th-41.a.i)
and (Th-41.a.ii), resp.
By the definition ofX, µX(z) ≥ 1

2
for all z ∈ I and hence

(X)max
γ = I by Def. 66 (92)

i.e.

inf (X)max
γ = 0 (93)

for all γ ∈ I. Considering(X)min
γ , we firstly have

(X)min
0 = (X)

>
1
2

by Def. 66

= {z ∈ I : µX(z) > 1
2
} by Def. 65

= {z ∈ I : z > 0} by (Th-41.a.ii)
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i.e.

(X)min
0 = (0, 1] . (94)

In the case thatγ > 0, we obtain

(X)min
γ = (X)

≥1
2

+
1
2
γ

by Def. 66

= {z ∈ I : µX(z) ≥ 1
2

+ 1
2
γ} by Def. 64

= {z ∈ I : 1
2

+ 1
2
z ≥ 1

2
+ 1

2
γ} by (Th-41.a.ii)

= {z ∈ I : z ≥ γ} ,

i.e.

(X)min
γ = [γ, 1] . (95)

Summarising (94) and (95), we have

inf (X)min
γ = γ . (96)

We shall now discern the cases thatf ∈ B+, f ∈ B
1
2 andf ∈ B−.

1. f ∈ B+. Then

Qγ(X) = m 1
2
(Q((X)min

γ ), Q((X)max
γ )) by monotonicity ofQ and (14)

= m 1
2
(f(inf (X)min

γ ), f(inf (X)max
γ )) by (Th-41.a.i)

= m 1
2
(f(γ), f(0)) by (93), (96)

= f(γ)

where the last step holds by the definition ofm 1
2

because1
2
≤ f(γ) ≤ f(0) by the nonin-

creasing monotonicity off ∈ B+ (see Def. 45 and Def. 68).

2. f ∈ B
1
2 , i.e. f = c1

2
. Then

Q(Y ) = c1
2
(inf Y ) = 1

2
(97)

for all Y ∈ P(I) and hence

Qγ(X) = m 1
2
{Q(Y ) : Y ∈ Tγ(X)} by Def. 67

= m 1
2
{1

2
: Y ∈ Tγ(X)} by (97),Tγ(X) 6= ∅

= m 1
2
{1

2
}

= 1
2

by Def. 46

= c1
2
(γ)

i.e.Qγ(X) = f(γ), as desired.
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3. f ∈ B−. Then

Qγ(X) = m 1
2
(Q((X)min

γ ), Q((X)max
γ )) by monotonicity ofQ and (14)

= m 1
2
(f(inf (X)min

) γ, f(inf (X)max
γ )) by (Th-41.a.i)

= m 1
2
(f(γ), f(0)) by (93), (96)

= f(γ)

where the last step holds by the definition ofm 1
2

becausef(0) ≤ f(γ) ≤ 1
2

by the nondecreasing
monotonicity off ∈ B+ (see Def. 45 and Def. 68).

b. Supposef ∈ B is some mapping andQ : P(I) -I andX ∈ P̃(I) are defined by (Th-41.b.i)
and (Th-41.b.ii), resp.

By the definition ofX, µX(z) ≤ 1
2

for all z ∈ I and hence

(X)min
γ = ∅ by Def. 66 (98)

i.e.

sup (X)min
γ = sup∅ = 0 (99)

for all γ ∈ I. Considering(X)max
γ , we firstly have

(X)max
0 = (X)

≥1
2

by Def. 66

= {z ∈ I : µX(z) ≥ 1
2
} by Def. 64

= {0} by (Th-41.b.ii)

i.e.

(X)max
0 = {0} . (100)

In the case thatγ > 0, we obtain

(X)max
γ = (X)

>
1
2
−1

2
γ

by Def. 66

= {z ∈ I : µX(z) > 1
2
− 1

2
γ} by Def. 65

= {z ∈ I : 1
2
− 1

2
z > 1

2
− 1

2
γ} by (Th-41.a.ii)

= {z ∈ I : z < γ} ,

i.e.

(X)max
γ = [0, γ) . (101)

Summarising (100) and (101), we have

inf (X)max
γ = γ . (102)

We shall now discern the cases thatf ∈ B+, f ∈ B
1
2 andf ∈ B−.
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1. f ∈ B+. Then

Qγ(X) = m 1
2
(Q((X)min

γ ), Q((X)max
γ )) by monotonicity ofQ and (14)

= m 1
2
(f(sup (X)min

γ ), f(sup (X)max
γ )) by (Th-41.b.i)

= m 1
2
(f(0), f(γ)) by (99), (102)

= f(γ)

where the last step holds by the definition ofm 1
2

because1
2
≤ f(γ) ≤ f(0) by the nonin-

creasing monotonicity off ∈ B+ (see Def. 45 and Def. 68).

2. f ∈ B
1
2 , i.e. f = c1

2
. Then

Q(Y ) = c1
2
(supY ) = 1

2
(103)

for all Y ∈ P(I) and hence

Qγ(X) = m 1
2
{Q(Y ) : Y ∈ Tγ(X)} by Def. 67

= m 1
2
{1

2
: Y ∈ Tγ(X)} by (103),Tγ(X) 6= ∅

= m 1
2
{1

2
}

= 1
2

by Def. 46

= c1
2
(γ)

i.e.Qγ(X) = f(γ), as desired.

3. f ∈ B−. Then

Qγ(X) = m 1
2
(Q((X)min

γ ), Q((X)max
γ )) by monotonicity ofQ and (14)

= m 1
2
(f(sup (X)min

) γ, f(sup (X)max
γ )) by (Th-41.b.i)

= m 1
2
(f(0), f(γ)) by (99), (102)

= f(γ)

where the last step holds by the definition ofm 1
2

becausef(0) ≤ f(γ) ≤ 1
2

by the nondecreasing
monotonicity off ∈ B+ (see Def. 45 and Def. 68).

C.2 Proof of Theorem 43

Assumef : [a, b] - [c, d] is a given mapping, wherea ≤ b andc ≤ d.

a. f nondecreasing,z ∈ (a, b].
Let us recall that a sequence(an)n∈N (an ∈ R for all n ∈ N) converges towardsa ∈ R (in symbols,
limn→∞ an = a) iff for every ε > 0, there exists someN(ε) ∈ N such that|an − a| < ε for all
n ≥ N(ε).
Let us also recall the definition of (lefthand-side) limes, i.e. we writelimx→z− f(x) = y for some
y ∈ [c, d] iff for every sequence(xn)n∈N such thatxn ∈ [a, z) and limn→∞ xn = z, we have
limn→∞ f(xn) = y.
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Hence let(xn)n∈N a sequence such thatxn ∈ [a, z) for all n ∈ N andlimn→∞ xn = z. We have to
show thatlimn→∞ f(xn) = s, where I have abbreviateds = sup{f(x) : x < z}.
To see this, letε > 0. Becausez ∈ (a, b], we know that{f(x) : x < z} = {f(x) : x ∈ [a, z)} 6= ∅,
and by the definition ofsup, there existsx′ ∈ [a, z) such that

|s− f(x′)| = s− f(x′) < ε .

Let ε′ = z − x′ > 0.

Becauselimn→∞ xn = z, there is anN(ε′) such that

z − xn = |z − xn| < ε′

for all n ≥ N(ε′), i.e.

xn > z − ε′ = z − (z − x′) = x′

for all n ≥ N(ε′). Therefore

f(xn) ≥ f(x′)

for all n ≥ N(ε′), i.e.

|s− f(xn)| = s− f(xn) ≤ s− f(x′) < ε .

We conclude that for allε > 0, there existsN(ε) = N(ε′) ∈ N such that|s − f(xn)| < ε for all
n ≥ N(ε), i.e. limn→∞ f(xn) exists andlimn→∞ f(xn) = s = sup{f(x) : x < z}.

c. f nonincreasing,z ∈ (a, b].
Then−f : [a, b] - [−d,−c] is nondecreasing and

lim
x→z−

f(x) = − lim
x→z−

−f(x)

= − sup{−f(x) : x < z} by part a. of theorem

= inf{−(−f(x)) : x < z}
= inf{f(x) : x < z} .

b. f nondecreasing,z ∈ [a, b).
Theng : [−b,−a] - [c, d], defined byg(x) = f(−x) for all x ∈ [−b,−a], is nonincreasing, and

lim
x→z+

f(x) = lim
x→(−z)−

f(−x)

= lim
x→(−z)−

g(x)

= inf{g(x) : x < −z} by part c. of the theorem

= inf{f(−x) : x < −z}
= inf{f(x) : x > z} .
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d. f nonincreasing,z ∈ [a, b).
Then−f : [a, b] - [−d,−c] is nondecreasing, and

lim
x→z+

f(x) = − lim
x→z+

−f(x)

= − inf{−f(x) : x > z} by part b. of the theorem

= sup{−(−f(x)) : x > z}
= sup{f(x) : x > z} .

C.3 Proof of Theorem 44

Lemma 27
SupposeE 6= ∅ is some base set andX ∈ P̆ (E) is a three-valued subset ofE. Then

Tγ(X) = X

for all γ ∈ I.

Proof

a. γ = 0. Then

νT0(X)(e) = t0(νX(e)) by Def. 63,X three-valued

=


1 : νX(e) > 1

2
1
2

: νX(e) = 1
2

0 : νX(e) < 1
2

by Def. 62

=


1 : νX(e) = 1
1
2

: νX(e) = 1
2

0 : νX(e) = 0

becauseX is three-valued

= νX(e) ,

for all e ∈ E, i.e.Tγ(X) = X.

b. γ > 0. In this case

νTγ(X)(e) = tγ(νX(e)) by Def. 63,X three-valued

=


1 : νX(e) ≥ 1

2
+ 1

2
γ

1
2

: 1
2
− 1

2
γ < νX(e) < 1

2
+ 1

2
γ

0 : νX(e) ≤ 1
2
− 1

2
γ

by Def. 62

=


1 : νX(e) = 1
1
2

: νX(e) = 1
2

0 : νX(e) = 0

becauseνX(e) is three-valued

= νX(e) ,

for all e ∈ E, i.e.Tγ(X) = X.
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Proof of Theorem 44

SupposeQ : P(E)n -I is a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̆ (E) are three-valued
argument sets. Noting that

Qγ(X1, . . . , Xn) = Q0(X1, . . . , Xn) (104)

because for three-valued argument sets,Tγ(Xi) = T0(Xi) for all γ ∈ I by L-27 and Def. 66, we
have

MB(Q)(X1, . . . , Xn) = B((Qγ(X1, . . . , Xn))γ∈I) by Def. 69

= Q0(X1, . . . , Xn) by (B-1), (104)

=M(Q)(X1, . . . , Xn) ,

where the last step holds by [9, Th-48, p. 65].

C.4 Proof of Theorem 45

SupposeB : B -I satisfies (B-1) and letQ : P(E)n -I be given wheren ∈ {0, 1}.

a. n = 0. ThenU(MB(Q)) = Q iff Q(∅) = MB(Q)(∅), where∅ is the only choice of
arguments (empty or null-tuple of crisp subsets). In particular,∅ is also an empty tuple of three-
valued subsets. This gives us

Q(∅) =M(Q)(∅) by Th-42 and Th-1

=MB(Q)(∅) by Th-44.

b. n = 1. In this case, the conditionU(MB(Q)) = Q is equivalent to

MB(Q)(X) = Q(X)

for all crisp subsetsX ∈ P(E). Noting that every crisp subsetX ∈ P(E) is also a three-valued
subset ofE, we immediately have

MB(Q)(X) =M(Q)(X) by Th-44,X three-valued

= Q(X) by Th-42 and Th-1

which finishes the proof.

C.5 Proof of Theorem 46

We first need some lemma.

Lemma 28 (M on three-valued quantifiers)
LetQ : P(E)n -{0, 1

2
, 1} a three-valued semi-fuzzy quantifier and(X1, . . . , Xn) ∈ P̃(E)

n
.

Then

M(Q)(X1, . . . , Xn) =


1
2

+ 1
2
f

1
2
∗ : f(0) > 1

2
1
2

: f(0) = 1
2

1
2
− 1

2
f

1
2
∗ : f(0) < 1

2
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where we have abbreviated

f(γ) = Qγ(X1, . . . , Xn)

for all γ ∈ I.

(See [9, L-33, p. 139])

Proof of Theorem 46

Let us consider some three-valued semi-fuzzy quantifierQ : P(E)n -{0, 1
2
, 1} and a choice of

fuzzy argumentsX1, . . . , Xn ∈ P̃(E). Noting that in this case,Qγ(X1, . . . , Xn) ∈ {0, 1
2
, 1} for

all γ ∈ I, the conditions of (B-3) are fulfilled and hence

MB(Q)(X1, . . . , Xn) = B((Qγ(X1, . . . , Xn))γ∈I) by Def. 69

=


1
2

+ 1
2
f

1
2
∗ :

1
2

:

1
2
− 1

2
f

1
2
∗ :

by (B-3), abbreviatingf(γ) = Qγ(X1, . . . , Xn)

=M(Q)(X1, . . . , Xn) by L-28

C.6 Proof of Theorem 47

LetE 6= ∅ be given and lete ∈ E. Then

MB(πe) =M(πe) by Th-46,πe two-valued

= π̃e by Th-42

C.7 Proof of Theorem 48

Let us recall some lemmata:

Lemma 29
If Q : P(E)n -I is a semi-fuzzy quantifier and(X1, . . . , Xn) ∈ P̃(E)

n
, then

(¬Q)γ(X1, . . . , Xn) = ¬(Qγ(X1, . . . , Xn))

for all γ ∈ I, where¬ : I -I is the standard negation¬x = 1− x.
(See [9, L-20])

Lemma 30
SupposeE 6= ∅ is a given base set andX ∈ P̃(E). Then

T0(¬X) = ¬T0(X) ,

where

¬T0(X) = {¬Y : Y ∈ T0(X)} .
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Proof By Def. 66,

T0(X) = {Y ∈ P(E) : (X)min
0 ⊆ Y ⊆ (X)max

0 }
where

(X)min
0 = (X)

>
1
2

(X)max
0 = (X)

≥1
2
.

Similarly,

T0(¬X) = {Y ∈ P(E) : (¬X)min
0 ⊆ Y ⊆ (¬X)max

0 },
where

(¬X)min
0 = (¬X)

>
1
2

= ¬((X)
≥1−1

2
) = ¬((X)

≥1
2
) = ¬(X)max

0 (105)

(¬X)max
0 = (¬X)

≥1
2

= ¬((X)
>1−1

2
) = ¬((X)

>
1
2
) = ¬(X)min

0 . (106)

BecauseA ⊆ B ⊆ C is equivalent to¬C ⊆ ¬B ⊆ ¬A for arbitraryA,B,C ∈ P(E), it is
apparent that

¬T0(X) = {¬Y : Y ∈ T0(X)}
= {¬Y : (X)

>
1
2
⊆ Y ⊆ (X)

≥1
2
}

= {¬Y : ¬((X)
≥1

2
) ⊆ ¬Y ⊆ ¬((X)

>
1
2
)}

= {Z : (¬X)min
0 ⊆ Z ⊆ (¬X)max

0 } by (105), (106), substitutionZ = ¬Y
= T0(¬X) .

Lemma 31
SupposeQ : P(E)n -I is a semi-fuzzy quantifier and(X1, . . . , Xn) ∈ P̃(E)

n
. Then

(Q¬)γ(X1, . . . , Xn) = Qγ(X1, . . . , Xn−1,¬Xn)

for all γ ∈ I.

Proof The case thatγ ∈ (0, 1] is covered by [9, L-22, p. 127]. It remains to be shown that the
equation holds ifγ = 0.
Hence letQ : P(E)n -I a semi-fuzzy quantifier wheren > 0, and suppose a choice of fuzzy
argument setsX1, . . . , Xn ∈ P̃(E) is given. Then

(Q¬)0(X1, . . . , Xn)

= m 1
2
{Q¬(Y1, . . . , Yn) : Yi ∈ T0(Xi)} by Def. 67

= m 1
2
{Q(Y1, . . . , Yn−1,¬Yn) : Yi ∈ T0(Xi)} by Def. 11

= m 1
2
{Q(Y1, . . . , Yn−1, Z)

: Y1 ∈ T0(X1), . . . , Yn−1 ∈ T0(Xn−1), Z ∈ ¬T0(Xn)} by substitutionZ = ¬Yn
= m 1

2
{Q(Y1, . . . , Yn−1, Z)

: Y1 ∈ T0(X1), . . . , T0(Xn−1), Z ∈ T0(¬Xn)} by L-30

= Q0(X1, . . . , Xn−1,¬Xn) , by Def. 67
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as desired.

Proof of Theorem 48

Let us first recall that by Th-46 and Th-42,MB induces the standard negation. Now letQ :
P(E)n -I be a semi-fuzzy quantifier (n > 0) and supposeX1, . . . , Xn ∈ P̃(E) are given.
Then, abbreviating¬x = 1− x,

(Q
˜̃�)γ(X1, . . . , Xn) = ¬Qγ(X1, . . . , Xn−1,¬Xn) (107)

by L-29 and L-31. Hence

MB(Q
˜̃�)(X1, . . . , Xn) = B((Q

˜̃�γ(X1, . . . , Xn))γ∈I) by Def. 69

= B(¬(Qγ(X1, . . . , Xn−1,¬Xn))γ∈I) by (107)

= ¬B((Qγ(X1, . . . , Xn−1,¬Xn))γ∈I) by (B-2)

= ¬MB(Q)(X1, . . . , Xn−1,¬Xn) by Def. 69

=MB(Q)
˜̃�(X1, . . . , Xn) by Def. 12

which finishes the proof.

C.8 Proof of Theorem 49

We need some lemmata.

Lemma 32
SupposeE 6= ∅ is some base set andX1, X2 ∈ P̃(E). Then

a. T0(X1 ∪X2) = T0(X1) ∪ T0(X2).

b. T0(X1 ∩X2) = T0(X1) ∩ T0(X2).

Proof

a. SupposeX1, X2 ∈ P̃(E) are given.

T0(X1 ∪X2) = {Z : (X1 ∪X2)min
0 ⊆ Z ⊆ (X1 ∪X2)max

0 } by Def. 66

= {Z : (X1 ∪X2)
>

1
2
⊆ Z ⊆ (X1 ∪X2)

≥1
2

by Def. 66

= {Z : (X1)
>

1
2
∪ (X2)

>
1
2
⊆ Z ⊆ (X1)

≥1
2
∪ (X2)

≥1
2
} by properties ofα-cuts

= {Z : (X1)min
0 ∪ (X2)min

0 ⊆ Z ⊆ (X1)max
0 ∪ (X2)max

0 } . by Def. 66

On the other hand,

T0(X1) ∪ T0(X2) = {Z1 ∪ Z2 : (X1)min
0 ⊆ Z1 ⊆ (X1)max

0 , (X2)min
0 ⊆ Z2 ⊆ (X2)max

0 } .

We will now show thatT0(X1) ∪ T0(X2) = T0(X1 ∪X2) by proving both inclusionsT0(X1) ∪
T0(X2) ⊆ T0(X1 ∪X2) andT0(X1) ∪ T0(X2) ⊇ T0(X1 ∪X2).
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To see that the first inclusion holds, letY1 ∈ T0(X1) andY2 ∈ T0(X2). ThenY1 ⊇ (X1)min
0 ,

Y2 ⊇ (X2)min
0 and by the monotonicity∪,

Y1 ∪ Y2 ⊇ (X1)min
0 ∪ (X2)min

0 = (X1 ∪X2)min
0 . (108)

(The last equation holds because(X1)min
0 ∪ (X2)min

0 = (X1)
>

1
2
∪ (X2)

>
1
2

= (X1 ∪X2)
>

1
2

=

(X1 ∪X2)min
0 ).

Again becauseY1 ∈ T0(X1) andY2 ∈ T0(X2), we haveY1 ⊆ (X1)max
0 andY2 ⊆ (X2)max

0 and by
the monotonicity of∪,

Y1 ∪ Y2 ⊆ (X1)max
0 ∪ (X2)max

0 = (X1 ∪X2)max
0 . (109)

(Again, the last equation holds becauseα-cuts are homomorphic with respect to the “union” oper-
ation∪). From (108), (109) we conclude by Def. 66 thatY1 ∪ Y2 ∈ T0(X1 ∪X2); this proves the
first inclusion.
Let us now prove the second inclusionT0(X1 ∪X2) ⊆ T0(X1)∪T0(X2). Hence letZ ∈ T0(X1 ∪X2),
i.e.

(X1 ∪X2)min
⊆ Z ⊆ (X1 ∪X2)max

0 .

Let us define

Y1 = Z ∩ (X1)max
0

Y2 = Z ∩ (X2)max
0 .

Then

Y1 ∪ Y2 = (Z ∩ (X1)max
0 ) ∪ (Z ∩ (X2)max

0 )

= (Z ∪ Z) ∩ (Z ∪ (X2)max
0 )

∩ ((X1)max
0 ∪ Z) ∩ ((X1)max

0 ∪ (X2)max
0 ) by distributivity of∪, ∩

= Z ∩ (Z ∪ (X2)max
0 ) ∩ ((X1)max

0 ∪ Z) ∩ ((X1)max
0 ∪ (X2)max

0 ) because∪ is idempotent

= Z ∩ ((X1)max
0 ∪X20) by absorption

= Z ,

where the last step holds becauseZ ⊆ ((X1)max
0 ∪ (X2)max

0 ).
It remains to be shown thatY1 ∈ T0(X1) andY2 ∈ T0(Y2). ClearlyZ ⊇ (X1 ∪X2)min

0 = (X1)min
0 ∪

(X2)min
0 and hence

Y1 = Z ∩ (X1)max
0

⊇ ((X1)min
0 ∪ (X2)min

0 ) ∩ (X1)max
0 by monotonicity of∩

= ((X1)min
0 ∩ (X1)max

0 ) ∪ ((X2)min
0 ∩ (X1)max

0 ) by distributivity

= (X1)min
0 ∪ ((X2)min

0 ∩ (X1)max
0 ) because(X1)min

0 ⊆ (X1)max
0

⊇ (X1)min
0 .

In addition,

Y1 = Z ∩ (X1)max
0 ⊆ (X1)max

0 .

HenceY1 ∈ T0(X1). By analogous reasoning,Y2 ∈ T0(X2). This proves thatT0(X1 ∪X2) ⊆
T0(X1) ∪ T0(X2).
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b. SupposeX1, X2 ∈ P̃(E) are given. Then

T0(X1 ∩X2) = T0(¬(¬X1 ∪ ¬X2)) by De Morgan’s Law

= ¬T0(¬X1 ∪ ¬X2) by L-30

= ¬(T0(¬X1) ∪ T0(¬X2)) by part a. of this lemma

= ¬(¬T0(X1) ∪ ¬T0(X2)) by L-30

= T0(X1) ∩ T0(X2) . by De Morgan’s Law

Lemma 33
LetQ : P(E)n -I an n-ary semi-fuzzy quantifier andX1, . . . , Xn+1 ∈ P̃(E). Then for all
γ ∈ I,

(Q∩)γ(X1, . . . , Xn+1) = Qγ(X1, . . . , Xn−1, Xn ∩Xn+1) .

Proof
The caseγ 6= 0 is covered by [9, L-23].
Let us now show that the above property also holds in the case thatγ = 0. Hence letQ :
P(E)n -I be a semi-fuzzy quantifier such thatn > 0 and supposeX1, ,̇Xn+1 ∈ P̃(E) are
given. Then

(Q∩)0(X1, . . . , Xn+1)

= m 1
2
{Q∩(Y1, . . . , Yn+1) : Yi ∈ T0(Xi)} by Def. 67

= m 1
2
{Q(Y1, . . . , Yn−1, Yn ∩ Yn+1) : Yi ∈ T0(Xi)} by Def. 14

= m 1
2
{Q(Y1, . . . , Yn−1, Z) : Y1 ∈ T0(X1), . . . , Yn−1 ∈ T0(Xn−1),

Z ∈ T0(Xn) ∩ T0(Xn+1)} substitutionZ = Yn ∩ Yn+1

= m 1
2
{Q(Y1, . . . , Yn−1, Z) : Y1 ∈ T0(X1), . . . , Yn−1 ∈ T0(Xn−1),

Z ∈ T0(Xn ∩Xn+1)} by L-32

= Q0(X1, . . . , Xn−1, Xn ∩Xn+1) , by Def. 67

as desired.

Lemma 34
SupposeQ : P(E)n -I is a semi-fuzzy quantifier,1 ≤ k ≤ n andX1, . . . , Xn ∈ P̃(E). Then,

Qγ(X1, . . . , Xk−1, Xn, Xk+1, . . . , Xn−1, Xk) = (Qτk)γ(X1, . . . , Xn)

for all γ ∈ I.
(See [9, L-21, p. 126])

Lemma 35
LetQ : P(E)n -I an n-ary semi-fuzzy quantifier andX1, . . . , Xn+1 ∈ P̃(E). Then for all
γ ∈ I,

(Q∪)γ(X1, . . . , Xn+1) = Qγ(X1, . . . , Xn−1, Xn ∩Xn+1) .
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Proof This is immediate if we observe that

(Qγ∪)(X1, . . . , Xn+1)

= (Q¬∩¬τn¬τn)γ(X1, . . . , Xn+1) by Def. 11, Def. 13, Def. 26 and DeMorgan’s law

= (Qγ¬∩¬τn¬τn)(X1, . . . , Xn+1) by L-31, L-33, L-34

= Qγ(X1, . . . ,¬(¬Xn ∩ ¬Xn+1)) by Def. 11, Def. 14, Def. 13

= Qγ(X1, . . . , Xn−1, Xn ∪Xn+1) by DeMorgan’s law.

Proof of Theorem 49

If B : B -I satisfies (B-3), then˜̃MB(∨) =
˜̃M(∨) by Th-46

= M̃(∨) by Th-42, Th-36

= ∨

becauseM is Standard-DFS by Th-42 (∨ : I × I -I denotes the standard disjunctiona ∨ b =
max(a, b)). HenceMB induces the standard union∪ of fuzzy sets (based onmax), and

MB(Q∪)(X1, . . . , Xn+1) = B(((Q∪)γ(X1, . . . , Xn+1))γ∈I) by Def. 69

= B((Qγ(X1, . . . , Xn−1, Xn ∪Xn+1))γ∈I) by L-35

=MB(Q)(X1, . . . , Xn−1, Xn ∪Xn+1) by Def. 69

=MB(Q)
˜̃�(X1, . . . , Xn+1) by Def. 26

as desired.

C.9 Proof of Theorem 50

Lemma 36
AssumeQ : P(E)n -I is nonincreasing in itsn-th argument. LetX1, . . . , Xn, X

′
n ∈ P̃(E)

whereXn ⊆ X ′n. Then for allγ ∈ I,

Qγ(X1, . . . , Xn) ≥ Qγ(X1, . . . , Xn−1, X
′
n) .

(See [9, L-25])

Proof of Theorem 50

SupposeB : B -I satisfies (B-5), andQ : P(E)n -I is a semi-fuzzy quantifier (n > 0) which
is nonincreasing in itsn-th argument. Further letX1, . . . , Xn, X

′
n ∈ P̃(E), Xn ⊆ X ′n. Then for

all γ ∈ I,

Qγ(X1, . . . , Xn) ≥ Qγ(X1, . . . , Xn−1, X
′
n) (110)

by L-36, i.e.

(Qγ(X1, . . . , Xn))γ∈I ≥ (Qγ(X1, . . . , Xn−1, X
′
n))γ∈I . (111)
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Hence

MB(Q)(X1, . . . , Xn) = B((Qγ(X1, . . . , Xn))γ∈I) by Def. 69

≥ B((Qγ(X1, . . . , Xn−1, X
′
n))γ∈I) by (111)

=MB(Q)(X1, . . . , Xn−1, X
′
n) by Def. 69.

C.10 Proof of Theorem 51

In order to establish the relationship between (B-4) and (Z-6), we will utilize an alternative defini-
tion of three-valued cuts (for rationale, see [9, p.133]). These are defined as follows.

Definition 106 (Alternative definition of three-valued cuts)

QHγ (X1, . . . , Xn) = m 1
2
{Q(Y1, . . . , Yn) : Y1 ∈ T Hγ (X1), . . . , Yn ∈ T Hγ (Xn)}

T Hγ (Xi) = {Y : (Xi)
Hmin
γ ⊆ Y ⊆ (Xi)

Hmax
γ }

(Xi)
Hmin
γ = (Xi)> 1

2
+ 1

2
γ

(Xi)
Hmax
γ =

{
(Xi)≥ 1

2
: γ = 0

(Xi)> 1
2
− 1

2
γ : γ > 0

This modified definition of three-valued cuts has the following property:

Lemma 37
LetQ : P(E)′

n -I a semi-fuzzy quantifierf1, . . . , fn : E -E ′ andX1, . . . , Xn ∈ P̃(E). Then
for all γ ∈ I \ {0},

(Q ◦
n
×
i=1

f̂i)
H

γ
(X1, . . . , Xn) = QHγ (

ˆ̂
f 1(X1), . . . ,

ˆ̂
fn(Xn)) ,

i.e. (Q ◦
n
×
i=1

f̂i)
H

γ
= QHγ ◦

n
×
i=1

ˆ̂
f i.

(See [9, L-27,p.133])

Let us also recall that the modified cuts are very closely related to our original definition of three-
valued cuts:

Lemma 38
LetQ : P(E)n -I a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E).

a. IfQ0(X1, . . . , Xn) ≥ 1
2
, thenQγ(X1, . . . , Xn) andQHγ (X1, . . . , Xn) are nonincreasing inγ

and for allγ ∈ I,

Qγ(X1, . . . , Xn) ≥ QHγ (X1, . . . , Xn) (a.i)

Qγ′(X1, . . . , Xn) ≤ QHγ (X1, . . . , Xn) for all γ′ > γ. (a.ii)

b. IfQ0(X1, . . . , Xn) ≤ 1
2
, thenQγ(X1, . . . , Xn) andQHγ (X1, . . . , Xn) are nondecreasing inγ

and for allγ ∈ I,

Qγ(X1, . . . , Xn) ≤ QHγ (X1, . . . , Xn) (b.i)

Qγ′(X1, . . . , Xn) ≥ QHγ (X1, . . . , Xn) for all γ′ > γ. (b.ii)
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(See [9, L-31,p.137])

Lemma 39

a. If f : I -I is nonincreasing, then

f ] ≤ f ≤ f [ .

b. If f : I -I is a constant mapping, thenf ] = f [ = f .

c. If f : I -I is nondecreasing, then

f [ ≤ f ≤ f ] .

Proof

a. Supposef : I -I is nonincreasing. We will first show thatf ] ≤ f , i.e. f ](x) ≤ f(x) for
eachx ∈ I. If x = 1, this holds trivially because by Def. 71,f ](1) = f(1). If x ∈ [0, 1), then

f(x) ≥ f(y) (112)

for all y > x becausef is assumed to be nonincreasing. In particular,

f(x) ≥ sup{f(y) : y ∈ I, y > x} by (112)

= lim
y→x+

f(y) by Th-43

= f ] . by Def. 71

To see thatf ≤ f [, consider somex ∈ I. In the case thatx = 0, f(0) = f [(0) holds by Def. 71. If
x ∈ (0, 1], we can utilize that

f(x) ≤ f(y) (113)

for all y < x, which holds becausef ∈ B+ is nonincreasing. Hence

f(x) ≤ inf{f(y) : y ∈ I, y < x} by (113)

= lim
y→x−

f(y) by Th-43

= f [(x) by Def. 71.

b. Obvious from Def. 71.

c. In the case thatf : I -I is nondecreasing, the proof is analogous to that ofa. However,
because of the converse monotonicity property, all inequations must be reversed compared toa..

Lemma 40
If B : B -I satisfies(B-4) and (B-5), then

B(f ]) = B(f) = B(f [)

for all f ∈ B.
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Proof Supposef ∈ B is given.

a. If f ∈ B+, then

B(f ]) ≤ B(f) by L-39, (B-5)

≤ B(f [) by L-39, (B-5)

= B(f ]) by (B-4).

b. If f ∈ B−, then similarly

B(f [) ≤ B(f) by L-39, (B-5)

≤ B(f ]) by L-39, (B-5)

= B(f [) by (B-4).

c. The casef = c1
2

is trivial by L-39.b.

Lemma 41
If f, g ∈ B satisfy

f |(0,1) = g|(0,1)

i.e. f(x) = g(x) for all x ∈ I \ {0, 1}, then

f [
]

= g[
]
.

Proof If x ∈ (0, 1], then

f [(x) = lim
y→x−

f(y) by Def. 71

= lim
y→x−

g(y) becausef |(0,1) = g|(0,1)

= g[(x) by Def. 71,

i.e.

f [|(0,1) = g[|(0,1) . (114)

From this we obtain for allx ∈ (0, 1)

f [
]

= lim
y→x+

f [(x) by Def. 71

= lim
y→x+

g[(x) because of (114)

= g[
]

by Def. 71.

In the case thatx = 1,

f [
]
(1) = f [(1) by Def. 71

= g[(1) by (114)

= g[
]
(1) by Def. 71.
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In the remaining case thatx = 0,

f [
]
(0) = lim

y→0+
f [(y) by Def. 71

= lim
y→0+

g[(y) because of (114)

= g[
]
(0) by Def. 71.

Lemma 42
If B : B -I satisfies(B-4) and (B-5) andf, g ∈ B satisfy

f |(0,1) = g|(0,1) ,

then

B(f) = B(g) .

Proof This is now trivial:

B(f) = B(f [
]
) by L-40

= B(g[
]
) by L-41

= B(g) by L-40.

Lemma 43
If B : B -I satisfies(B-4) and (B-5), then

B((Qγ(X1, . . . , Xn))γ∈I) = B((QHγ (X1, . . . , Xn))γ∈I)

for all semi-fuzzy quantifiersQ : P(E)n -I and allX1, . . . , Xn ∈ P̃(E).

Proof We shall discern three cases.

a. Qγ(X1, . . . , Xn) > 1
2
. Then

Qγ(X1, . . . , Xn) ≥ QHγ (X1, . . . , Xn)

for all γ ∈ I by L-38.a.i and hence

B((Qγ(X1, . . . , Xn))γ∈I) ≥ B((QHγ (X1, . . . , Xn))γ∈I) (115)

by (B-5).
On the other hand,

Q]
γ(X1, . . . , Xn) = lim

γ′→γ+
Qγ′(X1, . . . , Xn) by Def. 71

= sup{Qγ′(X1, . . . , Xn) : γ′ > γ} by Th-43

≤ QHγ (X1, . . . , Xn) by L-38.a.ii
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i.e.

Q]
γ(X1, . . . , Xn) ≤ QHγ (X1, . . . , Xn) (116)

for all γ ∈ [0, 1). Introducingf : I -I, defined by

f(γ) =

{
Q]

γ(X1, . . . , Xn) : γ < 1
1
2

: γ = 1
(117)

we clearly have

f(γ) ≤ QHγ (X1, . . . , Xn) (118)

for all γ ∈ I. This is obvious from (116) in the caseγ < 1, and fromQH1 (X1, . . . , Xn) ≥ 1
2

= f(1).
Hence

B((Qγ(X1, . . . , Xn))γ∈I) = B((Q]
γ(X1, . . . , Xn)) by (B-4)

= B(f) by L-42

≤ B((QHγ (X1, . . . , Xn))γ∈I) by (118), (B-5)

i.e.

B((Qγ(X1, . . . , Xn))γ∈I) ≤ B((QHγ (X1, . . . , Xn))γ∈I) . (119)

Combining the inequations (115) and (119), we get the desired result.

b. Qγ(X1, . . . , Xn) = 1
2
. Then

QHγ (X1, . . . , Xn) = Qγ(X1, . . . , Xn) = 1
2

for all γ ∈ I, i.e.B((QHγ (X1, . . . , Xn))γ∈I) = B((Qγ(X1, . . . , Xn))γ∈I) holds trivially.

b. Qγ(X1, . . . , Xn) < 1
2
. The proof of this case is entirely analogous to that ofa., using L-38.b.i

and L-38.b.ii rather than L-38.a.i and L-38.a.ii.

Proof of Theorem 51

SupposeB : B -I satisfies (B-3), (B-4) and (B-5). Further supposeQ : P(E)n -I is a
semi-fuzzy quantifier,f1, . . . , fn : E ′ -E are mappings andX1, . . . , Xn ∈ P̃(E ′). Then

MB(Q ◦
n
×
i=1

f̂i)(X1, . . . , Xn)

= B(((Q ◦
n
×
i=1

f̂i)γ(X1, . . . , Xn))γ∈I) by Def. 69

= B(((Q ◦
n
×
i=1

f̂i)
H

γ
(X1, . . . , Xn))γ∈I) by L-43

= B((QHγ (
ˆ̂
f1(X1), . . . ,

ˆ̂
fn(Xn)))γ∈I) by L-37, L-42

= B((Qγ(
ˆ̂
f1(X1), . . . ,

ˆ̂
fn(Xn)))γ∈I) by L-43

=MB(Q)(
ˆ̂
f1(X1), . . . ,

ˆ̂
fn(Xn)) by Def. 69

i.e. (Z-6) holds, as desired.
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C.11 Proof of Theorem 52

SupposeB : B -I satisfies (B-1) to (B-5). Then (Z-1) to (Z-6) hold by Th-45, Th-47, Th-48,
Th-49, Th-50 and Th-51. By Th-38, this proves thatMB is a DFS. From Th-46 and the fact that
M is a standard DFS by Th-42 it follows thatMB is a standard DFS, too.

C.12 Proof of Theorem 53

SupposeB ∈ BB, andB′ : H -I is related toB according to (24).

a.: (B-1) and (C-1) are equivalent. SupposeB satisfies (B-1) and letf ∈ H a constant, i.e.
f = ca for somea ∈ (0, 1]. Then

1
2

+ 1
2
f = 1

2
+ 1

2
ca = c1

2
+

1
2
a

(120)

(see (17)) and hence

B′(f) = 2B(1
2

+ 1
2
f)− 1 by (24)

= 2B(c1
2

+
1
2
a
)− 1 by (120)

= 2(1
2

+ 1
2
a)− 1 by (B-1)

= a

= f(0) , becausef = ca

i.e. (C-1) holds.
To see that (C-1) entails (B-1), supposeB′ satisfies (C-1) and letf ∈ B a constant, i.e.f = ca for
somea ∈ I.
i. a > 1

2
. Thenf ∈ B+ and

B(f) = 1
2

+ 1
2
B′(2f − 1) by (23),f ∈ B+

= 1
2

+ 1
2
B′(2ca − 1) becausef = ca

= 1
2

+ 1
2
B′(c2a−1) by (17)

= 1
2

+ 1
2
(2a− 1) by (C-1)

= a

= f(0) by assumption,f = ca

This proves thatB satisfies (B-1) in the case thatf = ca wherea > 1
2
. The casesii. (a = 1

2
) and

iii. (a < 1
2
) are treated similarly.

b.: (B-3) and (C-2) are equivalent SupposeB satisfies (B-3) and letf ∈ H a mapping such that
f(I) ⊆ {0, 1}, and defineg ∈ B+ by

g(γ) = 1
2

+ 1
2
f(γ) (121)

for all γ ∈ I. Then

f 0
∗ = inf{γ ∈ I : f(γ) = 0} by (19)

= inf{γ ∈ I : 1
2

+ 1
2
f(γ) = 1

2
}

= inf{γ ∈ I : g(γ) = 1
2
} by (121)

= g
1
2
∗ , by (20)
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i.e.

f 0
∗ = g

1
2
∗ . (122)

In addition, it is apparent from (121) andf(I) ⊆ {0, 1} that

g(I) ⊆ {1
2
, 1} . (123)

Therefore

B′(f) = 2B(1
2

+ 1
2
f)− 1 by (24)

= 2B(g)− 1 by (121)

= 2(1
2

+ 1
2
g

1
2
∗ )− 1 by (B-3), (123)

= g
1
2
∗

= f 0
∗ , by (122)

i.e. (C-2) holds.
To see that the converse direction of the equivalence holds, let us assume thatB′ satisfies (C-2).
Furthermore, letf ∈ B a mapping such thatf(I) ⊆ {0, 1

2
, 1}.

i. f ∈ B+, i.e. f(I) ⊆ {1
2
, 1} by Def. 68. Let us defineh ∈ H by h = 2f − 1. Then

h(I) ⊆ {0, 1} (124)

and

h0
∗ = inf{γ ∈ I : h(γ) = 0} by (19)

= inf{γ ∈ I : 2f(γ)− 1 = 0} by definition ofh

= inf{γ ∈ I : f(γ) = 1
2
}

= f
1
2
∗ , by (20)

i.e.

h0
∗ = f

1
2
∗ . (125)

Therefore

B(f) = 1
2

+ 1
2
B′(2f − 1) by (23),f ∈ B+

= 1
2

+ 1
2
B′(h) by definition ofh

= 1
2

+ 1
2
h0
∗ by (C-2)

= 1
2

+ 1
2
f

1
2
∗ , by (125)

i.e. (B-3) holds iff ∈ B+. The remaining casesii. (f ∈ B
1
2 ) and iii. (f ∈ B−) are treated

analogously.
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c.: (B-4) and the conjunction of (C-3.a)and (C-3.b)are equivalent SupposeB satisfies (B-4)
and letf ∈ H.

If f̂((0, 1] = {0}, thenf(γ) = 0 for all γ > 0. It is easily seen from Def. 71 that in this case,

(1
2

+ 1
2
f)

[
= 1

2
+ 1

2
f (126)

and

(1
2

+ 1
2
f)

]
= c1

2
. (127)

We may then conclude from (B-4) and (23) that that

B(1
2

+ 1
2
f) = B(c1

2
) = 1

2
. (128)

Therefore

B′(f) = 2B(1
2

+ 1
2
f)− 1 by (24)

= 2 · 1
2
− 1 by (128)

= 0 ,

i.e. (C-3.a) holds.

In the remaining case that̂f((0, 1] 6= {0},

B′(f ]) = 2B(1
2

+ 1
2
f ])− 1 by (24)

= 2B((1
2

+ 1
2
f)

]
)− 1 apparent from Def. 71

= 2B((1
2

+ 1
2
f)

[
)− 1 by (B-4)

= 2B(1
2

+ 1
2
f [)− 1 apparent from Def. 71

= B′(f [) . by (24)

Now let us consider the reverse direction of the equivalence. SupposeB′ satisfies (C-3.a) and
(C-3.b), and letf ∈ B be given.
i. f ∈ B+. Let us first consider the case thatf̂((0, 1]) = {1

2
}. Thenf ] = c1

2
andf [ = f (this is

apparent from Def. 71). We compute:

B(f ]) = B(c1
2
) becausef ] = c1

2

= 1
2

by (23)

= 1
2

+ 1
2
· 0

= 1
2

+ 1
2
B′(2f − 1) by (C-3.a)

= 1
2

+ 1
2
B′(2f [ − 1) becausef [ = f , see above

= B(f [) .
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Equation (C-3.a) is applicable becausef̂((0, 1]) = {1
2
} entails that ̂(2f − 1)((0, 1]) = {0}.

If f̂((0, 1]) 6= {1
2
}, then ̂(2f − 1)((0, 1]) 6= {0}, i.e. (C-3.b) is applicable. Therefore

B(f ]) = 1
2

+ 1
2
B′(2f ] − 1) by (23)

= 1
2

+ 1
2
B′((2f − 1)]) apparent from Def. 71

= 1
2

+ 1
2
B′((2f − 1)[) by (C-3.b)

= 1
2

+ 1
2
B′(2f [ − 1) apparent from Def. 71

= B(f [) . by (23)

ii., iii. : The remaining casesf ∈ B
1
2 andf ∈ B− are treated analogously.

d.: (B-5) and (C-4) are equivalent SupposeB satisfies (B-5) and letf, g ∈ H such thatf ≤ g.
Then

B′(f) = 2B(1
2

+ 1
2
f)− 1 by (24)

≤ 2B(1
2

+ 1
2
g)− 1 by (B-5),f ≤ g

= B′(g) , by (24)

i.e. (C-4) holds.
To see that the reverse direction of the equivalence holds, let us assume thatB′ satisfies (C-4).
Further suppose thatf, g ∈ B such thatf ≤ g. Let us first observe that

h ∈ B+ =⇒ B(h) ≥ 1
2

h ∈ B
1
2 =⇒ B(h) = 1

2

h ∈ B− =⇒ B(h) ≤ 1
2

for h ∈ {f, g}, which is apparent from (23). Because of these inequations, the only nontrivial
cases to be shown are

i. f, g ∈ B+

ii. f, g ∈ B−.

We shall only proveii. here because the proof ofi. is analogous.
Hence let us assume thatf, g ∈ B−, f ≤ g. Then

1− 2f ≥ 1− 2g . (129)

Therefore

B(f) = 1
2
− 1

2
B′(1− 2f) by (23),f ∈ B−

≤ 1
2
− 1

2
B′(1− 2g) by (C-4), (129)

= B(g) . by (23),g ∈ B−
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C.13 Proof of Theorem 56

Lemma 44
For every nullary semi-fuzzy quantifierQ : P(E)0 -I and allγ ∈ I,

Qγ(∅) = Q(∅) .

(See [9, L-18, p. 124])

Proof of Theorem 56

SupposeB : B -I does not satisfy (B-1), i.e. there is some constantf ∈ B such that

B(f) 6= f(0) . (130)

LetE 6= ∅ some set andQ : P(E)0 -I the constant semi-fuzzy quantifier defined by

Q(∅) = f(0) . (131)

Then

Qγ(∅) = Q(∅) by L-44

= f(0) by (131)

= f(γ) becausef constant (+)

for all γ ∈ I and hence

Q(∅) = f(0)

6= B(f) by (130)

= B((Qγ(∅))γ∈I) by (+)

=MB(Q)(∅) by Def. 69

i.e. (Z-1) fails onQ.

C.14 Proof of Theorem 57

In order to prove that (B-3) is necessary forMB to be a DFS, we first need some lemmata which
highlight the role off [ andf ].

Lemma 45

a. If f ∈ B+, then

f ](x) ≤ f [(x)

for all x ∈ I and

f ](x) ≥ f [(y)

for all x ∈ I andy > x.
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b. If f ∈ B−, then

f ](x) ≥ f [(x)

for all x ∈ I and

f ](x) ≤ f [(y)

for all x ∈ I, y > x.

Note. The lemma can be summarized as stating that for allf ∈ B andx ∈ I, f ](x) �c f [(x), but
f [(y)�c f ](x) for all y > x.

Proof

a. Firstly

f ](0) = lim
x→0+

f(x) by Def. 71

= sup{f(x) : x > 0} by Th-43

≤ sup{f(0) : x > 0} becausef ∈ B+ nonincreasing

= f(0)

= f [(0) . by Def. 71

If 0 < x < 1, then similarly

f ](x) = lim
z→x+

f(z) by Def. 71

= sup{f(z) : z > x} by Th-43

≤ sup{f(x) : z > x} becausef ∈ B+ nonincreasing

= f(x)

= inf{f(x) : z < x}
≤ inf{f(z) : z < x} becausef ∈ B+ nonincreasing

= lim
z→x−

f(z) by Th-43

= f [(x) . by Def. 71

Finally if x = 1,

f ](1) = f(1) by Def. 71

= inf{f(1) : z < 1}
≤ inf{f(z) : z < 1} becausef ∈ B+ nonincreasing

= lim
z→1−

f(z) by Th-43

= f [(1) . by Def. 71

This finishes the proof thatf ](x) ≤ f [(x).
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To see that the second inequation holds, letx, y ∈ I, y > x. Thenx < 1 by our assumption
x < y ≤ 1, andy > 0 by our assumptiony > x. Choosing somew ∈ (x, y), we hence have

f ](x) = lim
z→x+

f(z) by Def. 71

= sup{f(z) : z > x} by Th-43

= sup{f(z) : x < z < y} becausef nonincreasing,y > 0

≥ sup{f(z) : w < z < y} by monotonicity ofsup

≥ inf{f(z) : w < z < y} because(w, y) 6= ∅
= inf{f(z) : z < y} becausef nonincreasing,w < y

= lim
z→y−

f(z) by Th-43

= f [(y) . by Def. 71

b. The proof of the casef ∈ B− is completely analogous to that ofa. It is also easily obtained
from a. by observing that(1− f)] = 1− f ] and(1− f)[ = 1− f [.
The previous lemma becomes useful for our purposes when combined with the following lemma
on properties of the fuzzy median.

Lemma 46
For all x, y ∈ I, if x�c y, thenm 1

2
(x, y) = x.

Proof If x �c y, then either1
2
≤ x ≤ y or 1

2
≥ x ≥ y. In the first case,min(x, y) ≥ 1

2
and

hencem 1
2
(x, y) = min(x, y) = x by Def. 45. In the second case,max(x, y) ≤ 1

2
and hence

m 1
2
(x, y) = max(x, y) = x by Def. 45.

In addition, we shall need the following.

Lemma 47
For all f ∈ B andx ∈ I,

f(y)�c f(x)

for all y ≥ x.

Proof Supposef is a mappingf ∈ B and letx, y ∈ I such thatx ≤ y.

• If f ∈ B+, thenf is nonincreasing andf ≥ 1
2

by Def. 68. Hencef(x) ≥ f(y) ≥ 1
2
, i.e.

f(y)�c f(x) by Def. 44.

• If f ∈ B
1
2 , i.e. f = c1

2
, thenf(x) = f(y) = 1

2
and hencef(y)�c f(x) by Def. 44.

• If f ∈ B−, thenf is nondecreasing andf ≤ 1
2

by Def. 68. Hencef(x) ≤ f(y) ≤ 1
2
, i.e.

f(y)�c f(x) by Def. 44.

Lemma 48
Supposef is some mappingf ∈ B, and let us definef1 ∈ B by

f1(x) =

{
f ](x) : x > 0
f(0) : x = 0

(L-48.1)

for all x ∈ I.
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a. There existQ : P(I) -I, g : I× I -I andX ∈ P̃(I× I) such that

(Q ◦ ĝ)γ(X) = f1(γ)

Qγ(ˆ̂g(X)) = f [(γ)

for all γ ∈ I.

b. There existQ : P(I) -I, g : I× I -I andX ∈ P̃(I× I) such that

(Q ◦ ĝ)γ(X) = f1(γ)

Qγ(ˆ̂g(X)) = f ](γ)

for all γ ∈ I.

Proof We will use the same mappingg : I × I -I and the same fuzzy subsetX ∈ P̃(I× I)
for the proofs ofa. andb.

We shall define the mappingg : I× I -I by

g(z1, z2) = z1 (132)

for all z1, z2 ∈ I, i.e. g is the projection of(z1, z2) to its first argument.

Furthermore, we shall define the fuzzy subsetX ∈ P̃(I× I) by

µX(z1, z2) =


1
2

+ 1
2
z2 : z2 < z1

1
2
z2 : z1 = 0 andz2 < 1

0 : else

(133)

for all z1, z2 ∈ I.

AbbreviatingV = ˆ̂g(X) ∈ P̃(I), we have

µV (z1) = sup{µX(z1, z2) : z2 ∈ I} by Def. 20, (132)

=

{
sup{1

2
+ 1

2
z2 : z2 < z1} : z1 6= 0

sup{1
2
z2 : z2 < 1} : z1 = 0

by (133)

=

{ 1
2

+ 1
2
z1 : z1 6= 0

1
2

: z1 = 0

for all z1 ∈ I. From this it is apparent by Def. 66 that

(V )min
0 = (V )

>
1
2

= (0, 1] (134)

(V )max
0 = (V )

≥1
2

= [0, 1] (135)

and ifγ > 0,

(V )min
γ = {z1 ∈ I : 1

2
+ 1

2
z1 ≥ 1

2
+ 1

2
γ} = [γ, 1] (136)

(V )max
γ = (Z)

>
1
2
−1

2
γ

= [0, 1] . (137)
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Investigating the three-valued cut ranges ofX itself, we have (by Def. 66 and (133)):

(X)min
0 = (X)

>
1
2

= {(z1, z2) : 0 < z2 < z1}

(X)max
0 = (X)

≥1
2

= {(z1, z2) : z2 < z1}

If γ > 0,

(X)min
γ = (X)

≥1
2

+
1
2
γ

by Def. 66

= {(z1, z2) : z2 < z1 and 1
2

+ 1
2
z2 ≥ 1

2
+ 1

2
γ} by (133)

= {(z1, z2) : γ ≤ z2 < z1}

and similarly

(X)max
γ = (X)

>
1
2
−1

2
γ

by Def. 66

= {(z1, z2) : z2 < z1} ∪ {(0, z2) : 1
2
z2 >

1
2
− 1

2
γ andz2 < 1} by (133)

= {(z1, z2) : z2 < z1} ∪ {(0, z2) : 1− γ < z2 < 1} .

From this characterisation of(X)min
γ and(X)max

γ , it is easily seen that by Def. 17,

ĝ((X)min
0 ) = (0, 1] (138)

ĝ((X)max
0 ) = (0, 1] (139)

and ifγ > 0,

ĝ((X)min
γ ) = (γ, 1] (140)

ĝ((X)max
γ ) = [0, 1] (141)

We are now ready to turn to part a. and b. of the lemma.

a. To prove this part of the lemma, let us defineQ : P(I) -I by

Q(Y ) =

 f [(y) : y ∈ Y andy 6= 0
f ](y) : y /∈ Y andy 6= 0
f(0) : y = 0

(142)

where we have abbreviatedy = inf Y . We will assume thatg andX are defined as above.

By applying L-45, it is easily observed thatQ is monotonically nondecreasing (iff ∈ B+ ∪ B
1
2 )

or nonincreasing (iff ∈ B−) in its argument. We can utilize the monotonicity ofQ in some of the
following computations.

Q0(ˆ̂g(X)) = m 1
2
{Q(Y ) : (ˆ̂g(X))min

0 ⊆ Y ⊆ (ˆ̂g(X))max
0 } by Def. 67

= m 1
2
{Q(Y ) : (0, 1] ⊆ Y ⊆ [0, 1]} by (134), (135)

= m 1
2
{f(0)} by (142)

= f(0) by Def. 46

= f [(0) . by Def. 71
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(Q ◦ ĝ)0(X) = m 1
2
{Q(ĝ(Y )) : (X)min

0 ⊆ Y ⊆ (X)max
0 } by Def. 67

= m 1
2
{Q(Z) : ĝ((X)min

0 ) ⊆ Z ⊆ ĝ((X)max
0 )}

= m 1
2
{Q(Z) : (0, 1] ⊆ Z ⊆ (0, 1]} by (138), (139)

= m 1
2
{f(0)} by (142)

= f(0) by Def. 46

= f1(0) . by (L-48.1)

If γ > 0, then

Qγ(ˆ̂g(X)) = m 1
2
{Q(Y ) : (ˆ̂g(X))min

γ ⊆ Y ⊆ (ˆ̂g(X))max
γ } by Def. 67

= m 1
2
{Q(Y ) : [γ, 1] ⊆ Y ⊆ [0, 1]} by (136), (137)

= m 1
2
(inf{Q(Y ) : [γ, 1] ⊆ Y ⊆ [0, 1]},

sup{Q(Y ) : [γ, 1] ⊆ Y ⊆ [0, 1]}) by Def. 46

= m 1
2
(Q([γ, 1]), Q([0, 1])) by monotonicity ofQ

= m 1
2
(f [(γ), f(0)) by (142)

= f [(γ) . by L-46 and L-47, noting thatf [ ∈ B

and

(Q ◦ ĝ)γ(X) = m 1
2
{Q(ĝ(Y )) : (X)min

γ ⊆ Y ⊆ (X)max
γ } by Def. 71

= m 1
2
{Q(Z) : ĝ((X)min

γ ) ⊆ Z ⊆ ĝ((X)max
γ )}

= m 1
2
{Q(Z) : (γ, 1] ⊆ Z ⊆ [0, 1]} by (140), (141)

= m 1
2
(inf{Q(Z) : (γ, 1] ⊆ Z ⊆ [0, 1]},

sup{Q(Z) : (γ, 1] ⊆ Z ⊆ [0, 1]}) by Def. 46

= m 1
2
(Q((γ, 1]), Q([0, 1])) by monotonicity ofQ

= m 1
2
(f ](γ), f(0)) by (142)

= f ](γ) . by L-46, L-45,f(0) = f [(0)

This finishes the proof of part a. of the lemma.

b. In this case, we shall defineQ : P(I) -I as follows:

Q(Y ) =


f ](y) : y > 0
f(0) : y = 0 and0 /∈ Y
f ](0) : y = 0 and0 ∈ Y

(143)
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where we again abbreviatey = inf Y . In addition, we will assume thatg andX are defined as
above. Then

Q0(ˆ̂g(X)) = m 1
2
{Q(Y ) : (ˆ̂g(X))min

0 ⊆ Y ⊆ (ˆ̂g(X))max
0 } by Def. 67

= m 1
2
{Q(Y ) : (0, 1] ⊆ Y ⊆ [0, 1]} by (134), (135)

= m 1
2
{f(0), f ](0)} by (143)

= f ](0) by L-46, L-45,f(0) = f [(0)

and

(Q ◦ ĝ)0(X) = m 1
2
{Q(ĝ(Y )) : (X)min

0 ⊆ Y ⊆ (X)max
0 } by Def. 67

= m 1
2
{Q(Z) : ĝ((X)min

0 ) ⊆ Z ⊆ ĝ((X)max
0 )}

= m 1
2
{Q(Z) : (0, 1] ⊆ Z ⊆ (0, 1]} by (138), (139)

= m 1
2
{f(0)} by (143)

= f(0) by Def. 46

= f1(0) by (L-48.1)

And if γ > 0,

Qγ(ˆ̂g(X)) = m 1
2
{Q(Y ) : (ˆ̂g(X))min

γ ⊆ Y ⊆ (ˆ̂g(X))max
γ } by Def. 67

= m 1
2
{Q(Y ) : [γ, 1] ⊆ Y ⊆ [0, 1]} by (136), (137)

= m 1
2
(inf{Q(Y ) : [γ, 1] ⊆ Y ⊆ [0, 1]},

sup{Q(Y ) : [γ, 1] ⊆ Y ⊆ [0, 1]}) by Def. 46

= m 1
2
(Q([γ, 1]), Q([0, 1])) by L-45, monotonicity off ] ∈ B

= m 1
2
{f ](γ), f(0)} by (143)

= f ](γ) by L-46, L-39,L-47

and finally

(Q ◦ ĝ)γ(X) = m 1
2
{Q(ĝ(Y )) : (X)min

γ ⊆ Y ⊆ (X)max
γ } by Def. 67

= m 1
2
{Q(Z) : ĝ((X)min

γ ) ⊆ Z ⊆ ĝ((X)max
γ )}

= m 1
2
{Q(Z) : (γ, 1] ⊆ Z ⊆ [0, 1]} by (140), (141)

= m 1
2
(inf{Q(Z) : (γ, 1] ⊆ Z ⊆ [0, 1]},

sup{Q(Z) : (γ, 1] ⊆ Z ⊆ [0, 1]}) by Def. 46

= m 1
2
(Q((γ, 1]), Q([0, 1])) by L-45, monotonicity off ] ∈ B

= m 1
2
(f ](γ), f(0)) by (143)

= f ](γ) by L-46, L-39,L-47

which completes the proof of partb.

Lemma 49

SupposeB : B -I is given. IfM̂B =
ˆ̂

(•) andMB satisfies(Z-6), thenB satisfies(B-4).
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Proof Supposef is some mappingf ∈ B. By L-48.a, there existQ : P(I) -I, g : I× I -I

andX ∈ P̃(I× I) such that

(Q ◦ ĝ)γ(X) = f1(γ) (144)

Qγ(ˆ̂g(X)) = f [(γ) (145)

for all γ ∈ I, wheref1 ∈ B is defined by (L-48.1). Therefore

B(f1) = B(((Q ◦ ĝ)γ(X))γ∈I) by (144)

=MB(Q ◦ ĝ)(X) by Def. 69

=MB(Q)(M̂B(g)(X)) by assumption of (Z-6)

=MB(Q)(ˆ̂g(X)) by assumption that̂MB =
ˆ̂

(•)
= B((Qγ(ˆ̂g(X)))γ∈I) by Def. 69

= B(f [) by (145)

i.e.

B(f1) = B(f [) . (146)

On the other hand, we know that by L-48.b, there existQ′ : P(I) -I, g′ : I×I andX ′ ∈ P̃(I× I)
such that

(Q′ ◦ ĝ′)γ(X) = f1(γ) (147)

Q′γ(
ˆ̂
g′(X)) = f ](γ) . (148)

(149)

Therefore

B(f1) = B(((Q′ ◦ ĝ′)γ(X))γ∈I) by (147)

=MB(Q′ ◦ ĝ′)(X) by Def. 69

=MB(Q′)(M̂B(g′)(X)) by assumption of (Z-6)

=MB(Q′)(
ˆ̂
g′(X)) by assumption that̂MB =

ˆ̂
(•)

= B((Q′γ(
ˆ̂
g′(X)))γ∈I) by Def. 69

= B(f ]) , by (148)

i.e.

B(f1) = B(f ]) . (150)

Combining (146) and (150), we obtain the desiredB(f [) = B(f ]), i.e. (B-4) holds.

We shall now introduce a weakened form of (B-3) and show that it is necessary forMB to satisfy
(Z-2).
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The condition we impose onB : B -I is the following. If f ∈ B, f(I) ⊆ {0, 1
2
, 1} and

f(f
1
2
∗ ) = f(0), then

B(f) =


1
2

+ 1
2
f

1
2
∗ : f ∈ B+

1
2

: f ∈ B
1
2

1
2
− 1

2
f

1
2
∗ : f ∈ B−

(B-3’)

where we have abbreviated

f
1
2
∗ = inf{x ∈ I : f(x) = 1

2
} .

Lemma 50
If B : B -I does not satisfy(B-3’), thenMB does not satisfy(Z-2).

Proof If B : B -I does not satisfy (B-3’), then there exists somef ∈ B such thatf(I) ⊆

{0, 1
2
, 1}, f(f

1
2
∗ ) = f(0) and

B(f) 6=


1
2

+ 1
2
f

1
2
∗ : f ∈ B+

1
2

: f ∈ B
1
2

1
2
− 1

2
f

1
2
∗ : f ∈ B−

(151)

a. f ∈ B+. In this case, letE = {∗} and defineX ∈ P̃(E) by

µX(∗) = 1
2

+ 1
2
f

1
2
∗ . (152)

Then

f(γ) = π∗γ(X) (153)

for all γ ∈ I and hence

MB(π∗)(X) = B((π∗γ(X))γ∈I) by Def. 69

= B(f) by (153)

6= 1
2

+ 1
2
f

1
2
∗ by assumption (151)

= µX(∗) by (152)

= π̃∗(X) , by Def. 6

which shows thatMB does not satisfy (Z-2).

b. f ∈ B
1
2 , i.e.f = c1

2
, and (151) becomes

B(c1
2
) 6= 1

2
. (154)
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Again choosingE = {∗}, and definingX ∈ P̃(E) by

µX(∗) = 1
2
, (155)

we observe thatπ∗γ(X) = 1
2

for all γ ∈ I and hence

MB(π∗)(X) = B((π∗γ(X))γ∈I) by Def. 69

= B(c1
2
) by definition ofX

6= 1
2

by (154)

= µX(∗) by (155)

= π̃∗(X) by Def. 6

which again proves thatMB does not satisfy (Z-2).

c. f ∈ B−. The proof is analogous to that of casea. andb.

Lemma 51
Letx1, x2 ∈ I and let us abbreviatez = max(x1, x2).

a. If z > 1
2
, then

Q∨γ(η̃(x1, x2)) =

{
1 : γ ≤ 2z − 1
1
2

: γ > 2z − 1

b. If z = 1
2
, thenQ∨γ(η̃(x1, x2)) = 1

2
for all γ ∈ I.

c. If z < 1
2
, then

Q∨γ(η̃(x1, x2)) =

{
0 : γ ≤ 1− 2z
1
2

: γ > 1− 2z

Proof Supposex1, x2 ∈ I are given. Without loss of generality, we shall assume thatx1 ≥ x2,
i.e.

x1 = z = max(x1, x2) . (156)

In the following, we will abbreviate

X = η̃(x1, x2) , (157)

i.e.µX(1) = x1 andµX(2) = x2. Let us further observe that by Def. 52,

Q∨(V ) =

{
1 : V 6= ∅
0 : V = ∅

(158)

for all V ∈ P({1, 2}).
We shall prove separately the cases a., b. and c.:
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a. x1 >
1
2
. Then by Def. 66 and (157),

(X)max
γ ⊇ {1} 6= ∅

forall γ ∈ I. Furthermore

(X)min
γ ⊇ {1} 6= ∅

if γ ≤ 2x1 − 1, and

(X)min
γ = ∅

if γ > 2x1 − 1. Hence by Def. 67 and (158),

Q∨γ(X) =

{
1 : γ ≤ 2x1 − 1
1
2

: γ > 2x1 − 1

b. x1 = 1
2
. Then(X)max

γ ⊇ {1} 6= ∅ for all γ ∈ I and(X)min
γ = ∅ for all γ ∈ I. Hence by

Def. 67 and (158),

Q∨γ(X) = 1
2

for all γ ∈ I.

c. x1 <
1
2
. In this case,(X)min

γ = ∅ for all γ ∈ I and(X)max
γ = ∅ for all γ ≤ 1 − 2x1,

(X)max
γ ⊇ {1} 6= ∅ for all γ > 1− 2x1. Hence by Def. 67 and (158),

Q∨γ(X) =

{
0 : γ ≤ 1− 2x1
1
2

: γ > 1− 2x1

Lemma 52

If B : B -I satisfies(B-3’), thenMB induces the standard disjunctioñ̃MB(∨) = ∨, i.e.x∨y =
max(x, y) for all x, y ∈ I.

Proof Supposex1, x2 ∈ I are given. We will abbreviate

z = max(x1, x2) .

We shall discern three cases.

i. z > 1
2
. Then by L-51.a,

Q∨γ(η̃(x1, x2)) =

{
1 : γ ≤ 2z − 1
1
2

: γ > 2z − 1

By Def. 52 and our assumption (B-3’), this proves that

˜̃MB(∨)(x1, x2) = 1
2

+ 1
2
(2z − 1) = z = max(x1, x2) ,

noting that(Q∨γ(η̃(x1, x2)))
1
2
∗ = 2z − 1.
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ii. z = 1
2
. Then by L-51.b,

Q∨γ(η̃(x1, x2)) = 1
2

for all γ ∈ I. By the same reasoning as in case a.,

˜̃MB(∨)(x1, x2) = 1
2

= max(x1, x2) .

iii. z < 1
2
. In this case,

Q∨γ(η̃(x1, x2)) =

{
0 : γ ≤ 1− 2z
1
2

: γ > 1− 2z

by L-51.c. For the same reasons as in case a. and b., we obtain

˜̃MB(∨)(x1, x2) = 1
2
− 1

2
(1− 2z) = z = max(x1, x2) .

Lemma 53

SupposeB is some mappingB : B -I. If MB is a DFS, thenM̂B =
ˆ̂

(•), i.e. the induced
extension principle ofMB is the standard extension principle.

Proof By L-50, we know that fromMB is a DFS, we may conclude thatB satisfies (B-3’).

Abbreviating∨̃ = M̃B(∨) and ˜̃∨ =
˜̃MB(∨), we know by L-52 that̃̃∨ is the standard disjunction

(i.e.,max). From Th-36, we then conclude that∨̃ = ˜̃∨ = max.

Now letf : E -E ′ some mapping,X ∈ P̃(E) andz ∈ E ′. Then

µM̂B(f)(X)(z) =MB(∃)(X ∩ f−1(z)) by Th-17

= sup
{ m
∨
i=1

µX∩f−1(z)(ai) : A = {a1, . . . , am} ∈ P(E) finite,

ai 6= aj if i 6= j
}

by Th-25,∨̃ = ∨
= sup{µX∩f−1(z)(e) : e ∈ E}
= sup{µX(e) : e ∈ f−1(z)}
= µ ˆ

f̂(X)
(e) .

We are now prepared to prove the main theorem.

Proof of Theorem 57

SupposeMB is a DFS andf ∈ B such thatf(I) ⊆ {0, 1
2
, 1}.

a. f ∈ B+. If f(f
1
2
∗ ) = f(0), thenB(f) = 1

2
+ 1

2
f

1
2
∗ because (B-3’) holds in every DFS by

L-50.

If f(f
1
2
∗ ) 6= f(0), then apparentlyf(f

1
2
∗ ) = 1

2
. This is becausef(I) ⊆ {1

2
, 1} in the case
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f ∈ B+ (see Def. 68). We further know thatf(0) = 1 (otherwise we hadf(x) = 1
2

for all
x ∈ I, i.e. f = c1

2
, which contradicts our assumptionf ∈ B+). Therefore,f has the form

f(x) =

 1 : x < f
1
2
∗

1
2

: x ≥ f
1
2
∗

It is then apparent from Def. 71 that

f ] = f (159)

and

f [(x) =

 1 : x ≤ f
1
2
∗

1
2

: x > f
1
2
∗

(160)

Hence

B(f) = B(f ]) by (159)

= B(f [) by (B-4) (holds by L-53, L-49)

= 1
2

+ 1
2
f

1
2
∗ by (B-3’) (holds by L-50)

b. f ∈ B
1
2 , i.e.f = c1

2
. This case is already covered by L-50.

The remaining case

c. f ∈ B−

can be treated in analogy to casea.

C.15 Proof of Theorem 58

LetB : B -I be given. IfMB is a DFS, thenB satisfies (C-2) by Th-57. From Th-46 and Th-42,

we conclude that theñ̃MB(¬) =
˜̃M(¬) = ¬ is the standard negation and̃̃MB(∨) =

˜̃M = max
is the standard disjunction. HenceMB is a standard DFS by Def. 49.

C.16 Proof of Theorem 59

SupposeB : B -I satisfies (B-3), but fails on (B-2).

By Th-46, we know that̃MB(¬) = M̃(¬) = ¬ and also
˜̃MB(¬) =

˜̃M(¬) = ¬, i.e. the induced
negation ofMB is the standard negation¬x = 1− x.

BecauseB does not satisfy (B-2), there exists somef ∈ B such that

B(1− f) 6= 1− B(f) . (161)
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By Th-41, there existsQ : P(I) -I andX ∈ P̃(I) such that

Qγ(X) = f(γ) (162)

for all γ ∈ I. Then

MB(Q
˜̃�)(¬X) = B(((Q

˜̃�)γ(¬X))γ∈I) by Def. 69

= B(((˜̃¬Q¬)γ(¬X))γ∈I) by Def. 12

= B(((¬Q¬)γ(¬X))γ∈I) becausẽ̃¬ = ¬
= B(1− (Qγ(¬¬X))γ∈I) by L-31, L-29

= B(1− (Qγ(X))γ∈I) because¬ = 1− x is involutory

= B(1− f) by (162)

6= 1− B(f) by (161)

= 1− B((Qγ(X))γ∈I) by (162)

= 1−MB(Q)(X) by Def. 69

= ¬MB(Q)(¬¬X) because¬ = 1− x is involutory

=MB(Q)
˜̃�(¬X) , by Def. 12,˜̃¬ = ¬

i.e. (Z-3) fails.

C.17 Proof of Theorem 60

SupposeB : B -I satisfies (B-3), but fails to satisfy (B-4).

BecauseB satisfies (B-3), we know by Def. 19, Th-46 and Th-42 that̂MB = M̂ =
ˆ̂

(•), i.e.MB
induces the standard extension principle. The conditions of L-49 are hence fulfilled, which tells
us that (B-4) is a necessary condition for (Z-6). Because (B-4) is violated, we conclude that (Z-6)
does not hold, too.

C.18 Proof of Theorem 61

SupposeB : B -I does not satisfy (B-5). Then there aref, g ∈ B such thatf ≤ g but

B(f) > B(g) . (163)

By Th-41.a, there are semi-fuzzy quantifiersQ,Q′ : P(I) -I, viz. Q(Y ) = f(inf Y ) and
Q′(Y ) = g(inf Y ) for all Y ∈ P(I), and a fuzzy argument setX ∈ P̃(I), µX(z) = 1

2
+ 1

2
z, such

that

Qγ(X) = f(γ) (164)

and

Q′γ(X) = g(γ) (165)

for all γ ∈ I. Let us now defineQ′′ : P(I)× P(I) -I by

Q′′(Y1, Y2) =

{
Q′(Y1) : Y2 = ∅
Q(Y1) : Y2 6= ∅

(166)
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BecauseQ′(Y1) = g(inf Y1) ≥ f(inf Y1) = Q(Y1), for all Y1 ∈ P(I), it is apparent thatQ′′ is
nonincreasing in its second argument.MB, however, does not preserve the monotonicity ofQ′′:

MB(Q′′)(X,∅) = B((Q′′γ(X,∅))γ∈I) by Def. 69

= B((Q′γ(X))γ∈I) by (166)

= B(g) by (165)

< B(f) by (163)

= B((Qγ(X))γ∈I) by (164)

= B((Q′′γ(X, I))γ∈I) by (166)

=MB(Q′′)(X, I) , by Def. 69

i.e.MB(Q′′)(X,∅) <M(Q′′)(X, I), which proves that the nonincreasing monotonicity ofQ′′ in
its second argument is not preserved byMB.

C.19 Proof of Theorem 62

By Th-56, Th-57 and Th-61, we already know that (B-1) (B-3) and (B-5), resp., are necessary
conditions forMB to be a DFS.

• If (B-3) does not hold, thenMB is not a DFS by Th-57. In particular, if (B-2) or (B-4) does
not hold, thenMB is not a DFS (because it is not a DFS anyway). This proves that (B-2)
and (B-4) are necessary forMB to be a DFS in the case that (B-3) does not hold.

• If (B-3) holds, then Th-59 and Th-60 apply, which tell us that (B-2) and (B-4) are necessary
forMB to be a DFS provided that (B-3) holds.

We may summarize these results as stating that (B-2) and (B-4) are necessary conditions as well,
i.e. all conditions (B-1) to (B-5) are necessary forMB to be a DFS.
The converse claim that (B-1) to (B-5) are also sufficient forMB to be a DFS has already been
proven in Th-52.

C.20 Proof of Theorem 63

SupposeB : B -I is not contained in BB. ThenB fails one or both of the defining conditions
of BB (see Def. 74). IfB does not satisfy (B-2), thenMB fails to be a DFS by Th-59. In the
remaining case thatB satisfies (B-2), but fails Def. 74.b, there is somef ∈ B+ such that

B(f) < 1
2
. (167)

By (B-2), we have

B(c1
2
) = B(1− (1− c1

2
)) = 1− B(1− c1

2
) = 1− B(c1

2
)

i.e.

B(c1
2
) = 1

2
. (168)

We hence havef ≥ c1
2

(becausef ∈ B+) butB(f) < 1
2

= B(c1
2
), i.e. B fails (B-5). By Th-61,

MB is not a DFS.
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C.21 Proof of Theorem 64

It is apparent from Th-62 and Th-53 that the conditions (C-1), (C-2), (C-3.a), (C-3.b) and (C-4) on
B′ : H -I are necessary and sufficient forMB to be a DFS. It remains to be shown that (C-3.a)
is entailed by the remaining axioms.
Hence supposeB′ : H -I satisfies (C-1), (C-2), (C-3.b) and (C-4). Further letf ∈ H be given
such thatf̂((0, 1]) = {0}. Clearly

f ≤ g (169)

whereg ∈ H is defined by

g(γ) =

{
1 : γ = 0
0 : else

(170)

Apparentlyĝ(I) ⊆ {0, 1}; hence by (C-2)

B′(g) = g0
∗ = 0 , (171)

see (19) and (170). BecauseB′ satisfies (C-4), we conclude from (169) and (171) thatB′(f) ≤
B′(g) = 0. ButB′(f) ≥ 0; henceB′(f) = 0. This proves that (C-3.a) holds, as desired.

D Proof of Theorems in Chapter 5

D.1 Proof of Theorem 65

Lemma 54
Supposef ∈ H is some mapping.

a. If f̂((0, 1]) = {0}, thenf 0
∗ = 0.

b. If f̂((0, 1]) 6= {0}, then(f ])
0

∗ = (f [)
0

∗.

Proof

a. Supposef ∈ H andf̂((0, 1]) = {0}, i.e.

f(γ) = 0 (172)

for all γ ∈ (0, 1].

We also know by Def. 75 that

f(0) 6= 0 . (173)

Hence

f 0
∗ = inf{γ ∈ I : f(γ) = 0} by (19)

= inf(0, 1] by (172), (173)

= 0 .
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b. Supposef ∈ H andf̂((0, 1]) 6= {0}.
In order to prove that(f [)

0

∗ = (f ])
0

∗, we will show thatf 0
∗ = (f ])

0

∗ and thatf 0
∗ = (f [)

0

∗.
To prove the first equation, let us introduce abbreviations

F = {γ ∈ I : f(γ) = 0} (174)

S = {γ ∈ I : sup{f(γ′) : γ′ > γ} = 0} (175)

Apparently

f 0
∗ = inf{γ ∈ I : f(γ) = 0} = inf F (176)

by (19) and (174), and

(f ])
0

∗ = inf{γ ∈ I : f ] = 0} by (19)

= inf{γ ∈ [0, 1) : lim
γ′→γ+

f(γ′) = 0} ∪ {1 : f(1) = 0}

= inf{γ ∈ [0, 1) : lim
γ′→γ+

f(γ′) = 0} becauseinf ∅ = 1

= inf{γ ∈ [0, 1) : sup{f(γ′) : γ′ > γ} = 0} by Th-43

= inf{γ ∈ I : sup{f(γ′) : γ′ > γ} = 0} becauseinf X = inf(X ∪ {1})
for all X ∈ P(I)

= inf S by (175),

i.e.

(f ])
0

∗ = inf S . (177)

Let us consider someγ > f 0
∗ . Then by (19),f(γ) = 0 and hence

sup{f(γ′) : γ′ > γ} = sup{0} = 0 (178)

becausef is nonincreasing and nonnegative. This proves that(f 0
∗ , 1] ⊆ S and hence

(f ])
0

∗ = inf S by (177)

≤ inf(f 0
∗ , 1] because(f 0

∗ , 1] ⊆ S

= f 0
∗ .

It remains to be shown that(f ])
0

∗ ≥ f 0
∗ .

Let us assume to the contrary that

(f ])
0

∗ < f 0
∗ . (179)

Then in particular(f ])
0

∗ < 1, i.e. inf S < 1 andS 6= ∅ by (177). Hence there exists someγ0 ∈ S
such that

γ0 < f 0
∗ (180)

and (becauseγ0 ∈ S):

sup{f(γ′) : γ′ > γ0} = 0 . (181)
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This means thatf(γ′) = 0 for all γ′ > γ0, i.e. (γ0, 1] ⊆ F by (174). Therefore

f 0
∗ = inf F by (176)

≤ inf(γ0, 1] because(γ0, 1] ⊆ F

= γ0 .

This contradicts (180), which states thatγ0 < f 0
∗ . We conclude that our assumption (179) is false,

i.e. (f ])
0

∗ ≥ f 0
∗ .

This finishes the proof thatf 0
∗ = (f ])

0

∗. The second equation,f 0
∗ = (f [)

0

∗, can be shown analo-
gously.

Lemma 55
Supposef, g ∈ H. If f ≤ g, thenf 0

∗ ≤ g0
∗.

Proof
Assumef, g are mappings inH and suppose that

f(γ) ≤ g(γ)

for all γ ∈ I. Let us abbreviate

F = {γ ∈ I : f(γ) = 0} (182)

G = {γ ∈ I : g(γ) = 0} . (183)

It is then apparent that

F = {γ ∈ I : f(γ) = 0} by (182)

= {γ ∈ I : f(γ) ≤ 0} becausef(γ) ≥ 0 for all γ ∈ I

⊇ {γ ∈ I : g(γ) ≤ 0} becausef(γ) ≤ g(γ) for all γ ∈ I

= {γ ∈ I : g(γ) = 0} becauseg(γ) ≥ 0 for all γ ∈ I

= G , by (183)

i.e. F ⊇ G and

f 0
∗ = inf F by (19), (182)

≤ inf G becauseF ⊇ G

= g0
∗ . by (19), (183)

To show that (B-1) is independent of the other conditions, let us considerB′(B−1) : H -I, defined
by

B′(B−1)(f) = f 0
∗ , (184)

for all f ∈ H.

Lemma 56
B′(B−1) satisfies(C-2), (C-3.a), (C-3.b)and (C-4), but violates(C-1).
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Proof Let us first show that (C-1) fails. To this end, letc1
2
∈ H the constantc1

2
(x) = 1

2
for all

x ∈ I. Then

(c1
2
)0

∗
= inf{x ∈ I : c1

2
(x) = 0} by (19)

= inf{x ∈ I : 1
2

= 0} by def. ofc1
2

= inf ∅

= 1

6= 1
2

= c1
2
(0) .

This proves thatB′(B−1) does not satisfy (C-1). We shall now discuss the other properties:
Concerning (C-2), letf ∈ H some mapping such thatf(I) ⊆ {0, 1}. ThenB′(B−1)(f) = f 0

∗ by
(184), i.e. (C-2) holds.
As to (C-3.a) and (C-3.b), the result has already been proven in lemma L-54.
FinallyB′(B−1) is known to satisfy (C-4) by L-55.

Proof of Theorem 65

We shall assume thatB(B−1) : B -I is defined in terms ofB′(B−1) in the usual way, i.e. as
described by equation (23). The claim of the theorem is then apparent from L-56 and Th-53,
noting that (B-2) holds becauseB(B−1) is related toB′(B−1) by (23) and henceB(B−1) ∈ BB.

D.2 Proof of Theorem 66

Recalling Def. 70 and Def. 77, we shall defineB(B−2) : B -I by

B(B−2)(f) =


1
2

+ 1
2
B′∫ (2f − 1) : f ∈ B+

1
2

: f ∈ B
1
2

1
2
− 1

2
B∗′(1− 2f) : f ∈ B−

(185)

for all f ∈ B, i.e.

B(B−2)(f) =


B∫ (f) : f ∈ B+

1
2

: f ∈ B
1
2

B∗(f) : f ∈ B−
(186)

We already know by Th-42 and Th-54 thatM =MB∫ andM∗ =MB∗ are DFSes. By Th-62, we
know that bothB∫ andB∗ satisfy conditions (B-1) to (B-5). Let us now investigate the interesting
properties ofB(B−2).

In order to prove thatB(B−2) satisfies (B-1), suppose thatf ∈ B is given such thatf(γ) = f(0) for
all γ ∈ I (i.e.f is constant). Iff ∈ B+, then

B(B−2)(f) = B∫ (f) by (186)

= f(0) . becauseB∫ satisfies (B-1)
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If f ∈ B
1
2 , thenf = c1

2
, i.e. f(γ) = 1

2
for all γ ∈ I and hence

B(B−2)(f) = 1
2

by (186)

= f(0) .

Finally if f ∈ B−, then

B(B−2)(f) = B∗(f) by (186)

= f(0) . becauseB∗ satisfies (B-1)

Considering (B-2), supposef ∈ B is defined by

f(γ) = 1− 1
2
γ (187)

for all γ ∈ I. Then

B(B−2)(f) = 1
2

+ 1
2
B′∫ (2f − 1) by (185)

= 1
2

+ 1
2

∫ 1

0

(2(1− 1
2
γ)− 1) dγ by Def. 70

= 1
2

+ 1
2

∫ 1

0

(1− γ) dγ

= 1
2

+ 1
2
(1− 1

2
)

= 3
4
.

Hence

1− B(B−2)(f) = 1− 3
4

= 1
4
. (188)

On the other hand,1− f ∈ B− and hence

B(B−2)(1− f) = 1
2
− 1

2
B∗′(1− 2(1− f)) by (185)

= 1
2
− 1

2
B∗′(1− 2(1− (1− 1

2
γ))) by (187)

= 1
2
− 1

2
B∗′(1− γ)

= 1
2
− 1

2
((1− γ)0

∗ · (1− γ)∗0) by Def. 77

= 1
2
− 1

2
(1 · 1) by (19), (18)

= 0 .

HenceB(B−2)(1− f) = 0 6= 1
4

= 1− B(B−2)(f) (see (188)), i.e. (B-2) fails, as desired.
In order to show thatB(B−2) satisfies (B-3), supposef ∈ B such thatf(I) ⊆ {0, 1

2
, 1}. If f ∈ B+,

then

B(B−2)(f) = B∫ (f) by (186)

= 1
2

+ 1
2
f

1
2
∗ ,

becauseB∫ is known to satisfy (B-3) (see above). Similarly iff ∈ B−,

B(B−2)(f) = B∗(f) by (186)

= 1
2
− 1

2
f

1
2
∗ ,
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becauseB∗ is known to satisfy (B-3). In the remaining case thatf ∈ B
1
2 , i.e.f = c1

2
, (185) directly

yields the desiredB(B−2)(f) = 1
2
.

Let us now consider (B-4).

• If f ∈ B+, thenf [ ∈ B+ andf ] ∈ B+ ∪ B
1
2 . In the case thatf ] ∈ B+, we have

B(B−2)(f
[) = B∫ (f [) by (186),f [ ∈ B+

= B∫ (f ]) becauseB∫ satisfies (B-4)

= B(B−2)(f
]) . by (186),f ] ∈ B+

In the case thatf ] ∈ B
1
2 , i.e.f ] = c1

2
,

B(B−2)(f
[) = B∫ (f [) by (186),f [ ∈ B+

= B∫ (f ]) becauseB∫ satisfies (B-4)

= 1
2

becausef ] = c1
2

andB∫ satisfies (B-3)

= B(B−2)(f
]) . by (185),f ] ∈ B

1
2

• If f ∈ B
1
2 , thenf = f ] = f [ = c1

2
and hence triviallyB(B−2)(f

]) = B(B−2)(f
[).

• The case thatf ∈ B− is analogous tof ∈ B+, usingB∗ rather thanB∫ .

Finally let us show thatB(B−2) satisfies (B-5). To this end, let us observe that for allf ∈ B,

• if f ∈ B+, thenB(B−2)(f) = B∫ (f) = 1
2

+ 1
2
B′∫ (2f − 1) ≥ 1

2
by (23),B∫ ∈ BB;

• if f ∈ B
1
2 , thenB(B−2)(f) = 1

2
by (185);

• if f ∈ B−, thenB(B−2)(f) = B∗(f) = 1
2
− 1

2
B∗′(1− 2f) ≤ 1

2
by (23),B∗ ∈ BB.

The only critical cases with respect to (B-5) are hence (a)f, g ∈ B+ and (b)f, g ∈ B−.

(a) Supposef, g ∈ B+ andf ≤ g. Then

B(B−2)(f) = B∫ (f) by (186),f ∈ B+

≤ B∫ (g) becauseB∫ satisfies (B-5)

= B(B−2)(g) . by (186),g ∈ B+

(b) Supposef, g ∈ B− andf ≤ g. Then similarly

B(B−2)(f) = B∗(f) by (186),f ∈ B−

≤ B∗(g) becauseB∗ satisfies (B-5)

= B(B−2)(g) . by (186),g ∈ B−



D PROOF OF THEOREMS IN CHAPTER 5 146

D.3 Proof of Theorem 67

Let us defineB′(B−4) : H -I by

B′(B−4)(f) = f(0) · f 0
∗ (189)

for all f ∈ H.

Lemma 57
B′(B−4) satisfies(C-1), (C-2)and (C-4), but fails on(C-3.b).

Proof Considering the conditions onB′(B−4), let us firstly show that (C-1) is satisfied. Suppose
f ∈ H is constant, i.e.f(γ) = f(0) for all γ ∈ I. By Def. 75, we know thatf(0) > 0 and hence
f(γ) = f(0) > 0 for all γ ∈ I. Recalling (19), this proves thatf 0

∗ = 1, and hence

B′(B−4)(f) = f(0)f 0
∗ by (189)

= f(0) , by f 0
∗ = 1

as desired.

Let us now show that (C-2) holds. To this end, letf ∈ H such thatf(I) ⊆ {0, 1}. Thenf(0) = 1,
becausef ∈ H hasf(0) > 0 by Def. 75, andf(0) = 1 is the only alternative result because
f(0) ∈ f(I) ⊆ {0, 1}. Therefore

B′(B−4)(f) = f(0)f 0
∗ by (189)

= f 0
∗ . becausef(0) = 1

In order to show that (C-4) holds, supposef, g ∈ H are mappings such that

f(γ) ≤ g(γ) (190)

for all γ ∈ I. In particular,f(0) ≤ g(0). In addition, we know from L-55 thatf 0
∗ ≤ g0

∗. By the
monotonicity of multiplication,

B′(B−4)(f) = f(0)f 0
∗ by (189)

≤ g(0)g0
∗ becauseg(0) ≤ f(0), f 0

∗ ≤ g0
∗

= B′(B−4)g . by (189)

Finally, let us show thatB′(B−4) does not satisfy (C-3.b). Definef ∈ H by

f(γ) =

{
1 : γ = 0
1
2

: γ > 0
(191)

Then by Def. 71,f ] = c1
2

andf [ = f . By (19),

(f ])
0

∗ = f 0
∗ = 1 (192)
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and hence

B′(B−4)(f
[) = f [(0) · (f [)0

∗ by (189)

= f(0) · f 0
∗ becausef [ = f

= 1 · 1 by (191), (192)

= 1

6= 1
2

= 1
2
· 1

= f ](0) · (f ])0

∗ by (192) andf ] = c1
2

= B′(B−4)(f
]) by (189),

i.e.B′(B−4) does not satisfy (C-3.b).

Proof of Theorem 67

We shall assume thatB(B−4) ∈ BB is defined in terms ofB′(B−4) according to equation (23). We
already know from L-57 thatB′(B−4) satisfies (C-1), (C-2) and (C-4) but fails on (C-3.b). By Th-
53, this is entails thatB(B−4) satisfies (B-5), (B-3) and (B-5) but fails on (B-4). Recalling that
B(B−4) ∈ BB satisfies (B-2) by Def. 74,B(B−4) satisfies all conditions except (B-4), and is hence a
proper example for establishing the independence of (B-4) from the other conditions.

D.4 Proof of Theorem 68

Lemma 58
Supposef ∈ H and f̂((0, 1]) 6= {0}. Then

sup{inf{f(γ′) : γ′ < γ} : γ > 0} = sup{f(γ) : γ > 0} .

Proof

a. sup{inf{f(γ′) : γ′ < γ} : γ > 0} ≥ sup{f(γ) : γ > 0}.
To see this, letz ∈ (0, 1] andγ ∈ (0, z). Then

inf{f(γ′) : γ′ < γ} ≥ inf{f(z) : γ′ < γ} becausef ∈ H nonincreasing,γ′ < z

= f(z)

Hence

sup{inf{f(γ′) : γ′ < γ} : γ > 0} ≥ f(z)

for all z ∈ (0, 1].
It follows that

sup{inf{f(γ′) : γ′ < γ} : γ > 0} ≥ sup{f(z) : z > 0} ,

as desired.
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b. sup{inf{f(γ′) : γ′ < γ} : γ > 0} ≤ sup{f(γ) : γ > 0}.
Let us assume to the contrary that

sup{inf{f(γ′) : γ′ < γ} : γ > 0} > sup{f(γ) : γ > 0} . (193)

Then there exists someγ0 > 0 such that

inf{f(γ′) : γ′ < γ0} > sup{f(γ) : γ > 0} . (194)

Now letω ∈ (0, γ0). By the (nonincreasing) monotonicity off ∈ H,

f(ω) ≥ inf{f(γ′) : γ′ < γ0} .

On the other hand,ω > 0, i.e.

f(ω) ∈ {f(γ) : γ > 0} ,

and hence

sup{f(γ) : γ > 0} ≥ f(ω) ≥ inf{f(γ′) : γ′ < γ0} ,

which contradicts (194).

Lemma 59
Supposef ∈ H. Then

a. if f (̂(0, 1]) = {0}, thenf ∗0 = 0.

b. if f̂((0, 1]) 6= {0}, then(f ])
∗
0 = (f [)

∗
0.

Proof

a. In this case,f(γ) = 0 for all γ > 0 and hence apparently

f ∗0 = lim
γ→0+

f(γ) = 0 .

b. Supposef ∈ H andf̂((0, 1]) 6= {0}. Then

(f ])
∗
0 = lim

γ→0+
γ] by (18)

= sup{f ](γ) : γ > 0} becausef ] ∈ H nonincreasing

= sup{sup{f(γ′) : γ′ > γ} : γ > 0} by Def. 71

= sup{f(γ′) : γ′ > 0} (apparent)

= lim
γ→0+

f(γ) becausef ∈ H nonincreasing

= f ∗0 . by (18)
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Similarly

(f [)
∗
0 = lim

γ→0+
f [(γ) by (18)

= sup{f [(γ) : γ > 0} becausef [ ∈ H nonincreasing

= sup{inf{f(γ′) : γ′ < γ} : γ > 0} by Def. 71

= sup{f(γ) : γ > 0} by L-58

= lim
γ→0+

f(γ) becausef ∈ H nonincreasing

= f ∗0 , by (18)

which finishes the proof of partb. of the lemma.

Now let us define the mappingB′(B−5) : H -I by

B′(B−5)(f) =

{
f 0
∗ : f ∗0 = 1
f ∗0 : f ∗0 < 1

(195)

Lemma 60
The mappingB′(B−5) satisfies(C-1), (C-2), (C-3.a)and (C-3.b), but violates(C-4).

Proof To see thatB′(B−5) satisfies (C-1), letf ∈ H a constant function, i.e.f(γ) = f(0) for all
γ ∈ I. In particular,

f ∗0 = f(0) (196)

by (18). Recalling Def. 75, we further know thatf(0) > 0 and hencef(γ) > 0 for all γ ∈ I, i.e.

f 0
∗ = 1 . (197)

by (19).

• if f(0) = 1, thenf ∗0 = f(0) = 1 by (196),f 0
∗ = 1 by (197) and henceB′(B−5)(f) = f 0

∗ =

1 = f(0).

• if f(0) < 1, thenf ∗0 = f(0) < 1 by (196). Hence by (195),B′(B−5)(f) = f ∗0 = f(0).

In order to prove that (C-2) holds, letf ∈ H such thatf(I) ⊆ {0, 1}.

• if f ∗0 = 1, then diectlyB′(B−5)f = f 0
∗ by (195);

• if f ∗0 = 0, thenf(0) = 1 (becausef(0) > 0, f(0) ∈ {0, 1}) andf(γ) = 0 for all γ > 0 by
(18). Recalling (19), it is apparent thatf 0

∗ = 0 as well, i.e.

B′(B−5)(f) = f ∗0 = 0 = f 0
∗ ,

as desired.
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Considering (C-3.a), supposef ∈ H hasf̂((0, 1]) = {0}, i.e. f(γ) = 0 for all γ > 0. Applying
L-59.a, we obtain thatf ∗0 = 0. Hence by (195),B′(B−5)(f) = f ∗0 = 0.

In order to show that (C-3.b) holds, letf ∈ H such thatf̂((0, 1]) 6= {0}. Then

B′(B−5)(f
]) =

{
(f ])

0

∗ : (f ])
∗
0 = 1

(f ])
∗
0 : (f ])

∗
0 < 1

by (195)

=

{
(f [)

0

∗ : (f [)
∗
0 = 1

(f [)
∗
0 : (f [)

∗
0 < 1

by L-54.b, L-59.b

= B′(B−5)(f
[) .

Finally, let us show that (C-4) is violated. To this end, let us definef, g ∈ H by

f(γ) =

{ 2
3

: x ≤ 1
3

0 : x > 1
3

and

g(γ) =

{
1 : x ≤ 1

3

0 : x > 1
3

for all γ ∈ I. It is apparent from these definitions and (19), (18) that

f 0
∗ = 1

3

g0
∗ = 1

3

f ∗0 = 2
3

g∗0 = 1 .

Hence

B′(B−5)(f) = f ∗0 = 2
3
> 1

3
= g0

∗ = B′(B−5)(g) ,

although clearlyf ≤ g.

Proof of Theorem 68

We shall defineB(B−5) ∈ BB according to equation (23). Noting thatB(B−5) ∈ BB satisfies (B-2)
and recalling Th-53, we can prove the independence of (B-5) from (B-1) to (B-4) by showing that
B′(B−5) satisfies (C-1), (C-2) and (C-3.a)/(C-3.b), but fails on (C-4). This has been done in lemma
L-60.

D.5 Proof of Theorem 69

a. By Th-65, there exists a choice ofB(B−1) : B -I which satisfies (B-2), (B-3), (B-4) and
(B-5), but violates (B-1). AbbreviatingM(B−1) = MB(B−1)

, the sufficiency theorems Th-47, Th-
48, Th-49, Th-50 and Th-51 tell us thatM(B−1) satisfies (Z-2), (Z-3), (Z-4), (Z-5) and (Z-6),
respectively. We may then conclude from the “necessity theorem” Th-56 thatM(B−1) violates
(Z-1), i.e. (Z-1) is independent of the remaining conditions (Z-2) to (Z-6).
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b. Analogous: By Th-66, there exists a choice ofB(B−2) : B -I which satisfies (B-1), (B-3),
(B-4) and (B-5), but violates (B-2). AbbreviatingM(B−2) = MB(B−2)

, the sufficiency theorems
Th-45, Th-47, Th-49, Th-50 and Th-51 tell us thatM(B−2) satisfies (Z-1), (Z-2), (Z-4), (Z-5)
and (Z-6), respectively. We may then conclude from the “necessity theorem” Th-59 thatM(B−2)

violates (Z-3), i.e. (Z-3) is independent of the remaining conditions in (Z-1) to (Z-6).

c. Again analogous: By Th-68, there exists a choice ofB(B−5) : B -I which satisfies (B-1),
(B-2), (B-3) and (B-4), but violates (B-5). AbbreviatingM(B−5) = MB(B−5)

, the sufficiency
theorems Th-45, Th-47, Th-48, Th-49 and Th-51 tell us thatM(B−5) satisfies (Z-1), (Z-2), (Z-3),
(Z-4) and (Z-6), respectively. We may then conclude from the “necessity theorem” Th-61 that
M(B−5) violates (Z-5), i.e. (Z-5) is independent of the remaining conditions in (Z-1) to (Z-6).

d. Same argumentation: By Th-67, there exists a choice ofB(B−4) : B -I which satisfies
(B-1), (B-2), (B-3) and (B-5), but violates (B-4). AbbreviatingM(B−4) =MB(B−4)

, the sufficiency
theorems Th-45, Th-47, Th-48, Th-49 and Th-50 tell us thatM(B−4) satisfies (Z-1), (Z-2), (Z-3),
(Z-4) and (Z-5), respectively. We may then conclude from the “necessity theorem” Th-60 that
M(B−4) violates (Z-6), i.e. (Z-6) is independent of the remaining conditions (Z-1) to (Z-5).

D.6 Proof of Theorem 70

In order to show that (B-3) is independent of the remaining conditions onB, let us defineB′(B−3) :
H -I as follows:

B′(B−3)(f) = f ∗0 (198)

for all f ∈ H, wheref ∗0 = lim
x→0+

f(x), as in (18).

Lemma 61
B′(B−3) satisfies(C-1), (C-3.a), (C-3.b)and (C-4), but violates(C-2).

Proof
Let us consider the conditions onB′(B−3) in turn.

B′(B−3) satisfies (C-1) If f ∈ H is constant, thenf(γ) = f(0) for all γ ∈ I and hence

lim
γ→0+

f(γ) = f(0) . (199)

Therefore

B′(B−3)(f) = f ∗0 by (198)

= lim
γ→0+

f(γ) by (18)

= f(0) , by (199)

i.e. (C-1) holds.
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B′(B−3) satisfies (C-3.a) Supposef ∈ H is a mapping such that̂f((0, 1]) = {0}. Then

B′(B−3)(f) = f ∗0 by (198)

= 0 . by L-59.a

B′(B−3) satisfies (C-3.b) Let f ∈ H a mapping such that̂f((0, 1]) 6= {0}. Then

B′(B−3)(f
]) = (f ])

∗
0 by (198)

= (f [)
∗
0 by L-59.b

= B′(B−3)(f
[) . by (198)

B′(B−3) satisfies (C-4) Supposef, g ∈ H such thatf ≤ g. Then

B′(B−3)(f) = f ∗0 by (198)

= lim
x→0+

f(x) by (18)

= sup{f(x) : x > 0} by Th-43,f nonincreasing

≤ sup{g(x) : x > 0} becausef ≤ g

= lim
x→0+

g(x) by Th-43,g nonincreasing

= g∗0 by (18)

= B′(B−3)(g) . by (198)

B′(B−3) violates (C-2) Let f ∈ H the mapping defined by

f(γ) =

{
1 : γ < 1

2

0 : γ ≥ 1
2

Then by (19),

f 0
∗ = 1

2
(200)

and by (18),

f ∗0 = 1 . (201)

Therefore

B′(B−3)(f) = f ∗0 by (198)

= 1 by (201)

6= 1
2

= f 0
∗ , by (200)

i.e. (C-2) does not hold.
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Proof of Theorem 70

We shall assume thatB(B−3) : B -I is defined in terms ofB′(B−3) according to equation (23). In
particular, we hence know thatB(B−3) ∈ BB, i.e. B(B−3) satisfies (B-2) by Def. 74. In addition,
we know from L-61 thatB′(B−3) satisfies (C-1), (C-3.a), (C-3.b) and (C-4), but violates (C-2). By
Th-53,B(B−3) satisfies (B-1), (B-4) and (B-5), but violates (B-3).

D.7 Proof of Theorem 71

The proof is immediate from previous lemmata (see table below).

Condition Independence proven in
(C-1) L-56
(C-2) L-61
(C-3.b) L-57
(C-4) L-60

D.8 Proof of Theorem 72

We will need a series of lemmata.

Lemma 62
Letx ∈ I.

a. If x > 1
2
, then

Q¬γ(η̃(x)) =

{
0 : γ ≤ 2x− 1
1
2

: γ > 2x− 1

b. If x = 1
2
, thenQ¬γ(η̃(x)) = 1

2
for all γ ∈ I.

c. If x < 1
2
, then

Q¬γ(η̃(x)) =

{
1 : γ ≤ 1− 2x
1
2

: γ > 1− 2x

Proof
Let us first observe that by Def. 52,Q¬ : P({1}) -I is the semi-fuzzy quantifier defined by

Q¬(V ) =

{
0 : X = {1}
1 : X = ∅

(202)

Now supposex ∈ I. We will abbreviateX = η̃(x) ∈ P̃({1}), i.e.X is defined byµX(1) = x.
In the following, we shall treat separately the three cases of the lemma.

a. x > 1
2
. Then1 ∈ (X)max

γ for all γ ∈ I. Furthermore,1 ∈ (X)min
γ if γ ≤ 2x − 1, and

1 /∈ (X)min
γ if γ > 2x− 1, as is easily seen from Def. 66. Hence by Def. 67 and (202),

Q¬γ(X) =

{
0 : γ ≤ 2x− 1
1
2

: γ > 2x− 1

as desired.
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b. Then1 ∈ (X)max
γ and1 /∈ (X)min

γ for all γ ∈ I by Def. 66, i.e.(X)min
γ = ∅ and(X)max

γ =
{1} for all γ. By Def. 67 and (202),Q¬γ(X) = m 1

2
{Q¬(∅), Q¬({1}} = m 1

2
(0, 1) = 1

2
for

all γ ∈ I.

c. Then1 /∈ (X)min
γ , i.e.(X)min

γ = ∅, for all γ ∈ I. Furthermore1 /∈ (X)max
γ for all γ ≤ 1−2x

and1 ∈ (X)max
γ if γ > 1−2x, which is obvious from Def. 66. This means that(X)max

γ = ∅
if γ ≤ 1− 2x, and(X)max

γ = {1} if γ > 1− 2x. By Def. 67 and (202),

Q¬γ(X) =

{
1 : γ ≤ 1− 2x
1
2

: γ > 1− 2x

which finishes the proof of the lemma.

Lemma 63
SupposeE is some nonempty set,e ∈ E andX ∈ P̃(E). We will abbreviatez = µX(e). Then

a. If z > 1
2
, then

πeγ(X) =

{
0 : γ ≤ 2z − 1
1
2

: γ > 2z − 1

b. If z = 1
2
, thenπeγ(X) = 1

2
for all γ ∈ I.

c. If z < 1
2
, then

πeγ(X) =

{
1 : γ ≤ 1− 2z
1
2

: γ > 1− 2z

Proof
SupposeE is some nonempty set,e ∈ E,X ∈ P̃(E) andz = µX(e). Let us recall that by Def. 6,

πe(V ) =

{
1 : e ∈ V
0 : e /∈ V (203)

for all V ∈ P(E). We will prove separately the three cases of the lemma.

a. z > 1
2
. Thene ∈ (X)max

γ for all γ ∈ I. Furthermoree ∈ (X)min
γ if γ ≤ 2z − 1, and

e /∈ (X)min
γ if γ > 2z − 1. This is apparent from Def. 66. Henceπe((X)max

γ ) = 1 for all
γ ∈ I, πe((X)min

γ ) = 1 for all γ ≤ 2z− 1, andπe((X)min
γ ) = 0 for all γ > 2z− 1; see (203).

Therefore by Def. 67,

πeγ(X) =

{
1 : γ ≤ 2z − 1
1
2

: γ > 2z − 1

b. z = 1
2
. Thene ∈ (X)max

γ ande /∈ (X)min
γ for all γ ∈ I, see Def. 66. By (203),πe((X)min

γ ) =
0 andπe((X)max

γ ) = 1 for all γ ∈ I. From Def. 67, it is then apparent thatπeγ(X) =
m 1

2
(0, 1) = 1

2
for all γ ∈ I.
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c. z < 1
2
. In this case,e /∈ (X)min

γ for all γ ∈ I. In addition,e /∈ (X)max
γ if γ ≤ 1 − 2z, and

e ∈ (X)max
γ if γ > 1− 2z. This is apparent from Def. 66. Thereforeπe((X)min

γ ) = 0 for all
γ ∈ I, πe((X)max

γ ) = 0 if γ ≤ 1− 2z, andπe((X)max
γ ) = 1 if γ > 1− 2z, as is easily seen

from (203). Hence by Def. 67,

πeγ(X) =

{
0 : γ ≤ 1− 2z
1
2

: γ > 1− 2z

which we intended to show.

Lemma 64
Supposef : E -E ′ is some mapping whereE,E ′ are nonempty sets; further suppose that
X ∈ P̃(E) andz ∈ E ′ are given. We shall abbreviate

V = {µX(e) : e ∈ f−1(z)}
s = supV

Qγ(X) = χf̂(X)(z) .

1. If s > 1
2

ands ∈ V , then

Qγ(X) =

{
1 : γ ≤ 2s− 1
1
2

: γ > 2s− 1

2. If s > 1
2

ands /∈ V , then

Qγ(X) =

{
1 : γ < 2s− 1
1
2

: γ ≥ 2s− 1

3. If s = 1
2

ands ∈ V , thenQγ(X) = 1
2

for all γ ∈ I;

4. If s = 1
2

ands /∈ V , then

Qγ(X) =

{
0 : γ = 0
1
2

: γ > 0

5. If s < 1
2

ands ∈ V , then

Qγ(X) =

{
0 : γ ≤ 1− 2s
1
2

: γ > 1− 2s

6. If s < 1
2

ands /∈ V , then

Qγ(X) =

{
0 : γ ≤ 1− 2s
1
2

: γ > 1− 2s
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Proof
Let us first observe that

Q(Y ) =

{
1 : f−1(z) ∩ Y 6= ∅
0 : f−1(z) ∩ Y = ∅

(204)

for all Y ∈ P(E). Apparently

Q(Y ) = ∃(Y ∩ f−1(z)) , (205)

in particular,Q is a nondecreasing quantifier. Hence

Qγ(X) = m 1
2
{Q(Y ) : Y ∈ Tγ(X)} by Def. 67

= m 1
2
(inf{Q(Y ) : Y ∈ Tγ(X)}, sup{Q(Y ) : Y ∈ Tγ(X)}) by Def. 46

= m 1
2
(Q((X)min

γ ), Q((X)max
γ )) becauseQ nondecreasing

i.e.

Qγ(X) = m 1
2
(Q((X)min

γ ), Q((X)max
γ )) . (206)

We are now prepared to prove the claims of the lemma.

1. If s > 1
2

ands ∈ V , then there is somee ∈ f−1(z) such thatµX(e) = s > 1
2

and

µX(e′) ≤ µX(e) (207)

for all e′ ∈ f−1(z); this is apparent from the definition ofs = supV andV . Because
µX(e) > 1

2
, we know by Def. 66 thate ∈ (X)max

γ for all γ, i.e.

Q((X)max
γ ) ≥ Q((X)max

γ ∩ {e}) becauseQ nondecreasing

= Q({e}) becausee ∈ (X)max
γ }

= 1 , by (204)

i.e.

Q((X)max
γ ) = 1 (208)

for all γ ∈ I. By (207) andµX(e) = s, we further know thate ∈ (X)min
γ for all γ ≤ 2s− 1,

and

(X)min
γ ∩ f−1(z) = ∅ (209)

for all γ > 2s− 1; this is apparent from Def. 66. Hence in the case thatγ ≤ 2s− 1,

Q((X)min
γ ) ≥ Q((X)min

γ ∩ {e}) becauseQ nondecreasing

= Q({e}) becausee ∈ (X)min
γ }

= 1 , by (204)

i.e.

Q((X)min
γ ) = 1 . (210)
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In the case thatγ > 2s− 1, however,

Q((X)min
γ ) = ∃(X ∩ f−1(z)) by (205)

= ∃(∅) by (209)

= 0 ,

i.e.

Q((X)min
γ ) = 0 (211)

if γ > 2s− 1. Hence

Qγ(X) = m 1
2
(Q((X)min

γ ), Q((X)max
γ )) by (206)

=

{
m 1

2
(1, 1) : γ ≤ 2s− 1

m 1
2
(0, 1) : γ > 2s− 1

by (208), (210) and (211)

=

{
1 : γ ≤ 2s− 1
1
2

: γ > 2s− 1
by Def. 45.

2. s > 1
2

ands /∈ V . Supposeγ < 2s − 1, i.e. 1
2

+ 1
2
γ < s. Becauses = supV > 0 and

s > 1
2

+ 1
2
γ, there existsv ∈ V such thatv > 1

2
+ 1

2
γ. By the definition ofV , there exists

somee ∈ f−1(z) such thatµX(e) = v > 1
2

+ 1
2
γ. By Def. 66, it is apparent thate ∈ (X)max

γ

ande ∈ (X)min
γ , i.e. Q((X)max

γ ) = Q((X)min
γ ) = 1 (by similar reasoning as in case 1.).

Hence

Qγ(X) = m 1
2
(Q((X)min

γ ), Q((X)max
γ )) by (206)

= m 1
2
(1, 1)

= 1 ,

if γ < 2s− 1.
Let us now consider the case thatγ ≥ 2s − 1. Becauses = supV /∈ V , we know that
µX(e) < s for all e ∈ f−1(z) Hence(X)min

γ ∩ f−1(z) = ∅ for all γ ≥ 2s− 1 and by (205),
Q((X)min

γ ) = 0. As in the previous case whereγ′ < 2s−1, we still have(X)max
γ ∩f−1 6= ∅,

i.e.Q((X)max
γ ) = 1. Hence

Qγ(X) = m 1
2
(Q((X)min

γ ), Q((X)max
γ )) by (206)

= m 1
2
(0, 1) (see above)

= 1
2
,

if γ ≥ 2s− 1.

3. s = 1
2

ands ∈ V . Then there exists somee ∈ f−1(z) such thatµX(e) = 1
2
. By Def. 66,

e ∈ (X)max
γ for all γ ∈ I. BecauseµX(e′) ≤ µX(e) for all e′ ∈ f−1(z), which is apparent

from theµX(e) = supV andµX(e′) ∈ V for all e′ ∈ f−1(z), we also know that(X)min
γ ∩

f−1(z) = ∅ for all γ ∈ I. By similar reasoning as above, we conclude thatQ((X)min
γ ) = 0

andQ((X)max
γ ) = 1 for all γ ∈ I. Hence

Qγ(X) = m 1
2
(Q((X)min

γ ), Q((X)max
γ )) by (206)

= m 1
2
(0, 1)

= 1
2
.
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for all γ ∈ I.

4. s = 1
2

ands /∈ V . By the definition ofV ands = supV > 0, it is apparent that

µX(e′) < 1
2

(212)

for all e′ ∈ f−1(z), and that for eachs′ < 1
2
, there exists somee ∈ f−1(z) such that

µX(e) > s′ . (213)

Let us firstly consider the case thatγ = 0. Then(X)min
0 = (X)

>
1
2

and(X)max
0 = (X)

≥1
2
,

see Def. 66. From (212), we conclude that(X)min
0 ∩ f−1(z) = (X)max

0 ∩ f−1(z) = ∅ and
hence by (205),Q((X)min

0 ) = Q((0)max
) = 0, i.e.

Q0(X) = m 1
2
(Q((X)min

0 ), Q((X)max
0 )) by (206)

= m 1
2
(0, 0)

= 0 .

Let us now consider the case thatγ > 0. Firstly (X)min
γ ∩f−1(z) = ∅ for all γ > 0, which is

apparent Def. 66 and (212). By (213) and Def. 66,(X)max
γ ∩f−1(z) = (X)

>
1
2
−1

2
γ
∩f−1(z) 6=

∅, i.eQ((X)max
γ ) = 1 by (205) for allγ > 0. Hence

Qγ(X) = m 1
2
(Q((X)min

γ ), Q((X)max
γ )) by (206)

= m 1
2
(0, 1)

= 1
2

for all γ > 0.

5. If s < 1
2

ands ∈ V , then there is somee ∈ f−1(z) such thatµX(e) = v = supV , and

µX(e′) ≤ µX(e) (214)

for all e′ ∈ f−1(z). Because of (213) and observing thatµX(e) = v < 1
2
, it is apparent from

Def. 66 that(X)min
γ ∩ f−1(z) = ∅ for all γ ∈ I and hence

Q((X)min
γ ) = 0 (215)

for all γ ∈ I.
In the case thatγ ≤ 1− 2s,

1
2
− 1

2
γ ≥ 1

2
− 1

2
(1− 2s) = s = µX(e) ≥ µX(e′)

for all e′ ∈ f−1(z) by (214). Hence by Def. 66,(X)max
γ ∩f−1(z) = ∅ and henceQ((X)max

γ ) =
0 for all γ ≤ s, i.e.

Qγ(X) = m 1
2
(Q((X)min

γ ), Q((X)max
γ )) by (206)

= m 1
2
(0, 0)

= 0 .
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Considering the case thatγ > 1 − 2s, i.e. 1
2
− 1

2
γ < s, we conclude from Def. 66 that

(X)max
γ = (X)

>
1
2
−1

2
γ
3 {e} becauseµX(e) = s > 1

2
− 1

2
γ, and henceQ((X)max

γ ) = 1 by

(206). Combining this with (215), we obtain

Qγ(X) = m 1
2
(Q((X)min

γ ), Q((X)max
γ )) by (206)

= m 1
2
(0, 1)

= 1
2
,

for all γ > 1− 2s.

6. s < 1
2

ands /∈ V . Then

µX(e′) < s (216)

for all e′ ∈ f−1(z), and for alls′ < s there existse ∈ f−1(z) such that

µX(e) > s′ . (217)

We will firstly discuss the case thatγ ≤ 1− 2s. By (216),
1
2
− 1

2
γ ≥ 1

2
− 1

2
(1− 2s) = s > µX(e′)

for all e′ ∈ f−1(z) and hence(X)max
γ ∩ f−1(z) = (X)min

γ ∩ f−1(z) = ∅ by Def. 66. By
(205),Q((X)min

γ ) = Q((X)max
γ ) = 0 and hence by (206),Qγ(X) = m 1

2
(0, 0) = 0 for all

γ ≤ 1− 2s.
Finally, let us consider the case thatγ > 1 − 2s. By (217), there exists somee ∈ f−1(z)
such thatµX(e) > 1

2
− 1

2
γ, i.e. (X)max

γ ∩ f−1(z) 6= ∅ and by (205),Q((X)max
γ ) = 1. On

the other hand,(X)min
γ ∩ f−1(z) = ∅ (as above) and henceQ((X)min

γ ) = 0. By (206),
Qγ(X) = m 1

2
(0, 1) = 1

2
.

We will now introduce anMB-QFM which will serve as an example of the independence of (Z-2)
of the other axioms.

Definition 107
TheMB-QFMM(Z−2) is defined byM(Z−2) =MB(Z−2)

, whereB′(Z−2) : H -I is

B′(Z−2)(f) = f(1)

for all f ∈ H andB(Z−2) : B -I is defined in terms ofB′(Z−2) according to equation(23), i.e.

B(Z−2)(f) = f(1)

for all f ∈ B.

Let us now investigate the induced connectives ofM(Z−2).

Lemma 65

The induced negatioñ̃¬ =
˜̃M(Z−2)(¬) ofM(Z−2) is˜̃¬x = t1(¬x)

for all x ∈ I, where¬ : I -I is the standard negation¬x = 1− x andt1(•) is the three-valued
cut at cut-level1.
In particular, the induced fuzzy complement ofM(Z−2) is˜̃¬X = T1(¬X)
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Proof Let us first recall that for allx ∈ (0, 1),

t1(x) = 1
2

by Def. 62. Observing that ifx ∈ (0, 1), then¬x = 1− x ∈ (0, 1), too, we obtain that

t1(¬x) = 1
2

(218)

for all x ∈ (0, 1).
To simplify the proof of the lemma, we shall discern five cases:

a. x = 1. Then˜̃M(Z−2)(¬)(x) = (Q¬)1(η̃(x)) by Def. 107, Def. 52

= 0 by L-62.a,x = 1 = γ

= t1(0) by Def. 62

= t1(¬x) . because¬x = ¬1 = 1− 1 = 0

b. 1
2
< x < 1. Then

˜̃M(Z−2)(¬)(x) = (Q¬)1(η̃(x)) by Def. 107, Def. 52

= 1
2

by L-62.a,x < 1 = γ

= t1(¬x) . by (218)

c. x = 1
2
. Then

˜̃M(Z−2)(¬)(x) = (Q¬)1(η̃(x)) by Def. 107, Def. 52

= 1
2

by L-62.b

= t1(¬x) . by (218)

d. 0 < x < 1
2
. In this case,

˜̃M(Z−2)(¬)(x) = (Q¬)1(η̃(x)) by Def. 107, Def. 52

= 1
2

by L-62.c,γ = 1 > 1− 2x

= t1(¬x) . by (218)

e. x = 0. Then˜̃M(Z−2)(¬)(x) = (Q¬)1(η̃(x)) by Def. 107, Def. 52

= 1 by L-62.b,γ = 1 ≤ 1− 2x

= t1(1) by Def. 62

= t1(¬x) . because¬x = ¬0 = 1− 0 = 1
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Lemma 66

The induced disjunctioñ̃∨ =
˜̃M(Z−2)(∨) ofM(Z−2) is

x1
˜̃∨ x2 = t1(x1 ∨ x2)

for all x1, x2 ∈ I, where∨ : I × I -I is the standard disjunctionx1 ∨ x2 = max(x1, x2) and
t1(•) is the three-valued cut at cut-level1.
In particular, the induced fuzzy union ofM(Z−2) is

X1
˜̃∪X2 = T1(X1 ∪X2) .

Proof Supposex1, x2 ∈ I. Let us abbreviatez = max(x1, x2). We shall again discern five cases.

a. z = 1. Then˜̃M(Z−2)(∨)(x1, x2) = (Q∨)1(η̃(x1, x2)) by Def. 52, Def. 107

= 1 by L-51.a,γ = 1 ≤ 2z − 1 = 1

= t1(z) . by Def. 62,z = 1

b. 1
2
< z < 1. Then˜̃M(Z−2)(∨)(x1, x2) = (Q∨)1(η̃(x1, x2)) by Def. 52, Def. 107

= 1
2

by L-51.a,γ = 1 > 2z − 1

= t1(z) . by Def. 62,z ∈ (0, 1)

c. z = 1
2
. Then˜̃M(Z−2)(∨)(x1, x2) = (Q∨)1(η̃(x1, x2)) by Def. 52, Def. 107

= 1
2

by L-51.b

= t1(z) . by Def. 62,z ∈ (0, 1)

d. 0 < z < 1
2
. Then˜̃M(Z−2)(∨)(x1, x2) = (Q∨)1(η̃(x1, x2)) by Def. 52, Def. 107

= 1
2

by L-51.c,γ = 1 > 1− 2z

= t1(z) . by Def. 62,z ∈ (0, 1)

e. z = 0. Then˜̃M(Z−2)(∨)(x1, x2) = (Q∨)1(η̃(x1, x2)) by Def. 52, Def. 107

= 0 by L-51.c,γ = 1 ≤ 1− 2z

= t1(z) . by Def. 62,z = 0

Lemma 67
Supposef : E -E ′ is some mapping whereE,E ′ are nonempty sets; further suppose that
X ∈ P̃(E) andz ∈ E ′ are given. Then

µM̂(Z−2)(f)(X)(z) =


1 : µX(e) = 1 for somee ∈ f−1(z)

0 : µX(e) = 0 for all e ∈ f−1(z)
1
2

: else



D PROOF OF THEOREMS IN CHAPTER 5 162

Proof Let us defineQ : P(E) -I by Q(Y ) = χf̂(Y )(z). Let us further abbreviateV =

{µX(e) : e ∈ f−1(z) ands = supV . Then

µM̂(Z−2)(f)(X)(z) =M(Z−2)(Q)(X) by Def. 19

= Q1(X) by Def. 107

=



1 : s = 1 ands ∈ V
1
2

: s = 1 ands /∈ V
1
2

: 1
2
< s < 1 ands ∈ V

1
2

: 1
2
< s < 1 ands /∈ V

1
2

: s = 1
2

ands ∈ V
1
2

: s = 1
2

ands /∈ V
1
2

: 0 < s < 1
2

ands ∈ V
1
2

: 0 < s < 1
2

ands /∈ V
0 : s = 0 ands ∈ V
0 : s = 0 ands /∈ V

by L-64.1,1 = γ ≤ 2s− 1 = 1

by L-64.2,1 = γ ≥ 2s− 1 = 1

by L-64.1,1 = γ > 2s− 1

by L-64.2,1 = γ ≥ 2s− 1

by L-64.3

by L-64.4,γ = 1

by L-64.5,1 = γ > 1− 2s

by L-64.6,1 = γ > 1− 2s

by L-64.5,1 = γ ≤ 1− 2s = 1

by L-64.6,1 = γ ≤ 1− 2s = 1

i.e.

µM̂(Z−2)(f)(X)(z) =


1 : s = 1 ands ∈ V
0 : s = 0
1
2

: else

(219)

It is apparent from (219) thatµM̂(Z−2)(f)(X)(z) = 1 iff s = 1 ands ∈ V . By the definition of

V = {µX(e) : e ∈ f−1(z)} ands = supV , s ∈ V means that there exists somee ∈ f−1(z) such
that1 = s = µX(e).

By (219),µM̂(Z−2)(f)(X)(z) = 0 is equivalent tos = 0. Recalling thats = supV = sup{µX(e) :

e ∈ f−1(z)}, the criterions = 0 is in turn equivalent to the condition thatµX(e) = 0 for all
e ∈ f−1(z).
Hence

µM̂(Z−2)(f)(X)(z) =


1 : µX(e) = 1 for somee ∈ f−1(z)

0 : µX(e) = 0 for all e ∈ f−1(z)
1
2

: else

as desired.

Lemma 68
Supposef : E -E ′ is a mapping whereE,E ′ are nonempty. Further suppose thatX ∈ P̃(E)
is a fuzzy subset ofE. Then

T1(M̂(Z−2)(f)(X)) = f̂(T1(X)) ,

where we have abbreviated

f̂(T1(X)) = {f̂(Y ) : Y ∈ T1(X)} .
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Proof By [9, L-26, p.133], it is sufficient to show the following.

a. f̂((X)min
1 ) = (M̂(Z−2)(f)(X))min

1 ;

b. f̂((X)max
1 ) = (M̂(Z−2)(f)(X))max

1 .

a. To prove the first claim, let us recall that by Def. 66,(X)min
1 = (X)≥1, i.e. the above equation

becomes

f̂((X)≥1) =
(
M̂(Z−2)(f)(X)

)
≥1
.

To see that this equation holds, letz ∈ E ′. Then

z ∈
(
M̂(Z−2)(f)(X)

)
≥1
⇔ µM̂(Z−2)(f)(X)(z) = 1 by Def. 64

⇔ there is somee ∈ f−1(z) s.th.µX(e) = 1

by L-67

⇔ there is somee ∈ f−1(z) s.th.e ∈ (X)≥1

by Def. 64

⇔ z ∈ f̂((X)≥1) . by Def. 17

b. We will show in an analogous way that equation b. holds. Recalling that by Def. 66,(X)max
1 =

(X)>0, equation b. becomes

f̂((X)>0) =
(
M̂(Z−2)(f)(X)

)
>0
.

To see that this equation holds, letz ∈ E ′. Then

z ∈
(
M̂(Z−2)(f)(X)

)
>0
⇔ µM̂(Z−2)(f)(X)(z) > 0 by Def. 65

⇔ there is somee ∈ f−1(z) s.th.µX(e) > 0

by L-67

⇔ there is somee ∈ f−1(z) s.th.e ∈ (X)>0

by Def. 65

⇔ z ∈ f̂((X)>0) . by Def. 17

Lemma 69
SupposeQ : P(E)n -I is a semi-fuzzy quantifier,X1, . . . , Xn ∈ P̃(E) are fuzzy argument sets
andi ∈ {1, . . . , n}. Then

M(Z−2)(Q)(X1, . . . , Xn) =M(Z−2)(Q)(X1, . . . , Xi−1,T1(Xi), Xi+1, Xn) ,

whereT1(Xi) is the three-valued cut ofXi at cut-level1; see Def. 63.
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Proof
Let us first observe that

T1(Xi) = T (T1(Xi)) by Def. 66

= T (T1(T1(Xi))) by L-27,T1(Xi) three-valued

= T1(T1(Xi)) by Def. 66,

i.e.

T1(Xi) = T1(T1(Xi)) . (220)

Hence

M(Z−2)(Q)(X1, . . . , Xn)

= B(Z−2)((Qγ(X1, . . . , Xn))γ∈I) by Def. 107, Def. 69

= Q1(X1, . . . , Xn) by Def. 107

= m 1
2
{Q(Y1, . . . , Yn) : Y1 ∈ T1(X1), . . . , Yn ∈ T1(Xn)} by Def. 67

= m 1
2
{Q(Y1, . . . , Yn) : Y1 ∈ T1(X1), . . . , Yi−1 ∈ T1(Xi−1),

Yi ∈ T1(T1(Xi)), Yi+1 ∈ T1(Xi+1), . . . , Yn ∈ T1(Xn)} by L-27, Def. 66

= Q1(X1, . . . , Xi−1,T1(Xi), Xi+1, . . . , Xn) by Def. 67

= B(Z−2)((Qγ(X1, . . . , Xi−1,T1(Xi), Xi+1, . . . , Xn))γ∈I) by Def. 107

=M(Z−2)(Q)(X1, . . . , Xi−1,T1(Xi), Xi+1, . . . , Xn) . by Def. 107, Def. 69

Lemma 70
SupposeX ∈ P(I) is an arbitrary subset ofI. Then

m 1
2
{t1(x) : x ∈ X} = t1(m 1

2
X) .

Proof From the definition of fuzzy median Def. 45, it is apparent that

m 1
2
(x, y) = 1⇔ x = y = 1

and

m 1
2
(x, y) = 0⇔ x = y = 0 .

It is then obvious from the definition of the generalized fuzzy median Def. 46 that

m 1
2
Z = 1⇔ Z = {1} (221)

and

m 1
2
Z = 0⇔ Z = {0} (222)

for all Z ∈ P(I).
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Now supposeX ∈ P(I) is given. We shall abbreviate

L = m 1
2
{t1(x) : x ∈ X} (223)

and

R = t1(m 1
2
X) (224)

It is easily seen from Def. 62 and Def. 45 thatR ∈ {0, 1
2
, 1} andL ∈ {0, 1

2
, 1}. We can hence

show the equality ofR andL by proving the following:

a. L = 1 iff R = 1;

b. L = 0 iff R = 0.

a. This is apparent from the following chain of equivalences:

R = 1⇔ t1(m 1
2
X) = 1 by (224)

⇔ m 1
2
X = 1 by Def. 62

⇔ X = {1} by (221)

⇔ {t1(x) : x ∈ X} = {1} by Def. 62

⇔ m 1
2
{t1(x) : x ∈ X} = 1 by (221)

⇔ L = 1 . by (223)

b. The proof of this case is analogous to that ofa.:

R = 0⇔ t1(m 1
2
X) = 0 by (224)

⇔ m 1
2
X = 0 by Def. 62

⇔ X = {0} by (222)

⇔ {t1(x) : x ∈ X} = {0} by Def. 62

⇔ m 1
2
{t1(x) : x ∈ X} = 0 by (222)

⇔ L = 0 , by (223)

as desired.

Let us recall one more lemma on properties of(•)γ:

Lemma 71
SupposeQ : P(E)0 -I is a constant semi-fuzzy quantifier. ThenU(Qγ) = Q for all γ ∈ I.

Proof Apparent from [9, L-18, p. 124] and Def. 5.

With the help of these lemmata, it is now easy to show thatM(Z−2) satisfies all “Z-axioms” except
(Z-2).
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Proof of Theorem 72

M(Z−2) satisfies (Z-1) Let us first consider the case of nullary (i.e. constant) semi-fuzzy quanti-
fiers. To this end, letQ : P(E)0 -I a constant semi-fuzzy quantifier. Then

M(Z−2)(Q)(∅) = Q1(∅) by Def. 107

= Q(∅) . by L-71

The remaining case is that of unary quantifiers. Hence supposeQ : P(E) -I and acrisp subset
X ∈ P(E) are given. Then

M(Z−2)(Q)(X) = Q1(X) by Def. 107

= m 1
2
{Q(Y ) : Y ∈ T1(X)} by Def. 67

= m 1
2
{Q(Y ) : Y ∈ {X}} by Def. 66,X crisp

= m 1
2
{Q(X)}

= Q(X) . by Def. 46

M(Z−2) does not satisfy (Z-2) To see that (Z-2) is violated, letE = {e} some singleton base

set and letx ∈ (1
2
, 1), e.g.x = 3

4
. Further suppose thatX ∈ P̃(E) is the fuzzy subset defined by

µX(e) = x = 3
4
. Then

M(Z−2)(πe)(X) = B(Z−2)((πeγ(X))γ∈I) by Def. 107, Def. 69

= πe1(X) by Def. 107

= 1
2

by L-63

6= 3
4

= µX(e) by definition ofX

= π̃eX . by Def. 7

M(Z−2) satisfies (Z-3)

M(Z−2)(Q
˜̃�)(X1, . . . , Xn)

= (Q
˜̃�)1(X1, . . . , Xn) by Def. 107

= m 1
2
{Q ˜̃�(Y1, . . . , Yn) : Yi ∈ T1(Xi)} by Def. 67

= m 1
2
{˜̃¬Q(Y1, . . . , Yn−1, ˜̃¬Yn) : Yi ∈ T1(Xi)} by Def. 12

= m 1
2
{t1(¬Q(Y1, . . . , Yn)) : Y1 ∈ T1(X1), . . . , Yn−1 ∈ T1(Xn−1), Yn ∈ T1(¬Xn)} by L-65, L-31

= t1(¬m 1
2
{Q(Y1, . . . , Yn) : Y1 ∈ T1(X1), . . . , Yn−1 ∈ T1(Xn−1), Yn ∈ T1(¬Xn)}) by L-70, L-29

= ˜̃¬Q1(X1, . . . , Xn−1,¬Xn) by L-65, Def. 67

= ˜̃¬M(Z−2)(Q)(X1, . . . , Xn−1,¬Xn) by Def. 107

= ˜̃¬M(Z−2)(Q)(X1, . . . , Xn−1,T1(¬Xn)) by L-69

= ˜̃¬M(Z−2)(Q)(X1, . . . , Xn−1, ˜̃¬Xn) by L-65

=M(Z−2)(Q)
˜̃�(X1, . . . , Xn) . by Def. 12
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M(Z−2) satisfies (Z-4)

M(Z−2)(Q∪)(X1, . . . , Xn+1) = (Q∪)1(X1, . . . , Xn+1) by Def. 107

= Q1(X1, . . . , Xn−1, Xn ∪Xn+1) by L-35

=M(Z−2)(Q)(X1, . . . , Xn−1, Xn ∪Xn+1) by Def. 107

=M(Z−2)(Q)(X1, . . . , Xn−1,T1(Xn ∪Xn+1)) by L-69

=M(Z−2)(Q)(X1, . . . , Xn−1, Xn
˜̃∪Xn+1) by L-66

=M(Z−2)(Q)˜̃∪(X1, . . . , Xn+1) . by Def. 26

M(Z−2) satisfies (Z-5) SupposeQ : P(E)n -I is nonincreasing in itsn-th argument. Further

suppose thatX1, . . . , Xn, X
′
n ∈ P̃(E) are fuzzy subsets ofE such thatXn ⊆ X ′n. Then

M(Z−2)(Q)(X1, . . . , Xn) = Q1(X1, . . . , Xn) by Def. 107

≥ Q1(X1, . . . , Xn−1, X
′
n) by L-36

=M(Z−2)(Q)(X1, . . . , Xn−1, X
′
n) . by Def. 107

M(Z−2) satisfies (Z-6) SupposeQ : P(E)′
n -I is a semi-fuzzy quantifier,f1, . . . , fn : E -E ′

are mappings (E 6= ∅) andX1, . . . , Xn ∈ P̃(E). Then

M(Z−2)(Q ◦
n
×
i=1

f̂i)(X1, . . . , Xn)

= (Q ◦
n
×
i=1

f̂i)1(X1, . . . , Xn) by Def. 107

= m 1
2
{(Q ◦

n
×
i=1

f̂i)(Y1, . . . , Yn) : Yi ∈ T1(Xi)} by Def. 67

= m 1
2
{Q(f̂1(Y1), . . . , f̂n(Yn)) : Yi ∈ T1(Xi)} by Def. 21

= m 1
2
{Q(Z1, . . . , Zn) : Zi ∈ f̂i(T1(Xi))} using the abbr. of L-68

= m 1
2
{Q(Z1, . . . , Zn) : Zi ∈ T1(M̂(Z−2)(fi)(Xi))} by L-68

= Q1(M̂(Z−2)(f1)(X1), . . . ,M̂(Z−2)(fn)(Xn)) by Def. 67

=M(Z−2)(Q)(M̂(Z−2)(f1)(X1), . . . ,M̂(Z−2)(fn)(Xn)) . by Def. 107

This finishes the proof thatM(Z−2) satisfies all properties except for (Z-2), i.e. (Z-2) is independent
of the remaining axioms (Z-1) and (Z-3) to (Z-6).

D.9 Proof of Theorem 73

We shall define the QFMM(Z−4) by

M(Z−4)(Q) =

{
M(Q) : n ≤ 1
M∗(Q) : n > 1

(225)

for all semi-fuzzy quantifiersQ : P(E)n -I.

BecausẽM̃(Z−4) andM̂(Z−4) are defined in terms of nullary or one-place semi-fuzzy quantifiers
(see Def. 52 and Def. 19, resp.), it is apparent that˜̃M(Z−4) =

˜̃M (226)
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and

M̂(Z−4) = M̂ =
ˆ̂

(•) . (227)

The last equation is apparent from the fact thatM is a standard DFS by Th-42.
Another consequence ofM being a standard DFS and (226) is thatM(Z−4) induces the standard
fuzzy negation

˜̃M(Z−4)(¬)(x) = 1− x (228)

for all x ∈ I, and the standard fuzzy disjunction

˜̃M(Z−4)(∨)(x1, x2) = max(x1, x2) , (229)

for all x1, x2 ∈ I.

Let us now show thatM(Z−4) satisfies all “Z-axioms” except for (Z-4), i.e. that (Z-4) is independent
of the remaining conditions.

M(Z−4) satisfies (Z-1) SupposeQ : P(E)n -I is a semi-fuzzy quantifier wheren ≤ 1. Then

U(M(Z−4)(Q)) = U(M(Q)) by (225),n ≤ 1

= Q . becauseM DFS by Th-42

M(Z−4) satisfies (Z-2) SupposeE 6= ∅ is some nonempty base set,e ∈ E an arbitrary element
of E.

M(Z−4)(πe) =M(πe) by (225),n = 1

= π̃e . becauseM DFS by Th-42

M(Z−4) satisfies (Z-3) SupposeQ : P(E)n -I is a semi-fuzzy quantifier wheren > 0. Re-
calling thatM(Z−4) andM both induce the standard negation (by (228) and Th-42, respectively)
we obtain in the case thatn = 1,

M(Z−4)(Q�) =M(Q�) by (225),n = 1

=M(Q)� becauseM standard DFS by Th-42

=M(Z−4)(Q)� . by (225),n = 1

In the case thatn > 1, we recall thatM∗ also induces the standard fuzzy negation by Th-54.
Therefore

M(Z−4)(Q�) =M∗(Q�) by (225),n > 1

=M∗(Q)� becauseM∗ standard DFS by Th-54

=M(Z−4)(Q)� . by (225),n > 1
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M(Z−4) violates (Z-4) Supposef ∈ B is the mapping defined by

f(γ) = 1− 1
4
γ (230)

for all γ ∈ I. By Th-41, there exists a monadic semi-fuzzy quantifierQ : P(I) -I and a fuzzy
subsetX ∈ P̃(I) such that

Qγ(X) = f(γ) (231)

for all γ ∈ I. We compute:˜̃∪M(Z−4)(Q)(X,∅) =M(Z−4)(Q)(X ∪∅) by Def. 26, (229)

=M(Z−4)(Q)(X)

=M(Q)(X) by (225),n = 1

=

∫ 1

0

Qγ(X) dγ by Def. 70

=

∫ 1

0

1− 1
4
γ dγby (230), (231)

= (γ − 1
8
γ2)
∣∣1
0

= 1− 1
8

= 7
8
.

On the other hand,

M(Z−4)(
˜̃∪Q)(X,∅) =M(Z−4)(Q∪)(X,∅) by (229)

=M∗(Q∪)(X,∅) by (225),Q∪ two-place

=M∗(Q)∪(X,∅) by Th-54,M∗ is standard DFS

=M∗(Q)(X ∪∅) by Def. 26

=M∗(Q)(X)

= B∗((Qγ(X))γ∈I) by Def. 77, Def. 69

= B∗(f) by (231)

= 1 ,

which is apparent from Def. 70 and (230), observing thatf ∗0 = 1 and f
1
2
∗ = 1. Comparing

M(Z−4)(Q)
˜̃�(X,∅) andM(Z−4)Q

˜̃�(X,∅), it is apparent that (Z-4) fails.

M(Z−4) satisfies (Z-5) We shall discern monadic quantifiers and quantifiers of aritiesn > 1.

a. n = 1. SupposeQ : P(E) -I is nonincreasing in its argument. LetX,X ′ ∈ P̃(E) such
thatX ⊆ X ′. Then

M(Z−4)(Q)(X) =M(Q)(X) by (225),n = 1

≥M(Q)(X ′) by Th-42,M satisfies (Z-5)

=M(Z−4)(Q)(X ′) . by (225),n = 1

b. n > 1. SupposeQ : P(E)n -I is nonincreasing in itsn-th argument (n > 1). By (225),
we know thatM(Z−4)(Q) = M∗(Q). By Th-54, we know thatM∗ is a DFS and hence
fulfills (Z-5), i.e.M(Z−4)(Q) =M∗(Q) is nondecreasing in itsn-th argument, as desired.
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M(Z−4) satisfies (Z-6) We shall again treat separately semi-fuzzy quantifiers of arityn ≤ 1 and
those of arityn > 1.

a. SupposeQ : P(E)′
n -I is a semi-fuzzy quantifier wheren ≤ 1. Further suppose that

f1, . . . , fn : E -E ′ are mappings, whereE 6= ∅. Then

M(Z−4)(Q ◦
n
×
i=1

f̂i) =M(Q ◦
n
×
i=1

f̂i) by (225),n ≤ 1

=M(Q) ◦
n
×
i=1

ˆ̂
fi by Th-42,M is standard DFS

=M(Z−4)(Q) ◦
n
×
i=1

ˆ̂
fi by (225),n ≤ 1

=M(Z−4)(Q) ◦
n
×
i=1
M̂(Z−4)(fi) . by (227)

b. AssumeQ : P(E)′
n -I is a semi-fuzzy quantifier wheren > 1. Further suppose that

f1, . . . , fn : E -E ′ are mappings, whereE 6= ∅. Then

M(Z−4)(Q ◦
n
×
i=1

f̂i) =M∗(Q ◦
n
×
i=1

f̂i) by (225),n > 1

=M∗(Q) ◦
n
×
i=1

ˆ̂
fi by Th-54,M∗ is standard DFS

=M(Z−4)(Q) ◦
n
×
i=1

ˆ̂
fi by (225),n > 1

=M(Z−4)(Q) ◦
n
×
i=1
M̂(Z−4)(fi) , by (227)

i.e. (Z-6) holds.

E Proofs of Theorems in Chapter 6

E.1 Proof of Theorem 74

Supposẽ∨ is ans-norm and(Fj)j∈J is aJ -indexed collection of̃∨-DFSes whereJ 6= ∅.

a. Let us first prove that(Fj)j∈J does not have upper specificity bounds if(Fj)j∈J is not speci-
ficity consistent.
The proof is by contradiction. Hence let us assume that(Fj)j∈J is not specificity consistent and
thatF∗ is an upper bound of(Fj)j∈J . Because(Fj)j∈J is not specificity consistent, we conclude
from Def. 79 that there existsj, j′ ∈ J ,Q : P(E)n -I andX1, . . . , Xn ∈ P̃(E) such that

Fj(Q)(X1, . . . , Xn) < 1
2

Fj′(Q)(X1, . . . , Xn) > 1
2
.

ThenFj �c F∗ entails that

F∗(Q)(X1, . . . , Xn) ≤ Fj(Q)(X1, . . . , Xn) < 1
2

andFj′ �c F∗ entails that

F∗(Q)(X1, . . . , Xn) ≥ Fj(Q)(X1, . . . , Xn) > 1
2
,
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i.e. F∗(Q)(X1, . . . , Xn) < 1
2

andF∗(Q)(X1, . . . , Xn) > 1
2
, a contradiction. We conclude that

there is no such upper boundF∗. It remains to be shown that(Fj)j∈J has upper specificity bounds
whenever it is specificity consistent. This case is covered by part b. of the theorem, which we prove
below.

b. Suppose that(Fj)j∈J is specificity consistent. Let us define the QFMFlub by

Flub(Q)(X1, . . . , Xn) =

{
supRQ,X1,...,Xn : RQ,X1,...,Xn ⊆ [1

2
, 1]

inf RQ,X1,...,Xn : RQ,X1,...,Xn ⊆ [0, 1
2
]

(232)

for all Q : P(E)n -I, X1, . . . , Xn ∈ P̃(E), whereRQ,X1,...,Xn = {Fj(Q)(X1, . . . , Xn) : j ∈
J }. We have to show that

1. Flub is a∨̃-DFS.

2. Flub is an upper specificity bound on(Fj)j∈J .

3. Flub is theleastupper specificity bound on(Fj)j∈J .

ad 1. To prove thatFlub is a ∨̃-DFS, we first observe thatFlub can be defined in terms of an
aggregation mappingΨ : IJ -I, viz

Ψ(f) =


sup f̂(J ) : f̂(J ) ⊆ [1

2
, 1]

inf f̂(J ) : f̂(J ) ⊆ [0, 1
2
]

1
2

: else
(233)

for all f : J -I; this is apparent because the “else” case will never occur since(Fj)j∈J is
specificity consistent, and henceFlub = Ψ[(Fj)j∈J ], using the abbrevation of Th-29. Let us now
show thatΨ satisfies the conditions of this theorem.
Hence suppose thatf : J -I is a constant mapping, i.e. there existsc ∈ I such thatf(j) = c

for all j ∈ J . If c ≥ 1
2
, thenΨ(f) = sup f̂(J ) = sup{c} = c by (233). Similarly ifc ≤ 1

2
, then

Ψ(f) = inf f̂(J ) = inf{c} = c. HenceΨ satisfies condition a. of Th-29.
Now suppose thatf : J -I and g(j) = 1 − f(j) for all j ∈ J . If f̂(J ) ⊆ [1

2
, 1], then

ĝ(J ) = {1− f(j) : j ∈ J } ⊆ [0, 1
2
] and hence

Ψ(g) = inf{1− f(j) : j ∈ J } by (233)

= 1− sup{f(j) : j ∈ J }
= 1−Ψ(f) . by (233)

Similarly if f̂(J ) ⊆ [0, 1
2
], thenĝ(J ) ⊆ [1

2
, 1] and hence

Ψ(g) = sup{1− f(j) : j ∈ J } by (233)

= 1− inf{f(j) : j ∈ J }
= 1−Ψ(f) . by (233)

Finally if f̂(J ) 6⊆ [1
2
, 1] and f̂(J ) 6⊆ [0, 1

2
], thenĝ(J ) 6⊆ [1

2
, 1] and ĝ(J ) 6⊆ [0, 1

2
] as well, and

henceΨ(g) = 1
2

= 1− 1
2

= 1−Ψ(f). Summarising,Ψ satisfies condition b. of Th-29.
Let us now assume thatf, g : J -I satisfyf ≤ g. We shall discern the following cases to prove
that condition c. of Th-29 is satisfied, too.
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i. f̂(J ) ⊆ [0, 1
2
] andĝ(J ) ⊆ [0, 1

2
].

ThenΨ(f) = inf f̂(J ) ≤ inf ĝ(J ) = Ψ(g).

ii. f̂(J ) ⊆ [0, 1
2
] andĝ(J ) 6⊆ [0, 1

2
].

ThenΨ(f) = inf f̂(J ) ≤ 1
2
≤ Ψ(g).

iii. f̂(J ) 6⊆ [0, 1
2
], f̂(J ) 6⊆ [1

2
, 1], ĝ(J ) 6⊆ [0, 1

2
], ĝ(J ) 6⊆ [1

2
, 1].

ThenΨ(f) = 1
2

= Ψ(g).

iv. f̂(J ) 6⊆ [0, 1
2
], f̂(J ) 6⊆ [1

2
, 1], ĝ(J ) ⊆ [1

2
, 1].

ThenΨ(f) = 1
2
≤ sup ĝ(J ) = Ψ(g).

v. f̂(J ) ⊆ [1
2
, 1], ĝ(J ) ⊆ [1

2
, 1].

ThenΨ(f) = sup f̂(J ) ≤ sup ĝ(J ) = Ψ(g).

We can hence apply Th-29 and conclude thatFlub is a∨̃-DFS.

ad 2. Let us now show thatFlub is an upper specificity bound on allFj, j ∈ J . Hence let
j′ ∈ J , Q : P(E)n -I andX1, . . . , Xn ∈ P̃(E) be given. IfFj′(Q)(X1, . . . , Xn) > 1

2
, then

RQ,X1,...,Xn ⊆ [1
2
, 1] because(Fj)j∈J is assumed to be specificity consistent. Hence

Flub(Q)(X1, . . . , Xn) = sup{Fj(Q)(X1, . . . , Xn) : j ∈ J } by definition ofFlub

≥ Fj′(Q)(X1, . . . , Xn) becausej′ ∈ J
> 1

2
,

i.e.Flub(Q)(X1, . . . , Xn)�c Fj′(Q)(X1, . . . , Xn) by Def. 44. Similarly ifFj′(Q)(X1, . . . , Xn) <
1
2
, thenRQ,X1,...,Xn ⊆ [0, 1

2
] because(Fj)j∈J is assumed to be specificity consistent. Therefore

Flub(Q)(X1, . . . , Xn) = inf{Fj(Q)(X1, . . . , Xn) : j ∈ J } by definition ofFlub

≤ Fj′(Q)(X1, . . . , Xn) becausej′ ∈ J
< 1

2
,

i.e.Flub(Q)(X1, . . . , Xn)�cFj′(Q)(X1, . . . , Xn) by Def. 44. Finally ifFj′(Q)(X1, . . . , Xn) = 1
2
,

then triviallyFlub(Q)(X1, . . . , Xn) �c 1
2

= Fj′(Q)(X1, . . . , Xn) by Def. 44. Summarising these
results,Flub is an upper specificity bound for(Fj)j∈J .

ad 3. It remains to be shown thatFlub is theleastupper specificity bound.

Hence suppose that thẽ∨-DFSF∗ is an upper specificity bound for(Fj)j∈J . We will show that
Flub �c F∗. Hence letQ : P(E)n -I andX1, . . . , Xn ∈ P̃(E) be given. Suppose there is
somej′ ∈ J such thatFj′(Q)(X1, . . . , Xn) > 1

2
. Then by our assumption thatF∗ be an upper

specificity bound,

F∗(Q)(X1, . . . , Xn) ≥ Fj′(Q)(X1, . . . , Xn) > 1
2
, (234)

cf. Def. 44. We further conclude fromFj′(Q)(X1, . . . , Xn) > 1
2

and the fact that allFj are
specificity consistent thatRQ,X1,...,Xn ⊆ [1

2
, 1], i.e.F(Q)(X1, . . . , Xn) ≥ 1

2
for all j ∈ J . Now

let j an arbitrary choice ofj ∈ J . BecauseF∗ is an upper specificity bound, we know that
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F∗(Q)(X1, . . . , Xn)�c Fj(Q)(X1, . . . , Xn).
BecauseFj(Q)(X1, . . . , Xn) ≥ 1

2
andF∗(Q)(X1, . . . , Xn) > 1

2
by (234), this means that

F∗(Q)(X1, . . . , Xn) ≥ Fj(Q)(X1, . . . , Xn) ,

see (9). Becausej ∈ J was chosen arbitrarily, we conclude that

F∗(Q)(X1, . . . , Xn) ≥ sup{Fj(Q)(X1, . . . , Xn) : j ∈ J }
= supRQ,X1,...,Xn by definition ofRQ,X1,...,Xn, see Def. 79

= Flub(Q)(X1, . . . , Xn) by (232)

i.e. by (9),

F∗(Q)(X1, . . . , Xn)�c Flub(Q)(X1, . . . , Xn) .

The case thatFj′(Q)(X1, . . . , Xn) < 1
2

for somej′ ∈ J is proven analogously. Finally if
Fj(Q)(X1, . . . , Xn) = 1

2
for all j ∈ J , thenFlub(Q)(X1, . . . , Xn) = 1

2
and trivially

F∗(Q)(X1, . . . , Xn)�c 1
2

= Flub(Q)(X1, . . . , Xn) ,

see (9). Summarising,Flub(Q)(X1, . . . , Xn) �c F∗(Q)(X1, . . . , Xn) for all Q andX1, . . . , Xn.
Hence by Def. 44.Flub �c F∗, as desired.

E.2 Proof of Theorem 75

SupposeQ,Q′ : P(E)n -I are semi-fuzzy quantifiers andX1, . . . , Xn ∈ P̃(E) are chosen such
thatQ∼(X1,...,Xn) Q

′. Recalling that by Def. 66,

T1(Xi) = {Y ∈ P(E) : (Xi)≥1 ⊆ Y ⊆ (Xi)>0} (235)

for i = 1, . . . , n, it is apparent that

(Y ∪ (Xi)≥1) ∩ (Xi)>0 = Y

for all Y ∈ T1(Xi), and

(Y ∪ (Xi)≥1) ∩ (Xi)>0 ∈ T1(Xi)

for all Y ∈ P(E). Hence by Def. 83,Q∼(X1,...,Xn) Q
′ is equivalent to

Q((Y1 ∪ (X1)≥1) ∩ (X1)>0,
. . . ,
(Yn ∪ (Xn)≥1) ∩ (Xn)>0)

= Q′((Y1 ∪ (X1)≥1) ∩ (X1)>0,
. . .
(Yn ∪ (Xn)≥1) ∩ (Xn)>0)

(236)

for all Y1, . . . , Yn ∈ P(E). Let us now defineQ′′ : P(E)n -I by

Q′′(Y1, . . . , Yn) = Q((Y1 ∪ (X1)≥1) ∩ (X1)>0, . . . , (Yn ∪ (Xn)≥1) ∩ (Xn)>0) (237)
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for all Y1, . . . , Yn ∈ P(E). It is then apparent from (236) that

Q′′(Y1, . . . , Yn) = Q′((Y1 ∪ (X1)≥1) ∩ (X1)>0, . . . , (Yn ∪ (Xn)≥1) ∩ (Xn)>0) (238)

for all Y1, . . . , Yn ∈ P(E).
Let us further observe that

(Xi)≥1 ⊆ Xi ⊆ (Xi)>0

and hence

(Xi ∪̃ (Xi)≥1) ∩̃ (Xi)>0 = Xi (239)

for i = 1, . . . , n. Therefore

F(Q)(X1, . . . , Xn)

= F(Q)((X1 ∪̃ (X1)≥1) ∩̃ (X1)>0,

. . .

(Xn ∪̃ (Xn)≥1) ∩̃ (Xn)>0) by (239)

= F(Q′′)(X1, . . . , Xn) by (DFS 4), (DFS 6), Th-4 and (237)

= F(Q)′((X1 ∪̃ (X1)≥1) ∩̃ (X1)>0,

. . .

(Xn ∪̃ (Xn)≥1) ∩̃ (Xn)>0) by (DFS 4), (DFS 6), Th-4 and (238)

= F(Q)′(X1, . . . , Xn) , by (239)

as desired.

E.3 Proof of Theorem 76

SupposeQ,Q′ : P(E)n -I are convex in thei-th argument,i ∈ {1, . . . , n}. Then by Def. 85,

Q(X1, . . . , Xn) ≥ min(Q(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn), Q(X1, . . . , Xi−1, X

′′
i , Xi+1, . . . , Xn))

(240)

Q′(X1, . . . , Xn) ≥ min(Q′(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn), Q′(X1, . . . , Xi−1, X

′′
i , Xi+1, . . . , Xn)) ,

(241)
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for all X1, . . . , Xn, X
′
i, X

′′
i ∈ P(E) such thatX ′i ⊆ Xi ⊆ X ′′i . Hence

(Q ∧Q′)(X1, . . . , Xn)

= min(Q(X1, . . . , Xn),

Q′(X1, . . . , Xn)) by definition ofQ ∧Q′

≥ min(min(Q(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

Q(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn)),

min(Q′(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

Q′(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn))) by (240), (241)

= min(min(Q(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

Q′(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn)),

min(Q(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn),

Q′(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn)))

= min((Q ∧Q′)(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

(Q ∧Q′)(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn)) , by definition ofQ ∧Q′

i.e.Q ∧Q′ is convex in itsi-th argument.

E.4 Proof of Theorem 77

SupposẽQ, Q̃′ : P̃(E)
n
-I are convex in thei-th argument,i ∈ {1, . . . , n}. Then by Def. 85,

Q̃(X1, . . . , Xn) ≥ min(Q̃(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn), Q̃(X1, . . . , Xi−1, X

′′
i , Xi+1, . . . , Xn))

(242)

Q̃′(X1, . . . , Xn) ≥ min(Q̃′(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn), Q̃′(X1, . . . , Xi−1, X

′′
i , Xi+1, . . . , Xn)) ,

(243)

for all X1, . . . , Xn, X
′
i, X

′′
i ∈ P̃(E) such thatX ′i ⊆ Xi ⊆ X ′′i . Hence

(Q̃ ∧ Q̃′)(X1, . . . , Xn)

= min(Q̃(X1, . . . , Xn),

Q̃′(X1, . . . , Xn)) by definition ofQ̃ ∧ Q̃′

≥ min(min(Q̃(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

Q̃(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn)),

min(Q̃′(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

Q̃′(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn))) by (242), (243)

= min(min(Q̃(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

Q̃′(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn)),

min(Q̃(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn),

Q̃′(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn)))

= min((Q̃ ∧ Q̃′)(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

(Q̃ ∧ Q̃′)(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn)) , by definition ofQ̃ ∧ Q̃′
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i.e. Q̃ ∧ Q̃′ : P̃(E)
n
-I is convex in itsi-th argument.

E.5 Proof of Theorem 78

a. SupposeQ+, Q− : P(E)n -I aren-ary semi-fuzzy quantifiers andi ∈ {1, . . . , n}. Further
suppose thatQ+ is nondecreasing in itsi-th argument and thatQ− is nonincreasing in itsi-th
argument. Define the semi-fuzzy quantifierQ : P(E)n -I byQ = Q+ ∧Q−. We have to show
thatQ is convex in thei-th argument. Hence letX1, . . . , Xn, X

′
i, X

′′
i ∈ P(E) such that

X ′i ⊆ Xi ⊆ X ′′i . (244)

BecauseQ+ is nondecreasing in thei-th argument, we conclude from (244) that

Q+(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn)

≤ Q+(X1, . . . , Xn)

≤ Q+(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn) ,

i.e.

Q+(X1, . . . , Xn) ≥ min( Q+(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

Q+(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn)) .

(245)

Similarly, we conclude from (244) and the fact thatQ− is nonincreasing that

Q−(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn)

≥ Q−(X1, . . . , Xn)

≥ Q−(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn) ,

i.e.

Q−(X1, . . . , Xn) ≥ min( Q−(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

Q−(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn)) .

(246)

Therefore

Q(X1, . . . , Xn)

= min(Q+(X1, . . . , Xn), Q−(X1, . . . , Xn)) by definition ofQ = Q+ ∧Q−

≥ min(min(Q+(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

Q+(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn)),

min(Q−(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

Q−(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn))) by (245), (246)

= min(min(Q+(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

Q−(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn)),

min(Q+(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn),

Q−(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn)))

= min(Q(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

Q(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn)) , becauseQ = Q+ ∧Q−

i.e.Q = Q+ ∧Q− is convex in thei-th argument, as desired.



E PROOFS OF THEOREMS IN CHAPTER 6 177

b. To show that the reverse direction of the claimed equivalence also holds, let us suppose that
Q : P(E)n -I is ann-ary semi-fuzzy quantifier which is convex in thei-th argument, where
i ∈ {1, . . . , n}. Let us defineQ+, Q− : P(E)n -I by

Q+ = sup{Q(X1, . . . , Xi−1, Z,Xi+1, Xn) : Z ⊆ Xi} (247)

and

Q− = sup{Q(X1, . . . , Xi−1, Z,Xi+1, Xn) : Xi ⊆ Z ⊆ E} (248)

for all X1, . . . , Xn ∈ P(E).

To prove thatQ+ is nondecreasing in thei-th argument, let us consider a choice of arguments
X1, . . . , Xn, X

′
i ∈ P(E) such thatXi ⊆ X ′i. Then

Q+(X1, . . . , Xn) = sup{Q(X1, . . . , Xi−1, Z,Xi+1, Xn) : Z ⊆ Xi} by (247)

≤ sup{Q(X1, . . . , Xi−1, Z,Xi+1, Xn) : Z ⊆ X ′i} becauseXi ⊆ X ′i
= Q+(X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn) by (247).

Similarly,

Q−(X1, . . . , Xn) = sup{Q(X1, . . . , Xi−1, Z,Xi+1, Xn) : Xi ⊆ Z ⊆ E} by (248)

≥ sup{Q(X1, . . . , Xi−1, Z,Xi+1, Xn) : X ′i ⊆ Z ⊆ E} becauseXi ⊆ X ′i
= Q−(X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn) by (248).

wheneverX1, . . . , Xn, X
′
i ∈ P(E) such thatXi ⊆ X ′i, i.e.Q− is nonincreasing in thei-th argu-

ment. It remains to be shown thatQ = Q+ ∧Q−. Apparently

Q+(X1, . . . , Xn)

= sup{Q(X1, . . . , Xi−1, Z,Xi+1, Xn) : Z ⊆ Xi} by (247)

≥ Q(X1, . . . , Xn) becauseXi ∈ {Z : Z ⊆ Xi}

and

Q−(X1, . . . , Xn)

= sup{Q(X1, . . . , Xi−1, Z,Xi+1, Xn) : Xi ⊆ Z ⊆ E} by (248)

≥ Q(X1, . . . , Xn) , becauseXi ∈ {Z : Xi ⊆ Z ⊆ E}

for all X1, . . . , Xn ∈ P(E). Therefore

Q ≤ Q+ ∧Q− . (249)

To see thatQ ≥ Q+ ∧Q−, let ε > 0. By (247), there existsX ′i ⊆ Xi such that

Q(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn) > Q+(X1, . . . , Xn)− ε . (250)

Similarly, we conclude from (248) that there existsX ′′i ⊇ Xi such that

Q(X1, . . . , Xi−1, X
′′
i , Xi+1, . . . , Xn) > Q−(X1, . . . , Xn)− ε . (251)
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Therefore

Q(X1, . . . , Xn)

≥ min(Q(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

Q(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn)) becauseQ convex ini-th argument

> min(Q+(X1, . . . , Xn)− ε,Q−(X1, . . . , Xn)− ε) by (250), (251)

= min(Q+(X1, . . . , Xn), Q−(X1, . . . , Xn))− ε .

Becauseε > 0 was chosen arbitarily, this means that

Q(X1, . . . , Xn) ≥ min(Q+(X1, . . . , Xn), Q−(X1, . . . , Xn)) ,

for all X1, . . . , Xn ∈ P(E), i.e.

Q ≥ Q+ ∧Q− . (252)

Combining (249) and (252) yields the desired resultQ = Q+ ∧Q−.

E.6 Proof of Theorem 79

The proof of this theorem is entirely analogous to that of Th-79. In this case, the argumentsXi of
the quantifiers are fuzzy subsetsXi ∈ P̃(E), and ‘⊆’ is the fuzzy inclusion relation.

E.7 Proof of Theorem 80

Let us assume thatE 6= ∅ is a base set of cardinality|E| ≥ 3. Then there exist pairwise distinct
elementsa, b, c ∈ E. We will define a semi-fuzzy quantifierQ : P(E) -I by

Q(Y ) =

{
1 : Y = {a, b} ∨ Y = {c}
0 : else

(253)

for all Y ∈ P(E). It is apparent from Th-78 thatQ is convex, becauseQ can be decomposed into
a conjunctionQ = Q+ ∧ Q−, whereQ+ : P(E) -I is nondecreasing andQ− : P(E) -I is
nonincreasing.Q+ is defined by

Q+(Y ) =

{
1 : {a, b} ⊆ Y ∨ {c} ⊆ Y
0 : else

andQ− is defined by

Q−(Y ) =

{
1 : Y ⊆ {a, b} ∨ Y ⊆ {c}
0 : else

for all Y ∈ P(E). It is obvious from these definitions thatQ+ is nondecreasing,Q− is nonincreas-
ing, andQ = Q+ ∧Q−, i.e.Q is convex.
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Let us now considerX ′, X,X ′′ ∈ P̃(E), defined by

µX′(e) =

{ 1
2

: e = c

0 : else

µX(e) =


1
2

: e = c

1 : e = a

0 : else

µX′′(e) =


1
2

: e = c

1 : e = a ∨ e = b

0 : else

for all e ∈ E. Clearly

X ′ ⊆ X ⊆ X ′′ . (254)

ConsideringF(Q)(X ′), let us observe thatT1(X ′) = {∅, {c}} andQ(∅) = 0 = ∃(∅),Q({c}) =
1 = ∃({c}). ThereforeQ∼(X′) ∃, and

F(Q)(X ′) = F(∃)(X ′) > 0 (255)

becauseF is required to be contextual and to satisfy assumption b. of the theorem.
Similarly,T1(X) = {{a}, {a, c}}, i.e.Q({a}) = 0 = O({a}) andQ({a, c}) = 0 = O({a, c}) and
henceQ∼(X) O. Therefore

F(Q)(X) = F(O)(X) = 0 (256)

becauseF is required to be contextual and to satisfy assumption a. of the theorem.
Finally, T1(X ′′) = {{a, b}, {a, b, c}}, i.e.Q({a, b}) = 1 = (∼∀)({a, b}) andQ({a, b, c}) = 0 =
(∼∀)({a, b, c}) and henceQ∼(X′′) ∼∀. We conclude that

F(Q)(X ′′) = F(∼∀)(X ′′) > 0 (257)

becauseF is required to be contextual and to satisfy assumption c. of the theorem.
Summarizing, we obtain that

F(Q)(X) = 0 by (256)

< min(F(Q)(X ′),F(Q)(X ′′)) by (255), (257)

althoughX ′ ⊆ X ⊆ X ′′ by (254), i.e.F(Q) fails to be convex in its argument.

E.8 Proof of Theorem 81

SupposeF is a DFS. It is sufficient to show that the preconditions of Th-80 are satisfied. By Th-75,
we already know thatF is contextual. Now assumeE 6= ∅ is some base set.
Let us consider the quantifierO : P(E) -I defined byO(Y ) = 0 for all Y ∈ P(E), and let
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X ∈ P̃(E). Then

0 = O(∅) by definition ofO

= F(O)(∅) by (Z-1)

≤ F(O)(X) becauseO nondecreasing,∅ ⊆ X

≤ F(O)(E) becauseO nondecreasing,X ⊆ E

= O(E) by (Z-1)

= 0 . by definition ofO

HenceF(O)(X) = 0, i.e. condition a. of Th-80 holds.
By Th-21, we know thatF(∃) is an S-quantifier; hence condition b. of Th-80 is fulfilled by Th-23.
Similarly, we know from Th-21 thatF(∀) is a T-quantifier. IfX ∈ P̃(E) and there existse ∈ E
such thatµX(e) < 1, then we conclude from Th-22 thatF(∀)(X) < 1. Becausẽ¬ is a strong
negation operator andF is compatible with external negation by (DFS 3), we conclude from¬̃ ∀ =
∼∀ thatF(∼∀) = F(¬̃ ∀) = ¬̃ F(∀) > 0, which is apparent becausẽ¬ is a strong negation,
i.e.x < 1 implies that¬̃x > 0. This proves that condition c. of Th-80 is satisfied, too.
We can hence apply Th-80 to obtain the desired result.

E.9 Proof of Theorem 82

The claim of the theorem is apparent from repeated application of [9, Th-5,p.28] and (DFS 4).

E.10 Proof of Theorem 83

Let us assume thatE is a base set of cardinality|E| ≥ 2. We shall defineQ : P(E)2 -I by

Q(Y1, Y2) =


1 : |Y1| = 0 ∧ |Y2| = 0
1 : |Y1| 6= 0 ∧ |Y2| = 2
0 : else

(258)

for all Y1, Y2 ∈ P(E). It is apparent from Def. 31 thatQ is quantitative because|β̂(Y1)| = |Y1|
and|β̂(Y2)| = |Y2| for every automorphismβ : E -E and every choice ofY1, Y2 ∈ P(E).
In addition,Q can be decomposed into a conjunctionQ = Q+ ∧ Q− of semi-fuzzy quantifiers
Q+, Q− : P(E)2 -I, where

Q+(Y1, Y2) =


1 : |Y1| = 0
1 : |Y1| 6= 0 ∧ |Y2| ≥ 2
0 : else

Q−(Y1, Y2) =


1 : |Y1| = 0 ∧ |Y2| = 0
1 : |Y1| 6= 0 ∧ |Y2| ≤ 2
0 : else

for all Y1, Y2 ∈ P(E). It is obvious from these definitions thatQ+ is nondecreasing in the second
argument and thatQ− is nonincreasing in the second argument. By Th-78,Q is convex in the
second argument.
Because|E| ≥ 2, we can choosea, b ∈ E such thata 6= b. Let X1 ∈ P̃(E) the fuzzy subset
defined by

µX1(e) =

{ 1
2

: e = a

0 : else
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for all e ∈ E and letX ′2 = ∅,X2 = {a},X ′′2 = {a, b}. Clearly

X ′2 ⊆ X2 ⊆ X ′′2 . (259)

ConsideringX1, X
′
2, we haveT1(X1) = {∅, {a}} andT1(X ′2) = {∅}. Observing thatQ(∅,∅) =

1 = (∼∃)(∅) andQ({a},∅) = 0 = (∼∃)({a}), we conclude thatQ ∼(X1,X′2) Q
′, whereQ′ :

P(E)2 -I is defined by

Q′(Y1, Y2) = (∼∃)(Y1) ,

for all Y1, Y2 ∈ P(E). Therefore

F(Q)(X1, X
′
2) = F(Q′)(X1, X

′
2) = F(∼∃)(X1) > 0 , (260)

becauseF is contextual and compatible with cylindrical extensions, and becauseF satisfies as-
sumption c. of the theorem.
ConsideringX1, X2, we haveT1(X1) = {∅, {a}} andT1(X2) = {{a}}. In this case,Q(∅, {a}) =
0 = O(∅) andQ({a}, {a}) = 0 = O({a}), i.e.Q∼(X1,X2)Q

′′, whereQ′′ : P(E)2 -I is defined
by

Q′(Y1, Y2) = O(Y1) ,

for all Y1, Y2 ∈ P(E). Therefore

F(Q)(X1, X2) = F(Q′′)(X1, X2) = F(O)(X1) = 0 (261)

becauseF is contextual and compatible with cylindrical extensions, and becauseF satisfies as-
sumption a. of the theorem.
Finally, let us considerX1 andX ′′2 . ThenT1(X1) = {∅, {a}} andT1(X ′′2 ) = {{a, b}}, i.e.

Q(∅, {a, b}) = 0 = ∃(∅) Q({a}, {a, b}) = 1 = ∃({a})

and henceQ∼(X1,X′′2 ) Q
′′′, whereQ′′′ : P(E)2 -I is defined by

Q′′′(Y1, Y2) = ∃(Y1) ,

for all Y1, Y2 ∈ P(E). Therefore

F(Q)(X1, X
′′
2 ) = F(Q′′)(X1, X

′′
2 ) = F(∃)(X1) > 0 (262)

becauseF is contextual and compatible with cylindrical extensions, and becauseF satisfies as-
sumption b. of the theorem. Summarizing, we have

Q(X1, X2) = 0 by (261)

< min(Q(X1, X
′
2), Q(X1, X

′′
2 )) by (260) and (262)

althoughX ′2 ⊆ X2 ⊆ X ′′2 by (259), i.e.F(Q) is not convex in its second argument.
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E.11 Proof of Theorem 84

SupposeF is a DFS. Let us consider the preconditions of Th-83. We already know from Th-75 that
F is contextual. We also know from Th-82 thatF is compatible with cylindrical extensions. As
concerns the conditions a. to c. of Th-83, we observe that Th-83.a and Th-83.b are identical to Th-
80.a and Th-80.b, respectively. We have already shown in the proof of Th-81 that every DFS fulfills
these conditions. Let us now show thatF also fulfills the remaining condition c. of Th-83. Suppose
E 6= ∅ is a base set andX ∈ P̃(E) is a fuzzy subset ofE with the property that there is some
e ∈ E such thatµX(e′) = 0 for all e′ ∈ E \ {e} (in particular,X ∩ {e} = X) and thatµX(e) < 1.
By Th-21, we know thatF(∃) is an S-quantifier. By Def. 37.b,F(∃)(X) = µX(e) < 1. Therefore

F(∼∃)(X) = F(¬̃ ∃)(X) becausẽ¬ strong negation,∼∃ = ¬̃ ∃
= ¬̃ F(∃)(X) by (DFS 3)

= ¬̃µX(e) by above reasoning

> 0 , becausẽ¬ strong negation andµX(e) < 1

i.e. condition c. of Th-83 holds. We can hence apply Th-83 to obtain the desired result.

E.12 Proof of Theorem 85

SupposeE 6= ∅ is a finite base set,Q′ : P(E) -I is quantitative, andQ : P(E)2 -I is
defined byQ = Q′∩. Further suppose thatF is a DFS which weakly preserves convexity. Suppose
Q is convex in its second argument. ThenQ′ is convex in its argument as well. To see this, let
Y ′, Y, Y ′′ ∈ P(E) such thatY ′ ⊆ Y ⊆ Y ′′. Then

Q′(Y ) = Q′(E ∩ Y )

= Q(E, Y ) becauseQ = Q′∩
≥ min(Q(E, Y ′), Q(E, Y ′′)) by convexity ofQ in 2nd arg

= min(Q′(E ∩ Y ′), Q′(E ∩ Y ′′)) becauseQ = Q′∩
= min(Q′(Y ′), Q′(Y ′′)) ,

i.e.Q′ is convex in its argument.
Now letX1, X

′
2, X2, X

′′
2 ∈ P̃(E) such thatX ′2 ⊆ X2 ⊆ X ′′2 . Then

F(Q)(X1, X2)

= F(Q′∩)(X1, X2) becauseQ = Q′∩
= F(Q′)(X1 ∩̃X2) by (DFS 6)

≥ min(F(Q′)(X1 ∩̃X ′2),F(Q′)(X1 ∩̃X ′′2 )) by convexity ofQ′, F weakly convex

= min(F(Q′∩)(X1, X
′
2),F(Q′∩)(X1, X

′′
2 )) by (DFS 6)

= min(F(Q)(X1, X
′
2),F(Q)(X1, X

′′
2 )) , becauseQ = Q′∩

i.e.F(Q) is convex in the second argument, as desired.
Because of the symmetrical definition ofQ (i.e.Q = Qτ1), the proof that convexity in the first
argument is also preserved is completely analogous.
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F Proofs of Theorems in Chapter 7

F.1 Proof of Theorem 86

SupposeB′1,B′2 : H -I are given. Further suppose thatB1,B2 ∈ BB are the mappings associated
with B′1 andB′2, respectively, according to equation (23), andMB1,MB2 are the corresponding
QFMs defined by Def. 69. The theorem states that the condition

MB1 �cMB2 (263)

is equivalent to

B′1 ≤ B′2 . (264)

a. (263)entails (264).
SupposeMB1 �cMB2. Further suppose thatf ∈ H is some mapping; we have to show that
B′1(f) ≤ B′2(f).
To this end, let us defineg : I -I by

g(γ) = 1
2

+ 1
2
f(γ) , (265)

for all γ ∈ I. By Th-41, there exists a semi-fuzzy quantifierQ : P(I) -I and a fuzzy subset
X ∈ P̃(I) such that

Qγ(X) = g(γ) (266)

for all γ ∈ I. Hence

B′1(f) = B′1(2(1
2

+ 1
2
f)− 1)

= B′1(2g − 1) by (265)

= 2(1
2

+ 1
2
B′1(2g − 1))− 1

= 2B1(g)− 1 by (23)

= 2B1((Qγ(X))γ∈I)− 1 by (266)

= 2MB1(Q)(X)− 1 by Def. 69

≤ 2MB2(Q)(X)− 1 by assumption, (263) holds

MB1(Q)(X) ≥ 1
2
,MB2(Q)(X) ≥ 1

2
becauseg ∈ B+

= 2B2((Qγ(X))γ∈I)− 1 by Def. 69

= 2B2(g)− 1 by (266)

= 2(1
2

+ 1
2
B′2(2g − 1))− 1 by (23)

= B′2(2(1
2

+ 1
2
f)− 1)) by (265)

= B′2(f) .

b. (264)entails (263).
SupposeB′1 ≤ B′2. We have to show thatMB1 �cMB2 . Hence letQ : P(E)n -I a semi-fuzzy
quantifier andX1, . . . , Xn ∈ P̃(E) fuzzy argument sets. Let us abbreviate

f(γ) = Qγ(X1, . . . , Xn) (267)

for all γ ∈ I.
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i. If f ∈ B+, then

MB1(Q)(X1, . . . , Xn) = B1(f) by Def. 69, (267)

= 1
2

+ 1
2
B′1(2f − 1) by (23),f ∈ B+

≤ 1
2

+ 1
2
B′2(2f − 1) by assumption,B′1 ≤ B′2

= B2(f) by (23),f ∈ B+

=MB2(Q)(X1, . . . , Xn) . by Def. 69, (267)

HenceMB1(Q)(X1, . . . , Xn) �cMB2(Q)(X1, . . . , Xn) by Def. 44 because both are in the
range[1

2
, 1].

ii. f ∈ B
1
2 , i.e.f = c1

2
. Then

MB1(Q)(X1, . . . , Xn) = B1(c1
2
) by Def. 69, (267)

= 1
2

by (23)

= B2(c1
2
) by (23)

=MB2(Q)(X1, . . . , Xn) . by Def. 69, (267)

In particular,MB1(Q)(X1, . . . , Xn)�cMB2(Q)(X1, . . . , Xn) by Def. 44.

iii. f ∈ B−. Then

MB1(Q)(X1, . . . , Xn) = B1(f) by Def. 69, (267)

= 1
2
− 1

2
B′1(1− 2f) by (23),f ∈ B−

≥ 1
2
− 1

2
B′2(1− 2f) becauseB′1 ≤ B′2 by assumption

= B2(f) by (23),f ∈ B−

=MB2(Q)(X1, . . . , Xn) by Def. 69, (267)

i.e. MB1(Q)(X1, . . . , Xn) �cMB2(Q)(X1, . . . , Xn) by Def. 44 because both are in the
range[0, 1

2
].

F.2 Proof of Theorem 87

Lemma 72
Supposef ∈ H is some mapping.

a. If f̂((0, 1]) = {0}, thenf 1
∗ = 0.

b. If f̂((0, 1]) 6= {0}, then(f ])
1

∗ = (f [)
1

∗.

Proof

a. f̂((0, 1]) = {0}. Thenf(γ) = 0 for all γ ∈ (0, 1] and hence

f 1
∗ = sup{γ ∈ I : f(γ) = 1} by (22)

≤ sup{0} because{γ : f(γ) = 1} ⊆ {0}
= 0 ,

i.e.f 1
∗ = 0 (because it is nonnegative by definition).
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b. f̂((0, 1]) 6= {0}. In this case,

(f ])
1

∗

= sup{γ ∈ I : f ](γ) = 1} by (22)

= sup{γ ∈ [0, 1) : f ](γ) = 1} ∪ {1 : f ](1) = 1}
= sup{γ ∈ [0, 1) : f ](γ) = 1} becausef ](1) = 1 impliesf ](γ) = 1 for γ ∈ I

= sup{γ ∈ [0, 1) : lim
γ′→γ+

f(γ′) = 1} by Def. 71

= sup{γ ∈ [0, 1) : sup{f(γ′) : γ′ > γ} = 1} by Th-43

= sup{γ ∈ [0, 1] : sup{f(γ′) : γ′ > γ} = 1}

where the last equation holds because forγ = 1, we havesup{f(γ′) : γ′ > 1} = sup∅ = 0, and
clearlysupX = supX ∪ {0} if X ∈ P(I). We can summarize this as

(f ])
1

∗ = supL (268)

where we have abbreviated

L = {γ ∈ I : sup{f(γ′) : γ′ > γ} = 1} . (269)

Considering(f [)
1

∗,

(f [)
1

∗ = sup{γ ∈ I : f [(γ) = 1} by (22)

= supA ,

abbreviating

A = {γ ∈ I : f [(γ) = 1} . (270)

Observing thatf [ ∈ H is nonincreasing (this is apparent from the fact thatf ∈ H is nonincreasing
by Def. 75, and by the definition off [ in terms off , see Def. 71), we may conclude thatA ∈ P(I)
is an interval of one of the following forms:

i. A = [0, s]

ii. A = [0, s)

wheres = supA, i.e. s = (f [)
1

∗. In both cases,

supA \ {0} = supA (271)

and

supA ∪ {0} = supA . (272)

Therefore

(f [)
1

∗ = supA by (270), see above

= sup{γ ∈ (0.1] : lim
γ′→γ−

f(γ′) = 1} by (271), Def. 71

= sup{γ ∈ (0, 1] : inf{f(γ′) : γ′ < γ} = 1} by Th-43

= sup{γ ∈ I : inf{f(γ′) : γ′ < γ} = 1} by (272),
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i.e.

(f [)
1

∗ = supR , (273)

abbreviating

R = {γ ∈ I : inf{f(γ′) : γ′ < γ} = 1} . (274)

By (268) and (273), it is hence sufficient to prove thatsupL = supR.
Let us first prove thatsupL ≤ supR. We have to show that for eachγ0 ∈ L, there is someγ′0 ∈ R
such thatγ′0 ≥ γ0.
Hence letγ0 ∈ L. Then by (269),

sup{f(γ′) : γ′ > γ0} = 1 .

In particular,{f(γ′) : γ′ > γ0} 6= ∅, i.e. γ0 < 1.
Let us now show thatf(γ0) = 1. Supposef(γ0) = 1− ε, whereε > 0. Becausesup{f(γ′) : γ′ >
γ0} = 1, there exists someγ′ > γ such thatf(γ′) > 1− ε. Observing thatf ∈ H is nonincreasing
by Def. 75, we conclude fromγ′ > γ0 that f(γ0) ≥ f(γ′) > 1 − ε = f(γ0), a contradiction.
Thereforef(γ0 = 1.
Again utilizing thatf is nonincreasing, we obtain thatf(γ) = 1 for all γ ≤ γ0. In particular,

inf{f(γ′) : γ′ < γ0} = inf{1 : γ′ < γ0} = 1 ,

i.e. γ0 ∈ R. This proves thatsupL ≤ supR.
In order to show thatsupL ≥ supR, let us abbreviates = supR.

i. If s = 0, then clearly

supL ≥ 0 = supR .

ii. If s > 0, then [0, s) is nonempty and we may choose someγ0 ∈ [0, s). We know that
f(γ) = 1 for all γ ∈ [0, s) (this is apparent from (274) and the fact thatf is nonincreasing).
In particular,

f(γ) = 1 (275)

for all γ in the nonempty open interval(γ0, s). Therefore

sup{f(γ′) : γ′ > γ0} ≥ sup{f(γ′) : γ′ ∈ (γ0, s)}
= sup{1} by (275)

= 1 ,

i.e. sup{f(γ′) : γ′ > γ0} = 1. Recalling (269), this means thatγ0 ∈ L. Becauseγ0 was
chosen arbitrarily, we conclude that[0, s) ⊆ L. Therefore

supL ≥ sup[0, s) because[0, s) ⊆ L

= s

= supR ,

as desired.

Lemma 73
Supposef ∈ H.

a. if f̂((0, 1]) = {0}, thenf ∗1 = 0.

b. if f̂((0, 1]) 6= {0}, then(f ])
∗
1 = (f [)

∗
1.
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Proof

a. f̂((0, 1]) = {0}. Thenf(γ) = 0 for all γ > 0. Therefore

f ∗1 = lim
γ→1−

f(γ) by (21)

= lim
γ→1−

0

= 0 .

b. f̂((0, 1]) 6= {0}. Let us first perform some simplifications.

(f ])
∗
1 = lim

γ→1−
f ] by (21)

= lim
γ→1−

lim
γ′→γ+

f(γ′) by Def. 71

= lim
γ→1−

sup{f(γ′) : γ′ > γ} by Th-43

= inf{sup{f(γ′) : γ′ > γ} : γ < 1} , by Th-43

i.e.

(f ])
∗
1 = inf L , (276)

abbreviating

L = {sup{f(γ′) : γ′ > γ} : γ < 1} (277)

Similarly

(f [)
∗
1 = lim

γ→1−
f [(γ) by (21)

= inf{f [(γ) : γ < 1} by Th-43

= inf{ lim
γ′→γ−

f(γ′) : γ ∈ (0, 1)} ∪ {f(0)} by Def. 71

= inf{ lim
γ′→γ−

f(γ′) : γ ∈ (0, 1)} becausef ∈ H is nonincreasing

= inf{inf{f(γ′) : γ′ < γ} : γ ∈ (0, 1)} by Th-43

= inf{inf{f(γ′) : γ′ < γ} : γ < 1} . becauseinf{f(γ′) : γ′ < 0} = inf ∅ = 1

Therefore

(f [)
∗
1 = inf R , (278)

where

R = {inf{f(γ′) : γ′ < γ} : γ < 1} (279)

By (276) and (278), it is sufficient to show thatinf L = inf R.
Let us first show thatinf L ≤ inf R. We will show that for eachx0 ∈ R, there existsx′0 ∈ L such
thatx′0 ≤ x0.
Hence letx0 ∈ R. By (279), there existsγ0 ∈ [0, 1) such that

x0 = inf{f(γ′) : γ′ < γ0} . (280)
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Becauseγ0 ∈ [0, 1), the open interval(γ0, 1) is nonempty. We may hence chose someγ′0 ∈ (γ0, 1)
and define

x′0 = sup{f(γ′) : γ′ > γ′0} . (281)

Clearlyx0 ∈ L, see (277). We compute:

x′0 = sup{f(γ′) : γ′ > γ′0}by (281)

≤ sup{f(γ′0) : γ′ > γ′0} becausef ∈ H is nonincreasing, see Def. 75

= f(γ′0)

≤ f(γ0) becausef nonincreasing,γ0 < γ′0
= inf{f(γ0) : γ′ < γ0}
≤ inf{f(γ′) : γ′ < γ0} becausef nonincreasing

= x0 . by (280)

In order to prove thatinf L ≥ inf R, let us consider somex0 ∈ L, we will show that there is some
x′0 ∈ R such thatx′0 ≤ x0.
Becausex0 ∈ L, we know from (277) that there existsγ0 ∈ [0, 1) such that

x0 = sup{f(γ′) : γ′ > γ0} . (282)

Becauseγ0 ∈ [0, 1), the open interval(γ0, 1) is nonempty. We can hence chooseγ̂, γ′0 ∈ (γ0, 1)
such thatγ0 < γ̂ < γ′0. Let us further define

x′0 = inf{f(γ′) : γ′ < γ′0} . (283)

It is apparent from (279) thatx′0 ∈ R. To see thatx′0 ≤ x0, we compute

x′0 = inf{f(γ′) : γ′ < γ′0} by (283)

= inf{f(γ′) : γ′ ∈ [γ̂, γ′0)} becausef nonincreasing,̂γ < γ′0
≤ inf{f(γ̂) : γ′ ∈ [γ̂, γ′0)} becausef nonincreasing

= f(γ̂)

≤ sup{f(γ′) : γ′ > γ0} becausêγ > γ0, i.e. f(γ̂) ∈ {f(γ′) : γ′ > γ0}
= x0 . by (282)

Proof of Theorem 87

Suppose⊕ : I2 -I is ans-norm andB′ : H -I is defined in terms of⊕ according to (Th-87.a).
By Th-64, we only need to show thatB′ satisfies (C-1), (C-2), (C-3.b) and (C-4) in order to prove
thatMB is a DFS.

B′ satisfies (C-1).
Supposef ∈ H is a constant, i.e.f(γ) = f(0) for all γ ∈ I. Then

f 1
∗ = sup{γ ∈ I : f(γ) = 1} by (22)

=

{
1 : f(0) = 1
0 : f(0) < 1
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becausef is constant. For the same reason,

f ∗1 = lim
γ→1−

f(γ) by (21)

= lim
γ→1−

f(0) becausef constant

= f(0) .

Hence

B′(f) = f 1
∗ ⊕ f ∗1 by (Th-87.a)

=

{
0⊕ f(0) : f(0) < 1
1⊕ f(0) : f(0) = 1

=

{
f(0) : f(0) < 1
1 : f(0) = 1

= f(0) ,

where the second-last equation holds because0 is the identity of thes-norm⊕, and because every
s-norm has1⊕ x = 1 for all x ∈ I.

B′ satisfies (C-2).
Supposef ∈ H is a mapping such thatf(I) ⊆ {0, 1}. It is then apparent from the fact thatf is
nonincreasing (see Def. 75) that

f 1
∗ = sup{γ ∈ I : f(γ) = 1} by (22)

= inf{γ ∈ I : f(γ) < 1} becausef is nonincreasing

= inf{γ ∈ I : f(γ) = 0} becausef is two-valued

= f 0
∗ , by (19)

i.e.

f 1
∗ = f 0

∗ . (284)

In addition,

f ∗1 = lim
γ→1−

f(γ) by (21)

=

{
1 : f(γ) = 1 for all γ < 1
0 : else

again becausef is two-valued and nonincreasing. Therefore

• If f(γ) = 1 for all γ ∈ [0, 1), then clearly

f 1
∗ = f 0

∗ = 1 (285)

(see (22) and (284)) and hence

B′(f) = f 1
∗ ⊕ f ∗1 by (Th-87.a)

= 1⊕ f ∗1 by (285)

= 1 because1⊕ x = 1 for everys-norm

= f 0
∗ . by (285)
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• In the remaining case that there existsγ ∈ [0, 1) such thatf(γ) 6= 1 (i.e. f(γ) = 0 because
f is two-valued), we we know thatf ∗1 = 0 (see above). Hence

B′(f) = f 1
∗ ⊕ f ∗1 by (Th-87.a)

= f 1
∗ ⊕ 0 becausef ∗1 = 0

= f 1
∗ becausex⊕ 0 = x for everys-norm

= f 0
∗ . by (284)

B′ satisfies (C-3.b).
Supposef ∈ H is a mapping such that̂f((0, 1]) 6= {0}. Then

B′(f ]) = (f ])
1

∗ ⊕ (f ])
∗
1 by (Th-87.a)

= (f [)
1

∗ ⊕ (f [)
∗
1 by L-72.b, L-73.b

= B′(f [) . by (Th-87.a)

B′ satisfies (C-4).
Supposef, g ∈ H wheref ≤ g. Then clearly

f 1
∗ = sup{γ ∈ I : f(γ) = 1} by (22)

≤ sup{γ ∈ I : g(γ) = 1} becausef ≤ g ≤ 1

= g1
∗ by (22)

and

f ∗1 = lim
γ→1−

f(γ) by (21)

≤ lim
γ→1−

g(γ) by monotonicity oflim andf ≤ g

= g∗1 . by (21)

Hence

B′(f) = f 1
∗ ⊕ f ∗1 by (Th-87.a)

≤ g1
∗ ⊕ g∗1 by f 1

∗ ≤ g1
∗, f

∗
1 ≤ g∗1 and monotonicity of⊕

= B′(g) . by (Th-87.a)

F.3 Proof of Theorem 88

We already know from Th-87 thatMU is a DFS. It remains to be shown thatMU is less specific
that every otherMB-DFS.
SupposeB : B -I is a mapping such thatMB, defined by Def. 69, is a DFS. Then by Th-62,B
satisfies (B-1) to (B-5) and by Th-63,B ∈ BB. Hence there is someB′ : H -I such thatB is
defined in terms ofB′ according to equation (23), andB′ satisfies (C-1) to (C-4) by Th-53.
We shall utilize Th-86 to prove thatMU �cMB by showing thatB′U ≤ B′.
Hence letf ∈ H.
Let us defineg : I -I by

g(γ) =

{
1 : f(γ) = 1
0 : else

(286)

for all γ ∈ I.
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• If g(γ) = 0 for all γ ∈ I, thenf 1
∗ = 0 by (22) and clearly

B′(f) ≥ 0 = f 1
∗ . (287)

• If g 6= c0, theng ∈ H (see Def. 68 and (286)) and:

g ≤ f (288)

(apparent from (286)),

g0
∗ = g1

∗ = f 1
∗ (289)

(apparent from (286), (19) and (22)). Hence

B′(f) ≥ B′(g) by (C-4) andf ≥ g

= g0
∗ by (C-2)

= f 1
∗ , by (289)

i.e.

B′(f) ≥ f 1
∗ . (290)

Now let us considerf ∗1 .

• If f ∗1 = 0, then clearly

B′(f) ≥ 0 = f ∗1 . (291)

• If f ∗1 > 0, let us defineh ∈ H by h = cf∗1 , i.e. h is the constant

h(γ) = f ∗1 (292)

for all γ ∈ I. Becausef ∗1 6= ∅, it is apparent from (21) that

f̂((0, 1]) 6= {0} . (293)

In addition, we may conclude from Def. 71 that

f [ ≥ h . (294)

Observing thatf [ ≥ f ≥ f ], B′(f [) ≥ B′(f) ≥ B′(f ]). By (C-3.b) and (293),

B′(f [ = B′f = B′f ] . (295)

Hence

B′(f) = B′(f [) by (295)

≥ B′(h) by (C-4), (294)

= f ∗1 , by (C-1),h = cf∗1 by (292)

i.e.

B′(f) ≥ f ∗1 . (296)

Summarizing (287), (290), (291) and (296), we obtainB′(f) ≥ max(f 1
∗ , f

∗
1 ) = B′U(f).
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F.4 Proof of Theorem 89

LetQ : P(E)n -I andX1, . . . , Xn ∈ P̃(E) be given. In order to show that allMB-DFSes are
specificity consistent, we shall discern three cases.

a. There exists anMB-DFSMB such thatMB(Q)(X1, . . . , Xn) > 1
2
.

We know from Th-63 thatB ∈ BB. We may hence defineB′ : H -I by (24), i.e.B′(f) =
2B(1

2
+ 1

2
f)− 1 for all f ∈ H, to obtain that

B(f) =


1
2

+ 1
2
B′(2f − 1) : f ∈ B+

1
2

: f ∈ B
1
2

1
2
− 1

2
B′(1− 2f) : f ∈ B−

by (23). Because of this relationship, we conclude from

MB(Q)(X1, . . . , Xn) = B((Qγ(X1, . . . , Xn))γ∈I) >
1
2

that

(Qγ(X1, . . . , Xn))γ∈I ∈ B+ . (297)

Now letMB∗ anotherMB-DFS. Again, we can apply Th-63 and conclude thatB∗ ∈ BB. Hence
B∗ is related toB′∗ : H -I (again defined by (24)), according to equation (23). In particular, we
conclude from (297) that

MB∗(Q)(X1, . . . , Xn) = B∗((Qγ(X1, . . . , Xn))γ∈I) = 1
2

+ 1
2
B′∗(2 · (Qγ(X1, . . . , Xn))γ∈I − 1) ≥ 1

2
.

BecauseMB∗ was chosen arbitrarily, this means thatMB∗(Q)(X1, . . . , Xn) ∈ [1
2
, 1] for allMB-

DFSesMB∗, as desired.

b. There exists anMB-DFSMB such thatMB(Q)(X1, . . . , Xn) < 1
2
.

This case can be reduced toa. noting thatMB(Q)(X1, . . . , Xn) = 1 −MB(¬Q)(X1, . . . , Xn)
because allMB-DFSes are standard DFSes by Th-52, Th-62. We then obtain froma. that
MB(¬Q)(X1, . . . , Xn) ∈ [1

2
, 1] for allMB-DFSes. HenceMB(Q)(X1, . . . , Xn) ∈ [0, 1

2
] in every

MB-DFS.

c. For allMB-DFSes,MB(Q)(X1, . . . , Xn) = 1
2
. In this case, clearlyMB(Q)(X1, . . . , Xn) ∈

[1
2
, 1] for allMB.

Summarising casesa. to c., we have shown that for all semi-fuzzy quantifiersQ : P(E)n -I

and fuzzy argument setsX1, . . . , Xn ∈ P̃(E), it either holds thatMB(Q)(X1, . . . , Xn) ≥ 1
2

for all
MB-DFSes, or it holds thatMB(Q)(X1, . . . , Xn) ≤ 1

2
for allMB-DFSes. Hence the collection

ofMB-DFSes is specificity consistent by Def. 79.

F.5 Proof of Theorem 90

Let (MBj)j∈J be aJ -indexed collection ofMB-DFSesMBj , j ∈ J whereJ 6= ∅, and let
(B′j)j∈J the corresponding family of mappingsB′j : H -I, j ∈ J . Because allMBj are
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DFSes, we know from Th-64 that eachB′j satisfies (C-1), (C-2), (C-3.b), and (C-4).
Now let us defineB′lub : H -I by

B′lub(f) = sup{B′j(f) : j ∈ J } , (298)

for all f ∈ H. By Th-64, we can prove thatMBlub
is a DFS by showing thatB′lub satisfies (C-1),

(C-2), (C-3.b), and (C-4).
Hence leta ∈ (0, 1] andca ∈ H the constant mappingca(x) = a for all x ∈ I. Then

B′lub(ca) = sup{B′j(ca) : j ∈ J } by (298)

= sup{a : j ∈ J } by (C-1) for allB′j
= a ,

i.e.B′lub satisfies (C-1), as desired.
Concerning (C-2), letf ∈ H be given such that̂f(I) ⊆ {0, 1}. Then

B′lub(f) = sup{B′j(f) : j ∈ J } by (298)

= sup{f 0
∗ : j ∈ J } by (C-2) for allB′j

= f 0
∗ ,

i.e. (C-2) holds.
As to (C-3.b), letf ∈ H a mapping such that̂f((0, 1] 6= {0}. Then

B′lub(f ]) = sup{B′j(f ]) : j ∈ J } by (298)

= sup{B′j(f [) : j ∈ J } by (C-3.b) for allB′j
= B′lub(f [) . by (298)

Finally let us consider (C-4). Hence letf, g ∈ H such thatf ≤ g. Then

B′lub(f) = sup{B′j(f) : j ∈ J } by (298)

≤ sup{B′j(g) : j ∈ J } becauseB′j(f) ≤ B′j(g) by (C-4)

= B′lub(g) , by (298)

as desired. HenceMBlub
is a DFS. ClearlyB′j ≤ B′lub for all j ∈ J and henceMBj �cMBlub

by
Th-86. This proves thatMBlub

is an upper specificity bound of allMBj , j ∈ J .
It remains to be shown thatMBlub

is theleastupper specificity boundFlub of (MBj)j∈J , i.e. that
MBlub

= Flub. By Th-74,Flub is defined by

Flub(Q)(X1, . . . , Xn) =

{
supRQ,X1,...,Xn : RQ,X1,...,Xn ⊆ [1

2
, 1]

inf RQ,X1,...,Xn : RQ,X1,...,Xn ⊆ [0, 1
2
]

(299)

where

RQ,X1,...,Xn = {MBj(Q)(X1, . . . , Xn) : j ∈ J } , (300)

for all semi-fuzzy quanitifiersQ : P(E)n -I andX1, . . . , Xn ∈ P̃(E). By (298) and (23),

Blub(f) =


1
2

+ 1
2
B′lub(2f − 1) : f ∈ B+

1
2

: f ∈ B
1
2

1
2
− 1

2
B′lub(1− 2f) : f ∈ B−

(301)
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for all f ∈ B. Similarly

Bj(f) =


1
2

+ 1
2
B′j(2f − 1) : f ∈ B+

1
2

: f ∈ B
1
2

1
2
− 1

2
B′j(1− 2f) : f ∈ B−

(302)

for all j ∈ J . Hence

Blub(f) =


1
2

+ 1
2

sup{B′j(2f − 1) : j ∈ J } : f ∈ B+

1
2

: f ∈ B
1
2

1
2
− 1

2
sup{B′j(1− 2f) : j ∈ J } : f ∈ B−

by (298), (301)

=


sup{1

2
+ 1

2
sup{B′j(2f − 1) : j ∈ J } : f ∈ B+

1
2

: f ∈ B
1
2

inf{1
2
− 1

2
B′j(1− 2f) : j ∈ J } : f ∈ B−

=


sup{Bj(f) : f ∈ B+

1
2

: f ∈ B
1
2

inf{Bj(f) : f ∈ B−
by (302)

Hence by Def. 69,

MBlub
(Q)(X1, . . . , Xn) =


sup{MBj(Q)(X1, . . . , Xn) : j ∈ J } : f ∈ B+

1
2

: f ∈ B
1
2

inf{MBj(Q)(X1, . . . , Xn) : j ∈ J } : f ∈ B−

wheref(γ) = Qγ(X1, . . . , Xn) for all γ ∈ I. If f ∈ B+, thenMBj(Q)(X1, . . . , Xn) ≥ 1
2

for all
j ∈ J , i.e.

RQ,X1,...,Xn ⊆ [1
2
, 1] . (303)

Similarly if f ∈ B−, thenMBj(Q)(X1, . . . , Xn) ≤ 1
2

for all j ∈ J and hence by (300),

RQ,X1,...,Xn ⊆ [0, 1
2
] . (304)

If f ∈ B
1
2 , thenMBj(Q)(X1, . . . , Xn) = 1

2
for all j ∈ J . Hence

inf RQ,X1,...,Xn = inf{1
2
} = 1

2
supRQ,X1,...,Xn = sup{1

2
} = 1

2
. (305)

Combining (303), (304) and (305), we may reformulate the last equation forMBlub
into

MBlub
(Q)(X1, . . . , Xn) =

{
supRQ,X1,...,Xn : RQ,X1,...,Xn ⊆ [1

2
, 1]

inf RQ,X1,...,Xn : RQ,X1,...,Xn ⊆ [0, 1
2
]

i.e.MBlub
= Flub by (299), as desired.
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F.6 Proof of Theorem 91

Suppose that� : I2 -I is at-norm. Further suppose thatB′ : H -I is defined by

B′(f) = f 0
∗ � f ∗0 , (306)

for all f ∈ H. By Th-64, it is sufficient to show thatB′ satisfies the conditions (C-1) to (C-4).

B′ satisfies (C-1).
Supposef ∈ H is a constant, i.e.f(γ) = f(0) for all γ ∈ I. Becausef ∈ H, f(0) > 0 by Def. 75,
thereforef(γ) = f(0) > 0 for all γ ∈ I. Hence

f 0
∗ = inf ∅ = 1 (307)

by (19), and

B′(f) = f 0
∗ � f ∗0 by (306)

= 1� f ∗0 by (307)

= f ∗0 because1 is identity oft-norm�
= lim

γ→0+
f(γ) by (18)

= lim
γ→0+

f(0) becausef is constant

= f(0) .

B′ satisfies (C-2).
Supposef ∈ H is a mapping such thatf(I) ⊆ {0, 1}. Becausef ∈ H, f(0) > 0 by Def. 75, i.e.
f(0) = 1. We shall discern two cases.

i. f̂((0, 1]) = {0}. Thenf(γ) = 0 for all γ > 0 and hence

f 0
∗ = inf{γ ∈ I : f(γ) = 0} by (19)

= inf(0, 1]

= 0 ,

i.e.

f 0
∗ = 0 (308)

Therefore

B′(f) = f 0
∗ � f ∗0 by (306)

= 0� f ∗0 by (308)

= 0 because� is t-norm

= f 0
∗ . by (308)

ii. f̂((0, 1]) 6= {0}. Becausef ∈ H is nonincreasing (by Def. 75) and two-valued (by assump-
tion), we know that there is someγ′ > 0 such thatf(γ) = 1 for all γ < γ′, andf(γ) > 0 for
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all γ > γ′. Observing thatf(γ) = 1 for all γ in the nonempty interval[0, γ′), it is apparent
from (18) that

f ∗0 = lim
γ→0+

f(γ) = lim
γ→0+

1 = 1 . (309)

Hence

B′(f) = f 0
∗ � f ∗0 by (306)

= f 0
∗ � 1 by (309)

= f 0
∗ , because1 is identity oft-norm�

as desired.

B′ satisfies (C-3.b).
Supposef ∈ H is a mapping such that̂f((0, 1]) 6= {0}. Then

B′(f [) = (f [)
0

∗ � (f [)
∗
0 by (306)

= (f ])
0

∗ � (f ])
∗
0 by L-54.b, L-59.b

= B′(f ]) . by (306)

B′ satisfies (C-4).
Let f, g ∈ H, f ≤ g. Clearly

f ∗0 = lim
γ→0+

f(γ) by (18)

≤ lim
γ→0+

g(γ) by monotonicity oflim andf ≤ g

= g∗0 , by (18)

i.e.

f ∗0 ≤ g∗0 . (310)

We compute

B′(f) = f 0
∗ � f ∗0 by (306)

≤ g0
∗ � f ∗0 by L-55 and monotonicity of�

≤ g0
∗ � g∗0 by (310) an monotonicity of�

= B′(g) . by (306)

F.7 Proof of Theorem 92

We already know from Th-91 thatMS is a DFS. It remains to be shown that every otherMB-DFS
is less specific thanMS.
SupposeB : B -I is a mapping such thatMB, defined by Def. 69, is a DFS. Then by Th-62,B
satisfies (B-1) to (B-5) and by Th-63,B ∈ BB. Hence there is someB′ : H -I such thatB is
defined in terms ofB′ according to equation (23), andB′ satisfies (C-1) to (C-4) by Th-53.
We shall utilize Th-86 to prove thatMB �cMS by showing thatB′ ≤ B′S.
Hence letf ∈ H.
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a. If f̂((0, 1]) = {0}, then

B′(f) = B′S(f) = 0

by (C-3.a), i.e.B′(f) ≤ B′S(f).

b. f̂((0, 1]) 6= {0}. In this case, let us defineg : I -I by

g(x) =

{
f ∗0 : x = 0
f(x) : else

(311)

for all x ∈ I. By Def. 68, apparentlyf ∈ H.
Becausef ∗0 = f ](0) by (18), Def. 71, we obtain that

f [(0) ≥ g(0) = f ](0)

by L-39. In the case thatγ > 0,

f [(γ) ≥ f(γ) = g(γ) ≥ f ](γ) ,

again by L-39. Hencef [ ≥ g ≥ f ] and by (C-4),B′(f [) ≥ B′(g) ≥ B′(f ]). By applying L-39 and
(C-4) directly, we also haveB′(f [) ≥ B′(f) ≥ B′(f ]). Then by (C-3.b),

B′(f [) = B′(f) = B′(g) = B′(f ]) (312)

On the other hand,

g(γ) ≤ f ∗0 (313)

for all γ ∈ I, which is apparent from (311), (18) and the fact thatf ∈ H is nonincreasing. Hence
(recalling (17)),

B′(g) ≤ B′(cf∗0 ) by (C-4) and (313)

= f ∗0 . by (C-1)

Combining this with (312) yields

B′(f) ≤ f ∗0 . (314)

Now let us defineh ∈ H by

h(γ) =

{
1 : f(γ) > 0
0 : f(γ) = 0

(315)

Then clearlyf ≤ h. Furthermore, it is apparent from the definition ofh thath(γ) = 0 exactly if
f(γ) = 0. Therefore

h0
∗ = f 0

∗ (316)

by (19), and

B′(f) ≤ B′(h) by (C-4),f ≤ h

= h0
∗ by (C-2)

= f 0
∗ , by (316)

i.e.

B′(f) ≤ f 0
∗ . (317)

Combining (314) and (317) yields the desiredB′(f) ≤ min(f ∗0 , f
0
∗ ) = B′S(f) in caseb..
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F.8 Proof of Theorem 93

We shall treat separately two parts of the main proof.

Lemma 74
SupposeB′ : H -I is defined by(Th-93.a). ThenB′ satisfies(C-4).

Proof Supposef, g ∈ H, f ≤ g. Then

B′(f) = sup{γ � f(γ) : γ ∈ I} by (Th-93.a)

≤ sup{γ � g(γ) : γ ∈ I} by monotonicity of� andsup; f(γ) ≤ g(γ)

= B′(g) . by (Th-93.a)

Lemma 75
SupposeB′ : H -I is defined by(Th-93.a). ThenB′ satisfies(C-3.b).

Proof Supposef ∈ H wheref̂((0, 1]) 6= {0}. We know from L-45 thatf ] ≤ f [. Hence by
L-74, B′(f ]) ≤ B′(f [). It remains to be shown thatB′(f ]) ≥ B′(f [). Let us first perform some
simplifications:

B′(f ]) = sup{γ � f ](γ) : γ ∈ I} by (Th-93.a)

= max(sup{γ � lim
γ′→γ+

f(γ′) : γ ∈ [0, 1)}, 1� f(1)) by Def. 71

= max(sup{γ � sup{f(γ′) : γ′ > γ} : γ ∈ [0, 1)}, f(1)) by Th-43

= max(sup{sup{γ � f(γ′) : γ′ > γ} : γ ∈ [0, 1)}, f(1)) ,

where the last step holds because� is nondecreasing and continuous.
Now suppose that

max(sup{sup{γ � f(γ′) : γ′ > γ} : γ ∈ [0, 1)}, f(1)) = f(1)

i.e.

sup{sup{γ � f(γ′) : γ′ > γ} : γ ∈ [0, 1)} ≤ f(1) .

Clearly

sup{sup{γ � f(γ′) : γ′ > γ} : γ < 1}
≥ sup{γ � f(1) : γ < 1} becausef ∈ H is nonincreasing and� nondecreasing

= sup{γ : γ < 1} � f(1) because� nondecreasing and continuous

= 1� f(1)

= f(1) because1 is identity oft-norm�.

Therefore

B′(f ]) = sup{sup{γ � f(γ′) : γ′ > γ} : γ < 1}
= max(sup{γ � f(γ′) : γ′ > γ} : γ ∈ (0, 1)},

sup{0� f(γ′) : γ′ > 0})
= max(sup{γ � f(γ′) : γ′ > γ} : γ ∈ (0, 1)}, 0)

= sup{γ � f(γ′) : γ′ > γ} : γ ∈ (0, 1)} ,
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i.e.

B′(f ]) = sup{γ � f(γ′) : γ′ > γ} : γ ∈ (0, 1)} . (318)

By similar reasoning,

B′(f [)
= sup{γ � f [(γ) : γ ∈ I} by (Th-93.a)

= max(0� f [(0),

sup{γ � f [(γ) : γ ∈ (0, 1]})
= max(0, sup{γ � f [(γ) : γ ∈ (0, 1]}) by� t-norm

= sup{γ � f [(γ) : γ ∈ (0, 1]} because0 is identity ofmax

= sup{γ � lim
γ′→γ−

f(γ′) : γ ∈ (0, 1]} by Def. 71

= sup{γ � inf{f(γ′) : γ′ < γ} : γ ∈ (0, 1]} by Th-43

= sup{inf{γ � f(γ′) : γ′ < γ} : γ ∈ (0, 1]} because� nondec and continuous

= max(sup{inf{γ � f(γ′) : γ′ < γ} : γ ∈ (0, 1)},
inf{1� f(γ′) : γ′ < 1})

= max(sup{inf{γ � f(γ′) : γ′ < γ} : γ ∈ (0, 1)},
inf{f(γ′) : γ′ < 1}) because1 identity of t-norm�.

Now suppose that

max(sup{inf{γ � f(γ′) : γ′ < γ} : γ ∈ (0, 1)}, inf{f(γ′) : γ′ < 1}) = inf{f(γ′) : γ′ < 1} ,

i.e.

sup{inf{γ � f(γ′) : γ′ < γ} : γ ∈ (0, 1)} ≤ inf{f(γ′) : γ′ < 1} . (319)

We will show that for eachε > 0,

sup{inf{γ � f(γ′) : γ′ < γ} : γ ∈ (0, 1)} ≥ inf{f(γ′) : γ′ < 1} − ε .

Hence letε > 0. By the continuity of�, there is someγ0 ∈ (0, 1) such that

γ0 � inf{f(γ′) : γ′ < 1} ≥ 1� inf{f(γ′) : γ′ < 1} − ε ,

i.e.

γ0 � inf{f(γ′) : γ′ < 1} ≥ inf{f(γ′) : γ′ < 1} − ε . (320)

Hence

sup{γ � inf{f(γ′) : γ′ < γ} : γ ∈ (0, 1)}
≥ γ0 � inf{f(γ′) : γ′ < γ0}
≥ γ0 � inf{f(γ′) : γ < 1}
≥ inf{f(γ′) : γ′ < 1} − ε . by (320)
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Becauseε > 0 was chosen arbitrarily, this proves that in the case (319),

sup{γ � inf{f(γ′) : γ′ < γ} : γ ∈ (0, 1)} = inf{f(γ′) : γ′ < 1} .

We can hence simplifyB′(f [) as follows.

B′(f [) = sup{γ � inf{f(γ′) : γ′ < γ} : γ ∈ (0, 1)} . (321)

Making use of (318) and (321), let us now prove that

B′(f ]) ≥ B′(f [) .

We will prove the above inequation by showing thatB′(f ]) > B′(f [)− ε for eachε > 0.
Hence letε > 0. By the (321), there is some

y0 ∈ {γ � inf{f(γ′) : γ′ < γ} : γ ∈ (0, 1)}

such that

B′(f [)− y0 <
ε
2
. (322)

Let us denote byγ0 a choice ofγ0 ∈ (0, 1) such that

y0 = γ0 � inf{f(γ′) : γ′ < γ0} (323)

Because� is assumed to be continuous, there is someγ1 ∈ (0, γ0) such that

γ1 � inf{f(γ′) : γ′ < γ0} > γ0 � inf{f(γ′) : γ′ < γ0} − ε
2
. (324)

Let us choose someγ∗ ∈ (γ1, γ0). Then

B′(f ]) = sup{sup{γ � f(γ′) : γ′ > γ} : γ ∈ (0, 1)} by (318)

≥ sup{γ1 � f(γ′) : γ′ > γ1}
≥ γ1 � f(γ∗) becauseγ∗ > γ1

≥ γ1 � inf{f(γ′) : γ′ < γ0} becauseγ∗ < γ0

> γ0 � inf{f(γ′) : γ′ < γ0} − ε
2

by (324)

= y0 − ε
2

by (323)

> (B′(f [)− ε
2
)− ε

2
by (322)

= B′(f [)− ε .

We conclude thatB′(f ]) ≥ B′(f [), becauseB′(f ]) > B′(f [)− ε for all ε > 0.

Proof of Theorem 93

SupposeB′ : H -I is defined by (Th-93.a). By Th-64, we only need to prove thatH satisfies
(C-1) to (C-4) in order to show thatMB is a standard DFS.
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B′ satisfies (C-1).
Supposef ∈ H is a constant, i.e.

f(γ) = f(0) (325)

for all γ ∈ I. Then

B′(f) = sup{γ � f(γ) : γ ∈ I} by (Th-93.a)

= sup{γ � f(0) : γ ∈ I} by (325)

= 1� f(0) by monotonicity of�
= f(0) because1 is identity of�.

B′ satisfies (C-2).
Supposef ∈ H is two-valued, i.e.f(I) ⊆ {0, 1}. We shall discern two cases.

a. f(f 0
∗ ) = 1. Then

B′(f) = sup{γ � f(γ) : γ ∈ I} by (Th-93.a)

= max(sup{γ � f(γ) : γ ∈ [0, f0
∗ ]},

sup{γ � f(γ) : γ ∈ (f 0
∗ , 1]})

= max(sup{γ � 1 : γ ∈ [0, f0
∗ ]},

sup{γ � 0 : γ ∈ (f 0
∗ , 1]}) becausef two-valued

andf nonincreasing by Def. 75

= max(sup{γ : γ ∈ [0, f0
∗ ]}, sup{0 : γ ∈ (f 0

∗ , 1]}) because� is t-norm

= max(sup[0, f0
∗ ]}, 0)

= f 0
∗ .

b. f(f 0
∗ ) = 0. Then by similar reasoning,

B′(f) = sup{γ � f(γ) : γ ∈ I} by (Th-93.a)

= max(sup{γ � f(γ) : γ ∈ [0, f0
∗ )},

sup{γ � f(γ) : γ ∈ [f 0
∗ , 1]})

= max(sup{γ � 1 : γ ∈ [0, f0
∗ )},

sup{γ � 0 : γ ∈ [f 0
∗ , 1]}) becausef two-valued and nonincreasing

= max(sup[0, f0
∗ ), 0)

= f 0
∗ .

B′ satisfies (C-3.b).
See L-75.

B′ satisfies (C-4).
See L-74.
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F.9 Proof of Theorem 94

Lemma 76
For all f ∈ H, there is at most onex′ ∈ I such that

a. f(y) > y for all y < x′;

b. f(y) < y for all y > x′.

Proof Supposex′, x′′ ∈ I both satisfy the conditions of the lemma. Without loss of generality,
we may assume thatx′ ≤ x′′. If x′ < x′′, then there is somez ∈ (x′, x′′).
By condition b. andz > x′, we obtain

f(z) < z .

By condition a. andz < x′′, we have

f(z) > z ,

a contradiction. This proves thatx′ = x′′.

Lemma 77
For all f ∈ H,

x′ = sup{z : f(z) > z}

satisfies the conditions a. and b. of L-76.

Note. Combined with L-76, this guarantees the existence of a uniquex′ ∈ I with the desired
properties for each choice off ∈ H.

Proof Supposef ∈ H is given. Let us abbreviate

Z = {z ∈ I : f(z) > z} .

By Def. 75, we know thatf(0) > 0 and hence0 ∈ Z, in particularZ 6= ∅.
Now letx′ = supZ and lety ∈ [0, x′). BecauseZ 6= ∅, we know that there exists somez ∈ [y, x′]
such thatf(z) > z. Hence

f(y) ≥ f(z) by f ∈ H nonincreasing,y ≤ z

> z by choice ofz

≥ y ,

i.e. condition a. of L-76 holds for ally < x′.
To see that condition b. of L-76 also holds, let us observe that by definition ofx′,

f(z) ≤ z (326)

for all z > x′.
Now supposey > x′ andz ∈ (x′, y). Then

f(y) =≤ f(z) by f ∈ H nonincreasing,z < y

≤ z by (326)

< y by choice ofz

i.e. condition b. holds.
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Lemma 78
For all f ∈ H andx′ = sup{z : f(z) > z},

sup{f(z) : z > x′} ≤ x′ .

Proof Let us abbreviate

s = sup{f(z) : z > x′} . (327)

Supposes > x′. By (327), there existsz > x′ such that

f(z) > x′ . (328)

We hence have

z > f(z) by L-77.b andz > x′

> x′ by (328).

Becausef(z) < z andf ∈ H nonincreasing, we may conclude that

f(f(z)) ≥ f(z)

which contradicts L-76.b becausef(z) > x′. It follows thats ≤ x′.

Lemma 79
For eachf ∈ H,

sup{min(z, f(z)) : z ∈ I} = sup{z ∈ I : f(z) > z} .

Proof Abbreviating

x′ = sup{z ∈ I : f(z) > z} ,
we obtain

sup{min(z, f(z)) : z ∈ I} = max{sup{min(z, f(z)) : z < x′},
min(x′, f(x′)),

sup{min(z, f(z)) : z > x′}}
= max{sup{z : z < x′},

min(x′, f(x′)),

sup{f(z) : z > x′}} by L-77

= max{x′,
min(x′, f(x′)),

sup{f(z) : z > x′}}
= max{x′,

sup{f(z) : z > x′}} becausex′ ≥ min(x′, f(x′))

= x′ . by L-78

Lemma 80
For all f ∈ H andx′ = sup{z : f(z) > z},

inf{f(z) : z < x′} ≥ x′ .
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Proof Supposef ∈ H, x′ = sup{z : f(z) > z} and let us abbreviate

i = inf{f(z) : z < x′} . (329)

Assumei < x′. Then by (329), we know that there is somez < x′ such that

f(z) < x′ . (330)

By L-77.a, we also have

f(z) > z . (331)

Becausef ∈ H is nonincreasing,

f(f(z)) ≤ f(z) by (331),f noninc

which contradicts

f(f(z)) > f(z) . by (330), L-77.a

Hencei ≥ x, as desired.

Lemma 81
For all f ∈ H,

inf{max(z, f(z)) : z ∈ I} = sup{z ∈ I : f(z) > z} .

Proof Supposef ∈ H is given and let us abbreviatex′ = sup{z ∈ I : f(z) > z}. Then

inf{max(z, f(z)) : z ∈ I} = min{inf{max(z, f(z)) : z < x′},
max(x′, f(x′)),

inf{max(z, f(z)) : z > x′}}
= min{inf{f(z) : z < x′},

max(x′, f(x′)),

inf{z : z > x′}} by L-77

= min{inf{f(z) : z < x′},
max(x′, f(x′)),

x′}
= x′

where the last equation holds becausex′ ≤ max(x′, f(x′)) and becausex′ ≤ inf{f(z) : z < x′}
by L-80.

Based on these lemmata, the proof of Th-94 is now trivial:
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Proof of Theorem 94

Let f ∈ H be given. We have to show that

sup{min(x, f(x)) : x ∈ I}
= inf{max(x, f(x)) : x ∈ I}
=the uniquex′ s.th.f(y) > y for all y < x′ andf(y) < y for all y > x′ .

To this end, we can rely on L-76 and L-77 which establish the uniqueness and existence of anx′

with the desired properties, viz.

sup{z : f(z) > z} = the uniquex′ s.th.f(y) > y for all y < x′ andf(y) < y for all y > x′

The theorem is then apparent from L-79 and L-81.

F.10 Proof of Theorem 95

SupposeQ : P(E) -I is a quantitative semi-fuzzy quantifier on a finite base setE 6= ∅. Further
suppose thatY0, . . . , Ym ∈ P(E), m = |E|, are arbitrary subsets ofE of cardinality|Yj| = j. We
will define a mappingq′ : {0, . . . , |E|} -I by

q′(j) = Q(Yj) (332)

for all j ∈ {0, . . . , |E|}, given our above choice ofY0, . . . , Ym.
Now letY ∈ P(E) an arbitrary subset ofE. Abbreviating

k = |Y | , (333)

we have|Y | = |Yk|. BecauseY, Yk are finite sets of equal cardinality, there exists a bijection
β′ : Y -Yk. BecauseY, Y ⊆ E andE finite,β′ can be extended to a bijectionβ : E -E such
thatβ|Y = β′, i.e.

β̂(Y ) = β̂′(Y ) = Yk . (334)

We conclude that

Q(Y ) = Q(β̂(Y )) by Def. 31,Q quantitative

= Q(Yk) by (334)

= q′(k) by (332)

= q′(|Y |) by (333).

In particular, this proves thatQ(Y ) = Q(Y ′) = q(k) for all Y, Y ′ ∈ P(E) such that|Y | =
|Y ′| = k. Thereforeq′ is independent of the chosen representativesY0, . . . , Ym, i.e. the mappingq
mentioned in the theorem is well-defined and coincides withq′.
It remains to be shown that no such mappingq : {0, . . . , |E|} -I exists ifQ is not quantitative.
Hence supposeQ : P(E) -I is a semi-fuzzy quantifier on a finite base set, and let us assume
thatQ is not quantitative. Then there existY ′ ∈ P(E) and an automorphismβ : E -E such
that

Q(β̂(Y ′)) 6= Q(β) . (335)
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Now let us assume that there is a mappingq : {0, . . . , |E|} -I such that

Q(Y ) = q(|Y |) (336)

for all Y ∈ P(E). Observing that|Y ′| = |β̂(Y ′)| becauseβ is an automorphism (i.e., permutation),
we obtain

Q(Y ′) = q(|Y ′|) by (336)

= q(|β̂(Y ′)|) because|Y ′| = |β̂(Y ′)|
= Q(β̂(Y ′)) , by (336)

i.e. Q(Y ′) = Q(β̂(Y ′)), which contradicts (335). Hence (336) is false, i.e. no mappingq :
{0, . . . , |E|} -I with property (336) exists ifQ is not quantitative.

F.11 Proof of Theorem 96

SupposeQ : P(E) -I is a quantitative semi-fuzzy quantifier on a finite base set andq :
{0, . . . , |E|} -I is the mapping defined by (33), i.e. it holds that

Q(Y ) = q(|Y |) (337)

for all Y ∈ P(E).

a. Let us first assume thatQ is convex. We have to show thatq has the property claimed by the
theorem. Hence letj′, j, j′′ ∈ {0, . . . , |E|} such thatj′ ≤ j ≤ j′′. We can then choose subsets
Y ′, Y, Y ′′ ∈ P(E) such that|Y ′| = j′, |Y | = j and|Y ′′| = j′′. In addition, we may assume that
Y ′ ⊆ Y ⊆ Y ′′. Then

q(j) = Q(Y ) by (337),|Y | = j

≥ min(Q(Y ′), Q(Y ′′)) becauseQ convex,Y ′ ⊆ Y ⊆ Y ′′

= min(q(j′), q(j′′)) . by (337),|Y ′| = j′, |Y ′′| = j′′

b. To see that the converse implication holds, let us assume thatQ is not convex in its argument.
Then there existY ′, Y, Y ′′ ∈ P(E) such thatY ′ ⊆ Y ⊆ Y ′′ and

Q(Y ) < min(Q(Y ′), Q(Y ′′)) . (338)

Abbreviatingj = |Y |, j′ = |Y ′| andj′′ = |Y ′′|, we clearly havej′ ≤ j ≤ j′′ becauseY ′ ⊆ Y ⊆
Y ′′. However,

q(j) = Q(Y ) by (337),|Y | = j

< min(Q(Y ′), Q(Y ′′)) by (338)

= min(q(j′), q(j′′)) . by (337),j′ = |Y ′|, j′′ = |Y ′′|

Hence there exists a choice ofj′ ≤ j ≤ j′′ such thatq(j) < min(q(j′), q(j′′)) wheneverQ is not
convex, i.e. the convexity ofQ is indeed necessary for the claimed property ofq.
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F.12 Proof of Theorem 97

Supposem ∈ N \ {0} andq : {0, . . . ,m} -I has the following property: wheneverj′, j, j′′ ∈
{0, . . . , |E|} andj′ ≤ j ≤ j′′, then

q(j) ≥ min(q(j′), q(j′′)) . (339)

We have to show that there existsjpk ∈ {0, . . . ,m} such that

q(j) ≤ q(j′) (340)

for all j ≤ j′′ ≤ jpk, and

q(j) ≥ q(j′) (341)

for all jpk ≤ j ≤ j′.
To this end, let us defineq+, q− : {0, . . . ,m} -I by

q+(j) = max{q(k) : 0 ≤ k ≤ j} (342)

q−(j) = max{q(k) : j ≤ k ≤ m} (343)

for all j ∈ {0, . . . ,m}. Then for allj ∈ {0, . . . ,m},

q(j) ≤ min(q+(j), q−(j)) (344)

because apparentlyq(j) ≤ q+(j), q(j) ≤ q−(j). In order to prove thatq = q+ ∧ q−, it remains to
be shown thatq(j) ≥ min(q+(j), q−(j)) for eachj ∈ {0, . . . ,m}. Given suchj, we know from
(342) that there existsj+ ∈ {0, . . . , j} such that

q+(j) = q(j+) . (345)

Similarly, we know from (343) that there existsj− ∈ {j, . . . ,m} such that

q−(j) = q(j−) . (346)

Clearlyj+ ≤ j ≤ j− and hence

q(j) ≥ min(q(j+), q(j−)) by (339)

= min(q+(j), q−(j)) , by (345), (346)

i.e. q(j) ≥ min(q+(j), q−(j)). Combining this with (344), we conclude that

q(j) = min(q+(j), q−(j)) (347)

for all j ∈ {0, . . . ,m}.
Let us also observe thatq+ is nondecreasing andq− is nonincreasing, i.e.

q+(j) ≤ q+(j′) (348)

q+(j) ≥ q−(j′) (349)
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wheneverj ≤ j′. This is an immediate consequence of (342) and (343).
Let us now define

jpk = max{j : q(j) = q+(j)} . (350)

Because for allj ∈ {0, . . . ,m}, q(j) = min(q+(j), q−(j)), we know that for allj, eitherq(j) =
q+(j) or q(j) = q−(j). It is hence apparent fromq(j) 6= q+(j) that

q(j) = q−(j) (351)

for all j > jpk. Let us now prove thatq(j) = q+(j) for all j ≤ jpk. In this case,

q+(j) ≤ q+(jpk) by (348),j ≤ jpk

≤ q−(jpk) by (350)

≤ q−(j) . by (349),j ≤ jpk

Hence

q(j) ≤ min(q+(j), q−(j)) = q+(j) (352)

wheneverj ≤ jpk.
Based on these observations, it is now easy to show thatq satisfies (339).
If j′ ≤ j ≤ jpk, then

q(j) = q+(j) by (352)

≥ q+(j′) by (348),j′ ≤ j

= q(j′) , by (352)

as desired.
If jpk < j ≤ j′, then

q(j) = q−(j) by (351)

≥ q−(j′) by (349)

= q(j′) . by (351)

Let us now show thatq(jpk) > q(jpk + 1), provided thatjpk < m. Hence let us assume to the
contrary thatq(jpk) ≤ q(jpk + 1). Then

q+(jpk + 1) = max(q(jpk + 1), q+(jpk)) by (342)

= max(q(jpk + 1), q(jpk)) by (350)

= q(jpk + 1) , by assumption,q(jpk) ≤ q(jpk + 1)

which contradicts equation (350). Hence our above assumption is false, and

q(jpk + 1) < q(jpk) . (353)

We can use this to treat the remaining case thatj = jpk, j′ ≥ jpk. If j′ = jpk, then trivially
q(jpk) ≥ q(j′). If j′ > jpk, then

q(j′) = q−(j′) by (351)

≤ q−(jpk + 1) by (349)

= q(jpk + 1) by (351)

< q(jpk) . by (353)
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F.13 Proof of Theorem 98

Lemma 82
SupposeE 6= ∅ is a finite base set andX ∈ P̃(E). Then for allγ ∈ I,

{|Y | : Y ∈ Tγ(X)} = {j : |X|min
γ ≤ j ≤ |X|max

γ } .

Proof
Let us first show that{|Y | : Y ∈ Tγ(X)} ⊆ {j : |X|min

γ ≤ j ≤ |X|max
γ }. From Def. 66, we know

that (X)min
γ ⊆ (X)max

γ andTγ(X) = {Y : (X)min
γ ⊆ Y ⊆ (X)max

γ }. Hence ifY ∈ Tγ(X), then
minXγ ⊆ Y ⊆ (X)max

γ and hence|X|min
γ ≤ |Y | ≤ |X|max

γ , i.e. j = |Y | satisfies|X|min
γ ≤ j ≤

|X|max
γ and is hence an element of{j : |X|min

γ ≤ j ≤ |X|max
γ }.

To see that{|Y | : Y ∈ Tγ(X)} ⊇ {j : |X|min
γ ≤ j ≤ |X|max

γ }, supposej ∈ {|X|min
γ , |X|min

γ +

1, . . . , |X|max
γ } is given. Abbreviatingr = j − |X|min

γ , we clearly have

|(X)max
γ \ (X)min

γ | = |X|
max
γ \ |X|min

γ by (31),(32),(X)min
γ ⊆ (X)max

γ

≥ j − |X|min
γ

= r . by def. ofr

Because|(X)max
γ \(X)min

γ | ≥ r, there is a subsetR ⊆ (X)max
γ \(X)min

γ of cardinality|R| = r. The
setY = (X)min

γ ∪R apparently satisfies(X)min
γ ⊆ Y andY = (X)min

γ ∪R ⊆ (X)min
γ ∪ ((X)max

γ \
(X)min

γ ) = (X)max
γ , i.e.Y ∈ Tγ(X) by Def. 66. The cardinality ofY is

|Y | = |(X)min
γ ∪R|

= |X|min
γ + |R| because(X)min

γ ∩R = ∅

= |X|min
γ + r because|R| = r

= |X|min
γ + (j − |X|min

γ ) becauser = j − |X|min
γ

= j ,

as desired.

Proof of Theorem 98

SupposeQ : P(E) -I is a quantitative semi-fuzzy quantifier on a finite base setE 6= ∅. By
Th-95, there existsq : {0, . . . , |E|} -I such that

Q(Y ) = q(|Y |) (354)

for all Y ∈ P(E). Now letX ∈ P̃(E) andγ ∈ I. Then

Qmin
γ (X) = inf{Q(Y ) : Y ∈ Tγ(X)} by (15)

= inf{q(|Y |) : Y ∈ Tγ(X)} by (354)

= inf{q(j) : j ∈ {|Y | : Y ∈ Tγ(X)}} substitutionj = |Y |
= inf{q(j) : |X|min

γ ≤ j ≤ |X|max
γ } by L-82

= min{q(j) : |X|min
γ ≤ j ≤ |X|max

γ } , because{j : |X|min
γ ≤ j ≤ |X|max

γ } finite
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i.e.

Qmin
γ (X) = qmin(|X|min

γ , |X|max
γ ) (355)

by Def. 94. Similarly

Qmax
γ (X) = sup{Q(Y ) : Y ∈ Tγ(X)} by (16)

= sup{q(|Y |) : Y ∈ Tγ(X)} by (354)

= sup{q(j) : j ∈ {|Y | : Y ∈ Tγ(X)}} substitutionj = |Y |
= sup{q(j) : |X|min

γ ≤ j ≤ |X|max
γ } by L-82

= max{q(j) : |X|min
γ ≤ j ≤ |X|max

γ } , because{j : |X|min
γ ≤ j ≤ |X|max

γ } finite

i.e. by Def. 94,

Qmax
γ (X) = qmax(|X|min

γ , |X|max
γ ) . (356)

Combining (355), (356), (14), we conclude that

Qγ(X) = m 1
2
(qmin(|X|min

γ , |X|max
γ ), qmax(|X|min

γ , |X|max
γ )) .

Alternatively, we may expressQγ(X) as follows.

Qγ(X) = m 1
2
{Q(Y ) : Y ∈ Tγ(X)} by Def. 67

= m 1
2
{q(|Y |) : Y ∈ Tγ(X)} by (354)

= m 1
2
{q(j) : j ∈ {|Y | : Y ∈ Tγ(X)}} substitutionj = |Y |

= m 1
2
{q(j) : |X|min

γ ≤ j ≤ |X|max
γ } . by L-82

F.14 Proof of Theorem 99

Lemma 83
Supposem ∈ N \ {0} and q : {0, . . . ,m} has the following property: wheneverj′, j, j′′ ∈
{0, . . . , |E|} andj′ ≤ j ≤ j′′, then

q(j) ≥ min(q(j′), q(j′′)) . (357)

Further suppose thatjpk ∈ {0, . . . ,m} is as in Th-97. Then for alljmin, jmax ∈ {0, . . . ,m} such
that jmin ≤ jmax,

qmin(jmin, jmax) = min{q(j) : jmin ≤ j ≤ jmax} = min(jmin, jmax)

and

qmax(jmin, jmax) = max{q(j) : jmin ≤ j ≤ jmax} =


q(jmin) : jmin > jpk

q(jmax) : jmax < jpk

q(jpk) : jmin ≤ jpk ≤ jmax
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Proof
Apparently

min{q(j) : jmin ≤ j ≤ jmax} ≤ min(jmin, jmax) . (358)

To see that the converse inequation also holds, letj′ ∈ {jmin, . . . , jmax} a choice ofj such that

q(j′) = min{q(j) : jmin ≤ j ≤ jmax} . (359)

Thenjmin ≤ j′ ≤ jmax and by the assumed property (357) ofq,

min{q(j) : jmin ≤ j ≤ jmax}
= q(j′) by (359)

≥ min(q(jmin), q(jmax)) . by (357)

Combining this with (358), we conclude that

min{q(j) : jmin ≤ j ≤ jmax} = min(q(jmin), q(jmax)) .

Let us now address the second part of the lemma. Ifjmin > jpk, then by Th-97,

q(j) ≤ q(jmin)

for all j > q(jmin). Hence

max{q(j) : jmin ≤ j ≤ jmax} = q(jmin) .

If jmax < jpk, then

q(j) ≤ q(jmax)

for all j < q(jmax). Hence

max{q(j) : jmin ≤ j ≤ jmax} = q(jmax) .

In the remaining case thatjmin ≤ jpk ≤ jmax, we can again apply theorem Th-97 and conclude
thatq(j) ≤ q(jpk) for all jmin ≤ j ≤ jmax. In addition,jpk ∈ {j : jmin ≤ j ≤ jmax}. Hence in this
case,

max{q(j) : jmin ≤ j ≤ jmax} = q(jpk) .

Proof of Theorem 99

SupposeQ : P(E) -I is a quantitative convex quantifier on a finite base set. Further suppose
thatq : {0, . . . , |E|} -I is the mapping defined by (33) andjpk ∈ {0, . . . , |E|} is chosen as in
Th-97. Now letX ∈ P̃(E) be a fuzzy subset ofE. Then

Qmin
γ (X)

= qmin(|X|min
γ , |X|max

γ ) by Th-98

= min(q(|X|min
γ ), q(|X|max

γ )) . by L-83
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Similarly in the case ofQmax
γ (X),

Qmax
γ (X)

= qmax(|X|min
γ , |X|max

γ ) by Th-98

=


q(|X|min

γ ) : |X|min
γ > jpk

q(|X|max
γ ) : |X|max

γ < jpk

q(jpk) : |X|min
γ ≤ jpk ≤ |X|max

γ

by L-83

F.15 Proof of Theorem 100

Lemma 84
SupposeQ : P(E) -I is a quantitative convex semi-fuzzy quantifier on a finite base set. Further
suppose thatX ′, X,X ′′ ∈ P̃(E) such thatX ′ ⊆ X ⊆ X ′′. Then

Qmin
γ (X) ≥ min(Qmin

γ (X ′), Qmin
γ (X ′′))

and

Qmax
γ (X) ≥ min(Qmax

γ (X ′), Qmax
γ (X ′′)) ,

for all γ ∈ I.

Proof
Let us assume thatQ : P(E) -I is a quantitative convex semi-fuzzy quantifier on a finite base
set. By Th-96, there existsq : {0, . . . , |E|} -I such that

Q(Y ) = q(|Y |) (360)

for all Y ∈ P(E), and

q(j) ≥ min(q(j′), q(j′′)) (361)

whenever0 ≤ j′ ≤ j ≤ j′ ≤ |E|.
Now suppose thatX ′, X,X ′′ ∈ P̃(E) such thatX ′ ⊆ X ⊆ X ′′.

Let us first considerQmin
γ (X). By Th-96,

q(|X|min
γ ) ≥ min(q(|X ′|min

γ ), q(|X ′′|min
γ )) (362)

q(|X|max
γ ) ≥ min(q(|X ′|max

γ ), q(|X ′′|max
γ )) (363)

becauseX ′ ⊆ X ⊆ X ′′ and hence|X ′|min
γ ≤ |X|min

γ ≤ |X ′′|min
γ and|X ′|max

γ ≤ |X|max
γ ≤ |X ′′|max

γ .
Therefore

Qmin
γ (X) = min(q(|X|min

γ ), q(|X|max
γ )) by Th-99

≥ min(min(q(|X ′|min
γ ), q(|X ′′|min

γ )),min(q(|X ′|max
γ ), q(|X ′′|max

γ ))) by (362), (363)

= min(min(q(|X ′|min
γ ), q(|X ′|max

γ )),min(q(|X ′′|min
γ ), q(|X ′′|max

γ )))

= min(Qmin
γ (X ′), Qmin

γ (X ′′)) . by Th-99
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Now let us considerQmax
γ (X). The proof is by contradiction. Let us assume that

Qmax
γ (X) < min(Qmax

γ (X ′), Qmax
γ (X ′′)) . (364)

Then there areY ′ ∈ Tγ(X ′), Y ′′ ∈ Tγ(X ′′) such that

Q(Y ) < min(Q(Y ′), Q(Y ′′)) (365)

for all Y ∈ Tγ(X). We shall discern two cases.

a. |Y ′| ≤ |Y ′′|. Now let

z = max(|X|min
γ , |Y ′|) (366)

Then apparently

|X|min
γ ≤ max(|X|min

γ , |Y ′|) = z

and

z = max(|X|min
γ , |Y ′|)

≤ max(|X|min
γ , |X ′|max

γ ) becauseY ′ ⊆ (X ′)max
γ

≤ max(|X|min
γ , |X|max

γ ) becauseX ′ ⊂ X, i.e. |X ′|max
γ ≤ |X|max

γ

= |X|max
γ . because(X)min

γ ⊆ (X)max
γ

Hence by L-82, there existsZ ∈ Tγ(X) such that

z = |Z| . (367)

Let us further observe that

|Y ′| ≤ max(|X|min
γ , |Y ′|) = z

and

z = max(|X|min
γ , |Y ′|)

≤ max(|X|min
γ , |Y ′′|) by assumption of case a.,|Y ′| ≤ |Y ′′|

≤ max(|X ′′|min
γ , |Y ′′|) becauseX ⊆ X ′′

= |Y ′′| . because(X ′′)min
γ ⊆ Y ′′

Combining this with (367), we conclude that there existsZ ∈ Tγ(X) such that

|Y ′| ≤ |Z| ≤ |Y ′′| . (368)

Therefore

Qmax
γ (X) = max{Q(Y ) : Y ∈ Tγ(X)} by (16),E finite

= max{q(|Y |) : Y ∈ Tγ(X)} by (360)

≥ q(|Z|) becauseZ ∈ Tγ(X)

≥ min(q(|Y ′|), q(|Y ′′|)) , by (361)

which contradicts the assumption (364) thatQmax
γ (X) < min(Qmax

γ (X ′), Qmax
γ X ′′). We

hence conclude thatQmax
γ (X) ≥ min(Qmax

γ (X ′), Qmax
γ X ′′).
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b. |Y ′| > |Y ′′|. In this case,

|X|min
γ ≤ |X ′′|min

γ becauseX ⊆ X ′′

≤ |Y ′′| because(X ′′)min
γ ⊆ Y ′′

< |Y ′| by assumption of case b.,|Y ′′| < |Y ′|
≤ |X ′|max

γ becauseY ′ ⊆ (X ′)max
γ

≤ |X|max
γ . becauseX ′ ⊆ X and hence(X ′)max

γ ⊆ (X)max
γ

Hence by L-82, there existsZ ∈ Tγ(X) such that|Y ′| = |Z|, i.e.

Qmax
γ (X) = max{Q(Y ) : Y ∈ Tγ(X)} by (16),E finite

= max{q(|Y |) : Y ∈ Tγ(X)} by (360)

≥ q(|Z|) becauseZ ∈ Tγ(X)

= q(|Y ′|) because|Z| = |Y ′|
≥ min(q(|Y ′|), q(|Y ′′|)) .

Again, this contradicts the assumption (364) thatQmax
γ (X) < min(Qmax

γ (X ′), Qmax
γ X ′′). It

follows thatQmax
γ (X) ≥ min(Qmax

γ (X ′), Qmax
γ X ′′), as desired.

Lemma 85
SupposeQ : P(E) -I is a quantitative convex quantifier on a finite base setE 6= ∅ and
X ′, X,X ′′ ∈ P̃(E) such thatX ′ ⊆ X ⊆ X ′′. If there exists someγ′′ ∈ I such thatQmax

γ′′ (X ′′) >
Qmax
γ′′ (X), thenQmax

γ (X) ≥ Qmax
γ (X ′) for all γ ∈ I.

Proof By Th-96, there existq : {0, . . . , |E|} -I such that

Q(Y ) = q(|Y |) (369)

for all Y ∈ P(E) and

q(j) ≥ min(q(j′), q(j′′)) (370)

wheneverj′ ≤ j ≤ j′′. We may further choosejpk ∈ {0, . . . , |E|} as in Th-97.
Now letX ′, X,X ′′ ∈ P̃(E) such thatX ′ ⊆ X ⊆ X ′′. Further suppose that there is someγ′′ ∈ I
such that

Qmax
γ′′ (X ′′) > Qmax

γ′′ (X) , (371)

and letγ′ ∈ I.

i. |X ′′|max
γ′′ < jpk.

i.a γ′ ≥ γ′′. Then

|X ′|min
γ′ ≤ |X|

min
γ′ ≤ |X

′′|min
γ′ ≤ |X

′′|min
γ′′ ≤ |X

′′|max
γ′′ < jpk , (372)

which is apparent from Def. 66,X ′ ⊆ X ⊆ X ′′ andγ′′ ≤ γ′. For the same reasons,

|X ′|max
γ ≤ |X|max

γ ≤ |X ′′|max
γ . (373)

We shall discern two subcases.
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i.a.1 |X ′′|max
γ′ ≥ jpk.

Then by (372) and Th-99,

Qmax
γ′ (X ′′) = q(jpk) . (374)

It is also apparent from Th-99 that there existj′ such that

Qmax
γ′ (X ′) = q(j′) .

Hence by Th-97 and (374),

Qmax
γ′ (X ′) = q(j′) ≤ q(jpk) = Qmax

γ′ (X ′′) .

In particular

min(Qmax
γ′ (X ′), Qmax

γ′ (X ′′)) = Qmax
γ′ (X ′) (375)

Therefore

Qmax
γ′ (X) ≥ min(Qmax

γ′ (X ′), Qmax
γ′ (X ′′)) by L-84

= Qmax
γ′ (X ′) . by (375)

i.a.2 Qmax
γ′ (X ′′) < jpk. We may then conclude fromX ′ ⊆ X ⊆ X ′′ that

|X ′|max
γ′ ≤ |X|

max
γ′ ≤ |X

′′|max
γ′ < jpk (376)

and hence

Qmax
γ′ (X ′) = q(|X ′|max

γ′ ) by Th-99

≤ q(|X|max
γ′ ) by Th-97

= Qmax
γ′ (X) . by Th-99

i.b γ′ < γ′′. Then

|X ′|max
γ′ ≤ |X|

max
γ′ ≤ |X

′′|max
γ′ ≤ |X

′′|max
γ′′ < jpk , (377)

which is apparent from Def. 66 noting thatX ′ ⊆ X ⊆ X ′′ andγ′ < γ′′. Therefore

Qmax
γ′ (X) = q((X)max

γ′ ) by Th-99

≥ q((X ′)max
γ′ ) by Th-97

= Qmax
γ′ (X ′) . by Th-99

ii. |X ′′|min
γ′′ > jpk. Then by Th-99,

Qmax
γ′′ (X ′′) = q(|X ′′|min

γ′′ ) . (378)

We know fromX ⊆ X ′′ that

|X|min
γ′′ ≤ |X

′′|min
γ′′ . (379)
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Let us assume thatjpk ≤ |X|min
γ′′ . Then

Qmax
γ′′ (X) = q(|X|min

γ′′ ) by Th-99

≥ q(|X ′′|min
γ′′ ) by Th-97, (379)

= Qmax
γ′′ (X ′′) ,

which contradicts the requirement of the lemma thatQmax
γ′′ (X ′′) > Qmax

γ′′ (X). Hence the assump-

tion thatjpk ≤ |X|min
γ′′ , i.e.

(X)min
γ′′ < jpk . (380)

Now suppose(X)max
γ′′ ≥ jpk. Then

Qmax
γ′′ (X) = q(jpk) by Th-99, (380)

≥ q(|X ′′|min
γ′′ ) by Th-97

= Qmax
γ′′ (X ′′) , by (378)

which again contradictsQmax
γ′′ (X ′′) > Qmax

γ′′ (X). Hence the assumptionjpk ≤ |X|min
γ′′ is false, and

(X)max
γ′′ < jpk . (381)

In the following, we shall again discern two cases.

ii.a γ′ ≥ γ′′. Then

|X ′|min
γ′ ≤ |X|

min
γ′ ≤ |X|

min
γ′′ < jpk , (382)

which is apparent from (31).X ′ ⊆ X, γ′′ ≤ γ′ and (380). If|X|max
γ′ ≥ jpk, then

Qmax
γ′ (X) = q(jpk) (383)

by Th-99 and (382). It is also apparent from Th-99 that there existsj′ such thatQmax
γ′ (X ′) =

q(j′). Then

Qmax
γ′ (X) = q(jpk) by (383)

≥ q(j′) by Th-97

= Qmax
γ′ (X ′) . by choice ofj′

In the remaining case that|X|max
γ′ < jpk, it follows fromX ′ ⊆ X that(X ′)max

γ′ ≤ (X)max
γ′ <

jpk also. Therefore

Qmax
γ′ (X) = q(|X|max

γ′ ) by Th-99

≥ q(|X ′|max
γ′ ) by |X ′|max

γ′ ≤ |X|
max
γ′ < jpk, Th-97

= Qmax
γ′ (X ′) . by Th-99

ii.b γ′ < γ′′. Then

|X ′|max
γ′ ≤ |X|

max
γ′ ≤ |X|

max
γ′′ < jpk , (384)

becauseX ′ ⊆ X, γ′ < γ′′, and recalling equation (381). Therefore

Qmax
γ′ (X) = q(|X|max

γ′ ) by Th-99, (384)

≥ q(|X ′|max
γ′ ) by |X ′|max

γ′ ≤ |X|
max
γ′ ≤ jpk, Th-97

= Qmax
γ′ (X ′) . by Th-99, (384)
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iii. |X ′′|min
γ′′ ≤ jpk ≤ |X ′′|max

γ′′ .

iii.a γ′ ≥ γ′′. Then

|X ′′|min
γ′ ≤ |X

′′|min
γ′′ ≤ jpk ≤ |X ′′|max

γ′′ ≤ |X
′′|max
γ′ . (385)

By Th-99, there existsj′ such thatQmax
γ′ (X ′) = q(j′). Now

Qmax
γ′ (X ′′) = q(jpk) by Th-99, (385)

≥ q(j′) by Th-97

= Qmax
γ′ (X ′) ,

in particular

Qmax
γ′ (X ′) = min(Qmax

γ′ (X ′), Qmax
γ′ (X ′′)) . (386)

Therefore

Qmax
γ′ (X) ≥ min(Qmax

γ′ (X ′), Qmax
γ′ (X ′′)) by L-84

= Qmax
γ′ (X ′) . by (386)

iii.b γ′ < γ′′.

iii.b.1 |X ′′|max
γ′ < jpk. Then

|X ′|max
γ′ ≤ |X|

max
γ′ ≤ |X

′′|max
γ′ < jpk (387)

and hence

Qmax
γ′ (X) = q(|X|max

γ′ ) by Th-99, (387)

≥ q(|X ′|max
γ′ ) by |X ′|max

γ′ ≤ |X|
max
γ′ ≤ jpk, Th-97

= Qmax
γ′ (X ′) . by Th-99, (387)

iii.b.2 |X ′′|min
γ′ > jpk.

Suppose|X ′|min
γ′ ≥ jpk. Then

|X ′|max
γ′ ≥ |X

′|min
γ′ ≥ jpk

Hence

|X ′|min
γ′′ ≤ |X

′′|min
γ′′ ≤ |X

′′|min
γ′ ≤ jpk

|X ′|max
γ′′ ≥ |X

′|max
γ′ ≥ jpk

becauseγ′ < γ′′,X ′ ⊆ X ′′. Therefore

|X ′|min
γ′′ ≤ jpk ≤ |X ′|max

γ′′ , (388)
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and hence

Qmax
γ′′ (X ′) = q(jpk) by Th-99, (388)

= Qmax
γ′′ (X ′′) by assumptions of case iii.b and Th-99

> Qmax
γ′′ (X) , by precondition the lemma.

which contradicts L-84. (This case is hence not possible.)
In the remaining case that|X ′|min

γ′ < jpk, suppose|X|min
γ′ < jpk. Then|X ′|min

γ′ ≤ |X|
min
γ′

becauseX ′ ⊆ X and hence

Qmax
γ′ (X) = q((X)min

γ′ ) by Th-99,|X|min
γ′ < jpk

≥ q((X ′)min
γ′ ) by |X ′|min

γ′ ≤ |X|
min
γ′ ≤ jpk, Th-97

= Qmax
γ′ (X ′) . by Th-99,|X ′|min

γ′ < jpk

Finally if |X|min
γ′ < jpk and|X|min

γ′ ≥ jpk, then

|X|min
γ′′ ≤ |X

′′|min
γ′′ ≤ jpk

|X ′′|max
γ′′ ≥ |X|

max
γ′′ ≥ |X|

max
γ′ ≥ |X|

max
γ′ ≥ jpk

becauseγ′ < γ′′, i.e.

|X|min
γ′′ ≤ jpk ≤ |X|max

γ′′ . (389)

Hence

Qmax
γ′′ (X) = q(jpk) by Th-99

= Qmax
γ′ (X ′′) , by Th-99

which contradicts the precondition of the lemma thatQmax
γ′′ (X ′′) > Qmax

γ′′ (X). The last

subcase that|X|min
γ′ < jpk and|X|min

γ′ ≥ jpk is hence not possible.

iii.b.3 |X ′′|min
γ′ ≤ jpk ≤ |X ′′|max

γ′ . Then

Qmax
γ′ (X ′′) = q(jpk) (390)

by Th-99. It is also apparent from this theorem that there is aj′ such thatQmax
γ′ (X ′) =

q(j′). Hence

Qmax
γ′ (X ′′) = q(jpk) by (390)

≥ q(j′) by Th-97

= Qmax
γ′ (X ′) .

In particular,

Qmax
γ′ (X ′) = min(Qmax

γ′ (X ′), Qmax
γ′ (X ′′)) . (391)

Therefore

Qmax
γ′ (X) ≥ min(Qmax

γ′ (X ′), Qmax
γ′ (X ′′)) by L-84

= Qmax
γ′ (X ′) . by (391)

Lemma 86
SupposeQ : P(E) -I is a convex semi-fuzzy quantifier. Then the antonymQ¬ : P(E) -I
defined by Def. 11 is also convex.
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Proof
Let Y ′, Y, Y ′′ ∈ P(E) such thatY ′ ⊆ Y ⊆ Y ′′. Then

¬Y ′′ ⊆ ¬Y ⊆ ¬Y . (392)

Therefore

Q¬(Y ) = Q(¬Y ) by Def. 11

≥ min(Q(¬Y ′), Q(¬Y ′′)) by (392),Q convex

= min(Q¬(Y ′), Q¬(Y ′′)) . by Def. 11

Lemma 87
SupposeQ : P(E) -I is a quantitative convex quantifier on a finite base setE 6= ∅ and
X ′, X,X ′′ ∈ P̃(E) such thatX ′ ⊆ X ⊆ X ′′. If there exists someγ′ ∈ I such thatQγ′(X

′) >
Qγ′(X), thenQγ(X) ≥ Qγ(X

′′) for all γ ∈ I.

Proof
We shall reduce this case to L-85 by using the antonymQ¬. Hence supposeQ : P(E) -I is a
quantitative convex quantifier on a finite base set andX ′, X,X ′′ ∈ P̃(E) satisfyX ′ ⊆ X ⊆ X ′′.
Further suppose that there existsγ′ ∈ I such that

Qγ′(X
′) > Qγ′(X) . (393)

AbbreviatingZ = ¬X, Z ′ = ¬X ′ andZ ′′ = ¬X ′′, we apparently have

Z ′′ ⊆ Z ⊆ Z ′ . (394)

In addition,

Qγ(X) = (Q¬¬)γ(X) = (Q¬)γ(¬X) = (Q¬)γ(Z)

Qγ(X
′) = (Q¬¬)γ(X

′) = (Q¬)γ(¬X ′) = (Q¬)γ(Z
′)

Qγ(X
′′) = (Q¬¬)γ(X

′′) = (Q¬)γ(¬X ′′) = (Q¬)γ(Z
′′)

by L-31, i.e.

Qmax
γ (X) = (Q¬)max

γ (Z) (395)

Qmax
γ (X ′) = (Q¬)max

γ (Z ′) (396)

Qmax
γ (X ′′) = (Q¬)max

γ (Z ′′) (397)

for all γ ∈ I.
We know from L-86 thatQ¬ is convex; it is also apparently quantitative (see Def. 31).
In addition,

(Q¬)max
γ′ (Z ′) = Qmax

γ′ (X ′) by (396)

> Qmax
γ′ (X) by (393)

= (Q¬)max
γ′ . by (395)
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Therefore

Qmax
γ′′ (X) = (Q¬)max

γ′′ (Z) by (395)

≥ (Q¬)max
γ′′ (Z ′′) by L-85, (394)

= Qmax
γ′′ (X ′′) by (397),

as desired.

Lemma 88
SupposeQ : P(E)n -I is a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E).

a. IfQ0(X1, . . . , Xn) ≥ 1
2
, then

Qγ(X1, . . . , Xn) = max(1
2
, Qmin

γ (X1, . . . , Xn))

for all γ ∈ I.

b. IfQ0(X1, . . . , Xn) ≤ 1
2
, then

Qγ(X1, . . . , Xn) = min(1
2
, Qmax

γ (X1, . . . , Xn))

for all γ ∈ I.

Proof

Case a.: Q0(X1, . . . , Xn) ≥ 1
2

Let us first observe that by Def. 45,

m 1
2
(a, b) = max(1

2
,min(a, b)) (398)

whenevermax(a, b) ≥ 1
2
. In addition, we may conclude from

1
2
≤ Q0(X1, . . . , Xn)

= m 1
2
(Qmax

0 (X1, . . . , Xn), Qmin
(X1,...,Xn)) by (14)

that

Qmax
0 (X1, . . . , Xn) ≥ 1

2
. (399)

Now for arbitraryγ ∈ I, T0(Xi) ⊆ Tγ(Xi) for i = 1, . . . , n by Def. 66 and hence

Qmax
γ (X1, . . . , Xn) = sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by (16)

≤ sup{Q(Y1, . . . , Yn) : Yi ∈ T0(Xi)} becauseT0(Xi) ⊆ Tγ(Xi), all i

= Qmax
0 (X1, . . . , Xn) by (16)

≥ 1
2
.

Hence by (398) and (399),

Qγ(X1, . . . , Xn) = m 1
2
(Qmax

γ (X), Qmin
γ (X)) = max(1

2
, Qmin

γ (X1, . . . , Xn)) , (400)

as desired.
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Case b.: Q0(X1, . . . , Xn) ≥ 1
2

The proof of this case is completely analogous to that ofa. We first observe that by Def. 45,

m 1
2
(a, b) = min(1

2
,max(a, b)) (401)

whenevermin(a, b) ≤ 1
2
. We may then conclude from

1
2
≥ Q0(X1, . . . , Xn)

= m 1
2
(Qmax

0 (X1, . . . , Xn), Qmin
(X1,...,Xn)) by (14)

that

Qmin
0 (X1, . . . , Xn) ≤ 1

2
. (402)

Now for arbitraryγ ∈ I, T0(Xi) ⊆ Tγ(Xi) for i = 1, . . . , n by Def. 66 and hence

Qmin
γ (X1, . . . , Xn) = inf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by (15)

≤ inf{Q(Y1, . . . , Yn) : Yi ∈ T0(Xi)} becauseT0(Xi) ⊆ Tγ(Xi), all i

= Qmin
0 (X1, . . . , Xn) by (15)

≤ 1
2
.

Hence by (401) and (402),

Qγ(X1, . . . , Xn) = m 1
2
(Qmax

γ (X), Qmin
γ (X)) = min(1

2
, Qmax

γ (X1, . . . , Xn)) . (403)

Lemma 89
SupposeQ : P(E) -I is a quantitative convex quantifier on a finite base setE 6= ∅ and
X ′, X,X ′′ ∈ P̃(E) such thatX ′ ⊆ X ⊆ X ′′. Further assume thatQ0(X ′) < 1

2
, Q0(X) < 1

2
and

Q0(X ′′) < 1
2
. Then at least one of the following conditions holds:

a. Qγ(X) ≥ Qγ(X
′) for all γ ∈ I;

b. Qγ(X) ≥ Qγ(X
′′) for all γ ∈ I.

Proof
Let us first apply L-88 to obtain that

Qγ(X) = m 1
2
(Qmax

γ (X), Qmin
γ (X)) = min(1

2
, Qmax

γ (X)) (404)

and for the same reasons,

Qγ(X
′) = m 1

2
(Qmax

γ (X ′), Qmin
γ (X ′)) = min(1

2
, Qmax

γ (X ′)) (405)

and

Qγ(X
′′) = m 1

2
(Qmax

γ (X ′′), Qmin
γ (X ′′)) = min(1

2
, Qmax

γ (X ′′)) (406)

for all γ ∈ I.



F PROOFS OF THEOREMS IN CHAPTER 7 222

Case 1. Let us suppose that condition a. of the lemma does not hold, i.e. the negated condition
is fulfilled: There exists someγ′ ∈ I such that

Qγ′(X) < Qγ′(X
′) . (407)

We have to show that condition b. holds in this situation. Firstly, from

Qγ′(X) = min(1
2
, Qmax

γ′ (X)) < min(1
2
, Qmax

γ′ (X ′)) ≤ 1
2

we obtain thatQγ′(X) = Qmax
γ′ (X). Hence

Qγ′(X) = Qmax
γ′ (X) < min(1

2
, Qmax

γ′ (X ′) ≤ Qmax
γ′ (X ′) .

We can hence apply L-87 to obtain that

Qmax
γ (X) ≥ Qmax

γ (X ′′) (408)

for all γ ∈ I. Therefore

Qγ(X) = min(1
2
, Qmax

γ (X)) by (404)

≥ min(1
2
, Qmax

γ (X ′′)) by (408)

= Qγ(X
′′) . by (406)

Case 2. Now let us assume that condition b. of the lemma does not hold, i.e. the negated condi-
tion is fulfilled: There exists someγ′′ ∈ I such that

Qγ′′(X) < Qγ′′(X
′′) . (409)

We have to show that under these circumstances, condition a. is guaranteed to hold. Firstly, from

Qγ′′(X) = min(1
2
, Qmax

γ′′ (X)) < min(1
2
, Qmax

γ′′ (X ′′)) ≤ 1
2

we obtain thatQγ′′(X) = Qmax
γ′′ (X). Hence

Qγ′′(X) = Qmax
γ′′ (X) < min(1

2
, Qmax

γ′′ (X ′′) ≤ Qmax
γ′′ (X ′′) .

We can hence apply L-85 to obtain that

Qmax
γ (X) ≥ Qmax

γ (X ′) (410)

for all γ ∈ I. Therefore

Qγ(X) = min(1
2
, Qmax

γ (X)) by (404)

≥ min(1
2
, Qmax

γ (X ′)) by (410)

= Qγ(X
′) . by (405)

As the following lemma shows, allMB-DFSes weakly preserve convexity in most (but not neces-
sary all) cases:

Lemma 90
SupposeMB is anMB-DFS. Further suppose thatQ : P(E) -I is a quantitative convex quan-
tifier on a finite base setE 6= ∅ andX ′, X,X ′′ ∈ P̃(E) such thatX ′ ⊆ X ⊆ X ′′. If Q0(X ′) ≤ 1

2

or Q0(X) ≤ 1
2

or Q0(X ′′) ≤ 1
2
, then

MB(Q)(X) ≥ min(MB(Q)(X ′),MB(Q)(X ′′)) .
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Proof
SupposeMB is anMB-DFS. Then by Th-62, we know thatB : B -I satisfies (B-1) to (B-5). In
addition, we know from Th-63 thatB can be defined in terms ofB′ : H -I according to (23).
Now let Q : P(E) -I be a quantitative convex quantifier on a finite base setE 6= ∅ and
X ′, X,X ′′ ∈ P̃(E) a choice of base sets such thatX ′ ⊆ X ⊆ X ′′ and

min{Q0(X ′), Q0(X), Q0(X ′′)} ≤ 1
2
. (411)

We will discern the following cases.

Case 1: Q0(X) > 1
2

Then by (411), there existsZ ∈ {X ′, X ′′} such thatQ0(Z) ≤ 1
2
. Hence(Qγ(X))γ∈I ∈ B+ and

(Qγ(Z))γ∈I ∈ B− ∪ B
1
2 (see Def. 68). Therefore

MB(Q)(X) = B((Qγ(X))γ∈I) by Def. 69

≥ 1
2

by (23) and(Qγ(X))γ∈I ∈ B+

≥ B((Qγ(Z))γ∈I) by (23) and(Qγ(Z))γ∈I ∈ B− ∪ B
1
2

=MB(Q)(Z) . by Def. 69

Case 2: Q0(X) = 1
2 Suppose that

min(Q0(X ′), Q0(X ′′)) > 1
2
. (412)

Then

1
2
< min(Q0(X ′), Q0(X ′′)) by (412)

= min(max(1
2
, Qmin

0 (X ′)),max(1
2
, Qmin

0 (X ′′))) by L-88

= max(1
2
,min(Qmin

0 (X ′), Qmin
0 (X ′′)))

≤ max(1
2
, Qmin

0 (X)) by L-84

= 1
2
, by L-88

i.e. 1
2
< 1

2
, a contradiction. This proves that condition (412) is never satisfied; by contrast, we

always have

min(Q0(X ′), Q0(X ′′)) ≤ 1
2

Hence there existsZ ∈ {X ′.X ′′} such thatQ0(Z) ≤ 1
2
, and

MB(Q)(X) = B(c1
2
) by Def. 68 becauseQ0(X) = 1

2

= 1
2

by (23)

≥ B((Qγ(Z))γ∈I) by (23) as(Qγ(Z))γ∈I ∈ B− ∪ B
1
2

=MB(Q)(Z) by Def. 69

≥ min(MB(Q)(X ′),MB(Q)(X ′′)) . becauseZ ∈ {X ′, X ′′}
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Case 3: Q0(X) < 1
2 Let us assume that

min(Q0(X ′), Q0(X ′′)) ≥ 1
2
. (413)

Then

Q0(X) = min(1
2
, Qmax

0 (X)) by L-88

≥ min(1
2
,min(Qmax

0 (X ′), Qmax
0 X ′′)) by L-84

≥ 1
2
, by (413),Def. 45

which contradicts the assumption of case 3. thatQ0(X) < 1
2
. Hence condition (413) is false; by

contrast, we have

min(Q0(X ′), Q0(X ′′)) < 1
2
,

i.e. there existsZ,Z ′ ∈ {X ′, X ′′} such thatQ0(Z) < 1
2
, andZ ′ 6= Z.

a. IfQ0(Z ′) ≥ 1
2
, then

min(Qmax
γ (Z), Qmax

γ (Z ′)) = Qmax
γ (Z) (414)

and hence

Qmax
γ (X) ≥ min(Qmax

γ (X ′), Qmax
γ (X ′′)) by L-84

= Qmax
γ (Z) by (414),{X ′, X ′′} = {Z,Z ′} ,

for all γ ∈ I. Therefore

Qγ(X) = min(1
2
, Qmax

γ (X)) by L-88

≥ min(1
2
, Qmax

γ (Z)) becauseQmax
γ (Z) ≤ Qmax

γ (X)

= Qγ(Z) by L-88

From this we obtain the desired result

MB(Q)(X) = B((Qγ(X))γ∈I) by Def. 69

≥ B((Qγ(Z))γ∈I) by (B-5)

=MB(Q)(Z) by Def. 69

≥ min(MB(Q)(X ′),MB(Q)(X ′′)) . becauseZ ∈ {X ′, X ′′}

b. Q0(Z ′) < 1
2
, i.e.

max{Q0(X ′), Q0(X), Q0(X ′′)} < 1
2
. (415)

Then by L-89, there existsW ∈ {X ′, X ′′} such that

Qγ(X) ≥ Qγ(W ) (416)

for all γ ∈ I. Hence

MB(Q)(X) = B((Qγ(X))γ∈I) by Def. 69

≥ B((Qγ(W ))γ∈I) by (B-5)

=MB(Q)(W ) by Def. 69

≥ min(MB(Q)(X ′),MB(Q)(X ′′)) , becauseW ∈ {X ′, X ′′}

which finishes the proof of the lemma.
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Lemma 91
SupposeQ : P(E) -I is a quantitative convex quantifier on a finite base setE 6= ∅, and let
X ′, X,X ′′ ∈ P̃(E) such thatX ′ ⊆ X ⊆ X ′′. If Q0(X ′) > 1

2
,Q0(X) > 1

2
andQ0(X ′′) > 1

2
, then

Qγ(X) ≥ min(Qγ(X
′), Qγ(X

′′)) ,

for all γ ∈ I.

Proof
AssumeQ : P(E) -I is a quantitative convex quantifier on a finite base set. Further assume
thatX ′, X,X ′′ ∈ P̃(E) is a chopice of argument sets such that

X ′ ⊆ X ⊆ X ′′ . (417)

and

min{Q0(X ′), Q0(X), Q0(X ′′)} > 1
2
. (418)

Then

Qγ(X) = max(1
2
, Qmin

γ (X)) by L-88, (418)

≥ max(1
2
,min(Qmin

γ (X ′), Qmin
γ (X ′′))) by L-84, (417)

= min(max(1
2
, Qmin

γ (X ′)),max(1
2
, Qmin

γ (X ′′))) by distributivity ofmin, max

= min(Qγ(X
′), Qγ(X

′′)) . by (418)

Lemma 92
Supposef, f ′, f ′′ ∈ H are such that

f(γ) ≥ min(f ′(γ), f ′′(γ))

for all γ ∈ I. Then

B′CX(f) ≥ min(B′CX(f ′),B′CX(f ′′)) .

Proof
Let us assume thatf, f ′, f ′′ ∈ H are given such that

f(γ) ≥ min(f ′(γ), f ′′(γ)) (419)

for all γ ∈ I. Let us abbreviate

ω = B′CX(f) (420)

ω′ = B′CX(f ′) (421)

ω′′ = B′CX(f ′′) (422)

The proof is by contradiction. Hence let us assume thatB′CX(f) < min(B′CX(f ′),B′CX(f ′′)), i.e.

ω < min(ω′, ω′′) . (423)
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Hence there existsγ ∈ I such that

ω < γ < min(ω, ω′) .

Then by Th-94,

f(γ) < z < f ′(γ)

f(γ) < z < f ′′(γ) ,

i.e.

f(γ) < min(f ′(γ), f ′′(γ))

which contradicts requirement (419) onf, f ′, f ′′. We conclude that assumption (423) is false, and
the opposite conditionB′CX(f) ≥ min(B′CX(f ′),B′CX(f ′′)) is true, as desired.

Proof of Theorem 100

SupposeQ : P(E) -I is a quantitative convex semi-fuzzy quantifier on a finite base set. Further
suppose thatX ′, X,X ′′ ∈ P̃(E) is a choice of argument sets such thatX ′ ⊆ X ⊆ X ′′. For the
proof, we shall discern two situations.

Case a.: min{Q0(X ′), Q0(X), Q0(X ′′)} > 1
2 . Let us abbreviate

g(γ) = Qγ(X) (424)

g′(γ) = Qγ(X
′) (425)

g′′(γ) = Qγ(X
′′) (426)

for all γ ∈ I. By the assumption of case a.,g(0) > 0, g′(0) > 0 andg′′(0) > 0, i.e. g, g′, g′′ ∈ B+.
We can apply L-91 to conclude that

g(γ) ≥ min(g′(γ), g′′(γ)) , (427)

for all γ ∈ I.
Becauseg, g′, g′′ ∈ B+, we can definef, f ′, f ′′ ∈ H by

f = 2g − 1 (428)

f ′ = 2g′ − 1 (429)

f ′′ = 2g′′ − 1 (430)

We then obtain from (427) that

f(γ) ≥ min(f ′(γ), f ′′(γ)) (431)

for all γ ∈ I. Applying L-92, we conclude that

B′CX(f) ≥ min(B′CX(f ′),B′CX(f ′′)) . (432)

Therefore

MCX(Q)(X) = BCX(g) by Def. 69, (424)

= 1
2

+ 1
2
B′CX(f) by (23), (428)

≥ 1
2

+ 1
2

min(B′CX(f ′),B′CX(f ′′)) by (432)

= min(1
2

+ 1
2
B′CX(f ′), 1

2
+ 1

2
B′CX(f ′′))

= min(BCX(g′),BCX(g′′)) by (23), (429), (430)

= min(MCX(Q)(X ′),MCX(Q)(X ′′)) . by Def. 69, (425), (426)
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Case b.: min{Q0(X ′), Q0(X), Q0(X ′′)} ≤ 1
2 .

Recalling thatMCX is anMB-DFS by Th-93, we can directly apply L-90 to obtain that

MCX(Q)(X) ≥ min(MCX(Q)(X ′),MCX(Q)(X ′′)) ,

as desired.

F.16 Proof of Theorem 101

Lemma 93
Supposef ∈ B+ and there existm ∈ N \ {0, }, 0 = γ0 < γ1 < · · · < γm−1 < γm = 1 such that
f(0) = f(γ1), and

f(γ) = f(γj)

for all γ ∈ (γj−1, γj], j = 1, . . . ,m. Further suppose thatγ∗ ∈ (0, 1] is given, andf1, f2 ∈ B are
defined by

f1(γ) =

{
1 : γ ≤ γ∗
1
2

: γ > γ∗

f2(γ) = f(γ∗)

for all γ ∈ I. Then there exists a convex quantitative semi-fuzzy quantifierQ : P(E) -I on a
finite base setE 6= ∅ and a choice of fuzzy subsetsX ′, X,X ′′ ∈ P̃(E) such thatX ′ ⊆ X ⊆ X ′′

and

f(γ) = Qγ(X)

f1(γ) = Qγ(X
′)

f2(γ) = Qγ(X
′′)

for all γ ∈ I.

Proof We can assume without loss of generality thatm > 1 (if m = 1, simply add anotherγj).
We can further assume that there existsj∗ ∈ {1, . . . ,m} such thatγ∗ = γj∗ (otherwise, simply add
γj∗ to theγj ’s). Let us abbreviate

k = m+ 1 + j∗ . (433)

We shall defineq : {0, . . . , k} -I as follows.

q(j) =


1
2

: j = 0

f(γm−j+1) : 1 ≤ j ≤ m

1 : j = m+ 1

f(γj−(m+1)) : m+ 2 ≤ j ≤ k = m+ 1 + j∗

(434)

for all j ∈ {0, . . . , k}. We will define a one-place semi-fuzzy quantifierQ : P(E) -I on the
finite base setE = {1, . . . , k} by

Q(Y ) = q(|Y |) (435)
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for all Y ∈ P(E). Recalling thatf ∈ B+ is nonincreasing by Def. 68 and observing thatγj′ > γj
wheneverj′ > j, it is apparent from Th-96 thatQ is quantitative and convex. In addition,

jpk = m+ 1 (436)

is obviously a proper choice forjpk in Th-97.
Let us now define fuzzy subsetsX ′, X,X ′′ ∈ P̃(E) as follows.

µX′(j) =

{ 1
2

+ 1
2
γj∗ : 1 ≤ j ≤ m+ 1

0 : j > m+ 1
(437)

µX(j) =



1
2

+ 1
2
γj∗ : 1 ≤ j ≤ j∗

1
2

+ 1
2
γj : j∗ + 1 ≤ j ≤ m

1
2

+ 1
2
γj∗ : j = m+ 1

1
2

: j = m+ 2
1
2
− 1

2
γj−(m+2) : m+ 3 ≤ j ≤ k = m+ 1 + j∗

(438)

µX′′(j) = 1 (439)

for all j ∈ E = {1, . . . , k}. Then clearly

X ′ ⊆ X ⊆ X ′′ . (440)

Let us now considerQγ(X
′). If γ ≤ γ∗, then|X ′|min

γ = |X ′|max
γ = m + 1 by (437), Def. 66 and

hence

Qγ(X
′) = m 1

2
(Qmin

γ (X ′), Qmax
γ (X ′)) by (14)

= m 1
2
(min(q(m+ 1), q(m+ 1)), q(m+ 1)) by Th-99,|X ′|min

γ = |X ′|max
γ = m+ 1 = jpk

= q(m+ 1) by Def. 45

= 1 . by (434)

In the remaining case thatγ > γ∗, |X ′|min
γ = 0 and |X ′|max

γ = m + 1 by (437) and Def. 66.
Therefore

Qγ(X
′) = m 1

2
(Qmin

γ (X ′), Qmax
γ (X ′)) by (14)

= m 1
2
(min(q(0), q(m+ 1)), q(m+ 1)) by Th-99,|X ′|min

γ = 0, |X ′|max
γ = m+ 1 = jpk

= m 1
2
(min(1

2
, 1), 1) by (434)

= m 1
2
(1

2
, 1)

= 1
2
. by Def. 45

HenceQγ(X
′) = f1(γ) for all γ ∈ I, as desired.

Let us now considerQγ(X
′′). BecauseX ′′ = E is crisp by (439),

Qγ(X
′′) = Q(X ′′) by L-44

= Q(E) becauseX ′′ = E

= q(|E|) by (435)

= q(k) because|E| = |{1, . . . , k}| = k

= γ∗ , by (434),γj∗ = γ∗
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i.e.Qγ(X
′′) = γ∗ = f2(γ) for all γ ∈ I.

Finally, let us considerQγ(X). If γ = 0, then by Def. 66 and (438),

(X)min
0 = (X)

>
1
2

= {1, . . . ,m+ 1}

(X)max
0 = (X)

≥1
2

= {1, . . . ,m+ 2} .

Hence by (31), (32),|X|min
0 = m+ 1 and|X|max

0 = m+ 2, i.e.

Q0(X) = m 1
2
(Qmin

0 (X), Qmax
0 (X)) by (14)

= m 1
2
(min(q(m+ 1), q(m+ 2)), q(m+ 1)) by Th-99,|X|min

0 = m+ 1 = jpk

and|X|max
0 = m+ 2

= m 1
2
(min(1, f(γ1)), f(γ1)) by (435)

= m 1
2
(min(1, f(0)), f(0)) by assumption,f(0) = f(γ1)

= f(0) . by L-46

If 0 < γ ≤ γ∗, there existsj′ ∈ {1, . . . , j∗} such thatγ ∈ (γj′−1, γj′ ]. Then by Def. 66 and (438),

(X)min
γ = (X)

≥1
2

+
1
2
γ

= {1, . . . ,m+ 1}

(X)max
γ = (X)

>
1
2
−1

2
γ

= {1, . . . , j′ +m+ 1} .

Therefore|X|min
γ = m+ 1 and|X|max

γ = j′ +m+ 1. We conclude that

Qγ(X) = m 1
2
(Qmin

γ (X), Qmax
γ (X)) by (14)

= m 1
2
(min(q(m+ 1), q(j′ +m+ 1)), q(m+ 1)) by Th-99,|X|min

γ = m+ 1 = jpk

and|X|max
γ = j′ +m+ 1

= m 1
2
(min(1, f(γj′)), 1) by (435)

= m 1
2
(f(γj′), 1)

= f(γj′) by L-46

= f(γ) . by assumption onf , γ ∈ (γj′−1, γj′ ]

Finally if γ > γ∗, then there existsj′ > j∗ such thatγ ∈ (γj′−1, γj]. Again by Def. 66 and (438),

(X)min
γ = (X)

≥1
2

+
1
2
γ

= {j′, . . . ,m}

(X)max
γ = (X)

>
1
2
−1

2
γ

= {1, . . . , k} .
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Therefore|X|min
γ = m− j′ + 1, |X|max

γ = k, and hence

Qγ(X)

= m 1
2
(Qmin

γ (X), Qmax
γ (X)) by (14)

= m 1
2
(min(q(m− j′ + 1), q(k)), q(m+ 1)) by Th-99 and

|X|min
γ = m− j′ + 1 ≤ m+ 1 = jpk ≤ k = |X|max

γ

= m 1
2
(min(f(γj′), f(γj∗)), 1) by (435)

= m 1
2
(f(γj′), 1) becausef noninc.,j′ > j∗

= f(γj′) by L-46

= f(γ) . by assumption onf , γ ∈ (γj′−1, γj′ ]

Lemma 94
Supposeg ∈ H and there existm ∈ N \ {0, }, 0 = γ0 < γ1 < · · · < γm−1 < γm = 1 such that
g(0) = g(γ1), and

g(γ) = g(γj)

for all γ ∈ (γj−1, γj], j = 1, . . . ,m. Further suppose thatB′ : H -I is given, and thatMB
is defined in terms ofB′ according to(23) and Def. 69. IfMB is a DFS and weakly preserves
convexity, then

B′(g) ≥ B′CX(g) .

Proof
SupposeB′ : H -I is a mapping such that the QFMMB defined by (23) and Def. 69 is a DFS
and weakly preserves convexity. In particular, we know from Th-62 thatB satisfies (B-1) and
(B-3).
Further suppose thatg ∈ H has the properties assumed in the lemma. We shall define define
f ∈ B+ by f = 1

2
+ 1

2
g. f apparently exhibits the properties required by L-93. Hence for all

γ∗ ∈ (0, 1], there exists a quantitative convex semi-fuzzy quantifierQ : P(E) -I on a finite base
setE 6= ∅ and fuzzy subsetsX ′, X,X ′′ ∈ P̃(E),X ′ ⊆ X ⊆ X ′′ such that

f(γ) = Qγ(X), (441)

f1(γ) = Qγ(X
′) (442)

and

f2(γ) = Qγ(X
′′) , (443)

using the abbreviations of L-93. BecauseMB weakly preserves convexity,

B(f) =MB(Q)(X) by (441), Def. 69

≥ min(MB(Q)(X ′),MB(Q)(X ′′)) becauseMB weakly convex

= min(B(f1),B(f2)) by (442), (443), Def. 69

= min(1
2

+ 1
2
γ∗, f(γ∗)) , by (B-1),(B-3)
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i.e.

B(f) ≥ min(1
2

+ 1
2
γ∗, f(γ∗)) . (444)

Hence

B′(g) = 2B(f)− 1 by (24),f = 1
2

+ 1
2
g

≥ 2 ·min(1
2

+ 1
2
γ∗, f(γ∗))− 1 by (444)

= min(2(1
2

+ 1
2
γ∗)− 1, 2f(γ∗)− 1)

= min(γ∗, g(γ∗)) , becauseg = 2f − 1

Becauseγ∗ ∈ (0, 1] was chosen arbitrarily, we conclude that

B′(g) ≥ sup{min(γ, g(γ)) : γ ∈ (0, 1]}
= sup{min(γ, g(γ)) : γ ∈ (0, 1]} ∪ {0}
= sup{min(γ, g(γ)) : γ ∈ I}
= B′CX(g) . by Th-94.

Proof of Theorem 101

SupposeMB is a DFS which weakly preserves convexity. Then by L-94,B′(f) ≥ B′CX(f) for all
f ∈ H. Hence by Th-86,MCX �cMB.

F.17 Proof of Theorem 102

Lemma 95
SupposeJ 6= ∅ is an index set and(Aj)j∈J is a J-indexed family of subsetsAj ∈ P(I) \ {∅}.
Then

m 1
2
{m 1

2
Aj : j ∈ J} = m 1

2
∪
j∈J

Aj .

Proof
The proof is based on the observation thatm 1

2
: I × I -I as defined by Def. 45 satisfies the

equation

m 1
2
(a, b) =

{
max(1

2
,min(a, b)) : max(a, b) ≥ 1

2

min(1
2
,max(a, b)) : min(a, b) ≤ 1

2

(445)

Hence ifX ∈ P(I),X 6= ∅ (i.e. inf X ≤ supX),

m 1
2
X = m 1

2
(inf X, supX) =

{
max(1

2
, inf X) : supX ≥ 1

2

min(1
2
, supX) : inf X ≤ 1

2

(446)

by Def. 46 and (445). In order to profit from this reformulation ofm 1
2
, let us abbreviate

J+ = {j ∈ J : supAj ≥ 1
2
}

J− = {j ∈ J : inf Aj ≤ 1
2
}
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ApparentlyJ = J+ ∪ J−. The setsJ+ andJ− are not necessarily disjoint but this will not pose
problems because of the idempotency ofm 1

2
.

Now for everyj ∈ J+,

m 1
2
Aj = max(1

2
, inf Aj) (447)

and for everyj ∈ J−,

m 1
2
Aj = min(1

2
, supAj) , (448)

which is obvious from (446) and the definition ofJ+ andJ−.
In the following, we will treat separately three cases.

Case a.: J− = ∅, i.e. J = J+.
Then

m 1
2
{m 1

2
Aj : j ∈ J}

= m 1
2
{max(1

2
, inf Aj) : j ∈ J} by (447),J = J+

= max(1
2
, inf{max(1

2
, inf Aj) : j ∈ J}) by (446)

= max(1
2
,max(1

2
, inf{inf Aj : j ∈ J})) by distributivity

= max(1
2
, inf{inf Aj : j ∈ J}) becausemax idempotent

= max(1
2
, inf ∪

j∈J
Aj) ,

i.e.

m 1
2
{m 1

2
Aj : j ∈ J} = max(1

2
, inf ∪

j∈J
Aj) . (449)

BecauseJ = J+ andJ 6= ∅ by assumption of the lemma, we know that there exists somej0 ∈ J+,
i.e. a choice ofj0 ∈ J such thatsupAj0 ≥ 1

2
. Clearly

sup ∪
j∈J

Aj ≥ supAj0 becausej0 ∈ J , i.e.Aj0 ⊆ ∪
j∈J

Aj

≥ 1
2
. becausej0 ∈ J+

Therefore

m 1
2
∪
j∈J

Aj = max(1
2
, inf ∪

j∈J
Aj) by (446)

= m 1
2
{m 1

2
Aj : j ∈ J} . by (449)

Case b.: J+ = ∅, i.e. J = J−.
By reasoning analogous to that in case a.,

m 1
2
{m 1

2
Aj : j ∈ J} = m 1

2
{min(1

2
, supAj) : j ∈ J}

= min(1
2
, sup ∪

j∈J
Aj)

= m 1
2
∪
j∈J

Aj

provided thatJ = J−.
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Case c.: J+ 6= ∅ and J− 6= ∅.
In the remaining case thatJ+ 6= ∅ andJ− 6= ∅, there existj+ ∈ J+, j− ∈ J−. Therefore

sup{m 1
2
Aj : j ∈ J} ≥ m 1

2
Aj+ becausej+ ∈ J

= max(1
2
, inf Aj) by (447),j+ ∈ J+, Aj+ 6= ∅

≥ 1
2
,

and similarly

inf{m 1
2
Aj : j ∈ J} ≤ m 1

2
Aj− becausej− ∈ J

= min(1
2
, supAj−) by (448),j ∈ J−, Aj− 6= ∅

≤ 1
2
.

Hence

m 1
2
{m 1

2
Aj : j ∈ J}

= min(1
2
, sup{m 1

2
Aj : j ∈ J}) by (446),inf{m 1

2
Aj : j ∈ J} ≤ 1

2

= 1
2
. becausesup{m 1

2
Aj : j ∈ J} ≥ 1

2

Consideringm 1
2
∪
j∈J

Aj, we haveAj+ ⊆ ∪
j∈J

Aj, hence

sup ∪
j∈J

Aj ≥ supAj+ ≥ 1
2
,

and similarly

inf ∪
j∈J

Aj ≤ inf Aj− ≤ 1
2

becausej− ∈ J and henceAj− ⊆ ∪
j∈J

Aj. Therefore

m 1
2
∪
j∈J

Aj = min(1
2
, sup ∪

j∈J
Aj) by (446),inf ∪

j∈J
≤ 1

2

= 1
2

becausesup ∪
j∈J

Aj ≥ 1
2

= m 1
2
{m 1

2
Aj : j ∈ J} ,

as desired.

Lemma 96
Suppose(Vj)γ∈I is anI-indexed family of subsetsVγ ⊆ H, γ ∈ I such thatV0 6= ∅ andVγ ⊆ Vγ′
wheneverγ ≤ γ′. Defineg, h : I -I by

g(γ) = inf{f(γ) : f ∈ Vγ}
h(γ) = inf{B′CX(f) : f ∈ Vγ}

for all γ ∈ I.
We require thath(0) > 0. Theng, h ∈ H andB′CX(g) = B′CX(h).
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Proof
Let us first show thatg ∈ H. By Def. 75, we have to show thatg is nonincreasing andg(0) > 0.
Hence letγ ≤ γ′. Then

g(γ) = inf{f(γ) : f ∈ Vγ}
≥ inf{f(γ′) : f ∈ Vγ} because allf ∈ Vγ ⊆ H are nonincreasing

≥ inf{f(γ′) : f ∈ Vγ′} becauseVγ ⊆ Vγ′

= g(γ′) .

This proves thatg is nonincreasing; let us now show thatg(0) > 0. By assumption of the lemma,

h(0) = inf{B′CX(f) : f ∈ V0} > 0 .

Hence for allf ∈ V0,

B′CX(f) ≥ h(0) > 0 . (450)

BecauseMCX is a DFS (see Th-93, we know from Th-62 and Th-53 thatB′CX satisfies (C-1)
and (C-4). Let us also observe that eachf ∈ V0 ⊆ H is nonincreasing by Def. 75 and hence
f(γ) ≤ f(0) = cf(0)(γ), i.e.f ≤ cf(0). Therefore

f(0) = B′CX(cf(0)) by (C-1)

≥ B′CX(f) by (C-4),f ≤ cf(0)

≥ h(0) , by (450)

i.e.

f(0) ≥ h(0) (451)

for all f ∈ V0. We conclude that

g(0) = inf{f(0) : f ∈ V0}
≥ inf{h(0) : f ∈ V0} by (451)

= h(0)

> 0 . by assumption of lemma

Henceg is nonincreasing andg(0) > 0, i.e.g ∈ H by Def. 75.
Let us next show thath ∈ B. Hence letγ ≤ γ′. Then

h(γ) = inf{B′CX(f) : f ∈ Vγ}
≤ inf{B′CX(f) : f ∈ Vγ′} becauseVγ ⊆ Vγ′

= h(γ′) ,

i.e.h is nonincreasing. We already know by assumption of the lemma thath(0) > 0. Henceh ∈ H
by Def. 75.
Let us abbreviate

Dγ = {f ∈ Vγ : B′CX(f) < γ} (452)
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for all γ. BecauseVγ ⊆ Vγ′ wheneverγ ≤ γ′, it is apparent that

Dγ ⊆ Dγ′ (453)

wheneverγ ≤ γ′.
I will now show thatB′CX(g) = inf{γ : Dγ 6= ∅}. To this end, let us first observe that

B′CX(g) ≤ inf{γ ∈ I : Dγ 6= ∅} . (454)

This is because by (453), we haveDγ′ 6= ∅ for all γ′ > inf{γ ∈ I : Dγ 6= ∅}, i.e. there is some
f0 ∈ Vγ′ such thatB′CX(f0) < γ′. It follows by Th-94 that

f0(γ′) < γ′ , (455)

and hence

g(γ′) = inf{f(γ′) : f ∈ Vγ′}
≤ inf{f0(γ′)} becausef0 ∈ Vγ′
< γ′ by (455)

Again from Th-94, we conclude thatB′CX(g) ≤ γ′. Becauseγ′ > inf{γ ∈ I : Dγ 6= ∅} was
arbitrarily chosen, this means thatB′CX(g) ≤ inf{γ ∈ I : Dγ 6= ∅}, i.e. (454) holds.
To show that

B′CX(g) ≥ inf{γ ∈ I : Dγ 6= ∅} , (456)

let us chooseγ′, γ′′ such that

0 ≤ γ′ < γ′′ < inf{γ ∈ I : Dγ 6= ∅} . (457)

BecauseDγ′′ = ∅ by (457) and (453), we know that for allf ∈ Vγ′′,
B′CX(f) ≥ γ′′ . (458)

Becauseγ′ < γ′′ by (457), we also know thatVγ′ ⊆ Vγ′′, i.e. for allγ ∈ Vγ′,
B′CX(f) ≥ γ′′ by (458)

> γ′ by (457).

By applying Th-94, we conclude fromγ′ < B′CX(f) that

f(γ′) > γ′

for all f ∈ Vγ′. Therefore

g(γ′) = inf{f(γ′) : f ∈ Vγ′}
≥ γ′ ,

i.e. B′CX(g) ≥ γ′ by Th-94. Becauseγ′ < inf{γ ∈ I : Dγ 6= ∅} was arbitrarily chosen, this
means that

B′CX(g) ≥ sup[0, inf{γ ∈ I : Dγ 6= ∅}) = inf{γ ∈ I : Dγ 6= ∅} ,
i.e. (456) holds. Combining this with (454), we conclude that

B′CX(g) = inf{γ : Dγ 6= ∅} . (459)

It remains to be shown thatB′CX(h) = B′CX(g). By Th-94, we can prove this by showing that

a. h(γ′) > γ′ for all γ′ < B′CX(g), and

b. h(γ′) < γ′ for all γ′ > B′CX(g).
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ad a. We may assume thatB′CX(g) > 0 because condition a. becomes vacuous in the case that
B′CX(g) = 0. To see that condition a. holds in the nontrivial caseB′CX(g) > 0, let

γ′ < γ′′ < B′CX(g) . (460)

By (459),γ′′ < inf{γ ∈ I : Dγ 6= ∅}, i.e.Dγ′′ 6= ∅. By (452), this means that

B′CX(f) ≥ γ′′ . (461)

for all f ∈ Vγ′′. Therefore

h(γ′) = inf{B′CX(f) : f ∈ Vγ′}
≥ inf{B′CX(f) : f ∈ Vγ′′} becauseVγ′ ⊆ Vγ′′

≥ γ′′ by (461)

> γ . by (460)

Becauseγ′ < B′CX(g) was arbitrarily chosen, this finishes the proof of part a.

ad b. We may assume thatB′CX(g) < 1 because condition b. becomes vacuous in the case that
B′CX(g) = 1. To see that condition b. holds in the nontrivial caseB′CX(g) < 1, let γ′ > B′CX(g).
By (459), this means thatDγ′ 6= ∅, i.e. there exists somef ′ ∈ Vγ′ such that

B′CX(f ′) < γ′ . (462)

Therefore

h(γ) = inf{B′CX(f) : f ∈ Vγ′}
≤ inf{B′CX(f ′)} becausef ′ ∈ Dγ′ ⊆ Vγ′

= B′CX(f ′)

< γ . by (462)

This finishes the proof that condition b. holds.

In the following, we will generalize this statement toI-indexed families(Vγ)γ∈I whereVγ ⊆ B.

Lemma 97
Suppose(Vγ)γ∈I is an I-indexed family of subsetsVγ ⊆ B, all γ ∈ I, such thatV0 6= ∅ and
Vγ ⊆ Vγ′ wheneverγ ≤ γ′. Defineg : I -I by

g(γ) = m 1
2
{f(γ) : f ∈ Vγ} ,

for all γ ∈ I. Theng ∈ B.
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Proof

Case a.: g(0) > 1
2 .

In this case,

g(0) = m 1
2
{f(0) : f ∈ V0} by definition ofg

= m 1
2
(inf{f(0) : f ∈ V0}, sup{f(0) : f ∈ V0}) by Def. 46

> 1
2
, by assumption of case a.

i.e. by Def. 45,

g(0) = inf{f(0) : f ∈ V0} > 1
2
.

In particular,f(0) > 1
2

for all f ∈ V0, i.e.V0 ⊆ B+. Hence

sup{f(γ) : f ∈ Vγ} ≥ sup{f(γ) : f ∈ V0} becauseV0 ⊆ Vγ, 0 ≤ γ

≥ sup{1
2

: f ∈ V0} becausef(γ) ≥ 1
2

for all f ∈ B+, andV0 ⊆ B+

= 1
2
. becauseV0 6= ∅

Recalling thatm 1
2
(a, b) = m 1

2
(1

2
,min(a, b)) whenevermax(a, b) ≥ 1

2
(see Def. 45), we conclude

that

g(γ) = m 1
2
{f(γ) : f ∈ Vγ}

= m 1
2
(inf{f(γ) : f ∈ Vγ}, sup{f(γ) : f ∈ Vγ}) by Def. 46

= max(1
2
, inf{f(γ) : f ∈ Vγ}) ,

i.e.

g(γ) = max(1
2
, inf{f(γ) : f ∈ Vγ}) (463)

for all γ ∈ I. It is apparent from (463) thatg is nonincreasing andg(γ) ≥ 1
2

for all γ ∈ I. In
addition, we know thatg(0) > 1

2
by assumption of case a. Therefore by Def. 68,g ∈ B+; in

particular,g ∈ B.

Case b.: g(0) < 1
2 .

The proof thatg is nondecreasing andg(γ) ≤ 1
2

for all γ ∈ I is analogous to that of case a., this
time using the relationshipm 1

2
(a, b) = min(1

2
,max(a, b)), which holds whenevermin(a, b) ≤ 1

2
.

Case c.: g(0) = 1
2 .

In this case, let us abbreviate

V +
0 = V0 ∩ B+

V
1
2

0 = V0 ∩ B
1
2

V −0 = V0 ∩ B− .
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If V
1
2

0 6= ∅, thenc1
2
∈ V0, i.e.c1

2
∈ Vγ for all γ ∈ I becauseVγ ⊇ V0, for all γ ∈ I. Therefore

inf{f(γ) : f ∈ Vγ} ≤ inf{c1
2
(γ)} = 1

2

sup{f(γ) : f ∈ Vγ} ≥ sup{c1
2
(γ)} = 1

2
,

i.e.

g(γ) = m 1
2
{f(γ) : f ∈ Vγ}

= m 1
2
(inf{f(γ) : f ∈ Vγ}, sup{f(γ) : f ∈ Vγ}) by Def. 46

= 1
2

(see Def. 45: ifmin(a, b) ≤ 1
2
,max(a.b) ≥ 1

2
, thenm 1

2
(a, b) = 1

2
). This shows thatf(γ) = 1

2
for

all γ ∈ I, i.e. f = c1
2
∈ B

1
2 .

In the case thatV
1
2

0 = ∅, we shall discern the following situations:

i. V +
0 6= ∅, V −0 6= ∅.

Let f+ ∈ V +
0 , f− ∈ V −0 . Thenf+, f− ∈ Vγ for all γ ∈ I becauseV0 ⊆ Vγ as0 ≤ γ. Hence

inf{f(γ) : f ∈ Vγ} ≤ inf{f−(γ)} = f−(γ) ≤ 1
2

becausef− ∈ B−

sup{f(γ) : f ∈ Vγ} ≥ sup{f+(γ)} = f+(γ) ≥ 1
2

becausef+ ∈ B+ ,

i.e.

f(γ) = m 1
2
(inf{f(γ) : f ∈ Vγ}, sup{f(γ) : f ∈ Vγ}) = 1

2
.

Hencef = c1
2
∈ B

1
2 .

ii. V +
0 = ∅, V −0 6= ∅.

BecauseV −0 6= ∅, there is somef− ∈ V0 such thatf− ∈ B−. BecauseV0 ⊆ Vγ for all γ ∈ I,
f− ∈ Vγ for all γ and hence

inf{f(γ) : f ∈ Vγ} ≤ f−(γ) ≤ 1
2
, (464)

for all γ ∈ I.
Let us now considersup{f(γ) : f ∈ Vγ}. We know thatg(0) = 1

2
, i.e. sup{f(0) : f ∈

V0} ≥ 1
2

by Def. 46 and Def. 45. BecauseV +
0 = V

1
2

0 = ∅, i.e.V0 = V −, this means that

sup{f(0) : f ∈ V0} = 1
2
. (465)

Now let ε > 0. By (465), there existsf+ ∈ V0 = V −0 such thatf(0) > 1
2
− ε; because

Vγ ⊇ V0, apparentlyf+ ∈ Vγ for all γ. Therefore

sup{f(γ) : f ∈ Vγ} ≥ sup{f+(γ)} becausef+ ∈ Vγ
= f+(γ)

≥ f+(0) becausef+ ∈ V −0 ⊆ B− is nondecreasing

> 1
2
− ε .



F PROOFS OF THEOREMS IN CHAPTER 7 239

Becauseε > 0 was chosen arbitrarily, this proves that

sup{f(γ) : f ∈ Vγ} ≥ 1
2

(466)

for all γ ∈ I. It is then obvious from (464), (466) and Def. 45 that

f(γ) = m 1
2
{f(γ) : f ∈ Vγ}

= m 1
2
(inf{f(γ) : f ∈ Vγ}, sup{f(γ) : f ∈ Vγ}) by Def. 46

= 1
2
. by Def. 45

Henceg = c1
2
∈ B

1
2 .

iii. V +
0 6= ∅, V −0 = ∅.

The proof of this case is analogous to that of case ii.

The case thatV +
0 = V −0 = ∅ is not possible ifV

1
2

0 = ∅ because by assumption,V0 = V +
0 ∪ V

1
2

0 ∪
V −0 6= ∅.

Lemma 98
Suppose(Vγ)γ∈I is an I-indexed family of subsetsVγ ⊆ B, all γ ∈ I, such thatV0 6= ∅ and
Vγ ⊆ Vγ′ wheneverγ ≤ γ′. Defineh : I -I by

h(γ) = m 1
2
{BCX(f) : f ∈ Vγ} ,

for all γ ∈ I. Thenh ∈ B.

Proof

a. Supposeh(0) > 1
2
. Let us observe from Def. 45 thatm 1

2
(a, b) > 1

2
only if min(a, b) > 1

2
and

that in this casem 1
2
(a, b) = min(a, b). We can hence conclude from

h(0) = m 1
2
{BCX(f) : f ∈ V0}

= m 1
2
(inf{BCX(f) : f ∈ V0}, sup{BCX(f) : f ∈ V0}) by Def. 46

> 1
2

that actually

h(0) = inf{BCX(f) : f ∈ V0} > 1
2
. (467)

BecauseV0 6= ∅, sup{f(0) : f ∈ V0} ≥ inf{f(0) : f ∈ V0} > 1
2

and hence

sup{BCX(f) : f ∈ Vγ} ≥ sup{BCX(f) : f ∈ V0} becauseV0 ⊆ Vγ

≥ inf{BCX(f) : f ∈ V0} becauseV0 6= ∅
> 1

2
. by (467)

Noting that by Def. 45,max(a, b) ≥ 1
2

implies thatm 1
2
(a, b) = max(1

2
,min(a, b), we conclude

that

h(γ) = max(1
2
, inf{BCX(f) : f ∈ Vγ}) (468)

for all γ ∈ I. It is apparent from (468) thath is nonincreasing inγ andh(γ) ≥ 1
2

for all γ ∈ I.
Furthermore,h(0) > 1

2
by assumption of case a., i.e.h ∈ B+.
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b. By similar reasoning, and using the relationshipm 1
2
(a, b) = min(1

2
,max(a, b)) which holds

whenevermin(a, b) ≤ 1
2
, it is shown thath(0) < 1

2
implies thath is nondecreasing andh(γ) ≤ 1

2

for all γ ∈ I, i.e.h ∈ B− by Def. 68.

c. If h(0) = 1
2
, i.e.

h(0) = m 1
2
{BCX(f) : f ∈ V0}

= m 1
2
(inf{BCX(f) : f ∈ V0}, sup{BCX(f) : f ∈ V0}) by Def. 46

= 1
2
,

then by Def. 45,

inf{BCX(f) : f ∈ V0} ≤ 1
2

sup{BCX(f) : f ∈ V0} ≥ 1
2

Therefore

inf{BCX(f) : f ∈ Vγ} ≤ inf{BCX(f) : f ∈ V0} becauseV0 ⊆ Vγ

≤ 1
2

and

sup{BCX(f) : f ∈ Vγ} ≥ sup{BCX(f) : f ∈ V0} becauseV0 ⊆ Vγ

≥ 1
2
,

i.e.

h(γ) = m 1
2
{BCX(f) : f ∈ Vγ}

= m 1
2
(inf{BCX(f) : f ∈ Vγ}, sup{BCX(f) : f ∈ Vγ}) by Def. 46

= 1
2
. by above inequations and Def. 45

Lemma 99
Suppose(Vγ)γ∈I is anI-indexed family of subsetsVγ ⊆ B, γ ∈ I such thatV0 6= ∅ andVγ ⊆ Vγ′
wheneverγ ≤ γ′. If

m 1
2
{f(0) : f ∈ V0} > 1

2
,

then there is anI-indexed family(Wγ)γ∈I of subsetsWγ ⊆ B
+, γ ∈ I such thatW0 6= ∅,

Wγ ⊆ Wγ′ wheneverγ ≤ γ′, and

m 1
2
{f(γ) : f ∈ Vγ} = m 1

2
{f(γ) : f ∈ Wγ}

m 1
2
{BCX(f) : f ∈ Vγ} = m 1

2
{BCX(f) : f ∈ Wγ} ,

for all γ ∈ I.
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Proof
Let us definef ∗ : I -I by

f ∗(γ) =

{
1 : γ = 0
1
2

: γ > 0
(469)

for all γ ∈ I. Obviouslyf ∗ is nonincreasing,f ∗(0) = 1 > 1
2
, andf ∗(γ) ≥ 1

2
for all γ ∈ I. Hence

by Def. 68,

f ∗ ∈ B+ . (470)

We shall now define(Wγ)γ∈I by

Wγ =

{
Vγ : Vγ ⊆ B+

(Vγ ∩ B+) ∪ {f ∗} : Vγ 6⊆ B+ (471)

for all γ ∈ I. Becausef ∗ ∈ B+ by (470), it is obvious from (471) thatWγ ⊆ B+ for all γ ∈ I.
By assumption,m 1

2
{f(0) : f ∈ V0} > 1

2
; in particular,f(0) > 1

2
for all f ∈ V0. By Def. 68,f ∈ B

andf(0) > 1
2

means thatf ∈ B+. Hencef ∈ B+ for all f ∈ V0 ⊆ B, or equivalently:

V0 ⊆ B+ . (472)

By (471),W0 = V0 6= ∅.
Now let γ ≤ γ′. It is apparent from the fact thatVγ ⊆ Vγ′ wheneverγ ≤ γ′ thatVγ 6⊆ B+ entails
Vγ′ 6⊆ B+ for all γ′ > γ becauseVγ′ ⊇ Vγ. Therefore

• if γ ≤ γ′ andVγ′ ⊆ B+,Wγ = Vγ ⊆ Vγ′ ⊆ Wγ′.

• if Vγ 6⊆ B+, thenVγ′ 6⊆ B+, too. ThereforeWγ = (Vγ ∩B+)∪ {f ∗} ⊆ (Vγ′ ∩B+)∪ {f ∗} =
Wγ′.

• if Vγ ⊆ B+ andVγ′ 6⊆ B+, thenWγ = Vγ = Vγ∩B+ ⊆ Vγ′∩B+ ⊆ (Vγ′∩B+)∪{f ∗} = Wγ′.

Summarizing,Wγ ⊆ Wγ′ wheneverγ ≤ γ′.
Let us now prove the remaining claims of the lemma. We shall discern two cases.

Case a.: Vγ ⊆ B+.
Then by (471),Vγ = Wγ. Hence trivially

m 1
2
{f(γ) : f ∈ Vγ} = m 1

2
{f(γ) : f ∈ Wγ}

and

m 1
2
{BCX(f) : f ∈ Vγ} = m 1

2
{BCX(f) : f ∈ Wγ} .
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Case b.: Vγ 6⊆ B+.
Then we know from (472) thatγ > 0, i.e.

f ∗(γ) = 1
2

(473)

by (469). Hence

m 1
2
{f(γ) : f ∈ Wγ}

= m 1
2
{f(γ) : f ∈ (Vγ ∩ B+) ∪ {f ∗}} by (471),Vγ 6⊆ B+

= m 1
2
{f(γ) : f ∈ (Vγ ∩ B+)} ∪ {f ∗(γ)}

= m 1
2
{f(γ) : f ∈ (Vγ ∩ B+)} ∪ {1

2
} by (473)

= 1
2
,

i.e.

m 1
2
{f(γ) : f ∈ Wγ} = 1

2
, (474)

becausem 1
2
X = 1

2
whenever1

2
∈ X, which is apparent from Def. 46 and Def. 45.

Now Vγ ∩ B+ ⊇ V0 ∩ B+ = V0 6= ∅ by (472).
Therefore

x = sup{f(γ) : γ ∈ Vγ}
≥ sup{f(γ) : γ ∈ Vγ ∩ B+} becauseVγ ∩ B+ ⊆ Vγ

≥ 1
2
. becauseVγ ∩ B+ 6= ∅, see above

Similarly,

y = inf{f(γ) : γ ∈ Vγ}
≤ inf{f(γ) : γ ∈ Vγ ∩ B−} becauseVγ ∩ B− ⊆ Vγ

≤ 1
2
. becauseVγ ∩ B− 6= ∅

Therefore

m 1
2
{f(γ) : f ∈ Vγ}

= m 1
2
(inf{f(γ) : f ∈ Vγ}, sup{f(γ) : f ∈ Vγ}) by Def. 46

= m 1
2
(y, x) see abbreviations above

= 1
2

by Def. 45 becausex ≥ 1
2
, y ≤ 1

2

= m 1
2
{f(γ) : f ∈ Wγ} . by (474)

It remains to be shown that

m 1
2
{BCX(f) : f ∈ Vγ} = m 1

2
{BCX(f) : f ∈ Wγ} .

To this end, let us first observe that(f ∗)] = c1
2

and hence

BCX(f ∗) = BCX(c1
2
) = 1

2
(475)
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becauseBCX satisfies (B-4) and (B-1). Therefore

m 1
2
{BCX(f) : f ∈ Wγ} = m 1

2
{BCX(f) : f ∈ (Vγ ∩ B+) ∪ {f ∗}} by (471),Vγ 6⊆ B+

= m 1
2
{BCX(f) : f ∈ Vγ ∩ B+} ∪ {BCX(f ∗)}

= m 1
2
{BCX(f) : f ∈ Vγ ∩ B+} ∪ {1

2
} by (475)

= 1
2
,

i.e.

m 1
2
{BCX(f) : f ∈ Wγ} = 1

2
, (476)

again because1
2
∈ X implies thatm 1

2
X = 1

2
.

Let us now observe that

sup{BCX(f) : f ∈ Vγ} ≥ sup{BCX(f) : f ∈ V0} becauseV0 ⊆ Vγ

≥ 1
2
. becauseV0 ⊆ B+ by (472)

Furthermore,Vγ 6⊆ B+ by assumption of case b., i.e. there exists somef0 ∈ Vγ such thatf0 ∈
B
− ∪ B

1
2 . In particular,BCX(f) ≤ 1

2
(see Def. 68, (23)). Hence

inf{BCX(f) : f ∈ Vγ} ≤ BCX(f0) becausef0 ∈ Vγ

≤ 1
2
. becausef0 ∈ B− ∪ B

1
2

By Def. 45,m 1
2
(a, b) = 1

2
whenevermax(a, b) ≥ 1

2
andmin(a, b) ≤ 1

2
. Therefore

m 1
2
{BCX(f) : f ∈ Vγ} = m 1

2
(inf{BCX(f) : f ∈ Vγ}, sup{BCX(f) : f ∈ Vγ}) by Def. 46

= 1
2

= m 1
2
{BCX(f) : f ∈ Wγ} . by (476)

Lemma 100
Suppose(Zγ)γ∈I is an I-indexed family of subsetsZγ ⊆ B

+ such thatZ0 6= ∅ andZγ ⊆ Zγ′
wheneverγ ≤ γ′. Defineg, h : I -I by

g(γ) = m 1
2
{f(γ) : f ∈ Zγ}

h(γ) = m 1
2
{BCX(f) : f ∈ Zγ} ,

for all γ ∈ I.
If h(0) = 1

2
, thenĝ((0, 1]) = {1

2
}.

Proof
Let γ′ > 0. We can show thatg(γ′) = 1

2
by proving that for allε ∈ (0, γ′), g(γ′) < 1

2
+ ε.

Hence letε, δ ∈ I such that

0 < δ < ε < γ′ . (477)
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BecauseZ0 ⊆ B+, B′CX(f) ≥ 1
2

for all f ∈ Z0 by (23). Therefore
1
2

= h(0) by assumption

= m 1
2
{B′CX(f) : f ∈ Z0} by def. ofh

= inf{B′CX(f) : f ∈ Z0} . becauseB′CX(f) ≥ 1
2

for all f ∈ Z0

Hence there exists somef0 ∈ Z0 such that

B′CX(f0) ∈ [1
2
, 1

2
+ δ

2
) . (478)

By Th-94 and (23), we conclude that

f0(γ) < 1
2

+ 1
2
γ (479)

for all γ > 2BCX(f0) − 1. BecauseBCX(f0) < 1
2

+ 1
2
δ by (478) andδ < ε by (477), this means

that

BCX(f0) < 1
2

+ 1
2
δ < 1

2
+ 1

2
ε ,

i.e.

2BCX(f0)− 1 < 2(1
2

+ 1
2
ε)− 1 < ε .

Hence by (479),

f0(ε) < 1
2

+ 1
2
ε . (480)

Furthermoreγ′ > ε by (477), and hence

f0(γ′) ≤ f0(ε) becauseγ′ > ε, f0 ∈ B+ nonincreasing by Def. 68

< 1
2

+ 1
2
ε by (479)

< 1
2

+ ε becauseε > 0.

Therefore

g(γ′) = m 1
2
{f(γ′) : f ∈ Zγ′} by def. ofg

= inf{f(γ′) : f ∈ Zγ′} becausef(γ′) ≥ 1
2

for all f ∈ Zγ′ ⊆ B+

≤ inf{f0(γ′)} becausef0 ∈ Z0 ⊆ Zγ′

= f0(γ′)

< 1
2

+ ε .

Becauseε was chosen arbitrarily, we conclude that

g(γ′) ≤ 1
2
. (481)

On the other hand, we know thatf(γ′) ≥ 1
2

for all f ∈ Vγ′ ⊆ B
+ (see Def. 68) and hence

g(γ) = m 1
2
{f(γ′) : f ∈ Vγ′} ≥ 1

2
. Combining this with (481) yieldsg(γ′) = 1

2
.

Becauseγ′ > 0 was arbitrarily chosen, we may conclude thatg(γ′) = 1
2

for all γ′ > 0, as desired.

Lemma 101
Suppose(Wγ))γ ∈ I is anI-indexed family of subsetsWγ ⊆ B+ such thatW0 6= ∅ andWγ ⊆ Wγ′

wheneverγ ≤ γ′. Defineg, h : I -I by

g(γ) = m 1
2
{f(γ) : f ∈ Wγ}

h(γ) = m 1
2
{BCX(f) : f ∈ Wγ} ,

for all γ ∈ I. If h(0) > 1
2
, then alsog(0) > 1

2
.
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Proof
By the above definition ofh, h(0) > 1

2
means that

h(0) = m 1
2
{BCX(f) : f ∈ W0}

= m 1
2
(inf{BCX(f) : f ∈ W0}, sup{BCX(f) : f ∈ W0}) by Def. 46

> 1
2
.

It is obvious from Def. 45 thatm 1
2
(a, b) > 1

2
is possible only ifmin(a, b) > 1

2
and that in this case,

m 1
2
(a, b) = min(a, b). We hence conclude that

h(0) = inf{BCX(f) : f ∈ W0} > 1
2
. (482)

By assumption,W0 ⊆ B+. Hence everyf ∈ W0 is contained inB+ and by Def. 68,f is nonin-
creasing. In particular,f(γ) ≤ f(0) = cf(0) for all γ ∈ I, i.e.f ≤ cf(0). Therefore

f(0) = BCX(cf(0)) by (B-1)

≥ BCX(f) . by (B-5),cf(0) ≥ f

Hence

inf{f(0) : f ∈ W0} ≥ inf{BCX(f) : f ∈ W0} becausef(0) ≥ BCX(f) for all f ∈ W0

= h(0) by (482)

> 1
2
, by assumption of the lemma

i.e.

inf{f(0) : f ∈ W0} > 1
2

(483)

BecauseW0 6= ∅, sup{f(0) : f ∈ W0} ≥ inf{f(0) : f ∈ W0} > 1
2
. Observing that by Def. 45,

min(a, b) > 1
2

implies thatm 1
2
(a, b) = min(a, b), it is then apparent that

1
2
< inf{f(0) : f ∈ W0} by (483)

= m 1
2
(inf{f(0) : f ∈ W0}, sup{f(0) : f ∈ W0}) by above reasoning

= m 1
2
{f(0) : f ∈ W0} by Def. 46

= g(0) ,

i.e.g(0) > 1
2
, as desired.

Because of these lemmata, we can now restrict attention to the following special case which con-
nectsBCX to the lemma L-96 onB′CX .

Lemma 102
Suppose(Zγ))γ ∈ I is anI-indexed family of subsetsZγ ⊆ B+ such thatZ0 6= ∅ andZγ ⊆ Zγ′
wheneverγ ≤ γ′. Defineg, h : I -I by

g(γ) = m 1
2
{f(γ) : f ∈ Zγ}

h(γ) = m 1
2
{BCX(f) : f ∈ Zγ} ,

for all γ ∈ I. We require thath(0) > 1
2
. Theng ∈ B+, h ∈ B+ andBCX(g) = BCX(h).
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Proof
We already know from L-97 thatg ∈ B. By L-101, we conclude fromh(0) > 1

2
thatg(0) > 1

2
and

henceg ∈ B+ by Def. 68.
Let us now observe that for allγ ∈ I,Zγ ⊆ B+ and hencef(γ) ≥ 1

2
for all f ∈ Zγ 6= ∅. Therefore

X = {f(γ) : f ∈ Zγ} is a nonempty subset of[1
2
, 1], i.e.supX ≥ 1

2
andinf X ≥ 1

2
. We compute

g(γ) = m 1
2
{f(γ) : f ∈ Zγ} by definition ofg

= m 1
2
X becauseX = m 1

2
{f(γ) : f ∈ Zγ}

= m 1
2
(supX, inf X) by Def. 46

= inf X , by Def. 45 becausesupX ≥ 1
2
, inf X ≥ 1

2

i.e.

g(γ) = inf{f(γ) : f ∈ Zγ} . (484)

Let us now considerh. We already know from L-98 thath ∈ B. By assumption of the lemma,
h(0) > 1

2
and henceh ∈ B+ by Def. 68.

BecauseZ1 ⊆ B+, BCX(f) ≥ 1
2

for all f ∈ Z1; this is a consequence of (23). Hence for allγ ∈ I,
Y = {BCX(f) : f ∈ Zγ} ⊆ {BCX(f) : f ∈ Z1} ⊆ [1

2
, 1]. In particular,inf Y ≥ 1

2
andsupY ≥ 1

2
.

Hence by similar reasoning as in the case ofg,

h(γ) = m 1
2
Y = inf Y = inf{BCX(f) : f ∈ Zγ} (485)

for all γ ∈ I.
Let us define anI-indexed family(Z ′γ)γ∈I by

Z ′γ = {2f − 1 : f ∈ Zγ} (486)

for all γ ∈ I. It is apparent fromZγ ⊆ B+ thatZ ′γ ⊆ H; see Def. 68 and Def. 75. It is also clear
that(Z ′γ)γ∈I satisfies all requirements stated in L-96. Therefore

BCX(g) = 1
2

+ 1
2
B′CX(2g − 1) by (23),g ∈ B+

= 1
2

+ 1
2
B′CX(2(inf{f(γ) : f ∈ Zγ})γ∈I − 1) by (484)

= 1
2

+ 1
2
B′CX((inf{2f(γ)− 1 : f ∈ Zγ})γ∈I)

= 1
2

+ 1
2
B′CX((inf{(2f − 1)(γ) : f ∈ Zγ})γ∈I)

= 1
2

+ 1
2
B′CX((inf{f ′(γ) : f ′ ∈ Z ′γ})γ∈I) by (486)

= 1
2

+ 1
2
B′CX((inf B′CX(f ′) : f ′ ∈ Z ′γ})γ∈I) by L-96

= 1
2

+ 1
2
B′CX((inf{B′CX(2f − 1) : f ∈ Zγ})γ∈I) by (486)

= 1
2

+ 1
2
B′CX((inf{2BCX(f)− 1 : f ∈ Zγ})γ∈I) by (24)

= 1
2

+ 1
2
B′CX(2(inf{BCX(f) : f ∈ Zγ})γ∈I − 1)

= 1
2

+ 1
2
B′CX(2h− 1) by (485)

= BCX(h) . by (23),h ∈ B+
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Lemma 103
Suppose that(Vγ)γ∈I is an I-indexed family of subsetsVγ ⊆ B such thatV0 6= ∅ andVγ ⊆ Vγ′
wheneverγ ≤ γ′. Defineg, h : I -I by

g(γ) = m 1
2
{f(γ) : f ∈ Vγ}

h(γ) = m 1
2
{BCX(f) : f ∈ Vγ} ,

for all γ ∈ I. Theng, h ∈ B and

B(g) = B(h) .

Proof Clearlyg ∈ B by L-97 andh ∈ B by L-98. We shall discern the following cases.

Case a.: g(0) > 1
2

Then by L-99, there exists anI-indexed family(Wγ)γ∈I of subsetsWγ ⊆ B+, all γ ∈ I, such that
W0 6= ∅,Wγ ⊆ Wγ′ wheneverγ ≤ γ′, and

g(γ) = m 1
2
{f(γ) : f ∈ Wγ} (487)

h(γ) = m 1
2
{BCX(f) : f ∈ Wγ} (488)

for all γ ∈ I. We shall discern two more subcases in dependence onh(0).

i. h(0) = 1
2
.

Thenh = c1
2

by Def. 68 becauseh ∈ B. By L-100, ĝ((0, 1]) = {1
2
}, i.e. g] = c1

2
(see

Def. 71) and hence

BCX(g) = BCX(g]) becauseBCX satisfies (B-4)

= BCX(c1
2
) becauseg] = c1

2

= BCX(h) . becauseh = c1
2

ii. h(0) > 1
2
.

In this case, the preconditions of L-102 are fulfilled, which permits us to conclude from
(487) and (488) thatBCX(g) = BCX(h).

Case b.: g(0) = 1
2

Becauseg ∈ B, g(0) = 1
2

is possible only ifg = c1
2
. We hence conclude that

BCX(g) = 1
2
, (489)

becauseBCX(c1
2
) = 1

2
by (23).

Let us now considerBCX(h). In order to prove thatBCX(h) = 1
2
, too, we first need some observa-

tions ong. By assumption of case b.,g(0) = 1
2
, i.e.

g(0) = m 1
2
{f(0) : f ∈ V0}

= m 1
2
(inf{f(0) : f ∈ V0}, sup{f(0) : f ∈ V0}) by Def. 46

= 1
2
.
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It is apparent from Def. 45 thatm 1
2
(a, b) = 1

2
if and only if min(a, b) ≤ 1

2
andmax(a, b) ≥ 1

2
; and

becauseV0 6= ∅, we know thatinf{f(0) : f ∈ V0} ≤ sup{f(0) : f ∈ V0}. Thereforeg(0) = 1
2

is
possible only if

inf{f(0) : f ∈ V0} ≤ 1
2

(490)

sup{f(0) : f ∈ V0} ≥ 1
2
. (491)

Let us now use (490) to prove that

inf{BCX(f) : f ∈ V0} ≤ 1
2
. (492)

i. V0 \ B+ 6= ∅.

Then there exists somef0 ∈ V0 such thatf0 ∈ B− or f0 ∈ B
1
2 . In any case,BCX(f0) ≤ 1

2
by

(23) and hence

inf{BCX(f) : f ∈ V0} ≤ BCX(f0) becausef0 ∈ V0

≤ 1
2
, by (23) becausef0 ∈ B− ∪ B+

i.e. (492) holds.

ii. V0 \ B+ = ∅, i.e.V0 ⊆ B+.
Let ε > 0. Becauseinf{f(0) : f ∈ V0} ≤ 1

2
by (490), there exists somef ′ ∈ V0 such that

f ′(0) < inf{f(0) : f ∈ V0}+ ε .

In particular,

f ′(0) < 1
2

+ ε , (493)

which is obvious from (490). BecauseV0 ⊆ B+ by assumption of case ii., we know that
f0 ∈ B+. Hencef0 is nonincreasing by Def. 68. In particular,f0(γ) ≤ f0(0) = cf0(0)(γ) for
all γ ∈ I, i.e.f0 ≤ cf0(0). Therefore

inf{BCX(f) : f ∈ V0} ≤ BCX(f0) becausef0 ∈ V0

≤ BCX(cf0(0)) by (B-5)

= f0(0) by (B-1)

< 1
2

+ ε by (493).

Becauseε > 0 was chosen arbitarily, we conclude thatinf{BCX(f) : f ∈ V0} ≤ 1
2
, i.e. (492)

is satisfied.

We can utilize (491) in an analogous way to prove that

sup{BCX(f) : f ∈ V0} ≥ 1
2
. (494)

We shall again discern two cases.
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i. V0 \ B− 6= ∅.

Then there exists somef0 ∈ V0 such thatf0 ∈ B+ or f0 ∈ B
1
2 . In any case,BCX(f0) ≥ 1

2
by

(23) and hence

sup{BCX(f) : f ∈ V0} ≥ BCX(f0) becausef0 ∈ V0

≥ 1
2
, by (23) becausef0 ∈ B+ ∪ B+

i.e. (494) holds.

ii. V0 \ B− = ∅, i.e.V0 ⊆ B−.
Let ε > 0. Becausesup{f(0) : f ∈ V0} ≥ 1

2
by (491), there exists somef ′ ∈ V0 such that

f ′(0) > sup{f(0) : f ∈ V0} − ε .

In particular,

f ′(0) > 1
2
− ε , (495)

which is obvious from (491). BecauseV0 ⊆ B− by assumption of case ii., we know that
f0 ∈ B−. Hencef0 is nondecreasing by Def. 68. In particular,f0(γ) ≥ f0(0) = cf0(0)(γ) for
all γ ∈ I, i.e.f0 ≥ cf0(0). Therefore

sup{BCX(f) : f ∈ V0} ≥ BCX(f0) becausef0 ∈ V0

≥ BCX(cf0(0)) by (B-5)

= f0(0) by (B-1)

> 1
2
− ε by (495).

Becauseε > 0 was chosen arbitarily, we conclude thatsup{BCX(f) : f ∈ V0} ≥ 1
2
,

i.e. (494) is satisfied.

We can summarize these results as follows.

h(0) = m 1
2
{BCX(f) : f ∈ V0}

= m 1
2
(inf{BCX(f) : f ∈ V0}, sup{BCX(f) : f ∈ V0}) by Def. 46

= 1
2
. by Def. 45, (492) and (494)

Becauseh ∈ B, h(0) = 1
2

is possible only ifh = c1
2

(see Def. 68). Hence

BCX(h) = BCX(c1
2
) becauseh = c1

2

= 1
2

by (23)

= BCX(g) . by (489)

Case c.: g(0) < 1
2

Then

g(γ) = m 1
2
{f(γ) : f ∈ Vγ}

= m 1
2
{1− (1− f(γ)) : f ∈ Vγ}

= m 1
2
{1− f ′(γ) : f ′ ∈ V ′γ} whereV ′γ = {1− f : f ∈ Vγ}

= 1−m 1
2
{f ′(γ) : f ′ ∈ V ′γ} apparent from Def. 46

= 1− g′(γ) ,
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i.e.

g = 1− g′ (496)

where we have abbreviated

g′(γ) = m 1
2
{BCX(f ′) : f ′ ∈ V ′γ}

for all γ ∈ I. Similarly

h(γ) = m 1
2
{BCX(f) : f ∈ Vγ}

= m 1
2
{BCX(1− (1− f)) : f ∈ Vγ}

= m 1
2
{BCX(1− f ′) : f ′ ∈ V ′γ} whereV ′γ = {1− f : f ∈ Vγ}

= m 1
2
{1− BCX(f ′) : f ′ ∈ V ′γ} becauseBCX satisfies (B-2)

= 1−m 1
2
{BCX(f ′) : f ′ ∈ V ′γ} apparent from Def. 46

= 1− h′(γ) ,

i.e.

h = 1− h′ (497)

where

h′(γ) = m 1
2
{BCX(f ′) : f ′ ∈ V ′γ} ,

for all γ ∈ I. Hence

BCX(g) = BCX(1− g′) by (496)

= 1− BCX(g′) becauseBCX satisfies (B-2)

= 1− BCX(h′) by case a. of the proof of this lemma

= BCX(1− h′) becauseBCX satisfies (B-2)

= BCX(h) , by (497)

as desired.

Proof of Theorem 102

Let us defineg : I -I by

g(γ) = m 1
2
{m 1

2
{Q(Y1, . . . , Yn) : Yn ∈ Tγ(Xn)} : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1)} , (498)

for all γ ∈ I. It is then apparent that

Qγ(X1, . . . , Xn)

= m 1
2
{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Xn−1γ,Xn ∈ Tγ(Xn)} by Def. 67

= m 1
2
{m 1

2
{Q(Y1, . . . , Yn) : Yn ∈ Tγ(Xn)}

: Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1)} by L-95,Tγ(Xn) 6= ∅
= g(γ) . by (498)
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In particular,g ∈ B and

MCX(Q)(X1, . . . , Xn) = BCX((Qγ(X1, . . . , Xn))γ∈I) = BCX(g) . (499)

For each choice ofY1, . . . , Yn ∈ P(E), let us definefY1,...,Yn−1 : I -I by

fY1,...,Yn−1(γ) = m 1
2
{Q(Y1, . . . , Yn−1, Yn) : Yn ∈ Tγ(Xn)} , (500)

for all γ ∈ I. It is then apparent from the fact that

fY1,...,Yn−1(γ) = m 1
2
{Q(Y1, . . . , Yn−1, Yn) : Yn ∈ Tγ(Xn)} = Qγ(Y1, . . . , Yn, Xn) (501)

thatfY1,...,Yn−1 ∈ B.
Now let us define a family(Vγ)γ∈I of subsetsVγ ⊆ B as follows:

Vγ = {fY1,...,Yn(γ) : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1)} . (502)

Because fori ∈ {1, . . . , n−1}, T0(Xi) 6= ∅ andTγ(Xi) ⊆ Tγ′(Xi) wheneverγ ≤ γ′, it is apparent
thatVγ satisfies the conditions of L-103. In addition, it is apparent from the definition ofg that

g(γ) = m 1
2
{m 1

2
{Q(Y1, . . . , Yn) : Yn ∈ Tγ(Xn)} : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1)} by (498)

= m 1
2
{fY1,...,Yn−1(γ) : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1)} by (500)

= m 1
2
{f(γ) : f ∈ Vγ} . by (502)

Let us now defineh : I -I by

h(γ) = m 1
2
{BCX(f) : f ∈ Vγ} , (503)

for all γ ∈ I. Then by L-103,

BCX(g) = BCX(h) . (504)

Let us now take a closer look ath.

h(γ) = m 1
2
{BCX(f) : f ∈ Vγ} by (503)

= m 1
2
{BCX(fY1,...,Yn−1) : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1)} by (502)

= m 1
2
{BCX((Qγ(Y1, . . . , Yn−1, Xn))γ∈I) : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1)} by (501)

= m 1
2
{(Q /̃ Xn)(Y1, . . . , Yn−1) : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1)} by Def. 89

= (Q /̃ Xn)γ(X1, . . . , Xn−1) by Def. 67,

i.e.

h(γ) = (Q /̃ Xn)γ(X1, . . . , Xn−1) , (505)

for all γ ∈ I. We can summarize our results as follows:

MCX(Q)(X1, . . . , Xn)

= BCX(g) by (499)

= BCX(h) by (504)

= BCX(((Q /̃ Xn)γ(X1, . . . , Xn−1))γ∈I) by (505)

=MCX(Q /̃ Xn)(X1, . . . , Xn−1) ,

as desired.
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F.18 Proof of Theorem 103

Lemma 104
LetQ,Q′ : P(E)n -I be given. Then

d(Qmin
γ , Q′

min
γ ) ≤ d(Q,Q′)

d(Qmax
γ , Q′

max
γ ) ≤ d(Q,Q′)

for all γ ∈ I.

Proof We shall abbreviateδ = d(Q,Q′). Then by Def. 81,

|Q(Y1, . . . , Yn)−Q′(Y1, . . . , Yn)| ≤ δ , (506)

for all Y1, . . . , Yn ∈ P(E). Hence

Qmin
γ (X1, . . . , Xn) = inf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by (15)

≥ inf{Q′(Y1, . . . , Yn)− δ : Yi ∈ Tγ(Xi)} by (506)

= inf{Q′(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} − δ
= Q′

min
γ (X1, . . . , Xn)− δ .

Analogously,

Qmin
γ (X1, . . . , Xn) = inf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by (15)

≤ inf{Q′(Y1, . . . , Yn) + δ : Yi ∈ Tγ(Xi)} by (506)

= inf{Q′(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)}+ δ

= Q′
min
γ (X1, . . . , Xn) + δ .

Hence|Qmin
γ (X1, . . . , Xn) − Q′min

γ (X1, . . . , Xn)| ≤ δ. BecauseX1, . . . , Xn ∈ P̃(E) were arbi-
trarily chosen, we conclude that

d(Qmin
γ , Q′

min
γ ) = sup |Qmin

γ (X1, . . . , Xn)−Q′min
γ (X1, . . . , Xn)| ≤ δ .

In the case ofQmax
γ , we can proceed analogously:

Qmax
γ (X1, . . . , Xn) = sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by (16)

≥ sup{Q′(Y1, . . . , Yn)− δ : Yi ∈ Tγ(Xi)} by (506)

= sup{Q′(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} − δ
= Q′

max
γ (X1, . . . , Xn)− δ

and

Qmax
γ (X1, . . . , Xn) = sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by (16)

≤ sup{Q′(Y1, . . . , Yn) + δ : Yi ∈ Tγ(Xi)} by (506)

= sup{Q′(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)}+ δ

= Q′
max
γ (X1, . . . , Xn) + δ .
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Proof of Theorem 103

Case a.: Q0(X1, . . . , Xn) > 1
2 .

a.1 Q′0(X1, . . . , Xn) > 1
2 . In this case,

Qγ(X1, . . . , Xn) = max(1
2
, Qmin

γ (X1, . . . , Xn)) by L-88

≤ max(1
2
, Q′

min
γ (X1, . . . , Xn) + δ) by L-104

≤ max(1
2

+ δ,Q′
min
γ (X1, . . . , Xn) + δ) by monotonicity ofmax

= max(1
2
, Q′

min
γ (X1, . . . , Xn)) + δ

= Q′γ(X1, . . . , Xn) + δ by L-88

and similarly

Qγ(X1, . . . , Xn) = max(1
2
, Qmin

γ (X1, . . . , Xn)) by L-88

≥ max(1
2
, Q′

min
γ (X1, . . . , Xn)− δ) by L-104

≥ max(1
2
− δ,Q′min

γ (X1, . . . , Xn)− δ) by monotonicity ofmax

= max(1
2
, Q′

min
γ (X1, . . . , Xn))− δ

= Q′γ(X1, . . . , Xn)− δ by L-88

This proves that|Qγ(X1, . . . , Xn)−Q′γ(X1, . . . , Xn)| ≤ δ.

a.2 Q′0(X1, . . . , Xn) = 1
2 . In this case, we conclude from Th-39 that

Q′γ(X1, . . . , Xn) = 1
2

(507)

for all γ ∈ I. We can then utilise (14) and Def. 45 to conclude that

Q′
min
γ (X1, . . . , Xn) ≤ 1

2
(508)

Q′
max
γ (X1, . . . , Xn) ≥ 1

2
(509)

for all γ ∈ I. In addition, we know thatQ0(X1, . . . , Xn) > 1
2
; hence

Q0(X1, . . . , Xn) = Qmin
0 (X1, . . . , Xn) by L-88

≤ Q′
min
0 (X1, . . . , Xn) + δ by L-104

≤ 1
2

+ δ , by (508)

i.e.

Q0(X1, . . . , Xn) ≤ 1
2

+ δ . (510)

Therefore

Qγ(X1, . . . , Xn) ≤ Q0(X1, . . . , Xn) by Th-39

≤ 1
2

+ δ by (510)

= Q′γ(X1, . . . , Xn) + δ . by (507)

On the other hand, we know from Th-39 andQ0(X1, . . . , Xn) > 1
2

that

Qγ(X1, . . . , Xn) ≥ 1
2

= Q′γ(X1, . . . , Xn) ≥ Q′γ(X1, . . . , Xn)− δ .

Hence|Qγ(X1, . . . , Xn)−Q′γ(X1, . . . , Xn)| ≤ δ.
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a.3 Q′0(X1, . . . , Xn) < 1
2 . In this case,

|Q0(X1, . . . , Xn)−Q′0(X1, . . . , Xn)|
= Q0(X1, . . . , Xn)−Q′0(X1, . . . , Xn) becauseQ0(X1, . . . , Xn) > 1

2
> Q′0(X1, . . . , Xn)

= Qmin
0 (X1, . . . , Xn)−Q′max

0 (X1, . . . , Xn) by L-88

≤ Qmin
0 (X1, . . . , Xn)−Q′min

0 (X1, . . . , Xn) becauseQ′min
0 ≤ Q′

max
0 , cf. (15), (16)

= |Qmin
0 (X1, . . . , Xn)−Q′min

0 (X1, . . . , Xn)| asQmin
0 (X1, . . . , Xn) > 1

2
> Q′

min
0 (X1, . . . , Xn)

≤ δ , by L-104

which proves the claim of the theorem whenγ = 0. Let us abbreviate

a = Q0(X1, . . . , Xn)− 1
2

(511)

a′ = 1
2
−Q′0(X1, . . . , Xn) . (512)

Then clearly

|Q0(X1, . . . , Xn)−Q′0(X1, . . . , Xn)| = Q0(X1, . . . , Xn)−Q′0(X1, . . . , Xn)

= (Q0(X1, . . . , Xn)− 1
2
) + (1

2
−Q′0(X1, . . . , Xn))

= a+ a′ .

In particular,

a+ a′ = |Q0(X1, . . . , Xn)−Q′0(X1, . . . , Xn)| ≤ δ . (513)

Now in the case thatγ > 0,

Qγ(X1, . . . , Xn)− 1
2
≤ Q0(X1, . . . , Xn)− 1

2
= a (514)

1
2
−Q′γ(X1, . . . , Xn) ≤ 1

2
−Q′0(X1, . . . , Xn) = a′ (515)

by Th-39, (511) and (512). Therefore

|Qγ(X1, . . . , Xn)−Q′γ(X1, . . . , Xn)|
= Qγ(X1, . . . , Xn)−Q′γ(X1, . . . , Xn) asQγ(X1, . . . , Xn) ≥ 1

2
≥ Q′γ(X1, . . . , Xn)

by Th-39

= (Qγ(X1, . . . , Xn)− 1
2
) + (1

2
−Q′γ(X1, . . . , Xn))

≤ a+ a′ by (514), (515)

≤ δ . by (513)

Case b.: Q0(X1, . . . , Xn) = 1
2 .

b.1 Q′0(X1, . . . , Xn) > 1
2 . Analogous toa.2.

b.2 Q′0(X1, . . . , Xn) = 1
2 . Trivial because by Th-39,Qγ(X1, . . . , Xn) = 1

2
= Q′γ(X1, . . . , Xn) for

all γ ∈ I.
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b.3 Q′0(X1, . . . , Xn) < 1
2 . Then

|Qγ(X1, . . . , Xn)−Q′γ(X1, . . . , Xn)|
= 1

2
−Q′γ(X1, . . . , Xn) by Th-39

≤ 1
2
−Q′0(X1, . . . , Xn) by Th-39

= 1
2
−Q′max

0 (X1, . . . , Xn) by L-88

≤ Qmax
0 (X1, . . . , Xn)−Q′max

0 (X1, . . . , Xn) by L-88,Qmax
0 (X1, . . . , Xn) ≥ 1

2

≤ δ . by L-104

Case c.: Q0(X1, . . . , Xn) < 1
2 .

c.1 Q′0(X1, . . . , Xn) > 1
2 . See casea.3.

c.2 Q′0(X1, . . . , Xn) = 1
2 . Analogous tob.3.

c.3 Q′0(X1, . . . , Xn) < 1
2 . In this case,

Qγ(X1, . . . , Xn) = min(1
2
, Qmax

γ (X1, . . . , Xn)) by L-88

≤ min(1
2
, Q′

max
γ + δ) by L-104

≤ min(1
2

+ δ,Q′
max
γ + δ)

= min(1
2
, Q′

max
γ ) + δ

= Q′γ(X1, . . . , Xn) + δ . by L-88

Similarly

Qγ(X1, . . . , Xn) = min(1
2
, Qmax

γ (X1, . . . , Xn)) by L-88

≥ min(1
2
, Q′

max
γ − δ) by L-104

≥ min(1
2
− δ,Q′max

γ − δ)
= min(1

2
, Q′

max
γ )− δ

= Q′γ(X1, . . . , Xn)− δ . by L-88

Hence|Qγ(X1, . . . , Xn)−Q′γ(X1, . . . , Xn)| ≤ δ, as desired.

F.19 Proof of Theorem 104

Let us first introduce a metricd : B× B -I, which we define by

d(f, g) = sup{|f(γ)− g(γ)| : γ ∈ I} , (516)

for all f, g ∈ B.

Lemma 105
SupposeB : B -I has the following property: for allε > 0, there existsδ > 0 such that
|B(f)− B(g)| < ε wheneverf, g ∈ B satisfyd(f, g) < δ. ThenMB is Q-continuous.
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Proof Let Q : P(E)n -I be given andε > 0. By the assumption of the lemma, there exists
δ > 0 such that

|B(f)− B(g)| < ε (517)

wheneverd(f, g) < δ, f, g ∈ B. Now letQ′ : P(E)n -I be a semi-fuzzy quantifier such that

d(Q,Q′) < δ . (518)

Further letX1, . . . , Xn ∈ P̃(E). We shall abbreviate

f(γ) = Qγ(X1, . . . , Xn) (519)

g(γ) = Q′γ(X1, . . . , Xn) (520)

for all γ ∈ I. By Th-103,d(Q,Q′) < δ entails that

|Qγ(X1, . . . , Xn)−Q′γ(X1, . . . , Xn)| ≤ d(Q,Q′) (521)

for all γ ∈ I. Hence

d(f, g) = sup{|Qγ(X1, . . . , Xn)−Q′γ(X1, . . . , Xn)| by (516), (519), (520)

≤ d(Q,Q′) by (521)

< δ . by (518)

Therefore

|MB(Q)(X1, . . . , Xn)−MB(Q′)(X1, . . . , Xn)|
= |B(f)− B(g)| by Def. 69, (519), (520)

< ε , by (517) andd(f, g) < δ

which finishes the proof.

Lemma 106
SupposeB′ : B -I has the following property: for allε > 0, there existsδ > 0 such that
|B′(f)− B′(g)| < ε wheneverf, g ∈ H satisfyd(f, g) < δ. ThenMB is Q-continuous.

Proof It is sufficient to show thatB : B -I, as defined by (23), satisfies the conditions of
Lemma L-106. Hence letε > 0. By the assumption onB′, there existsδ > 0 such that

|B′(f)− B′(g)| < 2ε (522)

for all f, g ∈ H such thatd(f, g) < δ. Now letp, q ∈ B such that

d(p, q) < min(1
2
δ, ε) . (523)

In order to prove that|B(p)− B(q)| < ε, we shall discern the following cases:
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a.: p, q ∈ B+. Then apparently

d(2p− 1, 2q − 1) = 2d(p, q) < δ . (524)

By (23),B(p) = 1
2

+ 1
2
B′(2p− 1) andB(q) = 1

2
+ 1

2
B′(2q − 1). Hence

|B(p)− B(q)| = |(1
2

+ 1
2
B′(2p− 1))− (1

2
+ 1

2
B′(2q − 1))| by (23),p, q ∈ B+

= 1
2
|B′(2q − 1)− B′(2p− 1)|

< ε . by (522), (524)

b.: p, q ∈ B−. Then1−p, 1−q ∈ B+. In addition, it is apparent from (516) thatd(1−p, 1−q) =
d(p, q). Hence

|B(p)− B(q)| = |(1− B(p))− (1− B(q))|
= |B(1− p)− B(1− q)| by (B-2)

< ε . by case a. of the proof

c.: neither p, q ∈ B+ nor p, q ∈ B−. In this case, we know from Def. 68 that eitherp ≤ q or

p ≥ q. Without loss of generality, we shall assume thatp ≥ q, i.e.p ∈ B+ ∪B
1
2 andq ∈ B− ∪B

1
2 .

We also know from Def. 68 thatcq(0) ≤ q ≤ p ≤ cp(0). Therefore

q(0) = B(cq(0)) ≤ B(q) ≤ B(p) ≤ B(cp(0)) = p(0) (525)

which is apparent from (B-5). Hence

|B(p)− B(q)| = B(p)− B(q) by (B-5) andp ≥ q

≤ p(0)− q(0) by (525)

≤ d(p, q) by (516)

< ε , by (523)

as desired.

Lemma 107
Letf ∈ B+ be a given mapping,a ∈ I andQ : P(I) -I the semi-fuzzy quantifier defined by

Q(Y ) = min(1, supY + a) , (526)

for all Y ∈ P(I). ThenQγ(X) = g[(γ) for all γ > 0, whereX ∈ P̃(I) is the fuzzy set defined by

µX(z) = 1
2

+ 1
2

sup{γ ∈ I : f(γ) ≥ z} , (527)

for all z ∈ I, and

g(γ) = min(1, f(γ) + a) (528)

for all γ ∈ I.
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Proof Let γ > 0, i.e.

(X)min
γ = (X)

≥1
2

+
1
2
γ

= {z ∈ I : sup{γ ∈ I : f(γ) ≥ z} ≥ γ} . (529)

We will first show thatf [(γ) ≤ sup (X)min
γ . Hence supposeγ′ < γ. Thenf(γ′) ≥ inf{f(γ′) :

γ′ < γ} = f [(γ) by Def. 71 and Th-43. Hencef [(γ) ∈ (X)min
γ by (529), i.e.

sup (X)min
γ ≥ f [(γ) . (530)

Now suppose thatz ∈ (X)min
γ , i.e.

f(γ′) ≥ z (531)

for all γ′ < γ by (529). Hence

f [(γ) = inf{f(γ′) : γ′ < γ} by Def. 71, Th-43

≥ z , by (531)

i.e.

f [(γ) ≥ sup (X)min
γ .

Combining this with (530), we conclude that

f [(γ) = sup (X)min
γ (532)

for all γ > 0. Hence

Qmin
γ (X) = inf{Q(Y ) : Y ∈ Tγ(X)} by (15)

= Q((X)min
γ ) becauseQ is nondecreasing

= min(1, sup (X)min
γ + a) by (526)

= min(1, f [(γ) + a) by (532)

= g[(γ) ,

i.e.

Qmin
γ (X) = g[(γ) (533)

where the last step is apparent from (528) and Def. 71. Hence

Qγ(X) = m 1
2
(Qmin

X γ,Qmax
X γ) by (14)

= Qmin
X γ because1

2
≥ g[(γ) = (X)min

γ ≤ (X)max
γ

= g[(γ) , by (533)

which finishes the proof of the lemma.

Lemma 108
SupposeB : B -I is given such thatMB is a DFS. IfMB is Q-continuous, then for allε > 0
there existsδ > 0 such that|B(f)− B(g)| < ε wheneverf, g ∈ B satisfyd(f, g) < δ.
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Proof The proof is by contraposition. Suppose that there existsε > 0 such that for allδ > 0,
there is a choice off, g ∈ B such thatd(f, g) < δ and|B(f) − B(g)| ≥ ε. We have to show that
MB is not Q-continuous.
Let us assume thatε is such a critical choice with respect toB. We shall denote byQ : P(I) -I
the quantifier defined by

Q(Y ) = supY , (534)

for all Y ∈ P(I). We will show that for allδ > 0, there exists a semi-fuzzy quantifierQ′ :
P(I) -I such thatd(Q,Q′) < δ, butd(MB(Q),MB(Q′)) ≥ ε.
Hence letδ > 0. By our choice ofε, there existf, g ∈ B such thatd(f, g) < δ and|B(f)−B(g)| ≥
ε. Without loss of generality, we may assume that

f ≤ g . (535)

This is becaused(f, g) = d(min(f, q),max(f, g)), as is easily seen from (516), and because
|B(max(f, g))−B(min(f, g))| ≥ |B(f)−B(g)|, which is apparent fromB(min(f, g)) ≤ B(f) ≤
B(max(f, g)) andB(min(f, g)) ≤ B(g) ≤ B(max(f, g)), see (B-5).

We may also assume thatδ < ε. It is hence legitimate to exclude the case thatf ∈ B− ∪ B
1
2 and

g ∈ B+ ∪ B
1
2 , because in this case,|B(f) − B(g)| = B(g) − B(f) ≤ g(0) − f(0) ≤ δ < ε (see

proof of lemma L-106, casec.).
It is hence sufficient to consider the following cases:

a.: f, g ∈ B+. In this case, let us define the semi-fuzzy quantifierQ′ : P(I) -I by

Q′(Y ) = min(1, supY + d(f, g)) (536)

for all Y ∈ I. It is then apparent from (534) that

d(Q,Q′) = sup{|Q′(Y )−Q(Y )| : Y ∈ P(I)} = d(f, g) < δ .

Now let us consider the fuzzy subsetX ∈ P̃(I) defined by equation (527). We can apply L-107,
which yields

Qγ(X) = f [(γ) (537)

Q′γ(X) = h[(γ) (538)

for all γ > 0, whereh ∈ B is defined by

h(γ) = min(1, f(γ) + d(f, g)) (539)

for all γ ∈ I. It is apparent from (539) and (516) thath ≥ f . Therefore

|MB(Q′)(X)−MB(Q)(X)| = |B((Q′γ(X))γ∈I)− B((Qγ(X))γ∈I)| by Def. 69

= |B(h)− B(f)| by (537), (538) and L-41

= B(h)− B(f) by (B-5) andh ≥ f

≥ B(g)− B(f) by (B-5) andh ≥ g ≥ f

= |B(g)− B(f)| by (535)

≥ ε .
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b.: f, g ∈ B−. In this case,1− f, 1− g ∈ B+ satisfyd(1− f, 1− g) = d(f, g) < δ and

|B(1− f)− B(1− g)| = |(1− B(f))− (1− B(g))| = |B(f)− B(g)| ≥ ε

Hence there existf ′ = 1−f, g′ = 1−g which satisfy the conditions of casea., i.e. the construction
developed in casea. can be applied.

As a corollary, we have:

Lemma 109
SupposeB′ : H -I is given such thatMB is a DFS. IfMB is Q-continuous, then for allε > 0
there existsδ > 0 such that|B′(f)− B′(g)| < ε wheneverf, g ∈ H satisfyd(f, g) < δ.

Proof Let ε > 0 be given. We already know by L-108 that there existsδ > 0 such that

|B(p)− B(q)| < 1
2
ε (540)

wheneverp, q ∈ B satisfyd(p, q) < δ. Recalling Th-63 and (24), we obtain that wheneverf, g ∈ H
satisfyd(f, g) < 2δ, then

|B′(f)− B′(g)| = |(2B(1
2

+ 1
2
f)− 1)− (2B(1

2
+ 1

2
g)− 1)| by (24)

= 2|B(1
2

+ 1
2
f)− B(1

2
+ 1

2
g)|

< ε ,

becaused(1
2

+ 1
2
f, 1

2
+ 1

2
g) = 1

2
d(f, g) < δ and hence|B(1

2
+ 1

2
f)− B(1

2
+ 1

2
g)| < 1

2
ε by (540).

Proof of Theorem 104

The theorem is an immediate consequence of lemma L-105, which shows that the condition onB′
is sufficient forMB to be Q-continuous, and of lemma L-109, which proves that the condition is
also necessary.

F.20 Proof of Theorem 105

Lemma 110
Let E 6= ∅ be some base set andX,X ′ ∈ P̃(E). Then for allγ, γ′ ∈ I such thatγ′ > γ +
2d(X,X ′), Tγ(X) ⊆ Tγ′(X ′).

Proof Let us first show that(X ′)min
γ′ ⊆ (X)min

γ . Hence lete ∈ (X ′)min
γ′ = (X)

≥1
2

+
1
2
γ′

(by Def. 66

becauseγ′ > 0). Then

µX′(e) ≥ 1
2

+ 1
2
γ′

> 1
2

+ 1
2
(γ + 2d(X,X ′)) by assumption thatγ′ > γ + 2d(X,X ′)

= 1
2

+ 1
2
γ + d(X,X ′) ,

i.e.

µX′(e) >
1
2

+ 1
2
γ + d(X,X ′) . (541)
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We know from (25) that|µX(e)− µX′(e)| ≤ d(X,X ′). Hence

µX(e) ≥ µX′(e)− d(X,X ′)

> 1
2

+ 1
2
γ + d(X,X ′)− d(X,X ′) by (541)

= 1
2

+ 1
2
γ ,

in particulare ∈ (X)min
γ , cf. Def. 66.

Similarly, we prove that(X)max
γ ⊆ (X ′)max

γ′ . Hence lete ∈ (X)max
γ . By Def. 66, we know that

µX(e) ≥ 1
2
− 1

2
γ . (542)

In addition, we know from (25) that|µX(e) − µX′(e)| ≤ d(X,X ′) and henceµX′(e) ≥ µX(e) −
d(X,X ′). Therefore

µX′(e) ≥ µX(e)− d(X,X ′)

≥ 1
2
− 1

2
γ − d(X,X ′) by (542)

= 1
2
− 1

2
(γ + 2d(X,X ′))

> 1
2
− 1

2
γ′ . by assumption thatγ′ > γ + 2d(X,X ′)

It is then apparent from Def. 66 andγ′ > 0 thate ∈ (X ′)
>

1
2

+
1
2
γ′

= (X ′)max
γ′ .

Summarising these results, we have shown that(X ′)min
γ′ ⊆ (X)min

γ and (X)max
γ ⊆ (X ′)max

γ′ ,
i.e.Tγ(X) ⊆ Tγ′(X ′) by Def. 66.

Lemma 111
LetQ : P(E)n -I be a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E) a choice of fuzzy argu-
ment sets. Then

(¬Q)min
γ (X1, . . . , Xn) = ¬(Qmax

γ (X1, . . . , Xn))

(¬Q)max
γ (X1, . . . , Xn) = ¬(Qmin

γ (X1, . . . , Xn)) ,

for all γ ∈ I.

Proof Trivial. Firstly

(¬Q)min
γ (X1, . . . , Xn) = inf{¬Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by (15)

= inf{1−Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by¬x = 1− x
= 1− sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)}
= 1−Qmax

γ (X1, . . . , Xn) by (16)

= ¬(Qmax
γ (X1, . . . , Xn)) . by¬x = 1− x

Similarly

(¬Q)max
γ (X1, . . . , Xn) = ¬¬(¬Q)max

γ (X1, . . . , Xn) because¬ involution

= ¬(¬¬Q)min
γ (X1, . . . , Xn) by above reasoning

= ¬(Qmin
γ (X1, . . . , Xn)) . because¬ involution
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Lemma 112
LetQ : P(E)n -I, δ > 0 andX1, . . . , Xn, X

′
1, . . . , X

′
n ∈ P̃(E) such that

d((X1, . . . , Xn), (X ′1, . . . , X
′
n)) < δ .

Then for allγ, γ′ ∈ I such thatγ′ ≥ γ + 2δ,

a. min(Qmax
γ′ (X1, . . . , Xn), Qmax

γ′ (X ′1, . . . , X
′
n)) ≥ max(Qmax

γ (X1, . . . , Xn), Qmax
γ (X ′1, . . . , X

′
n)).

b. max(Qmin
γ′ (X1, . . . , Xn), Qmin

γ′ (X ′1, . . . , X
′
n)) ≤ min(Qmin

γ (X1, . . . , Xn), Qmin
γ (X ′1, . . . , X

′
n)).

Proof

ad a.) Without loss of generality, we may assume thatQmax
γ (X1, . . . , Xn) ≥ Qmax

γ (X ′1, . . . , X
′
n),

i.e.

sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} ≥ Qmax
γ (X ′1, . . . , X

′
n) (543)

by (16). Hence letε > 0. By (543), there existY ∗1 ∈ Tγ(X1), . . . , Y ∗n ∈ Tγ(Xn) such that

Q(Y ∗1 , . . . , Y
∗
n ) > Qmax

γ (X ′1, . . . , X
′
n)− ε . (544)

Now considerγ′ ≥ γ + 2δ. It is apparent from (25) that

d(Xi, X
′
i) ≤ d((X1, . . . , Xn), (X ′1, . . . , X

′
n)) < δ .

We can hence apply L-110 to conclude thatTγ(Xi) ⊆ Tγ′(X ′i) for i = 1, . . . , n, i.e.

Y ∗i ∈ Tγ′(X ′i) , (545)

for all i = 1, . . . , n. Therefore

Qmax
γ′ (X ′1, . . . , X

′
n) = sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ′(X ′i)} bu (16)

≥ Q(Y ∗1 , . . . , Y
∗
n ) by (545)

> Qmax
γ (X1, . . . , Xn)− ε by (544)

= max(Qmax
γ (X1, . . . , Xn), Qmax

γ (X ′1, . . . , X
′
n))− ε . by assumption of a.

ε→ 0 yields

Qmax
γ′ (X ′1, . . . , X

′
n) ≥ max(Qmax

γ (X1, . . . , Xn), Qmax
γ (X ′1, . . . , X

′
n)) . (546)

In addition,Tγ′(Xi) ⊇ Tγ(Xi) for all i = 1, . . . , n becauseγ′ ≥ γ and hence

Qmax
γ′ (X1, . . . , Xn) = sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ′(Xi)} by (16)

≥ sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} becauseTγ(Xi) ⊆ Tγ′(Xi)

for all i

= Qmax
γ (X1, . . . , Xn) by (16)

= max(Qmax
γ (X1, . . . , Xn), Qmax

γ (X ′1, . . . , X
′
n)) by assumption of a.

Combining this with (546),

min(Qmax
γ′ (X1, . . . , Xn), Qmax

γ′ (X ′1, . . . , X
′
n)) ≥ max(Qmax

γ (X1, . . . , Xn), Qmax
γ (X ′1, . . . , X

′
n)) ,

as desired.
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ad b.) In this case,

max(Qmin
γ′ (X1, . . . , Xn), Qmin

γ′ (X ′1, . . . , X
′
n))

= max(¬¬Qmin
γ′ (X1, . . . , Xn),¬¬Qmin

γ′ (X ′1, . . . , X
′
n)) because¬ = 1− x involutive

= max(¬(¬Q)max
γ′ (X1, . . . , Xn),¬(¬Q)max

γ′ (X ′1, . . . , X
′
n)) by L-111

= ¬min((¬Q)max
γ′ (X1, . . . , Xn), (¬Q)max

γ′ (X ′1, . . . , X
′
n)) by De Morgan’s law

≤ ¬max((¬Q)max
γ (X1, . . . , Xn), (¬Q)max

γ (X1, . . . , Xn)) by part a. of the lemma

= ¬max(¬Qmin
γ (X1, . . . , Xn),¬Qmin

γ (X ′1, . . . , X
′
n)) by L-111

= min(¬¬Qmin
γ (X1, . . . , Xn),¬¬Qmin

γ (X ′1, . . . , X
′
n)) by De Morgan’s law

= min(Qmin
γ (X1, . . . , Xn), Qmin

γ (X ′1, . . . , X
′
n)) . because¬ involution

Lemma 113
SupposeQ : P(E)n -I is a semi-fuzzy quantifier,δ > 0, andX1, . . . , Xn, X

′
1, . . . , X

′
n ∈ P̃(E)

satisfyd((X1, . . . , Xn), (X ′1, . . . , X
′
n)) < δ. If Q0(X1, . . . , Xn) > 1

2
andQ0(X ′1, . . . , X

′
n) > 1

2
,

then

max(Qγ′(X1, . . . , Xn), Qγ′(X
′
1, . . . , X

′
n)) ≤ min(Qγ(X1, . . . , Xn), Qγ(X

′
1, . . . , X

′
n))

wheneverγ′ ≥ γ + 2δ.

Proof We compute

max(Qγ′(X1, . . . , Xn), Qγ′(X
′
1, . . . , X

′
n))

= max(max(1
2
, Qmin

γ′ (X1, . . . , Xn)),max(1
2
, Qmin

γ′ (X ′1, . . . , X
′
n))) by L-88

= max(1
2
,max(Qmin

γ′ (X1, . . . , Xn), Qmin
γ′ (X ′1, . . . , X

′
n)))

≤ max(1
2
,min(Qmin

γ (X1, . . . , Xn), Qmin
γ (X ′1, . . . , X

′
n))) by L-112

= min(max(1
2
, Qmin

γ (X1, . . . , Xn)),max(1
2
, Qmin

γ (X ′1, . . . , X
′
n))) by distributivity ofmin, max

= min(Qγ(X1, . . . , Xn), Qγ(X
′
1, . . . , X

′
n)) . by L-88

Lemma 114
LetQ : P(E)n -I, δ > 0 andX1, . . . , Xn, X

′
1, . . . , X

′
n ∈ P̃(E) such that

d((X1, . . . , Xn), (X ′1, . . . , X
′
n)) < δ .

We shall abbreviate

f(γ) = Qγ(X1, . . . , Xn)

g(γ) = Qγ(X
′
1, . . . , X

′
n) ,

for all γ ∈ I. If f ∈ B+ andg ∈ B+, thend′(f ′, g′) < 2δ, wheref ′ = 2f − 1, g′ = 2g − 1, andd′

is defined by equation(35).
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Proof Assume to the contrary thatd′(f ′, g′) ≥ 2δ. Then by (35), there existsγ ∈ I such that
inf{γ′ − γ : γ′ ∈ I, max(f ′(γ′), g′(γ′)) ≤ min(f ′(γ), g′(γ))} ≥ 2δ, i.e.

inf{γ′ : max(f ′(γ′), g′(γ′)) ≤ min(f ′(γ), g′(γ))} ≥ γ + 2δ

and by utilizingf = 1
2

+ 1
2
f ′, g = 1

2
+ 1

2
g,

inf{γ′ : max(f(γ′), g(γ′)) ≤ min(f(γ), g(γ))} ≥ γ + 2δ .

In other words: ifγ′ < γ + 2δ, then

max(f(γ′), g(γ′)) > min(f(γ), g(γ)) . (547)

By assumption,d((X1, . . . , Xn), (X ′1, . . . , X
′
n)) < δ. We may hence chooseκ ∈ I such that

d((X1, . . . , Xn), (X ′1, . . . , X
′
n)) < κ < δ. In addition, we setγ′ = γ + 2κ. Applying lemma

L-113, we deduce that

max(f(γ′), g(γ′)) ≤ min(f(γ), g(γ)) .

This contradicts (547) becauseγ′ = γ+2κ < γ+2δ. Hence the initial assumption thatd′(f ′, g′) ≥
2δ is false; by contradiction, we conclude thatd′(f ′, g′) < 2δ, as desired.

Lemma 115
LetQ : P(E)n -I be a semi-fuzzy quantifier andX1, . . . , Xn, X

′
1, . . . , X

′
n ∈ P̃(E). We shall

abbreviate

f(γ) = Qγ(X1, . . . , Xn)

g(γ) = Qγ(X
′
1, . . . , X

′
n) ,

for all γ ∈ I. If neither f, g ∈ B
+ nor f, g ∈ B

−, then |B(f) − B(g)| < 2δ whenever
d((X1, . . . , Xn), (X ′1, . . . , X

′
n)) < δ, andB : B -I satisfies(B-3) and (B-5).

Proof
Without loss of generality, we may assume thatf(0) ≥ g(0). Hence only the following possibilities
are left:

a. f ∈ B+, g ∈ B
1
2 ∪ B−.

b. f ∈ B
1
2 , g ∈ B

1
2 .

c. f ∈ B
1
2 , g ∈ B−.

We shall consider these cases in turn.
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Case a.: f ∈ B+, g ∈ B
1
2 ∪ B−. We conclude from L-88 that

f(γ) = max(1
2
, Qmin

γ (X1, . . . , Xn)) (548)

g(γ) = min(1
2
, Qmax

γ (X ′1, . . . , X
′
n)) . (549)

Becaused((X1, . . . , Xn), (X ′1, . . . , X
′
n)) < δ, we may choose someκ such that

d((X1, . . . , Xn), (X ′1, . . . , X
′
n)) < κ < δ . (550)

Let us considerγ′ = 2κ. Because1
2
< f(0) = Q0(X1, . . . , Xn), we know from (549) that

Qmax
0 (X1, . . . , Xn) > 1

2
. It is then apparent from Def. 66 thatT0(Xi) ⊆ Tγ′(Xi) for i = 1, . . . , n

and henceQmax
γ′ (X1, . . . , Xn) ≥ Qmax

0 (X1, . . . , Xn) > 1
2

by (16). We can apply lemma L-112 to
deduce that

Qmax
γ′ (X ′1, . . . , X

′
n) ≥ Qmax

0 (X1, . . . , Xn) > 1
2
. (551)

Similarly, because1
2
≥ g(0) = Q0(X ′1, . . . , X

′
n), we know thatQmin

0 (X ′1, . . . , X
′
n) ≤ 1

2
. By

analogous reasoning as above,Qmin
γ′ (X ′1, . . . , X

′
n) ≤ Qmin

0 (X ′1, . . . , X
′
n) and by L-112,

Qmin
γ′ (X1, . . . , Xn) ≤ Qmin

0 (X ′1, . . . , X
′
n) ≤ 1

2
. (552)

We conclude from (548) and (552) thatf(γ′) = 1
2
. Similarly, we know from (549) and (551) that

g(γ′) = 1
2
. It is then apparent from Def. 68 thatf(γ) = g(γ) = 1

2
for all γ ≥ γ′. It follows that

h` ≤ g ≤ f ≤ hu , (553)

where

h`(γ) =

{
0 : γ ≤ γ′
1
2

: γ > γ′

hu(γ) =

{
1 : γ ≤ γ′
1
2

: γ > γ′

By (B-3)

B(h`) = 1
2
− 1

2
γ′ = 1

2
− 1

2
(2κ) = 1

2
− κ

B(hu) = 1
2

+ 1
2
γ′ = 1

2
+ 1

2
(2κ) = 1

2
+ κ .

Hence by (553) and (B-5),

1
2
− κ ≤ B(g) ≤ B(f) ≤ 1

2
+ κ ,

i.e. |B(f)− B(g)| ≤ 2κ < 2δ by (550).

Case b.: f ∈ B
1
2 , g ∈ B

1
2 . Trivial becauseB(f) = B(g) = 1

2
by (B-3).
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Case c.: f ∈ B
1
2 , g ∈ B−. Becaused((X1, . . . , Xn), (X ′1, . . . , X

′
n)) < δ, we may again chooseκ

such thatd((X1, . . . , Xn), (X ′1, . . . , X
′
n)) < κ < δ and setγ′ = 2κ.

Becausef ∈ B
1
2 , we apparently haveQγ(X1, . . . , Xn) = f(γ) = 1

2
for all γ ∈ I. In particular,

we may conclude from (14) andQ0(X1, . . . , Xn) = 1
2

thatQmax
0 (X1, . . . , Xn) ≥ 1

2
. By similar

reasoning as in casea., it is easily shown thatQmax
γ′ (X ′1, . . . , X

′
n) ≥ Qmax

0 (X1, . . . , Xn) ≥ 1
2
.

Hence by L-88,Qγ′(X
′
1, . . . , X

′
n) = g(γ′) = 1

2
. We conclude from Def. 68 thatg(γ) = 1

2
for all

γ ≥ γ′. Abbreviating

h`(γ) =

{
0 : γ ≤ γ′
1
2

: γ > γ′

for all γ ∈ I, we have

h` ≤ g ≤ f = c1
2

and therefore

1
2
− κ = 1

2
− 1

2
γ′ by γ′ = 2κ

= B(h`) by (B-3)

≤ B(g) by (B-5)

≤ B(f) by (B-5),g ≤ f

= 1
2
. by (B-3)

Hence|B(f)− B(g)| ≤ κ < δ, as desired.

Lemma 116
SupposeB′ : H -I satisfies(C-2)and(C-4). If B′ has the property that for allf ∈ H andε > 0,
there existsδ > 0 such that|B′(f)−B′(g)| < εwheneverd′(f, g) < δ, thenMB is arg-continuous.

Proof Suppose thatB′ : H -I satisfies the conditions of the lemma. Further letQ : P(E)n -I,
X1, . . . , Xn ∈ P̃(E) andε > 0. We shall abbreviate

f(γ) = Qγ(X1, . . . , Xn) , (554)

for all γ ∈ I. In the following, we shall discern three cases.

Case a.: f ∈ B+. It is then convenient to definef ′ ∈ H by

f ′(γ) = 2f(γ)− 1 (555)

for all γ ∈ I. By the assumption onB′, there existsδ′ > 0 such that

|B′(f ′)− B′(g′)| < 2ε (556)

wheneverg′ ∈ H satisfiesd′(f ′, g′) < δ′. We set

δ = min( δ
′

2
, ε

2
) . (557)
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Now letX ′1, . . . , X
′
n ∈ P̃(E) such thatd((X1, . . . , Xn), (X ′1, . . . , X

′
n)) < δ. We shall abbreviate

g(γ) = Qγ(X
′
1, . . . , X

′
n) (558)

for all γ ∈ I.

If g ∈ B− ∪ B
1
2 , then

|MB(Q)(X1, . . . , Xn)−MB(Q)(X ′1, . . . , X
′
n)|

= |B(f)− B(g)| by Def. 69, (554) and (558)

< 2δ by L-115

≤ ε . by (557)

In the remaining case thatg ∈ B+, we may defineg′ ∈ H by

g′(γ) = 2g(γ)− 1 , (559)

for all γ ∈ I. Becaused((X1, . . . , Xn), (X ′1, . . . , X
′
n)) < δ, we conclude from L-114 thatd′(f ′, g′) <

2δ ≤ δ′. Hence by our choice ofδ′,

|B′(f)− B′(g)| < 2ε (560)

and in turn,

|MB(Q)(X1, . . . , Xn)−MB(Q)(X ′1, . . . , X
′
n)|

= |B(f)− B(g)| by Def. 69, (554) and (558)

= |(1
2

+ 1
2
B′(f ′))− (1

2
+ 1

2
B′(g′))| by (555), (559), (23)

= 1
2
|B′(f ′)− B′(g′)|

< ε . by (560)

Case b.: f ∈ B
1
2 . In this case, letδ = ε

2
. Wheneverd((X1, . . . , Xn), (X ′1, . . . , X

′
n)) < δ,

we may apply lemma L-115 and deduce that|MB(Q)(X1, . . . , Xn) −MB(Q)(X ′1, . . . , X
′
n)| =

|B(f)− B(g)| < 2δ = ε.

Case c.: f ∈ B−. In this case, consider¬Q. Definingh(γ) = (¬Q)γ(X1, . . . , Xn), we know
from L-29 thath = 1− f ∈ B+. By part a. of the lemma, there existsδ > 0 such that

|MB(¬Q)(X1, . . . , Xn)−MB(¬Q)(X ′1, . . . , X
′
n)| < ε (561)

wheneverd((X1, . . . , Xn), (X ′1, . . . , X
′
n)) < δ. Hence

|MB(Q)(X1, . . . , Xn)−MB(Q)(X ′1, . . . , X
′
n)|

= |(1−MB(¬Q)(X1, . . . , Xn))− (1−MB(¬Q)(X ′1, . . . , X
′
n))| by Def. 69, (B-2)

= |1−MB(¬Q)(X1, . . . , Xn)− 1 +MB(¬Q)(X ′1, . . . , X
′
n)|

= |MB(¬Q)(X1, . . . , Xn)−MB(¬Q)(X ′1, . . . , X
′
n)|

< ε . by (561)
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Lemma 117
SupposeB′ : H -I satisfies(C-2), (C-3.b)and (C-4).

a. ifMB is arg-continuous, then for allf ∈ H and for all ε > 0, there existsδ > 0 such that
for all g ∈ H with g ≥ f andd′(f, g) < δ, it holds thatB′(g)− B′(f) < ε.

b. ifMB is arg-continuous, then for allf ∈ H and for all ε > 0, there existsδ > 0 such that
for all g ∈ H with g ≤ f andd′(f, g) < δ, it holds thatB′(f)− B′(g) < ε.

Proof

a. SupposeB′ : H -I satisfies (C-2), (C-3.b) and (C-4). Further suppose that there exists
f ∈ H, ε > 0 such that for allδ > 0, there is someg ∈ H such that

f ≤ g (562)

d′(f, g) < δ (563)

B′(g)− B′(f) ≥ ε . (564)

We have to show thatMB is not arg-continuous. Hence let us consider the quantifierQ : P(I) -I
defined by

Q(Y ) = supY , (565)

for all Y ∈ P(I). We defineX ∈ P̃(I) by

µX(z) = 1
2

+ 1
2

sup{γ ∈ I : 1
2

+ 1
2
f(γ) ≥ z} , (566)

for all z ∈ I. (f is as above and we shall assume the same choice ofε > 0). Now let δ > 0. By
assumption, there existsg ∈ H such that (562), (563) and (564) hold. We defineX ′ ∈ P̃(I) by

µX′(z) = 1
2

+ 1
2

sup{γ ∈ I : 1
2

+ 1
2
g(γ) ≥ z} , (567)

for all z ∈ I. Let us now investigated(X,X ′). We know from (562) thatf ≤ g. Therefore (35)
simplifies to

d′(f, g) = sup{inf{γ′ − γ : g(γ′) ≤ f(γ)} : γ ∈ I} . (568)

Becausef ≤ g, 1
2

+ 1
2
f(γ) ≥ z entails that1

2
+ 1

2
g(γ) ≥ z. Hence by (566) and (567),

µX′(z) ≥ µX(z) , (569)

for all z ∈ I. Let us abbreviate

γ∗ = sup{γ ∈ I : 1
2

+ 1
2
f(γ) ≥ z} . (570)

Apparently

1
2

+ 1
2
f(γ) < z (571)
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for all γ > γ∗. Now let us consider

γ′ > γ∗ + d′(f, g) .

Clearlyγ′ − d′(f, g) > γ∗, i.e. we can chooseγ′′ ∈ (γ∗, γ′ − d′(f, g)). We compute

1
2

+ 1
2
g(γ′) ≤ 1

2
+ 1

2
f(γ′′) by (568),γ′ − γ′′ > d′(f, g)

< z . by γ′′ > γ∗ and (571)

Hence

γ′ /∈ {γ ∈ I : 1
2

+ 1
2
g(γ) ≥ z} .

Becauseγ′ > γ∗ + d′(f, g) was arbitrarily chosen, we conclude that

{γ ∈ I : 1
2

+ 1
2
g(γ) ≥ z} ⊆ [0, γ∗ + d′(f, g)] ,

in particular

sup{γ ∈ I : 1
2

+ 1
2
g(γ) ≥ z} ≤ γ∗ + d′(f, g) . (572)

Hence

µX′(z) ≤ 1
2

+ 1
2
(γ∗ + d′(f, g)) by (567), (572)

= µX(z) + 1
2
d′(f, g) , by (566) and (570)

i.e.

µX′(z) ≤ µX(z) + 1
2
d′(f, g) , (573)

for all z ∈ I. Hence

d(X,X ′) = sup{|µX(z)− µX′(z)| : z ∈ I} by (25)

= sup{µX′(z)− µX(z) : z ∈ I} by (569)

≤ sup{µX(z) + 1
2
d′(f, g)− µX(z) : z ∈ I} by (573)

= 1
2
d′(f, g)

< δ . by (563)

On the other hand,

|MB(Q)(X)−MB(Q)(X ′)| = |(1
2

+ 1
2
B′(f [))− (1

2
+ 1

2
B′(g[))| by Def. 69, (23), L-107

= 1
2
|B′(f [)− B′(g[)|

= 1
2
|B′(f)− B′(g)| by (C-3.b), (C-4)

= 1
2
(B′(g)− B′(f)) by (C-4),g ≥ f

≥ ε
2
. by (564)

Hence there existsε′ = ε/2, a semi-fuzzy quantifierQ : P(I) -I and a choice of fuzzy ar-
gument setX ∈ P̃(I) such that for allδ > 0, there existsX ′ ∈ P̃(E) with d(X,X ′) < δ and
|MB(Q)(X)−MB(Q)(X ′)| ≥ ε′. We conclude thatMB is not arg-continuous.
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b. The proof of this case is analogous to that of casea.: SupposeB′ : H -I satisfies (C-2),
(C-3.b) and (C-4). Further suppose that there existsf ∈ H, ε > 0 such that for allδ > 0, there is
someg ∈ H such that

f ≥ g (574)

d′(f, g) < δ (575)

B′(f)− B′(g) ≥ ε . (576)

In order to show thatMB is not arg-continuous, we again consider the quantifierQ : P(I) -I
defined by

Q(Y ) = supY , (577)

for all Y ∈ P(I), and the fuzzy argument setX ∈ P̃(I) defined by

µX(z) = 1
2

+ 1
2

sup{γ ∈ I : 1
2

+ 1
2
f(γ) ≥ z} , (578)

for all z ∈ I. (f is as above and we shall assume the same choice ofε > 0). Now let δ > 0. By
assumption, there existsg ∈ H such that (574), (575) and (576) hold. We defineX ′ ∈ P̃(I) by

µX′(z) = 1
2

+ 1
2

sup{γ ∈ I : 1
2

+ 1
2
g(γ) ≥ z} , (579)

for all z ∈ I. We know from (574) thatf ≥ g. Therefore (35) simplifies to

d′(f, g) = sup{inf{γ′ − γ : f(γ′) ≤ g(γ)} : γ ∈ I} . (580)

Becausef ≥ g, 1
2

+ 1
2
g(γ) ≥ z entails that1

2
+ 1

2
f(γ) ≥ z. Hence by (578) and (579),

µX′(z) ≤ µX(z) , (581)

for all z ∈ I. We abbreviate

γ∗ = sup{γ ∈ I : 1
2

+ 1
2
g(γ) ≥ z} . (582)

Clearly

1
2

+ 1
2
g(γ) < z (583)

for all γ > γ∗. Now let us consider

γ′ > γ∗ + d′(f, g) .

Clearlyγ′ − d′(f, g) > γ∗, i.e. we can chooseγ′′ ∈ (γ∗, γ′ − d′(f, g)). We compute

1
2

+ 1
2
f(γ′) ≤ 1

2
+ 1

2
g(γ′′) by (580),γ′ − γ′′ > d′(f, g)

< z . by γ′′ > γ∗ and (583)

Hence

γ′ /∈ {γ ∈ I : 1
2

+ 1
2
f(γ) ≥ z} .
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Becauseγ′ > γ∗ + d′(f, g) was arbitrarily chosen, we conclude that

{γ ∈ I : 1
2

+ 1
2
f(γ) ≥ z} ⊆ [0, γ∗ + d′(f, g)] ,

in particular

sup{γ ∈ I : 1
2

+ 1
2
f(γ) ≥ z} ≤ γ∗ + d′(f, g) . (584)

Hence

µX(z) ≤ 1
2

+ 1
2
(γ∗ + d′(f, g)) by (578), (584)

= µX′(z) + 1
2
d′(f, g) , by (579) and (582)

i.e.

µX(z) ≤ µX′(z) + 1
2
d′(f, g) , (585)

for all z ∈ I. Hence

d(X,X ′) = sup{|µX(z)− µX′(z)| : z ∈ I} by (25)

= sup{µX(z)− µX′(z) : z ∈ I} by (581)

≤ sup{µX′(z) + 1
2
d′(f, g)− µX′(z) : z ∈ I} by (585)

= 1
2
d′(f, g)

< δ . by (575)

On the other hand,

|MB(Q)(X)−MB(Q)(X ′)| = |(1
2

+ 1
2
B′(f [))− (1

2
+ 1

2
B′(g[))| by Def. 69, (23), L-107

= 1
2
|B′(f [)− B′(g[)|

= 1
2
|B′(f)− B′(g)| by (C-3.b), (C-4)

= 1
2
(B′(f)− B′(g)) by (C-4),f ≥ g

≥ ε
2
. by (576)

Hence there exists a choice ofε′ = ε/2, a semi-fuzzy quantifierQ : P(I) -I and a fuzzy
argument setX ∈ P̃(I) such that for allδ > 0, there existsX ′ ∈ P̃(E) with d(X,X ′) < δ and
|MB(Q)(X)−MB(Q)(X ′)| ≥ ε′. ThereforeMB is not arg-continuous.

Lemma 118
SupposeB′ : H -I satisfies(C-2), (C-3.b)and (C-4). Then the following conditions 1. and 2.
(i.e. conjunction of 2.a and 2.b) are equivalent:

1. for all f ∈ H and for allε > 0 there existsδ > 0 such that for allg ∈ H, |B′(f)−B′(g)| < ε
wheneverd′(f, g) < δ.

2.a for all f ∈ H and for all ε > 0, there existsδa > 0 such thatB′(g) − B′(f) < ε whenever
d′(f, g) < δa andf ≤ g.

2.b for all f ∈ H and for all ε > 0, there existsδb > 0 such thatB′(f) − B′(g) < ε whenever
d′(f, g) < δb andg ≤ f .
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Proof The implication 1.⇒ 2. holds trivially. To see that the reverse implication also holds,
supposeB′ satisfies 2.a and 2.b. Further letf ∈ H be given andε > 0. By assumption, there exists
δa > 0 such that

B′(g)− B′(f) < ε
2

(586)

wheneverf ≤ g andd′(f, g) < δa. Furthermore, there existsδb > 0 such that

B′(f)− B′(g) < ε
2

(587)

wheneverg ≤ f and d′(f, g) < δb. Let us setδ = min(δa, δb). Now let g ∈ H such that
d′(f, g) < δ. We shall abbreviatè= min(f, g) andu = max(f, g). It is apparent from (35) that

d′(f, `) ≤ d′(f, g) < δ (588)

d′(f, u) ≤ d′(f, g) < δ . (589)

In addition, we clearly havè≤ f ≤ u and` ≤ g ≤ u. Hence by (C-4),

B′(`) ≤ B′(f) ≤ B′(u)

B′(`) ≤ B′(g) ≤ B′(u) .

From this we deduce that

|B′(f)− B′(g)| ≤ B′(u)− B′(`)
= |B′(u)− B′(`)| becauseB′(u) ≥ B′(`)
≤ |B′(u)− B′(f)|+ |B′(f)− B′(`)| by triangular equation

< ε
2

+ ε
2

by (586)-(589)

= ε .

Proof of Theorem 105

We already know from L-116 that the condition onB′ is sufficient forMB to be arg-continuous.
In addition, we know from L-117 that the conditions 2.a and 2.b of lemma L-118 are necessary
forMB to be arg-continuous. But L-118 states the equivalence of these conditions onB′ with the
condition imposed by the theorem. We hence conclude that the condition onB′ is also necessary
forMB to be arg-continuous.

F.21 Proof of Theorem 106

By lemma L-118, the conjunction of the conditions 2.a and 2.b is equivalent to condition 1 of
the lemma, which in turn is sufficient forMB to be arg-continuous by L-116. Therefore we only
have to show that conditions 2.a. and 2.b of lemma L-118 are entailed by the condition of the
theorem. This is apparent in the case of 2.a. Hence let us show that the condition onB′ imposed
by the theorem also entails 2.b. To this end, consider somef ∈ H and a choice ofε > 0. By the
assumption of the theorem, there existsδ > 0 such that

B′(g)− B′(f) < ε (590)

wheneverf ≤ g andd′(f, g) < δ. We claim thatδb = δ is a valid choice forδb in 2.b. Hence let
g ≤ f such thatd′(f, g) < δ. We may directly apply (590) (reversing the roles off, g) to deduce
thatB′(f)− B′(g) < ε, as desired.
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F.22 Proof of Theorem 107

Let⊕ : I2 -I be ans-norm and defineB′ : H -I by (Th-87.a), i.e.

B′(f) = f 1
∗ ⊕ f ∗1 (591)

for all f ∈ H. We shall define the QFMMB in terms ofB′ according to (23) and Def. 69 as usual.
Let us recall thatMB is a DFS by Th-87.

a.: MB is not Q-continuous.
By theorem Th-104,MB fails to be Q-continuous iff there existsε > 0 such that for allδ > 0,
there existf, g ∈ H such thatd(f, g) < δ and|B′(f)− B′(g)| ≥ ε.

Hence let us considerε = 1
2

and letδ > 0. Further definef, gδ ∈ H by

f(γ) =

{
1 : γ ≤ 1

2

0 : γ > 1
2

(592)

gδ(γ) =

{
1− δ

2
: γ ≤ 1

2

0 : γ > 1
2

(593)

for all γ ∈ I. Then by (34),

d(f, gδ) = sup{|f(γ)− gδ(γ)| : γ ∈ I} = δ
2
< δ . (594)

Furthermore, it is apparent from (592) and the definitions of the coefficients (21) and (22) that

f 1
∗ = 1

2

f ∗1 = 0 ,

hence

B′(f) = 1
2
⊕ 0 = 1

2
. (595)

Similarly from (593),

gδ
1
∗ = 0

gδ
∗
1 = 0 ,

i.e.

B′(gδ) = 0⊕ 0 = 0 . (596)

Henced(f, gδ) < δ by (594) and

|B′(f)− B′(g)| = 1
2

= ε

by (595) and (596), which finishes the proof thatMB is not Q-continuous.
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b.: MB is not arg-continuous.
We know from Th-87 thatMB is a DFS; in particular, we can apply lemma L-117. According
to partb. of lemma L-117, we can prove thatMB is not continuous in arguments by showing
that there existsε > 0 andf ∈ H such that for allδ > 0, there existsg ∈ H such thatg ≤ f ,
d′(f, g) < δ andB′(f)− B′(g) ≥ ε.

To this end, considerε = 1
2

and definef ∈ H by

f(γ) = 1
2

(597)

for all γ ∈ I. By (22) and (21),

f 1
∗ = 0

f ∗1 = 1
2

i.e.

B′(f) = 0⊕ 1
2

= 1
2
. (598)

Now let δ > 0 and defineg ∈ H by

g(γ) =

{
1
2

: γ ≤ 1− δ
2

0 : γ > 1− δ
2

(599)

for all γ ∈ I. It is apparent from (35) and (597), (599) that

d′(f, g) = δ
2
< δ . (600)

In the case ofg, the coefficients (22) and (21) become

f 1
∗ = 0

f ∗1 = 0 ,

i.e.

B′(g) = 0⊕ 0 = 0 . (601)

Hence the choice off, g ∈ H satisfiesg ≤ f (apparent),d′(f, g) < δ by (598) and

B′(f)− B′(g) = 1
2
− 0 = 1

2
= ε

by (600) and (601), which proves thatMB is not arg-continuous.

F.23 Proof of Theorem 108

Let� be at-norm and defineB′ : H -I by

B′(f) = f 0
∗ � f ∗0 , (602)

for all f ∈ H. We shall define the QFMMB in terms ofB′ according to (23) and Def. 69 as usual.
By Th-91, the QFMMB is a DFS.
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a.: MB is not Q-continuous.
By theorem Th-104, we can prove thatMB is not Q-continuous by showing that there existsε > 0
such that for allδ > 0, there existf, g ∈ H with d(f, g) < δ and|B′(f)− B′(g)| ≥ ε.
Hence letε = 1

2
andδ > 0. We definef, g ∈ H by

f(γ) =

{
1 : γ ≤ 1

2

0 : γ > 1
2

(603)

g(γ) =

{
1 : γ ≤ 1

2
δ
2

: γ > 1
2

(604)

for all γ ∈ I. By (19) and (18),

f 0
∗ = 1

2

f ∗0 = 1

g0
∗ = 1

g∗0 = 1 ,

i.e.

B′(f) = 1
2
� 1 = 1

2
(605)

B′(g) = 1� 1 = 1 . (606)

Hence there existf, g ∈ H such thatd(f, g) = δ
2
< δ by (34), (603) and (604), but|B′(f) −

B′(g)| = |1
2
− 1| = 1

2
= ε, which proves thatMB is not Q-continuous.

b.: MB is not arg-continuous.
In this case, we can apply lemma L-117 becauseMB is a DFS. According to parta. of the lemma,
MB is not arg-continuous if there existsε > 0 andf ∈ H such that for allδ > 0, there exists
g ∈ H with g ≥ f , d′(f, g) < δ andB′(g)− B′(f) ≥ ε.
Hence letε = 1

2
definef ∈ H by

f(γ) = 1
2

(607)

for all γ ∈ I.
Now considerδ > 0. We defineg ∈ H by

g(γ) =

{
1 : γ < δ

2
1
2

: else
(608)

for all γ ∈ I. Clearlyg ≥ f andd′(f, g) = δ
2
< δ by (35). However, we have

f 0
∗ = 1

f ∗0 = 1
2

g0
∗ = 1

g∗0 = 1

and hence

B′(f) = 1� 1
2

= 1
2

B′(g) = 1� 1 = 1 ,

i.e.B′(g)− B′(f) = 1− 1
2

= 1
2

= ε, which finishes the proof thatMB is not arg-continuous.
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F.24 Proof of Theorem 109

Lemma 119
The mapping(•)♦ is monotonic, i.e. wheneverf, g ∈ H andf ≤ g, then alsof♦ ≤ g♦.

Proof Let f, g ∈ H be given mappings such thatf ≤ g. Further letv ∈ I. Becausef ≤ g, we
apparently have

{γ ∈ I : f(γ) < v} ⊇ {γ ∈ I : g(γ) < v} . (609)

Hence

f♦(v) = inf{γ ∈ I : f(γ) < v} by (36)

≤ inf{γ ∈ I : g(γ) < v} by (609)

= g♦(v) . by (36)

Lemma 120
For all f ∈ H, ∫ 1

0

f(γ) dγ =

∫ 1

0

f♦(v) dv .

Proof See [9, L-57,p.180].

Lemma 121
For all f, g ∈ H such thatf ≤ g,

d′(f, g) = d(f♦, g♦) .

Proof
Supposef, g ∈ H are given andf ≤ g. Then (35) simplifies to

d′(f, g) = sup{inf{γ′ − γ : g(γ′) ≤ f(γ)} : γ ∈ I} . (610)

By applying lemma L-119, we conclude fromf ≤ g thatf♦ ≤ g♦, too. Hence by (34),

d(f♦, g♦) = sup{g♦(v)− f♦(v) : v ∈ I} . (611)

We shall show thatd(f♦, g♦) = d′(f, g) by proving both inequationsd(f♦, g♦) ≤ d′(f, g) and
d(f♦, g♦) ≥ d′(f, g).

a.: d(f♦, g♦) ≤ d′(f, g).
By (611) and (36) it is sufficient to prove that for allv ∈ I,

d′(f, g) ≥ g♦(v)− f♦(v) = inf{γ : g(γ) < v} − inf{γ : f(γ) < v} . (612)
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Hence letv ∈ I be given. We abbreviate

γ′ = inf{γ : g(γ) < v} (613)

γ0 = inf{γ : f(γ) < v} . (614)

Considerδ > 0, γ0 + δ ≤ 1. It is apparent from (614) and the fact thatf ∈ H is nonincreasing that
that

f(γ0 + δ) < v . (615)

Similarly, we may conclude from (613) and the fact thatg ∈ H is nonincreasing that

g(γ′′) ≥ v (616)

wheneverγ′′ < γ′. Combining (615) and (616), it is apparent that

inf{γ′′ − γ0 − δ : g(γ′′) ≤ f(γ0 + δ)} ≥ γ′ − γ0 − δ , (617)

for all δ > 0. Therefore

d′(f, g)

= sup{inf{γ′ − γ : g(γ′) ≤ f(γ)} : γ ∈ I} by (610)

≥ sup{inf{γ′′ − γ0 − δ : g(γ′′) ≤ f(γ0 + δ)} : δ > 0, δ + γ0 ≤ 1} restriction of consideredγ’s

≥ γ′ − γ0 by (617)

= inf{γ : g(γ) < v} − inf{γ : f(γ) < v} by (613), (614)

= g♦(v)− f♦(v) .

Becausev ∈ I was arbitrarily chosen, this proves that

d′(f, g) ≥ g♦(v)− f♦(v)

for all v ∈ I, i.e.

d′(f, g) ≥ sup{g♦(v)− f♦(v) : v ∈ I} = d(f♦, g♦) ,

as desired.

b.: d(f♦, g♦) ≥ d′(f, g).
By (610), it is sufficient to show that for allγ ∈ I,

d(f♦, g♦) ≥ inf{γ′ − γ : g(γ′) ≤ f(γ)} .

Hence letγ ∈ I. We abbreviate

ξ = inf{γ′ − γ : g(γ′) ≤ f(γ)} . (618)

Now letε > 0 and

γ′ = γ + ξ − ε . (619)
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Then

g(γ′) > f(γ) (620)

which is apparent from (618) and the fact that

γ′ − γ = γ + ξ − ε− γ = ξ − ε < ξ .

Hence by (620),

f♦(g(γ′)) = inf{x ∈ I : f(x) < g(γ′)} ≤ γ . (621)

Similarly

g♦(g(γ′)) = inf{x : g(x) < g(γ′)} ≥ γ′ , (622)

which is apparent from the fact thatg ∈ H is nonincreasing. Summarising (621) and (622), we
obtain

g♦(g(γ′))− f♦(g(γ′)) ≥ γ′ − γ . (623)

Hence

d(f♦, g♦) = sup{g♦(v)− f♦(v) : v ∈ I} by (611)

≥ g♦(g(γ′))− f♦(g(γ′)) substituitingv = g(γ′)

≥ γ′ − γ by (623)

= ξ − ε . by (619)

Henced(f♦, g♦) ≥ ξ − ε for all ε > 0, i.e.

d(f♦, g♦) ≥ ξ

= inf{γ′ − γ : g(γ′) ≤ f(γ)} by (618)

for the givenγ ∈ I. Becauseγ ∈ I was chosen arbitrarily, we deduce that

d(f♦, g♦) ≥ sup{inf{γ′ − γ : g(γ′) ≤ f(γ)} : γ ∈ I} ,

i.e.d(f♦, g♦) ≥ d′(f, g) by (610), which finishes the proof of the lemma.

Lemma 122
Letf, g ∈ H and defineu = max(f, g), ` = min(f, g). Then

a. u♦ = max(f♦, g♦);

b. `♦ = min(f♦, g♦).
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Proof

a. In order to prove thatu♦ = max(f♦, g♦), let v ∈ I be given; we have to show thatu♦(v) =
max(f♦(v), g♦(v)). To this end, let us introduce some abbreviations. By (36),

u♦(v) = inf{γ ∈ I : max(f(γ), g(γ)) < v} = inf A (624)

f♦(v) = inf{γ ∈ I : f(γ) < v} = inf F (625)

g♦(v) = inf{γ ∈ I : g(γ) < v} = inf G , (626)

where

A = {γ ∈ I : max(f(γ), g(γ)) < v} (627)

F = {γ ∈ I : f(γ) < v} (628)

G = {γ ∈ I : g(γ) < v} . (629)

We know thatf, g ∈ H, hencef andg are nonincreasing by Def. 75. It is apparent from the
monotonicity off and (628) thatF is a half-open or closed interval of the form

F = [f♦(v), 1] or F = (f♦(v), 1] . (630)

Similarly, we conclude from the nonincreasing monotonicity ofg and (629) thatG is a half-open
or closed interval of the form

G = [g♦(v), 1] or G = (g♦(v), 1] . (631)

It is apparent from equations (627), (628) and (629) thatA = F ∩ G. Utilizing (630) and (631),
we observe thatA is a half-open or closed interval of the form

A = [max(f♦(v), g♦(v)), 1] or A = (max(f♦(v), g♦(v)), 1] . (632)

In any case,

u♦(v) = inf A by (624)

= max(f♦(v), g♦(v)) , by (632)

as desired.

b.: `♦ = min(f♦, g♦).
Let us consider somev ∈ I; we will show that̀ ♦(v) = min(f♦(v), g♦(v)). We shall use similar
abbreviations as in case a.: again by (36),

`♦(v) = inf{γ ∈ I : max(f(γ), g(γ)) < v} = inf B (633)

f♦(v) = inf{γ ∈ I : f(γ) < v} = inf F (634)

g♦(v) = inf{γ ∈ I : g(γ) < v} = inf G , (635)

where

B = {γ ∈ I : min(f(γ), g(γ)) < v} (636)

F = {γ ∈ I : f(γ) < v} (637)

G = {γ ∈ I : g(γ) < v} . (638)
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It is easily observed that (630) and (631) are still valid. In this case, however, we haveB = F ∪G,
which is apparent from (636), (637) and (638). Utilizing (630) and (631), this means thatB is a
half-open or closed interval of the form

B = [min(f♦(v), g♦(v)), 1] or B = (min(f♦(v), g♦(v)), 1] . (639)

Therefore

`♦(v) = inf B by (633)

= min(f♦(v), g♦(v)) . by (639)

Proof of Theorem 109

Let f, g ∈ H be given. We first observe that

d′(f, g) = d′(min(f, g),max(f, g)) (640)

and

d(f♦, g♦) = d(min(f♦, g♦),max(f♦, g♦)) (641)

which is apparent from (35) and (34), respectively. We compute

d′(f, g) = d′(min(f, g),max(f, g)) by (640)

= d((min(f, g))♦, (max(f, g))♦) by L-121

= d(min(f♦, g♦),max(f♦, g♦)) by L-122

= d(f♦, g♦) , by (641)

which finishes the proof of the theorem.

F.25 Proof of Theorem 110

a.: M is continuous in quantifiers.
By theorem Th-104,M is Q-continuous iff for allε > 0 there existsδ > 0 such that∣∣∣∣∫ 1

0

f(γ) dγ −
∫ 1

0

g(γ) dγ

∣∣∣∣ < ε (642)

wheneverf, g ∈ H satisfyd(f, g) < δ. Hence letε > 0 be given. I will prove thatδ = ε satisfies
(642). Hence letf, g ∈ H such that

d(f, g) < ε . (643)
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Then ∣∣∣∣∫ 1

0

f(γ) dγ −
∫ 1

0

g(γ) dγ

∣∣∣∣
=

∣∣∣∣∫ 1

0

f(γ)− g(γ) dγ

∣∣∣∣
≤
∫ 1

0

|f(γ)− g(γ)| dγ

≤
∫ 1

0

sup{|f(γ′)− g(γ′)| : γ′ ∈ I} dγ monotonicity of
∫

= sup{|f(γ′)− g(γ′)| : γ′ ∈ I}
= d(f, g) by (34)

< ε , by (643)

as desired.

b.: M is continuous in arguments.
By part a. of the theorem, we already know that for allε > 0, there existsδ > 0 such that∣∣∣∣∫ 1

0

p(γ) dγ −
∫ 1

0

q(γ) dγ

∣∣∣∣ < ε . (644)

wheneverd(p, q) < δ. In order to utilize this for the proof thatM is arg-continuous as well, we
apply theorem Th-105:M is arg-continuous if for allε > 0 and allf ∈ H, there existsδ > 0 such
that ∣∣∣∣∫ 1

0

f(γ)−
∫ 1

0

g(γ)

∣∣∣∣ < ε (645)

wheneverd′(f, g) < δ. Hence letε > 0 andf ∈ H. We already know from part a. that there exists
δ > 0 such that (644) holds for the givenε. Now letg ∈ H such that

d′(f, g) < δ . (646)

Then ∣∣∣∣∫ 1

0

f(γ) dγ −
∫ 1

0

g(γ) dγ

∣∣∣∣
=

∣∣∣∣∫ 1

0

f♦(γ) dγ −
∫ 1

0

g♦(γ) dγ

∣∣∣∣ by L-120

< ε ,

where the last step holds by (644) because

d(f♦, g♦) = d′(f, g) by Th-109

< δ . by (646)
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F.26 Proof of Theorem 111

Suppose� : I2 -I is a uniform continuoust-norm, i.e. for allε > 0, there existsδ > 0 such that
|x1 � y1 − x2 � y2| < ε wheneverx1, x2, y1, y2 ∈ I satisfy‖(x1, y1) − (x2, y2)‖ < δ, where‖•‖
is the euclidian distance. In this case, it is apparent that� satisfies the following property: for all
ε > 0, there existsδ > 0 such that

|x� y1 − x� y2| < ε , (647)

wheneverx, y1, y2 ∈ I such that|y1 − y2| < δ.
We shall defineB′ : H -I according to equation (Th-93.a), i.e.

B′(f) = sup{γ � f(γ) : γ ∈ I} , (648)

for all f ∈ H. As usual, we define the QFMMB in terms ofB′ according to (23) and Def. 69.
From theorem Th-93, we know thatMB is a DFS.

a.MB is Q-continuous
BecauseMB is a DFS, we may apply theorem Th-104, i.e.MB is Q-continuous iff for allε > 0
there existsδ > 0 such that|B′(f)− B′(g)| < ε wheneverd(f, g) < δ.
Hence letε > 0. By (647), there existsδ > 0 such that

|x� y1 − x� y2| < ε
2

(649)

wheneverx, y1, y2 ∈ I satisfy|y1 − y2| < δ. Now let f, g ∈ H such thatd(f, g) < δ. Hence by
(34) and (649),

|γ � f(γ)− γ � g(γ)| < ε
2

(650)

for all γ ∈ I. In the following, we shall assume without loss of generality thatB′(f) ≥ B′(g) (the
proof in the case thatB′(f) < B′(g) is analogous). Then

|B′(f)− B′(g)|
= B′(f)− B′(g) by assumption thatB′(f) ≥ B′(g)

= sup{γ � f(γ) : γ ∈ I} − sup{γ � g(γ) : γ ∈ I} by (648)

= sup{γ � f(γ)− sup{γ′ � g(γ′) : γ′ ∈ I} : γ ∈ I}
≤ sup{γ � f(γ)− γ � g(γ) : γ ∈ I}
≤ sup{|γ � f(γ)− γ � g(γ)| : γ ∈ I}
≤ ε

2
by (650)

< ε ,

as desired.

b. MB is arg-continuous
BecauseMB is a DFS, we may apply theorem Th-106. HenceMB is arg-continuous if for all
ε > 0, there existsδ > 0 such thatB′(g)− B′(f) < ε wheneverf ≤ g andd′(f, g) < δ.
Hence letε > 0. By (647), there existsδ′ such that

|x� y1 − x� y2| < ε
2

(651)
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wheneverx, y1, y2 ∈ I with |y1 − y2| < δ′. Let us choose someδ > 0 such that

δ < min(δ′, ε
2
) . (652)

Now letf, g ∈ H such thatf ≤ g andd′(f, g) < δ. By (648), there existsγ′ ∈ I such that

γ′ � g(γ′) > B′(g)− ε
2
. (653)

In the case thatγ′ < δ, then

B′(g) < γ′ � g(γ′) + ε
2

by (653)

≤ γ′ � 1 + ε
2

by monotonicity of�
= γ′ + ε

2

< δ + ε
2

by assumption of this case

< ε
2

+ ε
2

by (652)

< ε .

BecauseB′(f) ≥ 0, we conclude that

B′(g)− B′(f) ≤ B′(g) < ε ,

as desired.

In the remaining case thatγ′ ≥ δ, letγ = γ′− δ ≥ 0. Clearlyγ′−γ = δ > d′(f, g) by assumption
onf, g. Hence

f(γ) ≥ g(γ′) (654)

by (35) and

B′(f) ≥ γ � f(γ) by (648)

≥ γ � g(γ′) by (654), monotonicity of�
> γ′ � g(γ′)− ε

2
,

where the last step holds because|γ � g(γ′)− γ′ � (γ′)| < ε
2

by (651) and|γ′ − γ| = δ < δ′, see
(652). Because� is monotonic andγ′ > γ, |γ � g(γ′)− γ′ � (γ′)| = γ′ � g(γ′)− γ � g(γ′) < ε

2
,

i.e.γ � g(γ′) > γ′ � g(γ′)− ε
2
. In turn, we conclude fromB′(f) > γ′ � g(γ′)− ε

2
that

B′(g)− B′(f) < B′(g)− γ′ � g(γ′) + ε
2

< γ′ � g(γ′) + ε
2
− γ′ � g(γ′) + ε

2
by (653)

= ε ,

which finishes the proof thatMB is arg-continuous.

F.27 Proof of Theorem 112

Lemma 123
SupposeQ,Q′ : P(E)n -I are semi-fuzzy quantifiers andQ �c Q′. ThenQγ(X1, . . . , Xn) �c
Q′γ(X1, . . . , Xn) for all X1, . . . , Xn ∈ P̃(E) andγ ∈ I.



F PROOFS OF THEOREMS IN CHAPTER 7 284

Proof We shall discern three cases.

Case a.: Qmin
γ (X1, . . . , Xn) > 1

2 . Hence by (15),

inf Q(Y1, . . . , Yn) : Y ∈ Tγ(Xi)} > 1
2
,

i.e. for allY1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn),

1
2
< Q(Y1, . . . , Yn) ≤ Q′(Y1, . . . , Yn) (655)

becauseQ�c Q′ and hence

1
2
< Qmin

γ (X1, . . . , Xn) by assumption of case a.

= inf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by (15)

≤ inf{Q′(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by (655)

= Q′
min
γ (X1, . . . , Xn) , by (15)

i.e.

Qmin
γ (X1, . . . , Xn)�c Q′

min
γ (X1, . . . , Xn) (656)

by (9). In turn,

Qγ(X1, . . . , Xn) = Qmin
γ (X1, . . . , Xn) by L-88

�c Q′
min
γ (X1, . . . , Xn) by (656)

= Q′γ(X1, . . . , Xn) . by L-88

Case b.: Qmax
γ (X1, . . . , Xn) < 1

2 . Hence by (16),

supQ(Y1, . . . , Yn) : Y ∈ Tγ(Xi)} > 1
2
,

i.e. for allY1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn),

1
2
> Q(Y1, . . . , Yn) ≥ Q′(Y1, . . . , Yn) (657)

becauseQ�c Q′ and hence

1
2
> Qmax

γ (X1, . . . , Xn) by assumption of case b.

= sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by (16)

≥ sup{Q′(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by (657)

= Q′
max
γ (X1, . . . , Xn) , by (16)

i.e.

Qmax
γ (X1, . . . , Xn)�c Q′

max
γ (X1, . . . , Xn) (658)

by (9). Therefore

Qγ(X1, . . . , Xn) = Qmax
γ (X1, . . . , Xn) by L-88

�c Q′
max
γ (X1, . . . , Xn) by (658)

= Q′γ(X1, . . . , Xn) . by L-88
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Case c.: Qmin
γ (X1, . . . , Xn) ≤ 1

2 and Qmax
γ (X1, . . . , Xn) ≥ 1

2 . Then

Qγ(X1, . . . , Xn) = m 1
2
(Qmax

γ (X1, . . . , Xn), Qmin
γ (X1, . . . , Xn)) by (14)

= 1
2

by Def. 45, assumptions of case c.

�c Q′γ(X1, . . . , Xn) . by (9)

Lemma 124
SupposeB : B -I satisfies(B-5) andB(c1

2
) = 1

2
. ThenB propagates fuzziness, i.e. whenever

f, g ∈ B such thatf �c g, thenB(f)�c B(g).

Proof SupposeB : B -I satisfies (B-5) and

B(c1
2
) = 1

2
. (659)

Further let a choice off, g ∈ B be given such thatf �c g.
Hence iff ∈ B+, then 1

2
< f(0) ≤ g(0), in particularg ∈ B+. Thereforeg(γ) ≥ 1

2
for all γ ∈ I.

We hence deduce that1
2
≤ f(γ) ≤ g(γ) for γ ∈ (0, 1] becausef �c g, see (9). Therefore

c1
2
≤ f ≤ g

and
1
2

= B(c1
2
) ≤ B(f) ≤ B(g) , by (659), (B-5)

in particular

B(f)�c B(g) .

Similarly if f ∈ B−, thenf(0) < 1
2

andf(0) �c g(0), i.e. g(0) < f(0) < 1
2
. We conclude that

g ∈ B− andf(γ) ≤ 1
2

for all γ ∈ I. Hence for allγ ∈ I, f(γ) ≤ 1
2
, g(γ) ≤ 1

2
andf(γ) �c g(γ),

i.e.g(γ) ≤ f(γ) ≤ 1
2
. Again by (659) and (B-5),

B(g) ≤ B(f) ≤ 1
2
,

i.e.

B(f)�c B(g) .

In the remaining case thatf ∈ B
1
2 , i.e. f = c1

2
, we immediately obtain from (659) thatB(f) =

1
2
�c B(g).

Proof of Theorem 112

SupposeMB is anMB-DFSes, i.e. the mappingB : B -I satisfies (B-1) to (B-5) by Th-62. In
particular,B(c1

2
) = 1

2
by (B-3).

Now supposeQ,Q′ : P(E)n -I,Q�c Q′ are given andX1, . . . , Xn ∈ P̃(E). Then

MB(Q)(X1, . . . , Xn) = B((Qγ(X1, . . . , Xn))γ∈I) by Def. 69

�c B((Q′γ(X1, . . . , Xn))γ∈I) by L-123, L-124

=MB(Q′)(X1, . . . , Xn) . by Def. 69
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F.28 Proof of Theorem 113

Lemma 125
LetE 6= ∅ be given andX,X ′ ∈ P̃(E) such thatX �c X ′. Then for allγ ∈ I, Tγ(X ′) ⊆ Tγ(X).

Proof Let us first show that(X ′)max
γ ⊆ (X)max

γ . In the case thatγ = 0, we have(X ′)max
0 =

(X ′)
≥1

2
by Def. 66. Hence lete ∈ (X ′)max

0 = (X ′)
≥1

2
be given, i.e.µX′(e) ≥ 1

2
. ThenµX(e) �c

µX′(e) entails that1
2
≤ µX(e) ≤ µX′(e), i.e.e ∈ (X)

≥1
2

= (X)max
0 . Hence(X ′)max

0 ⊆ (X)max
0 .

If γ > 0, then(X ′)max
γ = (X ′)

>
1
2
−1

2
γ

by Def. 66. Hence lete ∈ (X ′)max
γ .

• if 1
2
− 1

2
γ < µX′(e) ≤ 1

2
, thenX �c X ′ entails thatµX′(e) ≤ µX(e) ≤ 1

2
. In particular

1
2
− 1

2
γ < µX′(e) ≤ µX(e), i.e.e ∈ (X)max

γ .

• if µX′(e) > 1
2
, thenµX(e) �c µX′(e) entails that1

2
≤ µX(e) ≤ µX′(e). In particular,

µX(e) > 1
2
− 1

2
γ for γ > 0, i.e.e ∈ (X)max

γ .

Summarising, we have shown that(X ′)max
γ ⊆ (X)max

γ holds in the caseγ > 0 as well.
It remains to be shown that(X)min

γ ⊆ (X ′)min
γ . In the case thatγ = 0, we have(X)min

0 = (X)
>

1
2

by Def. 66. Hence ife ∈ (X)min
0 , thenµX(e) > 1

2
. BecauseµX(e) �c µX′(e), we conclude that

1
2
< µX(e) ≤ µX′(e). HenceµX′(e) > 1

2
, too, ande ∈ (X ′)

>
1
2

= (X ′)min
0 .

Finally if γ > 0, then(X)min
γ = (X)

≥1
2

+
1
2
γ
. Hence ife ∈ (X)min

γ , thenµX(e) ≥ 1
2

+ 1
2
γ > 1

2
.

Then becauseµX(e) �c µX′(e), we deduce that1
2
< µX(e) ≤ µX′(e), in particular 1

2
+ 1

2
γ ≤

µX(e) ≤ µX′(e), i.e.e ∈ (X ′)
≥1

2
+

1
2
γ

= (X ′)min
γ . It follows that(X)min

γ ⊆ (X ′)min
γ .

Hence for allγ ∈ I, (X)min
γ ⊆ (X ′)min

γ and(X ′)max
γ ⊆ (X)max

γ . We conclude that

Tγ(X ′) = {Y : (X ′)min
γ ⊆ Y ⊆ (X ′)max

γ } by Def. 66

⊆ {Y : (X)min
γ ⊆ Y ⊆ (X)max

γ } because(X)min
γ ⊆ (X ′)min

γ , (X ′)max
γ ⊆ (X)max

γ

= Tγ(X) . by Def. 66

Lemma 126
Let Q : P(E)n -I be given andX1, . . . , Xn, X

′
1, . . . , X

′
n ∈ P̃(E) such thatXi �c X ′i for

i = 1, . . . , n. Then for allγ ∈ I,

Qmin
γ (X1, . . . , Xn) ≤ Qmin

γ (X ′1, . . . , X
′
n)

Qmax
γ (X1, . . . , Xn) ≥ Qmax

γ (X ′1, . . . , X
′
n) .

Proof Apparently

Qmin
γ (X1, . . . , Xn) = inf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by (15)

≤ inf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(X ′i)} by L-125

= Qmin
γ (X ′1, . . . , X

′
n) . by (15)



F PROOFS OF THEOREMS IN CHAPTER 7 287

and similarly

Qmax
γ (X1, . . . , Xn) = sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by (16)

≥ sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(X ′i)} by L-125

= Qmax
γ (X ′1, . . . , X

′
n) . by (16)

Lemma 127
LetQ : P(E)n -I be given andX1, . . . , Xn, X

′
1, . . . , X

′
n ∈ P̃(E). If X1 �c X ′1, . . . , Xn �c X ′n,

thenQγ(X1, . . . , Xn)�c Q′γ(X1, . . . , Xn) for all γ ∈ I.

Proof

Case a.: Qγ(X ′1, . . . , X
′
n) > 1

2 . Then

Qmax
γ (X ′1, . . . , X

′
n) ≥ Qmin

γ (X ′1, . . . , X
′
n) > 1

2
(660)

and by L-126,

Qmax
γ (X1, . . . , Xn) ≥ Qmax

γ (X1, . . . , Xn) > 1
2
. (661)

Hence

Qγ(X
′
1, . . . , X

′
n) = Qmin

γ (X ′1, . . . , X
′
n) by L-88

= m 1
2
(Qmin

γ (X ′1, . . . , X
′
n), Qmax

γ (X1, . . . , Xn)) by Def. 45, (660), (661)

≥ m 1
2
(Qmin

γ (X1, . . . , Xn), Qmax
γ Xargs) by L-126, monotonicity ofm 1

2

= Qγ(X1, . . . , Xn) by (14)

≥ 1
2
,

i.e.Qγ(X1, . . . , Xn)�c Qγ(X
′
1, . . . , X

′
n), whereQγ(X1, . . . , Xn) ≥ 1

2
holds because

Qγ(X1, . . . , Xn) = m 1
2
(Qmin

γ (X1, . . . , Xn), Qmax
γ (X1, . . . , Xn))

andQmax
γ (X1, . . . , Xn) > 1

2
by (661).

Case b.: Qγ(X ′1, . . . , X
′
n) < 1

2 . In this case,

Qγ(X
′
1, . . . , X

′
n) = 1− (¬Q)γ(X

′
1, . . . , X

′
n) by L-29

≤ 1− (¬Q)γ(X1, . . . , Xn) by part a. of this lemma

≤ 1
2
,

i.e.Qγ(X1, . . . , Xn)�c Qγ(X
′
1, . . . , X

′
n), as desired.
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Case c.: Qγ(X ′1, . . . , X
′
n) = 1

2 . From (14) and Def. 45, we conclude that

Qmax
γ (X ′1, . . . , X

′
n) ≥ 1

2

Qmin
γ (X ′1, . . . , X

′
n) ≤ 1

2
.

Hence by L-126,

Qmax
γ (X1, . . . , Xn) ≥ Qmax

γ (X ′1, . . . , X
′
n) ≥ 1

2

Qmin
γ (X1, . . . , Xn) ≤ Qmin

γ (X ′1, . . . , X
′
n) ≤ 1

2
.

ThereforeQγ(X1, . . . , Xn) = 1
2

by (14) and Def. 45. In particular,Qγ(X1, . . . , Xn)�cQγ(X
′
1, . . . , X

′
n)

by (9).

Proof of Theorem 113

SupposeMB is anMB-DFS, i.e. the mappingB : B -I satisfies (B-1) to (B-5) by Th-62.
Further letQ : P(E)n -I be given andX1, . . . , Xn, X

′
1, . . . , X

′
n ∈ P̃(E) such thatX1 �c

X ′1, . . . , Xn �c X ′n. Then

MB(Q)(X1, . . . , Xn) = B(Qγ(X1, . . . , Xn)γ∈I) by Def. 69

�c B((Qγ(X
′
1, . . . , X

′
n))γ∈I) by L-127, L-124

=MB(Q)(X ′1, . . . , X
′
n) . by Def. 69

G Proofs of Theorems in Chapter 8

G.1 Proof of Theorem 114

To avoid redundant effort in the proof of this and the subsequent theorems, we shall first state the
following lemma.

Lemma 128 Supposẽ¬ : I -I is a strong negation,J is an arbitrary index set and(xj)j∈J is
aJ -indexed collection ofxj ∈ I. Then

inf{¬̃xj : j ∈ J } = ¬̃ sup{xj : j ∈ J }
sup{¬̃xj : j ∈ J } = ¬̃ inf{xj : j ∈ J }

Proof Apparent because the strong negation¬̃ is nonincreasing and continuous (see e.g. [12,
Th-3.1]).

Proof of Theorem 114

a. Let F be a given DFS,J an arbitary index set and(Qj)j∈J is aJ -indexed family of semi-
fuzzy quantifiersQj : P(E)n -I, j ∈ J . Further suppose that a choice of crisp argument sets
Y1, . . . , Yn ∈ P̃(E) is given. Then for allj′ ∈ J ,

Qj′(Y1, . . . , Yn) ≤ sup{Qj(Y1, . . . , Yn) : j ∈ J }

becausej′ ∈ J , i.e.

Qj′ ≤ sup{Qj : j ∈ J } .
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By Th-8, we conclude that

F(Qj′) ≤ F(sup{Qj : j ∈ J })

for all j′ ∈ J . Hence for allX1, . . . , Xn ∈ P̃(E) andj′ ∈ J ,

F(Qj′)(X1, . . . , Xn) ≤ F(sup{Qj : j ∈ J })(X1, . . . , Xn) ,

from which we deduce

sup{F(Qj)(X1, . . . , Xn) : j ∈ J } ≤ F(sup{Qj : j ∈ J })(X1, . . . , Xn) .

BecauseX1, . . . , Xn ∈ P̃(E) was arbitrary,

sup{F(Qj) : j ∈ J } ≤ F(sup{Qj : j ∈ J }) ,
as desired.

b. LetF be a given DFS,J an arbitary index set and(Qj)j∈J aJ -indexed family of semi-fuzzy
quantifiersQj : P(E)n -I, j ∈ J . Then

inf{F(Qj) : j ∈ J } = ˜̃¬ ˜̃¬ inf{F(Qj) : j ∈ J } becausẽ̃¬ involutive

= ˜̃¬ sup{˜̃¬F(Qj) : j ∈ J } by L-128, Def. 95

= ˜̃¬ sup{F(˜̃¬Qj) : j ∈ J } by (DFS 3)

≥ ˜̃¬F(sup{˜̃¬Qj : j ∈ J }) by part a. of the theorem,̃̃¬ nonincreasing

= ˜̃¬F(˜̃¬ inf{Qj : j ∈ J }) by L-128, Def. 95

= ˜̃¬ ˜̃¬F(inf{Qj : j ∈ J }) by (DFS 3)

= F(inf{Qj : j ∈ J }) . becausẽ̃¬ is involutive

G.2 Proof of Theorem 115

Lemma 129
LetQ : P(E)n -I be a semi-fuzzy quantifier and̃̃¬ : I -I a strong negation operator. Then
for all V,W ∈ P(E)n,

U(˜̃¬Q, V,W ) = ˜̃¬L(Q, V,W )

L(˜̃¬Q, V,W ) = ˜̃¬U(Q, V,W )

(˜̃¬Q)
U

V,W = ˜̃¬QL
V,W

(˜̃¬Q)
L

V,W = ˜̃¬QU
V,W

In addition, ifF is a DFS, then

˜
(˜̃¬Q)

U

V,W = ˜̃¬ Q̃L
V,W

˜
(˜̃¬Q)

L

V,W = ˜̃¬ Q̃U
V,W

˜
(˜̃¬Q)

U

= ˜̃¬ Q̃L

˜
(˜̃¬Q)

L

= ˜̃¬ Q̃U .
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Proof Clearly

U(˜̃¬Q, V,W ) = sup{˜̃¬Q(Z1, . . . , Zn) : V1 ⊆ Z1 ⊆ W1, . . . , Vn ⊆ Zn ⊆ Wn} by Def. 96

= ˜̃¬ inf{Q(Z1, . . . , Zn) : V1 ⊆ Z1 ⊆ W1, . . . , Vn ⊆ Zn ⊆ Wn} by L-128

= ˜̃¬L(Q, V,W ) , by Def. 96

i.e.

U(˜̃¬Q, V,W ) = ˜̃¬L(Q, V,W ) . (662)

Hence also

L(˜̃¬Q, V,W ) = ˜̃¬ ˜̃¬L(˜̃¬Q, V,W ) becausẽ̃¬ involutive

= ˜̃¬U(˜̃¬ ˜̃¬Q, V,W ) by (662)

= ˜̃¬U(Q, V,W ) . becausẽ̃¬ involutive

In turn, we conclude that for allY1, . . . , Yn ∈ P(E),

(˜̃¬Q)
U

V,W (Y1, . . . , Yn)

=

{
U(˜̃¬Q, V,W ) : Vi ⊆ Yi ⊆ Wi, all i = 1, . . . , n
1 : else

by Def. 97

=

{ ˜̃¬L(Q, V,W ) : Vi ⊆ Yi ⊆ Wi, all i = 1, . . . , n˜̃¬ 0 : else
by (662),˜̃¬ 0 = 1

= ˜̃¬{ L(Q, V,W ) : Vi ⊆ Yi ⊆ Wi, all i = 1, . . . , n
0 : else

= ˜̃¬QL
V,W (Y1, . . . , Yn) , by Def. 97

i.e.

(˜̃¬Q)
U

V,W = ˜̃¬QL
V,W . (663)

Similarly

(˜̃¬Q)
L

V,W = ˜̃¬ ˜̃¬ (˜̃¬Q)
L

V,W becausẽ̃¬ involutive

= ˜̃¬ (˜̃¬ ˜̃¬Q)
U

V,W by (663)

= ˜̃¬QU
V,W becausẽ̃¬ involutive.

Now letF be a DFS. Then

˜
(˜̃¬Q)

U

V,W = F((˜̃¬Q)
U

V,W ) by Def. 98

= F(˜̃¬QL
V,W ) by (663)

= ˜̃¬F(QL
V,W ) by (DFS 3)

= ˜̃¬ Q̃L
V,W , by Def. 98
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i.e.

˜
(˜̃¬Q)

U

V,W = ˜̃¬ Q̃L
V,W . (664)

By the usual reasoning,

˜
(˜̃¬Q)

L

V,W = ˜̃¬ ˜̃¬˜(˜̃¬Q)
L

V,W becausẽ̃¬ involutive

= ˜̃¬ ˜
(˜̃¬ ˜̃¬Q)

U

V,W by (664)

= ˜̃¬ Q̃U
V,W becausẽ̃¬ involutive.

Finally

˜
(˜̃¬Q)

U

= inf{˜(˜̃¬Q)
U

V,W : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} by Def. 99

= inf{˜̃¬ Q̃L
V,W : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} by (664)

= ˜̃¬ sup{Q̃L
V,W : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} by L-128

= ˜̃¬ Q̃L , by Def. 99

i.e.

˜
(˜̃¬Q)

U

= ˜̃¬ Q̃L . (665)

Analogously,

˜
(˜̃¬Q)

L

= ˜̃¬ ˜̃¬˜(˜̃¬Q)
L

becausẽ̃¬ involutive

= ˜̃¬ ˜
(˜̃¬ ˜̃¬Q)

U

by (665)

= ˜̃¬ Q̃U . becausẽ̃¬ involutive

Proof of Theorem 115

Let a DFSF and a semi-fuzzy quantifierQ : P(E)n -I be given.

a. We will first show thatQ̃L ≤ F(Q). To this end, we consider the quantifierQL : P(E)n -I
defined by

QL = sup{QL
V,W : V,W ∈ P(E)n, Vi ⊆ Wi for all i = 1, . . . , n} . (666)

Now letY = (Y1, . . . , Yn) ∈ P(E)n a choice of crisp argument sets. Then

Q(Y1, . . . , Yn)

= QL
Y, Y (Y1, . . . , Yn) by Def. 97

≤ sup{QL
V,W (Y1, . . . , Yn) : V,W ∈ P(E)n, Vi ⊆ Wi for all i = 1, . . . , n}

= QL(Y1, . . . , Yn) by (666),
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i.e.

Q ≤ QL . (667)

On the other hand, suppose thatV,W ∈ P(E)n satisfyVi ⊆ Wi for all i = 1, . . . , n. Then by
Def. 97 and Def. 96,

QL
V,W (Y1, . . . , Yn)

=

{
inf{Q(Z1, . . . , Zn) : Vi ⊆ Zi ⊆ Wi, i = 1, . . . , n} : Vi ⊆ Yi ⊆ Wi, i = 1, . . . , n
0 : else

≤
{
Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, all i = 1, . . . , n
0 : else

≤ Q(Y1, . . . , Yn)

for all Y1, . . . , Yn ∈ P(E), i.e.

Q ≥ QL
V,W .

We conclude that

Q ≥ sup{QL
V,W : V,W ∈ P(E)n, Vi ⊆ Wi for i = 1, . . . , n } ,

i.e.Q ≥ QL by (666). Combining this with (667), we see that

Q = QL . (668)

Therefore

F(Q) = F(QL) by (668)

= F(sup{QL
V,W : V,W ∈ P(E)n, Vi ⊆ Wi for all i = 1, . . . , n}) by (666)

≥ sup{F(QL
V,W ) : V,W ∈ P(E)n, Vi ⊆ Wi for all i = 1, . . . , n} by Th-114

= Q̃L . by Def. 99, Def. 98

b. Let us now prove thatF(Q) ≤ Q̃U .

F(Q) = F(˜̃¬ ˜̃¬Q) becausẽ̃¬ involutive

= ˜̃¬F(˜̃¬Q) by (DFS 3)

≤ ˜̃¬˜(˜̃¬Q)
L

by part a. and̃̃¬ nonincreasing

= ˜̃¬ ˜̃¬ Q̃U by L-129

= Q̃U . becausẽ̃¬ involutive

G.3 Proof of Theorem 116

Lemma 130
SupposeF is a DFS,E 6= ∅ is a base set andX1, . . . , Xn ∈ P̃(E). Then

a. F(∃)(X1
˜̃∪ · · · ˜̃∪Xn) =

n˜̃∨
i=1
F(∃)(Xi).

b. F(∀)(X1
˜̃∩ · · · ˜̃∩Xn) =

n˜̃∧
i=1
F(∀)(Xi).
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Proof

a. Let a base setE 6= ∅ be given. Further suppose thatY1, . . . , Yn ∈ P(E) for somen ∈ N.
Then apparently

∃(Y1 ∪ · · · ∪ Yn) = π1(̂!(Y1 ∪ · · · ∪ Yn)) = π1(̂!(Y1) ∪ · · · ∪ !̂(Yn))

whereπ1 : P({1}) -2, and! is the unique mapping! : E -{1}. Because theYi were arbitrar-
ily chosen, we conclude that

∃∪ · · · ∪︸ ︷︷ ︸
n− 1

= π1 ∪ · · · ∪︸ ︷︷ ︸
n− 1

◦
n
×
i=1

!̂ . (669)

Therefore

F(∃) ˜̃∪ · · · ˜̃∪︸ ︷︷ ︸
n− 1

= F(∃∪ · · · ∪︸ ︷︷ ︸
n− 1

) by (Z-4)

= F(π1 ∪ · · · ∪︸ ︷︷ ︸
n− 1

◦
n
×
i=1

!̂) by (669)

= π̃1
˜̃∪ · · · ˜̃∪︸ ︷︷ ︸
n− 1

◦
n
×
i=1
F̂(!) , by (Z-2), (Z-4), (Z-6)

i.e.

F(∃) ˜̃∪ · · · ˜̃∪︸ ︷︷ ︸
n− 1

= π̃1
˜̃∪ · · · ˜̃∪︸ ︷︷ ︸
n− 1

◦
n
×
i=1
F̂(!) (670)

From this we deduce that for allX1, . . . , Xn,

F(∃)(X1
˜̃∪ · · · ˜̃∪Xn)

= π̃1(F̂(!)(X1) ˜̃∪ · · · ˜̃∪ F̂(!)(Xn)) by (670)

= µF̂(!)(X1)˜̃∪···˜̃∪F̂(!)(Xn)
(1) by Def. 7

= µF̂(!)(X1)(1) ˜̃∨ · · · ˜̃∨ µF̂(!)(Xn)(1) by definition of˜̃∪
= π̃1(F̂(!)(X1)) ˜̃∨ · · · ˜̃∨ π̃1(F̂(!)(Xn)) by Def. 7

= F(∃)(X1) ˜̃∨ · · · ˜̃∨ F(∃)(Xn) . by Th-17
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b. In this case,

F(∀)(X1
˜̃∩ · · · ˜̃∩Xn)

= F(∃�)(X1
˜̃∩ · · · ˜̃∩Xn) utilizing the duality∀ = ∃�

= F(∃) ˜̃�(X1
˜̃∩ · · · ˜̃∩Xn) by (Z-3)

= ˜̃¬F(∃)(˜̃¬(X1
˜̃∩ · · · ˜̃∩Xn)) by Def. 12

= ˜̃¬F(∃)(˜̃¬X1
˜̃∪ · · · ˜̃∪ ˜̃¬Xn) by De Morgan’s law

= ˜̃¬ n˜̃∨
i=1
F(∃)(˜̃¬Xi) by part a. of the lemma

=

n˜̃∧
i=1

˜̃¬F(∃)(˜̃¬Xi) by De Morgan’s law

=

n˜̃∧
i=1
F(∃) ˜̃�(Xi) by Def. 12

=

n˜̃∧
i=1
F(∃�)(Xi) by (Z-3)

=

n˜̃∧
i=1
F(∀)(Xi) , by duality∃� = ∀

as desired.

Lemma 131
Let a base setE 6= ∅ be given andV,W, Y ∈ P(E) whereV ⊆ W . Then

((Y ∪ (W \ V ))4¬W ) = E ⇔ V ⊆ Y ⊆ W .

Proof

“⇐”. SupposeV ⊆ Y ⊆ W . We have to show that((Y ∪(W \V ))4¬W ) = E. This is apparent
from the following observations. Firstly

Y ∪ (W \ V ) ⊇ V ∪ (W \ V ) becauseV ⊆ Y

= W becauseV ⊆ W by assumption

and

Y ∪ (W \ V ) ⊆ W ∪ (W \ V ) becauseV ⊆ W

= W .

Hence

Y ∪ (W \ V ) = W . (671)

Therefore

(Y ∪ (W \ V ))4¬W = W4¬W by (671)

= E . by definition of symmetrical difference
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“⇒”. We will prove the converse implication by contraposition. Hence suppose thatV,W ∈
P(E), V ⊆ W andY ∈ P(E) is such thatV ⊆ Y ⊆ W fails.

• If V 6⊆ Y , then there is somee ∈ E such thate ∈ V , e /∈ Y . Becausee ∈ V andV ⊆ W ,
e /∈ W \ V . In turn becausee /∈ Y ande /∈ W \ V , we know thate /∈ Y ∪ (W \ V ). But
e ∈ V , V ⊆ W and hencee ∈ W , i.e. e /∈ ¬W . Hencee /∈ Y ∪ (W \ V ) ande /∈ ¬W ,
and by the definition of symmetrical difference,e /∈ (Y ∪ (W \ V ))4¬W . This proves that
(Y ∪ (W \ V ))4¬W 6= E.

• If Y 6⊆ W , then there is somee ∈ E such thate ∈ Y and e /∈ W . Becausee ∈ Y ,
we know thate ∈ (Y ∪ (W \ V )). In addition,e ∈ ¬W becausee /∈ W . Hence from
the definition of symmetrical difference,e /∈ (Y ∪ (W \ V ))4¬W , which proves that
(Y ∪ (W \ V ))4¬W 6= E.

Lemma 132
SupposeE 6= ∅ is some base set,n ∈ N and V,W ∈ P(E)n such thatVi ⊆ Wi for all i =
1, . . . , n. Then

ΞV,W (Y1, . . . , Yn) = ∀(
n
∩
i=1

((Yi ∪ (Wi \ Vi))4¬Wi))

=
n
∧
i=1
∀((Yi ∪ (Wi \ Vi))4¬Wi)

for all Y1, . . . , Yn ∈ P(E).

Proof Let a base setE 6= ∅ andV,W ∈ P(E)n, n ∈ N be given, whereVi ⊆ Wi for all
i = 1, . . . , n. We shall define the two-valued quantifierQ : P(E)n -2 by

Q(Y1, . . . , Yn) = ∀(
n
∩
i=1

((Yi ∪ (Wi \ Vi))4¬Wi)) , (672)

for all Y1, . . . , Yn ∈ P(E). By L-131, we know that(Yi ∪ (Wi \ Vi))4¬Wi = E exactly if
V1 ⊆ Yi ⊆ Wi. Hence

n
∩
i=1

((Y1 ∪ (Wi \ Vi))4¬Wi) = E ⇔ for all i = 1, . . . , n: Vi ⊆ Yi ⊆ Wi .

Recalling (672) and the definition of∀, this means that

Q(Y1, . . . , Yn) = ∀(
n
∩
i=1

((Y1 ∪ (Wi \ Vi))4¬Wi)) = 1 ⇔ for all i = 1, . . . , n: Vi ⊆ Yi ⊆ Wi .

Hence

Q(Y1, . . . , Yn) =

{
1 : Vi ⊆ Yi ⊆ Wi for all i = 1, . . . , n
0 : else

= ΞV,W (Y1, . . . , Yn) , by Def. 101

for all Y1, . . . , Yn, i.e.

ΞV,W (Y1, . . . , Yn) = ∀(
n
∩
i=1

((Yi ∪ (Wi \ Vi))4¬Wi)) (673)

as desired. The second equation in the lemma is apparent from (673) because

ΞV,W (Y1, . . . , Yn) =
n
∧
i=1

ΞVi,Wi
(Yi) by Def. 101

=
n
∧
i=1
∀((Yi ∪ (Wi \ Vi))4¬Wi) . by (673)
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Proof of Theorem 116

Let a base setE 6= ∅ andV,W ∈ P(E)n, n ∈ N be given, whereVi ⊆ Wi for all i = 1, . . . , n.
Further suppose thatF is a DFS andX1, . . . , Xn ∈ P̃(E). Then

Ξ̃V,W (X1, . . . , Xn)

= F(∀)(
n˜̃∩
i=1

((Xi
˜̃∪ (Wi \ Vi))

˜̃4¬Wi)) by L-132, (DFS 6), (Z-4), Th-5, (DFS 7)

=

n˜̃∧
i=1
F(∀)((Xi

˜̃∪ (Wi \ Vi))
˜̃4¬Wi) . by L-130

AbbreviatingZi = (Xi
˜̃∪ (Wi \ Vi))

˜̃4¬Wi, we obtain the desired

µZi(e) =


(µXi(e)

˜̃∨ 0) ˜̃xor 0 : e ∈ Wi

(µXi(e)
˜̃∨ 1) ˜̃xor 0 : e ∈ Wi \ Vi

(µXi(e)
˜̃∨ 0) ˜̃xor 1 : e /∈ Wi

=


µXi(e) : e ∈ Vi
1 : e ∈ Wi \ Vi˜̃¬µXi(e) : e /∈ Wi

for all e ∈ E.

G.4 Proof of Theorem 117

Lemma 133
The mappingsη : 2 -P({1}) andπ1 : P({1}) -2 defined by Def. 50 and Def. 6, resp., are
related by

η = π1
−1 .

Similarly, the mappings̃η : I - P̃({1}) and π̃1 : P̃({1}) -I defined by Def. 51 and Def. 7
satisfy

η̃ = π̃−1
1 .

Proof Let us first consider the crisp case. Hence letY ∈ P({1}). If Y = {1}, thenπ1(Y ) =
π1({1}) = 1 andη(π1(Y )) = η(1) = {1} = Y . If Y = 0, thenπ1(Y ) = π1(∅) = 0 and
η(π1(Y )) = η(0) = ∅ = Y . Henceη = π1

−1.
Now let us turn to the fuzzy case. LetX ∈ P̃({1}) a fuzzy subset, and let us abbreviatex = µX(1).
Thenπ̃1(X) = x andη̃(π̃1(X)) = η̃(x) = X, becauseX is the unique fuzzy subset of{1} which
hasµX(1) = x. Henceη̃ = π̃−1

1 , as desired.

Lemma 134
Let ˜̃¬ : I× I be a strong negation operator. Then for alla ∈ I,

ba = ˜̃¬ p˜̃¬ a
pa = ˜̃¬ b˜̃¬ a .
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If F is a QFM such that̃̃¬ is a strong negation operator and such thatF satisfies(DFS 3), then
for all a ∈ I, ˜̃

ba = ˜̃¬ ˜̃p˜̃¬ a˜̃pa = ˜̃¬ ˜̃b˜̃¬ a
Proof Supposea ∈ I andx ∈ 2. Then

pa(x) =

{
1 : x = 0
a : x = 1

by Def. 100

=

{ ˜̃¬ 0 : x = 0˜̃¬ ˜̃¬ a : x = 1
becausẽ̃¬ 0 = 1, ˜̃¬ involution

= ˜̃¬{ 0 : x = 0˜̃¬ a : x = 1

= ˜̃¬ b˜̃¬ a(x) , by Def. 100

i.e.

pa(x) = ˜̃¬ b˜̃¬ a(x) . (674)

Similarly

ba(x) = ˜̃¬ ˜̃¬ b˜̃¬ ˜̃¬ a(x) becausẽ̃¬ involution

= ˜̃¬ p˜̃¬ a(x) . by (674)

Now supposeF is a QFM with the required properties. Because˜̃¬ is assumed to be a strong

negation operator,̃̃pa and˜̃ba are related as claimed by the first part of the lemma. From Def. 52

and (DFS 3), we deduce that˜̃pa(x) = ˜̃¬ ˜̃b˜̃¬ a(x) and˜̃ba(x) = ˜̃¬ ˜̃p˜̃¬ a(x) for all a, x ∈ I.

Lemma 135
Let a base setE 6= ∅ be given ande ∈ E. Further letF be a DFS. Thenπe¬ = ˜̃¬πe and
π̃e ˜̃¬ = ˜̃¬ π̃e.
Proof To see that the first equation holds, letY ∈ P(E). Then

πe¬(Y ) = πe(¬Y ) by Def. 11

= χ¬Y (e) by Def. 6

=

{
1 : e /∈ Y
0 : e ∈ Y

=

{ ˜̃¬ 0 : e /∈ Y˜̃¬ 1 : e ∈ Y
becausẽ̃¬ strong negation

= ˜̃¬{ 0 : e /∈ Y
1 : e ∈ Y

= ˜̃¬πe(Y ) . by Def. 6
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Similarly if X ∈ P̃(E),

π̃e ˜̃¬(X) = π̃e(˜̃¬X) by Def. 11

= µ˜̃¬X(e) by Def. 7

= ˜̃¬µX(e) by definition of fuzzy complement

= ˜̃¬ π̃e(X) . by Def. 7

Lemma 136
Let a semi-fuzzy quantifierQ : P(E)n -I be given andV,W ∈ P(E)n. Then for allY1, . . . , Yn ∈
P(E),

QL
V,W (Y1, . . . , Yn) = bL(Q,V,W )(ΞV,W (Y1, . . . , Yn))

QU
V,W (Y1, . . . , Yn) = pU(Q,V,W )(ΞV,W (Y1, . . . , Yn)) .

Proof SupposeQ : P(E)n -I andV,W ∈ P(E)n are given. Then for allY1, . . . , Yn ∈ P(E),

QL
V,W (Y1, . . . , Yn)

=

{
L(Q, V,W ) : Vi ⊆ Yi ⊆ Wi, all i = 1, . . . , n
0 : else

by Def. 97

=

{
L(Q, V,W ) : ΞV,W (Y1, . . . , Yn) = 1
0 : ΞV,W (Y1, . . . , Yn) = 0

by Def. 101

= bL(Q,V,W )(ΞV,W (Y1, . . . , Yn)) ,

where the last equation holds becausebL(Q,V,W )(0) = 0 and bL(Q,V,W )(1) = L(Q, V,W ) by
Def. 100.
In the case ofQU

V,W , let ˜̃¬ a strong negation. Then

QU
V,W (Y1, . . . , Yn)

= ˜̃¬ ˜̃¬QU
V,W (Y1, . . . , Yn) becausẽ̃¬ involution

= ˜̃¬ (˜̃¬Q)
L

V,W (Y1, . . . , Yn) by L-129

= ˜̃¬ bL(˜̃¬Q,V,W )(ΞV,W (Y1, . . . , Yn)) by first part of the lemma

= ˜̃¬ b˜̃¬U(Q,V,W )(ΞV,W (Y1, . . . , Yn)) by L-129

= pU(Q,V,W )(ΞV,W (Y1, . . . , Yn)) . by L-134

Lemma 137
Let a base setE 6= ∅ be given. Further letn ∈ N andV,W ∈ P(E)n such thatVi ⊆ Wi for
i = 1, . . . , n. Then for alla ∈ I and allY1, . . . , Yn,

ba(ΞV,W (Y1, . . . , Yn)) = Qba(
n
∩
i=1
¬̂!(¬((Yi ∪ (Wi \ Vi))4¬Wi)))
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Proof In the following, we shall denote by! the unique mapping! : E -{1}. Then

ΞV,W (Y1, . . . , Yn)

=
n
∧
i=1

ΞVi,Wi
(Yi) by Def. 101

=
n
∧
i=1
∀((Yi ∪ (Wi \ Vi))4¬Wi) by L-132

=
n
∧
i=1
¬∃(¬((Yi ∪ (Wi \ Vi))4¬Wi)) because∀ = ∃�

=
n
∧
i=1
¬π1(̂!(¬((Yi ∪ (Wi \ Vi))4¬Wi))) because∃ = π1 ◦ !̂

=
n
∧
i=1

π1(¬̂!(¬((Yi ∪ (Wi \ Vi))4¬Wi))) by L-135

= π1(
n
∩
i=1

η(π1(¬̂!(¬((Yi ∪ (Wi \ Vi))4¬Wi))))) apparent from Def. 50

= π1(
n
∩
i=1
¬̂!(¬((Yi ∪ (Wi \ Vi))4¬Wi))) , by L-133

i.e.

ΞV,W (Y1, . . . , Yn) = π1(
n
∩
i=1
¬̂!(¬((Yi ∪ (Wi \ Vi))4¬Wi))) . (675)

Hence

ba(ΞV,W (Y1, . . . , Yn))

= ba(η
−1(η(ΞV,W (Y1, . . . , Yn)))) see Def. 50

= Qba(η(ΞV,W (Y1, . . . , Yn))) see Def. 52

= Qba(η(π1(
n
∩
i=1
¬̂!(¬((Yi ∪ (Wi \ Vi))4¬Wi))))) by (675)

= Qba(
n
∩
i=1
¬̂!(¬((Yi ∪ (Wi \ Vi))4¬Wi))) . by L-133

Lemma 138
LetE 6= ∅ be given,n ∈ N andV,W ∈ P(E)n such thatVi 6⊆ Wi for somei ∈ {1, . . . , n}.
Further suppose thata ∈ I, andQ,Q′ : P(E)n -I are defined by

Q(Y1, . . . , Yn) = ba(ΞV,W (Y1, . . . , Yn))

Q′(Y1, . . . , Yn) = pa(ΞV,W (Y1, . . . , Yn))

for all Y1, . . . , Yn ∈ P(E). Then in every DFSF ,

F(Q)(X1, . . . , Xn) =
˜̃
ba(Ξ̃V,W (X1, . . . , Xn))

F(Q′)(X1, . . . , Xn) = ˜̃pa(Ξ̃V,W (X1, . . . , Xn))

for all X1, . . . , Xn ∈ P̃(E).
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Proof
By assumption, there is ani ∈ {1, . . . , n} such thatVi 6⊆ Wi. Hence by Def. 101,

ΞVi,Wi
(Yi) = 0

for all Yi ∈ P(E). Hence also by Def. 101,

ΞV,W (Y1, . . . , Yn) =
n
∧
i=1

ΞVi,Wi
(Yi) = 0 (676)

for all Y1, . . . , Yn ∈ P(E). We deduce from Th-1 and Th-6 that

Ξ̃V,W (X1, . . . , Xn) = 0 (677)

for all X1, . . . , Xn ∈ P̃(E). Now let us considerQ andQ′. By (676) and Def. 100,

Q(Y1, . . . , Yn) = ba(ΞV,W (Y1, . . . , Yn)) = ba(0) = 0

Q′(Y1, . . . , Yn) = pa(ΞV,W (Y1, . . . , Yn)) = pa(0) = 1

for all Y1, . . . , Yn ∈ P(E). We conclude that

F(Q)(X1, . . . , Xn) = 0 by Th-1, Th-6

= ba(0) by Def. 100

=
˜̃
ba(0) by Th-1, Def. 52

=
˜̃
ba(Ξ̃V,W (X1, . . . , Xn)) . by (677)

By similar reasoning,

F(Q′)(X1, . . . , Xn) = 1 by Th-1, Th-6

= pa(0) by Def. 100

= ˜̃pa(0) by Th-1, Def. 52

= ˜̃pa(Ξ̃V,W (X1, . . . , Xn)) . by (677)

Lemma 139
Let E 6= ∅ be given,n ∈ N and V,W ∈ P(E)n. Further suppose thata ∈ I andQ,Q′ :
P(E)n -I are defined by

Q(Y1, . . . , Yn) = ba(ΞV,W (Y1, . . . , Yn))

Q′(Y1, . . . , Yn) = pa(ΞV,W (Y1, . . . , Yn))

for all Y1, . . . , Yn ∈ P(E). Then in every DFSF ,

F(Q)(X1, . . . , Xn) =
˜̃
ba(Ξ̃V,W (X1, . . . , Xn))

F(Q′)(X1, . . . , Xn) = ˜̃pa(Ξ̃V,W (X1, . . . , Xn))

for all X1, . . . , Xn ∈ P̃(E).
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Proof The case thatVi 6⊆ Wi for somei ∈ {1, . . . , n} is covered by L-138. We may hence
assume thatVi ⊆ Wi for all i = 1, . . . , n.
Let us first considerF(Q). We already know from L-137 that in the crisp case,

Q(Y1, . . . , Yn) = Qba(
n
∩
i=1
¬̂!(¬((Yi ∪ (Wi \ Vi))4¬Wi)))

for all Y1, . . . , Yn ∈ P(E). Hence by (DFS 6), (DFS 5), (Z-6), (Z-4) and (DFS 7),

F(Q)(X1, . . . , Xn)

= F(Qba)(

n˜̃∩
i=1

˜̃¬ F̂(!)(˜̃¬((Xi
˜̃∪ (Wi \ Vi))

˜̃4¬Wi)))

= F(Qba)(

n˜̃∩
i=1

˜̃¬ η̃(F(∃)(˜̃¬((Xi
˜̃∪ (Wi \ Vi))

˜̃4¬Wi)))) by Th-17, L-133

= F(Qba)(η̃(

n˜̃∧
i=1

˜̃¬F(∃)(˜̃¬((Xi
˜̃∪ (Wi \ Vi))

˜̃4¬Wi)))) apparent from Def. 51

= F(Qba)(η̃(

n˜̃∧
i=1
F(∀)((Xi

˜̃∪ (Wi \ Vi))
˜̃4¬Wi))) by (Z-3),∀ = ∃�

=
˜̃
ba(

n˜̃∧
i=1
F(∀)((Xi

˜̃∪ (Wi \ Vi))
˜̃4¬Wi)) by Def. 52

=
˜̃
ba(Ξ̃V,W (X1, . . . , Xn)) . by Th-116

Similarly,

F(Q′)(X1, . . . , Xn)

= ˜̃¬ ˜̃¬F(Q′)(X1, . . . , Xn) becausẽ̃¬ involutive

= ˜̃¬F(˜̃¬Q′)(X1, . . . , Xn) by (DFS 3)

= ˜̃¬ ˜̃b˜̃¬ a(Ξ̃V,W (X1, . . . , Xn)) by L-134 and first part of this lemma

= ˜̃pa(Ξ̃V,W (X1, . . . , Xn)) . by L-134

Proof of Theorem 117

SupposeQ : P(E)n -I is a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E). Further letV,W ∈
P(E)n and a DFSF be given. We already know from L-136 that in the crisp case,

QL
V,W (Y1, . . . , Yn) = bL(Q,V,W )(ΞV,W (Y1, . . . , Yn))

QU
V,W (Y1, . . . , Yn) = pU(Q,V,W )(ΞV,W (Y1, . . . , Yn))

for all Y1, . . . , Yn ∈ P(E). Hence by L-139,

Q̃L
V,W (Y1, . . . , Yn) =

˜̃
bL(Q,V,W )(Ξ̃V,W (X1, . . . , Xn))

Q̃U
V,W (Y1, . . . , Yn) = ˜̃pU(Q,V,W )(Ξ̃V,W (X1, . . . , Xn))

for all X1, . . . , Xn ∈ P̃(E), as desired.
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G.5 Proof of Theorem 118

Let us denote byCa : 2 -I the constant mapping

Ca(x) = a

for all x ∈ {0, 1}. Then clearly

ba(0) = 0 ≤ a = Ca(0) and

ba(1) = a = Ca(1) ,

i.e. ba ≤ Ca. Hence by Def. 52 and Th-8,˜̃ba ≤ ˜̃Ca, i.e. for allx ∈ I,

˜̃
ba(x) =

˜̃
Ca(x) = a (678)

by Th-1 and Th-6. Similarlyba(0) = 0 = id2(0) andba(1) = a ≤ 1 = id2(1) and hencẽ̃ba ≤
˜̃
id2,

i.e.

˜̃
ba(x) ≤ ˜̃id2(x) = F(π1)(η̃(x)) = π̃1(η̃(x)) = x (679)

by Def. 52, (Z-2) and L-133. Combining (678) and (679), i.e.˜̃
ba(x) ≤ a and˜̃ba(x) ≤ x, we deduce

˜̃
ba(x) ≤ min(a, x) , (680)

for all x ∈ I. Considering̃̃pa, we have

˜̃pa(x) = ˜̃¬ ˜̃b˜̃¬ a(x) by L-134

≥ ˜̃¬min(˜̃¬ a, x) by (680),˜̃¬ nonincreasing

= max(˜̃¬ ˜̃¬ a, ˜̃¬x) becausẽ̃¬ nonincreasing

= max(a, ˜̃¬x) , becausẽ̃¬ involution

for all a, x ∈ I, as desired.

G.6 Proof of Theorem 119

Lemma 140
SupposeQ : P(E) -I is a nondecreasing one-place quantifier. Then for allV,W ∈ P(E)
whereV ⊆ W ,

L(Q, V,W ) = Q(V )

U(Q, V,W ) = Q(W ) .
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Proof LetQ : P(E) -I be a monadic nondecreasing semi-fuzzy quantifier, i.e.

Q(Y ) ≤ Q(Y ′)

wheneverY, Y ′ ∈ P(E) such thatY ⊆ Y ′. Now suppose thatV,W ∈ P(E), V ⊆ W are
given. Then for allY ∈ P(E) such thatV ⊆ Y ⊆ W , Q(V ) ≤ Q(Y ) ≤ Q(W ), becauseQ is
nondecreasing. Hence

L(Q, V,W ) = inf{Q(Y ) : V ⊆ Y ⊆ W} by Def. 96

= Q(V )

becauseQ(V ) ≤ Q(Y ) for all Y ∈ {Y : V ⊆ Y ⊆ W}, and becauseV ∈ {Y : V ⊆ Y ⊆ W}.
Similarly

U(Q, V,W ) = sup{Q(Y ) : V ⊆ Y ⊆ W} by Def. 96

= Q(W )

becauseQ(Y ) ≤ Q(W ) for all Y ∈ {Y : V ⊆ Y ⊆ W} and becauseW ∈ {Y : V ⊆ Y ⊆ W}.

Lemma 141
SupposeQ : P(E) -I is a nondecreasing one-place quantifier, andF is a DFS. Then for all
X ∈ P̃(E),

Q̃L(X) = sup{˜̃bQ(V )(Ξ̃V,E(X)) : V ∈ P(E)}

Q̃U(X) = inf{˜̃pQ(W )(Ξ̃∅,W (X)) : W ∈ P(E)} .

Proof Let Q : P(E) -I be a nondecreasing one-place quantifier, and letF be a given DFS.
For allX ∈ P̃(E),

Q̃L(X) = sup{Q̃L
V,W (X) : V,W ∈ P(E), V ⊆ W} by Def. 99

= sup{˜̃bL(Q,V,W )(Ξ̃V,W (X)) : V,W ∈ P(E), V ⊆ W} by Th-117

= sup{sup{˜̃bL(Q,V,W )(Ξ̃V,W (X)) : W ∈ P(E), V ⊆ W} : V ∈ P(E)}

= sup{sup{˜̃bQ(V )(Ξ̃V,W (X)) : W ∈ P(E), V ⊆ W} : V ∈ P(E)} by L-140

= sup{˜̃bQ(V )(Ξ̃V,E(X)) : V ∈ P(E)}

where the last step holds becausebQ(V )(x) is nondecreasing in its argument, and by Th-6 and

Def. 52, it follows that̃̃bQ(V )(x) is nondecreasing inx, too. Similarly,ΞV,W ≤ ΞV,W ′ whenever
W ⊆ W ′, and by Th-8,Ξ̃V,W ≤ Ξ̃V,W ′ wheneverW ⊆ W ′. HenceΞ̃V,W (X) ≤ Ξ̃V,E(X) for

all W ∈ P(E), V ⊆ W . In turn becausẽ̃bQ(V )(x) is nondecreasing inx, ˜̃bQ(V )(Ξ̃V,W (X)) ≤˜̃
bQ(V )(Ξ̃V,E(X)) for all W ∈ P(E), V ⊆ W , and hence

sup{˜̃bQ(V )(Ξ̃V,W (X)) : W ∈ P(E), V ⊆ W} =
˜̃
bQ(V )(Ξ̃V,E(X)) ,
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for all V ∈ P(E).
In the case of̃QU , we obtain by analogous reasoning that

Q̃L(X) = inf{Q̃U
V,W (X) : V,W ∈ P(E), V ⊆ W} by Def. 99

= inf{˜̃pU(Q,V,W )(Ξ̃V,W (X)) : V,W ∈ P(E), V ⊆ W} by Th-117

= inf{inf{˜̃pU(Q,V,W )(Ξ̃V,W (X)) : V ∈ P(E), V ⊆ W} : W ∈ P(E)}

= inf{inf{˜̃pQ(W )(Ξ̃V,W (X)) : V ∈ P(E), V ⊆ W} : W ∈ P(E)} by L-140

= inf{˜̃pQ(W )(Ξ̃∅,W (X)) : W ∈ P(E)} .

To see that the last step holds, we observe thatΞ∅,W ≥ ΞV,W for all V ⊆ W . Hence by Th-8,
Ξ̃∅,W ≥ Ξ̃V,W for all V ⊆ W . BecausepQ(W )(x) is nonincreasing in its argument,˜̃pQ(W )(x) is

nonincreasing in its argument, too (see Def. 52 and Th-6).˜̃pQ(W )(Ξ̃V,W (X)) is hence minimized

by Ξ̃∅,W , i.e.

inf{˜̃pQ(W )(Ξ̃V,W (X)) : V ⊆ W} = ˜̃pQ(W )(Ξ̃∅,W (X)) .

Lemma 142
SupposeE 6= ∅ is a base set,k ∈ N, F a DFS andX ∈ P̃(E). Then

˜[≥ k]
L

(X) = sup{F(∀)(X ˜̃∪ ¬V ) : V ∈ P(E), |V | = k}

˜[≥ k]
U

(X) = inf{F(∃)(X ˜̃∩ ¬W ) : W ∈ P(E), |W | < k}

= inf{F(∃)(X ˜̃∩ ¬W ) : W ∈ P(E), |W | = k − 1}

Proof LetE 6= ∅ a given base set. Further assume that a DFSF , a choice ofk ∈ N, and a fuzzy

argument setX are given. Considering the lower bound˜[≥ k]
L

, we compute:

˜[≥ k]
L

(X) = sup{˜̃b[≥ k](V )(Ξ̃V,E(X)) : V ∈ P(E)} by L-141

= sup{˜̃b1(Ξ̃V,E(X)) : V ∈ P(E), [≥ k](V ) = 1} because[≥ k] two-valued

= sup{Ξ̃V,E(X) : V ∈ P(E), [≥ k](V ) = 1} becauseb1 = id2, i.e.˜̃b1 = idI

= sup{Ξ̃V,E(X) : V ∈ P(E), |V | ≥ k} by Def. 103

= sup{F(∀)(X ˜̃∪ ¬V ) : V ∈ P(E), |V | ≥ k} by Th-116

= sup{F(∀)(X ˜̃∪ ¬V ) : V ∈ P(E), |V | = k} ,

where the last step holds because∀(X ∪¬V ) ≤ ∀(X ∪¬V ′) wheneverV ′ ⊆ V , a property which
transfers toF(∀) by (Z-4), (DFS 7) and Th-8.
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Similarly in the case of the upper bound˜[≥ k]
U

,

˜[≥ k]
U

(X)

= inf{˜̃p[≥ k](W )(Ξ̃∅,W (X)) : W ∈ P(E)} by L-141

= inf{˜̃p0(Ξ̃∅,W (X)) : W ∈ P(E), [≥ k](W ) = 0} because[≥ k] two-valued

= inf{˜̃¬ Ξ̃∅,W (X) : W ∈ P(E), [≥ k](W ) = 0} becausep0 = ¬

= inf{˜̃¬ Ξ̃∅,W (X) : W ∈ P(E), |W | < k} by Def. 103

= inf{˜̃¬F(∀)((X ˜̃∪ (W \∅))
˜̃4¬W ) : W ∈ P(E), |W | < k} by Th-116

= inf{˜̃¬F(∀)((˜̃¬X) ˜̃∪W ) : W ∈ P(E), |W | < k}

= inf{F(∃)(˜̃¬(˜̃¬X ˜̃∪W )) : W ∈ P(E), |W | < k} by (Z-3),∃ = ∀�

= inf{F(∃)(X ˜̃∩ ¬W ) : W ∈ P(E), |W | < k} by De Morgan’s law

= inf{F(∃)(X ˜̃∩ ¬W ) : W ∈ P(E), |W | = k − 1} ,

where the last step holds because in the crisp case,∃(Y ∩¬W ) ≤ ∃(Y ∩¬W ′) for all Y,W,W ′ ∈
P(E) such thatW ′ ⊆ W . This carries over toF(∃) by Th-8 and (DFS 6), (DFS 7).

Proof of Theorem 119

Let us first consider˜[≥ k]
L

(X). By lemma L-142,

˜[≥ k]
L

(X) = sup{F(∀)(X ˜̃∪ ¬V ) : V ∈ P(E), |V | = k} (681)

BecauseE = {v1, . . . , vm} is finite, we conclude from theorem Th-24 that

F(∀)(X ˜̃∪ ¬V ) = c1
˜̃∧ · · · ˜̃∧ ck (682)

whereV = {c1, . . . , ck}, |V | = k, i.e. thecj are pairwise distinct.
Because|E| = m, we can order the elements ofE in such a way thatE = {e1, . . . , em}, µX(e1) ≥
µX(e2) ≥ · · · ≥ µX(em). It is apparent from equation (682) and the monotonicity of thet-norm ˜̃∧
thatF(∀)(X ˜̃∪ ¬V ) is maximised byV ′ = {e1, . . . , ek}, i.e.

˜[≥ k]
L

(X) = sup{F(∀)(X ˜̃∪ ¬V ) : V ∈ P(E), |V | = k} by (681)

= F(∀)(X ˜̃∪ ¬V ′)
= µX(e1) ˜̃∧ · · · ˜̃∧ µX(ek)

= µ[1](X) ˜̃∧ · · · ˜̃∧ µ[k](X) . by Def. 102
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In the case of the upper bound˜[≥ k]
U

(X), can again utilise thatE is finite, |E| = m.

˜[≥ k]
U

(X)

= inf{F(∃)(X ˜̃∩ ¬W ) : W ∈ P(E), |W | = k − 1} by L-142

= inf{F(∃)(X ˜̃∩ Z) : Z ∈ P(E), |Z| = m− k + 1)} substitutingZ = ¬W

= inf{zk ˜̃∨ · · · ˜̃∨ zm : Z = {zk, . . . , zm} ∈ P(E), |Z| = m− k + 1} by Th-25

= µX(ek)
˜̃∨ · · · ˜̃∨ µX(em)

= µ[k](X) ˜̃∨ · · · ˜̃∨ µ[m](X) ,

where againE = {e1, . . . , em}, µX(e1) ≥ µX(e2) ≥ · · · ≥ µX(em), i.e.µ[j](X) = µX(ej) for all

j = 1, . . . ,m, cf. Def. 102. It is then apparent from monotonicity considerations thatzk
˜̃∨ · · · ˜̃∨ zm

is minimized byZ = {ek, . . . , em}.

G.7 Proof of Theorem 120

AssumeE 6= ∅ is a finite base set of cardinality|E| = m, k ∈ N, F is a DFS, andX ∈ P̃(E) a
fuzzy argument set. We shall abbreviate

β = sup{α ∈ I : |(X)≥α| ≥ k} . (683)

Now let ε > 0 and chooseγ ∈ (β − ε, β). Then |(X)≥γ| ≥ k by (683). Hence there exist
e1, . . . , ek ∈ E such that|{e1, . . . , ek}| = k, i.e. theej ’s are pairwise distinct, and

µX(ej) ≥ γ (684)

for all j = 1, . . . , k. Therefore

˜[≥ k]
L

(X)

= sup{F(∀)(X ˜̃∪ ¬V ) : |V | = k} by L-142

≥ F(∀)(X ˜̃∪ ¬{e1, . . . , ek})

= min{µX(ej) : j = 1, . . . , k} by Th-24 and̃̃∧ = min becauseF standard DFS

≥ γ by (684)

> β − ε . by choice ofγ

Becauseε > 0 was chosen arbitrarily, we deduce that˜[≥ k]
L

(X) ≥ β. Hence by Th-115,

F([≥ k])(X) ≥ β . (685)

To see that the converse inequation holds, let againε > 0 and choose someγ ∈ (β, β + ε). Then
by the definition ofβ, |(X)≥γ| < k. Hence letW ′ = (X)≥γ. Then

˜[≥ k]
U

(X)

= inf{F(∃)(X ∩ ¬W ) : W ∈ P(E), |W | < k} by L-142 and̃̃∩ = ∩ becauseF std-DFS

≤ F(∃)(X ∩ ¬W ′) because|W ′| < k

= F(∃)(X ∩ ¬(X)≥γ) . by definition ofW ′
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Clearlye /∈ (X)≥γ iff µX(e) < γ, hencee ∈ ¬(X)≥γ iff µX(e) < γ, and

µX∩¬(X)≥γ
(e) =

{
µX(e) : µX(e) < γ
0 : µX(e) ≥ γ

(686)

We conclude that

˜[≥ k]
U

(X) ≤ F(∃)(X ∩ ¬(X)≥γ)

= sup{µX∩¬(X)≥γ
(e) : e ∈ E} by Th-25 andF std-DFS

≤ γ by (686)

< β + ε . by choice ofγ ∈ (β, β + ε)

Becauseε > 0 was arbitrarily chosen, this means that˜[≥ k]
U

(X) ≤ β. Combining this with
inequation (685), we obtain

β ≤ F([≥ k])(X) by (685)

≤˜[≥ k]
U

(X) by Th-115

≤ β ,

i.e.F([≥ k])(X) = β = sup{α ∈ I : |(X)≥α| ≥ k}, see equation (683).
The claim aboutF([≥ k])(X) in the case of finite base setsE 6= ∅, |E| = m is apparent from
Th-119. We then have

F([≥ k])(X) ≥ µ[1](X) ˜̃∧ · · · ˜̃∧ µ[k](X) by Th-119

= min{µ[1](X), . . . , µ[k](X)} becauseF std-DFS

= µ[k](X) . apparent from Def. 102

Similarly

F([≥ k])(X) ≤ µ[k](X) ˜̃∨ · · · ˜̃∨ µ[m](X) by Th-119

= max{µ[k](X), . . . , µ[m](X)} becauseF std-DFS

= µ[k](X) . apparent from Def. 102

HenceF([≥ k])(X) = µ[k](X), as desired.

G.8 Proof of Theorem 121

SupposeF is a QFM which satisfies conditions a. to d. of the theorem. We shall further assume
thatF is compatible with fuzzy argument insertion. Let us first considerba, wherea ∈ I. Clearly

ba(x) =

{
0 : x = 0
a : x = 1

by Def. 100

= x ˜̃∧ a by conditions a. and b.

= π̃1(η(x) ˜̃∪ η̃(a)) apparent from Def. 7, Def. 50,Def. 51

= F(π1)(η(x) ˜̃∪ η̃(a)) by condition d.

= F(π1∩)(η(x), η̃(a)) by condition c.

= F(π1∩) /̃ η̃(a)(η(x)) , by Def. 89
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i.e.

Qba = F(π1∩) /̃ η̃(a) . (687)

Hence for allx ∈ I,

˜̃
ba(x) = F(Qba)(η̃(x)) by Def. 52

= F(F(π1∩) /̃ η̃(a))(η̃(x)) by (687)

= F(π1∩)(η̃(x), η̃(a)) by assumption onF (fuzzy argument insertion)

= π̃1(η̃(x) ˜̃∩ η̃(a)) by assumptions c. and d.

= x ˜̃∧ a . by Def. 7, Def. 51

Considering̃̃pa(x), we can apply lemma L-134 to conclude that

˜̃pa(x) = ˜̃¬ ˜̃b˜̃¬ a(x) by L-134

= ˜̃¬(x ˜̃∧ ˜̃¬ a) by first part of theorem, see above

= ˜̃¬(˜̃¬ ˜̃¬x ˜̃∧ ˜̃¬ a) by condition e.,̃̃¬ involution

= ˜̃¬x ˜̃∨ a . by condition f.

G.9 Proof of Theorem 122

Lemma 143
Let a base setE 6= ∅ be given,n ∈ N andV,W ∈ P(E)n such thatVi ⊆ Wi for all i = 1, . . . , n.
In every standard DFSF ,

Ξ̃V,W (X1, . . . , Xn) = min{Ξ̃Vi,Wi
(Xi) : i = 1, . . . , n}

Ξ̃Vi,Wi
(Xi) = min(inf{µXi(e) : e ∈ Vi}, inf{1− µXi(e) : e /∈ Wi}) ,

for all X1, . . . , Xn ∈ P̃(E).

Proof BecauseF is a standard DFS, we havẽ̃F(∧) = min, ˜̃F(¬) = ¬, where¬x = 1 − x for
all x ∈ I, see Def. 49. Hence by Th-116,

Ξ̃V,W (X1, . . . , Xn) = min{F(∀)(Zi) : i = 1, . . . , n}

where theZi ∈ P̃(E) are defined by

µZi(e) =


µXi(e) : e ∈ Vi
1 : e ∈ Wi \ Vi
1− µXi(e) : e /∈ Wi

(688)



G PROOFS OF THEOREMS IN CHAPTER 8 309

for all e ∈ E. Hence for alli = 1, . . . , n,

Ξ̃Vi,Wi
(Xi)

= F(∀)(Zi)

= inf{µZi(e) : e ∈ E} by Th-24, ˜̃F(∧) = min

= min{inf{µZi(e) : e ∈ Vi}, inf{µZi(e) : e ∈ Wi \ Vi},
inf{µZi(e) : e /∈ Wi}}

= min{inf{µXi(e) : e ∈ Vi}, 1, inf{1− µXi(e) : e /∈ Wi}} by (688)

= min(inf{µXi(e) : e ∈ Vi}, inf{1− µXi(e) : e /∈ Wi}) . because1 identity ofmin

Lemma 144
SupposeE 6= ∅ is a base set,n ∈ N andX1, . . . , Xn ∈ P̃(E). In addition, suppose thatF is a
standard DFS. Then for allγ ∈ I andY ∈ P(E)n such thatY1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn),

Ξ̃Y,Y (X1, . . . , Xn) ≥ 1
2
− 1

2
γ .

Proof

Case a.: γ = 0.
Let us recall that by Def. 66,(Xi)

min
0 = (X)

>
1
2

and(Xi)
max
0 = (Xi)≥1

2
. BecauseYi ∈ T0(Xi), we

know thatYi ⊆ (Xi)
max
0 , i.e.Yi ⊆ (Xi)≥1

2
. Hence ife ∈ Yi, then

µXi(e) ≥ 1
2

(689)

by Def. 64. In addition, becauseYi ∈ T0(Xi), we know that(Xi)>1
2

= (Xi)
min
0 ⊆ Yi. Hence if

e /∈ Yi, thene /∈ (Xi)>1
2

and by Def. 65,µXi(e) ≤ 1
2
, i.e.

1− µXi(e) ≥ 1
2
. (690)

Therefore

Ξ̃V,W (X1, . . . , Xn)

= min{min(inf{µX(e) : e ∈ Y }, inf{1− µX(e) : e /∈ Y }) : i = 1, . . . , n} by L-143

≥ 1
2
. by (689), (690)

Case b.: γ > 0.
Similarly if γ > 0, (Xi)

min
γ = (X)

≥1
2

+
1
2
γ

and (Xi)
max
γ = (Xi)>1

2
−1

2
γ

by Def. 66. Because

Yi ∈ Tγ(Xi), Yi ⊆ (Xi)
max
γ , i.e.Yi ⊆ (Xi)>1

2
−1

2
γ
. Hence ife ∈ Yi, then

µXi(e) >
1
2
− 1

2
γ (691)
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by Def. 65. In addition, becauseYi ∈ Tγ(Xi), we know that(Xi)≥1
2

+
1
2
γ

= (Xi)
min
γ ⊆ Yi. Hence if

e /∈ Yi, thene /∈ (Xi)≥1
2

+
1
2
γ

and by Def. 64,µXi(e) <
1
2

+ 1
2
γ, i.e.

1− µXi(e) > 1
2
− 1

2
γ . (692)

Therefore

Ξ̃V,W (X1, . . . , Xn)

= min{min(inf{µX(e) : e ∈ Y }, inf{1− µX(e) : e /∈ Y }) : i = 1, . . . , n} by L-143

≥ 1
2
− 1

2
γ . by (691), (692)

Lemma 145
SupposeE 6= ∅ is a base set,n ∈ N andX1, . . . , Xn ∈ P̃(E). In addition, suppose thatF is a
standard DFS. Then for allγ ∈ I,

Ξ̃V,W (X1, . . . , Xn) ≥ 1
2

+ 1
2
γ .

whereV,W ∈ P(E)n are defined byVi = (X)min
γ ,Wi = (X)max

γ for i = 1, . . . , n.

Proof

Case a.: γ = 0.
If γ = 0, then(Xi)

min
0 = (Xi)>1

2
and(Xi)

max
0 = (Xi)≥1

2
by Def. 66. Hence ife ∈ Vi = (Xi)

min
0 =

(Xi)>1
2
, then

µXi(e) >
1
2
. (693)

In addition, we haveWi = (Xi)
max
0 = (X)

≥1
2
, i.e. e /∈ Wi iff µXi(e) <

1
2

by Def. 64. Hence if

e /∈ Wi, then

1− µXi(e) > 1
2
. (694)

Therefore

Ξ̃Vi,Wi
(Xi) = min(inf{µXi(e) : e ∈ Vi}, inf{1− µXi(e) : e /∈ Wi}) by L-143

≥ 1
2

by (693), (694)

and in turn,

Ξ̃V,W (X1, . . . , Xn) = min{Ξ̃Vi,Wi
(Xi) : i = 1, . . . , n} by L-143

≥ 1
2
.
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Case b.: γ > 0.
If γ > 0, then(Xi)

min
γ = (Xi)≥1

2
+

1
2
γ

and(Xi)
max
γ = (Xi)>1

2
−1

2
γ

by Def. 66. Hence ife ∈ Vi =

(Xi)
min
γ = (Xi)≥1

2
+

1
2
γ
, then

µXi(e) ≥ 1
2

+ 1
2
γ . (695)

In addition, we haveWi = (Xi)
max
γ = (X)

>
1
2
−1

2
γ
, i.e. e /∈ Wi iff µXi(e) ≤ 1

2
− 1

2
γ by Def. 65.

Hence ife /∈ Wi, then

1− µXi(e) ≥ 1
2

+ 1
2
γ . (696)

Therefore

Ξ̃Vi,Wi
(Xi) = min(inf{µXi(e) : e ∈ Vi}, inf{1− µXi(e) : e /∈ Wi}) by L-143

≥ 1
2

+ 1
2
γ by (695), (696)

and in turn,

Ξ̃V,W (X1, . . . , Xn) = min{Ξ̃Vi,Wi
(Xi) : i = 1, . . . , n} by L-143

≥ 1
2

+ 1
2
γ .

Definition 108
For all semi-fuzzy quantifiersQ : P(E)n -I, all Z1, . . . , Zn ∈ P̃(E) and all γ ∈ I, the semi-
fuzzy quantifiersQL

γ,(Z1,...,Zn), Q
U
γ,(Z1,...,Zn) : P(E)n -I are defined by

QL
γ,(Z1,...,Zn)(Y1, . . . , Yn) =

{
Qγ(Y1, . . . , Yn) : Yi ∈ Tγ(Zi), for all i = 1, . . . , n
0 : else

QU
γ,(Z1,...,Zn)(Y1, . . . , Yn) =

{
Qγ(Y1, . . . , Yn) : Yi ∈ Tγ(Zi), for all i = 1, . . . , n
1 : else

for all Y1, . . . , Yn ∈ P(E). If F is a QFM, we abbreviate

Q̃L
γ,(Z1,...,Zn) = F(QL

γ,(Z1,...,Zn))

Q̃U
γ,(Z1,...,Zn) = F(QU

γ,(Z1,...,Zn)) .

Lemma 146
SupposeQ : P(E)n -I, Z1, . . . , Zn ∈ P̃(E) and γ ∈ I. Let us defineV,W ∈ P(E)n by
Vi = (Zi)

min
γ ,Wi = (Zi)

max
γ for all i = 1, . . . , n.

a. IfQγ(Z1, . . . , Zn) > 1
2
, thenQL

γ,(Z1,...,Zn) = QL
V,W .

b. IfQγ(Z1, . . . , Zn) < 1
2
, thenQU

γ,(Z1,...,Zn) = QU
V,W .
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Proof

a. If Qγ(Z1, . . . , Zn) > 1
2
, then by (14),

Qγ(Z1, . . . , Zn) = m 1
2
(Qmin

γ (Z1, . . . , Zn), Qmax
γ (Z1, . . . , Zn)) > 1

2

and hence

Qγ(Z1, . . . , Zn) = Qmin
γ (Z1, . . . , Zn) (697)

by Def. 45 because1
2
< Qmin

γ (Z1, . . . , Zn) ≤ Qmax
γ (Z1, . . . , Zn). If we defineV,W ∈ P(E)n by

Vi = (Zi)
min
γ ,Wi = (Zi)

max
γ for all i = 1, . . . , n, we hence have

Qγ(Z1, . . . , Zn)

= Qmin
γ (Z1, . . . , Zn) by (697)

= inf{Q(Y1, . . . , Yn) : (Zi)
min
γ ⊆ Yi ⊆ (Zi)

max
γ , i = 1, . . . , n} by (15), Def. 66

= inf{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, i = 1, . . . , n} by definition ofV,W ∈ P(E)n

= L(Q, V,W ) , by Def. 96

i.e.

Qγ(Z1, . . . , Zn) = L(Q, V,W ) . (698)

Hence for allY1, . . . , Yn ∈ P(E),

QL
γ,(Z1,...,Zn)(Y1, . . . , Yn)

=

{
Qγ(Y1, . . . , Yn) : Yi ∈ Tγ(Zi), for all i = 1, . . . , n
0 : else

by Def. 108

=

{
L(Q, V,W ) : Vi ⊆ Yi ⊆ Wi for all i = 1, . . . , n
0 : else

by (698), choice ofV,W ∈ P(E)n

= QL
V,W (Y1, . . . , Yn) . by Def. 97

b. Qγ(Z1, . . . , Zn) < 1
2
. The proof of this case is analogous to that ofa.: If Qγ(Z1, . . . , Zn) < 1

2
,

then by (14),Qγ(Z1, . . . , Zn) = m 1
2
(Qmin

γ (Z1, . . . , Zn), Qmax
γ (Z1, . . . , Zn)) < 1

2
and hence

Qγ(Z1, . . . , Zn) = Qmax
γ (Z1, . . . , Zn) (699)

by Def. 45 because1
2
> Qmax

γ (Z1, . . . , Zn) ≥ Qmin
γ (Z1, . . . , Zn). If we defineV,W ∈ P(E)n by

Vi = (Zi)
min
γ ,Wi = (Zi)

max
γ for all i = 1, . . . , n, we hence have

Qγ(Z1, . . . , Zn)

= Qmax
γ (Z1, . . . , Zn) by (699)

= sup{Q(Y1, . . . , Yn) : (Zi)
min
γ ⊆ Yi ⊆ (Zi)

max
γ , i = 1, . . . , n} by (16), Def. 66

= sup{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, i = 1, . . . , n} by definition ofV,W ∈ P(E)n

= U(Q, V,W ) , by Def. 96
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i.e.

Qγ(Z1, . . . , Zn) = U(Q, V,W ) . (700)

Hence for allY1, . . . , Yn ∈ P(E),

QU
γ,(Z1,...,Zn)(Y1, . . . , Yn)

=

{
Qγ(Y1, . . . , Yn) : Yi ∈ Tγ(Zi), for all i = 1, . . . , n
1 : else

by Def. 108

=

{
U(Q, V,W ) : Vi ⊆ Yi ⊆ Wi for all i = 1, . . . , n
1 : else

by (700), choice ofV,W ∈ P(E)n

= QU
V,W (Y1, . . . , Yn) . by Def. 97

Lemma 147
Let a semi-fuzzy quantifierQ : P(E)n -I, a choice of fuzzy argumentsX1, . . . , Xn ∈ P̃(E), and
γ ∈ I be given. We shall assume thatMCX is used, i.e.̃QL

γ,(X1,...,Xn) = MCX(QL
γ,(X1,...,Xn)) and

Q̃U
γ,(X1,...,Xn) = MCX(QU

γ,(X1,...,Xn)). If Qγ(X1, . . . , Xn) > 1
2
, thenQ̃L

γ,(X1,...,Xn)(X1, . . . , Xn) ≥
min(Qγ(X1, . . . , Xn), 1

2
+ 1

2
γ).

Proof
Suppose thatQγ(X1, . . . , Xn) > 1

2
. Then

QL
γ,(X1,...,Xn) = QL

V,W , (701)

whereV,W ∈ P(E)n are defined by byVi = (Xi)
min
γ , Wi = (Xi)

max
γ for all i = 1, . . . , n. In

addition, we can apply lemma L-145 to yield that

Ξ̃V,W (X1, . . . , Xn) ≥ 1
2

+ 1
2
γ . (702)

Therefore

Q̃L
γ,(X1,...,Xn)(X1, . . . , Xn)

=MCX(QL
γ,(X1,...,Xn))(X1, . . . , Xn) by Def. 108

= min(Qγ(X1, . . . , Xn), Ξ̃V,W (X1, . . . , Xn)) by L-139, Th-121, Th-102, Def. 108

≥ min(Qγ(X1, . . . , Xn), 1
2

+ 1
2
γ) . by (702)

Proof of Theorem 122

SupposeQ : P(E)n -I is a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E). We shall discern
the cases thatQ0(X1, . . . , Xn) = 1

2
,Q0(X1, . . . , Xn) > 1

2
andQ0(X1, . . . , Xn) < 1

2
.
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Case a.: Q0(X1, . . . , Xn) = 1
2 .

From (14), we know thatQ0(X1, . . . , Xn) = m 1
2
(Qmin

0 (X1, . . . , Xn), Qmax
0 (X1, . . . , Xn)) = 1

2
. It

is then apparent from Def. 45 andQmin
0 (X1, . . . , Xn) ≤ Qmax

0 (X1, . . . , Xn) thatQmin
0 (X1, . . . , Xn) ≤

1
2

andQmax
0 (X1, . . . , Xn) ≥ 1

2
. Now letε > 0. We conclude fromQmax

0 (X1, . . . , Xn) ≥ 1
2
, i.e.

sup{Q(Y1, . . . , Yn) : Yi ∈ T0(Xi)} ≥ 1
2
,

that there existsY ∈ P(E)n such thatY1 ∈ T0(X1), . . . , Yn ∈ T0(Xn) and

Q(Y1, . . . , Yn) > 1
2
− ε . (703)

We can apply L-144 to deduce that

Ξ̃Y,Y (X1, . . . , Xn) ≥ 1
2
. (704)

Hence

Q̃L(X1, . . . , Xn)

= sup{Q̃L
V,W (X1, . . . , Xn) : V,W ∈ P(E)n, Vi ⊆ Wi, . . . , Vn ⊆ Wn} by Def. 99

≥ Q̃L
Y, Y (X1, . . . , Xn)

= min(L(Q, Y, Y ), Ξ̃Y,Y (X1, . . . , Xn)) by Th-117, Th-121, Th-102

= min(Q(Y1, . . . , Yn), Ξ̃Y,Y (X1, . . . , Xn)) by Def. 96

≥ min(Q(Y1, . . . , Yn), 1
2
) by (704)

> 1
2
− ε , by (703)

i.e. Q̃L(X1, . . . , Xn) > 1
2
− ε. Becauseε > 0 was chosen arbitrarily, we conclude that

Q̃L(X1, . . . , Xn) ≥ 1
2
. (705)

In turn, we deduce that

Q̃U(X1, . . . , Xn)

= ¬¬Q̃U(X1, . . . , Xn) because¬x = 1− x involution

= ¬˜(¬Q)
L

(X1, . . . , Xn) by L-129

≤ ¬1
2

from (705) because(¬Q)0(X1, . . . , Xn) = ¬Q0(X1, . . . , Xn) = 1
2

= 1
2
.

Hence by Th-115,

1
2
≤ Q̃L(X1, . . . , Xn) ≤ Q̃U(X1, . . . , Xn) ≤ 1

2
,

i.e. Q̃L(X1, . . . , Xn) = Q̃U(X1, . . . , Xn) = 1
2
. Again from Th-115,

1
2

= Q̃L(X1, . . . , Xn) ≤MCX(Q)(X1, . . . , Xn) ≤ Q̃U(X1, . . . , Xn) = 1
2
,

i.e.MCX(Q)(X1, . . . , Xn) = Q̃L(X1, . . . , Xn) = Q̃U(X1, . . . , Xn) = 1
2
, as desired.
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Case b.: Q0(X1, . . . , Xn) > 1
2 .

Let us first consider̃QL(X1, . . . , Xn). We shall abbreviate

γ∗ = 2MCX(Q)(X1, . . . , Xn)− 1 . (706)

Now letε > 0 be given, and letγ ∈ (γ∗ − ε, γ∗). Then by (23) and Th-94,

Qγ(X1, . . . , Xn) > 1
2

+ 1
2
γ ≥ 1

2
. (707)

Hence

Q̃L(X1, . . . , Xn)

= sup{Q̃L
V,W (X1, . . . , Xn) : V,W ∈ P(E)n, Vi ⊆ Wi, . . . , Vn ⊆ Wn} by Def. 99

≥ Q̃L
V,W (X1, . . . , Xn), whereVi = (Xi)

min
γ ,Wi = (Xi)

max
γ , i = 1, . . . , n

= Q̃L
γ,(X1,...,Xn)(X1, . . . , Xn) by L-146

≥ min(Qγ(X1, . . . , Xn), 1
2

+ 1
2
γ) by L-147

= 1
2

+ 1
2
γ by (707)

> 1
2

+ 1
2
(γ∗ − ε) becauseγ ∈ (γ∗ − ε, γ∗)

= 1
2

+ 1
2
γ∗ − ε

2

= 1
2

+ 1
2
(2MCX(Q)(X1, . . . , Xn)− 1)− ε

2
by (706)

=MCX(Q)(X1, . . . , Xn)− ε
2
.

Recalling thatε > 0 was chosen arbitrarily, we conclude that

Q̃L(X1, . . . , Xn) ≥MCX(Q)(X1, . . . , Xn) .

Conversely, we know that̃QL(X1, . . . , Xn) ≤MCX(Q)(X1, . . . , Xn) by Th-115, and hence

Q̃L(X1, . . . , Xn) =MCX(Q)(X1, . . . , Xn) ,

as desired.
Next we shall discuss̃QU(X1, . . . , Xn). We will show that for allγ ∈ I,

Q̃U(X1, . . . , Xn) ≤ max(Qγ(X1, . . . , Xn), 1
2

+ 1
2
γ) . (708)

Hence letγ ∈ I. We shall discern two cases.
If Qγ(X1, . . . , Xn) > 1

2
+ 1

2
γ ≥ 1

2
, then in particular

Qγ(X1, . . . , Xn) = m 1
2
(Qmin

γ (X1, . . . , Xn), Qmax
γ (X1, . . . , Xn)) > 1

2

by (14), i.e.

Qγ(X1, . . . , Xn) = Qmin
γ (X1, . . . , Xn) = inf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} > 1

2
+ 1

2
γ (709)

by Def. 45, (15) and noting thatQmin
γ (X1, . . . , Xn) ≤ Qmax

γ (X1, . . . , Xn). Hence for allY ∈
P(E)n such thatY1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn),

Q(Y1, . . . , Yn) > 1
2

+ 1
2
γ . (710)
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In turn,

Q̃U
Y, Y (X1, . . . , Xn) = max(1− Ξ̃Y,Y (X1, . . . , Xn), Q(Y1, . . . , Yn)) by Th-121, Th-117, Th-102

= Q(Y1, . . . , Yn) , by L-144, (710)

i.e.

Q̃U
Y, Y (X1, . . . , Xn) = Q(Y1, . . . , Yn) . (711)

Therefore

Q̃U(X1, . . . , Xn)

= inf{Q̃U
V,W (X1, . . . , Xn) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} by Def. 99

≤ inf{Q̃U
Y, Y (X1, . . . , Xn) : Y ∈ P(E)n, Yi ∈ Tγ(Xi), all i}

= inf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} by (711)

= Qγ(X1, . . . , Xn) by (709)

= max(Qγ(X1, . . . , Xn), 1
2

+ 1
2
γ) ,

where the last step holds because of the assumption thatQγ(X1, . . . , Xn) > 1
2

+ 1
2
γ. Hence

equation (708) holds wheneverQγ(X1, . . . , Xn) > 1
2

+ 1
2
γ.

In the remaining case thatQγ(X1, . . . , Xn) ≤ 1
2

+ 1
2
γ,

Qγ(X1, . . . , Xn) = max(1
2
, inf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} (712)

becauseQ0(X1, . . . , Xn) > 1
2
, see L-88.

Hence letε > 0. By (712), there exists a choice ofY ′ ∈ P(E)n, Y ′1 ∈ Tγ(X1), . . . , Y ′n ∈ Tγ(Xn),
such that

Q(Y ′1 , . . . , Y
′
n) < Qγ(X1, . . . , Xn) + ε ≤ 1

2
+ 1

2
γ + ε . (713)

Hence

Q̃U(X1, . . . , Xn)

= inf{Q̃U
V,W (X1, . . . , Xn) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} by Def. 99

≤ Q̃U
Y ′, Y ′(X1, . . . , Xn)

= max(1− Ξ̃Y ′,Y ′(X1, . . . , Xn), Q(Y ′1 , . . . , Y
′
n)) by Th-121, Th-117, Th-102

≤ 1
2

+ 1
2
γ + ε . by (713), L-144

Becauseε > 0 was chosen arbitrarily, we deduce that

Q̃U(X1, . . . , Xn) ≤ 1
2

+ 1
2
γ

= max(Qγ(X1, . . . , Xn), 1
2

+ 1
2
γ) ,

by the assumption thatQγ(X1, . . . , Xn) ≤ 1
2

+ 1
2
γ.

Hence equation (708) holds for allγ ∈ I, i.e.

Q̃U(X1, . . . , Xn) ≤ inf{max(Qγ(X1, . . . , Xn), 1
2

+ 1
2
γ) : γ ∈ I}

=MCX(Q)(X1, . . . , Xn) . by (23), Th-94

Conversely, we already know by Th-115 thatMCX(Q)(X1, . . . , Xn) ≤ Q̃U(X1, . . . , Xn). Hence

MCX(Q)(X1, . . . , Xn) = Q̃U(X1, . . . , Xn) .
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Case c.: Q0(X1, . . . , Xn) < 1
2 . Then

Q̃L(X1, . . . , Xn)

= ¬¬Q̃L(X1, . . . , Xn) because¬x = 1− x involution

= ¬˜(¬Q)
U

(X1, . . . , Xn) by L-129

= ¬MCX(¬Q)(X1, . . . , Xn) by part b. because(¬Q)0(X1, . . . , Xn) = 1−Q0(X1, . . . , Xn) > 1
2

= ¬¬MCX(Q)(X1, . . . , Xn) by (DFS 3)

=MCX(Q)(X1, . . . , Xn) because¬ involutive

and similarly

Q̃U(X1, . . . , Xn)

= ¬¬Q̃U(X1, . . . , Xn) because¬x = 1− x involution

= ¬˜(¬Q)
L

(X1, . . . , Xn) by L-129

= ¬MCX(¬Q)(X1, . . . , Xn) by part b. because(¬Q)0(X1, . . . , Xn) = 1−Q0(X1, . . . , Xn) > 1
2

= ¬¬MCX(Q)(X1, . . . , Xn) by (DFS 3)

=MCX(Q)(X1, . . . , Xn) because¬ involutive.

G.10 Proof of Theorem 123

SupposeQ : P(E)n -I is a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E). We already know
that

MCX(Q)(X1, . . . , Xn)

Q̃L(X1, . . . , Xn) by Th-122

= sup{Q̃L
V,W (X1, . . . , Xn) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} by Def. 99

and similarly

MCX(Q)(X1, . . . , Xn)

= Q̃U(X1, . . . , Xn) by Th-122

= inf{Q̃U
V,W (X1, . . . , Xn) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} . by Def. 99

The claim of the theorem that

Q̃L
V,W (X1, . . . , Xn)

= min(Ξ̃V,W (X1, . . . , Xn), inf{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, all i})

and

Q̃U
V,W (X1, . . . , Xn)

= max(1− Ξ̃V,W (X1, . . . , Xn), sup{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, all i})
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is apparent from Def. 96, Th-121, Th-117 and Th-102.
Finally, we know from L-143 that

Ξ̃V,W (X1, . . . , Xn)

=
n

min
i=1

min(inf{µX(e) : e ∈ Vi}, inf{1− µX(e) : e /∈ Wi}) .

becauseMCX is a standard DFS by Th-93.

G.11 Proof of Theorem 124

Suppose the standard DFSF is compatible with fuzzy argument insertion and letQ : P(E)n -I

be a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E) a choice of fuzzy arguments. Let us first
observe that for allV,W ∈ P(E)n such thatV1 ⊆ W1, . . . , Vn ⊆ Wn,

F(ΞV,W )(X1, . . . , Xn) =
n

min
i=1

min(inf{µX(e) : e ∈ Vi}, inf{1− µX(e) : e /∈ Wi}) (714)

by Th-93. Hence by (714) and Th-123,

F(ΞV,W )(X1, . . . , Xn) =MCX(ΞV,W )(X1, . . . , Xn) . (715)

In turn,

F(QL
V,W )(X1, . . . , Xn)

= min(L(Q, V,W ),F(Ξ̃V,W )(X1, . . . , Xn)) by Th-117, Th-121

= min(L(Q, V,W ),MCX(Ξ̃V,W )(X1, . . . , Xn)) by (715)

=MCX(QL
V,W )(X1, . . . , Xn) , by Th-117, Th-121, Th-102

i.e.

F(QL
V,W )(X1, . . . , Xn) =MCX(QL

V,W )(X1, . . . , Xn) . (716)

Therefore

F(Q)

≥ sup{F(QL
V,W ) : V,W ∈ P(E)n, Vi ⊆ Wi, . . . , Vn ⊆ Wn} by Def. 99, Th-115

= sup{MCX(QL
V,W ) : V,W ∈ P(E)n, Vi ⊆ Wi, . . . , Vn ⊆ Wn} by (716)

=MCX(Q) by Def. 99, Th-122,

i.e.

F(Q) ≥MCX(Q) . (717)

Analogously,

F(Q)

≤ inf{F(QU
V,W ) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} by Def. 99, Th-115

= ¬ sup{F((¬Q)LV,W ) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} by L-129

= ¬ sup{MCX((¬Q)LV,W ) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} by (716)

= ¬MCX(¬Q) by Def. 99, Th-122

= ¬¬MCX(Q) by (DFS 3)

=MCX(Q) , because¬ involutive
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i.e.

F(Q) ≤MCX(Q) . (718)

Combining (717) and (718), we obtain the desired result thatF(Q) =MCX(Q).

G.12 Proof of Theorem 125

In order to prove the theorem, it is apparently sufficient to show that every standard DFS coincides
withMCX on two-valued quantifiers, becauseMCX is known to be a standard DFS by Th-93.
Hence letF be a standard DFS,Q : P(E)n -2 a two-valued quantifier andX1, . . . , Xn ∈ P̃(E).
We first observe that for allV,W ∈ P(E)n such thatV1 ⊆ W1, . . . , Vn ⊆ Wn,

F(ΞV,W )(X1, . . . , Xn) =
n

min
i=1

min(inf{µX(e) : e ∈ Vi}, inf{1− µX(e) : e /∈ Wi}) (719)

by Th-93. Hence by (719) and Th-123,

F(ΞV,W )(X1, . . . , Xn) =MCX(ΞV,W )(X1, . . . , Xn) . (720)

BecauseQ is two-valued, it is apparent from Def. 96 and Def. 97 thatL(Q, V,W ) andQL
V,W are

two-valued as well. IfL(Q, V,W ) = 1, then

QL
V,W (Y1, . . . , Yn) = b1(ΞV,W (Y1, . . . , Yn)) by L-136 andL(Q, V,W ) = 1

= ΞV,W (Y1, . . . , Yn) by Def. 100,b1 = id2

for all Y1, . . . , Yn ∈ P(E), i.e.

QL
V,W = ΞV,W . (721)

Hence

F(QL
V,W ) = F(ΞV,W ) by (721)

=MCX(ΞV,W ) by (720)

=MCX(QL
V,W ) by (721)

i.e.

F(QL
V,W )(X1, . . . , Xn) =MCX(QL

V,W )(X1, . . . , Xn) . (722)

wheneverL(Q, V,W ) = 1. In the remaining case thatL(Q, V,W ) = 0, we apparently have
QL
V,W = 0 and hence

F(QL
V,W )(X1, . . . , Xn) = 0 =MCX(QL

V,W )(X1, . . . , Xn) (723)

by Th-1 and Th-6. Therefore

F(Q)

≥ sup{F(QL
V,W ) : V,W ∈ P(E)n, Vi ⊆ Wi, . . . , Vn ⊆ Wn} by Def. 99, Th-115

= sup{MCX(QL
V,W ) : V,W ∈ P(E)n, Vi ⊆ Wi, . . . , Vn ⊆ Wn} by (722), (723)

=MCX(Q) by Def. 99, Th-122
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i.e.

F(Q) ≥MCX(Q) . (724)

Analogously,

F(Q)

≤ inf{F(QU
V,W ) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} by Def. 99, Th-115

= ¬ sup{F((¬Q)LV,W ) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} by L-129

= ¬ sup{MCX((¬Q)LV,W ) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} by (722), (723)

= ¬MCX(¬Q) by Def. 99, Th-122

= ¬¬MCX(Q) by (DFS 3)

=MCX(Q) , because¬ involutive

i.e.

F(Q) ≤MCX(Q) . (725)

Combining (724) and (725), we obtain the desired result thatF(Q) =MCX(Q).

G.13 Proof of Theorem 126

Let a nondecreasing semi-fuzzy quantifierQ : P(E) -I and a fuzzy argument setX ∈ P̃(E)
be given. For allα ∈ I, we shall abbreviate

Vα = {V ∈ P(E) : inf{µX(e) : e ∈ V } ≥ α} . (726)

It is apparent from Def. 64 thatV ∈ Vα entails

V ⊆ (X)≥α . (727)

In addition, we clearly have

(X)≥α ∈ Vα . (728)

BecauseQ is nondecreasing andV ⊆ (X)≥α by (727),

Q(V ) ≤ Q((X)≥α)

for all V ∈ Vα, i.e.

sup{Q(V ) : V ∈ Vα} ≤ Q((X)≥α) . (729)

Because(X)≥α ∈ Vα by (728), we also have

sup{Q(V ) : V ∈ Vα} ≥ Q((X)≥α) . (730)

Combining (729) and (730),

sup{Q(V ) : V ∈ Vα} = Q((X)≥α) . (731)
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Hence for allα ∈ I,

sup{min(α,Q(V )) : V ∈ Vα}
= min(α, sup{Q(V ) : V ∈ Vα}) by distributivity ofmin, sup

= min(α,Q((X)≥α)) , by (731)

i.e.

sup{min(α,Q(V )) : V ∈ Vα} = min(α,Q((X)≥α)) . (732)

Therefore

MCX(Q)(X)

= Q̃L(X) by Th-122

= sup{˜̃bQ(V )(Ξ̃V,E(X)) : V ∈ P(E)} by L-141

= sup{min(Q(V ), inf{µX(e) : e ∈ V }) : V ∈ P(E)} by Th-121,

Th-102, and L-143

= sup{sup{min(α,Q(V )) : V ∈ P(E), α ≤ inf{µX(e) : e ∈ V }} : α ∈ I}
= sup{sup{min(α,Q(V )) : V ∈ Vα} : α ∈ I} by (726)

= sup{min(α,Q((X)≥α)) : α ∈ I} by (732)

= (S)

∫
X dQ . by Def. 104

G.14 Proof of Theorem 127

SupposeΩ ⊂ I,Q : P(E)n -Ω andX1, . . . , Xn satisfy the conditions of the theorem, i.e.

Ω is finite (733)

ω ∈ Ω =⇒ 1− ω ∈ Ω (734)

{0, 1} ⊆ Ω (735)

µXi(e) ∈ Ω, for all i = 1, . . . , n, e ∈ E . (736)

Let us first consider an arbitrary choice ofV,W ∈ P(E)n such thatV1 ⊆ W1, . . . , Vn ⊆ Wn. By
Th-123,

Ξ̃V,W (X1, . . . , Xn) =
n

min
i=1

min(inf{µXi(e) : e ∈ Vi}, inf{1− µXi(e) : e /∈ Wi}) . (737)

Clearly {µXi(e) : e ∈ Vi} ⊆ Ω by (736). BecauseΩ is finite, {µXi(e) : e ∈ Vi} is finite as
well. If {µXi(e) : e ∈ Vi} = ∅, then inf{µXi(e) : e ∈ Vi} = inf ∅ = 1 ∈ Ω by (735). If
{µXi(e) : e ∈ Vi} 6= ∅, then

inf{µXi(e) : e ∈ Vi} = min{µXi(e) : e ∈ Vi}
∈ {µXi(e) : e ∈ Vi} because of finiteness

∈ Ω . because{µXi(e) : e ∈ Vi} ⊆ Ω
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By analogous reasoning and the negation closure (734) ofΩ, we also have

inf{1− µXi(e) : e /∈ Wi} ∈ Ω .

Hence from (737),

Ξ̃V,W (X1, . . . , Xn) =
n

min
i=1

min(ai, bi) ∈ Ω , (738)

because from our previous reasoning,ai = inf{µXi(e) : e ∈ Vi} ∈ Ω and similarlybi = inf{1 −
µXi(e) : e /∈ Wi} ∈ Ω for all i = 1, . . . , n.
Let us now considerinf{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, all i}. BecauseQ : P(E)n -Ω is
Ω-valued, clearly

C = {Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, all i} ⊆ Ω

If C = ∅, theninf C = 1 ∈ Ω by (735). IfC 6= ∅, thenC ⊆ Ω is a nonempty finite subset ofΩ
and henceinf C = minC ∈ C, i.e. inf C ∈ Ω. In any case,

inf{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, all i} ∈ Ω (739)

Combining Th-123, (738) and (739), we conclude that

Q̃L
V,W (X1, . . . , Xn) = min(Ξ̃V,W (X1, . . . , Xn), inf{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, all i}) ∈ Ω .

(740)

Finally, we know from Th-123 that

MCX(Q)(X1, . . . , Xn)

= sup{Q̃L
V,W (X1, . . . , Xn) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn}

= supS ,

where we have abbreviated

S = sup{Q̃L
V,W (X1, . . . , Xn) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn}

If S = ∅, thenMCX(Q)(X1, . . . , Xn) = supS = sup∅ = 0 ∈ Ω. In the remaining case that
S 6= ∅, we know from (740) thatS is a nonempty subset of the finite setΩ. HenceS is finite, too,
andsupS = maxS ∈ S, i.e.MCX(Q)(X1, . . . , Xn) = supS ∈ Ω, as desired.

G.15 Proof of Theorem 128

Supposeσ : I -I is a mapping with the properties required by the theorem, i.e.

σ is a bijection (741)

σ is nondecreasing (742)

σ(1− x) = 1− σ(x), for all x ∈ I. (743)

We have to show thatMCX
σ = MCX . Hence let a semi-fuzzy quantifierQ : P(E)n -I and a

choice of fuzzy argumentsX1, . . . , Xn ∈ P̃(E) be given. By Def. 41,

MCX
σ(Q)(X1, . . . , Xn) = σ−1MCX(σQ)(σX1, . . . , σXn) .
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Let us remark that being a nondecreasing bijection,σ is in fact increasing, i.e.

σ(x) < σ(y)

wheneverx < y. In addition,σ is apparentlycontinuous.
Now letV,W ∈ P(E)n such thatV1 ⊆ W1, . . . , Vn ⊆ Wn. Then

Ξ̃V,W (σX1, . . . , σXn)

=
n

min
i=1

min(inf{σµXi(e) : e ∈ Vi}, inf{1− σµXi(e) : e /∈ Wi}) see Th-123

=
n

min
i=1

min(inf{σµXi(e) : e ∈ Vi}, inf{σ(1− µXi(e)) : e /∈ Wi}) by (743)

=
n

min
i=1

min(σ(inf{µXi(e) : e ∈ Vi}), σ(inf{1− µXi(e) : e /∈ Wi})) by (742) and continuity ofσ

= σ(
n

min
i=1

min(inf{µXi(e) : e ∈ Vi}, inf{1− µXi(e) : e /∈ Wi})) by (742)

= σ(Ξ̃V,W (X1, . . . , Xn)) , see Th-123

i.e.

Ξ̃V,W (σX1, . . . , σXn) = σ(Ξ̃V,W (X1, . . . , Xn)) . (744)

Furthermore

inf{σQ(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, all i}
= σ(inf{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, all i}) (745)

becauseσ is nondecreasing and continuous. Therefore

˜(σQ)
L

V,W (σX1, . . . , σXn)

= min(Ξ̃V,W (σX1, . . . , σXn), inf{σQ(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, all i}) see Th-123

= min(σΞ̃V,W (X1, . . . , Xn), σ inf{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, all i}) by (744), (745)

= σmin(Ξ̃V,W (X1, . . . , Xn), inf{Q(Y1, . . . , Yn) : Vi ⊆ Yi ⊆ Wi, all i}) by (742)

= σQ̃L
V,W (X1, . . . , Xn) , see Th-123

i.e.

˜(σQ)
L

V,W (σX1, . . . , σXn) = σQ̃L
V,W (X1, . . . , Xn) . (746)
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Finally,

MCX
σ(Q)(X1, . . . , Xn)

= σ−1MCX(σQ)(σX1, . . . , σXn) by Def. 41

= σ−1 sup{σ̃Q
L

V,W (σX1, . . . , σXn) : V,W ∈ P(E)n,

V1 ⊆ W1, . . . , Vn ⊆ Wn} by Th-123

= σ−1 sup{σQ̃L
V,W (X1, . . . , Xn) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} by (746)

= σ−1σ sup{Q̃L
V,W (X1, . . . , Xn) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} becauseσ nondecreasing

and continuous

= sup{Q̃L
V,W (X1, . . . , Xn) : V,W ∈ P(E)n, V1 ⊆ W1, . . . , Vn ⊆ Wn} becauseσ bijection

by (741)

=MCX(Q)(X1, . . . , Xn) . by Th-123

G.16 Proof of Theorem 129

Let a quantitative one-place quantifierQ : P(E) -I on a finite base set of cardinality|E| = m

be given. Further letX ∈ P̃(E) a fuzzy argument set. We will denote byq : {0, . . . ,m} -I the
mapping defined by (33), see Th-95. Then

MCX(Q)(X)

= sup{min(inf{Q(Z) : V ⊆ Z ⊆ W}, Ξ̃V,W (X)) : V ⊆ W} by Th-123

= max{min(min{Q(Z) : V ⊆ Z ⊆ W}, Ξ̃V,W (X)) : V ⊆ W} becauseE finite

= max{min(min{q(|Z|) : V ⊆ Z ⊆ W}, Ξ̃V,W (X)) : V ⊆ W} by Th-95

= max{min(min{q(j) : ` ≤ j ≤ u}, Ξ̃V,W (X)) : V ⊆ W, ` = |V |, u = |W |}
= max{min(qmin(`, u), Ξ̃V,W (X)) : V ⊆ W, ` = |V |, u = |W |} by Def. 94

= max{max{min(qmin(`, u), Ξ̃V,W (X)) : V ⊆ W, |V | = `, |W | = u}
: 0 ≤ ` ≤ u ≤ m}

= max{min(qmin(`, u),max{Ξ̃V,W (X) : V ⊆ W, |V | = `, |W | = u})
: 0 ≤ ` ≤ u ≤ m} , by distributivity

i.e.

MCX(Q)(X)

= max{min(qmin(`, u),max{Ξ̃V,W (X) : V ⊆ W, |V | = `, |W | = u}) : 0 ≤ ` ≤ u ≤ m}
(747)

Now let us recall that by L-143

Ξ̃V,W (X) = min(min{µX(e) : e ∈ V },min{1− µX(e) : e /∈ W}) , (748)

where “inf” turns into “min” becauseE is finite.
The base setE is finite of cardinality|E| = m. Hence we can order the elements ofE such that
E = {e1, . . . , em} and

µX(e1) ≥ · · · ≥ µX(em) . (749)
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Apparently,min{µX(e) : e ∈ V } is maximised by

V ∗ = {e1, . . . , e`} (750)

subject to the constraint|V | = `. Similarly,

W ∗ = {e1, . . . , eu} (751)

apparently maximisesmin{1−µX(e) : e /∈ W} under the constraint|W | = u. BecauseV ∗ ⊆ W ∗,
this choice ofV ∗,W ∗ maximises

ΞV,W (X) = min(min{µX(e) : e ∈ V },min{1− µX(e) : e /∈ W})

relative to the constraints|V | = `, |W | = u andV ⊆ W . Therefore

max{ΞV,W (X) : V ⊆ W, |V | = `, |W | = u}
= ΞV ∗,W ∗(X)

= min(min{µX(ej) : j = 1, . . . , `},min{1− µX(ej) : j = u+ 1, . . . ,m}) by (748), (750),

and (751)

= min(µX(e`), 1− µX(eu+1)) by (749)

= min(µ[`](X), 1− µ[u+1](X)) by (749), Def. 102

= µ‖X‖iv(`, u) , by Def. 105

i.e.

max{ΞV,W (X) : V ⊆ W, |V | = `, |W | = u} = µ‖X‖iv(`, u) (752)

Hence

MCX(Q)(X)

= max{min(qmin(`, u),max{Ξ̃V,W (X) : V ⊆ W, |V | = `, |W | = u})
: 0 ≤ ` ≤ u ≤ m} by (747)

= max{min(qmin(`, u), µ‖X‖iv(`, u)) : 0 ≤ ` ≤ u ≤ m} , by (752)

as desired.
Similarly

MCX(Q)(X)

= ¬¬MCX(Q)(X) because¬ involutive

= ¬MCX(¬Q)(X) by (DFS 3)

= ¬max{min((¬q)min(`, u), µ‖X‖iv(`, u)) : 0 ≤ ` ≤ u ≤ m} by first part of the theorem

= min{max(¬(¬q)min(`, u), µ‖X‖iv(`, u)) : 0 ≤ ` ≤ u ≤ m} by De Morgan’s law

= min{max(qmax(`, u), µ‖X‖iv(`, u) : 0 ≤ ` ≤ u ≤ m} ,

where the last step holds because

¬(¬q)min(`, u) = ¬min{¬q(j) : ` ≤ j ≤ u} by Def. 94

= max{¬¬q(j) : ` ≤ j ≤ u} by De Morgan’s law

= max{q(j) : ` ≤ j ≤ u} because¬ involution

= qmax(`, j) . by Def. 94
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G.17 Proof of Theorem 130

AssumeQ : P(E) -I is a quantitative semi-fuzzy quantifier on a finite base set. By Th-95, there
existsq : {0, . . . , |E|} -I such that

Q(Y ) = q(|Y |) (753)

for all Y ∈ P(E).
Now supposeQ is nondecreasing, and letj, j′ ∈ {0, . . . , |E|}, j ≤ j′. We may chooseY, Y ′ ∈
P(E) such that|Y | = j, |Y ′| = j′ andY ⊆ Y ′. Then

q(j) = Q(Y ) by j = |Y | and (753)

≤ Q(Y ′) becauseY ⊆ Y ′ andQ nondecreasing

= q(j′) . by j′ = |Y ′| and (753)

This proves that wheneverQ is nondecreasing,q is nondecreasing as well.
Let us now show that the converse claim holds, i.e. wheneverq is nondecreasing,Q is nondecreas-
ing as well. Hence supposeq satisfiesq(j) ≤ q(j′) for all j ≤ j′. LetY, Y ′ ∈ P(E) be given such
thatY ⊆ Y ′. Then clearly|Y | ≤ |Y ′| by the monotonicity of cardinality. In turn,

Q(Y ) = q(|Y |) by (753)

≤ q(|Y ′|) because|Y | ≤ |Y ′|, q nondec

= Q(Y ′) , by (753)

i.e.Q is nondecreasing, as desired.
The proofs for nonincreasingQ vs. nonincreasingq are analogous.

G.18 Proof of Theorem 131

SupposeQ : P(E) -I is a quantitative one-place quantifier on a finite base set andq is the
mapping defined by (33). IfQ is nondecreasing, thenq is also nondecreasing by Th-130. Hence
for all `, u ∈ {0, . . . , |E|}, ` ≤ u,

qmin(`, u) = min{q(j) : ` ≤ j ≤ u} by Def. 94

= q(`) becauseq nondecreasing

and similarly

qmax(`, u) = max{q(j) : ` ≤ j ≤ u} by Def. 94

= q(u) becauseq nondecreasing

The proof is analogous in the case of a nonincreasing quantifier.

G.19 Proof of Theorem 132

SupposeQ : P(E)n -I is a nondecreasing quantitative one-place quantifier on a finite base set,
andq : {0, . . . , |E|} -I is the mapping defined by (33). Further assume thatX ∈ P̃(E) is a
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given fuzzy argument set. Then

MCX(Q)(X)

= max{min(µ‖X‖iv(`, u), qmin(`, u)) : 0 ≤ ` ≤ u ≤ |E|} by Th-129

= max{min(µ‖X‖iv(`, u), q(`)) : 0 ≤ ` ≤ u ≤ |E|} by Th-131

= max{max{min(µ‖X‖iv(`, u), q(`)) : ` ≤ u ≤ |E|} : 0 ≤ ` ≤ |E|}
= max{min(q(`),max{µ‖X‖iv(`, u) : ` ≤ u ≤ |E|}) : 0 ≤ ` ≤ |E|} by distributivity

= max{min(q(`),max{min(µ[`](X), 1− µ[u+1](X)) : ` ≤ u ≤ |E|})
: 0 ≤ ` ≤ |E|} by Def. 105

= max{min(q(`),min(µ[`](X),max{1− µ[u+1](X) : ` ≤ u ≤ |E|}))
: 0 ≤ ` ≤ |E|} by distributivity

= max{min(q(`),min(µ[`](X), 1)) : 0 ≤ ` ≤ |E|} subst.u = |E|, see Def. 102

= max{min(q(`), µ[`](X)) : 0 ≤ ` ≤ |E|} , because1 identity ofmin

as desired.



G PROOFS OF THEOREMS IN CHAPTER 8 328



REFERENCES 329

References

[1] J. Barwise and R. Cooper. Generalized quantifiers and natural language.Linguistics and
Philosophy, 4:159–219, 1981.

[2] J. van Benthem. Questions about quantifiers.J. of Symb. Logic, 49, 1984.

[3] Z. Bien and K.C. Min, editors.Fuzzy Logic and its Applications to Engineering, Informa-
tion Sciences, and Intelligent Systems. Information Science and Intelligent Systems. Kluwer
Academic Publishers, Dordrecht, 1995.

[4] I. Bloch. Information combination operators for data fusion: a comparative review with
classification.IEEE Transactions on Systems, Man, and Cybernetics, 26(1):52–67, 1996.

[5] P. Bosc and L. Lietard. Monotonic quantified statements and fuzzy integrals. InProc. of the
NAFIPS/IFI/NASA ’94 Joint Conference, pages 8–12, San Antonio, Texas, 1994.

[6] Z.P. Dienes. On an implication function in many-valued systems of logic.Journal of Symbolic
Logic, 14:95–97, 1949.

[7] B.R. Gaines. Foundations of fuzzy reasoning.Int. J. Man-Machine Studies, 8:623–668, 1978.

[8] L.T.F. Gamut. Intensional Logic and Logical Grammar, volume II ofLogic, Language, and
Meaning. The University of Chicago Press, Chicago & London, 1984.
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Index
Index of mathematical symbols
∀, seeuniversal quantifier
∼∀, 57
∧

Q ∧ Q′, conjunction of two-valued quan-
tifiers Q,Q′ : P(E)n -2 based on
∧ : 2×2 -2, 28

Q ∧Q′, conjunction of (semi-)fuzzy quan-
tifiers Q,Q′ based on standard fuzzy
conjunctionx ∧ y = min(x, y), 28

x ∧ y, two-valued conjunction ofx, y ∈ 2,
7

x ∧ y, standard fuzzy conjunctionx ∧ y =
min(x, y) of x, y ∈ I, 13

∧̃
Q ∧̃Q′, conjunction of (semi-)fuzzy quan-

tifiersQ,Q′ based oñ∧, 28
x∧̃y, (induced) fuzzy conjunction ofx, y ∈

I, 7
∧̃Q, t-norm corresponding to T-quantifierQ, 23˜̃∧

Q ˜̃∧Q′, conjunction of (semi-)fuzzy quan-

tifiersQ,Q′ based oñ̃∧, 37

x ˜̃∧ y, induced fuzzy conjunction ofx, y ∈
I (new construction), 32

(•)♦, 66
(•)γ

computation ofQγ(X) for quantitativeQ,
64

definition, 41
monotonicity properties, 42

‖•‖iv, 75
χY , seecharacteristic function
�

Q�, dual¬Q¬ of two-valued quantifierQ :
P(E)n -2, n > 0, 8

Q�, dual¬Q¬ of semi-fuzzy quantifierQ,
based on standard fuzzy negation, 28

Q̃�, dual¬Q̃¬ of fuzzy quantifierQ̃, based
on standard fuzzy negation, 28

�̃
Q�̃, dual¬̃Q¬ of semi-fuzzy quantifierQ,

based on (induced) negatioñ¬, 8
Q̃�̃, dual¬̃Q̃¬̃ of fuzzy quantifierQ̃, based

on (induced) negatioñ¬, 8˜̃�
Q
˜̃�, dual˜̃¬Q¬ of semi-fuzzy quantifierQ,

based on (induced) negatioñ̃¬, 37

Q̃
˜̃�, dual˜̃¬Q̃˜̃¬ of fuzzy quantifierQ̃, based

on (induced) negatioñ̃¬, 37
↔

x ↔ y, two-valued equivalence ofx, y ∈
2, 14

x ↔ y, the fuzzy equivalence defined by
x↔ y = min(max(1−x, y),max(x, 1−
y)) of x, y ∈ I, 29

↔̃
x↔̃y, (induced) fuzzy equivalence ofx, y ∈

I, 29˜̃↔
x˜̃↔y, induced fuzzy equivalence ofx, y ∈

I (new construction), 32
η(x1, . . . , xn), 31
η̃(x1, . . . , xn), 32
∃, seeexistential quantifier
∼∃, 58
[≥ k]

bounds on interpretation in DFSes, 72
definition, 72
interpretation in standard DFSes, 72

→
x→ y, two-valued implication, 14
x→ y, the Kleene-Dienes implicationx→

y = max(1− x, y), 14
→̃

x →̃ y, (induced) fuzzy implication, 14˜̃→
x˜̃→y, induced fuzzy implication (new con-

struction), 32
∩

Q∩, internal meet of semi-fuzzy quantifier
Q, 9

Q̃∩, internal meet of fuzzy quantifier̃Q
based on standard conjunction∧ = min,
28

X∩X ′, intersection of crisp subsetsX,X ′ ∈
P(E), 3
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X ∩X ′, the standard fuzzy intersection of
fuzzy subsetsX,X ′ ∈ P̃(E) defined
by µX∩X′(e) = min(µX(e), µX′(e)),
28

∩̃
Q̃∩̃, internal meet of fuzzy quantifier̃Q

based oñ∧, 9
X∩̃X ′, (induced) fuzzy intersection ofX,X ′ ∈
P̃(E) based oñ∧, 7˜̃∩

Q̃˜̃∩, internal meet of fuzzy quantifier̃Q

based oñ̃∧, 37
X ˜̃∩X ′, induced fuzzy intersection ofX,X ′ ∈
P̃(E) based oñ̃∧ (new construction),
37

ι̂ n,Ei , 34
ιn,Ei , 33
(ι E,ni )−1, 34
≤

Q ≤ Q′, the semi-fuzzy quantifierQ is
smaller than or equal toQ′, 17

Q̃ ≤ Q̃′, the fuzzy quantifier̃Q is smaller
than or equal tõQ′, 17

≤(U, V )

Q1≤(U, V )Q2, the semi-fuzzy quantifierQ1

is locally smaller than or equal toQ2,
17

Q̃1 ≤(U, V ) Q̃2, the fuzzy quantifierQ̃1 is

locally smaller than or equal tõQ2, 17
�c
F �c F ′, the QFMF is less specific than

QFMF ′, 27
Q�cQ′, the semi-fuzzy quantifierQ is less

specific thanQ′, 54
Q̃�c Q̃′, the fuzzy quantifier̃Q is less spe-

cific thanQ̃′, 54
x�c y, x ∈ I is less specific thany ∈ I, 27
X �c X ′, X ∈ P̃(E) is less specific than

X ′ ∈ P̃(E), 54
µ[j](X), 72
µX(e), seemembership function
¬Q, external negation of two-valued fuzzy quan-

tifier Q : P(E)n -2 based on two-
valued negation¬ : 2 -2, 7

¬Q, external negation of (semi-)fuzzy quanti-
fierQ based on standard negation¬x =

1− x, 13
¬x, two-valued negation ofx ∈ 2, 7
¬x, standard fuzzy negation¬x = 1 − x of

x ∈ I, 13, 25
¬X, complement of crisp subsetX ∈ P(E), 7
¬X, standard fuzzy complementµ¬X(e) = 1−

µX(e) of fuzzy subsetX ∈ P̃(E), 13
¬̃Q, external negation of (semi-)fuzzy quanti-

fierQ, 8
¬̃x, (induced) fuzzy negation ofx ∈ I, 7
¬̃X, (induced) fuzzy complement ofX ∈ P̃(E),

7
¬̃-DFS, 25
(¬̃, max)-DFS, 28
(¬̃, ∨̃)-DFS, 28˜̃¬Q, external negation of (semi-)fuzzy quanti-

fierQ based oñ̃¬, 37˜̃¬x, induced fuzzy negation ofx ∈ I (new con-
struction), 32˜̃¬X, induced fuzzy complement ofX ∈ P̃(E)
(new construction), 37

νX , membership function of three-valued sub-
set, 39

∨
Q ∨ Q′, disjunction of two-valued quan-

tifiers Q,Q′ : P(E)n -2 based on
∨ : 2×2 -2, 28

Q ∨ Q′, disjunction of (semi-)fuzzy quan-
tifiers Q,Q′ based on standard fuzzy
disjunctionx ∨ y = max(x, y), 28

x ∨ y, two-valued disjunction ofx, y ∈ 2,
7

x ∨ y, standard fuzzy disjunctionx ∨ y =
max(x, y) of x, y ∈ I, 28

∨̃
Q ∨̃ Q′, disjunction of (semi-)fuzzy quan-

tifiersQ,Q′ based oñ∨, 28
x∨̃y, (induced) fuzzy disjunction ofx, y ∈

I, 7
∨̃-DFS, 26
∨̃Q, s-norm corresponding to S-quantifierQ,

24˜̃∨
Q ˜̃∨ Q′, disjunction of (semi-)fuzzy quan-

tifiersQ,Q′ based oñ̃∨, 37

x ˜̃∨y, induced fuzzy disjunction ofx, y ∈ I
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(new construction), 32

[˜̃∨]
n

i=1 xi, 35
πe, seeprojection quantifier
π̃e, seefuzzy projection quantifier
π∗, 7
π̃∗, 7
Ψ[(Fj)j∈J ], 26
{∗}, 7
τi, seetransposition
4

Q4A, symmetrical difference withA ∈
P(E) in last argument of semi-fuzzy
quantifierQ, 16

Q̃4A, fuzzy symmetrical difference with
A ∈ P̃(E) in last argument of fuzzy
quantifierQ̃ based onxor, 29

X4X ′, symmetrical set differenceX4X ′ =
(X \ X ′) ∪ (X ′ \ X) of crisp subsets
X,X ′ ∈ P̃(E), 16

X4X ′, symmetrical set difference of fuzzy
subsetsX,X ′ ∈ P̃(E) based on stan-
dard fuzzy antivalencex xor y, 29

4̃
Q̃4̃A, fuzzy symmetrical difference with

A ∈ P̃(E) in last argument of fuzzy
quantifierQ̃ based oñxor, 16

X 4̃ X ′, symmetrical difference of fuzzy
subsetsX,X ′ ∈ P̃(E) based onx̃or,
16˜̃4

Q̃
˜̃4A, fuzzy symmetrical difference with
A ∈ P̃(E) in last argument of fuzzy

quantifierQ̃ based oñ̃xor, 37

X
˜̃4 X ′, symmetrical difference of fuzzy
subsetsX,X ′ ∈ P̃(E) based on˜̃xor,
37

2 = {0, 1}, 3
∪

Q∪, internal join of semi-fuzzy quantifier
Q, 15

Q̃∪, internal join of fuzzy quantifier̃Q based
on standard disjunction∨ = max, 28

X ∪ X ′, union of crisp subsetsX,X ′ ∈
P(E), 7

X∪X ′, standard fuzzy union of fuzzy sub-

setsX,X ′ ∈ P̃(E) based onµX∪X′(e) =
max(µX(e), µX′(e)), 28

∪k, 34
∪̃

Q̃∪̃, internal join of fuzzy quantifier̃Q based
on ∨̃, 15

X ∪̃X ′, (induced) fuzzy union ofX,X ′ ∈
P̃(E) based oñ∨, 7˜̃∪

Q̃˜̃∪, internal join of fuzzy quantifier̃Q based

on ˜̃∨, 37
X ˜̃∪ X ′, induced fuzzy union ofX,X ′ ∈
P̃(E) based oñ̃∨ (new construction),
37˜̃∪k, 34

[˜̃∪]
n

i=1, 35
ΞV,W , 70
Ξ̃V,W

definition, 71
in DFSes, 71

|•|, seecardinality
all , 3
almost all , 5
at least k , 3
at least p percent , 3
ba(x), 70˜̃
ba

definition, 70
interpretation in QFMs which comply with

fuzzy argument insertion, 72
upper bound in DFSes, 71

BB, 47
B, 42
B

+, 42

B

1
2 , 42
B
−, 42
B, aggregation operator, 43
B′, 47
B(B−1), 143
B′(B−1), 142
B(B−2), 143
B(B−3), 153
B′(B−3), 151
B(B−4), 147
B′(B−4), 146
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B(B−5), 150
B′(B−5), 149
B′CX , 62
B∫ , 48
B′∫ , 48
Blub, 193
B′lub, 193
B′S, 62
B′∗(f), 49
B∗′(f), 48
B′U , 61
B(Z−2), 159
B′(Z−2), 159
ca, constant mapping, 42
core(X), core ofX, 54
cxt(X), context range ofX, 54
d′(f, g), 65
d(f, g), 255
d(Q,Q′), 54
d(Q̃, Q̃′), 54
d((X1, . . . , Xn), (X ′1, . . . , X

′
n)), 53

En, 33
E , seeextension principle
E-DFS, 26
f ∗, 7
f♦, 66
f [, 44

f
1
2
∗ , 45
f̂ , seepowerset function
ˆ̂
f , seestandard extension principle
ˆ̂
f−1, seefuzzy inverse image mapping
f−1, seeinverse image mapping
f 1
∗ , 45
f ], 44
f ∗1 , 45
f ∗0 , 45
f̃ , seeinduced fuzzy truth function˜̃
f , 32
f 0
∗ , 45
F , seequantifier fuzzification mechanism
F̂(f), seeinduced extension principle
F̃(f), seeinduced fuzzy truth functions˜̃F(f), 32
Fglb, 27, 53

F̂−1(f), seeinduced fuzzy inverse image map-
ping

F �cF ′, the QFMF is less specific than QFM
F ′, 27

Flub, seeleast upper specificity bound
Fσ, 25
H, 47
inf{Qj : j ∈ J }, 69
I = [0, 1] unit interval, 4
II, set of mappingsf : I -I, 47
jpk, 63
L(Q, V,W ), 69
m 1

2
(x1, x2), seefuzzy median

m 1
2
X, seegeneralized fuzzy median

more than p percent , 3
MB, 43
M(B−1), 150
M(B−2), 151
M(B−4), 151
M(B−5), 151
MB-DFSes

characterisation of arg-continuousMB-DFSes,
65

characterisation ofQ-continuousMB-DFSes,
65

least specificMB-DFS, 61
most specificMB-DFS, 62
propagate fuzziness in arguments, 67
propagate fuzziness in quantifiers, 67
specificity consistence, 61

MB-QFMs
definition, 44

M
definition, 44
satisfies both continuity conditions, 67

MCX

as a generalisation of the Sugeno integral,
74

computation ofMCX(Q)(X) from ‖X‖iv

in quantitative case, 75
definition, 62
generalizes FG-count approach, 76
is compatible with fuzzy argument inser-

tion, 65
is compatible with ordinal scales, 74
is only standard DFS compatible with fuzzy

argument insertion, 74
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is robust against changes in numeric mem-
bership grades, 75

realizes substitution approach to fuzzy quan-
tification, 73

satisfies both continuity conditions, 67
weakly preserves convexity, 65

MS

definition, 62
is most specificMB-DFS, 62
violates both continuity conditions, 66

M∗

definition, 48
violates both continuity conditions, 66

M∗
definition, 49
satisfies both continuity conditions, 67

MU

definition, 61
is least specificMB-DFS, 61
violates both continuity conditions, 66

M(Z−2), 159
M(Z−4), 167
O, 57
pa(x), 70˜̃pa

definition, 70
interpretation in QFMs which comply with

fuzzy argument insertion, 72
lower bound in DFSes, 71

P(E), power set ofE, 3
P̃(E), set of fuzzy subsets ofE, seefuzzy pow-

erset
P̆ (E), set of three-valued subsets ofE, 39
q, representation of quantitative quantifier, 63
qmax

computation for convexQ, 64
computation fromq for monotonic quanti-

fiers, 75
definition, 64

qmin

computation for convexQ, 64
computation fromq for monotonic quanti-

fiers, 75
definition, 64

Q
semi-fuzzy quantifier, 4
two-valued quantifier, 3

Q̃, fuzzy quantifier, 4
Q/A, Q̃/A, seeargument insertion
Q /̃ A, seefuzzy argument insertion
Q ∧ Q′, conjunction of two-valued quantifiers

Q,Q′ : P(E)n -2 based on two-
valued conjunction, 28

Q∧Q′, conjunction of (semi-)fuzzy quantifiers
Q,Q′ based on standard fuzzy conjunc-
tion x ∧ y = min(x, y), 28

Q ∧̃Q′, conjunction of (semi-)fuzzy quantifiers
Q,Q′ based oñ∧, 28

Q ˜̃∧Q′, conjunction of (semi-)fuzzy quantifiers

Q,Q′ based oñ̃∧, 37
Q�, dual¬Q¬ of two-valued quantifierQ :

P(E)n -2, n > 0, 8
Q�, dual¬Q¬ of semi-fuzzy quantifierQ, based

on standard fuzzy negation, 28
Q�̃, dual¬̃Q¬ of semi-fuzzy quantifierQ, based

on (induced) negatioñ¬, 8

Q
˜̃�, dual˜̃¬Q¬ of semi-fuzzy quantifierQ, based

on (induced) negatioñ̃¬, 37
Q̃�, dual¬Q̃¬ of fuzzy quantifierQ̃, based on

standard fuzzy negation, 28
Q̃�̃, dual¬̃Q̃¬̃ of fuzzy quantifierQ̃, based on

(induced) negatioñ¬, 8

Q̃
˜̃�, dual ˜̃¬Q̃˜̃¬ of fuzzy quantifierQ̃, based on

(induced) negatioñ̃¬, 37
Qf , 32
Qγ(X1, . . . , Xn), 41
QHγ (X1, . . . , Xn), 116
Q∩, internal meet of semi-fuzzy quantifierQ,

9
Q̃∩, internal meet of fuzzy quantifier̃Q based

on standard conjunction∧ = min, 28
Q̃∩̃, internal meet of fuzzy quantifier̃Q based

on ∧̃, 9
Q̃˜̃∩, internal meet of fuzzy quantifier̃Q based

on ˜̃∧, 37
Q̃L, 70
Q �c Q′, the semi-fuzzy quantifierQ is less

specific thanQ′, 54
Q̃�c Q̃′, the fuzzy quantifier̃Q is less specific

thanQ̃′, 54
Q ≤ Q′, the semi-fuzzy quantifierQ is smaller

than or equal toQ′, 17
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Q̃ ≤ Q̃′, the fuzzy quantifier̃Q is smaller than
or equal toQ̃′, 17

Q1 ≤(U, V ) Q2, the semi-fuzzy quantifierQ1 is
locally smaller than or equal toQ2, 17

Q̃1≤(U, V ) Q̃2, the fuzzy quantifier̃Q1 is locally

smaller than or equal tõQ2, 17
QL
γ,(Z1,...,Zn), 311

Q̃L
γ,(Z1,...,Zn), 311

Q̃U
V,W , 70

QL
V,W , 69

Qmax
γ (X1, . . . , Xn), 42

Qmin
γ (X1, . . . , Xn), 42

Q¬, antonym of semi-fuzzy quantifierQ, 8
Q̃¬, antonym of fuzzy quantifier̃Q based on

standard negation¬x = 1− x, 13
Q̃¬̃, antonym of fuzzy quantifier̃Q based oñ¬,

8
Q̃˜̃¬, antonym of fuzzy quantifier̃Q based oñ̃¬,

37
Q ∨ Q′, disjunction of two-valued quantifiers

Q,Q′ : P(E)n -2 based on two-
valued disjunction, 28

Q ∨Q′, disjunction of (semi-)fuzzy quantifiers
Q,Q′ based on standard fuzzy disjunc-
tion x ∨ y = max(x, y), 28

Q ∨̃Q′, disjunction of (semi-)fuzzy quantifiers
Q,Q′ based oñ∨, 28

Q ˜̃∨Q′, disjunction of (semi-)fuzzy quantifiers

Q,Q′ based oñ̃∨, 37
Qτi, seeargument transposition
Q4A, symmetrical difference withA ∈ P(E)

in last argument of semi-fuzzy quanti-
fierQ, 16

Q̃4A, fuzzy symmetrical difference withA ∈
P̃(E) in last argument of fuzzy quan-
tifier Q̃ based onxor, 29

Q̃4̃A, fuzzy symmetrical difference withA ∈
P̃(E) in last argument of fuzzy quan-
tifier Q̃ based oñxor, 16

Q̃
˜̃4A, fuzzy symmetrical difference withA ∈

P̃(E) in last argument of fuzzy quan-

tifier Q̃ based oñ̃xor, 37
Q̃U , 70
QU
γ,(Z1,...,Zn), 311

Q̃U
γ,(Z1,...,Zn), 311

Q∪, internal join of semi-fuzzy quantifierQ,
15

Q̃∪, internal join of fuzzy quantifier̃Q based
on standard disjunction∨ = max, 28

Q∪k, 34
Q̃∪̃, internal join of fuzzy quantifier̃Q based

on ∨̃, 15
Q̃˜̃∪, internal join of fuzzy quantifier̃Q based

on ˜̃∨, 37

Q̃˜̃∪k, 34
Q̃U
V,W , 70

QU
V,W , 69
〈Q〉, 34
〈Q̃〉, 34
[rate ≥ r], 3
[rate > r], 3
RQ,X1,...,Xn, 53
some , 3
spp(X), support ofX, 54
sup{Qj : j ∈ J }, 69
(S)

∫
X dQ, seeSugeno integral

tγ(x), three-valued cut ofx atγ, 40
Tγ(X), three-valued cut ofX atγ, 40
T (X), crisp range of a three-valued subset, 40
Tγ(X), crisp range of three-valued cut ofX at

γ, 41
T Hγ (X), 116
U(Q, V,W ), 69
U(Q̃), seeunderlying semi-fuzzy quantifier
xor

xxory, two-valued antivalence ofx, y ∈ 2,
14

x xor y, the fuzzy antivalence defined by
x xor y = min(max(x, y),max(1 −
x, 1− y)) of x, y ∈ I, 29

x̃or
xx̃ory, induced fuzzy antivalence ofx, y ∈

I, 16, 29˜̃xor
x ˜̃xory, induced fuzzy antivalence ofx, y ∈

I (new construction), 37
x ∧ y, two-valued conjunction ofx, y ∈ 2, 7
x ∧ y, standard fuzzy conjunctionx ∧ y =

min(x, y) of x, y ∈ I, 13
x ∧̃ y, (induced) fuzzy conjunction ofx, y ∈ I,

7
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x ˜̃∧ y, induced fuzzy conjunction ofx, y ∈ I
(new construction), 32

x↔ y, two-valued equivalence↔ : 2×2 -2
of x, y ∈ 2, 14

x↔ y, fuzzy equivalencex↔ y = min(max(1−
x, y),max(x, 1− y)) of x, y ∈ I, 29

x↔̃y, (induced) fuzzy equivalence ofx, y ∈ I,
29

x ˜̃↔ y, induced fuzzy equivalence ofx, y ∈ I
(new construction), 32

x�c y, x ∈ I is less specific thany ∈ I, 27
x ∨ y, two-valued disjunction ofx, y ∈ 2, 7
x ∨ y, standard disjunctionx ∨ y = max(x, y)

of x, y ∈ I, 28
x ∨̃ y, (induced) fuzzy disjunction ofx, y ∈ I,

7
x ˜̃∨ y, induced fuzzy disjunction ofx, y ∈ I

(new construction), 32
x→ y, two-valued implication→ : 2×2 -2,

14
x → y, Kleene-Dienes implicationx → y =

max(1− x, y), 14
x →̃ y, (induced) fuzzy implication, 14
x ˜̃→ y, induced fuzzy implication (new con-

struction), 32
x xor y, two-valued antivalence ofx, y ∈ 2, 14
x xor y, the fuzzy antivalence defined byx xor

y = min(max(x, y),max(1 − x, 1 −
y)) of x, y ∈ I, 29

xx̃ory, (induced) fuzzy antivalence ofx, y ∈ I,
16, 29

x ˜̃xor y, induced fuzzy antivalence ofx, y ∈ I
(new construction), 37

X ∩ X ′, intersection of crisp subsetsX,X ′ ∈
P(E), 3

X ∩ X ′, standard fuzzy intersection of fuzzy
subsetsX,X ′ ∈ P̃(E) defined byµX∩X′(e) =
min(µX(e), µX′(e)), 28

X∩̃X ′, (induced) fuzzy intersection ofX,X ′ ∈
P̃(E) based oñ∧, 7

X ˜̃∩X ′, induced fuzzy intersection ofX,X ′ ∈
P̃(E) based oñ̃∧ (new construction),
37

X �cX ′,X ∈ P̃(E) is less specific thanX ′ ∈
P̃(E), 54

X4X ′, symmetrical set differenceX4X ′ =

(X \ X ′) ∪ (X ′ \ X) of crisp subsets
X,X ′ ∈ P̃(E), 16

X4X ′, symmetrical set difference of fuzzy sub-
setsX,X ′ ∈ P̃(E) based on standard
fuzzy antivalencex xor y, 29

X 4̃X ′, symmetrical difference of fuzzy sub-
setsX,X ′ ∈ P̃(E) based oñxor, 16

X
˜̃4X ′, symmetrical difference of fuzzy sub-

setsX,X ′ ∈ P̃(E) based oñ̃xor, 37
X ∪X ′, union of crisp subsetsX,X ′ ∈ P(E),

7
X ∪X ′, standard fuzzy union of fuzzy subsets

X,X ′ ∈ P̃(E) based onµX∪X′(e) =
max(µX(e), µX′(e)), 28

X ∪̃ X ′, (induced) fuzzy union ofX,X ′ ∈
P̃(E) based oñ∨, 7

X ˜̃∪X ′, induced fuzzy union ofX,X ′ ∈ P̃(E)

based oñ̃∨ (new construction), 37
(X)≥α, seealpha-cut
(X)>α, seestrict alpha-cut
Xmax, 39
(X)max

γ , 41
|X|max

γ , 63
(X)Hmax

γ , 116
Xmin, 39
(X)min

γ , 41
|X|min

γ , 63

(X)Hmin
γ , 116

‖X‖iv, 75
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Alphabetical index
absolute quantifier, 3
adequacy conditions, 53

principled adequacy bounds, 53
adjectival restriction, 9

by a crisp adjective, 10
by a fuzzy adjective, 59, 60

aggregation operator, 41, 43
algebraic approach, 77
alpha-cut, 40
alternative characterisation of DFSes, 37
ambiguity relation, 27
antonym, 8
arg-continuity

definition, 53
necessary and sufficient condition onMB-

QFMs, 65
argument insertion, 10, 12
argument transposition, 9, 12
automorphism, 19
automorphism-invariant,seequantitative
axioms (B-1) to (B-5), 45
axioms (C-1) to (C-4), 48
axioms (DFS-1) to (DFS-9), 12
axioms (Z-1) to (Z-6), 37

base set, 3

cardinality, 3
cautiousness, 27
cautiousness level,seedegree of cautiousness
characteristic function, 6
compatible

with antonyms, 8
with argument transpositions, 9
with cylindrical extensions, 58
with dualisation, 8, 15
with fuzzy argument insertion, 60
with induced extension principle, 11
with internal joins,seecompatible with unions

of argument sets
with intersections of argument sets, 9
with negation, 8
with standard negation, 46
with unions of argument sets, 15

conjunction of (semi-)fuzzy quantifiers, 28, 56
consistently less specific (for QFMs), 27
context range, 54

contextual QFM
conflict with preservation of convexity, 57
definition, 55

contextuality,seecontextual QFM
contextually equal, 55
continuity conditions on QFMs, 53, 78
continuous quantifier,seeconvex quantifier
convex combinations of DFSes, 27
convex QFMs

conflict with preservation of convexity in
the quantitative case, 58

convex quantifiers
characterisation in terms of properties onq

in quantitative case, 63
computation ofqmin andqmax for quantita-

tiveQ, 64
decomposition into conjunction of mono-

tonic quantifiers, 56
definition, 55

correct generalisation, 13, 37
crisp extension,seepowerset function
crisp inverse image, 20
crisp range of a three-valued subset, 40
currying, 33
cylindrical extension, 58

degree of cautiousness, 40
determiner,seequantifier
determiner fuzzification mechanism,seequan-

tifier fuzzification mechanism
determiner fuzzification scheme, 12

alternative characterisation, 37
equivalence of original and revised charac-

terisation, 38
DFS,seedeterminer fuzzification scheme
DFS axioms

dependencies between new axioms and ‘B-
conditions’, 51

equivalence of ‘old’ and ‘new’ axiom sets,
38

independence proof for revised axioms (Z-1)
to (Z-6), 51–52

original definition, 12
revised definition, 37

disjunction of (semi-)fuzzy quantifiers, 28
domain,seebase set
drastic product, 78
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dual, 8
dualisation, 8, 37

existential quantifier
definition, 3
interpretation in DFSes, 21, 23, 25
relationship with extension principle, 20

existing approaches to fuzzy quantification, 3
extension principle, 10
external negation, 8, 12

FG-count approach, 76
foundations of fuzzy reasoning, 79
functional application, 11, 12, 37, 46
fuzzy argument insertion, 59, 78
fuzzy cardinality, 75
fuzzy conjunction operator, 13
fuzzy determiner,seefuzzy quantifier
fuzzy disjunction operator, 14
fuzzy inclusion relation, 10, 16, 17
fuzzy interval cardinality, 75
fuzzy inverse image mapping, 20
fuzzy median, 27
fuzzy natural language quantification, 3
fuzzy negation, 7
fuzzy powerset, 4
fuzzy pre-determiner,seesemi-fuzzy quanti-

fier
fuzzy projection quantifiers, 6, 18
fuzzy quantification

existing approaches, 3
substitution approach, 73

fuzzy quantifier, 4
fuzzy set,seefuzzy subset
fuzzy subset, 4

generalized fuzzy median, 27, 41
generalized quantifier, 3
generator, 26
greatest lower specificity bound, 28

homomorphism, 77

identity truth function, 14
independence of DFS axioms, 51
induced

antivalence, 14, 29
conjunction operator, 14
disjunction operator, 14

equivalence, 14, 29
extension principle, 19

as a functor, 19
definition, 11
on injective mappings, 19
relationship with existential quantifiers,

20
relationship with induced fuzzy disjunc-

tion, 25
uniqueness, 20

fuzzy complement, 7
fuzzy connectives,seeinduced fuzzy truth

functions
fuzzy intersection, 7
fuzzy inverse image mapping, 21
fuzzy truth functions, 13, 31

alternative construction, 32
equivalence of original and alternative con-

struction, 36
original construction, 7

fuzzy union, 7
implication operator, 14
truth function,seeinduced fuzzy truth func-

tions
XOR, seeinduced antivalence

inequations between quantifiers, 17
infima of (semi-)fuzzy quantifiers, 69
internal complementation,seeantonym, 12
internal joins, 15, 37
internal meets, 9, 12
internal negation,seeantonym
interpretation of existential quantifier in DFS-

es, 21
interpretation of projection quantifiers in DFS-

es, 18
interpretation of universal quantifier in DFSes,

22
inverse image mapping, 20

K-standard sequence logic, 29
Kleene’s three-valued logic, 29, 41

least specific̃∨-DFSes, 28
least upper specificity bound, 53
linguistic adequacy, 3
linguistic properties of quantifiers, 77
local inequations between quantifiers, 17
local monotonicity properties, 16
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locally nondecreasing in the range(U, V ), 16
locally nonincreasing in range(U, V ), 16
lower bounds on quantification results, 69

mean operators, 27
median quantifiers, 27
membership function, 4
membership grade, 4
monadic quantifier,seeone-place quantifier
monotonic quantifiers

characterisation in terms of conditions on
q, 75

definition, 10
monotonicity

in arguments of a quantifier, 10, 37
of DFSes, 17

multiplace quantifier,seen-place quantifier

natural language, 3, 53
NL, seenatural language
nondecreasing ini-th argument, 10
nonincreasing ini-th argument, 10
n-place quantifier, 33

reduction to one-place quantifier, 34, 36

observable behaviour, 77
one-place quantifier, 31

permutation-invariant,seequantitative
powerset function, 10
preservation

of constants, 12, 46
of convexity, 57
of local inequations, 17
of local monotonicity properties, 16
of monotonicity, 12
of monotonicity in arguments, 16
of monotonicity properties, 10
of quantitativity, 19

principled adequacy bounds, 53
projection quantifiers, 6, 18, 37
propagation of fuzziness, 78

in arguments, 54
in quantifiers, 54

properties of fuzzy truth functions, 13
proportional quantifiers, 3

Q-continuity
definition, 54

necessary and sufficient condition onMB-
DFSes, 65

QFM, seequantifier fuzzification mechanism
quantification in natural languages, 3
quantifier fuzzification mechanism, 5
quantitative

fuzzy quantifier, 19, 22, 23
semi-fuzzy quantifier, 19

representation in terms of mappingq, 63

relationships between quantifiers, 77
restricted quantification,seerestricted use of a

quantifier
restricted use of a quantifier, 4
restriction, 4

scope, 4
semi-fuzzy quantifier, 4
semi-fuzzy truth function, 7, 31
S-function, 5
smoothness,seecontinuity conditions
s-norm, 14
specificity, 27
specificity consistent, 53
specificity ordering, 27, 53, 54
S-quantifiers

correspondings-norm, 24
decomposition intos-norm expression, 24
definition, 23

standard DFSes
all standard DFSes coincide on two-valued

quantifiers, 74
definition, 29

standard extension principle, 11, 19, 25, 29
standard fuzzy complement, 13
standard fuzzy negation, 13
strict alpha-cut, 40
strong negation operator, 13, 14
substitution approach to fuzzy quantification,

73
Sugeno integral

definition, 74
relationship withMCX , 74

suprema of (semi-)fuzzy quantifiers, 69
symmetric sums, 27
symmetric sums of DFSes, 27
symmetrical difference of argument sets, 16
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TGQ,seetheory of generalized quantifiers
theory of generalized quantifiers, 3
three-valued cut

of a fuzzy subset, 40
of a scalar value, 40

three-valued logic, 29
three-valued subsets

corresponding crisp range, 40
definition, 39

t-norm, 14
T-quantifiers

correspondingt-norm, 23
decomposition intot-norm expression, 24
definition, 22

transposition, 8
two-valued quantifier, 3

underlying semi-fuzzy quantifier, 6
universal quantifier

definition, 3
interpretation in DFSes, 22–24

universe of discourse,seebase set
unrestricted quantification,seeunrestricted use

of a quantifier
unrestricted use of a quantifier, 4
upper bounds on quantification results, 69
upper specificity bounds, 53

vacuous arguments,seecylindrical extensions

weak preservation of convexity, 59



Bisher erschienene Reports an der Technischen Fakult ät
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