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Abstract

In this report, a broad class of standard models of fuzzy quantification is introduced,
all of which satisfy the adequacy requirements of DFS theory, an axiomatic theory of
fuzzy natural language quantification. The new models arise when the known construc-
tion of DFSes in terms of three-valued cuts is separated from the fuzzy median-based
aggregation used in previous work ariz-DFSes. Some of the new models are benefi-
cial compared to the knowt 5-DFSes when the inputs are overly fuzzy and one still
needs a fine-grained result ranking. The report develops the full set of criteria required
to check whether a given model of fuzzy quantification based on the new construction
conforms to the adequacy conditions of DFS theory; whether it propagates fuzziness
in quantifiers and/or arguments and hence complies with the intuitive expectation that
less detailed input should not result in more specific output; whether it is robust with
respect to noise in the arguments or alternative interpretations of a fuzzy quantifier;
and how it compares to other DFSes by specificity.

The present report also helps to better relate existing work on fuzzy quantification to
the axiomatic framework provided by DFS theory. Recent findings indicate that the
Sugeno integral and hence the ‘basic’ FG-count approach can be embedded into DFS
theory: they can be consistently generalized to the ‘hard’ cases of fuzzy quantification
involving multi-place, non-quantitative and/or non-monotonic quantifiers. The report
proves a similar result for the Choquet integral and hence the ‘basic’ OWA approach,
by presenting a DF%,;, with the desired properties. Itis anticipated thag, will see

a number of applications in future software systems that profit from the use of fuzzy
quantifierst

1The second improved edition of the report fixes a bug of the original version which affected some
theorems concerned with propagation of fuzziness. Apart from these corrections, a discussion of the new
model 4 has been added.






1 Basic concepts of DFS theory

Approximate quantifiers likalmost alland the omnipresence of fuzzy concepts like

tall or rich in natural languages (NL) pose the problem of assigning a reasonable in-
terpretation to expressions likdmost all tall people are ricR DFS theory [6, 7]
provides an axiomatic solution to the problem of ensuring an adequate interpretation.
Starting from the notion of a two-valued generalized quantifier developed by the theory
of generalized quantifiers (TGQ, see [1, 2, 3]), DFS theory introduces the key notions
of semi-fuzzy quantifiers and fuzzy quantifiers. The benefit of introducing semi-fuzzy
guantifiers is that they provide a compact description of fuzzy quantifiers. These de-
scriptions can rely on the traditional notion of cardinality of crisp sets, which is not
directly applicable to fuzzy quantifiers because these need to handle fuzzy argument
sets liketall. The mapping from simplified descriptions, i.e. semi-fuzzy quantifiers, to
corresponding fuzzy quantifiers is established through a quantifier fuzzification mech-
anism (QFM). DFS theory approaches the problem of reasonable interpretation by im-
posing formal conditions on admissable choices of QFMs. These conditions ensure
that the essential properties of quantifiers and relationships between quantifiers are
preserved when applying the fuzzification mechanism. They can be likened to the fa-
miliar algebraic concept of a homomorphism, i.e. of a structure preserving mapping
which is compatible with a number of given constructions.

In the following we give a brief account of the basic concepts of DFS theory. The
reader interested in more motivation and NL examples of the constructions or axioms
is advised to consult the primary sources on DFS theory: the original presentation is
[6]; the current terminology and a simplified axiom system have been introduced in
[7]. Let us first define two-valued generalized quantifiers in accordance with TGQ:

Definition 1 An n-ary two-valued quantifieis a mapping@ : P(E)" — 2, where
E + @ is a nonempy set called the base set or domai@ oP(F) is the powerset
(set of subsets) df, n € N is the arity (number of arguments) ¢f, and2 = {0, 1}
denotes the set of two-valued truth values.

A two-valued quantifier hence assigns a crisp quantification réxif,...,Y,) € 2
to each choice of crisp argumentfs, . . ., Y,, € P(E). We allow for the case of nullary
quantifiers & = 0), which can be identified with the constafitand1. Some examples
of two-place quantifiers are

alg(V1,Yo) =1 CYs

somegp(Y1,Yo)=1YINY, #92

nog(Y1,Y2)=1<¥iNY, =0

atleastk g(Y1,Y2) =1< |1 NYs| > k

more thank g(Y1,Y2)=1< Y1 NYs| >k
for all Y1,Y> € P(E); |e| denotes cardinality. We usually drop the subschpivhen

the base sek is understood. In order to cover the approximate variety of NL quan-
tifiers (e.g.about 1Q and to be able to apply these quantifiers to argumentstdike

2in the present case, the result should be cloge(false).




andrich, we need to enhance this concept of quantifiers and incorporate ideas from
fuzzy set theory. Auzzy subseX of a given setF assigns to each elemente FE

a membership gradex (e) € I, wherel = [0, 1] is the unit interval. A fuzzy subset

is hence uniquely characterised by its membership fungtipn £ — 1. We shall

denote the collection of all fuzzy subsetsiof(i.e. its fuzzy powerset) b (E). We

shall assume tha®(E) is an ordinary set. In the following, it will be convenient to
assume that crisp subsets are a special case of fuzzy subsets, i.e. we will assume that
P(E) C P(E).2 We are now ready to introduce fuzzy quantifiers:

Definition 2 An n-ary fuzzy quantifieron a base seff # & is a mappingQ :
P(E) — 1L

A fuzzy quantifier hence assigns to eactuple of fuzzy argument sefs,, ..., X, €
P(E) a gradual quantification resu}(X;,...,X,) € I. Unlike two-valued quan-
tifiers, fuzzy quantifiers hence accept fuzzy input (we could e.g. Bave- tall <
P(E), Xo = rich € P(E)). In addition, fuzzy quantifiers produce fuzzy (gradual)
output, thus providing a more natural account of approximate quantifiersikat ten
almost all manyetc. However, fuzzy quantifiers pose a new problem. Consider the
guantifiermore than 10 percenfor example. Given a finite base 96 we can easily
define a corresponding two-valued quantifieore than 10 percent : 73‘(E)2 —

2, viz

1 \YlﬂYQ\>\Y1|/lO

more than 10 percent (Y3,Ys) = { 0 . else

forall Y1,Y; € P(E), utilizing the cardinalityle| of crisp sets. Unfortunately, it is not
that easy to provide a straightforward definition of a corresponding fuzzy quantifier

more than 10 percent : 73(E)2 — I. This is becaus&, X5 in

more than 10 percent (X1, X5)

are fuzzy subsetX;, X, € 75(E), i.e. we cannot utilize the familiar concept of car-
dinality of crisp sets to define a fuzzy quantifier. Unfortunately, there is no generally
accepted notion of cardinality of fuzzy sets which could be used as a substitute for
|e| in the fuzzy case. In order to overcome this problem, DFS theory introduces the
intermediary concept of semi-fuzzy quantifiers.

Definition 3 An n-ary semi-fuzzy quantifieon a base sefl # @ is a mapping@ :
PE)" — 1.

@ hence assigns to eaehtuple of crisp subset¥, ..., Y, a gradual quantification
resultQ(Yy,...,Y,) € I. Semi-fuzzy quantifiers share the expressiveness of fuzzy

3Note that this subsumption relationship does not hold if one identifies fuzzy subsets and their member-
ship functions, i.e. if one stipulates tlﬁ(E) = I¥, whereI” denotes the set of mappings E — 1. It
is hence understood that the appropriate transformations (e.g. from a crispAubsEtto its characteristic
functiony 4 € 2F C I¥) are carried out and for the sake of readability, we will omit these in our notation.



guantifiers because they can model fuzzy (gradual) quantification results. Like fuzzy
guantifiers, they are hence suited to represent approximate quantifiers. On the other
hand, semi-fuzzy quantifiers are defined for crisp arguments only, thus alleviating the
need to provide a definition for arbitrary fuzzy arguments, which made it so hard
to define fuzzy quantifiers and to justify a particular choice of their definition. Be-
cause every semi-fuzzy quantifier depends on crisp arguments only, it can be conve-
niently defined in terms of the crisp cardinality of its arguments and their Boolean
combinations. In particular, every two-valued quantifier (like the above choice of
more than 10 percent ) is a semi-fuzzy quantifier by definition.

Because of these benefits, semi-fuzzy quantifiers are considered a suitable base rep-
resentation for NL quantifiers: sufficiently expressive to capture all quantifiers in the
sense of TGQ as well as approximate quantifiers, and still sufficiently simple to allow
for a straightforward definition. However, semi-fuzzy quantifiers cannot be applied
to fuzzy arguments likeall or rich. We hence need a mechanism which accepts a
description of the target quantifier, stated as a semi-fuzzy quantifier, and returns a cor-
responding fuzzy quantifier which properly generalises the semi-fuzzy quantifier to the
case of fuzzy arguments.

Definition 4 A quantifier fuzzification mechanisf@QFM) F assigns to each semi-
fuzzy quantifie@) : P(E)" — Ia corresponding fuzzy quantifiéi(Q) : P(E)n —
I of the same arity: € N and on the same base g6t

Of course, this definition must be further taylored to a class of ‘reasonable’ fuzzifica-
tion mechanisms. We expect a fuzzification mechanism to be ‘systematic’ or ‘well-
behaved’ and in conformance to linguistic considerations, and it is time to spell out
appropriate criteria. Perhaps the most elementary condition on a fuzzification mecha-
nism is that it properly generalizes the original semi-fuzzy quantifier. We can express
this succintly if we introduce the following notion of underlying semi-fuzzy quanti-
fiers.

Definition 5 LetQ : P(E)" — I be a fuzzy quantifier. Thenderlying semi-fuzzy

quantifier/(Q) : P(E)" — I is defined by

UQR)(Yy,....Y,) =QY,....Y,),
for all n-tuples ofcrispsubsetss, ..., Y, € P(E).
It is natural to require thal/(F(Q)) = @, i.e. F(Q) properly generalize§) in the
sense thaF (Q)(Y1,...,Y,) = Q(Y1,...,Y,) whenever all arguments are crisp.

Another adequacy constraint is based on the relationship of crisp and fuzzy member-
ship assessments with quantification. We make this relationship explicit through the
following definitions of (fuzzy) projection quantifiers:

Definition 6 SupposeF is a base set and € E. The projection quantifierr, :
P(E) — 2is defined by

7TE(YV) = XY(e) )



whereyy : E — 2 is the characteristic function af € P(E), thus

1 : ecY
Xv(©) =130 . else

For example, we can use the crisp projection quantifigf,, to evaluate crisp mem-
bership assessments like John married? which can be evaluated by computing
Tyonn(Married ), wheremarried € P(E) is the crisp subset of married people in
E. A corresponding definition of fuzzy projection quantifiers is straightforward.

Definition 7 Let a base sell be given anc: € E. Thefuzzy projection quantifier
Te : P(E) — Tis defined by

Te(X) = px(e)

forall X € P(E).

For example, we can evaluatg,n, (tall ) to assess the grade to which John is tall,
and we can comput@;,p, (rich ) to determinguic, (John), the degree to which John

is rich. Because crisp and fuzzy projection quantifiers play the same role, viz. that
of crisp/fuzzy membership assessment, we expect a reasonable choice of Q&M
recognize this relationship and map each crisp projection quantifiéo the corre-
sponding fuzzy projection quantifier, i#, = F(r.).

We can also evaluate a QFM from the perspective of propositional fuzzy logic. This
is because a QFM can not only be applied to semi-fuzzy quantifiers. By a canoni-
cal construction, every QFM also gives rise to induced fuzzy truth functions, i.e. to a
unique choice of fuzzy conjunction, disjunction etc. In order to establish this link be-

tween logical connectives and quantifiers, we first observe2that P({1, ..., n}),
using the bijection; : 2 — P ({1, ..., n}) defined by

n(x,...,zn) ={ke{l, ..., n}:ap =1},
forall y,...,2, € 2. We can use an analogous construction in the fuzzy case. We

then havel” =~ P({1, ..., n}), based on the bijection : I" — P({1, ..., n})
defined by

Hii(ar,....on) (K) = Tk,
for all z1,...,2, € T'andk € {1, ..., n}. These bijections can be utilized for
a translation between semi-fuzzy truth functions (i.e. mappifgs2” — I) and
corresponding semi-fuzzy quantifiefy; : P({1, ..., n}) — I, and similarly the
translation from fuzzy quantifie@ : P({1, ..., n}) — Iinto fuzzy truth functions
f:I"—L

Definition 8 SupposeF is a QFM andf : 2" — I is a mapping (i.e. a ‘semi-fuzzy
truth function’) of arityn > 0. The semi-fuzzy quantifi€}; : P({1, ..., n}) — I
is defined by

Qs(Y) = f(n'(Y))



forall Y € P({1, ..., n}). The induced fuzzy truth functigh(f) : I" — Tis
defined by

‘F(f)(xlv e axn) = f(Qf)(ﬁ(xh cee 71.71)) 5

forall zy,...,2, € L If f : 20 s Tisa nullary semi-fuzzy truth function (i.e.,
a constant), we shall defing(f) : I — I by F(f)(@) = F(c)(2), wherec :
P({z})’ — Iis the constant(2) = f(2).4

We shall not impose restrictions on the induced connectives at this time; these will be
entailed by the remaining axioms. B B
Induced operations on fuzzy sets, i.e. fuzzy complermient?(E) — P(E), fuzzy

intersection™ : P(E)° — P(E) and fuzzy unionD : P(E)’ — P(E), can
be defined element-wise in terms of the induced negationl — I, conjunction
A:IxI — Tor digjunctionV : IxI — 1, respectively. For example, the induced
complement X € P(FE) of X € P(FE) is defined by

p=x(e) == px(e),

forall X € P(E) ande € E.
Based on the induced fuzzy negation and complement, we can express important con-
structions on quantifiers like negation, formation of antonyms, and dualisation.

Definition 9 The external negatior-Q : P(E)" — I of a semi-fuzzy quantifier
Q : P(E)" — Tis defined by

RV, .., V) =2(Q(Y, ..., Ya))

forall Yi,...,Y, € P(E). The definition o Q : P(E)" — I in the case of fuzzy

guantifiersQ : 75(E)” — Iis analogous.
For exampleno is the negation o§ome .

Definition 10 Let a semi-fuzzy quantifi€p : P(E)" — I of arity n > 0 be given.
Theantonym@Q— : P(E)" — I of Q is defined by

Q_'(Yla .- aYn) = Q(Yla .- 'aY;L—lv_‘Yn) )

for all Yi,...,Y, € P(E). The antonynQ= : 75(E)n — I of a fuzzy quantifier
Q: P(E)" — T is defined analogously, based on the given fuzzy complément

For exampleno is the antonym oéll. The dualQO of a guantifier is the negation of
the antonym, or equivalently: the antonym of the negation. Hence

4The special treatment of nullary truth functions is necessary to avoid the B¢ of P(0) — 1,
which is not a semi-fuzzy quantifier because the base set is empty. More information on the construction of
induced fuzzy truth functions may be found in [7].



Definition 11 ThedualQO : P(E)" — I of a semi-fuzzy quantifi€p : P(E)" —
I, n > 0is defined by

QOY,...,.Y,) =5Q(Y1,...,Y,—1,7Y,),

forall Y1,...,Y, € P(E). The dualQ] = = Q= of a fuzzy quantifie€) is defined
analogously.

For examplesome is the dual ofall. We expect that a given QFNM be compati-
ble with these constructions on quantifiers. Herfg@o) should be the negation of
F(some ), F(no) should be the antonym d¢f (all) andF(some ) should be the dual
of F(all).

Apart from negation/complementation, we can also form intersections and unions of
argument sets to construct new quantifiers from given ones.

n

Definition 12 Let a semi-fuzzy quantifi€) : P(E)
We define quantifie@uU, QN : P(E)" ™" — I by

QU(YL . '7Yn+1) = Q(Yh c '7Yn717Yn U Yn+1)
QN(Y1, ..., Yoy1) =Q(Y1,..., Yo 1, Y N Y, pa)

— I of arity n > 0 be given.

forall Yy,...,Y,,1 € P(E). Inthe case of fuzzy quantified and QN are defined
analogously, based on the given fuzzy set operatioasdn, resp.

Another important characteristic of quantifiers expresses through their monotonicity
properties.

Definition 13~ A semi-fuzzy quantifigp : P(E)" — I is said to benonincreasing in
its i-th argumenti € {1, ..., n}, if

Q(Yla"'vyn) > Q(}/la"'7}/2'—171/;,3}/1'—%17"'7}/%)

whenevel,...,Y,, Y/ € P(E) such thafy; C Y/. ) is said to benondecreasing in
thei-th argumentf the reverse inequation holds. The definitions for fuzzy quantifiers
are analogous.

For exampleall is nonincreasing in the first argument and nondecreasing in the second
argument. We expect each reasonable choice of @Rl preserve such monotonicity
properties. Henc& (all ) should be nonincreasing in the first and nondecreasing in the
second argument.

We can also utilize a QFM to construct fuzzy powerset mappings. Let us first recall
the concept of a powerset mapping in the crisp case. To each mappifg— E’,
we can associate a mappiﬁg P(E) — P(E’) (the powerset mapping gf) which
is defined by

f(Y)={f(e):e€Y},



forall Y € P(E).5 In order to generalise this concept to the fuzzy case, we need a

mechanism which associates fuzzy powerset mappiitgs : P(E) — P(E') to
given mappings’ : E — E’. Such a mechanism is called artension principlé
The standard extension principle, proposed by Zadeh [15], is defined by

» (¢) =sup{ux(e) e e fl(e)}, (N
£(X)

forall f : E — E', X € P(E) ande’ € E'. With each QFM, we can associate a
corresponding extension principle through a canonical construction.

Definition 14 Every QFMF induces an extension Principl? which to _eachf :
E — FE’ (whereE, E' # @) assigns the mapping (f) : P(E) — P(E’) de-
fined by

1y (€) = F (X5 (€D(X),
forall X € P(E), ¢ € E.

We require that every ‘reasonable’ choice/®fe compatible with its induced exten-
sion principle in the following sense. Suppoe: P(E)" — 1 is a semi-fuzzy
quantifier andfy, ..., f, : B/ — E are given mappingsy’ # @. We can construct

the semi-fuzzy quantifiep o X ﬁ : P(E")" — T by composing with the powerset
=1

mappingsﬁ,...,fAn, ie.
(Qo X F)(Vi,....Ya) = QUAMY), ... Ful¥0)), @

for all Y1,...,Y, € P(E’). By utilizing the induced extension princip@ of a
QFM, we can perform a similar construction on fuzzy quantifiers, thus composing

Q: 73(E)" — T with j?'(fl), . ,]?(fn) to form the fuzzy quantifie€ o X F(f)
=1
P(E")" — 1 defined by

Qo X F)Xr, o Xa) = QE(F)X), o F(f) (X)),

for all Xq,...,X,, € 73(E’). We require that a QFMF be compatible with this
construction, i.e.

F(Qo x [) =F(@Q)o x F(fi).
This condition is of particular importance because it is the only criterion to relate the
behaviour ofF on different base set&, E’. We can combine the above conditions in

order to capture our expectations on well-behaved models of fuzzy quantification in a
condensed set of axioms.

50ften the same symbol is used to denote both the original mapping and the powerset mapping.
8For our purposes, it will be convenient to assume fiaF’ # &.



Definition 15 A QFM F is called adeterminer fuzzification schen{®FS) if the fol-
lowing conditions are satisfied for all semi-fuzzy quantifigrsP(E)" — 1.

Correct generalisation UFQ)=Q ifn<1 (Zz-1)
Projection quantifiers F(Q) =7, Iifthere existe € F s.th.Q = 7,
(Z-2)

Dualisation FQD) =F@QO n>0 (2-3)
Internal joins FQU)=F(@QU n>0 (z-4)
Preservation of monotonicity ) is nonincreasing im-th arg, then (Z-5)

F(Q) is nonincreasing im-th arg,n > 0
Functional application F(Qo X ﬁ) =F(Q)o X Jf‘(fi) (Z-6)

=1 =1
wherefi, ..., fo: B/ — E, E' # .

The axioms (Z-1) to (Z-6) have been shown to be independent in [7], which also shows
that the present axiom set is equivalent to the original definition of DFSes in [6] which
was based on nine axioms.

10



2 Some properties of DFSes and special subclasses

The above conditions (Z-1)—(Z-6) are intended to cover those adequacy criteria that are
essential from the perspective of linguistics and fuzzy logic, and to provide a formali-
sation of these criteria in terms of a system of independent axioms. Due to the goal of
obtaining an independent system, it was not possible to include all of these adequacy
criteria directly into the axiom set, thus compromising its independence. However, it
has been shown in [7] that DFSes comply with a large humber of linguistic and logi-
cal adequacy criteria. The following chapter is not intended to review these results on
adequacy properties of DFSes, which can be found in full detail in [7]. By contrast,
the chapter focuses on those definitions and theorems only, that are necessary to un-
derstand and prove the new theorems. Unless otherwise stated, the proofs of the cited
theorems can be found in [6, 7].

First we review some results on the fuzzy truth functions induced by a DFS. Let us
recall the definition of a strong negation (i.e. ‘reasonable’ fuzzy negation operator):

Definition 16 = : I — T is called astrong negation operatdf it satisfies

a. =0 = 1 (boundary condition)

b. =z; > =y for all 21, zo € I such thatz; < x5 (i.e. = is monotonically
decreasing)

€. = o= =idy (i.e. = is involutive).
Note. Whenever the standard negatian = 1 — z is being assumed, we shall drop
the ‘tilde’-notation. Hence the standard fuzzy complement is denet&d where
u-x(e) = 1 — ux(e). Similarly, the external negation of a (semi-) fuzzy quanti-

fier with respect to the standard negation is writtef), and the antonym of a fuzzy
guantifier with respect to the standard fuzzy complement is writt&p-as

We also recall the concepts ot-anorm (i.e. ‘reasonable’ fuzzy conjunction) ard
norm (‘reasonable’ fuzzy disjunction), see [10]. The fuzzy truth functions induced by
a DFS are guaranteed to belong to the class of such reasonable operators:

Theorem 1 In every DFSF,

a. F(ide) = idy is the identity truth function;
b. == ]?(ﬂ) is a strong negation operator;
c. A = F(A)is at-norm;

d. 71 Vg = S(5 21 A T 29), i.€.V is the duals-norm of A under=.

Next we show that one does not loose any interesting phenomena if attention is re-
stricted to DFSes that induce the standard negation- 1 — .

11



Definition 17 Supposé- : I — T is strong negation operator. A DES is called a
=-DFS if its induced negation coincides with i.e. 7(-) = =. In particular, we will
call 7 a —-DFS if it induces the standard negatierr = 1 — .

Definition 18 SupposeF is a DFS andr : I — 1 a bijection. For every semi-fuzzy
quantifierQ : P(E)" — I and all Xy,..., X, € P(E), we define

FQ)(X1,...,Xp) = 071.7:(0@)(0')(1, o 0Xy),
whereos( abbreviatesroQ, ando X; € 75(E) is the fuzzy subset with, x, = copux;.

Theorem 2 If Fisa DFS andr : I — I an increasing bijection, thef is a DFS.

We recall that for every strong negatién I — I there is a monotonically increasing
bijectiono : I — I suchthat~x = o~ 1(1 — o(z)) for all z € I, see [8, Th-3.7].
The mapping is called thegeneratorof =.

Theorem 3 SupposeF is a =-DFS ande : I — 1 the generator ofs. ThenF' =
Fo ' isa—~-DFS andF = 7.

This means that we can freely move from an arbitrarDFS to a corresponding-
DFS and vice versa: in the following, we hence restrict attention-@FSes. Among
these, we discern further subclasses according to their induced disjunction.

Definition 19 A —~-DFS F which induces a fuzzy disjunctianis called aV-DFS.

Definition 20 A DFSF is called astandard DF$ and only if 7 is amax-DFS, i.e. a
DFS which induces the standard negatiom = 1 — x and the standard disjunction
z Vy = max(x,y).

Note. Itis then apparent from earlier work [7, Th-17.a, p. 20 and Th-25, p. 25] that stan-
dard DFSes are exactly thoseDFSes which induce the standard extension principle

F = (o).

Theorem 4 Suppose7 is a non-empty index set aridF;) jc 7 is a J-indexed collec-

tion of V-DFSes. Further suppose théit: IV — I satisfies the following conditions:
a. If f € 17 is constant, i.e. if there is a € I such thatf(j) = cforall j € 7,

then¥(f) =c.

b. U(1— f) =1-¥(f), wherel — f € 17 is point-wise defined bl — f)(j) =
1—f(@y),foraljeJ.

c. ¥ is monotonically nondecreasing, i.e. f{j) < g(j) forall j € 7, then

U(f) <¥(g).
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If we define¥[(F;);cs] by
U[(F))jes) (@) (X1, .., Xp) = V((FHQ)( X1, - -+, Xn))jes)

for all semi-fuzzy quantifier§) : P(E)" — I and Xy,...,X, € P(E), then
\I’[(}-j)jej] is aVV-DFS.

Therefore convex combinations @fDFSes like the arithmetic mean, and stable sym-
metric sums [11] of/-DFSes are again-DFSes.
The —-DFSes can be partially ordered by ‘specificity’ or ‘fuzziness’, in the sense of
closeness tg. We define a partial ordet, C I x I by
r=,ysy<z<gorg <z<y, 3)

for all z,y € I. <. is Mukaidono’s ambiguity relation, see [9]. We extend this basic
definition of <, for scalars to the case of DFSes in the obvious way:

Definition 21 SupposeF, F’ are —=-DFSes. We say th&f is consistently less specific
than 7, in symbols:F <. ', iff for all semi-fuzzy quantifier§ : P(E)" — I and
all Xy,...,X,, € P(E),

f(Q)(le v 7Xn) = ]:/(Q)(Xh s 7X7’L) .

We now wish to establish the existence of consistently least specilESes. As
it turns out, the greatest lower specificity bound of a collectiorvddFSes can be
expressed using the fuzzy mediaed 1 , which is defined as follows.

2

Definition 22 Thefuzzy medianned; : I x I — I is defined by
2

min(uy, up) @ min(ug, uz) > 1
med 1 (u1, us) = {4 max(uy, up) : max(uy, uz) < %
: 1 . else

2

med 1 is an associative mean operator [4] and the only stable (i.e. idempotent) associa-
2

tive symmetric sum [11]. It can be generalised to an opetator P(I) — I which
accepts arbitrary subsetsbés its arguments.

Definition 23 The generalised fuzzy median% : P(I) — Iis defined by
m1 X = med; (inf X, sup X),
2 2
forall X € P(I).

Now we can state the desired theorem.
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Theorem 5 Suppose/ is an s-norm and(F;) ez is a J-indexed collection of/-
DFSes whergf # @. Then there exists a greatest lower specificity bountn,c 7,
i.e. aV-DFS Fy1, such thatFyy, <. F; forall j € J (i.e. Fa is a lower specificity
bound), and for all other lower specificity bound$, 7' <. Feip.

Feab is defined by

Fa(Q)( X1, ..., Xn) = m{F;(Q)(Xy, ..., Xn) 1 j € T},
forall Q : P(E)" — IandXy,..., X, € P(E).

In particular, the theorem asserts the existence of least spedifieSes, i.e. whenever

V is ans-norm such that/-DFSes exist, then there exists a least spevifl2FS (just

apply the above theorem to the collection of\alDFSes).

As concerns the converse issue of most specific DFSes, i.e. least upper bounds with
respect to<,,, the following definition of ‘specificity consistence’ turns out to provide

the key concept:

Definition 24 Suppose/ is an s-norm and(F;),c7 is a J-indexed collection of/-
DFSesF;, j € J whereJ # @. (F;);jes is calledspecificity consisteniff for
al Q : P(B)" — TandXi,...,X, € P(E), either Rg x,,.x, C [0,1] or
Rg.x,....x, C [3.1], whereRq x, ... x, = {F;(Q)(X1,...,X,) : j € T}.

We can now express the exact conditions under which a collection@FSes has a
least upper specificity bound.

Theorem 6 SupposeV is an s-norm and(F;),c7 is a J-indexed collection of/-
DFSes whergf # &.

a. (F;),ecg has upper specificity bounds exactlyH;) ;c s is specificity consistent.

b. If (F;),ez is specificity consistent, then its least upper specificity bound is the
V-DFS Fy,1, defined by

sup R, x,,...x, © Ro.xi,..x, C
C

]'—lub(Q)(le--an) = { .

WhereRnyh.__,Xn = {fJ(Q)(Xl, - ,Xn) ] S j}

14



3 Further adequacy considerations

In the following, we shall discuss several additional adequacy criteria for approaches
to fuzzy quantification. The first two criteria are concerned with the ‘propagation of
fuzziness’, i.e. the way in which the amount of imprecision in the model’s inputs affects
changes of the model’s outputs. To this end, let us recall the partial grderI x I
defined by equation (3). We can extend to fuzzy setsX € P(E), semi-fuzzy

quantifiersQ : P(E)"™ — I and fuzzy quantifier§) : P(E)" — I as follows:
X <. X' < px(e) 2. pux(e) foralle € E;
Q=2.Q <= Q\1,....Y,) <. Q (Y1,...,Yy) forallYi,...,Y, € P(E);
Q=.Q = Q(X1,...,X,)2.Q(X1,...,X,) forall Xi,...,X, € P(E).

Intuitively, we expect that the quantification results become less specific whenever the
quantifier or the argument sets become less specific: the fuzzier the input, the fuzzier
the output.

Definition 25 We say that a QFMF propagates fuzziness in argumeifitand only if
the following property is valid for a) : P(E)" — TandXy,..., X, X1,..., X/:
If X; <. X/foralli=1,...,n,thenF(Q)(X1,...,Xn) 2. FQ)(X],...,X]).
We say thatF propagates fuzziness in quantifiéfrand only if 7(Q) <. F(Q’) when-
ever@Q <. Q@’.

Both conditions are certainly natural to require, and | consider them as desirable but
optional. A more detailed discussion can be found below on page 23 and in the con-
clusion.

Finally, we introduce two adequacy criteria concerned with distinct aspects of the
‘smoothness’ or ‘continuity’ of a DFS. These conditions are essential for DFSes to be
practical because it is extremely important for applications that the results of a DFS be
stable with respect to slight changes in the inputs. These ‘changes’ can either occur in
the fuzzy argument sets (e.g. due to noise), or they can affect the semi-fuzzy quantifier.
For example, if a person A has a slightly different interpretation of quantjfiénan
person B, then we still want them to understand each others, i.e. the quantification
results obtained from the two models of the target quantifier should be very similar in
such cases.

In order to express the robustness criterion with respect to slight changes in the fuzzy
arguments, we first need to introduce a metric on fuzzy subsets, which serves as a
numerical quantity of the similarity of the arguments. For all base Betnd all

n € N, we define the metrid : 75(E)n X 75(E)n — Thy

A(X, 0, Xa), (X, X)) = mibsup{lix, () — s ()] s e € B}, (4)

forall Xy,...,X,, X{,..., X}, € ﬁ(E). Based on this metric, we can now express
the desired criterion for continuity in arguments.

Definition 26 We say that a QFMF is arg-continuousf and only if 7 maps all@ :
P(E)" — 1 to continuous fuzzy quantifie’s(Q), i.e. for all X1,..., X,, € P(E)
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ande > 0 there exist9 > 0 such thatd(F(Q)(X1,...,X,), F(Q)(X],..., X})) <

eforall X{,..., X! € P(E)withd((Xy,...,X,),(X],..., X)) < 4.

The second robustness criterion is intended to capture the idea that slight changes in a
semi-fuzzy quantifier should not cause the quantification results to change drastically.
To introduce this criterion, we must first define suitable distance measures for semi-
fuzzy quantifiers and for fuzzy quantifiers. Hence for all semi-fuzzy quantifje€s’ :

PE)" — 1,

d(QvQ,) = Sup{|Q(Y17~ c vYn) - Q/(Ylv o 7Yn)‘ : Ylv . ~7Yn € P(E)}v (5)

and similarly for all fuzzy quantifieré, Q' 75(E)n — 1,

~/

d(Q,Q") = sup{|Q(X1,...,X,) — Q' (X1,..., X)| : X1,..., X,, € P(E)}. (6)

Definition 27 We say that a QFMF is Q-continuousf and only if for each semi-
fuzzy quantifieQ : P(E)" — I and alle > 0, there existsy > 0 such that
d(F(Q),F(Q')) < e whenever)' : P(E)" — I satisfies!(Q, Q') < 6.

Both condition are crucial to the utility of a DFS and should be possessed by every
model employed in practical applications. They are not part of the DFS axioms because
| wanted to have DFSes for genetatorms (including the discontinuous variety).
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4 The class of Mpg-DFSes

In [6], the first three models of the DFS axioms have been presented. An investigation
of the common principle underlying these DFSes has led to the introductidr ©f
DFSes in [7], the class of DFSes defined in terms of three-valued cuts of arguments
and subsequent aggregation by applying the fuzzy median. In the following, | briefly
recall the definitions necessary to introdut¢s-QFMs and to understand how they
work. This includes a characterisation of the clasd6§-DFSes in terms of necessary
and sufficient conditions on the aggregation maphags well as a presentation of
important models and special propertiesidfz-DFSes. Unless otherwise stated, the
proofs of all theorems cited in this chapter may be found in [7].

Let us first define the unrestricted class\dfz-QFMs, which will then be shrunk to the
reasonable cases 8flz-DFSes by imposing conditions on the aggregation mapping.
To this end, we need to introduce some notation. We recall the conceptuats and

strict a-cuts of fuzzy subsets:

Definition 28 Let E be a given setX € 75(E) a fuzzy subset af anda € 1. By
X>qo € P(E) we denote the-cut

Xsa={e€ E:pux(e) >a}l.

Definition 29 Let X € P(E) be given anch € L. By X», € P(E) we denote the
strict a-cut

Xsq={e€ E:pux(e)>a}.

In terms of thesex-cuts, we define the cut rangg, (X) C P(FE), which repre-
sents a three-valued cut at the ‘cautiousness leyeg 1 by a set of alternatives
{Y : X};““ CY C X;nax}. The reason for introducing three-valued cuts is that
we need a cutting mechanism compatible to complementatiaruts, however, have
(—X)s, # ~(X>a). The desired symmetry is easily obtained with three-valued cuts,
defined as follows:

Definition 30 Suppose is some setX € P(E) andy € L Xmin, Xmax e P(E)
and7,(X) C P(E) are defined by

X 1 =
X:r/nin _ X>§ 0
2%-&-%7 v>
X1 7=0
X7=9 x 3 >0
>3-dy T

T,(X)={Y : X" CY C X"},

Note. The relationship of cut rang&s(X) and three-valued sets is discussed in [6,
p.58+] and [7, p. 39+].
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How can we use these cut ranges to evaluate fuzzy quantifiers? The basic idea is that
we can view the crisp rangg, (X) as providing a set of alternatives to be checked.
For example, in order to evaluate a quantifigrat a certain cut level, we have to
consider all choices ap (Y1, . ..,Y,), whereY; € 7,(X;). The set of results obtained
in this way must then be aggregated to a single result in the unit interval, which we
denote ag),(X1,...,X,) € I. The generalised fuzzy median (see Def. 23) is well-
suited to carry out this aggregation. The use of the fuzzy median for this purpose was
originally motivated by the observation that the resulting fuzzification mechanisms
embed Kleene’s three-valued logic. This is useful because the targeted class of models
(viz, standard DFSes) are known to embed Kleene’s logic, too.

Let us hence use the crisp rangeg X;) of the argument sets to define a family of
QFMs (e)., indexed by the cautiousness parameterI:

Definition 31 For everyy € I, we denote bys)., the QFM defined by

Q'y(X17--- ;Xn) = m%{Q(Yl, ;Yn) 1Y € TY(X1>,7YH S Ty(Xn)},
for all semi-fuzzy quantifier® : P(E)" — Iand Xy,..., X, € 75(E).

None of the QFMSg(e)., is a DFS, because the required information is spread over
various cut levels. Hence in order to define DFSes based on these QFMs, we must
simultaneously consider the results obtained at all levels of cautiousnéss the
~-indexed family(Q~(X1,. .., X»)),c1. We can then apply various aggregation op-
erators on these-indexed results to obtain new QFMs, which have a chance of being
DFSes. We now define the domain on which these aggregation operators can act.
Definition 32 IB%+,IB%%,IBB— andB C I are defined by

B ={feI': f(0) > % and f(I) C [%, 1] and f nonincreasing}

2
B~ ={f eI': f(0) < £ and f(I) C [0, 1] and f nondecreasing

1
B=BtUB2UB™.

1
Note. In the definition of32, ¢c; : I — I is the constant; (z) = 3 forall z € I.

2 2
More generally, we stipulate for ail € I thatc,, : I — I be the constant mapping

cq(x) =a, )

forallz € 1.
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Theorem 7

a. Suppose€) : P(E)" — IandXy,..., X, € P(E) are given. Then

B+ : Qo(Xl,...,Xn) >%

1
(Q’y(X17~ .. >Xn))'y€I (S B2 : QO(X17~ .. ,Xn) = %
B~ Qo(Xh...,Xn) <%

b. For eachf € B there exists) : P(E)" — I and Xy,..., X, € P(E) such
that f = (Qy(X1,..., Xp))yer.

Given an aggregation operatBr: B — I, we define the corresponding QFEM 5 as
follows.

Definition 33 Supposeés : B — I is given. The QFMM is defined by
MB(Q)(X17-~-aXn):B((QW(Xla---vXn))’yEI)7 (8)

for all semi-fuzzy quantifier® : P(E)" — IandX;..., X, € 75(E)-

By the class of\ z-QFMs we mean the class of all QFMd 5 defined in this way. Itis
apparent that if we do not impose restrictions on admissible choid8stbé resulting
QFMs will often fail to be DFSes. Hence let us state the necessary and sufficient
conditions tha3 must satisfy in order to mak#1z a DFS. To express these conditions,
we first need some constructionsBn

Definition 34 Supposef : I — I is a monotonic mapping (i.e., nondecreasing or
nonincreasing). The mappings, f : I — I are defined by:

fﬁ:{ lim, .+ f(y) : =<1
f( cox=1

[ lim, - f(y) : x>0
fb_{f(()% R forall fe B,z el

It is apparent that iff € B, thenf! € B andf® ¢ B. f* and f* are obviously very
‘similar’ to each others (and t¢) and every reasonablg should mapf® and f* to

the same aggregation result. This turns out to be essentialtfpto satisfy (Z-6), be-
cause(@~ (X1, ..., Xn)) er is not compatible with (Z-6) in a precise sense, but only
modulot/b.

We shall further introduce several coefficients which describe certain aspects of a map-
pingf:1—1.
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Definition 35 For every monotonic mappinf): I — I (i.e., either nondecreasing or
nonincreasing), we define

fo = Tlim, () ©)
o =inf{y €I: f(y) =0} (10)
1
2 =inf{y e T: f(7) = 1} (11)
fi = lim f(v) (12)
y—1-
fill =sup{yel: f(y) =1} (13)
fH=inf{y €I: f(y) = 1}. (14)

1
We only needf*2l to define the desired conditions @ it turns out to be essential
for ensuring a proper behaviour @l in the case of three-valued quantifiers, and
in particular to ensure the desired results for the two-valued projection quantifiers of
(Z-2). We will use the remaining coefficients later to define examplesigtDFSes.

Definition 36 Suppose’ : B — 1 is given. For allf, g € B, we define the following
conditions onB:

B(f) = f(0) if fisconstant,i.ef(z)= f(0)forallz €I (B-1)

B(1—f)=1-B(f) (B-2)
If £(I) C {0, L, 1}, then (B-3)
Y
B(H =4 3 f eB?
%—%f*%l . feB-
B(f*) = B(f") (B-4)
If f < g, thenB(f) < B(g) (B-5)

As witnessed by the next theorem, these conditions capture precisely the requirement
on 3 for Mg to be a DFS.

Theorem 8

a. The conditiongB-1) to (B-5) are sufficient fotM 5 to be a standard DFS.
b. The conditiongB-1) to (B-5) are necessary faM s to be a DFS.
c. The conditiongB-1) to (B-5) are independent.
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In particular,B(f) =1 — B(1 — f) for all f € B, andB(f) > 1 wheneverf € B'.
We can hence give a more concise descriptiontt-DFSes, because it is sufficient
to consider their behaviour da™ only:

Definition 37 By H C I' we denote the set of nonincreasifigl — I, f # 0,

H={f cI': fnonincreasing ang(0) >0 }.

We can associate with eatdh: H — I aB : B — I as follows:
1+1iB(2f-1) : feB*
1
f eB2 (15)
— 1B (1-2f) : feB~

B(f) =

N[— D=

Theorem 9 If My is a DFS, ther3 can be defined in terms of a mappig: H — I
according to equatioifl5). B’ is defined by

B'(f)=2B(3+3f)—1. (16)
We can hence focus on mappings: H — I without loosing any desired models.

Definition 38 Supposé8’ : H — T is given. For allf, g € H, we define the following
conditions onf3’:

B'(f) = f(0) if fisconstant,i.ef(x) = f(0)forallz €1 (C-1)

If £(I) C {0,1}, thenB'(f) = f2, (C-2)
B(f*) =B/(f") if f((0,1]) # {0} (C-3)
If f < g, thenB'(f) < B'(g) (C-4)

A theorem analogous to Th-8 can be proven for (C-1) to (C-4):
Theorem 10
a. The conditiongC-1)to (C-4) are sufficient fotM ;5 to be a standard DFS.

b. The conditiongC-1)to (C-4) are necessary faM to be a DFS.
c. The condition$C-1)to (C-4) are independent.
Our introducing of3’ is only a matter of convenience, because the definitioBs’of

is usually shorter than the definition of the correspondiigWe now present some
examples ofM z-QFMs.

Definition 39 By M we denote theViz-QFM defined by

1
Bi(f) :/O F@)de, forall f € HL.
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Theorem 11 M is a standard DFS.

M is Q-continuous and arg-continuous and hence a good choice for applications.
Definition 40 By My we denote theViz-QFM defined by
B'u(f) = max(fiT, fr) forall f € H, see(12)and (13).
Theorem 12 Supposed : I? — Tis ans-norm andB’ : H — T is defined by
B(f)=fraof,

for all f € H. Further suppose that1 is defined in terms df’ according to equa-
tions(8) and(15). ThenMp is a standard DFS.

In particular M, is a standard DFS. Itis neither Q-continuous nor arg-continuous and
hence not practical. Howevel!;; is of theoretical interest because it represents an
extreme case oM z-DFS in terms of specificity:

Theorem 13 My is the least specifid15-DFS.

Let us now consider the issue of most specHitz-DFSes.
Definition 41 By Mg we denote theViz-QFM defined by
B's(f) = min(f°4, ) forall f € H; see(9) and (10).
Theorem 14 Supposés’ : H — I is defined by
B(f)=frof

for all f € H, where® : I? — I is at-norm. Further suppose that the QF Mz is
defined in terms 0B’ according to(8) and (15). ThenMj is a standard DFS.

In particular, Mg is a standard DFSM g fails on both continuity conditions, but:
Theorem 15 Mg is the most specifidg1z-DFS.
Definition 42 By M x we denote théWz-QFM defined by

B cx(f) = sup{min(z, f(z)) : z € I} forall f € H.

Theorem 16 Suppose : I2 — Tis a continuoug-norm and3’ : H — T is defined
by

B'(f) =sup{y® f(y) : v €I}

for all f € H. Further suppose that1; is defined in terms df’ according to(8) and
(15). ThenMp is a standard DFS.
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ThereforeM ¢ x is a standard DFS. It is Q-continuous and arg-continuous and hence
a good choice for applications.

As has been shown in [7]V < x exhibits unique properties. In fact, it is the only stan-
dard DFS which is compatible with a construction called ‘fuzzy argument insertion’,
which ensures a compositional interpretation of adjectival restriction with fuzzy adjec-
tives. M¢cx can be shown to generalize the well-known Sugeno integral to the case
of multiplace and non-monotonic quantifiers. Hentt:x consistently generalises
the basic FG-count approach of [16, 13], which is restricted to quantitative and non-
decreasing one-place quantifiers. In additidgrix can be shown to implement the
so-called ‘substitution approach’ to fuzzy quantification [12], i.e. the fuzzy quantifier is
modelled by constructing an equivalent logical formula (involving fuzzy connectives).
The reader interested in details is invited to consult [7].

Returning toM -DFSes in general, we can state that:

Theorem 17

¢ All M3-DFSes coincide on three-valued arguments, i.e. whenever the argu-
mentsXy, ..., X, € P(E) satisfyux, (e) € {0, 1, 1} forall e € E;

e all Myz-DFSes coincide on three-valued semi-fuzzy quantilers?(E)" —
{0, 3, 1}.

This is different from general standard DFSes, which are guaranteed to coincide only
for two-valued quantifiers.

An issue not yet addressed in previous publications is whethés a genuine partial
order (i.e. not a total order). As we now shaow, is a genuine partial order o z-
DFSes. In particular, the standard DFSes are only partially ordereq by

Theorem 18 = is not a total order onM z-DFSes.
(Proof: A.1, p.41+)

One of the characteristic propertiespfz-DFSes is that they propagate fuzziness.

Theorem 19

e Every Mg-DFS propagates fuzziness in quantifiers.

e Every M ;-DFS propagates fuzziness in arguments.

| consider this an important adequacy criterion because it strikes me as implausible
that the results should become more specific when the input (quantifier or argument)
gets fuzzier. Nevertheless, there seems to be a price one has to pay for the propagation
of fuzziness: as the input becomes less specific, the result 8 grDFS is likely to

attain the least specific value éf see Th-34 and Th-40 below. In some applications,

it might be preferable to sacrifice the propagation of fuzziness, in order to obtain spe-
cific results (e.g. a fine-grained result ranking) even in those cases where the input is
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overly fuzzy. In addition, the study of such models is of theoretical interest, because it
helps to gain a better understanding of the full class of standard DFSes. Specifically,
| would like to show that standard DFSes exist which fail to propagate fuzziness in
guantifiers and/or arguments, and gain some insight into the structure and properties of
such models.

In order to span a broader class of DFS models, we must drop the median-based
aggregation mechanism 8ff z-DFSes. We get an idea of how to proceed if we simply
expand the definition of the generalized fuzzy median and reysjteas

Qy(X1,...,X,) = med%(sup{Q(Yl7 Y)Y e T (X))} a7
inf{Q(Y1,...,Y,) : Y; € T,(X;)}).

This is apparent from Def. 23 and Def. 31. The fuzzy median can then be replaced with
other connectives, e.g. the arithmetic méan-y)/2. If we viewsup{Q(Y3,...,Y,) :

Y; € 7,(X;) } andinf{Q(Y1, ..., Y,) : ¥; € 7,(X,)} as mappings that depend gn

then we can even eliminate the pointwise application of the connective and define more
‘holistic’ mechanisms. In the next chapter this basic idea of creating a broader class of
DFS candidates is turned into precise definitions. As it turns out, most constructions of
relevance toM z-DFSes can easily be adapted to the more general case. In particular,
we can state the necessary and sufficient conditions for the new models to be DFSes in
analogy to the conditions (B-1) to (B-5).
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5 The class of F.-DFSes

Based on the definition of the crisp rangg X) of a three-valued cut, which provides
a set of alternative choices for crisp arguments, we define the upper and lower bounds
of the quantification results given these alternatives as follows:

Definition 43 Let a semi-fuzzy quantifigp : P(E)" — I and fuzzy arguments
X1,...,X, be given. We define the upper bound mappingyx,.... x, : I — I and
the lower bound mappind.¢ x,... x, : I — I by

.....

TQ.x1,...x, (7) =sup{Q(Y1,...,Yy) : Y1 € T,(X1),..., Vs € T,(Xn)}
J—Q,Xh...,X,,L (’y) = 1nf{Q(Y1, ey Yn) : Y] c Ty(Xl), . ,Yn c Ty(Xn)} .

The following properties offg x, ... x, and_Lg x, .. x, are apparent:

Theorem 20 Suppose) : P(E)" — Tis a semi-fuzzy quantifier ant,, ..., X,, €
P(FE) are a choice of fuzzy arguments. Then

1. To x,,.. x, is monotonically nondecreasing;

2. 1o.x,,..x, is monotonically nonincreasing;

(Proof: B.1, p.42+)

We can hence define the domdif aggregation operatoés: T — I which combine
the results ofTg x, ... x, and_Lg x, .. x, as follows.

..........

Definition 44 T C I' x I' is defined by

T={(T,L): T:I— Inondecreasingl :I — Inonincreasing < T}.

Itis apparent from Th-20 th&lTo x, .. x,, Lo.x,,...x,) € T, regardless of the semi-
fuzzy quantifierQ : P(E)" — I and the choice of fuzzy arguments, ..., X,, €
P(E). In addition, it can be shown tht is the minimal set which embeds all such
pairs of mappings.

Theorem 21 Let (T, L) € T be given. We define semi-fuzzy quantif@fsQ”, @ :
P(2xI) — Iby

Q(Y)=T(supY’) (18)

Q" (Y) = L(infY") (19)
QYY) : Y=02

QYY) = { QYY) : else (20)
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where
Y ={2€1:(0,2) €Y} (21)
Y'={2€1:(1,2) €Y} (22)

forall Y € P(2 x I). B
Further suppose that the fuzzy subXet P(2 x I) is defined by

c=0

ux(e, z) = { (23)

N[ D=
+
(SIS
noW
o

|

—_

forall (¢,z) € 2 x L.
ThenT = Tg x and L = 1¢ x.
(Proof: B.2, p.44+)

Based on the aggregation operagorT — I, we define a corresponding QF® in
the obvious way.

Definition 45 For every mapping : T — I, the QFMF: is defined by

Fe(@Q)(X1,. .., X0) =€6(To,x1,..X0 LO. X1, X0 ) 5 (24)

fgr all semi-fuzzy quantifier® : P(E)" — I and all fuzzy subset&,..., X,, €
P(E).

The class of QFMs defined in this way will be called the classFpfQFMs. Ap-
parently, it contains a number of models that do not fulfill the DFS axioms. We hence
impose five elementary conditions on the aggregation magpivigich provide a char-
acterisation of the well-behaved models, i.e. of the clas5.eDFSes.

Definition 46 For all (T, L) € T, we impose the following conditions on aggregation
mappings : T — L.

If T =1, then&(T, L) = T(0) (X-1)
E1—1,1-T)=1-¢&(T,1) (X-2)
If T =cyand L(I) C {0,1}, theng(T, L) = 3 + 2 1% (X-3)
§(T°, 1) =&(TH 1) (X-4)

If (T', L") € Tsuchthatl < T"and L < L', then(T, L) <&(T', L") (X-5)
Let us now show that (X-1) to (X-5) are sufficient f&¢ to be a DFS.

Theorem 22 If £ : T — I satisfiegX-1) to (X-5), thenF; is a standard DFS.
(Proof: B.3, p.47+)

Theorem 23 The conditiongX-1) to (X-5) on¢ : T — I are necessary faf to be

a DFS.
(Proof: B.4, p.62+)
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Hence the ‘X-conditions’ are necessary and sufficientAptto be a DFS, and alF-

DFSes are indeed standard DFSes. The criteria can also be shown to be independent.
To facilitate the independence proof, we first relatg;-QFMs to the broader class of
Fe-QFMs:

Theorem 24 Supposeé3 : B — I is a given aggregation mapping. Thérz = F¢,
where¢ : T — I is defined by

(T, L) = B(med (T, 1)) (25)
2
forall (T, 1) € T,andmed (T, L) abbreviates

2
(T7 L)(7) = med% (T(’Y)v L(f}’)) )

med 1
2

forall v € 1.
(Proof: B.5, p.74+)

Hence allMg-QFMs areF:-QFMs, and allMz-DFSes areF.-DFSes. The next
theorem helps us to prove that the ‘X-conditions’ are independent, because the ‘B-
conditions’ have already been shown to been independent in [7]:

Theorem 25 Supposd3 : B — T is given and : T — T is defined by equation
(25). Then

1. (B-1)is equivalent tqX-1);
2. (B-2) is equivalent tqX-2);

3. (a) (B-3) entails(X-3);
(b) the conjunction ofX-2) and (X-3) entails(B-3);

4. (a) (B-4) entails(X-4);
(b) the conjunction ofX-2) and (X-4) entails(B-4);

5. (B-5) is equivalent tqX-5).
(Proof: B.6, p.74+)

Theorem 26 The conditiongX-1) to (X-5) are independent.
(Proof: B.7, p.84+)

Let us now give examples of ‘genuing:-DFSes (i.e. models that go beyond the
special case aM 3-DFSes).

Definition 47 The QFMFcy, = F¢, is defined in terms afcy, : T — T by

1 1
fon(T, 1) = 4 / T(y) dy + } / L) dy,

forall (T, 1) e T.
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Note. Both integrals are guaranteed to exist becauaed_L are monotonic mappings
(i.e., T nondecreasing and nonincreasing).

Theorem 27 Fcy, is a standard DFS.
(Proof: B.8, p.85+)

The DFSF¢y, is of special interest because of its close relationship to the well-known
Choquet integral, which is defined as follows.

Definition 48 SUPPOSE : P(E) — 1is a nondecreasing semi-fuzzy quantifier and
X € P(E). TheChoquet integralCh) [ X dQ is defined by

1
(Ch) /X iQ = / Q(Xs0) da.
0
Theorem 28 Suppose) : P(E) — I is nondecreasing. Then for all € P(E),

(Ch) / X dQ = Fon(Q)(X).
(Proof: B.9, p.89+)

HenceF¢, coincides with the Choquet integral on fuzzy quantifiers whenever the latter
is defined. In order to relate this result with previous work on fuzzy quantification, we
first need to introduce some more notation.

Definition 49 Let a finite base seE # @ of cardinality |E| = m be given. For a
fuzzy subseX € P(E), we denote by, ;;(X) € I, j = 1,...,m, the j-th largest
membership value of (including duplicates).

More formally, consider an ordering of the elementdio$uch thatl! = {e;,...,en}
andux(e1) > --- > px(em). Then defingu;(X) = ux(e;). Itis apparent that the
results do not depend on the chosen ordering if ambiguities exist.

We stipulate thatj,)(X) = 1 and thatu;(X) = 0 wheneverj > m.

As a corollary of the above theorem, we then obtain (cf. [5]):

Theorem 29 Supposer # @ is a finite base sej : {0,...,|E|} — Iis a nonde-
creasing mapping such that0) = 0, ¢(|E|) = 1, andQ : P(E) — I is defined by
QYY) =q(JY|) forall Y € P(E). Then for allX € P(E),

|E]

Fen(@)(X) = () —ali = 1)) - py(X),

Jj=1

i.e. Fon consistently generalises Yager's OWA approach [14].
(Proof: B.10, p.90+)
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Definition 50 The QFMFg is defined interms afs : T — I by

1
<_
mln(T’{,%Jr%J_*_zl) L(0)>1
T,1)= >1
&s(To L) max(1},1—1722Y ¢ T(0) <1
3 else

1 1
forall (T, 1) € T, where the coeﬁicienﬁgzl, f,F221 ¢ I are defined by

N

<

£ =ty eIt f(7) < 1) (26)
1
£ = inf{y eI f(3) = 1}, (27)

forall f: I — L

Theorem 30 Fg is a standard DFS.
(Proof: B.11, p.93+)

A third model of interest is the following QFNF,:

Definition 51 The QFMF, is defined interms afy : T — I by

min(L§, 3 + %J_gl) coLy>1
Ea(T, L) =1 max(T§ 3171 « Ts<]
3 : else

forall (T,1) eT.

Theorem 31 F4 is a standard DFS.
(Proof: B.12, p.99+)

Turning to properties ofF.-DFSes, we shall first investigate the precise conditions
under which arF¢-DFS propagates fuzziness in quantifiers and/or in arguments.

Definition 52 We say that : T — I propagates fuzzinesdsand only if
ET,1) =T, L)
whenevel(T, L), (T, L") e Twith T <, T"and L <, 1"
Theorem 32 An F:-QFM propagates fuzziness in quantifiers if and only gropa-

gates fuzziness.
(Proof: B.13, p.104+)

If F¢ is a DFS, therg’s propagating of fuzziness is equivalent to the following condi-
tion, which is much easier to check:
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Theorem 33 Suppose€ : T — I satisfie{X-1) to (X-5). Thens propagates fuzziness
if and only if

&(T, L) = &(T, max(L, 3))

forall (T,1) € T with L(0) >
(Proof: B.14, p.106+)

1
5

For proofs that a giverf:-DFS does not propagate fuzziness in quantifiers, the follow-
ing necessary condition can be of interest.

Theorem 34 Let¢ : T — I be a mapping which satisfi¢x-1) to (X-5). If £ propa-
gates fuzziness, then

&T,L)=1

whenevelT, L) € T such thatT (0) >
(Proof: B.15, p.110+)

3 > 1(0).

It is this condition which explains why the results #fl3-DFSes tend to attailé
when the input is overly fuzzy. If one really needs different quantification results for
(T, L), (T, L")y with L(0) < 4 < T(0) and_L’'(0) < 1 < T’(0), one obviously must
resort toF.-DFSes that do not propagate fuzziness in quantifiers.

As concerns our examples &t-DFSes, we can attest the following.

Theorem 35 F¢y, does not propagate fuzziness in quantifiers.
(Proof: B.16, p.110+)

HenceFcy, is a ‘genuine’F¢-DFS (i.e. not amM z-DFS) by Th-19. In particular, this
proves that thé.-DFSes indeed form a more general class of DFSesAarDFSes.
For the DFSFg, we have a positive result.

Theorem 36 Fg propagates fuzziness in quantifiers.
(Proof: B.17, p.111+)

Turning toF4, we have

Theorem 37 F, does not propagate fuzziness in quantifiers.
(Proof: B.18, p.111+)

We can also state the necessary and sufficient conditiortsfon ¢ to propagate
fuzziness in arguments. To this end, we first introduce the following propetty of

Definition 53 We say that : T — I propagates unspecificitiyand only if
(T, 1) =.¢4(T, L)

wheneve(T, L), (T’, L") € T satisfyT > T"and L < L’.
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Theorem 38 An F.-QFM propagates fuzziness in arguments if and only firopa-
gates unspecificity.
(Proof: B.19, p.112+)

If F¢ is sufficiently well-behaved (in particular, i, is a DFS), it is possible to state
the following equivalent condition:

Theorem 39 Supposé : T — I satisfie{X-2), (X-4) and(X-5). Then the following
conditions are equivalent:

a. £ propagates unspecificity;
b. forall (T,L) € T with L(0) > 1,&(T, L) =&(cy, L).
(Proof: B.20, p.115+)

We can also establish a necessary condition which facilitates the proof that a given
F<-DFSes does not propagate fuzziness in arguments:

Theorem 40 If an F¢-DFS propagates fuzziness in arguments, then
T, L) =3

whenevelT, L) € T such thatT (0) >
(Proof: B.21, p.118+)

3 2 L(0).

For example, we can use this condition to prove that

Theorem 41 Fg;,, does not propagate fuzziness in arguments.
(Proof: B.22, p.119+)

As concernsFg, we have the following result.

Theorem 42 Fs does not propagate fuzziness in arguments.
(Proof: B.23, p.119+)

Note. HenceFy is a ‘genuine’F; DFS as well, which is apparent from Th-19.
Turning toFy4, which failed to propagate fuzziness in quantifiers, it is easily observed
that 7, still propagates fuzziness in its arguments:

Theorem 43 F, propagates fuzziness in arguments.
(Proof: B.24, p.119+)

In particular, the conditions of propagating fuzziness in quantifiers and arguments are
independent in the case #t-DFSes, as stated in the following corollary.
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Theorem 44 The conditions of propagating fuzziness in quantifiers and in arguments
are independent faF¢-DFSes.
(Proof: B.25, p.120+)

Finally, we can justify the subclass #flz-DFSes which are exactly thogge -DFSes
that propagate fuzziness in both quantifiers and arguments.

Theorem 45 Suppose aF¢-DFS propagates fuzziness in both quantifiers and argu-
ments. Thetf; is an M p-DFS.
(Proof: B.26, p.120+)

Note. The converse implication is already known from Th-19.

Next we shall investigate the exact conditions under whicha@QFM is Q-continuous
or arg-continuous. To be able to discuss Q-continuBuFMs, we introduce a met-
ricd: T x T — I. For all nondecreasing mappings 7’ : I — I, we define

d(T, T") =sup{|T(7) = T'(7)| : v € I}. (28)
We proceed similarly for nondecreasing mappirigs.’ : I — 1. In this case,
d(L, L) =sup{|L(v) - L'(]: v €T} (29)

Finally, we definel : T x T — I by
d((T, L), (T, L") = max(d(T, T"),d(L, L"), (30)

forall (T,L1),(T’, L") € T. Itis apparent thad is indeed a metric. We will utilize
to express a condition ahwhich characterises the Q-continuglis QFMs.

Theorem 46 Let¢ : T — I be a given mapping which satisfi€s-5). Then the
following conditions are equivalent:

a. F¢ is Q-continuous;

b. foralle > 0, there exist$ > 0 such thaf&(T, L) — &(T/, L')| < e whenever
(T,L), (T, L") e T satisfyd((T, L), (T, L") < é.

(Proof: B.27, p.122+)

If ¢ is sufficiently well-behaved, then the above condition can simplified into the fol-
lowing criterion, which is easier to check.

Theorem 47 Suppos€ : T — I satisfies(X-2) and (X-5). Then the following
conditions are equivalent:

a. F¢ is Q-continuous;

b. for all ¢ > 0, there exist$ > 0 such that{(T’, L) — &(T, L) < ¢ whenever
(T,L),(T',L) € Tsatisfyd(T,T') <dandT < T'.
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(Proof: B.28, p.128+)

We have the following results for the examplesffDFSes.

Theorem 48 F¢y, is Q-continuous.
(Proof: B.29, p.130+)

Theorem 49 Fg is not Q-continuous.
(Proof: B.30, p.131+)

Theorem 50 F4 is not Q-continuous.
(Proof: B.31, p.132+)

As concerns continuity in arguments, we first need to introduced another distance mea-
sured’ : T x T — I, which can be used to characterise the arg-continliQu@FMs
in terms of conditions of. For all nondecreasing mappings T’ : I — I, we define

d'(T,T') = sup{inf{" : min(T(7'), T'(7)) = max(T(7), T'(v)} =7 :7 € 21)

Similarly for nonincreasing mappings, 1’ : I — 1,

d'(L, L") = sup{inf{y" : max(L(+), L'(?')) < min(L(y), L'(7)} =v:7 € 22)

Finally, we definel’ : T x T — I by
d'((T,1),(T", L") = max(d'(T, T'),d'(L, L"), (33)

forall (T,L1),(T’,L1") € T. Itis easily checked that’ is a ‘pseudo-metric’, i.e. it
is symmetric and satisfies the triangle inequation,&WtT, L), (T’, L)) = 0 does
not imply that(T, L) = (T’,L’). However,d’' is a metric modulai, i.e. on the
equivalence classes ¢f, L) ~ (T, 1) o (T°%, 1°%) = (T’bﬁ,ﬂbﬁ). Hence
d((T,L1),(T", L") = 0 entails that(T, L) ~ (T, L"), i.e.&(T,L) = &(T', L)
whenever¢ satisfies (X-2), (X-4) and (X-5). Based abh, we can now assert the fol-
lowing.
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Theorem 51 Supposé : T — I satisfieqX-2), (X-4) and (X-5). Then the following
conditions are equivalent:

a. F¢ is arg-continuous;
b. forall (T,1) € T and alle > 0, there existsy > 0 such that|{(T, L) —
&(T’,L7)| < e wheneve(T’, L") € T satisfies!((T, L), (T’, L") < 4.
(Proof: B.32, p.133+)

In some cases, the following sufficient condition can shorten the proof that agiven
is arg-continuous.

Theorem 52 Suppos€ : T — I satisfiegX-2) and(X-5) ThenF; is arg-continuous
if the following condition holds: For alt > 0 there exist$ > 0 such that(T’, L) —
&(T, 1) <ewheneve(T, 1), (T, L) € Tsatisfyd (T, T') <dandT < T".

(Proof: B.33, p.146+)

Based on these theorems, it is easy to prove the following.

Theorem 53 Fcy, iS arg-continuous.
(Proof: B.34, p.148+)

Theorem 54 Fg is not arg-continuous.
(Proof: B.35, p.149+)

Theorem 55 F4 is not arg-continuous.
(Proof: B.36, p.150+)

HenceF¢y, is continuous both in quantifiers and arguments; which is important for
applications. The second exampfg;, fails on both continuity conditions and is hence
not practical. (We will see below th&g is of theoretical interest because it represents
a boundary case of;-DFSes).

We are also interested in the specificity®f-DFSes. The following theorem facilitates
the proof that a giverF¢-QFM is less specific than anoth&g-QFM by relating the
specificity order or¥ to the specificity order og:

Theorem 56 Let¢, ¢’ : T — I be given mappings. Then the following conditions are
equivalent:

a. .7:5 =c .7:,5/;
b £<.¢.

(Proof: B.37, p.151+)
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In the case ofF.-DFSes that propagate fuzziness in quantifiers, it is sufficient to check
a simpler condition.

Theorem 57 Let¢, ¢’ : T — I be given mappings which satigdg-1) to (X-5) and
suppose thag, £’ have the additional property thgt T, L) = &'(T, L) = % whenever
(T, 1) € Twith T(0) > 1 > 1(0). Then the following conditions are equivalent:

a. .7:5 jcj:fl'

b. forall (T,L) € Twith L(0) > 1,&(T, L) <&(T,L1).
(Proof: B.38, p.151+)

As regards least specifi;-DFSes, we can prove the following:

Theorem 58 My is the least specifif;-DFS.
(Proof: B.39, p.153+)

Turning to the issue of most specific models, | first state a theorem for establishing
or rejecting specificity consistence. This is useful because specificity consistence is
tightly coupled to the existence of least upper specificity bounds, see Th-6.

Theorem 59 Consider a pair of mappings ¢’ : T — I. The QFMsF, and F, are
specificity consistent if and onlygf¢’ are specificity consistent, i.e. for &', 1) € T,
either {£(T, 1),'(T, 1)} € [0, 4] or {&(T, 1),&/(T, )} C [3,1].

(Proof: B.40, p.156+)

An investigation of a possible most speciffg-DFS reveals the following.

Theorem 60 The class ofF.-DFSes is not specificity consistent.
(Proof: B.41, p.157+)

Hence by Th-6, a “most specifi€;-DFS” does not exist. However, we obtain a posi-
tive result if we restrict attention to the class®f-DFSes which propagate fuzziness
in quantifiers or arguments. This is apparent from the following observation.

Theorem 61 Supposer is a collection ofF.-DFSesF; < I with the property that
&(T,L1) = 1 whenever(T, L) € Tis such thatT(0) > I > 1(0). ThenF is
specificity consistent.

(Proof: B.42, p.159+)

We then have the following corollaries.
Theorem 62 The class ofF¢-DFSes that propagate fuzziness in quantifiers is speci-

ficity consistent.
(Proof: B.43, p.160+)
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Theorem 63 The class ofF.-DFSes that propagate fuzziness in arguments is speci-
ficity consistent.
(Proof: B.44, p.160+)

By Th-6, theF-DFSes that propagate fuzziness in quantifiers have a least upper speci-
ficity bound which, as it turns out, also propagates fuzziness in quantifiers.

Theorem 64 Fg is the most specifi€;-DFS that propagates fuzziness in quantifiers.
(Proof: B.45, p.160+)

Similarly, we can conclude from Th-63 that there is a most spegifi®FS that prop-
agates fuzziness in arguments.

Theorem 65 F4 is the most specifi€;-DFS that propagates fuzziness in arguments.
(Proof: B.46, p.161+)
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6 Conclusion

It has been the goal of this report to broaden the class of known models of fuzzy quan-
tification. There are several reasons why | wanted to explore standard DFSes beyond
the class ofMz-DFSes introduced in [7]. The first reason is concerned with propa-
gation of fuzzinessM z-DFSes are particularly well-behaved because they propagate
fuzziness in quantifiers as well as in arguments: the fuzzier the input, the fuzzier the
output. In most cases, this is the expected and desirable behaviour because one usually
does not want the results to become more precise when there is less precision in the
input. However, | anticipate that there are applications in which it is preferable to sac-
rifice propagation of fuzziness, in order to prevent the results from attaining the least
specific value of.. This might be the case, for example, when the input is overly fuzzy
and one still needs a fine-grained result ranking. In these cases, one could profit from
models that do not propagate fuzziness. The second reason stems from the intent to
relate the present approach with existing work on fuzzy quantification. | have already
shown in [7] that there exists a DEB( - x which generalizes the Sugeno integral and
hence the ‘basic’ FG-count approddo arbitrary semi-fuzzy quantifiers, which can

be multiplace and/or non-quantitative and need not be monotonic. However, a similar
result concerning the Choquet integral and hence the ‘basic’ OWA approashstill
missing. In order to embed the Choquet integral into the framework of DFS theory, it
was necessary to go beyond z-DFSes because the Choquet integral does not prop-
agate fuzziness. Last but not least, the study of a broader class of standard models is
interesting in its own right, because it helps to gain new insight into the structure of
fuzzy quantification that might eventually lead to a complete classification of standard
DFSes.

In the report, | have first reviewed the basic concepts of DFS theory and cited a
few additional definitions and theorems about properties of DFSes the familiarity with
which is necessary to understand the new theorems and to carry out their proofs. In
addition, a couple of special adequacy properties have been introduced, which are de-
sirable but not required for general DFSes. Apart from the criteria of propagating
fuzziness in quantifiers and/or arguments, the most important extra requirement is cer-
tainly that of robustness with respect to slight changes in the parameters. This stability
consideration is covered by the criterion of arg-continuity, which accounts for differ-
ences in the arguments, and by the criterion of Q-continuity, which accounts for dif-
ferences in the interpretation of quantifiers. These conditions are essential for practical
applications because they ensure a certain insensitivity with respect to noise.

After defining these properties, the class\dfz-DFSes has been reviewed. The con-
struction of these models in terms of three-valued cuts has provided a suitable starting
point for the generalisation to a broader class of models, the clegsDFSes. To this
end,@,(X1,...,X,) andB : B — I have been replaced with a pair of mappings
(To,xy,....x..Lo.x:,...x,) € T, and a corresponding aggregation opergtofl —

I which maps such pairs into quantification resdlf$o x,,...x,.. Lo, x1,....x,.)-

| have presented the essential criteria that make it easy to check whether a given

7i.e. the formula for quantitative nondecreasing one-place quantifiers.
8again, the formula for quantitative regular nondecreasing one-place quantifiers.
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Fe-QFM is a DFS; whether it propagates fuzziness in quantifiers and/or in arguments;
whether it is Q-continuous and/or arg-continuous; whether it is specificity consistent
with otherF¢-DFSes; and how it compares to these DFSes by specificity.

In particular, | have shown that the classBf-DFSes is broad enough to contain
DFSes which are rather different fram 3-DFSes. Among thé.-DFSes, some mod-
els neither propagate fuzziness in arguments nor in quantifiers; some models propa-
gate fuzziness in quantifiers, but not in arguments, while others propagate fuzziness
in arguments, but not in quantifiers, and some propagate fuzziness both in quantifiers
and arguments. The latter class Bf-DFSes has been proven be exactly the class
of Mgz-DFSes. The present report has hence succeeded in defining a class of DFSes
which (unlike M z-DFSes) fail to propagate fuzziness. The report also explains why
the models which do not propagate fuzziness have a chance of performing better than
those that propagate fuzziness in situations where the inputs are overly fuzzy. This
can be mainly attributed to the property described in Th-34 and Th-40: f:aDFS
propagates fuzziness in quantifiers or in arguments, He®)(X;,...,X,) = %
wheneverty x,,.. x,) = %andLQ,(Xl X, < % Hence there is a certain range
in which the results of atFe-DFS are constantly, which can be undesirable if one
needs a fine-grained result ranking. Because both types of propagating fuzziness cause
this kind of behaviour, one must resort to models that fail on both conditions if one
needs specific results even when there is a lot of fuzziness in the inputs.

,,,,,

The DFSF¢y is a promising choice in such situations because it also fulfills the
continuity requirements. It is anticipated thBty, will find a number of uses in real-
world applications that utilize fuzzy quantifiers. Howev&g;,, is also an interesting
model from a scientific perspective becaugg, can be shown to embed the Choquet
integral, thus generalizing it to the case of non-monotonic and multi-place quantifiers.
The report hence also succeeds in relating DFS theory with existing work on fuzzy
quantification because the Choquet integral is known to embed the OWA approach.

Concerning theoretical aspects of fuzzy quantification, the report proves that there
are standard DFSes beyonds-DFSes, and it also substantiates the existence of stan-
dard DFS which do not propagate fuzziness in arguments and/or quantifiers. In partic-
ular, it has been proven that the conditions of propagating fuzziness in quantifiers and
arguments are mutually independent. Apart from propagation of fuzziness, some novel
results concerning the specificity ordgy have also been established. In particular, |
have shown tha¥_. is not a total order on standard DFSes, not even in the ‘simple’
case of Mz-DFSes. Most importantly, | have shown that there is no most specific
standard DFS. However, there is a most spedtieDFS that propagates fuzziness in
quantifiers, vizFg, and there is also a most specifie-DFS that propagates fuzziness
in arguments, vizF 4. ApparentlyFs and 4 are not practical models because they
fail on both continuity conditions, but this seems to be typical for boundary cases with
respect to specificity.

The present report has shed some light on theoretical aspects of fuzzy quantification,
but a number of issues remain unresolved. Most importantly, there is no evidence yet
concerning the question whether there are standard DFSes bg&yeD&Ses and if
so, how theM z-DFSes andF¢-DFSes are located within the ‘full’ class of standard
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DFSes. The ultimate goal is to identify this full class, to uncover the structure of its
models, and to characterise its natural subclasses. Further theoretical work is required
to clarify these matters, and it is hoped that some of the techniques presented in this
report will help to accomplish this endeavour.
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Appendix

Any proposition which occurs in the main text is callethaorem and any proposition
which only occurs in the proofs lemma Theorems are referred to as Thwhere

n is the number of the theorem, while lemmata are referred to asviheren is the
number of the lemma. Equations which are embedded in proofs are referrethtp as
wheren is the number of the equation.

A Proof of theorems in chapter 4

A.1 Proof of Theorem 18

Lemmal Supposdés’(, B’ : H — I are given. Further suppose th&, B, € BB
are the mappings associated wiffy, and 3’5, resp., according to equatiofi5), and

Mg, , Mg, are the corresponding QFMs defined by Def. 33. Thdp, <. Mz, iff
By < Bs.

Proof See[7, Th-86,p.61].

Proof of Theorem 18

We recall theM z-DFSesMy and Mg defined by Def. 40 and Def. 41. We stipulate
Mp, = (My + Mg)/2. Being a convex combination of standard DFSks, is
also a standard DFS by Th-4. In addition, it is apparent from Def. 33 and (16) that

B\ (f) = B'U(f);rB's(f) 7 (34)
where

B'y(f) = max(f!T, f7) (35)

B's(f) = min(f*, f7) (36)

for all f € H, see Def. 40 and Def. 41.
Now let us define mappings g € H as follows.

3 1
- 37 7<s5
= 37
l-37 + v<3
= 2 =2 38
9(7) {%_%7 ,7>% (38)
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for all v € I. Then by (10), (9), (13) and (12),

0l _
fo=1
£ih=0
fi=0
gt =1
90 =1
gl =
g1 =0
HenceB'v (f) = B'v(g9) = 0, B's(f) = B's(g) = 1 by (35), (36) and in turn,
Bi(f)=3
BI1(9) 2
Now let us consider the results Bff, see Def. 39. In the case ¢f
1
= / f(y)dy by Def. 39
0
1
2 3 ! 1 1
- [fa-pa+ [G-ta by (37)
0 2
_3
8
and in the case of
1
= / gl by Def. 39
0
1
5 ' 3 3
- dv+/ G-y by (38)
0

=3
-8

8
B'i(g). ByL-1, M £, Mp,, andMp, £, M, i.e.=, is a genuingartial order.

Hence there exisf, g € B with B/ (f) = 3 <1 =84 andB| (g) = E>1=

B Proof of theorems in chapter 5
B.1 Proof of Theorem 20

Lemma 2 LetE # @ be a given base setand € P(E). Then
T,(X) C T/ (X)

whenevery < +/.
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Proof If v =~' =0, thisis trivial. If y = 0 andy’ > 0, then

min — ) — II/liIl
Xpn=X_ 12X, 11,=X] (39)
and
Xo :XZ% QX>%,%7/:XM (40)

which is apparent from Def. 30, Def. 28 and Def. 29. Hence

To(X) ={Y : XpM» C Y C X"} by Def. 30
C{Yy: X" Cy C Xy by (39), (40)
=T, (X). by Def. 30

Finally if 0 < v </, then

X=X gy S g, = “n
and
X;“a"zX%i%ng%i%v,:X;?ax (42)
by Def. 30, Def. 28 and Def. 29. Therefore
T,(X)={Y : X! C Y C X1} by Def. 30
C{Y : XJ" CYy C X0} by (41), (42)
=T,(X). by Def. 30

Proof of Theorem 20

Let a semi-fuzzy quantifief) : P(E)" — I and a choice of fuzzy arguments
X1,..., X, € P(E) be given.

1. In order to prove thafg x, .. x, IS nondecreasing, let,7’ € I, v < +'. Then
T,(X;) CTy(X;)fori =1,...,n by L-2. In particular,

{Q(Y1,....Y,) : Y1 € T,(X4),.... Y, € T,(X,)} (43)
C{QMY1,....Y,) Y1 € T/(X1),.... Y, € T (X,)}.
Therefore

TQ. X1, %, (7) =sup{Q(Y1,...,Yy) : Y1 € T,(X1),...,Y, € T,(X,,)} by Def. 43
<sup{Q(Y1,...,Y,) : Y1 € T, (X1),..., Y, € T (X,)} Dby (43)
=Tox1,..x.(7), by Def. 43

i.e. Tg x,,....x, IS nondecreasing.
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2. Turningtolg x, .. x,,we again choose <+’ € I. Then

Loxi,..x,(y) =inf{Q(Y1,...,Ys) : Y1 € T,(X1),...,Y,, € T,(X,)}  byDef. 43
>inf{Q(Y1,...,Yn) : Y1 € T/(Xq),..., Y, € T/(Xy)} by (43)
=lox,.x.(7), by Def. 43

which proves thatl  x, ... x,, iS nonincreasing.

yeeey

3. ltis apparent from Def. 30 tha?(;nin C X7 for arbitrary fuzzy subsetX’ €

‘P(E) and cutting parameters € I. Given the semi-fuzzy quantifiep : PE)" —

I, fuzzy subsets(y, ..., X,, € P(E) and~y € I, we hence know thaf, (X;) # & for
alli =1,...,n. Inparticular,

{QY1,....Y,) Y1 € T,(Xq),....Y, e T, (X))} # 2. (44)
Recalling thainf Z < sup Z wheneverZ C I is nonempty, we conclude that

1o.x,x, (7) =f{Q(Y1,...,Y,) : Y1 € Ty(X1),..., Y, € T,(X,,)} by Def. 43
<sup{Q(Yi,...,Y,) : Vi € T,(X1),..., Y, € T,(X,)} by (44)
= TQ,x1,..x,(7) - by Def. 43

Becausey € I was arbitrary, this means thaty x,. . x, < Tg x,,...x, . as desired.

n —

B.2 Proof of Theorem 21

Lemma 3 Suppose : P(E)" — I is nondecreasing in it$-th argument { €
{1,...,n})and Xy,..., X,, € P(E). Then

TQ.x1,. %, (7)
:sup{Q(Yl,...in_l,(Xi)‘;‘a",YnH,...,Yn) Yie{l,...;i—1,i+1,...,n}}
Loxix,(7)

=inf{Q(Y1,....Yi 1, (X)™™ Yyiq,..., V) : Y€ {1,...i—1,i+1,...,n}}

Y

for all v € 1. Similarly if @ is nonincreasing in it3-th argument, then

To.x1.. X, (7)
:sup{Q(Yl,...7K,1,(Xi):lln,yn+17...,Yn) Yie{l,...;i—1,i+1,...,n}}
Loxi..x,(7)
:inf{Q(Yl,...,E_l,(Xi):laX,Yn+1,...,Yn) 1Y, € {1,...,i— 1,Z+1,,7’l}}

Proof LetQ : P(E)" — TandXi,...,X, € P(E) be given. We shall assume
that@ is nondecreasing in itsth argument, wheré e {1,...,n}. Further lety € I
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be given. By Def. 30Y; C (Xi);’““‘ forall Y; € 7,(X;). Because) is nondecreasing
in 7, we conclude that

Q(Ylv"'vyn) é Q(Y17°"7Y;717(Xi):1axvy;'+17"'7yn)

forallY; € 7,(X4),...,Y, € 7,(X,). Hence by Def. 43,

TQ.x1,...x,
=sup{Q(Y1,...,Yn) : Y1 € T,(X1),..., Y, € T,(X,)}

< {Q(Yl,...,Y;'_l,(Xi):lax,yn+1,...,yn)Z}/l' S {1,,zfl,z+1,,n}}

Noticing that(Xqv,);nax € 7,(X,) by Def. 30, the converse inequation also holds, i.e.

=sup{Q(Y1,...,Y,) : Y1 € T,(X4),..., Y, € T,(X,)}
:Sup{Q(Yl,...,)/i_l,(Xi):lax7Y;L+1,...7Y;L) . }/z c {1,...,i— 1,2—"- 1,...,77,}},

as desired.
Concerninglg x,.... x,,» we may proceed similarly. First we observe that by Def. 30,

(Xi);“i“ CY;forallY; € 7,(X;). Becaus&) is nondecreasing if) we conclude that

Q(Y17 cee 7Yti—17 (Xi)min7}/’i+17 s 7Y7L) < Q(Y17 s 7Yn)

Y

forallY, € 7,(X4),...,Y, € 7,(X,). Again by Def. 43,

J‘Q7Xls-~~»Xn
=inf{Q(Y1,...,Yn): Y1 € T,(X1),..., Y, € T,(Xn)}
>{QMV, ..., Vit (X)X Yog, . Vy) 1Y€ {1, i— Li+1,...,n}}

Because{Xi):lin € 7,(X,) by Def. 30, the converse inequation also holds, i.e. we get
the desired

Lo.x1,.. X,
=inf{Q(Y1,...,Y,) : Y1 € T,(X1),..., Y, € T,(X,)}

=nf{Q(V1,....Yiey, (X)), Yogr, .. Vo)t Vi€ {1, i—Li+1,... ,n}}.
The proof for a quantifier which is nonincreasing inditth argument is analogous.
Lemma4 Let(T,L) e T be given. Then

T(v) > L(Y),

forall v,+" € L.
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Proof Suppos€T, 1) € T andy,+’ € 1. From Def. 44, we know that is nonde-
creasing, that_ is nondecreasing and that< T. Therefore

T(y) > T(0) becausél nondecreasing
> 1(0) becausel. < T
> 1(v). becausel nonincreasing

Lemma5 Supposé€T, L) € Tis given. The semi-fuzzy quantifier: P(2 x I) —
I defined by equatio(20)is nondecreasing in its argument.

Proof Let(T, 1) € T be given. We further assume ti@t, Q”,Q : P(2 x I) — I
are defined by (18), (19) and (20), respectively.

Now let a choice oft;,Y, € P(2 x I) be given wheré; C Y>. We define crisp
subsetd7, Yy, Y{", Yy’ € P(I) according to (21) and (22), resp. Then

Y/ ={2€1:(0,2) e 1}
Y/ ={2€1:(1,2) e 1}
Yy ={2€1:(0,2) € Yo}
Yy ={z€1:(1,2) € Ya}.

It is hence apparent froffi; C Y3 thatY,y C Yy andY,” C Yy'. Thereforesup Y/ <
sup Yy and becaus@ is nondecreasing by Def. 44,

Q'(Y1) = T(supYy) < T(supY3) = Q'(Y2),

i.e.Q’ is nondecreasing. Similarly, we conclude frafff C Y3’ thatinf Y7” > inf Y3'.
Hence becausg is nonincreasing by Def. 44,

Q"(Y1) = L(inf V{") < L(inf Vy') = Q" (Y2),
i.e. Q" is nondecreasing as well. Finally, let us utilize that by L-4,
T(v) > L(7)
for all v, € I. Hence
Q(Y) = T(supY’) > L(infY") = Q"(Y),

forallY € P(2 x I), whereY’, Y € P(I) are defined by (21) and (22).
Summarizing, we now know th&)’ and@’ are nondecreasing and th@t > Q”. In
order to finish the proof, we separate the following cases.

a. Yy =2. ThenY/ = o also becaus¥®, C Y;. Hence

QY1) =Q" (Y1) by (20) becaus#; = &
<Q"(Ys) becaus&)” nondec and; C Y5
=Q(Ys). by (20) becaus®, = @
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b.Y/ =g and Y; # &.

Q1) =Q" ()
Q' (1)
Q'(Y2)
Q(Y2).

IAIA

In this case,

by (20) becaus®, = @
becaus®)”’ < Q'

becaus&)’ nondec and; C Y>
by (20) becaus#&,; =

c. Y #@. ThenY, # @ as well becaus®; C Y;. Therefore

QY1) =Q' (V1) by (20) becaus®, # @
<Q'(Y2) becaus&)’ nondec and; C Y>
=Q(Y2), by (20) becausg, # @

as desired.

Proof of Theorem 21

Suppos€T, 1) € T are given and)’,Q",Q : P(2xI) — I, X € 73(2 x I) are
defined as stated in the theorem. Then by Def. 30,

Xy =X, = (1} 0.1
XPS =Xy = (0} x 0D U ({1} x
and forvy > 0,
xmn :Xz%%w = {1} x [v,1]
XIS =Xy s = ({0} % 0.9) U1 <)
Hence fory = 0, To.x (0) = sup{Q(Y) : Y € To(X)} = T(0), which is apparent

becauseZ = X5r** = ({0} x {0}) U
Q(Z) = Q'(Z) = T(sup{0}) =

({1} x I) € 7p(X) reaches the maximum
T(0); see L-3 and L-5. By the same lemmata,
Lox(0) =inf{Q(Y) : Y € To(X)} = L(0) becauseZ’ = X" = {1} x (0,1] €
To(X) reaches the minimum@(Z') = Q”(Z') = L(inf(0,1]) = L(0), as desired.

In the case that > 0, we again apply L-3 and L-5 and conclude thaj x () =
sup{Q(Y) : Y € T,(X)} = T(v), because = X'** = ({0} x[0,7))U({1} xI) €
7,(X) reaches the maximu(Z) = Q'(Z) = T(sup[0,7)) = T(v). Similarly, we
obtain thatLg x () = inf{Q(Y) : Y € T,(X)} = L(y) becausez’ = X" =
{1} x [v,1] € T,,(X) attains the minimung)(Z’) = Q" (Z") = L(inf[y, 1]) = L(¥).
Becausey € I was arbitrary, this proves that = T x and L = L x, as desired.

B.3 Proof of Theorem 22

Lemma 6 Suppose&) : P(E)" — I is a semi-fuzzy quantifier andl;,..., X, €

P (E) C P(E) is a choice of three-valued argument sets. THepx,

.....
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1o x,,... x, are constant mappings, i.e.

To. (X1 x) (V) = T (x1,....x,) (0)
Loxy,.x) () = Lo, (x1,...,x)(0)

forall v € 1.
Proof It is apparent from definition Def. 30 that (X) = 7(X) forall v € I
wheneverX € P (E) C P(E) is a three-valued subset &F In particular,

7,(X) = To(X) (45)
for all v € I. Therefore

TQ. X1, X0 (’7)

—sup{Q(Y1,...,Y,) : Y1 € T,(Xy),...,Y, € T,(X,)} by Def. 43
= Sup{Q(Yb cee ;Y;L) : Yl S %(Xl)v AR Yn € %(Xn)} by (45)

= T0.x1,....x, (0) by Def. 43.

By the same reasoning, it can be shown thatx, . x, (v) = Lo.x,.....x, (0) for all
velL

Lemma 7 Suppose&) : P(E)" — Tis a semi-fuzzy quantifier andl;, ..., X,, €
P(E) is a choice of crisp argument sets. Then

To,x1,...x, = Lo.x1,...x, = Q(X1, ) Xﬂ) .

Proof LetQ : P(E)" — I and a choice of crisp arguments, ..., X,, € P(E)
be given. It is then apparent from Def. 30 that

To(Xy) = {Xi}, (46)

foralli =1,...,n. Therefore

=sup{Q(Y3,...,Y,) : Y1 € {X1},...,Y, € {X,}} DbyDef. 43 and (46)
=sup{Q(X1,...,Xn)}

== Q(X1,7Xn)
Similarly
J‘Q7X17---;Xn(0)

=inf{Q(Y1,...,Y,) : Y1 € {X1},...,Y, € {X,,}} by Def. 43 and (46)
=inf{Q(X1,...,X,)}
=Q(X1,...,X,).
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We may then apply L-6 and conclude that

=

To.x:...x,(7) = To.x,...x, (0
=Q(X1,...,X,)

for all v € I, as desired.

Lemma8 If £ : T — I satisfiegX-1), then the QFMF, defined by Def. 45 satisfies
U(F:(Q)) = Q for all semi-fuzzy quantifier§ : P(E)" — 1.

Note. In particular,F; satisfies (Z-1), which weakens the lemma to the easel.

Proof LetQ : P(E)" — I be a semi-fuzzy quantifier andy, ..., X,, € P(F) be
a choice of crisp subsets af. We may apply L-7 and conclude that

TQ, X1, X (’7) =1Q,x1,... X, (7) =Q(X1,.. ., Xn) ) (47)

for all v € 1. Therefore

Fe(@Q)( X1, Xn) =&(To. x4, X0 LQ.X1,0. X0 ) by Def. 45
=To.x;,..x,(0) by (47) and (X-1)

Lemma9 Supposé€ : T — I satisfiegX-2) and (X-3). ThenF; coincides with\
on two-valued quantifiers, i.e. whenewgr. P(E)" — 2 is a two-valued quantifier
andXy,..., X, € P(F) are fuzzy arguments, then

Fe(@)( X, Xn) = M(Q) (X1, Xn)

Note. In particularF, induces the standard negatien = 1—z, the standard conjunc-
tion z A y = min(z, y), the standard disjunctianV y = max(zx, y) and the standard

extension principle’?f = (;), which is apparent because all of these are obtained from
two-valued quantifiers, and is known to be a standard DFS by Th-11.

Proof LetQ : P(E)" — 2 be given andX;,..., X, € P(E). Becausey is
two-valued, i.eQ(Y1,...,Y,) € 2 = {0,1}, it is apparent tha{Q(Y1,...,Y},) :
Y1 € T,(X1),...,Y, € T,(X,)} C 2. Hence by Def. 437T¢ x,....x,.(y) € 2 and
1o.x,,...x,(v) € 2forall v € L. Itis then apparent from Th-20 (i.e.q x,,.. . x, <

To.x,,...x, and the fact thal'g x,, . x, is nondecreasing andg x, ... x, nonin-
creasing) that there are only the following possibilities:
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a. TQ,x1,..x,(0) = 1.
ThenTg x, .. x,(y) = 1forall v € I becauselg x,,.. x, is nondecreasing by
Th-20, i.e.
TQ.x1,..x, = C1- (48)
In addition, Lo x,,...x, (7v) € {0,1} by our above reasoning, i.e.
Lox1xa (1) € {0,1} . (49)

We may hence apply (X-3) and conclude that
E(Toxy Lo x,) = 3+ 2 (Tox,, .x.)0 . (50)
In this case,
Qy(X1,..., Xpn) = med%(TQ,Xl ..... X L@ X1, X0) by (17)

= med%(lvicz,xl,.wxn 7)) by (48)

|

Abbreviatingf(v) = Q,(X1,...,X,), we hence obtain

Lox,,..x.(7)=1 by (49), Def. 22
else

N[ =

1

J Loxi,..x, - (51)

Therefore

M) X1,..., Xn)

=B (f) by Def. 33, definition off

=141 2t by (B-3) [Th-11, Th-g]

=1+ 3 (Loximx)y by (51)

=&8(To.x1, . X0 L. X1, X,) by (50)

=Fe(Q)(X1,..., Xn). by Def. 45

b. Lo x,,...x, (0) =0.

The proof of this case is analogous: First we use the factthgk, x, is nonin-
creasing by Th-20 to conclude thap x,, . x, (v) =0forally e I,i.e.Lg x, .

co. Again, we conclude frong x, .. ( ) c2forally e IthatTQ X4, (I) C
{2}. In the following, we shall abbrewat@’ 1 - 1¢x,,..x, and L’ =1-
To.x,,..x,. Clearly (T, L") e T, T" = ¢; andP(I) C 2. We may hence apply
(X-3), WhICh yields

.....

(T L) =5+ 5170 (52)
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Therefore

fE(Q)(XlaaXn)

= g(TQ7X1 ,,,,, X717J-Q,X1 ..... Xn) by Def. 45
= 5(1 — L’, 1-— T’) by definition Ole7 K
= 1 - 5(—|—I7 J_/) by (X-2)
=1-G 30 by (52)

0l
= % — %J_/*

ie.
Fe@ X Xo) = 3 = 3110 3

Abbreviatingf(y) = Q+(X1, ..., X,), we obviously have

f(y) = med%(TQ,Xl ..... x. (1), Lo.x,....x. (7)) by(17)
=med1 (Tg,x,,...x,(7),0) becauselg x; ... x,, = o
2
— 0 TQ X1,eeny Xn — 0
= { 1 olsa by Def. 22 andTg x, ... x, €2
Therefore
1 ol
Bi(f)=5—3f =5-31" (54)

where the first equation is apparent from (B-3), which holds by Th-11 and Th-8, and
the second equation is apparent from (10). Finally

M(Q)(X1, ..., Xn)

=B (f) by Def. 33, definition off
/01

=331 by (54)

=Fe(Q)( X1, X)) by (53)

Lemma 10 If £ : T — I satisfiegX-2) and (X-3), thenF; satisfiegZ-2).

Proof LetE # & be a given base set amde F an arbitrary element off. The
projection quantifierr, : P(F) — 2 is two-valued by Def. 6. Therefore

Fe(me) = M(me) by L-9
=Te.. by Th-11
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Lemma 1l LetQ : P(E)" — Ibe asemi-fuzzy quantifieraddy, ..., X,, € P(E).
Then

a T-9.x,..x, =1—L1gxy,..,x,;

b. Lox:,. . .x,=1—Toxi. X

where—x = 1 — z is the standard negation.

Proof SupposeR : P(E)" — 1 is a semi-fuzzy quantifier and,..., X, €
P(E). Further lety € 1.

a. The first claim of the lemma is obvious frasnp{l —a : a € A} =1 —inf A for
all A e P(I):

TQ.x1,.., X,

= sup{~Q(Y1,....Y,) : Y1 € T,(X1),.... Y, € T,(Xn)} by Def. 43
=sup{l —QY1,...,Y,) : Y1 € T,(X4),.... Y, € T,(X,)} (rz=1-12)
=1-mf{Q(Y1,...,Y,) : Y1 € T,(Xq),....Y, € T,(X,,)}
=1-1ox,..x,(7)- by Def. 43

b. The second claim of the lemma is entailed by the first one because

1-g.xi,..x,

=1-(1-1-gxi,..x,)

=1-T0x..X, by parta. of the lemma
=1-TQx:, . ,Xns because-x = 1 — z involutive

which finishes the proof.

Lemma 12 Suppose) : P(E)" — I is a semi-fuzzy quantifier of arity > 0. Then
forall Xq,...,X, € P(E),

where—X,, € P(E) is the standard fuzzy complement, (¢) = 1 — ux, (e), for all
ec E.

Proof LetQ:P(E)" — Ibegiven ¢ > 0)andX,..., X, € P(E). We already
know from the proof of [6, L-22,p.127hH(> 0) and [7, L-30, p.110]4 = 0) that

T.(~X,) = {-Y 1Y € T,(X,))}. (55)
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for all v € I. Therefore
To- %1, (7)
=sup{(Q—)(Y1,...,Y,) : Y1 € T,(X1),..., Y, € T,(X,)} by Def. 43
=sup{Q(Y1,...,Y,_1,7Y,) : Y1 € T,(X1),...,Y, € T,(X,)} by Def. 10
=sup{Q(Y1,....Y,) : Y1 € T,(X4),..., Y1 € Ty(Xpo1),
Y, € T,(<X,)} by (55)
= TQ. X1, Xno1,-Xn (V)5 by Def. 43
for all v € I, and similarly
Lo-x1,...x, ()
inf{(Q-)(Y1,...,Yn) : Y1 € T,(X1),..., Y, € T,(X,)} by Def. 43
inf{Q(Y1,...,Yn_1,7Y,) : Y1 € T,(X1),...,Y, € T,(X,)} by Def. 10
=inf{Q(Y1,...,Y,) Y1 € T,(X1),..., Y1 € T, (Xn-1),
Y, € T,(—Xn)} by (55)
=10 X1, X0 1.=Xn () - by Def. 43

Lemma 13 Suppos€ : T — I satisfiegX-2) and (X-3). ThenF; satisfieqZ-3).

Proof LetQ : P(E)" — Ibegiven ¢ > 0)andXy,...,X,, € P(E). By L-9

and Th-11, we know thaf,: induces the standard fuzzy negatiom = 1 — z. By

Def. 11, dualisation based on the standard negation/complement can be decomposed
as Becaus®[ = -@Q—. Hence by L-11 and L-12,

Toox,...x, = 1= LQ.x1,. . X1, X0 - (56)
and
Looxi,..x, = 1= TQ.X1,. . Xn_1,-X, - (57)
Hence
Fe(Q)( X1, Xy)
=&(Too,x1,.... X0 L0O0,X1,.... X0 ) by Def. 45
=81 - Lox1, . Xn1 X L = TQ. X1, X1, -X,) DY (56), (57)
=1-8(TQ.x1, . X1, 2% LQX1 1 X012 X,) by (X-2)
=1 - Fe(Q)( X1, .o, Xn1,7X5) by Def. 45
= Fe(Q)( X1, X1, 2 X)) by L-9 and Th-11
= Fe(Q)(X1,..., Xn) . by Def. 11

BecauseX, ..., X, € P(E) were arbitrarily chosen, we conclude thet(QO) =
Fe(Q)O, as desired.

Lemma 14 Suppos€ : T — I satisfiegX-2) and (X-3). ThenF; satisfieqZ-4).
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Proof LetQ: P(E)" — I be givenn > 0. Further letX;, ..., X, € P(E) be
a given choice of fuzzy arguments, and4et I. It has been shown in the proof of [6,
L-23, p.128] that

%(Xn n Xn+1) = {Yn n Yn+1 . Yn S %(Xn), Yn+1 S %(Xn+1)} (58)

whenevery > 0. The equation also holds #f = 0, as has been shown in [7, L-
32,p.112]. Recalling thal,(~Z) = {=Y : Y € 7,(Z)}, which has been shown
to hold forv > 0 in the proof of [6, L-22,p.127]1 > 0) and fory = 0 in [7,
L-30, p-110], we may apply DeMorgan’s law and conclude from (58) that

Ty(Xn U XnJrl) = {Yn U Yn+1 1Y, € Ty(Xn)v Yn+1 € Ty(XnJrl)}v (59)
for all v € I. Therefore

TQU,X1=-~7Xn+1 (’7)

= sup{QU(Y1, ..., Ys1) 1 Y1 € To(X1), ..., Vi1 € T(Xps1)} by Def. 43
= sup{Q(Y1,...,Yp 1, Y UYni1) : Y1 € T,(X1),.... Yy € T,(Xn),

Y1 € T5(Xn11)} by Def. 12
=sup{Q(Y1,...,Yn) Y1 € T,(X1),..., Y1 € T,(Xp—1),

Yo € T, (X0 U Xs1)} by (59)
— QXX s XaUXons (1) by Def. 43

forally €1, i.e.

TQU,X1>~-<7X"+1 = TQ7X1;-~7X7‘L—17X71UX71+1 . (60)
Analogously,
J-QU7X1 c Xt (’Y)
= 1nf{QU(Y1, ey Yn+1) 1Y, € I]jy(Xl)7 . 7Yn+1 S IZ:/(Xn_i_l)} by Def. 43
= mf{Q(Yl, LY, .Y, U Yn+1) 1Y, € %(Xl), ..., Y, € Ty(Xn);
Yo € T,(Xng1)} by Def. 12
= mf{Q(Yl, e ,Yn) : Yl € %(Xl), ceey Yn—l € ,]jy(Xn_l),
Y;z, S ,Iy(Xn U Xn+1)} by (59)
= LQ«,XI7~~;X7L71:X7LUX7L+1 ('7) ) by Def. 43
forally €1, i.e.
Louxi,.. X1 = L@, X1, X1, X0 UX s - (61)
Hence
Fe(QU)(X1,- -y Xng1)
= g(TQU,Xl,.‘.,Xn+1 ) J—QU,X17.‘.,X71+1) by Def' 45
= &8(TQ, X1, Xn 1, X0 UXn 19 1@, X1, X1, XnUXnp1) by (60), (61)
:f&(Q)(X17~-~7Xn—laXnUX71,+1)~ by Def. 45
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BecauseX, ..., X, 41 € P(E) were arbitrarily chosen, we conclude thifat(QU) =
fg(Q)U.

Lemma 15 If £ : T — I satisfiegX-5), thenF; satisfieqZ-5).

Proof LetQ : P(E)" — I be nonincreasing in its-th argumentp, > 0. Further
let Xq,..., X, X], € P(E), X, C X],. Then for ally €1,

TQ7X1,~~,X7L(’V)
= sup{Q(Yl, LY, e %(Xl), oY, € %(Xn)} by Def. 45

=sup{Q(Y1,... 7Yn+17Xnglin) Y1 €T(X1),...,.Yo1 € T(Xno1)}
(because) nonincreasing im-th arg anc(Xn):““ CYforallY, € 7,(X,))
> sup{Q(Vi, ..., Yoy, X,0) 1 V1 € T, (X3), ..., Yooy € To(X,o1)}

(because) nonincreasing im-th argument andx,,)="" < (X))

= Sup{Q<YI7 s 7Yn) 1Y € TY(X1)7 BRRE) Yoo1 € %(anl)a Y, € Ty(Xy/L)}
(because) nonincreasing im-th argument andX,’l);ni“ CYforally, € 7,(X)))

=TQ.x1 . X0 1.x, (V)
i.e.
TQ,x1,.%0 2 TQ, X1, X 1,X, - (62)

By similar reasoning based o%,, ™ andX;L?a", one shows that

Loxi,..x, 2 Lo X1, X0 1,X), - (63)

Therefore

Fe(@)( X1, Xn) =&(To.x1....x,, Lo.x1....x,) by Def. 45
> 8T, x1, X1, X L. X1, X0 1,x1 ) DY (X-5)
=Fe(Q)(Xq,. .. v X1, X)) .

HenceZ¢(Q) is nonincreasing in ita-th argument, as desired.

The following chain of lemmata is targeted at the proof that (X-2), (X-3), (X-4) and
(X-5) are sufficient forF, to satisfy (Z-6). For similar reasons as in [6, p.132] and
[7, p. 116], we shall introduce a modified definition@§ x, .. x, and Lo x, .. x,
which is apparently compatible with functional application (Z-6). We will then show
that the original definition gives rise to the same QFM as the modified definition, thus
inheriting its compliance with (Z-6).
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Definition 54  Let a semi-fuzzy quantifi€} : P(E)" — IbegivenandX,..., X, €

P(E). T8 x1 . x.: 1O x,...x, : I — Tare defined by

TQV,Xl,...,Xn (7) = Sllp{Q(Yl, s aYn) Y€ ,]jyv (Xl)v s aYn S 7;7 (Xn)} (64)
Lo xx, () =nf{Q(V1,....Y,) : Y1 e TV (Xy),...,Y, € TV (X,,)} (65)

where
TV(X)={Y : X" CY C XTmax} (66)
Xy =X L (67)
X1 =
ey :X;m"={ X1t 0 >
>5-37

forall v € 1.

Lemma 16 Suppose&? : P(E)" — I is a semi-fuzzy quantifiefy’ is some non-
empty base sefy,..., f, : E' — E are mappings and and, ..., X,, € P(EF’).
Then for ally € (0,1],

TV . N=T"5 (7
Q0i>:<1fi,X1,m’Xn Q,f1veesfn

o, M=4L"s (.
QO'§1 finXa X Q,f15-sfn

Proof LetQ : P(E)" — I, f1,...,fn: E' — FEandXy,...,X, € P(E') be
given andy € (0, 1]. We first recall that by equation (*) in the proof of [6, L-27, p.134],

T (Ji(X0) = (V) : Y € TV (X))} (69)
becausey > 0. Hence

v
no~
QO_leithw-an
=

(")
= sup{Q o igl Vi, Yu Y €TV (X1),....Y, €T (X))} by (64)
=swp Q(fr(V1),. -, fa(Ya)) : Y1 € TV (X1),.... Y € TV (X))} by (2)

= sup QY. V) 1 Vi € TV (A1), T (fu(X))} by (69)
—TY . . (). by (64)
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By analogous reasoning,

1Y .
Qovfl fir X1, X0 (7)

:mf{Qoglﬁyl,...,yn:Yleg'(xl),...,yne@'(xn)} by (65)
=inf Q(fi(Y1), ..., fa(Yn)) 1 Y1 € T (X1)..... Yo € T (Xa)} by (2)

=t Q(Yr, ., Y) Vi € TN (X)), T (Fa(Xa))} by (69)

= L' 2 2 (’y) . by (65)
Qafl(Xl)amsfn(Xn)

Lemma 17 For every semi-fuzzy quantifi€} : P(E)" — T and all Xy,...,X,, €
P(E),

(TQx1 e L X1 x,) €T
Proof We have to show that for af) : P(E)" — Iand allXy,..., X, € P(E),
T5.x,...x, isnondecreasingt f, v, isnonincreasing; and

v v
Te.x1.x, 2 LQ.x .. x, -

The proof of these properties is entirely analogous to that of Th-20 for the original
definitionsTQ,Xh__”Xn, J—Q,Xl,A..,Xn-

Lemma 18 SUpPOSE) : P(E)" — 1is a semi-fuzzy quantifier antl;, ..., X,, €
P(E).

a. Forally €1,

TQ.X1,nXn (1) S TS %0 x, (V)

To.x1,..x. (V) > T30 x..x, () forally' >~.
b. Forallv €1,

L@.x1,.... X, (v) > J—(Zg,xl,..i,xn (7)

Lox..x, (V)<L x, .x, () forally >~.

n

Proof Let a semi-fuzzy quantifief) : P(E)" — 1, a choice of fuzzy arguments
X1,...,X, € P(E) be given andy € I. We first observe that for alk € P(E),
XYymin ¢ Xmin which is apparent from Def. 30, (67). Furthermafg™ax = Xax
by (68). Hence by Def. 30,

T,(X) C TV (X). (70)
Itis also apparent from Def. 30 and (66) that
T, (X) 2 7 (X) (71)

whenevery’ > ~, see proof of [6, L-30, p.136+].
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a. ConsideringTg x,,...x, andTy v« ,we immediately have

.....

TQ,XM..‘,X,L(’Y)
= sup{Q(Y,....Y,) : Vi € T,(X1),...,Y, € T,(X,)}  byDef. 43
< Sup{Q(Y17 ce 7le) : Yl € Tyv(Xl)v ce aYrL € /]ij(X")} by (70)

= T8 x0.x, (1) by (64)

In addition ify" > ~, then

TQ,Xl,---,Xn(FY,)
= sup{Q(Yl, LY, e Tyl(Xl), o, Yy € Tyf (Xn)} by Def. 43
> sup{Q(Yl, LY, Y e ,TW'(XIL LY, € Z/'(Xn)} by (71)

= Té,xl,...,xn (7)- by (64)

b. The proofs f_orLQXh:,_,Xn vs. L} x,...x, are analogous, reversing all inequa-
tions and replacingstip’ with ‘ inf’.

Lemma 19 a. If f : I — I is nonincreasing, then
frr<r.

b. If f : I — I is a constant mapping, theff = f° = f.

c. If f: T — I is nondecreasing, then

f<f< s

Proof See [7, L-39,p.117].
Lemma 20 Supposé : T — I satisfiegX-4) and(X-5), then
§T", L) =¢(T, L) =¢(TF 1),

forall (T, 1) eT.

Proof Suppos€ : T — I fulfills (X-4) and (X-5), and le{ T, L) € T be given. By
Def. 44, we know thaf is nondecreasing. Hende < T < T*%. By (X-5),

E(T7, 1) <&(T, 1) <&(Th ).

On the other hand(T?, 1) = &(T#%, 1) by (X-4). Hencet(T?, 1) = &(T, 1) =
£(T¥, 1), as desired.

Lemma2l If T,T' : T — I are nondecreasing mappings afd o1y = T'[(0,1),
thenT?% = %,
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Proof The proof of the lemma is identical to that of [7, L-41, p.118].

Lemma 22 Suppos€ : T — I satisfiegX-4) and(X-5). If (T, L), (T’, L) € Tand
Tlo,1) = T'l(0,1), theng(T, L) = &(T', L).

Proof This is now trivial:

E(T, 1) = (T, 1) by (X-4)
= S(T’bﬁ7 1) by L-21
= §(T', 1). by (X-4)

Lemma 23 Suppos€ : T — I satisfie{X-2), (X-4) and(X-5). If (T, L), (T’, L') €
T with T|(O,1) = T/|(071) andJ_|(071) = J_/‘(071), theng(T, J_) = g(T/, J_/).

Proof  Straightforward.

E(T,L)=¢&(T', 1) by L-22
—1-(1—-1,1-T" by (X-2)
=1-¢1-11-T by L-22
=&(T',1). by (X-2)

Lemma 24 If £ : T — I satisfiegX-4) and (X-5), then
§(TQ7X1,~-~,X7L ) J—) = g(TC;,Xl,.H,Xn ’ J—)

for all semi-fuzzy quantifier® : P(E)" — I, X;,..., X, e P(E)and L : T — I
suchthat(Tg x,...x,,L) € T.

Proof Leta semi-fuzzy quantifiep : P(E)" — I, and a choice of fuzzy arguments

X1,...,X, € P(E) be given. Further lett : I — I be a mapping such that
(To.(x1,....x,), L) € T. To prove the claim of the lemma, we first observe that

X 7J-) ) (72)

which is apparent from L-18.a and (X-5). Concerning the converse inequation, let
~ € [0,1). Then

(Toxix) () = lim| To.x,,,x,(7) by Def. 34
Y=

= TC;>X17~.,X,,L ('7)
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as is easily seen from L-18.a. It is then apparent from this inequation that

T > TCS,Xl ..... X, (73)
if we defineT’ : T — I by
T'(y) = { (Toxix)'() 2 <1 (7)
1 oy =1
forall v € L. In turn,
(TS0, L) <&(T, 1) by (73), (X-5)
=&((Toxyx )L by (74), L-22
= g(TQ»Xh---7Xn,v J—) ) by (X'4)
i.e.
ETY 0 x L) <E(Tox0 0 x,, L) - (75)

Combining (72) and (75), we obtain the intend¢d v , 1) =&(To.x,,..x,, L)

Lemma25 LetQ : P(E)" — Ibe asemi-fuzzy quantifier add, ..., X,, € 75(E).
Then
a T xx, = 1= Lo x,, o x,0

b. J—:Q,Xl,...,Xn =1- Té,xl,...,xn-

Proof SupposeR : P(E)" — 1 is a semi-fuzzy quantifier and,..., X, €
P(E). Further lety € 1.

a. The first claim of the lemma is obvious frosnp{1 —a : a € A} = 1 — inf A for
all A e P(I):

0. X1 X

=sup{-Q(V1,...,Y,) : Y1 € TV (X1),..., Y, € TJ(X,L)} by (64)
=sup{l —Q(Y1,...,Yp) : Y1 €e TV (X1),.... Y, e TV (X,)} (~z=1-2)
=1-inf{Q(Y1,...,Yy) : Y1 € TV (Xy),..., Y, € T)(X,)}

=1- 15 x,,..x, (1) by (65)

b. The second claim of the lemma is entailed by the first one because

=1-TY 0x.. . x, by parta. of the lemma
=1 =T x .. X because-z = 1 — x involutive

as desired.
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Lemma 26 If £ : T — I satisfiegX-2), (X-4) and(X-5), then
E(TQ»Xh---,Xnv J-Q-,le---,Xn) = g(Té,Xl,...,Xﬂ,a J—('Q,Xl,...,Xn)

for all semi-fuzzy quantifier® : P(E)" — Iand Xy,..., X, € 75(E).

Proof  Straightforward.

§(TQ.x,... X0 LQ.xi,..x,)

= E(Té,xl ..... Xy Lox,..x,) by L-24
=1-(1-&T3 %, .xLoxi,..x.))
=1-¢(1-Lgx,,..x,,1— Tc;,xl,.“,xn) by (X-2)
=1—-&(T-0,x1,... X’ J_:QX““’XW) by L-11, L-25
=1- f(T:Q,X17...,X,,L7 i:Q,Xl,...7X") by L-24
=1-60 -1 % x 1 -Tdx . .x.) by L-25
=1-(1- f(Té,Xl,...,Xn:J—é,xl,...,xn)) by (X-2)

=&(T3 X1 x LO X1 -

Lemma 27 Suppose€ : T — I satisfies(X-2), (X-3), (X-4) and (X-5). ThenF;
satisfieqZ-6).

Proof Leté: T — I be a mapping which satisfies (X-2), (X-3), (X-4) and (X-5).
Further suppose th& : P(E)" — Tis a semi-fuzzy quantifieff; ..., f, : B’ —
E are mappingsk’ # @) andX,..., X, € P(E’). Then

Fe(Qo X F)(Xi.... X)

- £(—l—Qog1 fi,Xl,.A.,Xn’J_Qogl ﬁ,,Xl,...,Xn) by Def. 45

— v v _

N ég(—rQogl fi,X1,.u,Xn7J_Qogl ﬁ-,Xl,...,Xn) by L-26

=¢(TY » A 5 by L-16, L-23
Qvfl(Xl)v“-vfn(Xn) Q»fl(Xl)v“--,fn(Xn)

=¢(T = 2,1l ) by L-26
Q7f1(Xl)w-~,fn(Xn) Q»fl(Xl)a-'wfn(Xn)

= Fe(Q)(f1(X)s- - ful X)) by Def. 45

This finishes the proof becaugg induces the standard extension princi@@z which
is apparent from L-9 and Th-11.
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Proof of Theorem 22

The theorem is a corollary of L-8, L-10, L-13, L-14, L-15 and L-27, which ensure that
Fe satisfies (Z-1), (Z-2), (Z-3), (Z-4), (Z-5) and (Z-6), respectively.

B.4 Proof of Theorem 23

Lemma 28 If £ : T — I does not satisfyX-1), thenF, does not satisf{Z-1).

Proof Suppos€ : T — I fails on (X-1), i.e. there exists € I such that

£(CarCa) # a. (76)
We define a nullary semi-fuzzy quantifiey, : P({+})* — I by
Qa(@) =a. (77)
ThenTg, o(7) = Qu(@) =aandLg, () = Qu(@) =aforally e IbyL-7,ie.
TQu2 = 1.0 =Ca- (78)
Therefore
Fe(Qa) (D) = &(Tqa.0) Lg..o) by Def. 45
= &(ca,Ca) by (78)
#a by (76)
= Qa(9) . by (77)

HenceF; violates (Z-1) becaude(F¢(Q.)) # Qa.

Lemma 29 If £: T — I does not satisfyxX-5), thenF, does not satisf{Z-5).
Proof Supposé : T — I fails on (X-5). Then there exigfT, L), (T’,1') € T
suchthaflT < T/, L < 1’and

§(T, 1) > &(T', L), (79)

By Th-21, there exist semi-fuzzy quantifiefs, @2 : P(2 x I) — I and a fuzzy
subsetX € P(E) such that

Tox =T
lo,x=1
To,x =1
Lg,x =1

We shall assume th&); and@- are defined according to equation (20) and tkias
defined according to (23). Itis then apparent fron< T’ and L < 1’ that@Q; < Q.
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In addition, @, and Q> are nondecreasing in their argument by L-5. Basedjen
and@-, we define semi-fuzzy quantifierg], @, : P(2 xI) — I by Q] = Q1—,
Qs = @2, i.e. Q) and Q) are the antonyms af); and Q. with respect to standard
fuzzy complementation. Heneg, and@, are nonincreasing in their argument, which
is apparent from the fact thgl; and@- are nondecreasing and from the definition of
antonyms, see Def. 10. We shall further defiiee P(2 x I) by X’ = =X, i.e. X’
is the standard complement of the fuzzy subset P(2 x I) defined by (23). Then
by L-12 and Th-21,

Torxr = TQi~-x=Tg,~~x = Te.x =T

Lopx =Lloi-~x=1g~~x=1lg.x=T

Tapx = TQam-x=TQs-x = TQax = T’

Lopx = Loem-x=Lox =Llox =T
We shall define a semi-fuzzy quantifiér: P(2 x 2 x I) — I by

cy) = Qh{(e,2): (L,e,2) €Y}) + YN{0}x2xI)=92
Q1({(c,2) : (0,¢,2) €Y}) = YN({0} x2x1I) #2

forallY € P(2 x 2 x I). Itis apparent from the fact thét; andQ’, are nonincreasing
and@; < Q5 thatC is nonincreasing as well.
Now we defineZ, 7' € P(2 x 2 xI),Z C Z' by

ux(c,z) @ a=1
,LLZ(aacaZ){ OX( ) - else

1 a=1

,LLZ/(CL,C,Z):{ MX’(CVZ) :a=0

Itis then apparent from the above equations and by L-3 from the nonincreasing mono-
tonicity of C' and@, that

Tez(y) = C(Z8™) = Q4(X'S™) = Ty x (1) = T'()
forally € I,i.e.T¢ z = T'. By similar reasoning,
Loz(y) = C(ZF™) = Qy(X"S™) = Loy x/(v) = L'(7)
and forZ’,
Toz() =C(Z'7") = QXS =T x (1) =TH),
Loz(y)=C(Z2'7™) = QuX'T™) = Loy x(7) = L(7)-
Hencelc z = L/, Te z» = T andLl¢ z = L. Consequently

Fe(C)Z2) =&(Te,z, Loz) by Def. 45
=£(T", L) becauselc.z = T', Loy = 1/
< &(T, L)by (79)
=&(Te,z, Lozr) becausél¢ z = T/, Loy = 1
=Fe(O)Z'). by Def. 45
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Hence there exists a nonincreasing quantflemd fuzzy argumentg C Z’ such that
F(C)(Z) < F(C)(Z'), i.e. F¢ does not preserve the nonincreasing monotonicity of
C'in its arguments and hence violates (Z-5).

Lemma 30 Suppos€ : T — I satisfies(X-5). If £ does not fulfill(X-3), thenF
violates(Z-2).

Proof Supposef : T — 1 satisfies (X-5) but fails on (X-3). Then there exists
(c1,1) € T such thatL(I) C 2 and

Eler, 1) # 5+ 3100 (80)
We shall discern two cases.

a (e, L) >14+11% e 19 < 2¢(cq, L) — 1. We may hence choosec I such
that

1% <z < 26(cy, L) —1. (81)

We shall further define’ : T — I by
, 1 s y<z

vey={ g 15 @2

for all v € I. Hence by (10),
J_/Ol =z
and by (81),
Lyl 1l 2y, ). (83)

In addition, it apparently holds thét;, 1’) € Tand L’ > 1.

Now let E = {x} and consider the projection quantifier : P({«}) — 2. Further
let X € P({+}) be the fuzzy subset defined hu (*) = % + L. Becauser. is
nondecreasing in its argument, we conclude from L-3 and Def. 30Tthak () =
l=ci(y)andLl,, x(vy)=L'(y)forallyel,i.e.

TTr*,X =C1, (84)
Lo x=1". (85)
Therefore
Foi(m)(X) = &(cq, L) by Def. 45, (84), (85)
> &(ep, L) by (X-5) because.’ > |
>3+32 by (83)
= px (%) by definition of X
=7.(X). by Def. 7
HenceF¢(m.)(X) # 7. (X), i.e. F¢ does not satisfy (Z-2).
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b. &(cr, L) < 34119, ie. 19 > 2¢(cy, L) — 1. Inthis case, we choosec T such
that

2(cy, 1) —1<z< 1o,
The proof based on this choice ofs analogous to that &., reversing inequations.

Lemma3l Let{ : T — I be given. IfF; is a DFS, thenF, induces the standard
negationFg(—) = —.

Proof Suppos€ : T — Tis a mapping such thak, is a DFS. Thert satisfies
(X-3) by L-30. In the following, we shall abbreviate = F(—). In addition, let us
recall that Def. 8 (z) = Q'(X) for all z € I, where@’ : P({1}) — 2 is defined
by

QY)=-n"1(Y) (86)
forallY € P({1}), andX € P({1}) is defined byX = 7j(z), i.e.
px (1) =z. (87)

Now letz € [0,%). We can apply L-3 because, and hence)’, is nonincreasing.

Therefore
Tox =Q (X =1
and

max 1 @ v<1-22
J‘Q/,X:Q/(X'y ):{ 0 v>1-—2x

forally € I,i.e. Tox = c1, Lo x(I) C 2and(Lg x)* = 1 — 2z. Therefore

Sz = Fe(Q)(X) by Def. 8, (87)
=&(Tg x, Lo x) by Def. 45
=3 +3(1-22) by (X-3)
=1—=x.

This proves that

Sr=1-—=x, (88)

forall z € [0,4). Now letz € (3,1]. By assumption7; is a DFS, i.e=~is a

strong negation operator by Th-1. In particufais an involutive bijection by Def. 16.
Because- is involutive, it holds that: = == z. On the other hand; € (1, 1] implies
thatl — = € [0, 3). Hence by (88)z = 1 — (1 — ) = =(1 — z). Combining both
equations, we haveé = a2 = =(1 — z). But = is an injection, i.e. we can cancel the
leftmost= to obtain the desireéhz = 1 — x. This proves thabz = 1 — x for all

z € I\{3}. Itis then apparent from the fact thais a bijection that it fulfills= £ = 3,
which finishes the proof that = —.

Lemma 32 Suppos€ : T — I is a mapping such thaf, induces the standard
negation. I does not satisfgX-2), thenF, does not satisf{Z-3).
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Proof Let{: T — I be agiven mapping such th&t induces the standard negation

Fe(—) = -, ~z = lz. Further suppose thgtviolates (X-2), i.e. there exisiT, L) €
T such that

By Th-21 there exist§) : P(2 x I) — I, X € P(2 x I) with
Tox =T (90)
lox=1. (91)
Hence
TQD,—\X = TﬁQﬁﬁX by Def. 11
=1-1g--x by L-11 and L-12
=1-1lgx because—X = X,
i.e. by (90),
Ton-x=1—1. (92)
For the same reasonson . x = 1 — T, x and by (91),
loo-x=1-T. (93)
Hence
Fe(QD)(=X) = &(Teo,-x: Loo,-x) by Def. 45
=¢(1—-1,1-T) by (92), (93)
#1-¢(T,1) by (89)
=1-&Tox,Lqgx) by (90), (91)
= F(Q)(X) by Def. 45
= Fe(Q)(—X) because—X = X
=F:(Q)0O(-X), by Def. 11

i.e. F¢ violates (Z-3).
Lemma 33 Suppos€T, L) € T are given. We definé, : I — I by

b .
no={ 1o 120 (94)

forall v € 1.

a. Thereexis) : P(2xI) — I g:2xIxI—2xTIandX € P(2 x I xI)

such that
Tgog,x = T1
T s =T
Q,9(X)
loosx =1 =z =1.
Q9% 7 0 g(x)
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b. ThereexisQ : P(2 xI) — I, g:2xIxI—2xIandX € P(2 x I xI)

such that

Tgog,x = T1

T 5 =TF
Q,9(X)

loogx =1 »_ =1.
Q9. X "0 g(x)

Proof We shalldefingj:2xIxI— 2x1Iby
g(c, 21, 22) = (¢, 21) (95)

forall ¢ € 2 andzq, 2o € I. We shall further defin& e 75(2 x I x1I) by

%—i—%zz :c=0,20< 27,
1
=29 :c=0,21=0, z0<1
2 ’ ’
MX(cv 21722) = 1 1 . -1 (96)
5 52’1 . C=
0 else

forallc € 2, 21,29 € 1.
Now we shall investigate the cut rangesXfat different choices of the cutting param-
etery € I. Firstly if v = 0, we conclude from (96) and Def. 30 that

Xénin _ X>l ={0} x {(21,22) : 22 < 21}
2
and
Xg=X_1 = ({0} x {(21,22) : 22 < z1}) U ({1} x {0} x I).
If v >0, then
X,{/I]ln — Xz%_;'_%fy = {0} X {(2’1722) Yy <2< Zl}
and
X"r :X>%*%’Y

= ({0} x{(21,22) : 22 < 21 }) U ({0} x {0} x (1 =, 1)) U ({1} x [0,7) x I).

In turn, we obtain fof(X2"'") andg(X**) that

g(xg™) = {0} x (0,1] (97)

9(Xo™) = ({0} x (0,1]) U {(1,0)} (98)
and ify > 0,

gxz™) = {0} x (v,1] (99)

g(X7*) = ({0} x ) U ({1} x [0,7)) - (100)
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which is obvious from (95) and the above results)ojﬁi“, X,
In the following, we shall abbreviafé = §(X). It is apparent from (1) that

. L1l @ e=0
wiea={ 1712 1025 oy
forall c € 2 andz; € I. Hence by Def. 30,
Vgnin — Vo1 ={0} x (0,1] (102)
2
Vor =V_1 = ({0} xDH)U{(1,0)} (103)
=2
and ify > 0,
V= Vo= {0 x b (104)
VI =V 1= ({0} x DU ({1} x [0,7) (105)
2727

a. Let(T,.L) e Tbe given. We defin€, @', Q" : P(2 x I) — I as follows.

THye) :© we#0,ye Y’
QY)=1¢ T(y) : ye#0,y €Y’ (106)
T(0) oy =0

Q"(Y) = L(yu) (107)
{Qm) vi-o
where
Y ={:€1:(0,2) €Y} (109)
Y'={2€1:(1,2) €Y} (110)
Yy =supY” (111)
ye = inf Y’ (112)

forallY € P(2 x I).

It is obvious from L-19 and the fact that! and T® are nondecreasing th& is non-
increasing. SimilarlyQ” is clearly nonincreasing. Observing that(y) > T(0),
T°(y) > T(0) andT(0) > L(v') for all v,7" € I, we conclude tha®)’ > Q". We
then obtain from (108) tha® is nonincreasing. Therefore

To.i000 = Q™) by L-3 andV’ = §(X)
= Q({0} x (0,1]) by (102)
= Q'({0} x (0,1]) by (108)
=T(0) by (106)
=T°(0). by Def. 34
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Similarly
(0)

Q(V5"™)

Q(({0} x ) U{(1,0)})
Q"(({0} x ) U {(1,0)})
1(0)

Lad0

In the case that > 0,

) = Q)
— QU0} x [r.1)
= Q({0} x [3,1)

=T"(%)

T 2
Q,9(X

and

(v) = Q(Vy"™)
=Q(({0}t x ) U ({1} x [0,7)))
=Q"(({0} x ) U ({1} x [0,7)))
=1(7).

Lad0

Hence

T 2 =
Q,9(X)

and

P
Q,9(X)

by L-3andV = §(X)

by (103)
by (108)
by (107)

by L-3andV = §(X
by (104)
by (108)
by (106)

)

by L-3andV = §(X)

by (105)

by (108)

by (107)
(113)
(114)

Turning to Tgeg,x and Lgog, x, we utilize thatQ o g is nonincreasing becausgis

nonincreasing. Therefore

TQog,x(0) = (Q 0 ) (X5 by L-3
= Qg(Xg"™)) by (2)
= Q({0} x (0,1]) by (97)
= Q'({0} x (0,1]) by (108)
=T(0) by (106)
=T1(0) by (94)
and
L@oa,x(o) = (Q o 9)(Xg™) by L-3
Q(9(X5™)) by (2)
(({ }x(0,1)) U{(1,0)}) by (98)
Q"(({0} x (0,1]) U{(1,0)}) by (108)
L(0). by (107)
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For~ > 0, then,

Toa.(X)(7) = (Q o g)(XIM™) by L-3
= Q(g(x1™)) by (2)
= Q({0} x (v,1]) by (99)
= Q'({0} x (v,1]) by (108)
=TH) by (106)
=Ti(7) by (94)
and
Log,(X)(7) = (Q 0 g)(XJ™) by L-3
= Q(g(XJ™)) by (2)
=Q(({0} xH U ({1} x [0,7))) by (100)
=Q"(({0} x ) U ({1} x [0,7))) by (108)
=1(y). by (107)
Hence
Toog,x = T1 (115)
and
Loogx =1L. (116)

As shown by (113), (114), (115) and (116), the presented choice3,fgrand X are
suitable for proving para. of the lemma.

b. For the proof ofb., let again(T, L) € T be given. We will assume the same
choiceofg : 2 x IxI — 2 xITandX € P(2 x I x I). In this case, however, we

define@, @', Q" : P(2 x I) — T as follows. For all” € P(2 x I x I),
, T(0 : =0, Yy’
Q)= { Tg(g,)/g) : Zfse "t (117)
Q"(Y) = L(yu) (118)
Q(Y) = { g//((YY)) ?// ; g (119)

whereY”’, Y, y, andy, are defined as ia. Unlike the quantifiers used in the proof

of the first part of the lemma, the above choice®f and hence), is not necessarily
monotonic. We can hence not apply L-3. Nevertheless it is easy to figure out which
choices of argument sels € 7, (X) attain the maximunT g, z(v) and the minimum
Lo.z(7) for a given choice ofZ € P(2 x I). This is becaus€)” is nonincreasing
and@’ > @”. In addition,Q’ is ‘almost’ nonincreasing (we just have to take care if
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ye = 0).
Let us first consider the case that= 0. Then

To.500(0) =sup{Q(Y) : Y € To(V)} by Def. 43 and/ = §(X)
= Q({0} xT) see (102), (103)
Q'({0} xT) by (119)
T#(0) by (117)
and
Lo i000) =mi{Q(Y) - Y € To(V)} by Def. 43 and/ = §(X)
=Q(({0} x ) U{(1,0)}) see (102), (103)
Q"(({0} x ) U {(1,0)}) by (119)
1(0). by (118)
Similarly
TqQog,x (0) =sup{Q(g(Y)) : Y € To(X)} by Def. 43, (2)
=sup{Q(Z) : Z € g(To(X))} by [6, L-26,p.133]
= Q({0} x (0,1]) see (97)
= Q'({0} x (0,1]) by (119)
= T(0) by (117)
=T1(0) by (94)
and
LQog,x(0) =inf{Q(g(Y)) : Y € To(X)} by Def. 43, (2)

=sup{Q(Z) : Z € §(To(X))} by [6, L-26, p.133]
= Q(({0} x (0,1) U{(1,0)}) see (98)
= Q'(({0} x (0,1]) U{(1,0)}) by (119)
= 1(0). by (118)

Now let us assume that> 0. Then

To oo =sw{Q(Y): Y € T,(V)} by Def. 43 and/ = 9(X)
= Q{0} x [,1]) see (104), (105)
Q' ({0} x [7,1]) by (119)
TH) by (117)
and
Lo iy =mHEY) Y € T,(V)} by Def. 43 and/ = j(X)

=Q(({0} xHU ({1} x [0,7)))  see (104), (105)
Q"(({0} x DU ({1} x [0,7))) by (119)
1(v). by (118)
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Finally

Tqog,x (7) =sup{Q(g(Y)) : Y € T,(X)} by Def. 43, (2)
=sup{Q(2) : Z € §(T,(X))} by [6, L-26, p.133]
= Q({0} x (v,1]) see (99)
= Q'({0} x (v,1]) by (119)
=T() by (117)
= T1(0) by (94)
and
Lgog.x(v) =inf{Q(g(Y)) : Y € T,(X)} by Def. 43, (2)
= sup{Q(2) : Z € §(T,(X))} by [6, L-26, p.133]
= Q(({0} x ) U ({1} x [0,7))) see (100)
= Q(({0} x ) U ({1} x [0,7))) by (119)
as desired.

Lemma 34 Supposé€ : T — I is a given aggregation mapping aif is the QFM
defined in terms of. Further assume that satisfies(X-2) and (X-3). If F; satisfies
(Z-6), then¢ satisfiegX-4).

Proof Suppos€ : T — I satisfies conditions (X-2) and (X-3). Further assume that
Fe satisfies (Z-6).

Let a choice of( T, L) € T be given. We have to show thatT*, L) = £(T°, 1).

To this end, we first observe that by L-9 and Th-F},induces the standard extension
prlnC|pIe By L-33,thereexist® : P(2 xI) — I, g:2xIxI— 2xTandX ¢

P(2 x I x T) such thafTgeg x = T, To o0 = =T’ and Loy x = Loz =+

We may hence conclude from the fact ttfat satisfies (Z-6) and mduces the standard
extension principle that

(T, 1) = g(TQ’g(X), Lo by L-33.a
= Fe(Q)(9(X)) by Def. 45
= Fe(Q o g)(X) by (Z-6)
=&(Tgog, x> Lgog,x) by Def. 45
=¢&(Ty, 1), by L-33.a
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where T, is defined by (94). In a similar way, we can use quantifjefuzzy subset
X and mapping; of L-33.b to prove that

E(TH 1) = g(TQ’g; X’ J_Q’; (X)) by L-33.b
= Fe(Q)(3(X)) by Def. 45
= Fe(Qog)(X) by (Z-6)
= f(TQoﬁ)X, J—Qo_@,X) by Def. 45
=¢(Ty, 1), by L-33.b

Hencet(T?, L) = &(Ty, L) = &(TF, L), i.e. (X-4) holds, as desired.

Proof of Theorem 23

Suppose€ : T — I is given. We have to show th& is not a DFS if one of the
conditions (X-1) to (X-5) is violated.

a. If ¢ violates (X-1), therF: does not satisfy (Z-1) by L-28.
b. If ¢ violates (X-5), therF, violates (Z-5) by L-29.

In the following, we can hence assume thaatisfies (X-1) and (X-5) (otherwisg,
fails to be a DFS by a. or b.). Under these circumstances,

c. if ¢ fails on (X-3), thenF; violates (Z-2) by L-30.

In the following, we may hence assume thaatisfies (X-3) because otherwisg; is
not a DFS anyway.

d. if F¢ does not induce the standard negatian= 1 — z, thenF; is not a DFS
by L-31.

In the following, we can hence assume tifatinduces the standard negation. Then by
L-32,

e. if ¢ does not satisfy (X-2), theft, does not satisfy (Z-3).

Hence (X-2) is also a necessary conditionfgrto be a DFS and we may assume that
all ‘x-conditions’ except (possibly) for (X-4) hold. Then by L-34,

f. if £ does not satisfy (X-4), thef; does not satisfy (Z-6).
This finishes the proof that all conditions (X-1) to (X-5) are necessary-foto be a

DFS.
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B.5 Proof of Theorem 24

LetB:B —Ibea given aggregation mapping. Further suppose}hdP(E)" —
IandX;,..., X, € P(E) are given. Then

Q'y(le---7Xn)
= med%(sup{Q(Yh...,Yn) Y1 € T,(Xq),.... Y, € T,(X,)},

mf{Q(Vi,...,Y,) : Vi € T(X1),.... Y € T.(Xa)}) by (17)
= med% (To, (X1, x) () Loy x,x) (1) by Def. 43,

forally €1, i.e.

(Qy(X1,. ., X0))vyer = med%(TQ,(Xh___’Xn), Loxi,,x)) - (120)
Therefore
Mp(Q)(X1, ..., Xyn) = B((Q1(X1, ..., Xy))qyer) by Def. 33
= B(med% (TQ.(x1. %) Lou(x1....x,))) by (120)
=&8(TQ.(x1..X0)s L@ (X1 X)) 5 by (25)
as desired.

B.6 Proof of Theorem 25

Lemma 35 Supposeé’ : B — I is given and¢ : T — I is the mapping defined by
(25). B satisfiegB-1) if and only if¢ satisfieqX-1)

Proof LetB:B — I be given and lef be the corresponding mappigg T — 1.
To see that (X-1) entails (B-1), let us assume thattisfies (X-1). Further suppose
that f € B is a given constant, i.¢. = ¢, for somea € 1. It is apparent from Def. 22
that

med (cq,€a) = Ca (121)
Therefore
B(ca) = B(med% (Casca)) by (121)
= &(Ca, Ca) by (25)
=a. by (X-1)

Now we prove the converse claim that (B-1) entails (X-1). HenceTetL) € T
such thatT = L. It then follows from the fact thal” is nondecreasing while. is

74



nonincreasing that = L is indeed constant, i.6. = L = ¢, fora = T(0). Hence

§(T, L) =&(carca) becausel = 1 =c,
= B(med1 (cq,¢q)) by (25)
2
= B(ca) by idempotence afned 1
2
=a by (B-1)
=T(0). becausél = c,

Lemma 36 Forall f € B there exis{ T, L) € T such thatf = med;(T,.L). More
2
specifically,

1
a. If f e Bt UB2, thenf = med (1, f).
2

1
b. If f e B~ UB2, thenf = med (f,co).
2
Proof Letf € B be given.
1 . . . .
a. f € BT UB2. Thenf is nonincreasing by Def. 32 and heneg, f) € T. Again

from Def. 32, we know thaf () > 1 for all v € I; hence

med%(cl('ﬂa f(n) = med%(l, f() by (7)
=f(v). by Def. 22 andf () > 3

b. feB U BZ. In this case,f is nondecreasing by Def. 32 afd> c¢q, hence
(f,co) € T. We conclude from Def. 32 thaft(y) < 3 for all y € L. Therefore

med%(f(v)mo(’y)) = med%(f(v)» 1) by (7)

= f(v). by Def. 22 andf () < 3

Lemma 37 Suppose5 : B — I is given and¢ is the corresponding mapping :
T — I. ThenB satisfiegB-2) if and only if¢ satisfieqX-2).
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Proof LetB:B — I be given and suppose: T — I is defined by (25).
We shall first assume th#&t satisfies (B-2) and consider a choice(df, L) € T. Then

El—-1,1-T)

=B(med:(1—1,1-T)) by (25)

=B(1- Iiledl (L, T)) becausened; symmetrical w.r.t—
=B(1- medi (T,1)) becausenedi commutative
=1- B(medi(—l—, 1)) by (B-2) 2

=1-—¢(T, L)z, by (25)

i.e. ¢ satisfies (X-2).
Conversely, suppose thasatisfies (X-2) and lef € B be given. By L-36, there exists
a choice of T, L) € T such that

f= med%(T, 1). (122)

We compute

B(1-f)

=B(1—-med;(T,L1)) by (122)

= B(med; (1 2— T,1—-1)) becausened; symmetric w.r.t—-

=¢£(1 - f, 1-T) by (25) andrr?edl commutative

=1-&(T,1) by (X-2) :

=1—B(med (T,1)) by (25)

=1-B(f). : by (122)

Lemma 38 LetB : B — I be a given aggregation mapping and et T — I be
defined by(25).

a. if B satisfieqB-3), then¢ satisfiegX-3).
b. if £ satisfiegX-2) and (X-3), thenB satisfiegB-3).
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Proof

a. SupposeB satisfies (B-3), and let a choice ¢f;, L) € T be given such that
L(I) C 2. We shall abbreviate

f=medi(cq, 1) (123)
2
Then
fy) = medé(ﬁ(v), L) by (123)
= med%(l,J_(W)) by (7)
_{ Lo Ly =1
13 s Ly=0

for all v € I, where the last step is apparent from Def. 22 and the factlthattwo-
valued. Because is nonincreasing anthed; is nondecreasing in its arguments, it

2
follows that f is nonincreasing as well. Therefofe € B™, and f has one of the
following forms:

0l
foy) = { 1% z i ioi
or
0l
foy) = { 1% :yy ; jm
1
In any casef (I) C {1,1} andf2' = 1% Therefore
(e, L) = B(med%(% 1)) by (25)
= B(f) by (123)
=141 3! by (B-3)
=14+119 becausg‘é =19

i.e. ¢ satisfies (X-3).

b. Suppose satisfies (X-2) and (X-3). Further let a choice ofc B be given that

satisfiesf(I) C {0, %, 1}.

9
1 ~
If f € BT UB?2, then actuallyf(I) C {3,1}, which is apparent from Def. 32. In
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addition, we know from this definition thatis nonincreasing. Hencghas one of the
following forms:

31
foy={ " 7§f*1
3 07> f»?l
or
31
fy=4 b T f*l
R -
In any case,
f = medy (c1,9), (124)

provided we define

(This is apparent from Def. 22). In additiofiI) C 2 and by (10), (11),

i
Al (125)
Therefore
B(f) = B(medi(c1,9)) by (124)
2
=14 140 by (X-3)
1
51
=5+3£, by (125)

i.e. (B-3) holds. Note that this properly covers the cfise c; because in this case,

2
1

2h—0,ieB(f) = 1, as desired.
In the remaining case thgte B—, we may proceed as follows:

B(f)=B(1-(1-1))

=1-B1-/) by (X-2), L-37
1
=1-(3+301- f)fl) already proveni — f € B*
1
=1-(3+1 *2l) apparent from (11)
1
_1_ 143t
2 2J%

i.e. (B-3) also holds iff € B~.
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Lemma 39 Suppose5 : B — I is given ands is the corresponding mapping :
T — 1.

a. If B satisfieqB-4), then¢ satisfieqX-4).
b. If ¢ satisfiegX-2) and (X-4), thenB satisfiegB-4).

Proof
a. Supposes satisfies (B-4) and let a choice ©f, L) € T be given.

a.l: T(0) < 1. Becausel is nondecreasing, < T, and because is nonincreasing,
this means that (7) < 1; to see this, consider(y) < 1(0) < T(0) < 1. Hence by
Def. 22,

) = medy (T(2), 1(7) ={ [T e
Let us now abbreviate
Yo =inf{y €L: T(y) > 3}. (127)
Clearly
f()=TM) (128)
for all v € [0, ~.); this is apparent from (126) and (127). Hence
Fiy) = lim () by Def. 34
= lim T by (128)
7=y
= TH(y) by Def. 34
ie.
Fi(y) = medy (TF(7), L(7)) , (129)

1
2

where the last equation is valid becad§dy) < 1 for vy € [0, 7).

If 7 € (74, 1], thenT(y) > % andf(y) = 1 by (126) and Def. 22. Therefore

— 2

fily)= lim f(y)= lim =131 (130)

v =yt vy =T

forall y € [y., 1), see Def. 34. Turning t& %, it follows from T (v) > 1 forally > .
that

THy) = lim T(y) >3 (131)

vy =yt
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for all v € [v.,1). Therefore

i) =3 by (130)
=med (T¥(v), L(v)), by (131),L(y) < 3, Def. 22

forall v € [y + %, 1). Finally fory =1,

med 1 (T#(1), L(1)) = med; (T(1), L(1)) by Def. 34
= f(1) by (126)
= fH1). by Def. 34

Hence
ff=medy (T% 1).
2
Similarly, it can be shown that” = med (T°, 1): if v = 0, then
2
1(T(0), L(0)) = med (T’(0), L(0)).
2 2

This is immediate from Def. 34 and (126).0f< v < ~,, then

P = lim ()= lim T()=T0) =medy (T°(), L),

Y=y

(132)

which is clear from (128) and®(vy) < 1. Finally in the case that > ., we have

f()= lim f(v)= lim 1=2=med:(T°(v),L()).

Y=y Y=y

N

This is obvious from Def. 22 if we recall that

T'(y) = lim T(Y)>3
v =y

for all v > ~,; see (127). Summarising, we have shown that

= med%(Tb,L) :
Therefore
€(T#, 1) = B(medy (T#, 1)) by (25)
= B(f*) 2 by (132)
= B(/") by (B-4)
= B(med (T°, 1)) by (133)
=¢(T", ﬁ) , by (25)

i.e. (X-4) holds, as desired.
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a.2: 1(0) > L. Inthis case,T(y) > T(0) > L(0) > 3 for all 7. Hence by the

2
definition of fuzzy median Def. 22,

fy) = med%(T(v),L(V))

Il
—

For the same reasons,

1
med, (TH(), 1) = { RO O
and also
1
med, (T°(), 1) = { RO O
ie.
Ined% (T4, 1) = med% (T°,1). (134)
Therefore
€(T#, 1) = B(med (T#, 1)) by (25)
= B(medi (T°, 1)) by (134)
= &(T°, j) : by (25)

a.3: T(0) > % and 1(0) < i. In this case, we conclude from the fact thatis
nondecreasing and thatis nonincreasing that (y) > 5 and_L(y) < 1 forally € L.
It is then straighforward from Def. 34 that(y) > % andT(v) > L forall y € 1.

Hence by Def. 22,

med%(ﬂ(v),i(v)) =1= med%(Tb(v), L) (135)

for all v € I. Therefore

E(TH L) = B(med, (T# 1)) by (25)
2
= B(med (T°, 1)) by (135)
2
=&(T",1). by (25)

This finishes the proof of pad. of the lemma.

b. Supposé€ : T — Iis defined in terms oB : B — I according to equation (25)
and satisfies (X-2) and (X-4). In order to show tlfasatisfies (B-4), let us consider a
choice off € B. We shall discern two cases.
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1 1
b.l: feB U ]B%. Then alsoff € B~ UB2 andf” € B~ UB2, see Def. 34 and
Def. 32. Therefore

B(f*) = B(med 1 (f*,co)) by L-36
2
=£(f% co) by (25)
=£(f,co) by (X-4)
= B(med, (o)) by (25)
= B(f), by L-36

as desired.

1
b.2: f € BT. Inthis case, clearly? € B* UB2 andf” € B+. Hence

B(f*) = B(1 - (1 - %))
=1-B(1—f% by (X-2), L-37
=1-B((1- f)”) apparent from Def. 34
=1-B((1- f)b) by partb.1 of this lemma
=B(1—(1- /") by (X-2), L-37, Def. 34
=B(f).

Hence (B-4) is valid fo3, which we intended to show.

Lemma 40 LetB:B — Ibe amapping andlet: T — I be defined by25). Then
B satisfiegB-5) if and only if¢ satisfieqX-5).

Proof Suppose3 satisfies (B-5) and let a choice ¢6f, 1), (T’, 1’) € T be given
such thafl < T"andl < 1’. Then
§(T, L) = B(med, (T, 1)) by (25)
< B(medi(TC 1)
= &(T, ﬁ) ; by (25)

where the middle inequation holds becaused; (T, L) < med; (T’,L1’) (by the
2 2
monotonicity ofmed 1 ) and becausg satisfies (B-5).

2
Considering the converse implication, supp@ssatisfies (X-5) and let a choice of
f,9 € B be given such that < g. We shall discern three cases.
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a: f,ge Bt U B3. We can then apply L-36 to conclude that

f= med%(cl7 ) (136)

g =med; (c1,9) - (137)
2

Hence

B(f) = B(medy (1, [))

2

=£&(c1, f)
< ¢(c1,9)
= B(med%(Cl,g))

= B(g) -

b.. feB™,geB". Inthiscase,
B(f) = B(med%(f, co))

= §(f> CO)
S g(clag)
= B(medy(c1,9))

= B(g) -

c.. f,ge B~ UIBB%. Then
B(f) = B(med%(f, co))

= g(fv CO)
< 5(9700)
= B(med%(g,co))

= B(g) .-

Proof of Theorem 25

by (136)

by (25)
by (X-5) andf < g
by (25)

by (137)

by L-36

by (25)
by (X-5)
by (25)

by L-36

by L-36

by (25)
by (X-5) andf < g
by (25)

by L-36

Let B: B — I be given and lef : T — I be defined by (25). All claims of the
theorem are immediate from the above lemmata; viz

1. The equivalence of (B-1) and (X-1) has been shown in L-35;

2. The equivalence of (B-2) and (X-2) has been shown in L-37;
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3. the claimed relationship between (B-3) and (X-2)/(X-3) has been established in
L-38;

4. the claimed relationship between (B-4) and (X-2)/(X-4) has been established in
L-39;

5. the equivalence of (B-5) and (X-5) has been established in L-40.

B.7 Proof of Theorem 26

We already know from Th-8 that the conditions (B-1) to (B-5) are independent, i.e. for
all i € {1,...,5}, there exists a choice d§; : B — I which satisfies all (Bf),

i # j, but fails on (B¢). Now let us show the independence of the conditiong)(X-
1=1,...,5, based on the above choices of thgs.

Independence of (X-1). To see that (X-1) is independent of the remainingj{X-
consider3;. We shall defing; : T — I in terms of3; according to equation (25).
Then¢; fails on (X-1) by Th-25.1 and; satisfies (X-2), (X-3), (X-4) and (X-5) by
Th-25.2, Th-25.3(a), Th-25.4(a) and Th-25.5, resp.

Independence of (X-2). In this case, we defing : T — I in terms of3,. Clearly
& fails on (X-2) by Th-25.2 and, satisfies (X-1), (X-3), (X-4) and (X-5) by Th-25.1,
Th-25.3(a), Th-25.4(a) and Th-25.5, resp.

Independence of (X-3). Now we definegs in terms ofB;. Then¢; satisfies (X-1),
(X-2), (X-4) and (X-5) by Th-25.1, Th-25.2, Th-25.4(a) and Th-25.5, resp. Becguse
satisfies (X-2) and; fails on (B-3), we obtain from Th-25.3(b) by contraposition that
&3 fails on (X-3).

Independence of (X-4). In this case we defing, in terms of B,. Then¢, satis-
fies (X-1), (X-2), (X-3) and (X-5) by Th-25.1, Th-25.2, Th-25.3(a) and Th-25.5, resp.
Because, satisfies (X-2) and, fails on (B-4), we obtain from Th-25.4(b) by contra-
position that¢, fails on (X-4).

Independence of (X-5). Finally we useBs to define&;. Then¢&s violates (X-5) by
Th-25.5, but it satisfies all other conditions by Th-25.1, Th-25.2, Th-25.3(a) and Th-
25.4(a).

84



B.8 Proof of Theorem 27

Lemma 41 For all monotonic mappingg : I — I (i.e. either nondecreasing or

nonincreasing),
1 1
| rovar=[ oy
0 0

Proof We will reuse earlier proofs for that. We already know that the QFMwith
fo v)d~yforallv € Bis aDFS, see Def. 39 and Th-11. HerB:Jesatlsﬁes
(B 4) by Th-8, | e.

/ i) dy = By (1) = By (f / £y (138)

forall f € B. In the following, we discern the case of nondecreasing and nonincreasing
mappings.

a.: nondecreasing mappings. SupposeT : I — T is nondecreasing. Then it is
apparent from Def. 32 th%tT € B. In addition, we have

AT () = lim 3T(+) by Def. 34
Y=y
=3 Jim T(Y)
Y=y
=3(T") by Def. 34

for v > 0; the casey = 0 is trivial. Similarly

AT () = lim LT() by Def. 34
vy =yt
= % lim T(v)
v =yt
— %(Tﬁ) by Def. 34

for v < 1; the casey = 1 is trivial. Hence
(T%) (139)
and

(TH = L(T%). (140)
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In turn,

b.: nonincreasing mappings.
nondecreasing. In addition,
(1-1)’() = lim 1-1(y)
v =y
=1- lim 1(y)
Y=y
=1-L(y)
for+ > 0, and
(1= 1) (1) = lim 1—L(y)
v =y
=1- lim 1(v)
v =yt

=1- 1%y

by (140)

by (138)

by (139)

Supposel : I — Tis nonincreasing. Theh— 1 is

by Def. 34

by Def. 34

by Def. 34

by Def. 34

for v < 1, the remaining cases are again trivial. Hence

(1—1)Y=1-1°

We can now proceed as follows.

AlUWMv=1—/JL—UMMv

0

1
1*% (1= L) () dy

1—/0 (1- 1P () dy
- —/ 1 - 1°(y) dy
0

1
:/ L)y,
0

as desired.
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Proof of Theorem 27

By Th-22, we can prove thakcy, is a standard DFS by showing that the mapping
(on @ T — I defined in Def. 47 satisfies the conditions (X-1) to (X-5). We will
consider these conditions in turn.

&cn satisfies (X-1).  To see this, considdr,,c,) € T, wherea € 1 is a given con-
stant. Apparently

1 1
fon(Carca) = 1 / caly)dy + L / caly) dy by Def. 47
0 0
1
- / ady by (7)
0
=a

7

i.e. (X-1) holds, as desired.

&on satisfies (X-2). Let(T, L) € T be given. Then
éon(1—L,1-T)

1 1
Z%/Wl—ih%dv+%/f1—TWde by Def. 47
0 0
1 1 1 1
_1 _ B o
—2(/0 1dy /OJ_(A/)dv—k/O 1dy /OT(V)dy) by additivity of [
1 1
_ 1 _ _
=te- [ toa- [ Toa
1 1
=1—@44Wﬂw+§é‘mwm
=1—&en(T,1). by Def. 47

&on satisfies (X-3)  To this end, lef{cy, L) € T such thafL(I) C {0,1}. Becausel
is nonincreasing, this means thatas one of the following two forms:

1 : < J_Sl
1 = -
) { 0 : v> 1%
or
1 y< 1o
1(~) =
(") { v L0
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for all v € I, see (10). In any case,

/Oli(v) dy = /0lgl L(v) d%L/:gl L(v) dy

10t 1
:/ 1d7+/ 0dy see above
0 19
= 1%,
ie.
1
inf L(y) dy = 100, (142)
Therefore
1 1
éon(er, L) = %/ c1dy+ %/ L(y)dy by Def. 47
0 0
1
= %/ ldy+ 119 by (7), (142)
0
= b+,

i.e. &y satisfies (X-3).

&cn satisfies (X-4). Let(T, L) € T be given. Then

1
€on(T% 1) = %/ v)dy + 5 / 1(y)dy by Def. 47
0
1
= §/+01T ydy+ 3 / 1(vy)dy by L-41
0
= by Def. 47

i.e. £on fulfills (X-4).

&on satisfies (X-5).  To see this, lefT, L), (T, L") € Twith T < T'and L < 1’.
Then

1 1
Eon(T, L) = %/ T(v) d7+§/ 1(y)dy by Def. 47
0 0

1 1
< %/0 T'(y) dy + %/O 1'(v) dy by monotonicity of [
=¢en(T, L),

i.e. (X-5) holds. This finishes the proof that,, is a DFS.
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B.9 Proof of Theorem 28

Lemma 42 Letf g: I — Ibe nondecreasing mappings such that forzaif I,

g
g(x) forall y > x.

Proof
b 1
/f(x)dx:(b—a)/o fl(b—a)x +a)dz

1
=(b—a) / g((b—a)r +a)dx by [6, L-34, p. 140]
0
b
= / g(z)dx.

Lemma 43 Suppos&) : P(E) — I is a nondecreasing semi-fuzzy quantifier. Then
forall a,b € Twitha < b,

/a QX oo = /  Q(Xou)da.

Proof Considerx € I. It is apparent from Def. 28 and Def. 29 that

X>a g XZO(
Xsar 2 X5a forall o’ > o.

In turn becausé) is nondecreasing, we obtain from Def. 13 that

Q(Xsa) £ Q(X>q)
Q(Xsa) 2 Q(X>a) forall o’ > .

HenceQ(Xs.), Q(X>.) : I — I satisfy the requirements of L-42, from which we
obtain the desired

/ Qoo = / QX
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Proof of Theorem 28

Let @ : P(F) — I be a given nondecreasing quantifier. Now consider a choice of
fuzzy argument seX’ € P(E). We compute

Fen(Q)(X)
1 1
=3 / Tox(Vdy+3 / Lox(v)dy by Def. 47
0 0
1 1
= %/ Q(X’Iynax) d’}/—f— %/ Q(Xmm) d’7 by L-3
0

1
:%/ QX >1 L, ydy+ 3 /Q 2%% dvy by Def. 30 and L-23

N

/ Q(Xsa)da + 5 /1 Q(X>q)da by appropriate substitutions
2

§ 1
- / QXoa) + /1 Q(Xsa) by L-43
0 3
1
- [ Q(n)
0
— (Ch) / XdqQ. by Def. 48

B.10 Proof of Theorem 29

The claim made in the theorem has already been established in [5]. Nevertheless, we
prove it again here to gain better insight into the relationship of the Choquet integral
and OWA operators.

Lemma 44 Let E # o be a finite base set with cardinality, = |E|. Further let
q:{0,...,m} — I be anondecreasing mapping such that

q(0)=0
and
q(m) =1,
and let@ : P(E) — I be the semi-fuzzy quantifier defined by
QYY) = q([Y]) (143)

forall Y € P(E). The forallX € P(E)andj € {1,...,m},

pi (X)
[ Q) da = (1 () — () ).

w11 (X)

90



Proof ~ We first consider the case that(X) = p[;j4+1)(X). Then

H[j](X)
/ Q(X>a) do
F

4411 (X)
iz (X)
= / Q(X>q)da
ni(X)
=0
= (1 (X) = p (X)) - 4(9)
= (i (X) = s+ (X)) - 4(j) -
In the remaining case that;(X) > puj;41)(X), we choose an arbitrary ordering of
the elements oF such thattl = {e;,..., e, andux(e1) > -+ > px(em), i.€.
px (ex) = pw (X) (144)

by Def. 49. Hence:x (ex) > pup;)(X) forl <k < jandux(ex) < p;)(X)fork > j,
which is apparent from our assumption that, ;) (X) < pu(;(X). We therefore obtain
foralla e (U[j+1] (X), 1% (X)] that

Xsa={e€ E:pux(e) > a}l
={ex € E: ppy(X) > a}
:{ekik:].,...7j}.
In turn
| Xsol=|{ex:k=1,....5} =7, (145)

which holds because afl; are distinct (this is apparent froff] = m and E =
{e1,...,em}). We hence obtain

k51 (X)
/ Q(X>a) do
m

G+ (X)
pi(X)
- / 4| Xsql) do by (143)
Bpi+11(X)
#[j](X) .
- / a(j) da by (145)
w411 (X)

= (p(X) = py(X)) - q(9)
as desired.

Proof of Theorem 29
In order to prove thatFc, generalizes the OWA approach, we proceed as follows.

SupposeE # & is a finite base set of cardinalitfy| = m andqg : {0,...,m} — I
is a nondecreasing mapping with

q(0) =0 (146)
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and
g(m)=1. (147)

Further assume th@ : P(F) — I is defined by

QYY) =q(IY]), (148)
forall Y € P(E). Now considetX € P(E). Then
Fen(Q)(X)
= (Ch) / X dQ by Th-28

1

:/ Q(Xsa) da by Def. 48

#[7n—k](x)
Q(X>(x) dO{

I
e
=

=

= Z(M[mfk] (X) = tipm—ry1)(X)) - g(m — k) by L-44

= k) (X)q(m — k= 1) = pp41)(X)q(m) by substitution

= pm-n(@)(m—k—1) by (146) andi(,,,1)(X) = 0
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B.11 Proof of Theorem 30

Lemma 45 Supposef : I — 1 is a monotonic mapping (i.e. nondecreasing or non-
increasing). Therfl — )] =1 — f.

Proof  Trivial:

(1= 1) = tw (1= D) by (12)
= lim 1— f(v)
y—1-
=1- lim ()
y—1
=1-ff. by (12)

where the limites are guaranteed to exist becguisemonotonic.

Lemma 46 Forall (T,L1) e T,

L

N[=

1
>51 <
* *

a. (1—1) 1

1
5

VAN

1
b. (1—T) 22t

Proof We first show that. holds.

1

(1- 177 =inf{y eI: (1 1)(y) > &) by (27)
=inf{yel:1—-1(y) > 1}
=inf{y e I: L(y) < 3}

1
_ o2t by (26)
Similarly forb.,
1 1
-T2t =a-@a-m2 by a.
_ 23l

Lemma 47 For all monotonic mappingg : I — 1,

L(A-ff=1-/%
2. (1—f)’ =1-f.
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Proof Letf:I — I be a monotonic mapping and tet< 1. Then

(1= () = lim 1-f(y) by Def. 34
v =t
=1- lim f(v)
v =yt
=1-f¥). by Def. 34

The case that = 1 is trivial.
As to the second claim, we obtain for> 0 that

(1— () = i1 D) by Def. 34
=1- lim f(y)
Y=y
=1—f"(v). by Def. 34

The remaining case that= 0 is again trivial.

Lemma 48 Let(T, L) e T be given. Then

*

a. (L%, = (L")

*

b. (Tﬁ)i = (Tb)r
Proof SupposdT, L) € Tis given.

a. We discern two cases in the proof of partof the lemma.

o If 1((0,1]) = {0}, thenL? = ¢; andL" = L by Def. 34. Hence

J—ﬁi = (Co);
= lim 0O by (12)

Il
—_
l_
-
-
>

by (12)

o If 1((0,1]) # {0}, then(L#)] = (L")} by [7, L-73.b, p. 186].
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b. The proof of the second part of the lemma can be reduced to that of the first part
as follows.

(THy=(1-@1-T)
=(1-(1-T)) by L-47
=1-(1-T)H, by L-45
=1-((1- T)b)j by parta.
—(1-(1-T)), by L-45
—(1-(1-=T") by L-47
= (T);

Lemma 49 LetT : I — I be a nondecreasing mapping. Then

1
=51

*

(THZ2t = (7%

Proof Letus abbreviatd. = max(1 — 2T, 0). Itis apparent from Def. 34 and from
the continuity of the involved operations that

1¥ =max(1—2-T*0)
and
1" =max(1-2-T",0).
We hence obtain from (10) and (27) that
(Ll = (o2 (149)

1
251

*

Oi_

. =

(L), =(T)
Now if 1((0,1]) = {0}, thenL? = ¢y and_L”> = 1 with L' = 0. Hence in this case

(150)

1
=51

1
(THZ2! = (1HY = () =0 = 19 = (1°)) = (T7):

In the remaining case that((0, 1]) # {0}, we obtain the desired
1 1
(TH720 = (@2 = (1)) = ()7

from [7, L-54.b, p. 140] and (149), (150).

(")

Lemma50 Let(T,.L) e T be given. Then

[T ST ST



Proof Immediate from the definition &fs : T — I in Def. 50.

Proof of Theorem 30

We will utilize Th-22 and prove thafs is a standard DFS by showing that the cor-
responding mappings : T — I defined in Def. 50 fulfills the conditions (X-1) to
(X-5). In order to shorten the proof, we will first show that (X-2) is satisfied.

s satisfies (X-2). To see this, considefT, L) € T. We discern three cases as
follows.

1.1-T(0) > %,i.e.T(0) < 1. Then

1
€1—L,1—T)=min((1— L)%, 1+ 11 -T)2") by Def.50
1
—min(1— 15,1 (L —1T72Y)  byL-45,1-46
1
=1-—max(L},5— %T*Z?l) by De Morgan’s law
—1—£5(T,1). by Def. 50

2.1—1(0) < i,i.e.L(0) > 1. Then similarly

1
€1— L, 1-T)=max((1-T)}, 1+ 21— 1)-2") byDef.50
1
—max(1— T} 1— (L= 1152")  byL-45,1-46
1
=1-min(T},3 - %J_fﬂ) by De Morgan’s law
=1-¢5(T,1). by Def. 50

<1-— 1(0). Then by Def. 50,

Es1-L,1-T)=1=1-1=1-¢(T,1),

s satisfies (X-1). Because (X-2) is valid fof s, we only need to considey, : I —
I wherea € [%, 1]. It is apparent from (12) that for every such constént); = a. In
the following, we discern two cases.

1. ifa> 1, then

)5 —imf{yeTicu(m) <1} by (26)
=inf{yel:a< 3} by (7)
=inf@ because: > 1
=1. (by the usual convention)
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Hence

) by Def. 50

2. Inthe case that = £, it is immediate from Def. 50 that

because ; (0) = 3.
2

&g satisfies (X-3). Let(cy, L) € T be given WithI(I) C {0,1}. Then

(c1)] = lim 1=1 (151)
y—1—
and
<1
172 =inf{yel: L(y)<

3t by (26)
=inf{yel: L(y)=0}

becausel (v) € {0,1} by assumption, i.e.

=19 (152)

Now we treat separately the two possible cases théy = 1 or 1 (0) = 0.
If L(0) =1, then in particularL(0) > 3. Therefore

. « 11, <3l
€s(er, L) =min((c1)y, 3 + 3L«
=min(1, 3 + 312

_1,1,0]
—§+§J_* .

) by Def. 50 andL (0) >
by (151), (152)

1
2

L
)

In the remaining case that(0) = 0, we conclude from the fact thdt is nonincreasing
that L = ¢g and

1% —inf{y€T1:0=0} =infI=0. (153)
Therefore
Es(er, L) = &s(e1,co) becausel = ¢
=3 by Def. 50
=5+ by (153)
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&s satisfies (X-4). Let(T,.L) € T be given. Then by L-48 and L-49,

)

1
51) )

. BNF 1,1 <31 : w* 1, 1, <3

min((T%), 53 + 315 %) =min((T");, 3 + 3 L&
>1 . b

— 3(TH22Y) =max(L], 5 - ()]

max (L],

It is apparent from these two equations and Def. 50 that
§S(Tu’ L) = fS(Tb’ L)

holds in all cases except for one case, which must be checked separately: the case
that T°(0) < % and T#(0) > 1. We then havel(0) < T°(0) < 3 and hence
£s(T# 1) = 1 by Def. 50. In addition, we conclude from#(0) > 1 thatT () > 3

for all ¥ > 0. In turn, we conclude from Def. 34 that’ (y) > 1 forall v > 0. Hence

1
(T%)>2" = 0, and

s satisfies (X-5). It is apparent from L-50 and the fact that (X-2) is valid that only
one critical case must be checked, viz the case(that.), (T’, L') € Twith T < T,
1 < 17andT(0) > 1. To see that (X-5) holds in this case, we first observe that

Ti=lim T(y) by (12)
< 7llx?_ T'(7) by monotonicity oflim
=T by (12)
We further notice that
(Sab inf{yeT: L(y) < 1} by (26)
<inf{yeI:Ll'(y) < 3}
_ sl by (26)

becausel < 1’ and hence
{vel:l(yn)<3}2{yel:L'(v) <3},
Finally, we notice that.’(0) > L(0) > 1. Therefore

1
€5(T, L) = min(T%, L + 11521 by Def. 50
1
< min(T'}, 3 + %L’le) by above inequations
— g5(T!, 17, by Def. 50

i.e. &g satisfies (X-5).
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B.12 Proof of Theorem 31
Lemma 51 For all monotonic mappingg : I — 1,

(1= fo=1-(£)-

Proof Supposef : I — I is a monotonic mapping (i.e. either nondecreasing or
nonincreasing). Then

(1= = lim (1= )(7) by (9)
— lim (1— f(7))
y—0+
=1 lim f(3)
=1-(/f5)- by (9)

Lemma52 Letf:I — Ibe agiven mapping. Then

Q- =M
- f)it =2

Proof As to the first equation, we compute

1— N =inf{y:1— f(y) =0} by (10)
= inf{y: f(7) =1}
=fit by (14)

The second equation is apparent from the first one becﬁausqf)il =(1-(1- f))gl =
0l

Lemma 53 For all monotonic mapping$ : I — 1,

(fﬁ); = (fb)o

Proof Letf:I — I be a monotonic mapping (i.e. either nondecreasing or nonin-
creasing). We shall discern the following cases.

*

a: f=co. Thenf?= f = co by Def. 34 and hence triviallyf*), = (f*),-
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b.: f is nonincreasing, f(0) > 0and f((0,1]) = {0}. Thenf! = cyandf® = f by
Def. 34. Hence

(9o = lim f*() by (9)
y—0+
= lim 0 because® = ¢
~y—0+
=0
=f3 by [7, L-59.a, p.148]
=f. because’ = f”

c.. fis nonlncreasmg f(0) > 0 and f((0,1]) # {0}. In this case, the desired
(fﬁ); (f ) has already been proven in [7, L-59.b, p.148].

d.: f is nondecreasing.  This case can be reduced @ec. by applying L-51 and
L-47.

Lemma54 Letf:I — Ibe some mapping.

a. If f is nonincreasing, then

0l

(7 = ().
b. If f is nondecreasing, then
(7. = ().

Proof Letf:I — I be the given mapping.

Proof of part a.  In order to show that the equation in partof the lemma holds, let
us assume that is nonincreasing. We discern the following caaek-a.3.

al f=co. Thenft= "= cyby Def.34 and hence triviallyf?)’" = (f*’)gl.

a.2: f(0) >0and f((0,1]) = {0}. Thenf* =cyandf’ = f by Def. 34. Hence

(/) =inf{y s fi(y) = 0} by (10)
= inf{y:0 =0} because* = cg
= inf|0, 1]
=0
= by [7, L-54.a, p.140]
=P becausef = f”
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a.3: f(0) > 0and f((0,1]) # {0}. In this case, the desired equatiQﬁ"ﬂ)f:l = (f*),

has already been proven in [7, L-54.b, p.140].

Proof of part b.:
and L-47.

Lemma55 Let(T, L) € T be given. Then

a. if Ly < T5< i, thenéy(T, L) <
b. if Ly < 1 < Tg, thenfa(T, L) =
c. if 3 <Ly < Ty thenfa(T, L) >

Proof

Proof of Theorem 31

Fa satisfies (X-1).
z € 1. Then

Immediate from the definition af4

= N =

0l

This case can be reduced to parbf the lemma by applying L-52

: T — Iin Def. 51.

Suppose T, L) € T satisfiesT = L,i.e. T = L = ¢, for some

[calo = ’Ylggfx(v) = 7151&33 =z (154)
0 : =0
0 : z=1

[Cw]ii = { 1 : z<1 (156)

by (9), (10) and (14). In the following, | discern the following cases.

If z > 1, then

1

€a(cy, cz) = min([cg]p, 5+

= min(z, 1)
=T.
Forz = 3, we obtain
alcr,c1) =3
2 2
=XT.

=XT.

Hence (X-1) holds, as desired.

3lea)
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Fa satisfies (X-2). Let(T,Ll) e T be given. We notice that

1-T)y>1eTi< (157)

N[

and

(1-L)p<ieli> (158)

N[

In the following, | discern three cases.
1. (1-T); > 1. Then
Ea(1— L, 1—T)=min((1-T)5, 2 +11-T)2) byDef.51

=min(1 - T4, 1+ 3T by L-51 and L-52

= min(l - Tg,1— (5 —5T."))

=1-max(T§, 2 - 3T by De Morgan’s law
=1-¢&a(T,1). by Def. 51 and (157)

2. (1- 1)y < 3. Then
€a(1— 1,1 —T)=max((1 - 1)5,1 -1 - 1)) byDef. 51

=max(l — 13,2 — 119 by L-51 and L-52

= max(1 — 15,1 — (3 +312)

=1-min(Ly, 1 +211%) by De Morgan’s law
=1-=E4(T,1). by Def. 51 and (158)

B (1-T); < 2and(1-1)

0 ,thenly < L andTj > i. Therefore
Cal—L1-T)=1=1-3

1
2 2

1—£€a(T, L) by Def. 51.

Fa satisfies (X-3). To see that (X-3) holds, consider a choice(ef, L) € T with
1(I) € {0,1}. Then
feay =1 (159)
15 €{0,1}. (160)
It is hence sufficient to discern the following two cases.

a. 1y = 0,i.e.lim, o+ L(y) = 0. Becausel is nonincreasing, this entails that
L(v)=0forally € (0,1]. Hence

1% =inf{y: L(y) =0} =inf(0,1] =0. (161)
by (10).
€aler, L) =3 by Def. 51
=1+30
=14+110 by (161)
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b. L§ = 1. Inthis case,

€a(er, L) =min(Ly, 3 + 2119 by Def. 51
=min(1, 3 +11%) becausel ) = 1
1 1,0
2t il*l

This finishes the proof that, satisfies (X-3).

Fa satisfies (X-4). Let us definef, : I* — I by

min(a, 3 +3b) : c>a> 3
fa(a,b,c,d) = ¢ max(c,t —1d) : a<ec<i
z . else

forall a,b, c,d € 1. Itis then apparent from Def. 51 that
Ea(T, L) = fa(Ls, L34, T5, Y, (162)

forall (T, L) e T.
Now consider a choice dfT, L) € T. Then

Ea(TE L) = fa(Ly, Lo (TH: (THh by (162)
= Fa(Lg, L0 (T2 (T2).5) by L-53 and L-54
=€4(T",1). by (162)

Fa satisfies (X-5). Itis apparent from L-55 and the fact that (X-2) is valid that only
one critical case must be checked, viz the case(that.), (T’, L) € T with

T<T (163)

1 <1’ (164)
and

15> % . (165)

To see that (X-5) holds in this case, we first observe that

1'o= lim 1'(y) > lim L(y) = 1§ >3 (166)
'y—>0+ 'y—>0+

by (9) and the monotonicity dfm. In addition, we observe that
{v:L(y) =012 {y: L'(v)=0}
becausel < 1’. Therefore

1% =inf{y: L(y) =0} <inf{y: L'(y) =0} = J_'Ei . (167)
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We hence can proceed as follows.

€a(T,L1) =min(Ly, 2 + 319 by Def. 51 and (165)
<min(Lg, 3 4+ 117%Y by (166) and (167)
=¢&a(T', 1), by Def. 51 and (166)

i.e. {4 satisfies (X-5), as desired.

B.13 Proof of Theorem 32

Lemma 56 WheneverQ, Q' : P(E)" — I are semi-fuzzy quantifiers with <. @’
andX,,..., X, € P(E) is a choice of fuzzy arguments, then

T0.X1,0 X, De TQ/ X1, X,

and
Lo.xi,..x, Sedo xi,.. x, -

Proof LetQ,Q’ : P(E)" — I be given semi-fuzzy quantifiers such thiat<, Q’
and letX,, ..., X,, € P(FE) be a choice of fuzzy argument sets.

a. To,x1,...xn 2c Tor,x,,...x,- Lety e Tisgiven. We shall discern three cases.

To.x1,...x,(v) =sup{Q(Y1,...,Y,) : Y1 € T,(X4),..., Y, € T,(Xy)}
by Def. 43,Tg x,,....x, (7) < 3 entails that
Q(Y1,....,Y,) <2
forallY; € 7,,(X4),...,Y, € T,(X,). We may then conclude fro® <. Q' that
Q(Y1,....Y,) <Q(Y1,...,Y,) (168)
forallY; € 7,(X1),...,Y, € 7,(X,). Hence

T X1, x, (V) =sup{Q'(Y1,...,Ys) : Y1 € To(Xy),...,Y, € T,(X,)} by Def. 43
<sup{Q(Vi,....Y,) Vi € T,(X1),.... Y, € T,(Xa)} by (168)
=TQ,x1,...x.(7) - by Def. 43

Inturn, we conclude fronfo: x, .. x, (7) < To,x1....x. (V) < 3 thatTo x,,... x, (V) =e
T xi..x,(7):
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..... x.(y) > 3. Then

sup{Q (Y1, ..., Yn) : Vi € To(X1), ..., Yn € To(X,)} > 1 (169)

by Def. 43. Now letz: > 0, e < Tg x,,...x.(7) — 3. By (169), there exist{ €
7,(X1),...,Y, € T,(X,) such that

QUYY,....Y)) > Tox,..x,(7)—e>1.
From@Q =<, Q' and Def. 43, we conclude that
TQ X1, () 2 QY] Y0) 2 QY] .., V) > T x,,.x, (7) — €.
e — 0yields Tor x,,..x,(7) = To.xi,..x,.(7) > 3. HenceTg x,...x,.(7) =

To . x,....x, (), as desired.

x,(y) = 4. Thiscaseistrivial SinC&¢ x,,....x, (V) =c3 = TQ,X1,.. Xn-

.....

b.: Lgx,...x. ZcLorxy...x,. The proof of this case can be reduced to thed.of
noticing thatr <. y is equivalentta — = <. 1 — y. Hence

loxi,..x, =1-T-0x,,. . X, by L-11 and—z = 1 — x involution
=l =T x40, X0 by parta. of the lemma
=Llo x,...x, - by L-11 and—-x = 1 — z involution

Proof of Theorem 32

Let anF:-QFM be given.

a. We first prove that it is sufficient fof; to propagate fuzziness in quantifiers if
¢ : T — I propagates fuzziness. Hence supppgeopagates fuzziness. Further let
Q,Q :P(E)" — IwithQ <.Q" andXy,..., X, € P(E) be given. Then
Fe(Q)( X, X0) =&8(To,x1,.., x5 Lo, xi,.,x,) by Def. 45
jc g(TQ/,Xl,...,Xn7 J—Q’,Xl,...,Xn) by L-56| Def- 52
=Fe(Q)(X1,...,Xp), by Def. 45

i.e. F¢ propagates fuzziness in quantifiers, as desired.
b. Next we prove that's propagating fuzziness is a necessary conditionApto
propagate fuzziness in quantifiers. HencetletT — I be given and assume that

does not propagate fuzziness, i.e. there dxistL), (T', L") € T such thatlT <, T’
andL <. 1/, but

§(T, L) AT, 1), (170)
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We define semi-fuzzy quantifie€;, Q- : P(2 x I) — I by
[ L(nfY") : V=0
@) = { T(upY’) : Y #£2
[ Y(@nfY") : YV =g
Q(Y) = { T'(supY’) : Y'#£o
forallY € P(2 x I), where

Y ={2€1:(0,2) €Y}
Y'={2€1:(1,2) €eY}.

Clearly@Q; <, Q2 becausél <. T’ and L =<, L’. Now defineX e ﬁ(2 x I) by (23).
ThenTg, x =T, Lg,.x =1, Tg, x = T'andLg, x = L' by Th-21. Therefore

Fe(Q1)(X) =&(Tg,. x> Lgi,x) by Def. 45
=¢(T,1) by Th-21
£,.6(T, L) by (170)
= &(TQu x> L@u,x) by Th-21
= Fe(Q2)(X). by Def. 45

HenceF: (Q1)(X) A, Fe(Q2)(X) althoughQ: <. Q2, i.e. F¢ fails to propagate fuzzi-
ness in quantifiers. This proves that the conditior¢as indeed necessary fd¥, to
propagate fuzziness in quantifiers.

B.14 Proof of Theorem 33

Lemma 57 Supposé : T — I satisfiegX-2), and it holds that
f(T, J—) = f(T, maX(J- 1))

)2

forall (T, L) € Twith L(0) > 1. Then

f(—ra J—) = g(min(—ra %)7 J—)

forall (T, L) € T with T(0) < 3.

Proof Trivial.
§T, L) =¢1-(1-T),1—(1-1))
=1-¢1—-1,1-T) by (X-2)
=1-¢(1—L,max(1,1-T)) by assumption of the lemma
=¢(1-max(3,1-T),1—-(1—-1)) by(X-2)
=¢(min(1 - 1,1-(1-T)),1)

= &(min(3, T), 1).
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Lemma 58 Suppose : T — I satisfiegX-1) to (X-5) and
g(Ta J—) = g(Tv maX(J-v %))

wheneverL (0) > 1. Then
§T, 1) =3
wheneverT (0) > 1 > 1(0)

Proof Again trivial. Let(T,Ll) € T be given withT(0) > 1 > 1(0). Then
T(v) = T(0) > 4 for all y € I becausel is nondecreasing, i.6. > 3. Therefore
§(T, L) = &(T, co) by (X-5)

>¢(c1,¢o) by (X-5)
2
= {(min(cy, 3), o)
= £(c1,¢o) by L-57
i by (X-3).
By similar reasoning, we obtain froth < c; that
2
S(Ta L) < f(clv J—) by (X_S)
< &(c1;c1) by (X-5)
2
= {(c1, max(co, 5))
= ¢(c1,¢0) by assumption of the lemma
:. by (X-3)

Henceg(T, L) = 3, as desired.
Lemma 59 Supposé : T — I satisfiegX-1) to (X-5). If

S(Ta J—) = g(Tv maX(J-v %))
wheneverL (0) > 1, then

E(T, L) = &(T', 1)

wheneve(T, L), (T, L) € T such thatT <, T".
Proof Let¢: T — I satisfy (X-1) to (X-5) and further possess the desired property,
viz

&(T, L) = &(T, max(L, 3))
wheneverl (0) > 1. Now let(T, L), (T, L) € T be given withT <. T’. We discern

three cases.

107



a: T'(0) > 4. Theni < T(0) < T’(0) becauserl <. T'. Taking into account that
both T and T’ are nondecreasing by Def. 44, we conclude gwa_t T < T’/ Hence

(T, L) <¢(T,1). by (X-5)
In addition,
§T, 1) > §(c%7L) by (X-5)
> &(c1,co) by (X-5)
=1, 2 by L-58

HenCe% < f(—ﬂ L) < g(Tl7 J~)7 Ieg(T’ J‘) = g(Tl’ L)

b.. T'(0) < 3. Inthis case,T’(0) < T(0) < 5 becausel <. T'. Hence
T <TH) <3

1
wheneverT’(y) < 5, and

T =TM0) 23
if T'(y) > 3. Hence
min(T',3) < T. (171)
We therefore obtain that
&(T', L) = &(min(T, 3), 1) by L-57
<(T,1). by (171), (X-5)
On the other handl (0) < T'(0) < % and
&(T, L) < €&(max(T, 1), L) by (X-5)
=1. by L-58

Henceg(T’, L) < &(T, L) < 3,i.e.&(T, L) =.&(T’, L), as desired.

c. T'(0) = &. In this case,T <. T’ entails thatT (0) = % as well. Furthermore
) <

2
1( T'(0) = 1,i.e.&(T/,L) = L and{(T, L) = % by L-58. Hence trivially

/
E(T, L) Z&(T7, L),
Lemma 60 If £ : T — I satisfiegX-1) to (X-5) and in addition
&(T, L) =&(T, max(L, 3))
wheneverL (0) > 1, then¢ propagates fuzziness, i.e.
T, 1) 24T, L)
whenevel(T, L), (T’, L) € T such thatT <, T"and L <, L'
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Proof Suppos€ : T — I is a mapping which satisfies (X-1) to (X-5). We shall
further assume that

(T, L) = &(T, max(L, 3))
forall (T, L) € T with L(0) > 2

Now let a choice of T, L), (T’, L") € T be given such that <, T'and L <, L’. We
shall treat separately two cases.

a: T'(0) > 4. Thenj < T < T’ becauseT (0) <. T/(0) and T’(0) > 3 entail
that] < T(0) < T’(0), and becausé, T’ are nondecreasmg In addmom(o)
T(0) <T'(0),i.e.(T’,L) € T. We can hence proceed as follows.
T L)=1-60-1"1-T) by (X-2)
>p1 E1—1,1-T" by L-59
=&(T,1) by (X-2)
e E( ) ) by L-59

: T'(0) < & ThenT’(0) < T(0) < % and hencel’(0) < T'(0) < T(0),

ie. (T,L’) € T. Therefore

T, L) = &(T, L) by L-59
=1-¢1-1,1-T) by (X-2)
e 1-¢(1-1,1-T) by L-59
= &(T,1). by (X-2)

Lemma 61 Suppose : T — I satisfiegX-3). If £ propagates fuzziness, then

E(er.co) = &(erncr) = 3

2 2

Proof Trivial: from (X-3), we know that{(c;,cq) = % Butc1 <. ¢o and hence

(cr,c1) 2 €(er o) = 1, ie.é(cr, e = 3. S|m|larly, we conclude from1 <. C
2
co) =

thaté(cy . co) <. &(er,o) = b ie.€le ;

M\)—A

Lemma 62 Supposé€ : T — I satisfieqX-1) to (X-5) but violates the condition of
Th-33, i.e. a choice ofT, L) € T exists with L (0) > 1 and

€(T, L) # (T, max(L, 3)).

Then¢ does not propagate fuzziness.
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Proof Let¢: T — I be a mapping which satisfies (X-1) to (X-5). Further assume
that
(T, 1) # &(T,max(L, 3)). (172)

for some choice of T, L) € T with L(0) < 1. We will discern the following two
cases.

a: §(T,L1) > 1 Thenj < &(T,L1) < &(T,max(L, 1)) by (X-5), i.e.4(T, L) =,
&(T,max(L,3)). Becausex, is a partial order, we could only have the desired
E(T,L) =, &(T,max(L, 3)) if &T,L) = &(T,max(L,3)). However, this is not

the case by (172). We hence obta{m, max (L, %)) £, &(T, L) by contraposition.

b.: ¢(T,L1) < 1. We shall prove this case by contradiction and assume to the contrary
that¢ propagates fuzziness. Noticing thaty) > L(0) > 1 for all v € I by Th-20.3.
Hence

2
> E(C% ;Co) by (X-5)
_ 1 by L-61

Hence(T, L) < 3 and¢(T, L) > 1, a contradition. This proves that the assumption
is false, i.e£ does not propagate fuzziness.

Proof of Theorem 33
It has been shown in L-60 that the simplified condition is sufficientftr propagate
fuzziness. Conversely, L-62 states that the condition is necessaytéopropagate

fuzziness. Hence the original and the simplified condition are equivalent provided that
¢ satisfies (X-1) to (X-5).

B.15 Proof of Theorem 34

The claim of the theorem is immediate from L-58 and Th-33, which show that the
condition stated in the theorem is necessaryftr propagate fuzziness.

B.16 Proof of Theorem 35

Lemma 63 There exis{T, L) € T such thatT (0) >
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Proof Consider(ci,c1) € T. From Def. 47, we obtain
2

N

1 1
1/ cl(v)dv+%/ c1(y)dy
0 0 2

1 1
1d7+%/ %d’y by (7)
0 0

{cnler,c1) =
2

D=

NN
=

Hence¢cy(c1,c1) = 2 # 3, althoughc; (0) = 1 > § = ¢1(0), which finishes the

2
proof of the lemma.

Proof of Theorem 35

As shown in Th-27 F¢y, is a DFS. Hencéc,, : T — I satisfies (X-1) to (X-5). We
can hence apply Th-34 to conclude from L-63 that does not propagate fuzziness,
which in turn means by Th-32 th&;, does not propagate fuzziness in quantifiers.

B.17 Proof of Theorem 36

We already know from Th-30 thas is a DFS, i.es : T — I as defined in Def. 50
satisfies (X-1) to (X-5) by Th-23. It is therefore sufficient to show that the condition
stated in Th-33 holds. To see this, (&t, 1) € T with 1(0) > 3. We observe that

1
max(L, 1)]72! = inf{7: max(L(7),}) < I} =inf{y: L(y) < 4} =1L
(173)
by (26). Therefore

&s(T,max(L, %))

1
— min(T}, & + Lmax(L, 1)]52") by Def. 50
1
= min(T}, 1+ 1152 by (173)
=&(T,1). by Def. 50

HenceFs propagates fuzziness in quantifiers by Th-33 and Th-32.

B.18 Proof of Theorem 37
F4 is already known to be a DFS by Th-31, i, satisfies (X-1) to (X-5) by Th-23.

We can hence utilize Th-33 to show th@gt does not propagate fuzziness. which in
turn means by Th-32 tha&, does not propagate fuzziness in quantifiers.
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To give an example which violates the condition of Th-33, consjderL) € T with

1 @ v< 1
1(y) = 2 174
(7) { 0 : 4>l (174)
for all v € I. Itis then apparent from (9) that
15= lim L(y)=1 (175)
[max(L, %)]; = liré1+ max(L(y),3)=1. (176)
y—
Similarly, we obtain from (10) that
1% =inf{y: L(y) =0} =inf[3,1] =1 177)
max(L, 1)]% = inf{y : max(1(7),3) =0} =info=1. (178)
Therefore
€alcr, L) = min(Ly, 3 + 3194 by Def. 51
=min(1,} +1-3) by (175), (177)
i
#1
=min(l,§ + 3 -1)
= min([max(L, })];, 4 + Jmax(L, 3)]”") by (176), (178)
= €a(cq, max(L, %)) by Def. 51

Hence there exist&1, L) € T with L(0) > % andéa(ci, L) # €a(cr, max(L, 1)),
i.e.£4 does not propagate fuzziness by Th-33, which in turn means by Th-3Zthat
does not propagate fuzziness in quantifiers.

B.19 Proof of Theorem 38

Lemma 64 Supposef # @ is some set and, X' € P(E) are fuzzy subsets with
X <. X'. Then

T,(X') C T,(X),

forall v € 1.
Proof See [7, L-125,p.286].

Proof of Theorem 38

Let¢ : T — I be given.
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a. To show that{’s propagating of unspecificity is sufficient fof; to propagate
fuzziness in arguments, suppose théillfils this condition, i.e.

(T, L) 2 &(T', L) (179)

wheneverT > T’ and_L < 1/, see Def. 53.
Now let a semi-fuzzy quantifie®) : P(E)" — T and Xy,...,X,, X],..., X/ €

P(FE) be given such thak; <. X/ foralli =1,...,n. Then

To.x1,... %, (7)
— sup{Q(Yi,....Y,) : Vi € T,(X1),....Y, € T,(X,)} by Def. 43
>sup{Q(Y1,...,Y,) : Y1 € T,(X]),...,Y, € T,(X))} by L-64
=To.x;,...x: ()

and
Loxi..x, ()
=inf{Q(Y1,...,Y,) : Y1 € T,(X1),..., Y, € T,(X,)} by Def. 43
<inf{Q(Vi,....Yy) : Y € T,(X}]),..., Y, € T,(X))}  bylL-64
= L1g.x),..x.(7)

for all v € 1. Therefore

Fe(Q)( X1, ..., Xn) =&(To,x1,, X0 LQ. X0, X)) by Def. 45
= &(To.xs,x, Loxs,...x1) by (179)
= Fe(Q)(X1,-- -, X)), by Def. 45

i.e. F¢ propagates fuzziness in arguments, as desired.

b. Let us now show thaf's propagating unspecificity is also necessary fQrto
propagate fuzziness in arguments. Hence suppose that therelexist (T’, L') € T
such thatl > T/, 1 < 1/, but

T, L) A.6(T",L). (180)
We shall define a semi-fuzzy quantifi@r: P({x} U2 x I) — I as follows (where
{x} is an arbitrary singleton with ¢ 2 x I):

T'(supY’) : ¢V Y £0
T(upY’) : *xe€Y) Y #0
QY)=9\ Lmfy") : +¢vVY —o
L(infY"”) : €YY =g

forall Y € P({x} U2 x I), where

Y ={2€1:(0,2) €Y}
Y'={2€1:(1,2) €Y}.
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Further we defineX, X’ € P({x} U2 x I) by

1 —
ux(e) =4 1-1z : e=(0,2)
1+1z e=(1,2)
and
0 e =%
_ 11 . _
,uX/(e) = 5 T 3% ¢ €= (0,
1+1z e=(1,2)

foralle € {x} U2 x I. Clearly X =<, X’. Let us now investigate the cut rangesXf
andX’. In the case that = 0, we have

X(‘}““:X 1 = {1} x (0,1]
Xo™ =X, 1 = {1 U000} U {1} x D

X=Xy = {1} % (0.1]
2

X" = X', 1 ={0.0} U ({1} xT).
It is then apparent from Def. 43, Def. 30 and the above definitiof tfat

To.x(0) =sup{Q(Y) : Y € To(X)} = Q({+} U{(0,0)} U ({1} xI)) =
Lo.x(0) =nf{Q(Y) : Y € 7o(X)} = Q({+} U ({1} x (0,1])) = L(0)
To.x/(0) = sup{Q(Y) : ¥ € To(X")} = Q({(0,0)} U ({1} x T)) = T'(0)
Lox/(0) =nf{Q(Y) : Y € To(X")} = Q({1} x (0,1]) = L'(0).

In the case that > 0, the cut ranges are bounded by

T(0)

X =X_1 a1 ={1} x[1]
X;“a*—X; — (U0} < [0,7) U ({1} <)
X=Xy = X )
XS X'y = (0} < [0,) U ({1 x D),
Therefore
Taux(7) = sup{@(Y) : Y € T,(X)} = (s} U ({0} x [0,7)) U ({1} x T)) = T(3)

) Ve }= )
Lox(y) =mH{QY):Y e T,(X)} = Q({x} U ({1} x [, 1])) = L(7)

) Ve N} =Q({0} x [0,M) U ({1} x 1)) =T'(v)
Lo.x(y) =inf{Q(Y): YV € T,(X")} = Q({1} x [y, 1]) = L'(~) -
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Hence

Tox=T lox=1 (181)
Tox =T lox =1’ (182)
We conclude that
Fe(@Q)(X) =&(To,x, Lg,x) by Def. 45
=&(T,1) by (181)
A.E(T, L") by (180)
=&(To.x» Lo.x) by (182)
= Fe(Q)(X). by Def. 45

HenceF: (Q)(X) A, F¢(Q)(X') althoughX <, X", i.e. F¢ fails to propagate fuzziness
in arguments.

B.20 Proof of Theorem 39

Lemma 65 Suppose : T — I satisfiegX-2). Then the following are equivalent:

a. & propagates unspecificity;

b. forall (T,L1),(T,L") e Twith L’ < 1,itholdsthat{(T, L") <.&(T,L1).

Proof Itis apparent from Def. 53 thdit is a weakening oa.

It remains to be shown that is entailed byb.

Hence let a mapping : T — I which satisfies (X-2) be given and suppose that
holds. To prove thaa. also holds, we consider a choice(@f, L), (T’, L") € T with
1’ < 1L andT < T'. Itis apparent from (3) that

r=.yel—o=3.1—y (183)
for all z,y € I. Therefore
(T, L) = &(T, L) by assumption ob.
=1-¢1-1,1-T) by (X-2)
==<1-€¢01—-1,1-T) by (183) and assumption bf

as desired.

Lemma 66 Supposg satisfiegX-2) and forall(T, L) € Twith L(0) > £,&(T, L) =
&(cq,L). Thenforall(T, L) € T with T(0) < 3, &(T, L) = &(T, co).
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Proof Let (T, L) € T be given and supposg(0) < %. Then(1— L,1-T) €T
satisfieg1 — T)(0) = 1 — T(0) > 3. Therefore

(T, L)=1-¢§1-1,1-T) by (X-2)
=1-¢§(c1,1-T) by assumption og
=1-&(1—co1-T) by (3)
=¢&(T, o), by (X-2)

which proves the claim of the lemma.

Lemma 67 Supposé : T — I satisfie{X-2). Then(cy, co) = 3.

Proof Apparent.
€(c1,c0) =1—=&(1 —co,1 —c1) by (X-2)
=1-¢(c1,c0) - by (7)
Therefore2(cy, co) = 1,1.€.£(c1,c0) = 3.
Lemma 68 Suppos€ satisfies(X-2), (X-4) and (X-5), and for all (T, L) € T with

1(0) > % it holds that&(T, L) = &(cy, L). Then for all(T, L) € T with T(0) >
3> 1(0),&(T, 1) = 3.

Proof Suppos€ : T — I has the desired properties and considerL) € T with
T(0) > 1 > 1(0).
We defineT’, 1’ : T — T by

1 S =0
T =12 ! 184
" {T(w 90 (184
1. =0
V=42 "" 185
(") { 0« 4>0 (185)
forall v € I. Then
T, L) =¢(T,1) by (184) and L-23
=&(T', co) by L-66
=&(T, 1) by (185) and L-23
=¢&(cr, L) by assumption og
= {(c1,c0) by (185) and L-23
=1. by L-67
Lemma 69 Supposé : T — I satisfiegX-2). Then{(cy,c1) = 3.

1,¢€1
2 2

116



):g(l_clvl_cl):
1 2 2

PR

C

I

Proof By (7),c1 = 1—c1. Hence by (X-2)£(c1,
2 2 2

1 75((31,(?1). Thereforezg(cl,cl) =1, i.e.g(cl,cl)
2 2 2 2 2 2

Il v

Proof of Theorem 39

Let us first show that conditiob. of the theorem is entailed by conditian
Hence supposé : T — 1 satisfies (X-2), (X-4) and (X-5). Further assume that
fulfills conditiona. of the theorem, i.€ propagates unspecificity. Now let, L) € T
with 1.(0) > 1. Firstly we notice thafT(y) > T(0) > L1(0) > 1, and hence
(T, max(L, 3)) € T. Apparently

§(Tmax(L,3)) 2 &(eg,e1) =3 (186)

by (X-5) and L-69. Furthermore: < max(L, 1) and hence
(T, L) 2 &(T, max(L, 3)) (187)

becausg is assumed to propagate unspecificity. By (3), we conclude from (186) and
(187) that

§T, 1) > 3. (188)
Next we notice that” < ¢; and therefore
§er, L) 2 &(T, 1) (189)

because& propagates unspecificity. It is then apparent from (3), (188) and (189) that
e, L) <&(T,1). (190)

On the other hand] < ¢; entails that
(T, 1) <&(er, L) (191)

by (X-5). Combining (190) and (191), we obtain the desi¢ed, L) = £(cq, 1),
i.e. conditionb. of the theorem is indeed necessary§do propagate unspecificity.

It remains to be shown that. is entailed byb., i.e. that the latter condition is
sufficient for¢ to propagate unspecificity. This can be proven by showing that condition
b. of the theorem entails conditidn of lemma L-65, which is already known to be
sufficient for¢ to propagate unspecificity.

Hence let a mapping : T — I be given which satisfies (X-2), (X-4) and (X-5).
Further suppose that for &[T, L) € T with L(0) > 3, it holds that
§(T, L) =¢&(er, 1), (192)

i.e. conditionb. of the theorem holds.
Now let (T, L), (T,L’) € T be given with.l’ < 1.
In the case that'(0) > % we firstly conclude fromL’ < | that

T, L) < &(T,1) (193)
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by (X-5). We further notice that

&(T, L") > &(T,min(L', 1)) by (X-5)

=1 by L-68

2

(194)

By (3), inequations (193) and (194) entail tiggf, 1') <. &(T, L), as desired.

In the case that '(0) < § and L(0) > 3, we notice tha{T, L) € T entails that

T(0) > L1(0) > 1,i.e.&(T, L) = 3 by L-68. In particulag (T, L') <. &(T, L).

In the case that’(0) < %, L(0) < 2 andT(0) > %, we can again apply L-68 and
=<

conclude that (T, 1) = 2% (T,1).
Finally in the case that’(0) < 1, 1(0) < 1 andT(0) < 3, we observe that
(T, L) =&(T, co) by (192) and L-66
=&(T,1). by (192) and L-66

In particularé(T, L') <. &(T, L), as desired.

B.21 Proof of Theorem 40

Lemma 70 Supposé : T — I satisfieqX-1) and¢ propagates unspecificity. Then

wheneve(T, 1) € T satisfiesT (0) >

Proof Let (T, 1) € T be given such that (0) > § > 1(0). ThenT >c¢; > L
2

becauser is nondecreasing and is nonincreasing by Def. 44. Hence by Def. 53,

f(—l—vj-) jc 5(0%7 )

, by (X-1)

C

N[=

(SIS

as desired.

Proof of Theorem 40

Suppos€ : T — I is a mapping such th&k, is a DFS which propagates fuzziness
in arguments. Theg satisfies (X-1) by Th-23 ang is also known to propagate un-
specificity by Th-38. We can hence apply lemma L-70 which statescthdfills the
property claimed by the theorem.
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B.22 Proof of Theorem 41

We know from Th-27 thaf ¢y, is a DFS. Hencécy, : T — I satisfies (X-1) to (X-5).
We can now apply Th-40 to conclude from lemma L-63 titat, does not propagate
fuzziness in arguments.

B.23 Proof of Theorem 42

By Th-38, Fs propagates fuzziness in arguments if and onlixif: T — I defined
in Def. 50 propagates unspecificity. Hence let us congidgrcs ), (c1,c3) € T. We
4 4 4

compute:

by (X-1) and

1
¢s(cr,c3) = min((cr)}, & + L(cz)=2* by Def. 50
4 4

=min(l,3 +1-1) by (12), (26)
=1.

Hencegs(cs,c3) = 2 <. 1 = £s(cy,c3), which contradicts propagation of unspeci-
4 4 4
ficity, see Def. 53.

B.24 Proof of Theorem 43

We already know from Th-31 th&k, is a DFS. Hencé 4 satisfies (X-1) to (X-5), see
Th-23. Therefore theorem Th-39 is applicable, and we can prove thetpagates
unspecificity by showing thats (T, L) = £a(cq, L) wheneverlL (0) > 1.

Hence let(T, L) € T be given and suppose tha{0) > 1. BecauselL(0) > 1, we

clearly haveT () > T(0) > L(0) > 1 forall v € I and hence

To= lim T(y) >3 (195)
y—0*
by (9). In addition, we notice that
15 = lim L(v) < 1(0) (196)
'y~>0+

becausel is nonincreasing. It is hence sufficient to discern the following cases.

a: 15> 3. Then

€a(T, L) =min(Ly, 3 + 110 by Def. 51
=&a(cy, ). by Def. 51

119



b. L5 < 3. Inthis case, we recall that; > 1 by (195). In addition[c;]; =1 >
Therefore
(T, L)=1 by Def. 51
aler, ), by Def. 51

as desired.

Hence indeed (T, L) = £a(cy, L) wheneverL(0) > 1. We conclude from Th-
39 that¢ 4 propagates unspecificity. In turn, we obtain from Th-38 tRajpropagates
fuzziness in arguments.

B.25 Proof of Theorem 44

In order to prove the independence of propagation of fuzziness in quantifiers and in
arguments fotF.-DFSes, we must show that there exfstDFSes?,, andF, such

that 7., propagates fuzziness in quantifiers, but not in argumentsFangropagates
fuzziness in arguments, but not in quantifiers. By Th-30, Th-36 and TI#42s a
suitable choice fotF;,. Finally by Th-31, Th-37 and Th-43F}, is a suitable choice

for F¢,, thus finishing the independence proof.

B.26 Proof of Theorem 45

Lemma 71 Suppos€ : T — I satisfiegX-1) to (X-5). If £ propagates both fuzziness
and unspecificity, then

&(T,1) = B(med%(T, 1)),

forall (T, 1) € T, whereB : B — Iis defined by

(e, f) o JPEBJlr
feB2 (197)

B(f)=14 3
§(frco) = feEBT

forall f € B.
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Proof Let(T,L) e T be given. We abbreviatg = med; (T, L).
2

a.: f(0) > 3. Itis then apparent from Def. 22 that(0) > L(0) > 3. Again from
Def. 22, we conclude that

f(v)z{ j(v) L(v)

= max(L(7), })

N[= N[

for all v € I becausél (v) > T(0) > % for all v € I by Def. 44. Therefore
E(T,L1) =&(T,max(L, 1)) =¢&(T, f) (198)
by Th-33 becausg is assumed to propagate fuzziness. Apparently c; and hence

E(T, f) <&ler, f) (199)

by (X-5). On the other handl < c¢; entails that(cy, f) <. &(T, f), becausg is
assumed to propagate unspecificity. Apparef(ly, f) > £(c1,co) = % by (X-5) and
2

L-61, recalling that propagates fuzziness. BYUT, f) > % andé(cy, f) = &(T, f)
entail thaté(cq, f) < &(T, f). Combining this with (199), we see théfc, f) =
&(T, f). Hence by (198) and (197§(T, L) = &(c1, f) = B(f), as desired.

b.: f(0)=3. ThenT(0) > 1and.Ll(0) < i by Def. 22. Hence
&T,1)= % by L-70
=B(f), by (197)

1
because clearly(y) = % for all v € T'in this case, i.ef =c1 € B2.
2

c.. f(0) < 5. This can be reduced to the proofafbecause

T, L)=1-€¢1-1,1-T) by (X-2)
=1-—B(medi1(1—-1,1-T)) bya.
=1-DB(1- riedl (L, ) becausened; symmetric w.r.t—
=1-B(1- medi (T,1)) becausemedi commutative
=1-(1- B(medQl(T, 1)) apparent fro?n (197)
= B(medy (T, 1,
as desired.
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Proof of Theorem 45

Let an F¢-DFS be given. We further assume tli6t propagates fuzziness both in
quantifiers and arguments. Because propagates fuzziness in quantifiers, we can
conclude from Th-32 thag propagates fuzziness. Similarly becaud&epropagates
fuzziness in arguments, we know from Th-38 thatropagates unspecificity. We can
therefore apply lemma L-71 which ensures that there efist® — I such that

T, L) = B(med%(T7 1))

forall (T, L) € T. HenceF; is anMp-DFS because by Th-2d13 = F.

B.27 Proof of Theorem 46

Lemma 72 Suppose€), Q' : P(E)" — Iare semi-fuzzy quantifiers add, ..., X,, €
P(E). Then

A(TQ. X1, X0y TQ X1, %) < d(Q, Q)
d(LQ.xy,.. X0 L@ x1,x,) <d(Q,Q)

forally el

Proof The first two inequations have been proven in [7, L-104, p.252]. The third
inequation is apparent from the first two because

d(TQ,x1,...Xns L@, X1, x0)s (T X1, X0 L@ X0, X0 )
=max(d(To,x,,.... x> 1Q".X1,...%,), AL x1,... x, Lo x1,...x,))
<d(Q,Q).

Lemma 73 For every mapping : T — I, condition a. of Th-46 is entailed by
condition b.

Note. We do not need to impose the condition thaatisfies (X-5) in this case.

Proof Supposé€ : T — I has the following property. For atl > 0, there exists
0 > 0 such that

6(T, L) —&(T", L) <e

whenever(T, 1), (T’, L’) € T satisfyd((T, L), (T’,L")) < 6. We have to show that
F¢ is Q-continuous. Hence let songg: P(E)" — I be given and let > 0. We
have to show that there exists> 0 such that

d(Fe(Q), Fe(Q)) < ¢
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wheneverd(Q, Q') < §. By the assumed property 6f there exist$ > 0 such that
(T, L) —&(T L)< 5 (200)

wheneverd((T, 1), (T', 1)) < 4. Now letQ" : P(E)" — I be a semi-fuzzy
quantifier withd(Q, Q') < 4. Then for each choice ofy, ..., X,, € P(FE), Then

[Fe(@) (X1, .., Xn) = Fe(Q) (X1, ..., Xn)|

=18(To.x1,... x> Lo.x1,.x,) —&(Tq xi,...x. Lo x,,...x,)| by Def. 45

<5 by (200), L-72,
ie.

|Fe(Q)( X1, Xn) — Fe(Q)( X1, ..., Xn)| < 5. (201)
Hence

d(Fe(Q), Fe(Q))
= sup{| Fe(Q)(X1, ..., Xp) — Fe(Q) (X1, ..., X)) :

Xi,....X, € P(BE)} by (6)
<t by (201)
<e,

i.e. F¢ is Q-continuous, as desired.

Lemma 74 Letus define semi-fuzzy quantifigs@”, @ : P(2 xI) U ({2} x T)) —
I asfollows. Forally € P((2 x I) U ({2} x T)),

Q'(Y)=Ty(supY’) (202)
Q"(Y)= Ly(infY") (203)
QYY) - V=02
where
Y ={2€1:(0,2) eY} (205)
Y'={2€1:(1,2) €Y} (206)
Ty =sup{T:(2,(T,L1)) eY} (207)
1y =sup{Ll:(2,(T,L1))eY} (208)
Thenforall(T, L) € T,
Tox =T
and
J_Q,X =1
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provided we defin& € P((2 x I

~—

U ({2} x T)) by

11, c=0
(c,2) = §+§z c=1 (209)
Px\G2 =19 1 c=2,z=(T,1)

0 else

forall (¢,z) € (2xI)U ({2} x T).

Proof We first consider some monotonicity properties. It is apparent from (207)
and (208) thaiTy < Ty, and Ly < Ly wheneverY C Y’. BecausesupY’

is nondecreasing i and Ty (z) < Ty (%) for z < 2/, we conclude that)’ is
nondecreasing i Similarly, inf Y is nonincreasing it and Ly (z) > Ly (z’) for

z < 2/, hence@®"” is nondecreasing i as well. Finally, we conclude from (207),
(208) and the fact that < T for all (T, L) with (2, (T, L)) € Y that Ly < Ty and
henceQ” < '. Therefore( is nondecreasing il as well, and we can utilize L-3 to
simplify the computation off g x and_Lq x.

In the following, we will assume that a choice 0f, 1) € T is given and that the
fuzzy setX is defined in terms off and L according to equation (209). Let us now
consider the cut ranges.4f= 0, then

Xg=X_1 by Def. 30
2
= ({1} x (0,1]) U{(2,(T, L))} by Def. 29, (209)
and
Xg®™=X_1 by Def. 30
=2
={(0,0)} U ({1} x [0,1]) U{(2,(T,L))}. by Def. 28, (209)
If v > 0, then
XI;“IIZXZ%J’_%W byDef. 30
= ({1} x [, 1) u{E (T, L)} by Def. 28, (209)
and
X;naX:X%,%V by Def. 30

= ({0} x [0,7) U ({1} x DU {(2, (T, L)}

Hence fory = 0,

To,x(0)

= Q(Xg™) by L-3

=Q({(0,0)} U ({1} x [0, 1)) U {(2, (T, L)})

= T(sup{0}) by (204), (202), (205) and (207)
=T(0).
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and

Lo.x(0)

= Q(Xénin) by L-3
QU{1} x (0,1 u{(2,(T,L)})
L(inf(0,1]) by (204), (203), (206) and (208)
1(0).

Finally for~ > 0,

TQ x(7)
(Xmax) by L-3
= Q(({O} 0,v)U {1} xDHU{(2,(T,1)}
= T(sup|0,7)) by (204), (202), (205) and (207)
=T(7).
and
Lox(v)
= Q(X™) by L-3
= Q(({1} x [v, 1) u{(2,(T,L)})
= 1 (inf[y, 1]) by (204), (203), (206) and (208)
=1(7),
as desired.

Lemma75 Let@ : P(E)" — I be given and letv € 1. Further suppose that
Q' : P(E)" — 1is defined by

Q' (Y1,...,Y,) =min(l,a+ Q(Y1,...,Yy,)), (210)
forall Y1,...,Y, € P(E). ThenforallXy, ..., X, € P(E),
X, —mln(loz—f——l—QXl ..... X)

.....

and

J-Q',Xl ,,,,, Xn = min(la o+ J‘anl ----- X'n.) :

Proof Trivial. Let~ € 1. Then

=sup{Q'(Y1,....Ys) : Y1 € T,(X1),..., Y, € T,(X,)} by Def. 43
=sup{min(l,a+ QY1,....Y,)) : Y1 € T,(X1),...,Y, € T,(X,)} by (210)
= min(laa +Sup{Q(Y17 t ?Yn) : Yl € ’]:Y(X1)7 . 'aYYL € TY(XH)})
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(becausenin and+ are nondecreasing and continuous)

=min(l,a+ Tg x,,...x, (), by Def. 43
and similarly

Lo x,,...x.

=inf{Q'(V1,...,Yn) : Y1 € T,(X1),...,Y, € T,(X,,)} by Def. 43

=inf{min(l,a + Q(Y1,...,Y,)) : Y1 € T,(X1),...,Y, € T,(X,)} by (210)
=min(l,a +inf{Q(Y1,...,Y,) : Y1 € T,(X1),..., Y, € T,(X,)})

(becausenin and+ are nondecreasing and continuous)

=min(l,a+ Lo x, .. x,.(7))- by Def. 43

Proof of Theorem 46

The claim that condition b. entails condition a., i.e. that b. is sufficientAgto be
Q-continuous, has been proven in L-73. It remains to be shown that condition b. of the
theorem is also necessary ¢ to be Q-continuous. We prove this by showing that
that the failure of condition b. entails the failure of condition a.

Hence lett : T — I be a given mapping which satisfies (X-5) but violates condition

b. In order to prove thaf; is not Q-continuous, we have to show that there exists a
semi-fuzzy quantifie) : P(E)" — I ande > 0 such that for al5 > 0, there exists

Q' : P(E)" — Iwithd(Q,Q") < é andd(F¢(Q), Fe(Q")) > e.

Becauset violates condition b., there exists> 0 such that for all > 0 there exist

(T, 1), (T, L") € T with

d((T, L), (T, L) <é (211)
and
E(T, L) = &(T', L) > ¢. (212)

We shall keep this choice afand focus o : P((2 xI)U ({2} xT)) — T as
defined by (204). Now lef > 0. By assumption, there exi¢tf, L), (T’, L) € T
such that (211) and (212) hold. We define

T, =min(T,T')
1, =min(L,1")
T* = max(T,T')
1* =max(L, 1").
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Apparently(T,, L.) € Tand(T*, L*) € T. In addition,

d(T.,T%)

= sup{max(T(y), T'(y)) —min(T(y), T'(y)) : v € I}
=sup{|T(y) = T'(]: v €T}

=d(T,T)

and similarly

d(L,, L)

= sup{max(T(y), T'(y)) — min(L(y), L'(y)) : v € I}
=sup{|L(y) - L'(7)|: v €T}

=d(L, 1),

i.e.

(T, L), (T7,T7) = a((T, 1), (T, L)) <6

by (211). Furthermore,

g

(VAN VAN VAR VAN

g

A
= A
|/\|/\‘/\I/\
- R

*

and hence

1ECT, L7) = &(Tw, L)

=&(T7, L7) =&(Ts, Ly)

> max(§(T, 1), §(T", L)) = &(Tw, L)

> max(§(T, L), §(T", L)) —min(¢(T, 1), £(T", L))
=[&(T, L) = &(T", L)

>,

‘f(T*, J-*) - f(T*,J_*)| >e.

Now we define a fuzzy subsat € P((2 x I) U ({2} x T)) by
— %z c=0
%z o c=1

mx (c’ Z) =

O NN
+

else
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by (28)

by (29)

c=2, 2= (T, Ly)

by (X-5)
by (X-5)
by (X-5)

by (28)andT, < T*

by (29) andL, < L*

(213)

(214)



forall (¢,z) € (2 x I) U ({2} x T). Then by L-74,

Tox =T« (215)
lox=Ll.. (216)

We further defing)’ : P((2 x I) U ({2} x T)) — I by
Q'(Y) = min(1,d((T, 1), (T, L") + Q(Y)),

forall Y € P((2 x I)U ({2} x T)). Itis obvious from this definition of)’ and (5)
thatd(Q, Q') < d((T, 1), (T', L"), i.e.

dQ,Q") <9 (217)
by (211). By L-75 and (215)/(216),

TQ/_’X = min(l, d((T, J_), (T,, J_/)) + T*)
Lo x =min(1,d((T, L), (T, 1) + L)

In turn, we conclude fronT, < T*, 1, < 1* and (213) that

T < Tox (218)
1< lgx- (219)

Hence

[Fe(Q)(X) = Fe(Q) (X))

=[&(To,x-Lao.x) —&(Tor.x, Lo ,x)| by Def. 45

= 16(Tx, Ls) —&(Tg,x: Lo/, x)| by (215), (216)

=&(Tgrx, Lo x) —&(Ts, L) becausély x > T., Lgrx > L.
> &(T",L%) = &(Ty, L) by (X-5), (218), (219)

>e. by (214)

This proves thatl(F¢(Q), F¢(Q')) > € althoughd(Q, Q") < ¢ by (217). Therefore
Fe is not Q-continuous.

B.28 Proof of Theorem 47

Lemma 76 Suppose€ : T — I satisfiegX-2) and (X-5). Then the following condi-
tions are equivalent:

a. F¢ is Q-continuous;

b. for alle > 0, there exist9 > 0 such that|¢é(T, L) — £(T’, L)| < € whenever
(T,L),(T’,L) € Tsatisfyd(T, T') < 4.
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Proof Let¢: T — I be agiven mapping such that (X-2) and (X-5) hold.

a.=b.. The above conditiom. is apparently a weakening of the following condi-
tion: for alle > 0, there exist$y > 0 such that&(T, L) — (T, L") < e when-
ever(T,L),(T’, L") € T satisfyd((T,L),(T’,L")) < 4. The latter condition has
been shown to be necessary 8¢ to be Q-continuous in Th-46. Being a weaken-
ing of a necessary condition, the present conditioms also necessary fof, to be
Q-continuous.

b.=a.: To see this, let us assume tifat T — I satisfies conditiof. Further let
e > 0. By assumption, there exisi5 > 0 such that

‘g(T’ J—) - f(Tlv J—)| < % (220)

whenever(T, L), (T, L) € TsuchthatT, T') <"
We now conside(T, L), (T', L") € T with

d((T, L), (T', 1) <. (221)
We also note that by (221) and (30),

d((T, 1), (T, 1)) <d((T, L), (T, L)) < ¢’ (222)

d((1= L1 =T"), (1= 1,1 = T) = d((T', 1), (T, 1))
<

d((T, L), (T, L) <& (223)

Therefore

|§(T/a J—) - g(Tlv J-/)|
=[1-60-L1-T)-Q1Q-¢1-L1-T) by (X-2)
=1 -L1-T)-¢1 -1 1T,

[§(T", L) = &(T", L) < 5 (224)

by (220) and (223). Finally
|£(T7 J—) - f(T/, J—/)|
<|E(T, L) = &(T, D)+ 1&(T, L) —&(T', L)| by triangle inequation
<s5+5 by (220), (222) and (224)
=£.

Hence for all(T,L) € T an alle > 0, there existsy > 0 such that/¢(T, L) —

(T, L")] < e whenever(T’, L") € T satisfiesi((T, L), (T',L’)) < d. Application
of L-73 yields thatF is Q-continuous.
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Proof of Theorem 47

Let¢ : T — I be a given mapping such that (X-2) and (X-5) hold.

a.=b.: The above conditiol. is apparently a weakening of this condition: for all

e > 0, there exist§ > 0 suchthat{(T, L)—£(T', L)| < ewhenevefT, L), (T', L) €

T satisfyd(T, T") < 6. The latter condition has been shown to be necessargfor

to be Q-continuous in L-76. Being a weakening of a necessary condition, we again
conclude that the present conditibnis necessary faf, to be Q-continuous.

b.=a.. We assume that: T — I satisfies (X-2) and (X-5) and also fulfills condi-
tion b. We proceed by showing thatfulfills the conditionb. of lemma L-76. Hence
lete > 0 be given. By assumption, there exists- 0 such that

LT L) —=&(Ty, L) <e (225)

whenever(T,, 1),(T*, L) € T satisfyd(T.,T*) < dandT, < T*. Now let
(T,L),(T",L) e Twithd(T, T') < 4. We abbreviate

T, =min(T,T’)
T =max(T,T').

Clearly(T.,L1),(T*,L) € T. In addition, it is obvious from (28) that
d(T., T =d(T,T") <4. (226)
We further conclude from (X-5) that

§(7T7, L) = max(§(T, L),&(T", 1)) (227)
(T, L) <min(§(T, 1),6(T", 1)) (228)

Hence

£(T, L) —&(T", L)
= max({("l', J—)a g(Tlv J—)) - IniIl(f(T, J—)a f(T/, J—))

<E(TH L) —&(Tw, 1) by (227), (228)
= |€(T*7 J~) - f(T*a J~)| by (X-5)andT, < T~
<e. by (225)

Hence conditiorb. of L-76 is satisfied, i.e7; is arg-continuous.

B.29 Proof of Theorem 48

In order to show thafy, is Q-continuous, | will prove the equivalent conditibn of
Th-47. Hence let > 0 be given. | will show that = ¢ is a suitable choice af.
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Hence let(T, 1),(T’, L) € Twithd(T,T') < eandT < T’. Becausel < T/,
d(T,T') < e can be rewritten as

sup{T'(y) = T() :y €T} <&
by (28). In particular
T <TO) +e. (229)
Then

[€en(T', L) — &en(T, 1))|

f% /1 T(y)dy— % 1 1(vy)dny| by Def. 47
\ )
= %I/ T'(v) dv—/ T(v)dr|
01 01
= 3( /0 T'(y)dy — /O T () dy) becausel’ > T
1 1
<3| T rear= [ T by (229)

Henced = ¢ is indeed a choice of with the desired properties, i.e. conditibn of
Th-47 is fulfilled, which is equivalent t@y, being Q-continuous.

B.30 Proof of Theorem 49

We already know from Th-30 thafs is a DFS and hence satisfies (X-2) and (X-5)
by Th-23. Hence Th-47 is applicable, which allows the reductioiFgfbeing Q-
continuous to an equivalent condition 5. Hence let us show that conditidn of
Th-47 violated.
Lete € (0, 3] be given and lef > 0. Consider(cy,co), (c1_s,co) € T. Apparently

2 2

2
c1 s <ciandd(c; s,c1) =13 <4.ByDef. 50, we have
-3 32 272 2

N[

€S(Claco) = %
2
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and

€sc1 s,c0)
2 2
_ * 1 1 Z%l b f
—max((c0)1,2 2<Clié> ) yDeSO
2 2 x
= max(0,5 — 3 1) by (12), (27)
=0.

Hences(c1,co) — €s(c1 s5,c0) = 5 —0 = 5 > . This proves that conditiob.

2 2 2
of Th-47 fails, which is necessary fds to be Q-continuous. We conclude tt&g is
not Q-continuous.

B.31 Proof of Theorem 50

We know from Th-31 and Th-23 that, satisfies (X-2) and (X-5). Hence Th-47 is
applicable, and we can show tha} fails to be Q-continuous by proving that there
existse > 0 such that for alb > 0, there exis{T, L), (T', L) € Twithd(T, T’) <4,
T<T andéa(T, L) —&a(T, L) >e.

Hence consider = i and letd > 0. We defineT, T’ by

0 : <3
T() = { 5. 1
0 y< 2
T'(y) = { ) :
Y>3
forall v € I. Then by (9),
Ty= lim T(y)=0 (230)
y—0+
T'5 = lim T'(y) =0 (231)
'\/—»O‘F
and by (14),
T —inf{y: T(y) =1} =info =1 (232)
T —inf{y: T'(y) = 1} = inf(3,1] = L. (233)
Clearly T < T"andd(T, T’) = § < §. We compute
€a(T,co) = max(T§, 5 — 1T by Def. 51
=max(0,3 — 3 - 1) by (230), (232)

=0
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and

€a(T',co) = max(T'g, 3 — 17ih by Def. 51

= max(0,1 — 1 1) by (231), (233)
1

1

Therefore£ 4 (T',¢co) — €a(T,co) =
F4 is not Q-continuous.

— 0 = 1 = e. We conclude from Th-47 that

B.32 Proof of Theorem 51

Lemma 77 LetQ : P(E)" — I be a given semi-fuzzy quantifier. Furtherdet- 0
and X1,...,X,, X1,..., X, € P(E) such thatd((X1,...,X,), (X1,...,X})) <
d. Then for ally, v € Twith+ > v + 24,

a. min(To x,,..x, (V) To.x/,..x, (7)) = max(Tg x,,...x, (), To.x;,...x. (V)

b. max(Lq x,,..x,(7), Lo.x;...x. (7)) <min(Lg x, . x, (V) Lo.x,..x, (7))

Proof See[7, L-112, p.262].

Lemma 78 Condition a. of Th-51 is entailed by condition b.

Proof Let¢: T — I be a given mapping such that for &', L) € T ande > 0,
there existg > 0 such that

|£(T7 J—) - g(T/7 J-,)‘ <e

wheneverd' ((T,L),(T’,L")) < 6. We have to prove thafF; is arg-continuous.

Hence letQ : P(E)" — 1, X,...,X,, € P(E) ande > 0 be given. We have
to show that there exists> 0 such that

[Fe(@(X1, .o, Xn) = Fe(Q)(X1,.. Xy <€

wheneverd((X1, ..., X,), (X],..., X)) < 0. By the assumption og, there exists
¢’ > 0 such that

6(T, L) = &(T, L) <« (234)

whenever((T, L), (T’, 1)) < &'. We choosé = & Now letX], ..., X/, € P(E)
be a choice of fuzzy subsets witi( X7, ..., X,,), (X1,...,X])) < 4. Then

dl(TQ,Xl,...,Xn7TQ,X{,.H,XT’L) < 20 by L-77 and (31)
d/(LQ>X17-~-,Xn’ LQ7'X{7""X’:L) < 2(5, by L-77 and (33)
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d'((TQ. x4, X L0, X100 X0 )y (TQ X X0 L0 X0 x1 ) S 20 =36 < &

by (33). Therefore

[ Fe(@Q) (X1, ..., Xn) — Fe(Q) (XL, ..., X7)
=&(To,x1,.x, Loxi,..x,) —&(To,x;,...x1, Lo.x;,...x,)| by Def. 45
<e, by (234), (235)

i.e. F¢ is arg-continuous, which we intended to show.

Let us now prove that the condition gris also necessary fo¥; to be arg-continuous.
To this end, we need to construct a semi-fuzzy quantifier with special properties.

Lemma79 Let(T,L1),(T’,1") € T be given. We abbreviaté¢ = d'(T,T'), d’ =
d'(L,L1"). Then

a. forallp>dandy > g3, T(y) > T'(v — 9).

b. forall ' >d andy <1-07, L(y) > L' (v+ 7).
Proof

a. We first recall (31), viz
d=d'(T,T') = sup{inf{y" : min(T(+), T'(7')) = max(T(7), T'(M)} —v:v €L}
This reveals that for the given— 3 > 0,
inf{y" : min(T(7'), T'(v')) =2 max(T(y = B), T'(y = B)} = (v = B) < d.
BecauseT, T’ are nondecreasing, this entails that
min(T(v'), (7)) = max(T (y —nd), T'(y — nd)) (236)

forally >~y —3+d. We nowrecallthat > d,ie.y=v—-08+08>~v—08+d.
Hencey is an admissable choice fof in (236), and

T(v) > min(T (), T'(7))

max(T(y—8), T'(y — 8)) by (236)
T'(v—-8),

AVARAVARAYS

as desired.
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b. Analogous. This time we recall (32):
d' = d'(L, L) = sup{inf{y" : max(L(y'), L'(7)) < min(L(7), L'(7))} —v:v €L}
Hence fory < 1 — &,
inf{7": max(L(+), L'(7')) < min(L(y), L'(v))} —v<d".
Becausel, L’ are nonincreasing, this entails that
max(L(7"), L'(7)) < min(L(y), L'(7))} (237)

for all v/ > v + d’. We now recall tha’ > d’, i.e.y + 8’ > v+ d’. We also have
~+ 3 < 1. Hencey + 3’ is an admissable choice fof in (237), and

L(7) = min(L(y), L'(y))
> max(L(y+6'), L'(v+3)) by (237)
>1'(v+4).

Lemma 80 Let(T,.L),(T’,L’) € T be given.

a. forall 3> d'(T,T') andy € (0,1] withy > 8, T?(y) > T (v — B).

b. forall 3’ > d'(L, ') andy € [0,1) withy < 1— 3/, Li(y) > L* (v + ).

Proof Let (T,L),(T’,L1’) € T be given. We abbreviaté = d'(T,T'), d' =
d(L,1").

a. Suppose? > d andy > 0with v > 5. Then

T’(y=8)= lm T'(¥), by Def. 34
Y —=(=8)"
i.e.
T’ (v = B) =sup{T'(7) : 7/ < v — B} (238)

becausel”’ is nondecreasing, see [7, Th-43.a, p. 44].
Now consider > 0. By (238), there exists’ < v — 3 with

T()>T (=B —e. (239)
Becausey’ < v — 3, we can choose” € I with

v <y <y-p (240)
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Theny” +d < v and
TE' +d) > T'(+) by L-79 because’ < (v +d) —d
> T (y—B)—¢ by (239).

Because/” + d < ~, we hence obtain that

T (v) = 7,lijlfly_T(v’) by Def. 34
=sup{T(y):v <~} becausé nondecreasing, see [7, Th-43.a, p. 44]
> T +d) because” +d < vy

>T'b(’y—ﬁ)—5.

Because > 0 was arbitrarily chosen, this proves thett(y) > T’b(v — (), as desired.

b. Analogous to that o&. Suppose?’ > d’ andvy < 1 withy < 1 — 3 are given.
Becausey + 3’ < 1, we obtain from Def. 34 that

Hy+8)= lim  1'(Y).
v = (v 8t
Hence
LHy+8) =sup{L'(7) : 7/ >~} (241)

becausel’ is nonincreasing; see [7, Th-43.d, p. 45].
Now consideke > 0. By (241), there exists’ > v + 3’ such that

L'(Y) > L5y +8) —e. (242)

Because/’ > v + ', we can choose” € I with v + 8’ < ~"” < 4. In particular,

V' =B >y+08 -8 = (243)
and
V> =0 =8+ >0 =-8)+d. (244)
Therefore
1¥(y) = lim L(v") by Def. 34
v =yt
=sup{L(¥):y >~} by [7, Th-43.d, p. 45]
>1(y"=p) by (243)
> 1(v)) by (244), L-79.b
> 1"y +8)—¢. by (242)

Because > 0 was arbitrary, this proves the desired(y) > J_’”('y +eé).
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Lemma 81 Forall (T, L) €T, we defineg+ 1) : P(T x 2 x I) — T by

Tb(U(T,L)) oUW, >0
Qr,ny(Y) =3 L¥lT1y)  wry=0lT1)<1 (245)
0 . U(T,L) = O,K(T7l) =1
where
U(T,1) = Sup Y(/T,L) (246)
E(T7J_) = inf }/(/'/F,L) (247)
Yir )y ={2€l:((T,1),1,2) €Y}, (249)

forall Y € P(T x 2 x I).
Further suppose that the semi-fuzzy quantiffer P(T x 2 x I) — I is defined by

QYY) =sup{QT,1)(Y): (T,L1) € T} (250)
forall Y € P(T x 2 x I). Then for every choice @fT1, L), (T2, L2) € T with
T2(0) = L1(0), (251)
it holds that
Tox(v) =T2"(%)
and
Lox(v) = L' (7).
forall v € (0, 1), provided we defin& € P(T x 2 x I) by

ux((T,L),¢ 2)

1 —imin(z+dy,1) : ¢=0
=4 1—1dy e=1A2<d A(T,L)#(Ta, Lo) (252)
t+32—1dy e=1A(2>d V(T,L)= (T2, L2))
forall (T,L) € T,c e 2andz € I, whered; = d'((T,L1),(T1,11)) anddy =
d/(<TaL)7(T27J~2))'

Proof We first consider some monotonicity properties. (&t L) € T be given.
If Y increases, theli’- |, increases. Hence(r 1) = sup Y/ |, increases as well.

Finally becausel and henceT® are nondecreasing,rb(u(TyL)) will also increase.
HenceQ'(Y) = T (u(t 1)) is nondecreasing.
Similarly Y/t | increases ift” increases. Henckr 1) = inf Y/ |, decreases and
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L#(¢(T,1)) increases, because and hence ?, is nonincreasing. Therefotg’(Y) =
L#(¢(r, 1)) is nondecreasing. From Th-20 we know that L#(y) < T”(v') for all
7,7 € L Itis hence apparent from (245) and the fact #atY’) = T°(u(r, 1)) and
Q"(Y) = L*(¢(r,1,) are nondecreasing thgkr ;(Y) is also nondecreasing i.
We can hence utilize L-3 in order to simplify the expressionsTigrx and_L¢ x.
Now suppose thafT1, 1), (T2, L) € T satisfy (251) and assunié € P(T x 2 x I)
is defined by (252). Then by Def. 30, Def. 28 and (252),

X’Iynin

:XZ%Jr%v

= {((TaJ-)v]-aZ) : %+ %Z - %dQ > % + %7/\ (Z >dy Vv (TvJ-) = (TQ,J-Q))}
={(T,L),L,z2):z2—da >2yAN(z>dy V(T,L)= (T2, L2))}
={((T,1),1,2): z > max(y+d2,d1) } U{((T2,L2),1,2) : 2 > v+ da}.

forall v € (0,1). Hence in the case of "™,
ucr, 1y =supY(y )y =supd =0 (253)
and for(T, L) 7& (TQ, Lg),

6(77l) = inf YP(/",F,L) by (247)
=inf{z € I: 2z > max(vy+ ds,d1)} by (249)
= min(max(y + da,d1),1),

while for (T, L) = (T27 Lg), do = d/((TQ, LQ), (TQ, LQ)) = 0 and hence

€Ty, La)
—infY%, by (247)
=inf({z €1: 2z > max(y+da,dy)}
U{zel:z>vy+da}) by (249)
= min(inf{{z € I: z > max(vy,d;)},
inf{zel:z>n~}) becausel; =0
= min(max(vy,d1),7)
=. by absorption
Therefore
) = { min(max(y + da,d1),1) : (T,L1) # (Te,Ls) (254)
’ v p(T,1) = (T2 Lo)
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1) € T. ConcerningX'**, we obtain from Def. 30, Def. 29 and (252) that

forall (T,
X;Tlax
IR
= {((T,J_),O,Z) : % - %Zﬁ %d2 > % - %’7}
U{((T,L),L,2): 2 —ddi > — Iy Az <di A(T, L) # (Ta, L)}
u{(T,L1),1,2): z>d1/\z>d27fy}
{(( Q,J_Q),LZ) ZEI}
={((T,1),0,2) : 2 <y —do}
{((T )7172):Z<d1 <’7A(T7J-)7A(T27J-2)}
U{(T,L1),1,2):2>di Az>ds —}
U{((T2,L2),1,2): 2 €1},
forall v € (0, 1]. Hence in the case of;**,
(255)

(T, = Squ(/T,J_) =sup{z € I: 2 <7y —dz} = max(y — ds,0)

forall (T, L) € T. As concerngt ), we first observe that foiT, L) # (T2, L2),
e,y =inf YT by (249)
=inf({zel:z<d <~}
U{ze€Tl:z>di ANz>dy—~}).

Hence in the case that< d,
bry=inf{zel:z>d Az>dy — 7}

= max(di,ds — )

and ify > dy, then

inf({zel:z2<d}
U{z€l:z>diAz>dy—~})

_ 0 di >0

| max(0,de—7) : d1 =0

(T2, L2), we again have,; = 0 and hence

by =

In the remaining case théf, L) =
E(TZ’J_Z) = il’lf}/(/—/rQ7J_2)
=inf{ze€l:z>d}UI)

=infI
=0.
Summarizing, we have shown that f&™**,
, | max(dq,d2 —7) (y<diVdi=0)A(T,L)#(Ta,La)
(T.L) = .
0 . else
(256)
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forall (T,L)eT.

Now we consider the quantification results that are obtained for(0, 1). As regards
Q(X;“in), we first recall that,(+ ;) = 0 by (253). In order to determine the result of
Q(Xim), we discern three cases.

1. (T, J_) 75 (TQ, J_g) andmax(v—i—dg, dl) < 1. Then by (254)€(TJ_) = maX(’H—
da,d1) < 1. Hence by (252),

Q(t,1)(X™) = L¥(max(y + do,d1)) by (245)

< L¥ (v +dy) becausel nonincreasing
< 15, by L-80.b
ie.
Qer,(X3™) < 15(7). (257)

2. (T, 1) # (T2, L) andmax(y + da,dy) = 1. Thenl( ) = 1 by (254). We
hence obtain from (245) that

Qer 1y (XMm™) =0< Lh(y). (258)

3. (T,1) = (T, L2). Inthis casef(+ 1) = v by (254). In addition;y < 1 by
assumption. We then obtain from (245) that

Q(Tz,J_z)(X'rynin) =15(7). (259)
ThereforeQr ) (X") < L5(v) forall (T, L) € Tand for(Ta, Lo) € T,
Q(TQ,LQ)(X;nm) = 15(v).
Hence

QX" = sup{Q(r 1) (X™™) : (T, L) € T} = Lh(7) (260)

by (250) and (257)—(259).
Next we conside)(yy™**.

1. (T,L)=(Tq,Ls). Thendy, = d'((T2, L2),(T2,Ls)) = 0andhence—ds >
0, because we have assumed that 0. By (255),u(,, 1,) = v > 0. Therefore

Q(Ta L) (XT™) = T5(7) (261)
by (245).
2. (T,L1)# (T2, L2) andy —dy > 0. Thenu(t 1y =~y —dy > 0 and
Qr 1) (XJ™) =T (y — do) by (245)
<T%(H), by L-80.a
i.e.
Qr,L)(X2™) < Th(7). (262)
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3.(T,L) # (T2, L2), v =da = 0andy < dy. Thenucr 1y = 0 by (255)
and{(t 1y = max(di,dy — ) by (256). If{+ 1) < 1, then we obtain from
K(TJ_) > dy that

Q(r.1)(X™) = L*({(7,1)) by (245)

< J_ﬁ(dl) becausel nonincreasing
< 14(0) by L-80.b
< T5(0) by (251) L-19 andT,(0) = T5%(0) by Def. 34
< Th(v), becausél ; nondecreasing
ie.
QXT™) < T3(7). (263)
If Z(T,L) =1, then
QXF™) =0 < T5(7) (264)

by (245).

4. (T7J_) 7& (T27J_2), vy — do =0 andd1 = 0. Then'U/(‘Rl) =0 by (255) and
7,1y = max(dy, dy — ) = max(0,0) = 0 by (256). Hence

max\ __ | #
Q(t,1)(XJ™) = 15(0)

(
< 1%(0)  byL-80.b becausé; =0
< T5(0) by (251) L-19 andT,(0) = T5(0) by Def. 34
< T5(v), because’, nondecreasing

Q(T, L) (XI™) < T3(0). (265)
5. (T,L1)# (T2, L2),y—d2 =0,v > dy andd; > 0. Thenu(r ) = 0 by (255)

and{(t ) = 0 by (256). Because agaify = 0 andu(t ) = {1 1) =0, we
obtain by the same reasoning as in the previous case that

Qer.) (XJ™) < T3(4). (266)
HenceQ 1) (X™M*) < Th(y) forall (T, L) € T and for(T, Ls) € T,

Q(T27l2)(Xfrynax) = T;(PY) .
Consequently

Q(X) = sup{Q(T, 1) (X™*) : (T, L) € T} = T3(7) (267)
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by (250) and (261)—(266). This proves that

To.x(v) = QXT™) by L-3
= T5(7)
and
Lox(v) = Q(Xéni“) by L-3
=15(7)

forall v € (0,1), as desired.

Lemma 82 Suppos€ : T — I satisfies(X-2), (X-4) and (X-1). If F¢ is arg-
continuous, the has the following property: for al{T,, ;) € T and alle > 0,
there exist®) > 0 such that|é(T1, L1) — &(T2, L2)| < e wheneve(Tq, Lo) € T
satisfies?’ ((T1, L1),(T2,12)) <dandT3(0) > L4(0).

Proof The following proof is by contraposition. Hence assume that the condition
stated in the lemma fails, i.e. there exi§ts;, L) € T ande > 0 such that for all

6 > 0, there eXiStsTg, Lg) € T with d/((Tl, Ll), (TQ, Lg)) < 6, TQ(O) > Ll(O)

and

1€(T1, L1) —&(T2, Lo)| > € (268)

We have to show thaf; is not arg-continuous. To see this, consider the quantfier
P(T x 2 x I) — I defined by (250) and the fuzzy argument et P(T x 2 x I)
defined by

MX((Tl’ J_)l,C,Z)

s —smin(z+dy,1) @ ¢=0

:a il ) (269)
= §—§d1 : C:1A2<d1/\

%—F%Z_%dl : czl/\del

forall (T, L) € T,c € 2andz € I, where | have abbreviated = d'((T, L), (T1,L1)).
Then by L-81,

Ti(v) (270)

To.x(7) ii
1i(7) (271)

Lox ()

for all v € (0, 1).
Now considers > 0. By the assumed property ¢f there exist§To, Lo) € T with
T2(0) = 11(0),

d'((T1,L1), (T2, L2)) < 3 (272)
and

€(T1, L1) —&(Ta, La)[ > €. (273)
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We now define the fuzzy sét’ € P(T x 2 x I) by
/’LX’((T7 L)7 C, Z)

1 —1imin(z+dp,1) : ¢=0
_ ! 11g D emIAz<diA(T, L) £ (To L) @74
$+32—3do D c=1A(z2dyV(T,L)=(To, La))
forall (T,1) € T,c € 2andz € I, whered; = d'((T,1),(T1,L1)) andds =
d((T,L),(Te,Ls)). Again from L-81, we obtain
Tox(v) = T5(7) (275)
Loxi(y) = 15(7) (276)

forall v € (0,1). Hence

|Fe(Q)(X) — Fe(Q)(X')]
=6(To,x, Lo.x) —&(To.x» Lo.x)| by Def. 45

= [&(Th, L)) — &(T3, L) by L-23
= [¢(T1, L1) — &(T2, Lo)| by (270), (271), (275), (276)
i.e. by (273),
[Fe(Q)(X) — Fe(Q)(X)] > ¢, (277)

by the assumed choice ¢T3, Lo) € T. Let us now consider the distandeX, X’)
of the fuzzy argument sets. Hence (8%, L) € T, ¢ € {0,1} andz € I. In order
to shorten the proof, | abbreviatt, = max(dy,ds), d¢ = min(dy,d2) andd =
d'((Tq1,L1),(Te,Ls)). Itis apparent from the triangle inequation that

dy < dg+d. (278)
For example ifd, = d; andd, = ds, then
dy =d'((T,L),(T1, L1)) <d'((T,1),(Ta, Lo)) +d'((T2, L2), (T1, L1)) = de +d.

In the following, we discern four cases.

1. ¢=0.Then
|MX’((T7 L),C, Z) - MX((Tv L),C, Z)|
= \% - %min(z +ds,1) — (% - %min(z +dq,1))] by (269), (274)
= 1|min(z + dy,1) — min(z + da, 1)|
= 3(min(z + dy, 1) — min(z + dy, 1)) .

If dp +z > 1, thend,, + z > 1 as well and
|/'LX'((T7 J—)u c, Z) - MX((Tu L)u c, Z)l
(min(z + dy, 1) — min(z + d, 1))
(1-1)

O = -
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If dp + z < 1, thenmin(d,; + z,1) = dy + z and hence

(T, L), ¢,2) = px ((T, L), ¢,2)]|
(min(z + dy, 1) — min(z + dy, 1))
(min(z + dy, 1) — 2z — dy)
(
(

lx

z4+dy, — 2z —dy)
z4+di+d—z—dy)

IN N
N[ D= N[= D= N

S

2.c=1Nz<di A (T,J_) 7é (TQ,J_Q). Then

lnx ((Ts L), ¢, 2) = px (T, L), ¢, 2)]

by (278)

X
=3 —3d— (3 — 3d1)| by (269), (274)

.c=1Nz<di A (T, J_) = (Tg, J_Q) Thend1 = d/((—rg, J_Q), (Tl, J_l)) =d
andds = d'((T2, L2),(T2,Ls)) = 0. In particular,z < d. Hence

lnx: (T L), ¢, 2) = px (T, L), ¢, 2)]

=3 —3d— (5 + 32)| by (269), (274)

=3l —di 2|

= 3(d1 +2)

< id+a) becausel; = d andz < d, see above
=d

4, c=1Az>d;. Then

lx (T, L) ¢,z) = ((T 1),¢2)|

=14l 1d - ( +i2- -dQ)\ by (269), (274)
= 1|ds —d1\

= 3(dy — do)

< 1(de+d—dy) by (278)
=14,

-2

Summarising, we obtained in any of the above cases that

|MX’((T7J-)>C’Z) - MX((T>J-)’072)| <d,

i.e.

|MX’((T7J-)7C’Z) - ,UX((T7J-)7672)| <d= d/((Tle-l)7 (T27J-2)) < s (279)
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by (272). Therefore

d(X,X/)

=supf{|ux ((T,L1),¢,2) — ux((T,L),¢e,2)]: (T, L) €T, ce2,z€1} by(4)
S% by (279)
<94.

Combining this with (277), this proves that for the givénthere existsX’ with
d(X,X') < & and|Fe(Q)(X) — Fe(Q)(X')| > e. Becausey > 0 was arbitrary,
we conclude that there exists> 0, Q : P(T x 2 x I) — T andX € P(T x 2 x I)

(viz, our above choices) such that for all> 0, there existsY’ € P(T x 2 x I) with
d(X,X’) < dand|F¢(Q)(X) — Fe(Q)(X') > e. HenceF; is not arg-continuous by
Def. 26.

Proof of Theorem 51

Supposef : T — T satisfies (X-2), (X-4) and (X-5). In order to prove that the
conditionsa. andb. are equivalent, we split the equivalence in two implications,
which we prove separately.

b.=a.: This case is already covered by L-78, i.e. conditions sufficient forF¢ to
be arg-continous.

a.=b.: Inorderto prove that conditidn is also necessary o, to be arg-continuous,
let us assume théfk, is arg-continuous. We have to show tiatholds. To this end,
we first recall that by L-82, the following condition holds ferfor all (T, 1;) € T
and alle > 0, there exist®9; > 0 such that

(T, Ly) —&(Ta, Lo)| < ¢ (280)
whenever(T,, 1) € T satisfies
d'((T1,L1),(T2, La)) < &1 (281)

andT2(0) > 1,(0). Becausg satisfies (X-2), this entails that for gll";, 1,) € T,
there exist®, > 0 such that

1€(T1, L1) —&(T2, Lo)| <€ (282)
whenever(Tq, Lo) € T satisfies
d/((—l—la J-l)a (T27 J-Q)) < 52 (283)

and_1,(0) < T4(0). We insert the proof of this simple claim here. We already know
from L-82 that there exists, > 0 such that

€1 = L1, 1= T1) = &(Ty, Ly)| <e (284)
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whenever(T}, 1}) € T satisfies
d'((1— 11,1 =T1), (T, 15)) < (285)
andT4(0) > 1 — 1,(0). Now consider T, L2) € T with
d'((T1,11), (T2, L2)) < 62 (286)
and_L.(0) < T1(0). SubstitutingTi =1 — Ly and L} =1 — To, we have

d/((l - J—lv 1- Tl)v (Tl2a J—/2))
=d'((1—-L1,1=T1),(1— Lo, 1=T2))
=d'((T1,11), (T2, L2)) apparent from (33)
< s by (286)
Hence condition (285) is fulfilled. In addition, we clearly havg(0) = 1 — 15(0) >

1 — T1(0) because by assumptiony(0) < T,(0). Hence we conclude from (284)
that

1€(T 1, L1) —&(T2, L2)]

=1-§1—L1,1=T1) = (1—=&(1~L2,1=Ty)) by (X-2)
=161 — L1, 1—T1) —&(T5, L5)]
<e. by (284)

Hence (282) holds, i.e. the the second conditior§ ®also satisfied.

We can combine these conditions as follows. L&, 1) € (T,L1) ande > 0 be
given. Further let; > 0 be chosen such that (280) holds, anddlet> 0 be chosen
such that (282) holds. Now let = min(d;,d2) and conside(T,, Lo) € T with
d/(<T1, J—l)» (TQ, Lg)) < 0. If TQ(O) > Ll(O), then|€(T1, J—l) —f(Tg, LQ)I <e by
(280). In the remaining case that(0) < L41(0), we havel,(0) < T5(0) < L4(0).
Hence the second condition is applicable and by (282) 1, L1) — (T2, La)| <

€. This finishes the proof that conditidn of the theorem holds whenever condition
a. holds, as desired.

B.33 Proof of Theorem 52

Lemma 83 Suppos& : T — I is a mapping such thatX-2) and the following
condition are valid. For alk > 0, there exist$ > 0 such that

|£(T7 J—) - f(—l—/v J—)| <e
whenevelT, L), (T’, L) € T such thad’ (T, T') < §. ThenF; is arg-continuous.
Proof Let¢: T — Ibe a given mapping with the above properties. Nowve et 0.
By assumption, there exists > 0 such that

€(T, L) = &(T, L) < 3 (287)
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whenever(T, 1), (T’, L) € T such that? (T, T') < ¢’.
We now conside(T, L), (T’, L") € T with

d((T,L), (T, 1) <d. (288)
We also note that by (288) and (33),

d'(T, L), (T, L) <d(T,L),(Th L)< (289)

d((L=L,1= T, (1= 11— T") = (T, 1),(T', 1)
<d/((T, L), (T, 1) <& (290)
Therefore

E(T", L) = &(T", L]
=|(1-¢1-L1-T))-(1-¢1-L11-T) by (X-2)
=[1-L1-T) -1 -1 1-T,

[E(T", L) = &(T", L) < 5 (291)
by (287) and (290). Finally

|€(T7 L) - g(T/7 J-l)|
<|E(T, L) —&(T, L) +]&(T, L) —&(T’, L)| by triangle inequation
<+t by (287), (289) and (291)

=£.

Hence for all(T, L) € T an alle > 0, there existsy > 0 such that/&(T, L) —
(T, L")] < ewhenever(T’, L") € T satisfies? (T, L), (T',L’)) < 6. Application
of L-78 yields thatF; is arg-continuous.

Proof of Theorem 52

Let¢ : T — I be a given mapping which satisfies (X-2) and (X-5) and also fulfills
the condition imposed by the theorem. We will show théaulfills the preconditions
of lemma L-83. Hence let > 0 be given. By assumption, there exists- 0 such that

ST L) —&(Ts, L) <e (292)

whenever(T,, L), (T*, 1) € T satisfyd' (T., T*) <dandT, < T*.
Now let (T, L), (T’, L) € Twithd'(T,T’) < . We abbreviate

T, =min(T,T")
T" = max(T, T').

Clearly(T.,L1),(T*, L) € T. In addition, it is obvious from (31) that
d(T,, TH=d(T, T <§. (293)
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In addition, we may conclude from (X-5) that

§(T7, L) = max(¢(T, 1), (7", L)) (294)
§(Ts, L) < min(§(T, 1), 6(T', 1)) (295)

Hence

(T, L) —&(T", 1)

= max(§(T, 1),&(T", L)) — min(¢(T, L),£(T", 1))

<E(TH L) —&(Tw, 1) by (294), (295)
=1&(T", L) —&(Tx, L) by (X-5) andT, < T*
<e. by (292)

Hence the condition of L-83 is satisfied, from which we conclude tRats arg-
continuous.

B.34 Proof of Theorem 53

Fen is known to satisfy (X-2) and (X-5) by Th-27 and Th-23. In order to prove that
Fen is arg-continuous, it is hence sufficient to show that satisfies the condition
stated in Th-52: we have to show that for all> 0 there exist®y > 0 such that
E(T/, L) —&(T, L) < e whenever(T, 1),(T’, L) € T satisfyd'(T,T’) < § and
T<T.

Hence lets: > 0 be given. | will show that = ¢ is a proper choice of for {cy,.
Consider(T, 1), (T’, L) € Twithd'(T,T’) <eandT < T’. Becausel < T/, this
means that

sup{inf{': T(7') = T'(")} —y:v eI} <e
by (31). Hence
T(y+e)>T() (296)

forall vy € [0,1 — ¢]. We defineT” : T — I by

T”(’Y)_{ [orte) 33:‘; (297)

Then by (296),

T > T (298)
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Now let us put things together:

|€cn(T, L) — &cn(T', L)

<

N[=

VASVAN
.m ST

§Ch(—|—/’ J—) - §Ch(—|—, J-)
Eon(T", L) —€&cn(T, L)

é(/o1 T(v) dy + /01 L(7)dy
[T [ o)
[ T [ Tem

N[

( / ey + / T

—E€

/:wcw/;wm)
%(/Ol_ET(er&)d%L/l;ldv
—/:m)dv—/:wcm
%(/ElT(’Y)dV'FE—/OET(’Y)CZW—/:T(WW’Y)

- Ty )

HenceFqy, is arg-continuous by Th-52.

B.35 Proof of Theorem 54

by (X-5)
by (298), (X-5)

by Def. 47

by (297)

We already know from Th-30 thakts is a DFS. In particular, we can deduce from
Th-23 that{s : T — I as defined in Def. 50 satisfies (X-1) to (X-5). Hence Th-51
applies, and we can prove thé&k fails to be arg-continuous by showing that there
exist(Ty, L) € T ande > 0 such that for alb > 0, there exist§ T2, Lo) € T with
d/((Tl, J_l), (TQ, J_Q)) <9 and|§s(T1, J_l) — Es(—rg, J_Q)l > €.
Hence let(T1, L1) = (c3,c3) and lete = %. From (X-1), we immediately obtain

4 4

€s(c )=12.

3,C3
4 4
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Now considets > 0. We choos€ T, L2) = (T2,c3) and definely : T — I by
4

3 s
7 - ys1l—3

Ta(y) = { ! 5 (300)
T y>1-3
for all v € 1. In this case, we obtain from Def. 50 that

1
&s(Ta,c3) = min((Tg)J{, % + %(c§)§§l) by Def. 50 anc:3 (0) = % > %
1 ) )

*

=min(1,3 +1-1) by (12), (26)
= 17
i.e.
£s(Ta,c3) =1 (301)
4
Hence
\E(C%C%) - £(T2,c%)\ =3 -1 by (299), (301)
_3
4
> e,
although

d/((C%,C%), (TQ,C%)) = g <9.

(This is apparent from (33) and (300)). Hence conditionof Th-51 fails, which is
necessary fof s to be arg-continuous. We conclude tifé is not arg-continuous.

B.36 Proof of Theorem 55

We first recall that 4 satisfies (X-2), (X-4) and (X-5), see Th-31 and Th-23. Hence
Th-51 is applicable, and we can show tlifat fails to be arg-continuous by proving
that there exist§T, 1) € T ande > 0 such that for alb > 0, there exis{T’, L") € T
with &' ((T, L), (T, L") < dand|€a(T, L) = &a(T', L) > e.

Hence letfT =c¢;, L =c; ande = % Now considew > 0. Define L’ by

1 v < [l
L'(y) = { s
> >3
Thend'((T, L), (T, L") = £ < 4. In addition,
L= tim ea(1) = } (302)
1/5= lim L'(y) =1 (303)
y—07+
1% =inf{y:ci(y) =0} =inf@ =1 (304)
2
J_'Si =inf{y: L'(y) =0} =info =1 (305)
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by (9) and (10), respectively. Hence

€a(T,L1) =min(Lg, 2 + 319 by Def. 51
=min(3,2+1.1) by (302), (304)
=

and

€a(T, L") = min(L'5, 1 + 1179 by Def. 51
=min(1,4 +1-1) by (303), (305)
=1.

Thereforel¢4(T, L) — €a(T,L)| = § = . We conclude from Th-51 tha, is not
continuous in arguments.

B.37 Proof of Theorem 56

Suppos€, ¢’ : T — I are given andFe, F, are the corresponding QFMs.

b.=a: LetQ : P(E)" — I be a semi-fuzzy quantifier and I&;,..., X, €

P(E). Then

Fe(@Q)(X1,....Xn) =&(To.x,.. %, Lo.xu...x,) by Def. 45
=& (To.x,...x.» Lo.x,...x,) byassumed conditiob.
=Fer(Q)(X1,..., Xp). by Def. 45

HenceF: <. F¢.

a=b.: Let(T,L) e T be given. By Th-21, there existg : P(2 x I) — I and
X € P(2 x I) such that

T=Tox l=1gx. (306)
Therefore
=F:(Q)(X) by Def. 45
= Fer (Q)(X) by assumed conditioa.
= f/(TQ)X, LQQ{) by Def. 45
=¢(T,1). by (306)

B.38 Proof of Theorem 57

Lemma84 Let&, ¢ : T — I be given. If¢, ¢ satisfy(X-2), then the following
conditions are equivalent.
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a. ‘7‘—5 =c .7:,5/;

b. forall (T, L) € Twith T(0) > 3, &(T, L) <. €'(T,L).
Proof

a.=b.: This is apparent, becauge is a weakening of the conditiom. of Th-56,
which has already been shown to be necessargfor,. F¢.

b.=a.: Tosee this, lefT, L) € T.If T(0) > 1,theng(T,L)=.&(T,L)byb. In
the remaining case that(0) < 1

f(T, J~) =1- 5(1 - Jﬂ 1- T) by (X-2)
2 1-¢1-1,1-T) by assumed conditiob.
=¢&(T, 1), by (X-2)

recalling thatl — z <. 1 —yifand only ifz <. y. Henceg(T, 1) <. &' (T, L) for all
(T,L1) €T, ie.Fe 2. Fe by Th-56.

Lemma85 Let¢ : T — I be a given mapping which satisfi€s-5) and has the
additional property thatt(T, L) = § wheneverT(0) > § > 1(0). Then for all
(T,L)eT,

a. If L(0) > %, theng(T, L) >

N[= N[

b. If T(0) < %, then(T, L) <

Proof Suppose : T — I satisfies (X-1) to (X-5). We shall assume tlgpropa-
gates fuzziness. Further Iet, L) € T be given.

a: L(0)> 3. ThenT(0) > L(0) > 1. Therefore

§(T, L) > &(T,min(L, 3)) by (X-5)
1

2

by the assumed property &f

b.: T(0) < 3. Inthis caseL(0) < T(0) < 3. Hence
(T, L) < €&(max(T, 3), 1) by (X-5)
_ 1
=1,

again by the assumed property&of
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Proof of Theorem 57

Let£,¢ : T — T be given mappings which satisfy (X-1) to (X-5) and have the
additional property that

)=1 (307)

§(T, 1) =¢(T,
> 1(0).

L
whenever(T, 1) € T is such thafT (0) > 1

1
2
a=b: Let(T,L1)eT. If L(0)> 3, then{(T,L) > 1and¢/(T, L) > 1 byL-85
Hence in this case, the conditiof€T, L) < &'(T, L) and&(T, L) <. & (T,L) are

equivalent by (3). The imposed conditibn is hence a weakening of conditidm of
L-84, which has already been shown to be necessarffot, F¢ .

b.=a. To see this, le{T, L) € T with T(0) > 1. If T(0) > L(0) > 1, then
&(T, L) <¢(T, L) byassumption. Itis further apparent from L-85 that, 1) > 3.

Hencej < &(T,L1) < ¢(T,1),ie.&(T, L) =, &(T,L) by (3). Inthe remaining
case that. (0) < 1,i.e. L(0) < 3 < T(0), we conclude from (307) th&(T, L) =

% = ¢ (T,1). Inparticular,{(T, L) <. &(T,L). This proves that conditioh. of

L-84 is satisfied, which is sufficient foF, <. F.

B.39 Proof of Theorem 58
Lemma86 Let(T,L) € T be given such that (0) > 3. ThenLi' = L1, where
f=med:i(T,L1).

2

Proof We simply need to notice that
f) = med (T(): L)

=med (1, L(7)) becausél = ¢, see above
= max(zl('y), 3)- by Def. 22
Hence
[l =sup{yel: f(7) =1} by (13)

= sup{y € I: max(L(y),1) =1}
=sup{yel: L(y)=1}
=11, by (13)

Lemma 87 Suppos€ : T — I is a given mapping such théf; is a DFS. Further
let(T, L) € T such thatLi" > 0. Then

T, L) >1 4100,
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wheref = med (T, 1).
2

Proof SupposelLl” > 0. By (13), there exists’ > 0 such thatL(y") = 1. Hence
forally €I, T(y) > L(v') =1by Th-20.c, i.eT = ¢;. We now definel’ : T — 1

by

1
vo={y 238
for all v € I. It is apparent from (13) that > 1’. Hence
&7, L) >¢(T, L) by (X-5)
=£(cqg, L) becausél = c;, see above
=14 by (X-3)
=1+119 by (10), (308)

€T, 1) > 5+

This finishes the proof because of lemma L-86.

Proof of Theorem 58

Let us recall thaitM; is defined in terms oB’y; : H — I, where
B'y(f) =max(f!', f7)
for all f € H, see Def. 40. Hence by (15 : B — 1 is defined by
s+3Bu2f-1) : f eIB%Jlf

Bu(f) = % . feB2
5—2Bu(l—2f) : feB
for all f € B. This can be simplified as follows. Firstly ff € B, then
(2f = 1) =sup{y € T: (2f = 1)(7) =1} by (13)
=sup{y € 1:2f(7) — 1 =1}
=sup{yel: f(y)=1}
= £l by (13)
Similarly
(2f 1) = lm (2 ~1)(7) by (12)
= Wlinlrl_ 2f(y) -1
=2( lim f(v)) -1
y—1
=2ff -1
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Hence

Bu(f) =5+ gmax(fi1,2f) —1) = max(3 ;" + 3, f{) (309)
for all f € B~. By similar reasoning,
Bu(f) =5 — 3 min(fl,. fi), (310)
where we have abbreviated
[l =sup{y € 1: f(7) = 0}. (311)

In order to prove thaty; is the least specifif.-DFS, suppos€ : T — I is a given
mapping such thaf; is a DFS. We show thady <. F, by proving the equivalent
condition of Th-56, i.e{y <. &, where

Eu(T, L) = BU(med%(T, 1)) = Bu(f) (312)

by (25), andf abbreviates
f=medy(T,1). (313)
2

We will discern three cases.

a. 1(0)> 1. Letusdefinel” :I— Iby

1 N |
vy ={ gt P IE] (314)

for all v € 1. It is apparent from (12) and the fact thatis nonincreasing by Def. 44
that L > 1”. Therefore

(T, 1) >¢(T, L") by (X-5)
=&(T,cuy) by (7), (314) and L-23
> &(coy,clr) by (X-5), Th-20.c
=17, by (X-1)
i.e.
T, L) > 1. (315)

We also observe that

= vligg f() by (12)
= lim med1 (T(v), L(7)) by (313)
- 7111{17 max (3, L(7)) by Def. 22 because. < T,1 < T
= max(3, Wlir?_ 1(v)) becausenax continuous; constant
= max(3, 11), by (12)
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(316)

2

J_* o1y >
= Co1r<
1<

N[ D=

In the following, we treat separately the following subcases.

1. 1i' > 0andLly > L.
ThenéTL > 14+ 1f!TbyL-87.1n additiong(T 1) > 1% = f by (315) and
(316). Hence (T, L) > max(2 + 2 £, f1) > L,ie.&(T, L) =.&u(T, L) by
(3), (309) and (312).

2. L' >0andL1} < 1.
Then agair¢(T, L) 2 1y %f” > 1 by L- 87 In addition f1 = 1 by (316).
Hence&(T, L) > l + f = max( fl) > e T, =
¢0(T, 1) by (3), (309) and (312),

3. L' =0andLl; > 1
In this case&(T, L) > L5 = f; > i by (315) and (316). In additior.." =0
by L-86. Hence (T, L) > f; = max(2+2f ' ff) > 1, andagaig(T, L)>,
£u(T, L) by (3), (309) and (312).

4. 11" =0andLl; <1
Thenf!! = 0 by L-86 andf; = 1 by (316). Hencey (T, L) = 1 by (309)
and (312). In particulag(T, L) =, % &u (T, L) by (3).

b.: T(0) < 1. This can be reduced to cagebecause

(T, L)=1-¢1-1L,1-T) by (X-2)
1=l —-L1,1-T) by parta. of theorem
=&u(T,1). by (X-2)
c: L(0) < 1 < T(0). Then&y(T,L) = 1 by Th-19 and Th-34. Hence trivially

o~
—
\
|Y
SW.H

= &u(T, L) by 3).

B.40 Proof of Theorem 59

SupposeF, and F, are specificity consistent and I€t, L) € T. By Th-21, there

exists a semi-fuzzy quantifi€p : P(2 x I) — I and a fuzzy subseX ¢ 75(2 x I)
such thaffg x = T andLg x = L. Hence by Def. 45,

{67, 1), 6(T, L)} = {Fe(Q)(X), Fer (@)(X)} -

Hence either

{&(T,1),6/(T, L)} = {F(Q)(X), Fe (Q)(X)} € [0, 3]
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or

{&(T, 1),6/(T, L)} = {F(Q)(X), Fe (Q(X)} € [3,1]

by Def. 24. This proves that the condition §is entailed by specificity consistence of
fg and]-"fx.

To see that the converse implication also holds, suppaesel¢’ are specificity consis-
tent as stated in the theorem. Further@et P(E)" — T andXy,...,X, € P(E)
be given. It is then apparent from Def. 45 that

{ff(Q)(Xla cee aXn)vfﬁ’(Q)(Xla o 7XTL)}
={6(To.x1, . x0 Lox1 . x) § (To.x0 X0 L@.X0 0 x0) )
Hence either
{fﬁ(Q)(le cee 7Xn)7*7:£’(Q)(X17 sy Xn)}
= {&(Tox1.x Loxi.x.), 8 (To.x, ... x0 Lo.x,...x,)} €0, 3]
or
{fE(Q)(le s 7Xn),f§/(Q)(X1, ceey Xn)}
={&(To.x1,. X Lo X1 x0 ) E (T X0 X0 L0 X0, x0) )} € (5511,

i.e. Fe, Fe are specificity consistent according to Def. 24.

B.41 Proof of Theorem 60

We will simply show that the DFSe$1s and F¢;, are not specificity consistent. To
this end, we defin€T, L) € T as follows.

T =% (317)
3
1 7<1o
L(y)=4 4 (318)
) { 0 7> %
Then
1
/ T()dy =3
0
and
1
/O J—(V)d'YZ% 1_10 = 430
by (317) and (318), i.e.
1 1
(T L) =4 [ Toyav+d [ Lo)dr=4-3+3-%=% @9
0 0
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by Def. 47. In the case aM g, we abbreviatef = med; (T,L). Then by Def. 22
(317) and (318), :

3 1
fy =91 !
) { 3 121
and
1 1
= fy < ﬁ
2f -1 = { 2
0 @ 721
Hence(2f —1)2' = L and(2f — 1); = 1 by (10) and (9). In turn,
Bs(f) =5 +3B8's(2f = 1) by (16)
=14 Lmin(2f -1, 2f — 1)) by Def. 41
=1+ Imin(3,3) see above
“ieido
ie.
Bs(f) = 35 - (320)

By Th-21, there exists a semi-fuzzy quantifigr. P(2 x I) — I and a fuzzy subset
X € P(2 x I) such that

T = Tox L=lox. (321)
Hence
Fen(Q)(X) =&en(To,x, Lo.x) by Def. 45, Def. 47
=&cn(T, 1) by (321)
=3 by (319)
1
2
and
Ms(Q)(X) = Bs(med1 (Tg,x, Lo, x)) by Def. 41, Def. 45 and (25)
2
= Bg(med (T, 1)) by (321)
2
= Bs(f) see above definition of
=3 by (320)

i.e. according to Def. 24, and Mg are not specificity consistent.
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B.42 Proof of Theorem 61
LetF be a collection ofF.-DFSesF; € F with the property that
Fe(T, L) =13 (322)

whenever(T, 1) € T is such thafl (0) > 5 > L(0). In the following we define

1
2

X={¢:T—1: FccF}. (323)
Then apparently
F={F::£eX}. (324)
For a given semi-fuzzy quantifi€y : P(E)" — Iandfuzzy argument¥y,..., X, €
P(E), we abbreviate
Ro.x,..x, = {Fe(Q)(X1,..., Xy) : Fe € F}.

AbbreviatingT = Tg x, x,,, We clearly have

.....

Ro.x,,.x, ={&(T,1): £ €X} (325)

.....

by (324), (323) and Def. 45. In the following, we discern three cases.

a.: L(0)> 1. Thenforall € X,

&T, 1) >3 (326)
by L-85.a. Hence
RQ.x,...x, ={&(T, 1) : £ € X} by (325)
C [3,1]. by (326)
b.: T(0) < 1. Inthis case, we obtain from L-85.b that for alE X,
§T, 1) <3 (327)
and hence
Ro.xy,..x, ={&(T, 1) : £ € X} by (325)
c [0, 3]. by (327)
c.. 1(0) <1< T(0). Thenforall € X,
(T, =1 (328)
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by (322). Therefore

Ro.x,...x, = {&(T,1): £ € X} by (325)
= {3} by (328)
C[3,1].

= 12>

Summarizing these results, the given class of DAB&ss the property that for all
Q:P(E)" — IandXy,...,X, € P(E),italways holds that eitheR¢ x,. . x.
[0,3] or Rg x,,....x, C [3,1]. HenceF is specificity consistent by Def. 24.

B.43 Proof of Theorem 62

The claim of the theorem is apparent from Th-34, Th-32 and Th-61.

B.44 Proof of Theorem 63

The claim of the theorem is apparent from Th-40 and and Th-61.

B.45 Proof of Theorem 64

Let us denote the class #;-DFSes that propagate fuzziness in quantifierB.agve
conclude from Th-62 and Th-6 th&thas a least upper specificity bouf,y,.

We already know from Th-30 thaks is a DFS. We also know from Th-36 th&is
propagates fuzziness in quantifiers. TherefBge<, Fi,p. It remains to be shown that
Fe 2. Fsforall 7¢ € F.

Hence let(T, L) € T with 1.(0) > ;. We defineT’ : I — I by

, I L A |

BecauseT is nondecreasing, we apparently have< T’, recalling that

Ti= lim T(v).
y—1-

In addition, we conclude from Th-20.c afid0) < T7 that L(v) < Tj forall v €I,
i.e. L <cts:. Therefore

(T, 1) <&(T, 1) by (X-5)
< (T ers) by (X-5)
=¢&(cTr,e71) by (329), (7) and L-22
=T1, by (X-1)
i.e.
T, L)< T, (330)
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Let us further define

<1
, 1 y< 12
U(y) = 1, (331)
% > 1.2
and
<lj,
1 < 1;2
17(y) = = (332)

<_
0 : fy>J_;2l

for all v € 1. It is apparent from (26) that < 1’. We further notice that’ =

<_
max(1"”, 1) and 1% = 152", Therefore

f(T7 L) S §(T, L/) by (X'S)
< &(er, L) by (X-5)
= &(cq, max(L”, %)) by Th-33
=141 by (X-3)
1 1
=1+ %Lle , becausel =2 — 1"
i.e.
<11
(T, L)y <i+110 (333)
Therefore
w11, <3l
f(Ta J—) S mln(—l—la 2 + §J—* ) by (330)! (333)
=&g(T,1). by Def. 50

We conclude from Th-57, Th-32 and Th-34 tifat<. Fs. This finishes the proof that
Fs is the most specificc¢-DFS which propagates fuzziness in quantifiers, fg.=
Flub-

B.46 Proof of Theorem 65

Let us denote the class ¢f;-DFSes that propagate fuzziness in arguments. a#/e
conclude from Th-63 and Th-6 th&thas a least upper specificity bouf,y,.

We already know from Th-31 that, is a DFS. We also know from Th-43 th#i,
propagates fuzziness in arguments. Therefore<,. F,p. It remains to be shown that
Fe 2. Fa forall ¢ € F. To this end, we can utilize the property stated in Th-40,
i.e. Th-57 is applicable. According to the latter theorem, we can showFhat, 74

by proving thaté(T, L) < £4(T, L) forall (T, L) € T with L(0) > 1.

Hence let(T, L) € T with L(0) > 3 be given. We discern two cases.
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a.: Ly <i. Inthiscase, we define’ : T — Iby

/ 15 : =0
L(V):{ () - ’;>0

for all v € I. L is nonincreasing becausk is nonincreasing and/(0) = L§ =
lim,_,+ L (7). In addition, L'(0) < L(0) < T(0). We conclude thatT, L") € T.
Next we notice thaf (0) > 1(0) > 1 and_L/(0) = Lj < 3, by assumption of case
a.. Therefore

fA(T,J_) = gA(T,J_/) by L-23
=1 by Th-40
=&(T, 1) by Th-40

in particular we obtain the desirgdT, L) < £4(T, 1).

b.. L > 3. Inthis case,
€a(T, L) =min(L5, 3 + 319 (334)

by Def. 51. We definel’ : T — I by

oy [ L) sy < 18
L(v){ 0 Ly 0 (335)

forally € I. Clearly L* < 1’ < 1°, hence
T, L) =¢(T,1) (336)

by (X-4) and (X-5). We further define” : I — I by

1 @ ~< 1%
1" (v) = - 337
™) { 0 : ~>1% (337)

for all v € I. Itis immediate from the definition of ” and from equation (10) that
1% = g0 (338)

Now we observe that’ < 1” andT < ¢;. Therefore

(T, L) =¢(T, L) by (336)
< (e, L") by (X-5)
=141 by (X-3)
=14+110 by (338)
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T, L)< 3+31%. (339)

Finally we definel” : T — I by
J_NI(’}/)_{ J_S . ’y:O

for all v € 1. Obviously

(T, L) =¢&(T, L") by L-23
=¢(cr, L") by Th-38 and Th-39
<¢&(c1,cuy) by (X-5)
=¢&(cos,cux) by Th-38 and Th-39
=10, by (X-1)
i.e.
§(T,1) < 1g. (340)

Hence we get the desired

&(T, 1) =< min(15, 5+ 119 by (339), (340)
= £a(T, 1). by (334)

We conclude from Th-57 and Th-40 th&t <. F4. This completes the proof thai
is the most specifiF-DFS which propagates fuzziness in arguments,Age= Fiup.
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