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Abstract

In this report, a broad class of standard models of fuzzy quantification is introduced,
all of which satisfy the adequacy requirements of DFS theory, an axiomatic theory of
fuzzy natural language quantification. The new models arise when the known construc-
tion of DFSes in terms of three-valued cuts is separated from the fuzzy median-based
aggregation used in previous work onMB-DFSes. Some of the new models are benefi-
cial compared to the knownMB-DFSes when the inputs are overly fuzzy and one still
needs a fine-grained result ranking. The report develops the full set of criteria required
to check whether a given model of fuzzy quantification based on the new construction
conforms to the adequacy conditions of DFS theory; whether it propagates fuzziness
in quantifiers and/or arguments and hence complies with the intuitive expectation that
less detailed input should not result in more specific output; whether it is robust with
respect to noise in the arguments or alternative interpretations of a fuzzy quantifier;
and how it compares to other DFSes by specificity.
The present report also helps to better relate existing work on fuzzy quantification to
the axiomatic framework provided by DFS theory. Recent findings indicate that the
Sugeno integral and hence the ‘basic’ FG-count approach can be embedded into DFS
theory: they can be consistently generalized to the ‘hard’ cases of fuzzy quantification
involving multi-place, non-quantitative and/or non-monotonic quantifiers. The report
proves a similar result for the Choquet integral and hence the ‘basic’ OWA approach,
by presenting a DFSFCh with the desired properties. It is anticipated thatFCh will see
a number of applications in future software systems that profit from the use of fuzzy
quantifiers.1

1The second improved edition of the report fixes a bug of the original version which affected some
theorems concerned with propagation of fuzziness. Apart from these corrections, a discussion of the new
modelFA has been added.
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1 Basic concepts of DFS theory

Approximate quantifiers likealmost alland the omnipresence of fuzzy concepts like
tall or rich in natural languages (NL) pose the problem of assigning a reasonable in-
terpretation to expressions likealmost all tall people are rich.2 DFS theory [6, 7]
provides an axiomatic solution to the problem of ensuring an adequate interpretation.
Starting from the notion of a two-valued generalized quantifier developed by the theory
of generalized quantifiers (TGQ, see [1, 2, 3]), DFS theory introduces the key notions
of semi-fuzzy quantifiers and fuzzy quantifiers. The benefit of introducing semi-fuzzy
quantifiers is that they provide a compact description of fuzzy quantifiers. These de-
scriptions can rely on the traditional notion of cardinality of crisp sets, which is not
directly applicable to fuzzy quantifiers because these need to handle fuzzy argument
sets liketall. The mapping from simplified descriptions, i.e. semi-fuzzy quantifiers, to
corresponding fuzzy quantifiers is established through a quantifier fuzzification mech-
anism (QFM). DFS theory approaches the problem of reasonable interpretation by im-
posing formal conditions on admissable choices of QFMs. These conditions ensure
that the essential properties of quantifiers and relationships between quantifiers are
preserved when applying the fuzzification mechanism. They can be likened to the fa-
miliar algebraic concept of a homomorphism, i.e. of a structure preserving mapping
which is compatible with a number of given constructions.

In the following we give a brief account of the basic concepts of DFS theory. The
reader interested in more motivation and NL examples of the constructions or axioms
is advised to consult the primary sources on DFS theory: the original presentation is
[6]; the current terminology and a simplified axiom system have been introduced in
[7]. Let us first define two-valued generalized quantifiers in accordance with TGQ:

Definition 1 An n-ary two-valued quantifieris a mappingQ : P(E)n −→ 2, where
E 6= ∅ is a nonempy set called the base set or domain ofQ, P(E) is the powerset
(set of subsets) ofE, n ∈ N is the arity (number of arguments) ofQ, and2 = {0, 1}
denotes the set of two-valued truth values.

A two-valued quantifier hence assigns a crisp quantification resultQ(Y1, . . . , Yn) ∈ 2
to each choice of crisp argumentsY1, . . . , Yn ∈ P(E). We allow for the case of nullary
quantifiers (n = 0), which can be identified with the constants0 and1. Some examples
of two-place quantifiers are

allE(Y1, Y2) = 1⇔ Y1 ⊂ Y2

someE(Y1, Y2) = 1⇔ Y1 ∩ Y2 6= ∅

noE(Y1, Y2) = 1⇔ Y1 ∩ Y2 = ∅

at least k E(Y1, Y2) = 1⇔ |Y1 ∩ Y2| ≥ k
more than k E(Y1, Y2) = 1⇔ |Y1 ∩ Y2| > k

for all Y1, Y2 ∈ P(E); |•| denotes cardinality. We usually drop the subscriptE when
the base setE is understood. In order to cover the approximate variety of NL quan-
tifiers (e.g.about 10) and to be able to apply these quantifiers to arguments liketall

2in the present case, the result should be close to0 (false).

3



and rich, we need to enhance this concept of quantifiers and incorporate ideas from
fuzzy set theory. Afuzzy subsetX of a given setE assigns to each elemente ∈ E
a membership gradeµX(e) ∈ I, whereI = [0, 1] is the unit interval. A fuzzy subset
is hence uniquely characterised by its membership functionµX : E −→ I. We shall
denote the collection of all fuzzy subsets ofE (i.e. its fuzzy powerset) bỹP(E). We
shall assume that̃P(E) is an ordinary set. In the following, it will be convenient to
assume that crisp subsets are a special case of fuzzy subsets, i.e. we will assume that
P(E) ⊆ P̃(E).3 We are now ready to introduce fuzzy quantifiers:

Definition 2 An n-ary fuzzy quantifieron a base setE 6= ∅ is a mappingQ̃ :
P̃(E)

n
−→ I.

A fuzzy quantifier hence assigns to eachn-tuple of fuzzy argument setsX1, . . . , Xn ∈
P̃(E) a gradual quantification result̃Q(X1, . . . , Xn) ∈ I. Unlike two-valued quan-
tifiers, fuzzy quantifiers hence accept fuzzy input (we could e.g. haveX1 = tall ∈
P̃(E), X2 = rich ∈ P̃(E)). In addition, fuzzy quantifiers produce fuzzy (gradual)
output, thus providing a more natural account of approximate quantifiers likeabout ten,
almost all, manyetc. However, fuzzy quantifiers pose a new problem. Consider the
quantifiermore than 10 percent, for example. Given a finite base setE, we can easily
define a corresponding two-valued quantifiermore than 10 percent : P(E)2 −→
2, viz

more than 10 percent (Y1, Y2) =
{

1 : |Y1 ∩ Y2| > |Y1|/10
0 : else

for all Y1, Y2 ∈ P(E), utilizing the cardinality|•| of crisp sets. Unfortunately, it is not
that easy to provide a straightforward definition of a corresponding fuzzy quantifier

˜more than 10 percent : P̃(E)
2
−→ I. This is becauseX1, X2 in

˜more than 10 percent (X1, X2)

are fuzzy subsetsX1, X2 ∈ P̃(E), i.e. we cannot utilize the familiar concept of car-
dinality of crisp sets to define a fuzzy quantifier. Unfortunately, there is no generally
accepted notion of cardinality of fuzzy sets which could be used as a substitute for
|•| in the fuzzy case. In order to overcome this problem, DFS theory introduces the
intermediary concept of semi-fuzzy quantifiers.

Definition 3 An n-ary semi-fuzzy quantifieron a base setE 6= ∅ is a mappingQ :
P(E)n −→ I.

Q hence assigns to eachn-tuple of crisp subsetsY1, . . . , Yn a gradual quantification
resultQ(Y1, . . . , Yn) ∈ I. Semi-fuzzy quantifiers share the expressiveness of fuzzy

3Note that this subsumption relationship does not hold if one identifies fuzzy subsets and their member-
ship functions, i.e. if one stipulates thatP̃(E) = IE , whereIE denotes the set of mappingsf : E −→ I. It
is hence understood that the appropriate transformations (e.g. from a crisp subsetA ⊆ E to its characteristic
functionχA ∈ 2E ⊆ IE ) are carried out and for the sake of readability, we will omit these in our notation.
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quantifiers because they can model fuzzy (gradual) quantification results. Like fuzzy
quantifiers, they are hence suited to represent approximate quantifiers. On the other
hand, semi-fuzzy quantifiers are defined for crisp arguments only, thus alleviating the
need to provide a definition for arbitrary fuzzy arguments, which made it so hard
to define fuzzy quantifiers and to justify a particular choice of their definition. Be-
cause every semi-fuzzy quantifier depends on crisp arguments only, it can be conve-
niently defined in terms of the crisp cardinality of its arguments and their Boolean
combinations. In particular, every two-valued quantifier (like the above choice of
more than 10 percent ) is a semi-fuzzy quantifier by definition.
Because of these benefits, semi-fuzzy quantifiers are considered a suitable base rep-
resentation for NL quantifiers: sufficiently expressive to capture all quantifiers in the
sense of TGQ as well as approximate quantifiers, and still sufficiently simple to allow
for a straightforward definition. However, semi-fuzzy quantifiers cannot be applied
to fuzzy arguments liketall or rich. We hence need a mechanism which accepts a
description of the target quantifier, stated as a semi-fuzzy quantifier, and returns a cor-
responding fuzzy quantifier which properly generalises the semi-fuzzy quantifier to the
case of fuzzy arguments.

Definition 4 A quantifier fuzzification mechanism(QFM) F assigns to each semi-
fuzzy quantifierQ : P(E)n −→ I a corresponding fuzzy quantifierF(Q) : P̃(E)

n
−→

I of the same arityn ∈ N and on the same base setE.

Of course, this definition must be further taylored to a class of ‘reasonable’ fuzzifica-
tion mechanisms. We expect a fuzzification mechanism to be ‘systematic’ or ‘well-
behaved’ and in conformance to linguistic considerations, and it is time to spell out
appropriate criteria. Perhaps the most elementary condition on a fuzzification mecha-
nism is that it properly generalizes the original semi-fuzzy quantifier. We can express
this succintly if we introduce the following notion of underlying semi-fuzzy quanti-
fiers.

Definition 5 Let Q̃ : P̃(E)
n
−→ I be a fuzzy quantifier. Theunderlying semi-fuzzy

quantifierU(Q̃) : P(E)n −→ I is defined by

U(Q̃)(Y1, . . . , Yn) = Q̃(Y1, . . . , Yn) ,

for all n-tuples ofcrispsubsetsY1, . . . , Yn ∈ P(E).

It is natural to require thatU(F(Q)) = Q, i.e.F(Q) properly generalizesQ in the
sense thatF(Q)(Y1, . . . , Yn) = Q(Y1, . . . , Yn) whenever all arguments are crisp.

Another adequacy constraint is based on the relationship of crisp and fuzzy member-
ship assessments with quantification. We make this relationship explicit through the
following definitions of (fuzzy) projection quantifiers:

Definition 6 SupposeE is a base set ande ∈ E. The projection quantifierπe :
P(E) −→ 2 is defined by

πe(Y ) = χY (e) ,

5



whereχY : E −→ 2 is the characteristic function ofY ∈ P(E), thus

χY (e) =
{

1 : e ∈ Y
0 : else

For example, we can use the crisp projection quantifierπJohn to evaluate crisp mem-
bership assessments likeIs John married?, which can be evaluated by computing
πJohn(married ), wheremarried ∈ P(E) is the crisp subset of married people in
E. A corresponding definition of fuzzy projection quantifiers is straightforward.

Definition 7 Let a base setE be given ande ∈ E. Thefuzzy projection quantifier
π̃e : P̃(E) −→ I is defined by

π̃e(X) = µX(e)

for all X ∈ P̃(E).

For example, we can evaluatẽπJohn(tall ) to assess the grade to which John is tall,
and we can computẽπJohn(rich ) to determineµrich (John), the degree to which John
is rich. Because crisp and fuzzy projection quantifiers play the same role, viz. that
of crisp/fuzzy membership assessment, we expect a reasonable choice of QFMF to
recognize this relationship and map each crisp projection quantifierπe to the corre-
sponding fuzzy projection quantifier, i.e.π̃e = F(πe).

We can also evaluate a QFM from the perspective of propositional fuzzy logic. This
is because a QFM can not only be applied to semi-fuzzy quantifiers. By a canoni-
cal construction, every QFM also gives rise to induced fuzzy truth functions, i.e. to a
unique choice of fuzzy conjunction, disjunction etc. In order to establish this link be-
tween logical connectives and quantifiers, we first observe that2n ∼= P({1, . . . , n}),
using the bijectionη : 2n −→ P({1, . . . , n}) defined by

η(x1, . . . , xn) = {k ∈ {1, . . . , n} : xk = 1} ,

for all x1, . . . , xn ∈ 2. We can use an analogous construction in the fuzzy case. We
then haveIn ∼= P̃({1, . . . , n}), based on the bijectioñη : In −→ P̃({1, . . . , n})
defined by

µη̃(x1,...,xn)(k) = xk ,

for all x1, . . . , xn ∈ I and k ∈ {1, . . . , n}. These bijections can be utilized for
a translation between semi-fuzzy truth functions (i.e. mappingsf : 2n −→ I) and
corresponding semi-fuzzy quantifiersQf : P({1, . . . , n}) −→ I, and similarly the
translation from fuzzy quantifiers̃Q : P̃({1, . . . , n}) −→ I into fuzzy truth functions
f̃ : In −→ I.

Definition 8 SupposeF is a QFM andf : 2n −→ I is a mapping (i.e. a ‘semi-fuzzy
truth function’) of arityn > 0. The semi-fuzzy quantifierQf : P({1, . . . , n}) −→ I
is defined by

Qf (Y ) = f(η−1(Y ))

6



for all Y ∈ P({1, . . . , n}). The induced fuzzy truth functioñF(f) : In −→ I is
defined by

F̃(f)(x1, . . . , xn) = F(Qf )(η̃(x1, . . . , xn)) ,

for all x1, . . . , xn ∈ I. If f : 20 −→ I is a nullary semi-fuzzy truth function (i.e.,
a constant), we shall definẽF(f) : I0 −→ I by F̃(f)(∅) = F(c)(∅), wherec :
P({∅})0 −→ I is the constantc(∅) = f(∅).4

We shall not impose restrictions on the induced connectives at this time; these will be
entailed by the remaining axioms.
Induced operations on fuzzy sets, i.e. fuzzy complement¬̃ : P̃(E) −→ P̃(E), fuzzy

intersection∩̃ : P̃(E)
2
−→ P̃(E) and fuzzy union∪̃ : P̃(E)

2
−→ P̃(E), can

be defined element-wise in terms of the induced negation¬̃ : I −→ I, conjunction
∧̃ : I×I −→ I or disjunction∨̃ : I×I −→ I, respectively. For example, the induced
complement̃¬X ∈ P̃(E) of X ∈ P̃(E) is defined by

µ¬̃X(e) = ¬̃µX(e) ,

for all X ∈ P̃(E) ande ∈ E.
Based on the induced fuzzy negation and complement, we can express important con-
structions on quantifiers like negation, formation of antonyms, and dualisation.

Definition 9 The external negatioñ¬Q : P(E)n −→ I of a semi-fuzzy quantifier
Q : P(E)n −→ I is defined by

(¬̃Q)(Y1, . . . , Yn) = ¬̃(Q(Y1, . . . , Yn)) ,

for all Y1, . . . , Yn ∈ P(E). The definition of̃¬ Q̃ : P̃(E)
n
−→ I in the case of fuzzy

quantifiersQ̃ : P̃(E)
n
−→ I is analogous.

For example,no is the negation ofsome .

Definition 10 Let a semi-fuzzy quantifierQ : P(E)n −→ I of arity n > 0 be given.
TheantonymQ¬ : P(E)n −→ I ofQ is defined by

Q¬(Y1, . . . , Yn) = Q(Y1, . . . , Yn−1,¬Yn) ,

for all Y1, . . . , Yn ∈ P(E). The antonymQ̃¬̃ : P̃(E)
n
−→ I of a fuzzy quantifier

Q̃ : P̃(E)
n
−→ I is defined analogously, based on the given fuzzy complement¬̃.

For example,no is the antonym ofall . The dualQ�̃ of a quantifier is the negation of
the antonym, or equivalently: the antonym of the negation. Hence

4The special treatment of nullary truth functions is necessary to avoid the use ofQf : P(∅) −→ I,
which is not a semi-fuzzy quantifier because the base set is empty. More information on the construction of
induced fuzzy truth functions may be found in [7].
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Definition 11 ThedualQ�̃ : P(E)n −→ I of a semi-fuzzy quantifierQ : P(E)n −→
I, n > 0 is defined by

Q�̃(Y1, . . . , Yn) = ¬̃Q(Y1, . . . , Yn−1,¬Yn) ,

for all Y1, . . . , Yn ∈ P(E). The dualQ̃�̃ = ¬̃ Q̃¬̃ of a fuzzy quantifier̃Q is defined
analogously.

For example,some is the dual ofall . We expect that a given QFMF be compati-
ble with these constructions on quantifiers. HenceF(no) should be the negation of
F(some ),F(no) should be the antonym ofF(all) andF(some ) should be the dual
of F(all).

Apart from negation/complementation, we can also form intersections and unions of
argument sets to construct new quantifiers from given ones.

Definition 12 Let a semi-fuzzy quantifierQ : P(E)n −→ I of arity n > 0 be given.
We define quantifiersQ∪, Q∩ : P(E)n+1 −→ I by

Q∪(Y1, . . . , Yn+1) = Q(Y1, . . . , Yn−1, Yn ∪ Yn+1)
Q∩(Y1, . . . , Yn+1) = Q(Y1, . . . , Yn−1, Yn ∩ Yn+1)

for all Y1, . . . , Yn+1 ∈ P(E). In the case of fuzzy quantifiers,Q̃∪̃ andQ̃∩̃ are defined
analogously, based on the given fuzzy set operations∪̃ and∩̃, resp.

Another important characteristic of quantifiers expresses through their monotonicity
properties.

Definition 13 A semi-fuzzy quantifierQ : P(E)n −→ I is said to benonincreasing in
its i-th argument, i ∈ {1, . . . , n}, if

Q(Y1, . . . , Yn) ≥ Q(Y1, . . . , Yi−1, Y
′
i , Yi+1, . . . , Yn)

wheneverY1, . . . , Yn, Y
′
i ∈ P(E) such thatYi ⊆ Y ′i . Q is said to benondecreasing in

the i-th argumentif the reverse inequation holds. The definitions for fuzzy quantifiers
are analogous.

For example,all is nonincreasing in the first argument and nondecreasing in the second
argument. We expect each reasonable choice of QFMF to preserve such monotonicity
properties. HenceF(all) should be nonincreasing in the first and nondecreasing in the
second argument.

We can also utilize a QFM to construct fuzzy powerset mappings. Let us first recall
the concept of a powerset mapping in the crisp case. To each mappingf : E −→ E′,
we can associate a mappinĝf : P(E) −→ P(E′) (the powerset mapping off ) which
is defined by

f̂(Y ) = {f(e) : e ∈ Y } ,

8



for all Y ∈ P(E).5 In order to generalise this concept to the fuzzy case, we need a
mechanism which associates fuzzy powerset mappingsE(f) : P̃(E) −→ P̃(E′) to
given mappingsf : E −→ E′. Such a mechanism is called anextension principle.6

The standard extension principle, proposed by Zadeh [15], is defined by

µ ˆ
f̂(X)

(e′) = sup{µX(e) : e ∈ f−1(e′)} , (1)

for all f : E −→ E′, X ∈ P̃(E) ande′ ∈ E′. With each QFM, we can associate a
corresponding extension principle through a canonical construction.

Definition 14 Every QFMF induces an extension principlêF which to eachf :
E −→ E′ (whereE, E′ 6= ∅) assigns the mappinĝF(f) : P̃(E) −→ P̃(E′) de-
fined by

µF̂(f)(X)(e
′) = F(χf̂(•)(e

′))(X) ,

for all X ∈ P̃(E), e′ ∈ E′.

We require that every ‘reasonable’ choice ofF be compatible with its induced exten-
sion principle in the following sense. SupposeQ : P(E)n −→ I is a semi-fuzzy
quantifier andf1, . . . , fn : E′ −→ E are given mappings,E′ 6= ∅. We can construct

the semi-fuzzy quantifierQ◦
n
×
i=1

f̂i : P(E′)n −→ I by composingQwith the powerset

mappingsf̂i, . . . , f̂n, i.e.

(Q ◦
n
×
i=1

f̂i)(Y1, . . . , Yn) = Q(f̂1(Y1), . . . , f̂n(Yn)) , (2)

for all Y1, . . . , Yn ∈ P(E′). By utilizing the induced extension principlêF of a
QFM, we can perform a similar construction on fuzzy quantifiers, thus composing

Q̃ : P̃(E)
n
−→ I with F̂(f1), . . . , F̂(fn) to form the fuzzy quantifier̃Q ◦

n
×
i=1
F̂(fi) :

P̃(E′)
n
−→ I defined by

(Q̃ ◦
n
×
i=1
F̂(fi))(X1, . . . , Xn) = Q̃(F̂(f1)(X1), . . . , F̂(fn)(Xn)) ,

for all X1, . . . , Xn ∈ P̃(E′). We require that a QFMF be compatible with this
construction, i.e.

F(Q ◦
n
×
i=1

f̂i) = F(Q) ◦
n
×
i=1
F̂(fi) .

This condition is of particular importance because it is the only criterion to relate the
behaviour ofF on different base setsE,E′. We can combine the above conditions in
order to capture our expectations on well-behaved models of fuzzy quantification in a
condensed set of axioms.

5Often the same symbol is used to denote both the original mapping and the powerset mapping.
6For our purposes, it will be convenient to assume thatE,E′ 6= ∅.
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Definition 15 A QFMF is called adeterminer fuzzification scheme(DFS) if the fol-
lowing conditions are satisfied for all semi-fuzzy quantifiersQ : P(E)n −→ I.

Correct generalisation U(F(Q)) = Q if n ≤ 1 (Z-1)

Projection quantifiers F(Q) = π̃e if there existse ∈ E s.th.Q = πe
(Z-2)

Dualisation F(Q�̃) = F(Q)�̃ n > 0 (Z-3)

Internal joins F(Q∪) = F(Q)∪̃ n > 0 (Z-4)

Preservation of monotonicity IfQ is nonincreasing inn-th arg, then (Z-5)

F(Q) is nonincreasing inn-th arg,n > 0

Functional application F(Q ◦
n
×
i=1

f̂i) = F(Q) ◦
n
×
i=1
F̂(fi) (Z-6)

wheref1, . . . , fn : E′ −→ E, E′ 6= ∅.

The axioms (Z-1) to (Z-6) have been shown to be independent in [7], which also shows
that the present axiom set is equivalent to the original definition of DFSes in [6] which
was based on nine axioms.
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2 Some properties of DFSes and special subclasses

The above conditions (Z-1)–(Z-6) are intended to cover those adequacy criteria that are
essential from the perspective of linguistics and fuzzy logic, and to provide a formali-
sation of these criteria in terms of a system of independent axioms. Due to the goal of
obtaining an independent system, it was not possible to include all of these adequacy
criteria directly into the axiom set, thus compromising its independence. However, it
has been shown in [7] that DFSes comply with a large number of linguistic and logi-
cal adequacy criteria. The following chapter is not intended to review these results on
adequacy properties of DFSes, which can be found in full detail in [7]. By contrast,
the chapter focuses on those definitions and theorems only, that are necessary to un-
derstand and prove the new theorems. Unless otherwise stated, the proofs of the cited
theorems can be found in [6, 7].

First we review some results on the fuzzy truth functions induced by a DFS. Let us
recall the definition of a strong negation (i.e. ‘reasonable’ fuzzy negation operator):

Definition 16 ¬̃ : I −→ I is called astrong negation operatoriff it satisfies

a. ¬̃ 0 = 1 (boundary condition)

b. ¬̃x1 ≥ ¬̃x2 for all x1, x2 ∈ I such thatx1 < x2 (i.e. ¬̃ is monotonically
decreasing)

c. ¬̃ ◦ ¬̃ = idI (i.e. ¬̃ is involutive).

Note. Whenever the standard negation¬x = 1 − x is being assumed, we shall drop
the ‘tilde’-notation. Hence the standard fuzzy complement is denoted¬X, where
µ¬X(e) = 1 − µX(e). Similarly, the external negation of a (semi-) fuzzy quanti-
fier with respect to the standard negation is written¬Q, and the antonym of a fuzzy
quantifier with respect to the standard fuzzy complement is written asQ̃¬.

We also recall the concepts of at-norm (i.e. ‘reasonable’ fuzzy conjunction) ands-
norm (‘reasonable’ fuzzy disjunction), see [10]. The fuzzy truth functions induced by
a DFS are guaranteed to belong to the class of such reasonable operators:

Theorem 1 In every DFSF ,

a. F̃(id2) = idI is the identity truth function;

b. ¬̃ = F̃(¬) is a strong negation operator;

c. ∧̃ = F̃(∧) is a t-norm;

d. x1 ∨̃ x2 = ¬̃(¬̃x1 ∧̃ ¬̃x2), i.e. ∨̃ is the duals-norm of∧̃ under¬̃.

Next we show that one does not loose any interesting phenomena if attention is re-
stricted to DFSes that induce the standard negation¬x = 1− x.
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Definition 17 Supposẽ¬ : I −→ I is strong negation operator. A DFSF is called a
¬̃-DFS if its induced negation coincides with̃¬, i.e. F̃(¬) = ¬̃ . In particular, we will
call F a¬-DFS if it induces the standard negation¬x = 1− x.

Definition 18 SupposeF is a DFS andσ : I −→ I a bijection. For every semi-fuzzy
quantifierQ : P(E)n −→ I and allX1, . . . , Xn ∈ P̃(E), we define

Fσ(Q)(X1, . . . , Xn) = σ−1F(σQ)(σX1, . . . , σXn) ,

whereσQ abbreviatesσ◦Q, andσXi ∈ P̃(E) is the fuzzy subset withµσXi = σ◦µXi .

Theorem 2 If F is a DFS andσ : I −→ I an increasing bijection, thenFσ is a DFS.

We recall that for every strong negation¬̃ : I −→ I there is a monotonically increasing
bijectionσ : I −→ I such that̃¬x = σ−1(1 − σ(x)) for all x ∈ I, see [8, Th-3.7].
The mappingσ is called thegeneratorof ¬̃.

Theorem 3 SupposeF is a ¬̃-DFS andσ : I −→ I the generator of̃¬. ThenF ′ =
Fσ−1

is a¬-DFS andF = F ′σ.

This means that we can freely move from an arbitrary¬̃-DFS to a corresponding¬-
DFS and vice versa: in the following, we hence restrict attention to¬-DFSes. Among
these, we discern further subclasses according to their induced disjunction.

Definition 19 A¬-DFSF which induces a fuzzy disjunctioñ∨ is called a∨̃-DFS.

Definition 20 A DFSF is called astandard DFSif and only ifF is amax-DFS, i.e. a
DFS which induces the standard negation¬x = 1 − x and the standard disjunction
x ∨ y = max(x, y).

Note. It is then apparent from earlier work [7, Th-17.a, p. 20 and Th-25, p. 25] that stan-
dard DFSes are exactly those¬-DFSes which induce the standard extension principle

F̂ = ˆ̂(•).

Theorem 4 SupposeJ is a non-empty index set and(Fj)j∈J is aJ -indexed collec-
tion of ∨̃-DFSes. Further suppose thatΨ : IJ −→ I satisfies the following conditions:

a. If f ∈ IJ is constant, i.e. if there is ac ∈ I such thatf(j) = c for all j ∈ J ,
thenΨ(f) = c.

b. Ψ(1− f) = 1−Ψ(f), where1− f ∈ IJ is point-wise defined by(1− f)(j) =
1− f(j), for all j ∈ J .

c. Ψ is monotonically nondecreasing, i.e. iff(j) ≤ g(j) for all j ∈ J , then
Ψ(f) ≤ Ψ(g).

12



If we defineΨ[(Fj)j∈J ] by

Ψ[(Fj)j∈J ](Q)(X1, . . . , Xn) = Ψ((Fj(Q)(X1, . . . , Xn))j∈J )

for all semi-fuzzy quantifiersQ : P(E)n −→ I and X1, . . . , Xn ∈ P̃(E), then
Ψ[(Fj)j∈J ] is a ∨̃-DFS.

Therefore convex combinations of∨̃-DFSes like the arithmetic mean, and stable sym-
metric sums [11] of̃∨-DFSes are agaiñ∨-DFSes.

The¬-DFSes can be partially ordered by ‘specificity’ or ‘fuzziness’, in the sense of
closeness to12 . We define a partial order�c ⊆ I× I by

x�c y ⇔ y ≤ x ≤ 1
2 or 1

2 ≤ x ≤ y , (3)

for all x, y ∈ I. �c is Mukaidono’s ambiguity relation, see [9]. We extend this basic
definition of�c for scalars to the case of DFSes in the obvious way:

Definition 21 SupposeF ,F ′ are¬-DFSes. We say thatF is consistently less specific
thanF ′, in symbols:F �c F ′, iff for all semi-fuzzy quantifiersQ : P(E)n −→ I and
all X1, . . . , Xn ∈ P̃(E),

F(Q)(X1, . . . , Xn)�c F ′(Q)(X1, . . . , Xn) .

We now wish to establish the existence of consistently least specific∨̃-DFSes. As
it turns out, the greatest lower specificity bound of a collection of∨̃-DFSes can be
expressed using the fuzzy medianmed 1

2
, which is defined as follows.

Definition 22 Thefuzzy medianmed 1
2

: I× I −→ I is defined by

med 1
2

(u1, u2) =


min(u1, u2) : min(u1, u2) > 1

2

max(u1, u2) : max(u1, u2) < 1
2

1
2 : else

med 1
2

is an associative mean operator [4] and the only stable (i.e. idempotent) associa-

tive symmetric sum [11]. It can be generalised to an operatorm 1
2

: P(I) −→ I which
accepts arbitrary subsets ofI as its arguments.

Definition 23 The generalised fuzzy medianm 1
2

: P(I) −→ I is defined by

m 1
2
X = med 1

2
(inf X, supX) ,

for all X ∈ P(I).

Now we can state the desired theorem.
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Theorem 5 Supposẽ∨ is an s-norm and(Fj)j∈J is a J -indexed collection of̃∨-
DFSes whereJ 6= ∅. Then there exists a greatest lower specificity bound on(Fj)j∈J ,
i.e. a ∨̃-DFSFglb such thatFglb �c Fj for all j ∈ J (i.e.Fglb is a lower specificity
bound), and for all other lower specificity boundsF ′, F ′ �c Fglb.
Fglb is defined by

Fglb(Q)(X1, . . . , Xn) = m 1
2
{Fj(Q)(X1, . . . , Xn) : j ∈ J } ,

for all Q : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E).

In particular, the theorem asserts the existence of least specific∨̃-DFSes, i.e. whenever
∨̃ is ans-norm such that̃∨-DFSes exist, then there exists a least specific∨̃-DFS (just
apply the above theorem to the collection of all∨̃-DFSes).
As concerns the converse issue of most specific DFSes, i.e. least upper bounds with
respect to�c, the following definition of ‘specificity consistence’ turns out to provide
the key concept:

Definition 24 Supposẽ∨ is an s-norm and(Fj)j∈J is aJ -indexed collection of̃∨-
DFSesFj , j ∈ J whereJ 6= ∅. (Fj)j∈J is called specificity consistentiff for
all Q : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E), eitherRQ,X1,...,Xn ⊆ [0, 1

2 ] or
RQ,X1,...,Xn ⊆ [ 1

2 , 1], whereRQ,X1,...,Xn = {Fj(Q)(X1, . . . , Xn) : j ∈ J }.

We can now express the exact conditions under which a collection of∨̃-DFSes has a
least upper specificity bound.

Theorem 6 Supposẽ∨ is an s-norm and(Fj)j∈J is a J -indexed collection of̃∨-
DFSes whereJ 6= ∅.

a. (Fj)j∈J has upper specificity bounds exactly if(Fj)j∈J is specificity consistent.

b. If (Fj)j∈J is specificity consistent, then its least upper specificity bound is the
∨̃-DFSFlub defined by

Flub(Q)(X1, . . . , Xn) =

{
supRQ,X1,...,Xn : RQ,X1,...,Xn ⊆ [ 1

2 , 1]
inf RQ,X1,...,Xn : RQ,X1,...,Xn ⊆ [0, 1

2 ]

whereRQ,X1,...,Xn = {Fj(Q)(X1, . . . , Xn) : j ∈ J }.
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3 Further adequacy considerations

In the following, we shall discuss several additional adequacy criteria for approaches
to fuzzy quantification. The first two criteria are concerned with the ‘propagation of
fuzziness’, i.e. the way in which the amount of imprecision in the model’s inputs affects
changes of the model’s outputs. To this end, let us recall the partial order�c ⊆ I × I
defined by equation (3). We can extend�c to fuzzy setsX ∈ P̃(E), semi-fuzzy
quantifiersQ : P(E)n −→ I and fuzzy quantifiers̃Q : P̃(E)

n
−→ I as follows:

X �c X
′ ⇐⇒ µX(e)�c µX′(e) for all e ∈ E;

Q�c Q
′ ⇐⇒ Q(Y1, . . . , Yn)�c Q

′(Y1, . . . , Yn) for all Y1, . . . , Yn ∈ P(E);

Q̃�c Q̃
′ ⇐⇒ Q̃(X1, . . . , Xn)�c Q̃

′(X1, . . . , Xn) for all X1, . . . , Xn ∈ P̃(E) .

Intuitively, we expect that the quantification results become less specific whenever the
quantifier or the argument sets become less specific: the fuzzier the input, the fuzzier
the output.

Definition 25 We say that a QFMF propagates fuzziness in argumentsif and only if
the following property is valid for allQ : P(E)n −→ I andX1, . . . , Xn, X

′
1, . . . , X

′
n:

If Xi �c X ′i for all i = 1, . . . , n, thenF(Q)(X1, . . . , Xn)�c F(Q)(X ′1, . . . , X
′
n).

We say thatF propagates fuzziness in quantifiersif and only ifF(Q)�c F(Q′) when-
everQ�c Q′.

Both conditions are certainly natural to require, and I consider them as desirable but
optional. A more detailed discussion can be found below on page 23 and in the con-
clusion.

Finally, we introduce two adequacy criteria concerned with distinct aspects of the
‘smoothness’ or ‘continuity’ of a DFS. These conditions are essential for DFSes to be
practicalbecause it is extremely important for applications that the results of a DFS be
stable with respect to slight changes in the inputs. These ‘changes’ can either occur in
the fuzzy argument sets (e.g. due to noise), or they can affect the semi-fuzzy quantifier.
For example, if a person A has a slightly different interpretation of quantifierQ than
person B, then we still want them to understand each others, i.e. the quantification
results obtained from the two models of the target quantifier should be very similar in
such cases.
In order to express the robustness criterion with respect to slight changes in the fuzzy
arguments, we first need to introduce a metric on fuzzy subsets, which serves as a
numerical quantity of the similarity of the arguments. For all base setsE and all
n ∈ N, we define the metricd : P̃(E)

n
× P̃(E)

n
−→ I by

d((X1, . . . , Xn), (X ′1, . . . , X
′
n)) =

n
max
i=1

sup{|µXi(e)− µX′i(e)| : e ∈ E} , (4)

for all X1, . . . , Xn, X
′
1, . . . , X

′
n ∈ P̃(E). Based on this metric, we can now express

the desired criterion for continuity in arguments.

Definition 26 We say that a QFMF is arg-continuousif and only ifF maps allQ :
P(E)n −→ I to continuous fuzzy quantifiersF(Q), i.e. for allX1, . . . , Xn ∈ P̃(E)
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andε > 0 there existsδ > 0 such thatd(F(Q)(X1, . . . , Xn),F(Q)(X ′1, . . . , X
′
n)) <

ε for all X ′1, . . . , X
′
n ∈ P̃(E) with d((X1, . . . , Xn), (X ′1, . . . , X

′
n)) < δ.

The second robustness criterion is intended to capture the idea that slight changes in a
semi-fuzzy quantifier should not cause the quantification results to change drastically.
To introduce this criterion, we must first define suitable distance measures for semi-
fuzzy quantifiers and for fuzzy quantifiers. Hence for all semi-fuzzy quantifiersQ,Q′ :
P(E)n −→ I,

d(Q,Q′) = sup{|Q(Y1, . . . , Yn)−Q′(Y1, . . . , Yn)| : Y1, . . . , Yn ∈ P(E)} , (5)

and similarly for all fuzzy quantifiers̃Q, Q̃′ : P̃(E)
n
−→ I,

d(Q̃, Q̃′) = sup{|Q̃(X1, . . . , Xn)− Q̃′(X1, . . . , Xn)| : X1, . . . , Xn ∈ P̃(E)} . (6)

Definition 27 We say that a QFMF is Q-continuousif and only if for each semi-
fuzzy quantifierQ : P(E)n −→ I and all ε > 0, there existsδ > 0 such that
d(F(Q),F(Q′)) < ε wheneverQ′ : P(E)n −→ I satisfiesd(Q,Q′) < δ.

Both condition are crucial to the utility of a DFS and should be possessed by every
model employed in practical applications. They are not part of the DFS axioms because
I wanted to have DFSes for generalt-norms (including the discontinuous variety).
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4 The class of MB-DFSes

In [6], the first three models of the DFS axioms have been presented. An investigation
of the common principle underlying these DFSes has led to the introduction ofMB-
DFSes in [7], the class of DFSes defined in terms of three-valued cuts of arguments
and subsequent aggregation by applying the fuzzy median. In the following, I briefly
recall the definitions necessary to introduceMB-QFMs and to understand how they
work. This includes a characterisation of the class ofMB-DFSes in terms of necessary
and sufficient conditions on the aggregation mappingB, as well as a presentation of
important models and special properties ofMB-DFSes. Unless otherwise stated, the
proofs of all theorems cited in this chapter may be found in [7].
Let us first define the unrestricted class ofMB-QFMs, which will then be shrunk to the
reasonable cases ofMB-DFSes by imposing conditions on the aggregation mapping.
To this end, we need to introduce some notation. We recall the concept ofα-cuts and
strictα-cuts of fuzzy subsets:

Definition 28 LetE be a given set,X ∈ P̃(E) a fuzzy subset ofE andα ∈ I. By
X≥α ∈ P(E) we denote theα-cut

X≥α = {e ∈ E : µX(e) ≥ α} .

Definition 29 LetX ∈ P̃(E) be given andα ∈ I. ByX>α ∈ P(E) we denote the
strict α-cut

X>α = {e ∈ E : µX(e) > α} .

In terms of theseα-cuts, we define the cut rangeTγ(X) ⊆ P(E), which repre-
sents a three-valued cut at the ‘cautiousness level’γ ∈ I by a set of alternatives
{Y : Xmin

γ ⊆ Y ⊆ Xmax
γ }. The reason for introducing three-valued cuts is that

we need a cutting mechanism compatible to complementation.α-cuts, however, have
(¬X)≥α 6= ¬(X≥α). The desired symmetry is easily obtained with three-valued cuts,
defined as follows:

Definition 30 SupposeE is some set,X ∈ P̃(E) andγ ∈ I. Xmin
γ , Xmax

γ ∈ P(E)
andTγ(X) ⊆ P(E) are defined by

Xmin
γ =

 X
>

1
2

: γ = 0

X
≥ 1

2 +
1
2γ

: γ > 0

Xmax
γ =

 X
≥ 1

2
: γ = 0

X
>

1
2−

1
2γ

: γ > 0

Tγ(X) = {Y : Xmin
γ ⊆ Y ⊆ Xmax

γ } .

Note. The relationship of cut rangesTγ(X) and three-valued sets is discussed in [6,
p. 58+] and [7, p. 39+].
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How can we use these cut ranges to evaluate fuzzy quantifiers? The basic idea is that
we can view the crisp rangeTγ(X) as providing a set of alternatives to be checked.
For example, in order to evaluate a quantifierQ at a certain cut levelγ, we have to
consider all choices ofQ(Y1, . . . , Yn), whereYi ∈ Tγ(Xi). The set of results obtained
in this way must then be aggregated to a single result in the unit interval, which we
denote asQγ(X1, . . . , Xn) ∈ I. The generalised fuzzy median (see Def. 23) is well-
suited to carry out this aggregation. The use of the fuzzy median for this purpose was
originally motivated by the observation that the resulting fuzzification mechanisms
embed Kleene’s three-valued logic. This is useful because the targeted class of models
(viz, standard DFSes) are known to embed Kleene’s logic, too.
Let us hence use the crisp rangesTγ(Xi) of the argument sets to define a family of
QFMs(•)γ , indexed by the cautiousness parameterγ ∈ I:

Definition 31 For everyγ ∈ I, we denote by(•)γ the QFM defined by

Qγ(X1, . . . , Xn) = m 1
2
{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} ,

for all semi-fuzzy quantifiersQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E).

None of the QFMs(•)γ is a DFS, because the required information is spread over
various cut levels. Hence in order to define DFSes based on these QFMs, we must
simultaneously consider the results obtained at all levels of cautiousnessγ, i.e. the
γ-indexed family(Qγ(X1, . . . , Xn))γ∈I. We can then apply various aggregation op-
erators on theseγ-indexed results to obtain new QFMs, which have a chance of being
DFSes. We now define the domain on which these aggregation operators can act.

Definition 32 B
+,B

1
2 ,B− andB ⊆ II are defined by

B
+ = {f ∈ II : f(0) > 1

2 andf(I) ⊆ [ 1
2 , 1] andf nonincreasing}

B

1
2 = {c 1

2
}

B
− = {f ∈ II : f(0) < 1

2 andf(I) ⊆ [0, 1
2 ] andf nondecreasing}

B = B
+ ∪ B

1
2 ∪ B− .

Note. In the definition ofB
1
2 , c 1

2
: I −→ I is the constantc 1

2
(x) = 1

2 for all x ∈ I.

More generally, we stipulate for alla ∈ I thatca : I −→ I be the constant mapping

ca(x) = a , (7)

for all x ∈ I.
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Theorem 7

a. SupposeQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) are given. Then

(Qγ(X1, . . . , Xn))γ∈I ∈


B

+ : Q0(X1, . . . , Xn) > 1
2

B

1
2 : Q0(X1, . . . , Xn) = 1

2

B
− : Q0(X1, . . . , Xn) < 1

2

b. For eachf ∈ B there existsQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) such
thatf = (Qγ(X1, . . . , Xn))γ∈I.

Given an aggregation operatorB : B −→ I, we define the corresponding QFMMB as
follows.

Definition 33 SupposeB : B −→ I is given. The QFMMB is defined by

MB(Q)(X1, . . . , Xn) = B((Qγ(X1, . . . , Xn))γ∈I) , (8)

for all semi-fuzzy quantifiersQ : P(E)n −→ I andX1 . . . , Xn ∈ P̃(E).

By the class ofMB-QFMs we mean the class of all QFMsMB defined in this way. It is
apparent that if we do not impose restrictions on admissible choices ofB, the resulting
QFMs will often fail to be DFSes. Hence let us state the necessary and sufficient
conditions thatBmust satisfy in order to makeMB a DFS. To express these conditions,
we first need some constructions onB.

Definition 34 Supposef : I −→ I is a monotonic mapping (i.e., nondecreasing or
nonincreasing). The mappingsf [, f ] : I −→ I are defined by:

f ] =
{

limy→x+ f(y) : x < 1
f(1) : x = 1

f [ =
{

limy→x− f(y) : x > 0
f(0) : x = 0 for all f ∈ B, x ∈ I.

It is apparent that iff ∈ B, thenf ] ∈ B andf [ ∈ B. f ] andf [ are obviously very
‘similar’ to each others (and tof ) and every reasonableB should mapf [ andf ] to
the same aggregation result. This turns out to be essential forMB to satisfy (Z-6), be-
cause(Qγ(X1, . . . , Xn))γ∈I is not compatible with (Z-6) in a precise sense, but only
modulo]/[.
We shall further introduce several coefficients which describe certain aspects of a map-
pingf : I −→ I.
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Definition 35 For every monotonic mappingf : I −→ I (i.e., either nondecreasing or
nonincreasing), we define

f∗0 = lim
γ→0+

f(γ) (9)

f0↓
∗ = inf{γ ∈ I : f(γ) = 0} (10)

f
1
2↓
∗ = inf{γ ∈ I : f(γ) = 1

2} (11)

f∗1 = lim
γ→1−

f(γ) (12)

f1↑
∗ = sup{γ ∈ I : f(γ) = 1} (13)

f1↓
∗ = inf{γ ∈ I : f(γ) = 1} . (14)

We only needf
1
2↓
∗ to define the desired conditions onB; it turns out to be essential

for ensuring a proper behaviour ofMB in the case of three-valued quantifiers, and
in particular to ensure the desired results for the two-valued projection quantifiers of
(Z-2). We will use the remaining coefficients later to define examples ofMB-DFSes.

Definition 36 SupposeB : B −→ I is given. For allf, g ∈ B, we define the following
conditions onB:

B(f) = f(0) if f is constant, i.e.f(x) = f(0) for all x ∈ I (B-1)

B(1− f) = 1− B(f) (B-2)

If f(I) ⊆ {0, 1
2 , 1}, then (B-3)

B(f) =


1
2 + 1

2f
1
2↓
∗ : f ∈ B+

1
2 : f ∈ B

1
2

1
2 −

1
2f

1
2↓
∗ : f ∈ B−

B(f ]) = B(f [) (B-4)

If f ≤ g, thenB(f) ≤ B(g) (B-5)

As witnessed by the next theorem, these conditions capture precisely the requirement
onB forMB to be a DFS.

Theorem 8

a. The conditions(B-1) to (B-5) are sufficient forMB to be a standard DFS.

b. The conditions(B-1) to (B-5) are necessary forMB to be a DFS.

c. The conditions(B-1) to (B-5) are independent.
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In particular,B(f) = 1 − B(1 − f) for all f ∈ B, andB(f) ≥ 1
2 wheneverf ∈ B+.

We can hence give a more concise description ofMB-DFSes, because it is sufficient
to consider their behaviour onB+ only:

Definition 37 ByH ⊆ II we denote the set of nonincreasingf : I −→ I, f 6= 0,

H = {f ∈ II : f nonincreasing andf(0) > 0 } .

We can associate with eachB′ : H −→ I aB : B −→ I as follows:

B(f) =


1
2 + 1

2B
′(2f − 1) : f ∈ B+

1
2 : f ∈ B

1
2

1
2 −

1
2B
′(1− 2f) : f ∈ B−

(15)

Theorem 9 IfMB is a DFS, thenB can be defined in terms of a mappingB′ : H −→ I
according to equation(15). B′ is defined by

B′(f) = 2B( 1
2 + 1

2f)− 1 . (16)

We can hence focus on mappingsB′ : H −→ I without loosing any desired models.

Definition 38 SupposeB′ : H −→ I is given. For allf, g ∈ H, we define the following
conditions onB′:

B′(f) = f(0) if f is constant, i.e.f(x) = f(0) for all x ∈ I (C-1)

If f̂(I) ⊆ {0, 1}, thenB′(f) = f0↓
∗ , (C-2)

B′(f ]) = B′(f [) if f̂((0, 1]) 6= {0} (C-3)

If f ≤ g, thenB′(f) ≤ B′(g) (C-4)

A theorem analogous to Th-8 can be proven for (C-1) to (C-4):

Theorem 10

a. The conditions(C-1) to (C-4)are sufficient forMB to be a standard DFS.

b. The conditions(C-1) to (C-4)are necessary forMB to be a DFS.

c. The conditions(C-1) to (C-4)are independent.

Our introducing ofB′ is only a matter of convenience, because the definition ofB′
is usually shorter than the definition of the correspondingB. We now present some
examples ofMB-QFMs.

Definition 39 ByM we denote theMB-QFM defined by

B′∫ (f) =
∫ 1

0

f(x) dx , for all f ∈ H.
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Theorem 11 M is a standard DFS.

M is Q-continuous and arg-continuous and hence a good choice for applications.

Definition 40 ByMU we denote theMB-QFM defined by

B′U (f) = max(f1↑
∗ , f

∗
1 ) for all f ∈ H, see(12)and (13).

Theorem 12 Suppose⊕ : I2 −→ I is ans-norm andB′ : H −→ I is defined by

B′(f) = f1↑
∗ ⊕ f∗1 ,

for all f ∈ H. Further suppose thatMB is defined in terms ofB′ according to equa-
tions(8) and (15). ThenMB is a standard DFS.

In particular,MU is a standard DFS. It is neither Q-continuous nor arg-continuous and
hence not practical. However,MU is of theoretical interest because it represents an
extreme case ofMB-DFS in terms of specificity:

Theorem 13 MU is the least specificMB-DFS.

Let us now consider the issue of most specificMB-DFSes.

Definition 41 ByMS we denote theMB-QFM defined by

B′S(f) = min(f0↓
∗ , f

∗
0 ) for all f ∈ H; see(9) and (10).

Theorem 14 SupposeB′ : H −→ I is defined by

B′(f) = f0↓
∗ � f∗0

for all f ∈ H, where� : I2 −→ I is a t-norm. Further suppose that the QFMMB is
defined in terms ofB′ according to(8) and (15). ThenMB is a standard DFS.

In particular,MS is a standard DFS.MS fails on both continuity conditions, but:

Theorem 15 MS is the most specificMB-DFS.

Definition 42 ByMCX we denote theMB-QFM defined by

B′CX(f) = sup{min(x, f(x)) : x ∈ I} for all f ∈ H.

Theorem 16 Suppose� : I2 −→ I is a continuoust-norm andB′ : H −→ I is defined
by

B′(f) = sup{γ � f(γ) : γ ∈ I}

for all f ∈ H. Further suppose thatMB is defined in terms ofB′ according to(8) and
(15). ThenMB is a standard DFS.
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ThereforeMCX is a standard DFS. It is Q-continuous and arg-continuous and hence
a good choice for applications.
As has been shown in [7],MCX exhibits unique properties. In fact, it is the only stan-
dard DFS which is compatible with a construction called ‘fuzzy argument insertion’,
which ensures a compositional interpretation of adjectival restriction with fuzzy adjec-
tives.MCX can be shown to generalize the well-known Sugeno integral to the case
of multiplace and non-monotonic quantifiers. HenceMCX consistently generalises
the basic FG-count approach of [16, 13], which is restricted to quantitative and non-
decreasing one-place quantifiers. In addition,MCX can be shown to implement the
so-called ‘substitution approach’ to fuzzy quantification [12], i.e. the fuzzy quantifier is
modelled by constructing an equivalent logical formula (involving fuzzy connectives).
The reader interested in details is invited to consult [7].

Returning toMB-DFSes in general, we can state that:

Theorem 17

• All MB-DFSes coincide on three-valued arguments, i.e. whenever the argu-
mentsX1, . . . , Xn ∈ P̃(E) satisfyµXi(e) ∈ {0, 1

2 , 1} for all e ∈ E;

• allMB-DFSes coincide on three-valued semi-fuzzy quantifiersQ : P(E)n −→
{0, 1

2 , 1}.

This is different from general standard DFSes, which are guaranteed to coincide only
for two-valued quantifiers.
An issue not yet addressed in previous publications is whether�c is a genuine partial
order (i.e. not a total order). As we now show,�c is a genuine partial order onMB-
DFSes. In particular, the standard DFSes are only partially ordered by�c.

Theorem 18 �c is not a total order onMB-DFSes.
(Proof: A.1, p.41+)

One of the characteristic properties ofMB-DFSes is that they propagate fuzziness.

Theorem 19

• EveryMB-DFS propagates fuzziness in quantifiers.

• EveryMB-DFS propagates fuzziness in arguments.

I consider this an important adequacy criterion because it strikes me as implausible
that the results should become more specific when the input (quantifier or argument)
gets fuzzier. Nevertheless, there seems to be a price one has to pay for the propagation
of fuzziness: as the input becomes less specific, the result of anMB-DFS is likely to
attain the least specific value of1

2 , see Th-34 and Th-40 below. In some applications,
it might be preferable to sacrifice the propagation of fuzziness, in order to obtain spe-
cific results (e.g. a fine-grained result ranking) even in those cases where the input is
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overly fuzzy. In addition, the study of such models is of theoretical interest, because it
helps to gain a better understanding of the full class of standard DFSes. Specifically,
I would like to show that standard DFSes exist which fail to propagate fuzziness in
quantifiers and/or arguments, and gain some insight into the structure and properties of
such models.

In order to span a broader class of DFS models, we must drop the median-based
aggregation mechanism ofMB-DFSes. We get an idea of how to proceed if we simply
expand the definition of the generalized fuzzy median and rewrite(•)γ as

Qγ(X1, . . . , Xn) = med 1
2

(sup{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)},
inf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)}) .

(17)

This is apparent from Def. 23 and Def. 31. The fuzzy median can then be replaced with
other connectives, e.g. the arithmetic mean(x+y)/2. If we view sup{Q(Y1, . . . , Yn) :
Yi ∈ Tγ(Xi)} andinf{Q(Y1, . . . , Yn) : Yi ∈ Tγ(Xi)} as mappings that depend onγ,
then we can even eliminate the pointwise application of the connective and define more
‘holistic’ mechanisms. In the next chapter this basic idea of creating a broader class of
DFS candidates is turned into precise definitions. As it turns out, most constructions of
relevance toMB-DFSes can easily be adapted to the more general case. In particular,
we can state the necessary and sufficient conditions for the new models to be DFSes in
analogy to the conditions (B-1) to (B-5).
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5 The class of Fξ-DFSes

Based on the definition of the crisp rangeTγ(X) of a three-valued cut, which provides
a set of alternative choices for crisp arguments, we define the upper and lower bounds
of the quantification results given these alternatives as follows:

Definition 43 Let a semi-fuzzy quantifierQ : P(E)n −→ I and fuzzy arguments
X1, . . . , Xn be given. We define the upper bound mapping>Q,X1,...,Xn : I −→ I and
the lower bound mapping⊥Q,X1,...,Xn : I −→ I by

>Q,X1,...,Xn(γ) = sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)}
⊥Q,X1,...,Xn(γ) = inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} .

The following properties of>Q,X1,...,Xn and⊥Q,X1,...,Xn are apparent:

Theorem 20 SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier andX1, . . . , Xn ∈
P̃(E) are a choice of fuzzy arguments. Then

1. >Q,X1,...,Xn is monotonically nondecreasing;

2. ⊥Q,X1,...,Xn is monotonically nonincreasing;

3. ⊥Q,X1,...,Xn ≤ >Q,X1,...,Xn .

(Proof: B.1, p.42+)

We can hence define the domainT of aggregation operatorsξ : T −→ I which combine
the results of>Q,X1,...,Xn and⊥Q,X1,...,Xn as follows.

Definition 44 T ⊆ II × II is defined by

T = {(>,⊥) : > : I −→ I nondecreasing,⊥ : I −→ I nonincreasing,⊥ ≤ >} .

It is apparent from Th-20 that(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) ∈ T, regardless of the semi-
fuzzy quantifierQ : P(E)n −→ I and the choice of fuzzy argumentsX1, . . . , Xn ∈
P̃(E). In addition, it can be shown thatT is the minimal set which embeds all such
pairs of mappings.

Theorem 21 Let (>,⊥) ∈ T be given. We define semi-fuzzy quantifiersQ′, Q′′, Q :
P(2× I) −→ I by

Q′(Y ) = >(supY ′) (18)

Q′′(Y ) = ⊥(inf Y ′′) (19)

Q(Y ) =
{
Q′′(Y ) : Y ′ = ∅

Q′(Y ) : else
(20)
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where

Y ′ = {z ∈ I : (0, z) ∈ Y } (21)

Y ′′ = {z ∈ I : (1, z) ∈ Y } (22)

for all Y ∈ P(2× I).
Further suppose that the fuzzy subsetX ∈ P̃(2× I) is defined by

µX(c, z) =

{
1
2 −

1
2z : c = 0

1
2 + 1

2z : c = 1
(23)

for all (c, z) ∈ 2× I.
Then> = >Q,X and⊥ = ⊥Q,X .
(Proof: B.2, p.44+)

Based on the aggregation operatorξ : T −→ I, we define a corresponding QFMFξ in
the obvious way.

Definition 45 For every mappingξ : T −→ I, the QFMFξ is defined by

Fξ(Q)(X1, . . . , Xn) = ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) , (24)

for all semi-fuzzy quantifiersQ : P(E)n −→ I and all fuzzy subsetsX1, . . . , Xn ∈
P̃(E).

The class of QFMs defined in this way will be called the class ofFξ-QFMs. Ap-
parently, it contains a number of models that do not fulfill the DFS axioms. We hence
impose five elementary conditions on the aggregation mappingξ which provide a char-
acterisation of the well-behaved models, i.e. of the class ofFξ-DFSes.

Definition 46 For all (>,⊥) ∈ T, we impose the following conditions on aggregation
mappingsξ : T −→ I.

If > = ⊥, thenξ(>,⊥) = >(0) (X-1)

ξ(1−⊥, 1−>) = 1− ξ(>,⊥) (X-2)

If > = c1 and⊥(I) ⊆ {0, 1}, thenξ(>,⊥) = 1
2 + 1

2⊥
0↓
∗ (X-3)

ξ(>[,⊥) = ξ(>],⊥) (X-4)

If (>′,⊥′) ∈ T such that> ≤ >′ and⊥ ≤ ⊥′, thenξ(>,⊥) ≤ ξ(>′,⊥′) (X-5)

Let us now show that (X-1) to (X-5) are sufficient forFξ to be a DFS.

Theorem 22 If ξ : T −→ I satisfies(X-1) to (X-5), thenFξ is a standard DFS.
(Proof: B.3, p.47+)

Theorem 23 The conditions(X-1) to (X-5) on ξ : T −→ I are necessary forFξ to be
a DFS.
(Proof: B.4, p.62+)
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Hence the ‘X-conditions’ are necessary and sufficient forFξ to be a DFS, and allFξ-
DFSes are indeed standard DFSes. The criteria can also be shown to be independent.
To facilitate the independence proof, we first relateMB-QFMs to the broader class of
Fξ-QFMs:

Theorem 24 SupposeB : B −→ I is a given aggregation mapping. ThenMB = Fξ,
whereξ : T −→ I is defined by

ξ(>,⊥) = B(med 1
2

(>,⊥)) (25)

for all (>,⊥) ∈ T, andmed 1
2

(>,⊥) abbreviates

med 1
2

(>,⊥)(γ) = med 1
2

(>(γ),⊥(γ)) ,

for all γ ∈ I.
(Proof: B.5, p.74+)

Hence allMB-QFMs areFξ-QFMs, and allMB-DFSes areFξ-DFSes. The next
theorem helps us to prove that the ‘X-conditions’ are independent, because the ‘B-
conditions’ have already been shown to been independent in [7]:

Theorem 25 SupposeB : B −→ I is given andξ : T −→ I is defined by equation
(25). Then

1. (B-1) is equivalent to(X-1);

2. (B-2) is equivalent to(X-2);

3. (a) (B-3) entails(X-3);

(b) the conjunction of(X-2) and (X-3) entails(B-3);

4. (a) (B-4) entails(X-4);

(b) the conjunction of(X-2) and (X-4) entails(B-4);

5. (B-5) is equivalent to(X-5).

(Proof: B.6, p.74+)

Theorem 26 The conditions(X-1) to (X-5) are independent.
(Proof: B.7, p.84+)

Let us now give examples of ‘genuine’Fξ-DFSes (i.e. models that go beyond the
special case ofMB-DFSes).

Definition 47 The QFMFCh = FξCh is defined in terms ofξCh : T −→ I by

ξCh(>,⊥) = 1
2

∫ 1

0

>(γ) dγ + 1
2

∫ 1

0

⊥(γ) dγ ,

for all (>,⊥) ∈ T.
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Note. Both integrals are guaranteed to exist because> and⊥ are monotonic mappings
(i.e.,> nondecreasing and⊥ nonincreasing).

Theorem 27 FCh is a standard DFS.
(Proof: B.8, p.85+)

The DFSFCh is of special interest because of its close relationship to the well-known
Choquet integral, which is defined as follows.

Definition 48 SupposeQ : P(E) −→ I is a nondecreasing semi-fuzzy quantifier and
X ∈ P̃(E). TheChoquet integral(Ch)

∫
X dQ is defined by

(Ch)
∫
X dQ =

∫ 1

0

Q(X≥α) dα .

Theorem 28 SupposeQ : P(E) −→ I is nondecreasing. Then for allX ∈ P̃(E),

(Ch)
∫
X dQ = FCh(Q)(X) .

(Proof: B.9, p.89+)

HenceFCh coincides with the Choquet integral on fuzzy quantifiers whenever the latter
is defined. In order to relate this result with previous work on fuzzy quantification, we
first need to introduce some more notation.

Definition 49 Let a finite base setE 6= ∅ of cardinality |E| = m be given. For a
fuzzy subsetX ∈ P̃(E), we denote byµ[j](X) ∈ I, j = 1, . . . ,m, the j-th largest
membership value ofX (including duplicates).
More formally, consider an ordering of the elements ofE such thatE = {e1, . . . , em}
andµX(e1) ≥ · · · ≥ µX(em). Then defineµ[j](X) = µX(ej). It is apparent that the
results do not depend on the chosen ordering if ambiguities exist.
We stipulate thatµ[0](X) = 1 and thatµ[j](X) = 0 wheneverj > m.

As a corollary of the above theorem, we then obtain (cf. [5]):

Theorem 29 SupposeE 6= ∅ is a finite base set,q : {0, . . . , |E|} −→ I is a nonde-
creasing mapping such thatq(0) = 0, q(|E|) = 1, andQ : P(E) −→ I is defined by
Q(Y ) = q(|Y |) for all Y ∈ P(E). Then for allX ∈ P̃(E),

FCh(Q)(X) =
|E|∑
j=1

(q(j)− q(j − 1)) · µ[j](X) ,

i.e.FCh consistently generalises Yager’s OWA approach [14].
(Proof: B.10, p.90+)
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Definition 50 The QFMFS is defined in terms ofξS : T −→ I by

ξS(>,⊥) =


min(>∗1, 1

2 + 1
2⊥
≤ 1

2↓
∗ ) : ⊥(0) > 1

2

max(⊥∗1, 1
2 −

1
2>
≥ 1

2↓
∗ ) : >(0) < 1

2
1
2 : else

for all (>,⊥) ∈ T, where the coefficientsf
≤ 1

2↓
∗ , f

≥ 1
2↓

∗ ∈ I are defined by

f
≤ 1

2↓
∗ = inf{γ ∈ I : f(γ) ≤ 1

2} (26)

f
≥ 1

2↓
∗ = inf{γ ∈ I : f(γ) ≥ 1

2} , (27)

for all f : I −→ I.

Theorem 30 FS is a standard DFS.
(Proof: B.11, p.93+)

A third model of interest is the following QFMFA:

Definition 51 The QFMFA is defined in terms ofξA : T −→ I by

ξA(>,⊥) =


min(⊥∗0, 1

2 + 1
2⊥

0↓
∗ ) : ⊥∗0 > 1

2

max(>∗0, 1
2 −

1
2>

1↓
∗ ) : >∗0 < 1

2
1
2 : else

for all (>,⊥) ∈ T.

Theorem 31 FA is a standard DFS.
(Proof: B.12, p.99+)

Turning to properties ofFξ-DFSes, we shall first investigate the precise conditions
under which anFξ-DFS propagates fuzziness in quantifiers and/or in arguments.

Definition 52 We say thatξ : T −→ I propagates fuzzinessif and only if

ξ(>,⊥)�c ξ(>′,⊥′)

whenever(>,⊥), (>′,⊥′) ∈ T with>�c >′ and⊥�c ⊥′.

Theorem 32 AnFξ-QFM propagates fuzziness in quantifiers if and only ifξ propa-
gates fuzziness.
(Proof: B.13, p.104+)

If Fξ is a DFS, thenξ’s propagating of fuzziness is equivalent to the following condi-
tion, which is much easier to check:
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Theorem 33 Supposeξ : T −→ I satisfies(X-1) to (X-5). Thenξ propagates fuzziness
if and only if

ξ(>,⊥) = ξ(>,max(⊥, 1
2 ))

for all (>,⊥) ∈ T with⊥(0) > 1
2 .

(Proof: B.14, p.106+)

For proofs that a givenFξ-DFS does not propagate fuzziness in quantifiers, the follow-
ing necessary condition can be of interest.

Theorem 34 Let ξ : T −→ I be a mapping which satisfies(X-1) to (X-5). If ξ propa-
gates fuzziness, then

ξ(>,⊥) = 1
2

whenever(>,⊥) ∈ T such that>(0) ≥ 1
2 ≥ ⊥(0).

(Proof: B.15, p.110+)

It is this condition which explains why the results ofMB-DFSes tend to attain12
when the input is overly fuzzy. If one really needs different quantification results for
(>,⊥), (>′,⊥′) with ⊥(0) ≤ 1

2 ≤ >(0) and⊥′(0) ≤ 1
2 ≤ >

′(0), one obviously must
resort toFξ-DFSes that do not propagate fuzziness in quantifiers.
As concerns our examples ofFξ-DFSes, we can attest the following.

Theorem 35 FCh does not propagate fuzziness in quantifiers.
(Proof: B.16, p.110+)

HenceFCh is a ‘genuine’Fξ-DFS (i.e. not anMB-DFS) by Th-19. In particular, this
proves that theFξ-DFSes indeed form a more general class of DFSes thanMB-DFSes.
For the DFSFS , we have a positive result.

Theorem 36 FS propagates fuzziness in quantifiers.
(Proof: B.17, p.111+)

Turning toFA, we have

Theorem 37 FA does not propagate fuzziness in quantifiers.
(Proof: B.18, p.111+)

We can also state the necessary and sufficient conditions onξ for Fξ to propagate
fuzziness in arguments. To this end, we first introduce the following property ofξ.

Definition 53 We say thatξ : T −→ I propagates unspecificityif and only if

ξ(>,⊥)�c ξ(>′,⊥′)

whenever(>,⊥), (>′,⊥′) ∈ T satisfy> ≥ >′ and⊥ ≤ ⊥′.
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Theorem 38 An Fξ-QFM propagates fuzziness in arguments if and only ifξ propa-
gates unspecificity.
(Proof: B.19, p.112+)

If Fξ is sufficiently well-behaved (in particular, ifFξ is a DFS), it is possible to state
the following equivalent condition:

Theorem 39 Supposeξ : T −→ I satisfies(X-2), (X-4) and(X-5). Then the following
conditions are equivalent:

a. ξ propagates unspecificity;

b. for all (>,⊥) ∈ T with⊥(0) ≥ 1
2 , ξ(>,⊥) = ξ(c1,⊥).

(Proof: B.20, p.115+)

We can also establish a necessary condition which facilitates the proof that a given
Fξ-DFSes does not propagate fuzziness in arguments:

Theorem 40 If anFξ-DFS propagates fuzziness in arguments, then

ξ(>,⊥) = 1
2

whenever(>,⊥) ∈ T such that>(0) ≥ 1
2 ≥ ⊥(0).

(Proof: B.21, p.118+)

For example, we can use this condition to prove that

Theorem 41 FCh does not propagate fuzziness in arguments.
(Proof: B.22, p.119+)

As concernsFS , we have the following result.

Theorem 42 FS does not propagate fuzziness in arguments.
(Proof: B.23, p.119+)

Note. HenceFS is a ‘genuine’Fξ DFS as well, which is apparent from Th-19.
Turning toFA, which failed to propagate fuzziness in quantifiers, it is easily observed
thatFA still propagates fuzziness in its arguments:

Theorem 43 FA propagates fuzziness in arguments.
(Proof: B.24, p.119+)

In particular, the conditions of propagating fuzziness in quantifiers and arguments are
independent in the case ofFξ-DFSes, as stated in the following corollary.
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Theorem 44 The conditions of propagating fuzziness in quantifiers and in arguments
are independent forFξ-DFSes.
(Proof: B.25, p.120+)

Finally, we can justify the subclass ofMB-DFSes which are exactly thoseFξ-DFSes
that propagate fuzziness in both quantifiers and arguments.

Theorem 45 Suppose anFξ-DFS propagates fuzziness in both quantifiers and argu-
ments. ThenFξ is anMB-DFS.
(Proof: B.26, p.120+)

Note. The converse implication is already known from Th-19.
Next we shall investigate the exact conditions under which anFξ-QFM is Q-continuous
or arg-continuous. To be able to discuss Q-continuousFξ-QFMs, we introduce a met-
ric d : T× T −→ I. For all nondecreasing mappings>,>′ : I −→ I, we define

d(>,>′) = sup{|>(γ)−>′(γ)| : γ ∈ I} . (28)

We proceed similarly for nondecreasing mappings⊥,⊥′ : I −→ I. In this case,

d(⊥,⊥′) = sup{|⊥(γ)−⊥′(γ)| : γ ∈ I} . (29)

Finally, we defined : T× T −→ I by

d((>,⊥), (>′,⊥′)) = max(d(>,>′), d(⊥,⊥′)) , (30)

for all (>,⊥), (>′,⊥′) ∈ T. It is apparent thatd is indeed a metric. We will utilized
to express a condition onξ which characterises the Q-continuousFξ-QFMs.

Theorem 46 Let ξ : T −→ I be a given mapping which satisfies(X-5). Then the
following conditions are equivalent:

a. Fξ is Q-continuous;

b. for all ε > 0, there existsδ > 0 such that|ξ(>,⊥) − ξ(>′,⊥′)| < ε whenever
(>,⊥), (>′,⊥′) ∈ T satisfyd((>,⊥), (>′,⊥′)) < δ.

(Proof: B.27, p.122+)

If ξ is sufficiently well-behaved, then the above condition can simplified into the fol-
lowing criterion, which is easier to check.

Theorem 47 Supposeξ : T −→ I satisfies(X-2) and (X-5). Then the following
conditions are equivalent:

a. Fξ is Q-continuous;

b. for all ε > 0, there existsδ > 0 such thatξ(>′,⊥) − ξ(>,⊥) < ε whenever
(>,⊥), (>′,⊥) ∈ T satisfyd(>,>′) < δ and> ≤ >′.
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(Proof: B.28, p.128+)

We have the following results for the examples ofFξ-DFSes.

Theorem 48 FCh is Q-continuous.
(Proof: B.29, p.130+)

Theorem 49 FS is not Q-continuous.
(Proof: B.30, p.131+)

Theorem 50 FA is not Q-continuous.
(Proof: B.31, p.132+)

As concerns continuity in arguments, we first need to introduced another distance mea-
sured′ : T×T −→ I, which can be used to characterise the arg-continuousFξ-QFMs
in terms of conditions onξ. For all nondecreasing mappings>,>′ : I −→ I, we define

d′(>,>′) = sup{inf{γ′ : min(>(γ′),>′(γ′)) ≥ max(>(γ),>′(γ))} − γ : γ ∈ I} .
(31)

Similarly for nonincreasing mappings⊥,⊥′ : I −→ I,

d′(⊥,⊥′) = sup{inf{γ′ : max(⊥(γ′),⊥′(γ′)) ≤ min(⊥(γ),⊥′(γ))} − γ : γ ∈ I} .
(32)

Finally, we defined′ : T× T −→ I by

d′((>,⊥), (>′,⊥′)) = max(d′(>,>′), d′(⊥,⊥′)) , (33)

for all (>,⊥), (>′,⊥′) ∈ T. It is easily checked thatd′ is a ‘pseudo-metric’, i.e. it
is symmetric and satisfies the triangle inequation, butd′((>,⊥), (>′,⊥′)) = 0 does
not imply that(>,⊥) = (>′,⊥′). However,d′ is a metric modulo][, i.e. on the

equivalence classes of(>,⊥) ∼ (>′,⊥′) ⇔ (>[],⊥[]) = (>′[
]
,⊥′[

]
). Hence

d′((>,⊥), (>′,⊥′)) = 0 entails that(>,⊥) ∼ (>′,⊥′), i.e. ξ(>,⊥) = ξ(>′,⊥′)
wheneverξ satisfies (X-2), (X-4) and (X-5). Based ond′, we can now assert the fol-
lowing.
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Theorem 51 Supposeξ : T −→ I satisfies(X-2), (X-4) and(X-5). Then the following
conditions are equivalent:

a. Fξ is arg-continuous;

b. for all (>,⊥) ∈ T and all ε > 0, there existsδ > 0 such that|ξ(>,⊥) −
ξ(>′,⊥′)| < ε whenever(>′,⊥′) ∈ T satisfiesd′((>,⊥), (>′,⊥′)) < δ.

(Proof: B.32, p.133+)

In some cases, the following sufficient condition can shorten the proof that a givenFξ
is arg-continuous.

Theorem 52 Supposeξ : T −→ I satisfies(X-2) and(X-5) ThenFξ is arg-continuous
if the following condition holds: For allε > 0 there existsδ > 0 such thatξ(>′,⊥)−
ξ(>,⊥) < ε whenever(>,⊥), (>′,⊥) ∈ T satisfyd′(>,>′) < δ and> ≤ >′.
(Proof: B.33, p.146+)

Based on these theorems, it is easy to prove the following.

Theorem 53 FCh is arg-continuous.
(Proof: B.34, p.148+)

Theorem 54 FS is not arg-continuous.
(Proof: B.35, p.149+)

Theorem 55 FA is not arg-continuous.
(Proof: B.36, p.150+)

HenceFCh is continuous both in quantifiers and arguments; which is important for
applications. The second example,FS , fails on both continuity conditions and is hence
not practical. (We will see below thatFS is of theoretical interest because it represents
a boundary case ofFξ-DFSes).
We are also interested in the specificity ofFξ-DFSes. The following theorem facilitates
the proof that a givenFξ-QFM is less specific than anotherFξ-QFM by relating the
specificity order onFξ to the specificity order onξ:

Theorem 56 Letξ, ξ′ : T −→ I be given mappings. Then the following conditions are
equivalent:

a. Fξ �c Fξ′ ;

b. ξ �c ξ′.

(Proof: B.37, p.151+)
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In the case ofFξ-DFSes that propagate fuzziness in quantifiers, it is sufficient to check
a simpler condition.

Theorem 57 Let ξ, ξ′ : T −→ I be given mappings which satisfy(X-1) to (X-5) and
suppose thatξ, ξ′ have the additional property thatξ(>,⊥) = ξ′(>,⊥) = 1

2 whenever
(>,⊥) ∈ T with>(0) ≥ 1

2 ≥ ⊥(0). Then the following conditions are equivalent:

a. Fξ �c Fξ′ ;

b. for all (>,⊥) ∈ T with⊥(0) > 1
2 , ξ(>,⊥) ≤ ξ′(>,⊥).

(Proof: B.38, p.151+)

As regards least specificFξ-DFSes, we can prove the following:

Theorem 58 MU is the least specificFξ-DFS.
(Proof: B.39, p.153+)

Turning to the issue of most specific models, I first state a theorem for establishing
or rejecting specificity consistence. This is useful because specificity consistence is
tightly coupled to the existence of least upper specificity bounds, see Th-6.

Theorem 59 Consider a pair of mappingsξ, ξ′ : T −→ I. The QFMsFξ andFξ′ are
specificity consistent if and only ifξ, ξ′ are specificity consistent, i.e. for all(>,⊥) ∈ T,
either{ξ(>,⊥), ξ′(>,⊥)} ⊆ [0, 1

2 ] or {ξ(>,⊥), ξ′(>,⊥)} ⊆ [ 1
2 , 1].

(Proof: B.40, p.156+)

An investigation of a possible most specificFξ-DFS reveals the following.

Theorem 60 The class ofFξ-DFSes is not specificity consistent.
(Proof: B.41, p.157+)

Hence by Th-6, a “most specificFξ-DFS” does not exist. However, we obtain a posi-
tive result if we restrict attention to the class ofFξ-DFSes which propagate fuzziness
in quantifiers or arguments. This is apparent from the following observation.

Theorem 61 SupposeF is a collection ofFξ-DFSesFξ ∈ F with the property that
ξ(>,⊥) = 1

2 whenever(>,⊥) ∈ T is such that>(0) ≥ 1
2 ≥ ⊥(0). ThenF is

specificity consistent.
(Proof: B.42, p.159+)

We then have the following corollaries.

Theorem 62 The class ofFξ-DFSes that propagate fuzziness in quantifiers is speci-
ficity consistent.
(Proof: B.43, p.160+)
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Theorem 63 The class ofFξ-DFSes that propagate fuzziness in arguments is speci-
ficity consistent.
(Proof: B.44, p.160+)

By Th-6, theFξ-DFSes that propagate fuzziness in quantifiers have a least upper speci-
ficity bound which, as it turns out, also propagates fuzziness in quantifiers.

Theorem 64 FS is the most specificFξ-DFS that propagates fuzziness in quantifiers.
(Proof: B.45, p.160+)

Similarly, we can conclude from Th-63 that there is a most specificFξ-DFS that prop-
agates fuzziness in arguments.

Theorem 65 FA is the most specificFξ-DFS that propagates fuzziness in arguments.
(Proof: B.46, p.161+)
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6 Conclusion

It has been the goal of this report to broaden the class of known models of fuzzy quan-
tification. There are several reasons why I wanted to explore standard DFSes beyond
the class ofMB-DFSes introduced in [7]. The first reason is concerned with propa-
gation of fuzziness.MB-DFSes are particularly well-behaved because they propagate
fuzziness in quantifiers as well as in arguments: the fuzzier the input, the fuzzier the
output. In most cases, this is the expected and desirable behaviour because one usually
does not want the results to become more precise when there is less precision in the
input. However, I anticipate that there are applications in which it is preferable to sac-
rifice propagation of fuzziness, in order to prevent the results from attaining the least
specific value of12 . This might be the case, for example, when the input is overly fuzzy
and one still needs a fine-grained result ranking. In these cases, one could profit from
models that do not propagate fuzziness. The second reason stems from the intent to
relate the present approach with existing work on fuzzy quantification. I have already
shown in [7] that there exists a DFSMCX which generalizes the Sugeno integral and
hence the ‘basic’ FG-count approach7 to arbitrary semi-fuzzy quantifiers, which can
be multiplace and/or non-quantitative and need not be monotonic. However, a similar
result concerning the Choquet integral and hence the ‘basic’ OWA approach8 was still
missing. In order to embed the Choquet integral into the framework of DFS theory, it
was necessary to go beyondMB-DFSes because the Choquet integral does not prop-
agate fuzziness. Last but not least, the study of a broader class of standard models is
interesting in its own right, because it helps to gain new insight into the structure of
fuzzy quantification that might eventually lead to a complete classification of standard
DFSes.

In the report, I have first reviewed the basic concepts of DFS theory and cited a
few additional definitions and theorems about properties of DFSes the familiarity with
which is necessary to understand the new theorems and to carry out their proofs. In
addition, a couple of special adequacy properties have been introduced, which are de-
sirable but not required for general DFSes. Apart from the criteria of propagating
fuzziness in quantifiers and/or arguments, the most important extra requirement is cer-
tainly that of robustness with respect to slight changes in the parameters. This stability
consideration is covered by the criterion of arg-continuity, which accounts for differ-
ences in the arguments, and by the criterion of Q-continuity, which accounts for dif-
ferences in the interpretation of quantifiers. These conditions are essential for practical
applications because they ensure a certain insensitivity with respect to noise.

After defining these properties, the class ofMB-DFSes has been reviewed. The con-
struction of these models in terms of three-valued cuts has provided a suitable starting
point for the generalisation to a broader class of models, the class ofFξ-DFSes. To this
end,Qγ(X1, . . . , Xn) andB : B −→ I have been replaced with a pair of mappings
(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) ∈ T, and a corresponding aggregation operatorξ : T −→
I which maps such pairs into quantification resultsξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn).

I have presented the essential criteria that make it easy to check whether a given
7i.e. the formula for quantitative nondecreasing one-place quantifiers.
8again, the formula for quantitative regular nondecreasing one-place quantifiers.
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Fξ-QFM is a DFS; whether it propagates fuzziness in quantifiers and/or in arguments;
whether it is Q-continuous and/or arg-continuous; whether it is specificity consistent
with otherFξ-DFSes; and how it compares to these DFSes by specificity.

In particular, I have shown that the class ofFξ-DFSes is broad enough to contain
DFSes which are rather different fromMB-DFSes. Among theFξ-DFSes, some mod-
els neither propagate fuzziness in arguments nor in quantifiers; some models propa-
gate fuzziness in quantifiers, but not in arguments, while others propagate fuzziness
in arguments, but not in quantifiers, and some propagate fuzziness both in quantifiers
and arguments. The latter class ofFξ-DFSes has been proven be exactly the class
ofMB-DFSes. The present report has hence succeeded in defining a class of DFSes
which (unlikeMB-DFSes) fail to propagate fuzziness. The report also explains why
the models which do not propagate fuzziness have a chance of performing better than
those that propagate fuzziness in situations where the inputs are overly fuzzy. This
can be mainly attributed to the property described in Th-34 and Th-40: if anFξ-DFS
propagates fuzziness in quantifiers or in arguments, thenFξ(Q)(X1, . . . , Xn) = 1

2
whenever>Q,(X1,...,Xn) ≥ 1

2 and⊥Q,(X1,...,Xn) ≤ 1
2 . Hence there is a certain range

in which the results of anFξ-DFS are constantly12 , which can be undesirable if one
needs a fine-grained result ranking. Because both types of propagating fuzziness cause
this kind of behaviour, one must resort to models that fail on both conditions if one
needs specific results even when there is a lot of fuzziness in the inputs.

The DFSFCh is a promising choice in such situations because it also fulfills the
continuity requirements. It is anticipated thatFCh will find a number of uses in real-
world applications that utilize fuzzy quantifiers. However,FCh is also an interesting
model from a scientific perspective becauseFCh can be shown to embed the Choquet
integral, thus generalizing it to the case of non-monotonic and multi-place quantifiers.
The report hence also succeeds in relating DFS theory with existing work on fuzzy
quantification because the Choquet integral is known to embed the OWA approach.

Concerning theoretical aspects of fuzzy quantification, the report proves that there
are standard DFSes beyondMB-DFSes, and it also substantiates the existence of stan-
dard DFS which do not propagate fuzziness in arguments and/or quantifiers. In partic-
ular, it has been proven that the conditions of propagating fuzziness in quantifiers and
arguments are mutually independent. Apart from propagation of fuzziness, some novel
results concerning the specificity order�c have also been established. In particular, I
have shown that�c is not a total order on standard DFSes, not even in the ‘simple’
case ofMB-DFSes. Most importantly, I have shown that there is no most specific
standard DFS. However, there is a most specificFξ-DFS that propagates fuzziness in
quantifiers, vizFS , and there is also a most specificFξ-DFS that propagates fuzziness
in arguments, vizFA. ApparentlyFS andFA are not practical models because they
fail on both continuity conditions, but this seems to be typical for boundary cases with
respect to specificity.

The present report has shed some light on theoretical aspects of fuzzy quantification,
but a number of issues remain unresolved. Most importantly, there is no evidence yet
concerning the question whether there are standard DFSes beyondFξ-DFSes and if
so, how theMB-DFSes andFξ-DFSes are located within the ‘full’ class of standard
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DFSes. The ultimate goal is to identify this full class, to uncover the structure of its
models, and to characterise its natural subclasses. Further theoretical work is required
to clarify these matters, and it is hoped that some of the techniques presented in this
report will help to accomplish this endeavour.
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Appendix

Any proposition which occurs in the main text is called atheorem, and any proposition
which only occurs in the proofs alemma. Theorems are referred to as Th-n, where
n is the number of the theorem, while lemmata are referred to as L-n, wheren is the
number of the lemma. Equations which are embedded in proofs are referred to as(n),
wheren is the number of the equation.

A Proof of theorems in chapter 4

A.1 Proof of Theorem 18

Lemma 1 SupposeB′1,B′2 : H −→ I are given. Further suppose thatB1,B2 ∈ BB
are the mappings associated withB′1 andB′2, resp., according to equation(15), and
MB1 ,MB2 are the corresponding QFMs defined by Def. 33. ThenMB1 �cMB2 iff
B′1 ≤ B′2.

Proof See [7, Th-86, p.61].

Proof of Theorem 18

We recall theMB-DFSesMU andMS defined by Def. 40 and Def. 41. We stipulate
MB′1 = (MU +MS)/2. Being a convex combination of standard DFSes,MB′1 is
also a standard DFS by Th-4. In addition, it is apparent from Def. 33 and (16) that

B′1(f) = B′U (f)+B′S(f)
2 , (34)

where

B′U (f) = max(f1↑
∗ , f

∗
1 ) (35)

B′S(f) = min(f0↓
∗ , f

∗
0 ) , (36)

for all f ∈ H, see Def. 40 and Def. 41.
Now let us define mappingsf, g ∈ H as follows.

f(γ) =

{
1− 3

2γ : γ ≤ 1
2

1
2 −

1
2γ : γ > 1

2

(37)

g(γ) =

{
1− 1

2γ : γ ≤ 1
2

3
2 −

3
2γ : γ > 1

2

(38)
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for all γ ∈ I. Then by (10), (9), (13) and (12),

f0↓
∗ = 1
f∗0 = 1

f1↑
∗ = 0
f∗1 = 0

g0↓
∗ = 1
g∗0 = 1

g1↑
∗ = 0
g∗1 = 0 .

HenceB′U (f) = B′U (g) = 0, B′S(f) = B′S(g) = 1 by (35), (36) and in turn,

B′1(f) = 1
2

B′1(g) = 1
2 .

Now let us consider the results ofB′∫ , see Def. 39. In the case off ,

B′∫ (f) =
∫ 1

0

f(γ) dγ by Def. 39

=
∫ 1

2

0

(1− 3
2γ) dγ +

∫ 1

1
2

( 1
2 −

1
2γ) dγ by (37)

= 3
8

and in the case ofg,

B′∫ (g) =
∫ 1

0

g(γ) dγ by Def. 39

=
∫ 1

2

0

(1− 1
2γ) dγ +

∫ 1

1
2

( 3
2 −

3
2 ) dγ by (38)

= 5
8 .

Hence there existf, g ∈ B with B′∫ (f) = 3
8 < 1

2 = B′1(f) andB′∫ (g) = 5
8 > 1

2 =
B′1(g). By L-1,M�

c
MB′1 andMB′1 �cM, i.e.�c is a genuinepartial order.

B Proof of theorems in chapter 5

B.1 Proof of Theorem 20

Lemma 2 LetE 6= ∅ be a given base set andX ∈ P̃(E). Then

Tγ(X) ⊆ Tγ′(X)

wheneverγ ≤ γ′.
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Proof If γ = γ′ = 0, this is trivial. If γ = 0 andγ′ > 0, then

Xmin
0 = X

>
1
2
⊇ X

≥ 1
2 +

1
2γ
′ = Xmin

γ′ (39)

and

Xmax
0 = X

≥ 1
2
⊆ X

>
1
2−

1
2γ
′ = Xmax

γ′ (40)

which is apparent from Def. 30, Def. 28 and Def. 29. Hence

T0(X) = {Y : Xmin
0 ⊆ Y ⊆ Xmax

0 } by Def. 30

⊆ {Y : Xmin
γ′ ⊆ Y ⊆ Xmax

γ′ } by (39), (40)

= Tγ′(X) . by Def. 30

Finally if 0 < γ ≤ γ′, then

Xmin
γ′ = X

≥ 1
2 +

1
2γ
′ ⊆ X≥ 1

2 +
1
2γ

= Xmin
γ (41)

and

Xmax
γ = X

>
1
2−

1
2γ
⊆ X

>
1
2−

1
2γ
′ = Xmax

γ′ (42)

by Def. 30, Def. 28 and Def. 29. Therefore

Tγ(X) = {Y : Xmin
γ ⊆ Y ⊆ Xmax

γ } by Def. 30

⊆ {Y : Xmin
γ′ ⊆ Y ⊆ Xmax

γ′ } by (41), (42)

= Tγ′(X) . by Def. 30

Proof of Theorem 20

Let a semi-fuzzy quantifierQ : P(E)n −→ I and a choice of fuzzy arguments
X1, . . . , Xn ∈ P̃(E) be given.

1. In order to prove that>Q,X1,...,Xn is nondecreasing, letγ, γ′ ∈ I, γ ≤ γ′. Then
Tγ(Xi) ⊆ Tγ′(Xi) for i = 1, . . . , n by L-2. In particular,

{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)}
⊆ {Q(Y1, . . . , Yn) : Y1 ∈ Tγ′(X1), . . . , Yn ∈ Tγ′(Xn)} . (43)

Therefore

>Q,X1,...,Xn(γ) = sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 43

≤ sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ′(X1), . . . , Yn ∈ Tγ′(Xn)} by (43)

= >Q,X1,...,Xn(γ′) , by Def. 43

i.e.>Q,X1,...,Xn is nondecreasing.
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2. Turning to⊥Q,X1,...,Xn , we again chooseγ ≤ γ′ ∈ I. Then

⊥Q,X1,...,Xn(γ) = inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 43

≥ inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ′(X1), . . . , Yn ∈ Tγ′(Xn)} by (43)

= ⊥Q,X1,...,Xn(γ′) , by Def. 43

which proves that⊥Q,X1,...,Xn is nonincreasing.

3. It is apparent from Def. 30 thatXmin
γ ⊆ Xmax

γ for arbitrary fuzzy subsetsX ∈
P̃(E) and cutting parametersγ ∈ I. Given the semi-fuzzy quantifierQ : P(E)n −→
I, fuzzy subsetsX1, . . . , Xn ∈ P̃(E) andγ ∈ I, we hence know thatTγ(Xi) 6= ∅ for
all i = 1, . . . , n. In particular,

{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} 6= ∅ . (44)

Recalling thatinf Z ≤ supZ wheneverZ ⊆ I is nonempty, we conclude that

⊥Q,X1,...,Xn(γ) = inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 43

≤ sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by (44)

= >Q,X1,...,Xn(γ) . by Def. 43

Becauseγ ∈ I was arbitrary, this means that⊥Q,X1,...,Xn ≤ >Q,X1,...,Xn , as desired.

B.2 Proof of Theorem 21

Lemma 3 SupposeQ : P(E)n −→ I is nondecreasing in itsi-th argument (i ∈
{1, . . . , n}) andX1, . . . , Xn ∈ P̃(E). Then

>Q,X1,...,Xn(γ)
= sup{Q(Y1, . . . , Yi−1, (Xi)

max
γ , Yn+1, . . . , Yn) : Yi ∈ {1, . . . , i− 1, i+ 1, . . . , n}}

⊥Q,X1,...,Xn(γ)

= inf{Q(Y1, . . . , Yi−1, (Xi)
min
γ , Yn+1, . . . , Yn) : Yi ∈ {1, . . . , i− 1, i+ 1, . . . , n}}

for all γ ∈ I. Similarly ifQ is nonincreasing in itsi-th argument, then

>Q,X1,...,Xn(γ)

= sup{Q(Y1, . . . , Yi−1, (Xi)
min
γ , Yn+1, . . . , Yn) : Yi ∈ {1, . . . , i− 1, i+ 1, . . . , n}}

⊥Q,X1,...,Xn(γ)
= inf{Q(Y1, . . . , Yi−1, (Xi)

max
γ , Yn+1, . . . , Yn) : Yi ∈ {1, . . . , i− 1, i+ 1, . . . , n}}

Proof Let Q : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E) be given. We shall assume
thatQ is nondecreasing in itsi-th argument, wherei ∈ {1, . . . , n}. Further letγ ∈ I
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be given. By Def. 30,Yi ⊆ (Xi)
max
γ for all Yi ∈ Tγ(Xi). BecauseQ is nondecreasing

in i, we conclude that

Q(Y1, . . . , Yn) ≤ Q(Y1, . . . , Yi−1, (Xi)
max
γ , Yi+1, . . . , Yn)

for all Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn). Hence by Def. 43,

>Q,X1,...,Xn

= sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)}
≤ {Q(Y1, . . . , Yi−1, (Xi)

max
γ , Yn+1, . . . , Yn) : Yi ∈ {1, . . . , i− 1, i+ 1, . . . , n}}

Noticing that(Xi)
max
γ ∈ Tγ(Xi) by Def. 30, the converse inequation also holds, i.e.

>Q,X1,...,Xn

= sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)}
= sup{Q(Y1, . . . , Yi−1, (Xi)

max
γ , Yn+1, . . . , Yn) : Yi ∈ {1, . . . , i− 1, i+ 1, . . . , n}} ,

as desired.
Concerning⊥Q,X1,...,Xn , we may proceed similarly. First we observe that by Def. 30,
(Xi)

min
γ ⊆ Yi for all Yi ∈ Tγ(Xi). BecauseQ is nondecreasing ini, we conclude that

Q(Y1, . . . , Yi−1, (Xi)
min
γ , Yi+1, . . . , Yn) ≤ Q(Y1, . . . , Yn)

for all Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn). Again by Def. 43,

⊥Q,X1,...,Xn

= inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)}

≥ {Q(Y1, . . . , Yi−1, (Xi)
min
γ , Yn+1, . . . , Yn) : Yi ∈ {1, . . . , i− 1, i+ 1, . . . , n}}

Because(Xi)
min
γ ∈ Tγ(Xi) by Def. 30, the converse inequation also holds, i.e. we get

the desired

⊥Q,X1,...,Xn

= inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)}

= inf{Q(Y1, . . . , Yi−1, (Xi)
min
γ , Yn+1, . . . , Yn) : Yi ∈ {1, . . . , i− 1, i+ 1, . . . , n}} .

The proof for a quantifier which is nonincreasing in itsi-th argument is analogous.

Lemma 4 Let (>,⊥) ∈ T be given. Then

>(γ) ≥ ⊥(γ′) ,

for all γ, γ′ ∈ I.
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Proof Suppose(>,⊥) ∈ T andγ, γ′ ∈ I. From Def. 44, we know that> is nonde-
creasing, that⊥ is nondecreasing and that⊥ ≤ >. Therefore

>(γ) ≥ >(0) because> nondecreasing

≥ ⊥(0) because⊥ ≤ >
≥ ⊥(γ′) . because⊥ nonincreasing

Lemma 5 Suppose(>,⊥) ∈ T is given. The semi-fuzzy quantifierQ : P(2× I) −→
I defined by equation(20) is nondecreasing in its argument.

Proof Let (>,⊥) ∈ T be given. We further assume thatQ′, Q′′, Q : P(2× I) −→ I
are defined by (18), (19) and (20), respectively.
Now let a choice ofY1, Y2 ∈ P(2× I) be given whereY1 ⊆ Y2. We define crisp
subsetsY ′1 , Y

′
2 , Y

′′
1 , Y

′′
2 ∈ P(I) according to (21) and (22), resp. Then

Y ′1 = {z ∈ I : (0, z) ∈ Y1}
Y ′′1 = {z ∈ I : (1, z) ∈ Y1}
Y ′2 = {z ∈ I : (0, z) ∈ Y2}
Y ′′2 = {z ∈ I : (1, z) ∈ Y2} .

It is hence apparent fromY1 ⊆ Y2 thatY ′1 ⊆ Y ′2 andY ′′1 ⊆ Y ′′2 . ThereforesupY ′1 ≤
supY ′2 and because> is nondecreasing by Def. 44,

Q′(Y1) = >(supY ′1) ≤ >(supY ′2) = Q′(Y2) ,

i.e.Q′ is nondecreasing. Similarly, we conclude fromY ′′1 ⊆ Y ′′2 thatinf Y ′′1 ≥ inf Y ′′2 .
Hence because⊥ is nonincreasing by Def. 44,

Q′′(Y1) = ⊥(inf Y ′′1 ) ≤ ⊥(inf Y ′′2 ) = Q′′(Y2) ,

i.e.Q′′ is nondecreasing as well. Finally, let us utilize that by L-4,

>(γ) ≥ ⊥(γ′)

for all γ, γ′ ∈ I. Hence

Q′(Y ) = >(supY ′) ≥ ⊥(inf Y ′′) = Q′′(Y ) ,

for all Y ∈ P(2× I), whereY ′, Y ′′ ∈ P(I) are defined by (21) and (22).
Summarizing, we now know thatQ′ andQ′′ are nondecreasing and thatQ′ ≥ Q′′. In
order to finish the proof, we separate the following cases.

a. Y ′2 = ∅. ThenY ′1 = ∅ also becauseY ′1 ⊆ Y ′2 . Hence

Q(Y1) = Q′′(Y1) by (20) becauseY ′1 = ∅

≤ Q′′(Y2) becauseQ′′ nondec andY1 ⊆ Y2

= Q(Y2) . by (20) becauseY ′2 = ∅
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b. Y ′1 = ∅ and Y ′2 6= ∅. In this case,

Q(Y1) = Q′′(Y1) by (20) becauseY ′1 = ∅

≤ Q′(Y1) becauseQ′′ ≤ Q′

≤ Q′(Y2) becauseQ′ nondec andY1 ⊆ Y2

= Q(Y2) . by (20) becauseY ′2 = ∅

c. Y ′1 6= ∅. ThenY ′2 6= ∅ as well becauseY1 ⊆ Y2. Therefore

Q(Y1) = Q′(Y1) by (20) becauseY ′1 6= ∅

≤ Q′(Y2) becauseQ′ nondec andY1 ⊆ Y2

= Q(Y2) , by (20) becauseY ′2 6= ∅

as desired.

Proof of Theorem 21

Suppose(>,⊥) ∈ T are given andQ′, Q′′, Q : P(2× I) −→ I, X ∈ P̃(2× I) are
defined as stated in the theorem. Then by Def. 30,

Xmin
0 = X

≥ 1
2

= {1} × (0, 1]

Xmax
0 = X

>
1
2

= ({0} × {0}) ∪ ({1} × I)

and forγ > 0,

Xmin
γ = X

≥ 1
2 +

1
2γ

= {1} × [γ, 1]

Xmax
γ = X

>
1
2−

1
2γ

= ({0} × [0, γ)) ∪ ({1} × I)

Hence forγ = 0, >Q,X(0) = sup{Q(Y ) : Y ∈ T0(X)} = >(0), which is apparent
becauseZ = Xmax

0 = ({0} × {0}) ∪ ({1} × I) ∈ T0(X) reaches the maximum
Q(Z) = Q′(Z) = >(sup{0}) = >(0); see L-3 and L-5. By the same lemmata,
⊥Q,X(0) = inf{Q(Y ) : Y ∈ T0(X)} = ⊥(0) becauseZ ′ = Xmin

0 = {1} × (0, 1] ∈
T0(X) reaches the minimumQ(Z ′) = Q′′(Z ′) = ⊥(inf(0, 1]) = ⊥(0), as desired.
In the case thatγ > 0, we again apply L-3 and L-5 and conclude that>Q,X(γ) =
sup{Q(Y ) : Y ∈ Tγ(X)} = >(γ), becauseZ = Xmax

γ = ({0}×[0, γ))∪({1}×I) ∈
Tγ(X) reaches the maximumQ(Z) = Q′(Z) = >(sup[0, γ)) = >(γ). Similarly, we
obtain that⊥Q,X(γ) = inf{Q(Y ) : Y ∈ Tγ(X)} = ⊥(γ) becauseZ ′ = Xmin

γ =
{1}× [γ, 1] ∈ Tγ(X) attains the minimumQ(Z ′) = Q′′(Z ′) = ⊥(inf[γ, 1]) = ⊥(γ).
Becauseγ ∈ I was arbitrary, this proves that> = >Q,X and⊥ = ⊥Q,X , as desired.

B.3 Proof of Theorem 22

Lemma 6 SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier andX1, . . . , Xn ∈
P̆ (E) ⊆ P̃(E) is a choice of three-valued argument sets. Then>Q,X1,...,Xn and
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⊥Q,X1,...,Xn are constant mappings, i.e.

>Q,(X1,...,Xn)(γ) = >Q,(X1,...,Xn)(0)
⊥Q,(X1,...,Xn)(γ) = ⊥Q,(X1,...,Xn)(0)

for all γ ∈ I.

Proof It is apparent from definition Def. 30 thatTγ(X) = T (X) for all γ ∈ I
wheneverX ∈ P̆ (E) ⊆ P̃(E) is a three-valued subset ofE. In particular,

Tγ(X) = T0(X) (45)

for all γ ∈ I. Therefore

>Q,X1,...,Xn(γ)
= sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 43

= sup{Q(Y1, . . . , Yn) : Y1 ∈ T0(X1), . . . , Yn ∈ T0(Xn)} by (45)

= >Q,X1,...,Xn(0) by Def. 43.

By the same reasoning, it can be shown that⊥Q,X1,...,Xn(γ) = ⊥Q,X1,...,Xn(0) for all
γ ∈ I.

Lemma 7 SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier andX1, . . . , Xn ∈
P(E) is a choice of crisp argument sets. Then

>Q,X1,...,Xn = ⊥Q,X1,...,Xn = Q(X1, . . . , Xn) .

Proof Let Q : P(E)n −→ I and a choice of crisp argumentsX1, . . . , Xn ∈ P(E)
be given. It is then apparent from Def. 30 that

T0(Xi) = {Xi} , (46)

for all i = 1, . . . , n. Therefore

>Q,X1,...,Xn(0)
= sup{Q(Y1, . . . , Yn) : Y1 ∈ {X1}, . . . , Yn ∈ {Xn}} by Def. 43 and (46)

= sup{Q(X1, . . . , Xn)}
= Q(X1, . . . , Xn) .

Similarly

⊥Q,X1,...,Xn(0)
= inf{Q(Y1, . . . , Yn) : Y1 ∈ {X1}, . . . , Yn ∈ {Xn}} by Def. 43 and (46)

= inf{Q(X1, . . . , Xn)}
= Q(X1, . . . , Xn) .
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We may then apply L-6 and conclude that

>Q,X1,...,Xn(γ) = >Q,X1,...,Xn(0)
= Q(X1, . . . , Xn)
= ⊥Q,X1,...,Xn(0)
= ⊥Q,X1,...,Xn(γ)

for all γ ∈ I, as desired.

Lemma 8 If ξ : T −→ I satisfies(X-1), then the QFMFξ defined by Def. 45 satisfies
U(Fξ(Q)) = Q for all semi-fuzzy quantifiersQ : P(E)n −→ I.

Note. In particular,Fξ satisfies (Z-1), which weakens the lemma to the casen ≤ 1.

Proof LetQ : P(E)n −→ I be a semi-fuzzy quantifier andX1, . . . , Xn ∈ P(E) be
a choice of crisp subsets ofE. We may apply L-7 and conclude that

>Q,X1,...,Xn(γ) = ⊥Q,X1,...,Xn(γ) = Q(X1, . . . , Xn) , (47)

for all γ ∈ I. Therefore

Fξ(Q)(X1, . . . , Xn) = ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) by Def. 45

= >Q,X1,...,Xn(0) by (47) and (X-1)

= Q(X1, . . . , Xn) . by (47)

Lemma 9 Supposeξ : T −→ I satisfies(X-2) and (X-3). ThenFξ coincides withM
on two-valued quantifiers, i.e. wheneverQ : P(E)n −→ 2 is a two-valued quantifier
andX1, . . . , Xn ∈ P̃(E) are fuzzy arguments, then

Fξ(Q)(X1, . . . , Xn) =M(Q)(X1, . . . , Xn) .

Note. In particular,Fξ induces the standard negation¬x = 1−x, the standard conjunc-
tion x ∧ y = min(x, y), the standard disjunctionx ∨ y = max(x, y) and the standard

extension principlêFξ = ˆ̂(•), which is apparent because all of these are obtained from
two-valued quantifiers, andM is known to be a standard DFS by Th-11.

Proof Let Q : P(E)n −→ 2 be given andX1, . . . , Xn ∈ P̃(E). BecauseQ is
two-valued, i.e.Q(Y1, . . . , Yn) ∈ 2 = {0, 1}, it is apparent that{Q(Y1, . . . , Yn) :
Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} ⊆ 2. Hence by Def. 43,>Q,X1,...,Xn(γ) ∈ 2 and
⊥Q,X1,...,Xn(γ) ∈ 2 for all γ ∈ I. It is then apparent from Th-20 (i.e.⊥Q,X1,...,Xn ≤
>Q,X1,...,Xn and the fact that>Q,X1,...,Xn is nondecreasing and⊥Q,X1,...,Xn nonin-
creasing) that there are only the following possibilities:
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a. >Q,X1,...,Xn(0) = 1.
Then>Q,X1,...,Xn(γ) = 1 for all γ ∈ I because>Q,X1,...,Xn is nondecreasing by
Th-20, i.e.

>Q,X1,...,Xn = c1 . (48)

In addition,⊥Q,X1,...,Xn(γ) ∈ {0, 1} by our above reasoning, i.e.

⊥̂Q,X1,...,Xn(I) ⊆ {0, 1} . (49)

We may hence apply (X-3) and conclude that

ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) = 1
2 + 1

2 (>Q,X1,...,Xn)0↓
∗ . (50)

In this case,

Qγ(X1, . . . , Xn) = med 1
2

(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) by (17)

= med 1
2

(1,⊥Q,X1,...,Xn(γ)) by (48)

=
{

1 : ⊥Q,X1,...,Xn(γ) = 1
1
2 : else

by (49), Def. 22

Abbreviatingf(γ) = Qγ(X1, . . . , Xn), we hence obtain

f
1
2↓
∗ = ⊥Q,X1,...,Xn . (51)

Therefore

M(Q)(X1, . . . , Xn)
= B∫ (f) by Def. 33, definition off

= 1
2 + 1

2f
1
2↓
∗ by (B-3) [Th-11, Th-8]

= 1
2 + 1

2 (⊥Q,X1,...,Xn)0↓
∗ by (51)

= ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) by (50)

= Fξ(Q)(X1, . . . , Xn) . by Def. 45

b. ⊥Q,X1,...,Xn(0) = 0.
The proof of this case is analogous: First we use the fact that⊥Q,X1,...,Xn is nonin-
creasing by Th-20 to conclude that⊥Q,X1,...,Xn(γ) = 0 for all γ ∈ I, i.e.⊥Q,X1,...,Xn =
c0. Again, we conclude from>Q,X1,...,Xn(γ) ∈ 2 for all γ ∈ I that>̂Q,X1,...,Xn(I) ⊆
{2}. In the following, we shall abbreviate>′ = 1 − ⊥Q,X1,...,Xn and⊥′ = 1 −
>Q,X1,...,Xn . Clearly (>′,⊥′) ∈ T, >′ = c1 and⊥̂′(I) ⊆ 2. We may hence apply
(X-3), which yields

ξ(>′,⊥′) = 1
2 + 1

2⊥
′0↓
∗ (52)
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Therefore

Fξ(Q)(X1, . . . , Xn)
= ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) by Def. 45

= ξ(1−⊥′, 1−>′) by definition of>′,⊥′

= 1− ξ(>′,⊥′) by (X-2)

= 1− ( 1
2 + 1

2⊥
′0↓
∗ ) by (52)

= 1
2 −

1
2⊥
′0↓
∗

i.e.

Fξ(Q)(X1, . . . , Xn) = 1
2 −

1
2⊥
′0↓
∗ . (53)

Abbreviatingf(γ) = Qγ(X1, . . . , Xn), we obviously have

f(γ) = med 1
2

(>Q,X1,...,Xn(γ),⊥Q,X1,...,Xn(γ)) by (17)

= med 1
2

(>Q,X1,...,Xn(γ), 0) because⊥Q,X1,...,Xn = c0

=
{

0 : >Q,X1,...,Xn = 0
1
2 : else

by Def. 22 and>Q,X1,...,Xn ∈ 2

Therefore

B∫ (f) = 1
2 −

1
2f

1
2↓
∗ = 1

2 −
1
2⊥
′0↓
∗ (54)

where the first equation is apparent from (B-3), which holds by Th-11 and Th-8, and
the second equation is apparent from (10). Finally

M(Q)(X1, . . . , Xn)
= B∫ (f) by Def. 33, definition off

= 1
2 −

1
2⊥
′0↓
∗ by (54)

= Fξ(Q)(X1, . . . , Xn) . by (53)

Lemma 10 If ξ : T −→ I satisfies(X-2) and (X-3), thenFξ satisfies(Z-2).

Proof Let E 6= ∅ be a given base set ande ∈ E an arbitrary element ofE. The
projection quantifierπe : P(E) −→ 2 is two-valued by Def. 6. Therefore

Fξ(πe) =M(πe) by L-9

= π̃e . by Th-11
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Lemma 11 LetQ : P(E)n −→ I be a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E).
Then

a. >¬Q,X1,...,Xn = 1−⊥Q,X1,...,Xn ;

b. ⊥¬Q,X1,...,Xn = 1−>Q,X1,...,Xn ,

where¬x = 1− x is the standard negation.

Proof SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier andX1, . . . , Xn ∈
P̃(E). Further letγ ∈ I.

a. The first claim of the lemma is obvious fromsup{1− a : a ∈ A} = 1− inf A for
all A ∈ P(I):

>¬Q,X1,...,Xn

= sup{¬Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 43

= sup{1−Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} (¬x = 1− x)

= 1− inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)}
= 1−⊥Q,X1,...,Xn(γ) . by Def. 43

b. The second claim of the lemma is entailed by the first one because

⊥¬Q,X1,...,Xn

= 1− (1−⊥¬Q,X1,...,Xn)
= 1−>¬¬Q,X1,...,Xn by parta. of the lemma

= 1−>Q,X1,...,Xn , because¬x = 1− x involutive

which finishes the proof.

Lemma 12 SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier of arityn > 0. Then
for all X1, . . . , Xn ∈ P̃(E),

>Q¬,X1,...,Xn = >Q,X1,...,Xn−1,¬Xn

⊥Q¬,X1,...,Xn = ⊥Q,X1,...,Xn−1,¬Xn ,

where¬Xn ∈ P̃(E) is the standard fuzzy complementµXn(e) = 1 − µXn(e), for all
e ∈ E.

Proof LetQ : P(E)n −→ I be given (n > 0) andX1, . . . , Xn ∈ P̃(E). We already
know from the proof of [6, L-22, p.127] (γ > 0) and [7, L-30, p.110] (γ = 0) that

Tγ(¬Xn) = {¬Y : Y ∈ Tγ(Xn)} , (55)
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for all γ ∈ I. Therefore

>Q¬,X1,...,Xn(γ)
= sup{(Q¬)(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 43

= sup{Q(Y1, . . . , Yn−1,¬Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 10

= sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1),
Yn ∈ Tγ(¬Xn)} by (55)

= >Q,X1,...,Xn−1,¬Xn(γ) , by Def. 43

for all γ ∈ I, and similarly

⊥Q¬,X1,...,Xn(γ)
= inf{(Q¬)(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 43

= inf{Q(Y1, . . . , Yn−1,¬Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 10

= inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1),
Yn ∈ Tγ(¬Xn)} by (55)

= ⊥Q,X1,...,Xn−1,¬Xn(γ) . by Def. 43

Lemma 13 Supposeξ : T −→ I satisfies(X-2) and (X-3). ThenFξ satisfies(Z-3).

Proof Let Q : P(E)n −→ I be given (n > 0) andX1, . . . , Xn ∈ P̃(E). By L-9
and Th-11, we know thatFxi induces the standard fuzzy negation¬x = 1 − x. By
Def. 11, dualisation based on the standard negation/complement can be decomposed
as BecauseQ� = ¬Q¬. Hence by L-11 and L-12,

>Q�,X1,...,Xn = 1−⊥Q,X1,...,Xn−1,¬Xn . (56)

and

⊥Q�,X1,...,Xn = 1−>Q,X1,...,Xn−1,¬Xn . (57)

Hence

Fξ(Q)(X1, . . . , Xn)
= ξ(>Q�,X1,...,Xn ,⊥Q�,X1,...,Xn) by Def. 45

= ξ(1−⊥Q,X1,...,Xn−1,¬Xn , 1−>Q,X1,...,Xn−1,¬Xn) by (56), (57)

= 1− ξ(>Q,X1,...,Xn−1,¬Xn ,⊥Q,X1,...,Xn−1,¬Xn) by (X-2)

= 1−Fξ(Q)(X1, . . . , Xn−1,¬Xn) by Def. 45

= ¬Fξ(Q)(X1, . . . , Xn−1,¬Xn) by L-9 and Th-11

= Fξ(Q)�(X1, . . . , Xn) . by Def. 11

BecauseX1, . . . , Xn ∈ P̃(E) were arbitrarily chosen, we conclude thatFξ(Q�) =
Fξ(Q)�, as desired.

Lemma 14 Supposeξ : T −→ I satisfies(X-2) and (X-3). ThenFξ satisfies(Z-4).
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Proof LetQ : P(E)n −→ I be given,n > 0. Further letX1, . . . , Xn+1 ∈ P̃(E) be
a given choice of fuzzy arguments, and letγ ∈ I. It has been shown in the proof of [6,
L-23, p.128] that

Tγ(Xn ∩Xn+1) = {Yn ∩ Yn+1 : Yn ∈ Tγ(Xn), Yn+1 ∈ Tγ(Xn+1)} (58)

wheneverγ > 0. The equation also holds ifγ = 0, as has been shown in [7, L-
32, p.112]. Recalling thatTγ(¬Z) = {¬Y : Y ∈ Tγ(Z)}, which has been shown
to hold for γ > 0 in the proof of [6, L-22, p.127] (γ > 0) and for γ = 0 in [7,
L-30, p.110], we may apply DeMorgan’s law and conclude from (58) that

Tγ(Xn ∪Xn+1) = {Yn ∪ Yn+1 : Yn ∈ Tγ(Xn), Yn+1 ∈ Tγ(Xn+1)} , (59)

for all γ ∈ I. Therefore

>Q∪,X1,...,Xn+1(γ)
= sup{Q∪(Y1, . . . , Yn+1) : Y1 ∈ Tγ(X1), . . . , Yn+1 ∈ Tγ(Xn+1)} by Def. 43

= sup{Q(Y1, . . . , Yn−1, Yn ∪ Yn+1) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn),
Yn+1 ∈ Tγ(Xn+1)} by Def. 12

= sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1),
Yn ∈ Tγ(Xn ∪Xn+1)} by (59)

= >Q,X1,...,Xn−1,Xn∪Xn+1(γ) , by Def. 43

for all γ ∈ I, i.e.

>Q∪,X1,...,Xn+1 = >Q,X1,...,Xn−1,Xn∪Xn+1 . (60)

Analogously,

⊥Q∪,X1,...,Xn+1(γ)
= inf{Q∪(Y1, . . . , Yn+1) : Y1 ∈ Tγ(X1), . . . , Yn+1 ∈ Tγ(Xn+1)} by Def. 43

= inf{Q(Y1, . . . , Yn−1, Yn ∪ Yn+1) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn),
Yn+1 ∈ Tγ(Xn+1)} by Def. 12

= inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1),
Yn ∈ Tγ(Xn ∪Xn+1)} by (59)

= ⊥Q,X1,...,Xn−1,Xn∪Xn+1(γ) , by Def. 43

for all γ ∈ I, i.e.

⊥Q∪,X1,...,Xn+1 = ⊥Q,X1,...,Xn−1,Xn∪Xn+1 . (61)

Hence

Fξ(Q∪)(X1, . . . , Xn+1)
= ξ(>Q∪,X1,...,Xn+1 ,⊥Q∪,X1,...,Xn+1) by Def. 45

= ξ(>Q,X1,...,Xn−1,Xn∪Xn+1 ,⊥Q,X1,...,Xn−1,Xn∪Xn+1) by (60), (61)

= Fξ(Q)(X1, . . . , Xn−1, Xn ∪Xn+1) . by Def. 45
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BecauseX1, . . . , Xn+1 ∈ P̃(E) were arbitrarily chosen, we conclude thatFξ(Q∪) =
Fξ(Q)∪.

Lemma 15 If ξ : T −→ I satisfies(X-5), thenFξ satisfies(Z-5).

Proof LetQ : P(E)n −→ I be nonincreasing in itsn-th argument,n > 0. Further
letX1, . . . , Xn, X

′
n ∈ P̃(E),Xn ⊆ X ′n. Then for allγ ∈ I,

>Q,X1,...,Xn(γ)
= sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 45

= sup{Q(Y1, . . . , Yn+1, Xn
min
γ ) : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1)}

(becauseQ nonincreasing inn-th arg and(Xn)min
γ ⊆ Y for all Yn ∈ Tγ(Xn))

≥ sup{Q(Y1, . . . , Yn+1, X
′
n

min
γ ) : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1)}

(becauseQ nonincreasing inn-th argument and(Xn)min
γ ⊆ (X ′n)min

γ )

= sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn−1 ∈ Tγ(Xn−1), Yn ∈ Tγ(X ′n)}

(becauseQ nonincreasing inn-th argument and(X ′n)min
γ ⊆ Y for all Yn ∈ Tγ(X ′n))

= >Q,X1,...,Xn−1,X′n(γ) ,

i.e.

>Q,X1,...,Xn ≥ >Q,X1,...,Xn−1,X′n . (62)

By similar reasoning based onXn
max
γ andX ′n

max
γ , one shows that

⊥Q,X1,...,Xn ≥ ⊥Q,X1,...,Xn−1,X′n . (63)

Therefore

Fξ(Q)(X1, . . . , Xn) = ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) by Def. 45

≥ ξ(>Q,X1,...,Xn−1,X′n ,⊥Q,X1,...,Xn−1,X′n) by (X-5)

= Fξ(Q)(X1, . . . , Xn−1, X
′
n) .

HenceFξ(Q) is nonincreasing in itsn-th argument, as desired.

The following chain of lemmata is targeted at the proof that (X-2), (X-3), (X-4) and
(X-5) are sufficient forFξ to satisfy (Z-6). For similar reasons as in [6, p. 132] and
[7, p. 116], we shall introduce a modified definition of>Q,X1,...,Xn and⊥Q,X1,...,Xn

which is apparently compatible with functional application (Z-6). We will then show
that the original definition gives rise to the same QFM as the modified definition, thus
inheriting its compliance with (Z-6).
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Definition 54 Let a semi-fuzzy quantifierQ : P(E)n −→ I be given andX1, . . . , Xn ∈
P̃(E). >HQ,X1,...,Xn

,⊥HQ,X1,...,Xn
: I −→ I are defined by

>HQ,X1,...,Xn(γ) = sup{Q(Y1, . . . , Yn) : Y1 ∈ T Hγ (X1), . . . , Yn ∈ T Hγ (Xn)} (64)

⊥HQ,X1,...,Xn(γ) = inf{Q(Y1, . . . , Yn) : Y1 ∈ T Hγ (X1), . . . , Yn ∈ T Hγ (Xn)} (65)

where

T Hγ (X) = {Y : XHmin
γ ⊆ Y ⊆ XHmax

γ } (66)

XHmin
γ = X

>
1
2 +

1
2γ

(67)

XHmax
γ = Xmax

γ =

 X
≥ 1

2
: γ = 0

X
>

1
2−

1
2γ

: γ > 0 (68)

for all γ ∈ I.

Lemma 16 SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier,E′ is some non-
empty base set,f1, . . . , fn : E′ −→ E are mappings and andX1, . . . , Xn ∈ P̃(E′).
Then for allγ ∈ (0, 1],

>H
Q◦

n
×
i=1

f̂i,X1,...,Xn
(γ) = >H

Q,
ˆ
f̂1,...,

ˆ
f̂n

(γ)

⊥H
Q◦

n
×
i=1

f̂i,X1,...,Xn
(γ) = ⊥H

Q,
ˆ
f̂1,...,

ˆ
f̂n

(γ) .

Proof Let Q : P(E)n −→ I, f1, . . . , fn : E′ −→ E andX1, . . . , Xn ∈ P̃(E′) be
given andγ ∈ (0, 1]. We first recall that by equation (*) in the proof of [6, L-27, p.134],

T Hγ ( ˆ̂
fi(Xi)) = {f̂i(Y ) : Y ∈ T Hγ (Xi)} (69)

becauseγ > 0. Hence

>H
Q◦

n
×
i=1

f̂i,X1,...,Xn
(γ)

= sup{Q ◦
n
×
i=1

f̂iY1, . . . , Yn : Y1 ∈ T Hγ (X1), . . . , Yn ∈ T Hγ (Xn)} by (64)

= supQ(f̂1(Y1), . . . , f̂n(Yn)) : Y1 ∈ T Hγ (X1), . . . , Yn ∈ T Hγ (Xn)} by (2)

= supQ(Y1, . . . , Yn) : Y1 ∈ T Hγ ( ˆ̂
f1(X1)), . . . , T Hγ ( ˆ̂

fn(Xn))} by (69)

= >H
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

(γ) . by (64)
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By analogous reasoning,

⊥H
Q◦

n
×
i=1

f̂i,X1,...,Xn
(γ)

= inf{Q ◦
n
×
i=1

f̂iY1, . . . , Yn : Y1 ∈ T Hγ (X1), . . . , Yn ∈ T Hγ (Xn)} by (65)

= inf Q(f̂1(Y1), . . . , f̂n(Yn)) : Y1 ∈ T Hγ (X1), . . . , Yn ∈ T Hγ (Xn)} by (2)

= inf Q(Y1, . . . , Yn) : Y1 ∈ T Hγ ( ˆ̂
f1(X1)), . . . , T Hγ ( ˆ̂

fn(Xn))} by (69)

= ⊥H
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

(γ) . by (65)

Lemma 17 For every semi-fuzzy quantifierQ : P(E)n −→ I and allX1, . . . , Xn ∈
P̃(E),

(>HQ,X1,...,Xn ,⊥
H
Q,X1,...,Xn) ∈ T .

Proof We have to show that for allQ : P(E)n −→ I and allX1, . . . , Xn ∈ P̃(E),
>HQ,X1,...,Xn

is nondecreasing;⊥HQ,X1,...,Xn
is nonincreasing; and

>HQ,X1,...,Xn ≥ ⊥
H
Q,X1,...,Xn .

The proof of these properties is entirely analogous to that of Th-20 for the original
definitions>Q,X1,...,Xn ,⊥Q,X1,...,Xn .

Lemma 18 SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier andX1, . . . , Xn ∈
P̃(E).

a. For all γ ∈ I,

>Q,X1,...,Xn(γ) ≤ >HQ,X1,...,Xn(γ)

>Q,X1,...,Xn(γ′) ≥ >HQ,X1,...,Xn(γ) for all γ′ > γ .

b. For all γ ∈ I,

⊥Q,X1,...,Xn(γ) ≥ ⊥HQ,X1,...,Xn(γ)

⊥Q,X1,...,Xn(γ′) ≤ ⊥HQ,X1,...,Xn(γ) for all γ′ > γ .

Proof Let a semi-fuzzy quantifierQ : P(E)n −→ I, a choice of fuzzy arguments
X1, . . . , Xn ∈ P̃(E) be given andγ ∈ I. We first observe that for allX ∈ P̃(E),
XHmin
γ ⊆ Xmin

γ , which is apparent from Def. 30, (67). FurthermoreXHmax
γ = Xmax

γ

by (68). Hence by Def. 30,

Tγ(X) ⊆ T Hγ (X) . (70)

It is also apparent from Def. 30 and (66) that

Tγ′(X) ⊇ T Hγ (X) (71)

wheneverγ′ > γ, see proof of [6, L-30, p.136+].
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a. Considering>Q,X1,...,Xn and>HQ,X1,...,Xn
, we immediately have

>Q,X1,...,Xn(γ)
= sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 43

≤ sup{Q(Y1, . . . , Yn) : Y1 ∈ T Hγ (X1), . . . , Yn ∈ T Hγ (Xn)} by (70)

= >HQ,X1,...,Xn(γ) . by (64)

In addition ifγ′ > γ, then

>Q,X1,...,Xn(γ′)
= sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ′(X1), . . . , Yn ∈ Tγ′(Xn)} by Def. 43

≥ sup{Q(Y1, . . . , Yn) : Y1 ∈ T Hγ (X1), . . . , Yn ∈ T Hγ (Xn)} by (71)

= >HQ,X1,...,Xn(γ) . by (64)

b. The proofs for⊥Q,X1,...,Xn vs.⊥HQ,X1,...,Xn
are analogous, reversing all inequa-

tions and replacing ‘sup’ with ‘ inf ’.

Lemma 19 a. If f : I −→ I is nonincreasing, then

f ] ≤ f ≤ f [ .

b. If f : I −→ I is a constant mapping, thenf ] = f [ = f .

c. If f : I −→ I is nondecreasing, then

f [ ≤ f ≤ f ] .

Proof See [7, L-39, p.117].

Lemma 20 Supposeξ : T −→ I satisfies(X-4) and (X-5), then

ξ(>[,⊥) = ξ(>,⊥) = ξ(>],⊥) ,

for all (>,⊥) ∈ T.

Proof Supposeξ : T −→ I fulfills (X-4) and (X-5), and let(>,⊥) ∈ T be given. By
Def. 44, we know that> is nondecreasing. Hence>[ ≤ > ≤ >]. By (X-5),

ξ(>[,⊥) ≤ ξ(>,⊥) ≤ ξ(>],⊥) .

On the other hand,ξ(>[,⊥) = ξ(>],⊥) by (X-4). Henceξ(>[,⊥) = ξ(>,⊥) =
ξ(>],⊥), as desired.

Lemma 21 If >,>′ : I −→ I are nondecreasing mappings and>|(0,1) = >′|(0,1),

then>[] = >′[
]
.
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Proof The proof of the lemma is identical to that of [7, L-41, p.118].

Lemma 22 Supposeξ : T −→ I satisfies(X-4) and(X-5). If (>,⊥), (>′,⊥) ∈ T and
>|(0,1) = >′|(0,1), thenξ(>,⊥) = ξ(>′,⊥).

Proof This is now trivial:

ξ(>,⊥) = ξ(>[
]
,⊥) by (X-4)

= ξ(>′[
]
,⊥) by L-21

= ξ(>′,⊥) . by (X-4)

Lemma 23 Supposeξ : T −→ I satisfies(X-2), (X-4) and(X-5). If (>,⊥), (>′,⊥′) ∈
T with>|(0,1) = >′|(0,1) and⊥|(0,1) = ⊥′|(0,1), thenξ(>,⊥) = ξ(>′,⊥′).

Proof Straightforward.

ξ(>,⊥) = ξ(>′,⊥) by L-22

= 1− ξ(1−⊥, 1−>′) by (X-2)

= 1− ξ(1−⊥′, 1−>′) by L-22

= ξ(>′,⊥′) . by (X-2)

Lemma 24 If ξ : T −→ I satisfies(X-4) and (X-5), then

ξ(>Q,X1,...,Xn ,⊥) = ξ(>HQ,X1,...,Xn ,⊥)

for all semi-fuzzy quantifiersQ : P(E)n −→ I,X1, . . . , Xn ∈ P̃(E) and⊥ : I −→ I
such that(>Q,X1,...,Xn ,⊥) ∈ T.

Proof Let a semi-fuzzy quantifierQ : P(E)n −→ I, and a choice of fuzzy arguments
X1, . . . , Xn ∈ P̃(E) be given. Further let⊥ : I −→ I be a mapping such that
(>Q,(X1,...,Xn),⊥) ∈ T. To prove the claim of the lemma, we first observe that

ξ(>Q,X1,...,Xn ,⊥) ≤ ξ(>HQ,X1,...,Xn ,⊥) , (72)

which is apparent from L-18.a and (X-5). Concerning the converse inequation, let
γ ∈ [0, 1). Then

(>Q,X1,...,Xn)](γ) = lim
γ′→γ+

>Q,X1,...,Xn(γ) by Def. 34

≥ >HQ,X1,...,Xn(γ)
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as is easily seen from L-18.a. It is then apparent from this inequation that

>′ ≥ >HQ,X1,...,Xn (73)

if we define>′ : I −→ I by

>′(γ) =
{

(>Q,X1,...,Xn)](γ) : γ < 1
1 : γ = 1

(74)

for all γ ∈ I. In turn,

ξ(>HQ,X1,...,Xn ,⊥) ≤ ξ(>′,⊥) by (73), (X-5)

= ξ((>Q,X1,...,Xn)],⊥ by (74), L-22

= ξ(>Q,X1,...,Xn ,⊥) , by (X-4)

i.e.

ξ(>HQ,X1,...,Xn ,⊥) ≤ ξ(>Q,X1,...,Xn ,⊥) . (75)

Combining (72) and (75), we obtain the intendedξ(>HQ,X1,...,Xn
,⊥) = ξ(>Q,X1,...,Xn ,⊥).

Lemma 25 LetQ : P(E)n −→ I be a semi-fuzzy quantifier andX1, . . . , Xn ∈ P̃(E).
Then

a. >H¬Q,X1,...,Xn
= 1−⊥HQ,X1,...,Xn

;

b. ⊥H¬Q,X1,...,Xn
= 1−>HQ,X1,...,Xn

.

Proof SupposeQ : P(E)n −→ I is a semi-fuzzy quantifier andX1, . . . , Xn ∈
P̃(E). Further letγ ∈ I.

a. The first claim of the lemma is obvious fromsup{1− a : a ∈ A} = 1− inf A for
all A ∈ P(I):

>H¬Q,X1,...,Xn

= sup{¬Q(Y1, . . . , Yn) : Y1 ∈ T Hγ (X1), . . . , Yn ∈ T Hγ (Xn)} by (64)

= sup{1−Q(Y1, . . . , Yn) : Y1 ∈ T Hγ (X1), . . . , Yn ∈ T Hγ (Xn)} (¬x = 1− x)

= 1− inf{Q(Y1, . . . , Yn) : Y1 ∈ T Hγ (X1), . . . , Yn ∈ T Hγ (Xn)}
= 1−⊥HQ,X1,...,Xn(γ) . by (65)

b. The second claim of the lemma is entailed by the first one because

⊥H¬Q,X1,...,Xn

= 1− (1−⊥H¬Q,X1,...,Xn)

= 1−>H¬¬Q,X1,...,Xn by parta. of the lemma

= 1−>HQ,X1,...,Xn , because¬x = 1− x involutive

as desired.
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Lemma 26 If ξ : T −→ I satisfies(X-2), (X-4) and (X-5), then

ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) = ξ(>HQ,X1,...,Xn ,⊥
H
Q,X1,...,Xn)

for all semi-fuzzy quantifiersQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E).

Proof Straightforward.

ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn)
= ξ(>HQ,X1,...,Xn ,⊥Q,X1,...,Xn) by L-24

= 1− (1− ξ(>HQ,X1,...,Xn ,⊥Q,X1,...,Xn))

= 1− ξ(1−⊥Q,X1,...,Xn , 1−>HQ,X1,...,Xn) by (X-2)

= 1− ξ(>¬Q,X1,...,Xn ,⊥H¬Q,X1,...,Xn) by L-11, L-25

= 1− ξ(>H¬Q,X1,...,Xn ,⊥
H
¬Q,X1,...,Xn) by L-24

= 1− ξ(1−⊥HQ,X1,...,Xn , 1−>
H
Q,X1,...,Xn) by L-25

= 1− (1− ξ(>HQ,X1,...,Xn ,⊥
H
Q,X1,...,Xn)) by (X-2)

= ξ(>HQ,X1,...,Xn ,⊥
H
Q,X1,...,Xn) .

Lemma 27 Supposeξ : T −→ I satisfies(X-2), (X-3), (X-4) and (X-5). ThenFξ
satisfies(Z-6).

Proof Let ξ : T −→ I be a mapping which satisfies (X-2), (X-3), (X-4) and (X-5).
Further suppose thatQ : P(E)n −→ I is a semi-fuzzy quantifier,f1, . . . , fn : E′ −→
E are mappings (E′ 6= ∅) andX1, . . . , Xn ∈ P̃(E′). Then

Fξ(Q ◦
n
×
i=1

f̂i)(X1, . . . , Xn)

= ξ(>
Q◦

n
×
i=1

f̂i,X1,...,Xn
,⊥

Q◦
n
×
i=1

f̂i,X1,...,Xn
) by Def. 45

= ξ(>H
Q◦

n
×
i=1

f̂i,X1,...,Xn
,⊥H

Q◦
n
×
i=1

f̂i,X1,...,Xn
) by L-26

= ξ(>H
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

,⊥H
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

) by L-16, L-23

= ξ(>
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

,⊥
Q,

ˆ
f̂1(X1),...,

ˆ
f̂n(Xn)

) by L-26

= Fξ(Q)( ˆ̂
f1(X1), . . . , ˆ̂

fn(Xn)) . by Def. 45

This finishes the proof becauseFξ induces the standard extension principle
ˆ̂(•), which

is apparent from L-9 and Th-11.
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Proof of Theorem 22

The theorem is a corollary of L-8, L-10, L-13, L-14, L-15 and L-27, which ensure that
Fξ satisfies (Z-1), (Z-2), (Z-3), (Z-4), (Z-5) and (Z-6), respectively.

B.4 Proof of Theorem 23

Lemma 28 If ξ : T −→ I does not satisfy(X-1), thenFξ does not satisfy(Z-1).

Proof Supposeξ : T −→ I fails on (X-1), i.e. there existsa ∈ I such that

ξ(ca, ca) 6= a . (76)

We define a nullary semi-fuzzy quantifierQa : P({∗})0 −→ I by

Qa(∅) = a . (77)

Then>Qa,∅(γ) = Qa(∅) = a and⊥Qa,∅(γ) = Qa(∅) = a for all γ ∈ I by L-7, i.e.

>Qa,∅ = ⊥Qa,∅ = ca . (78)

Therefore

Fξ(Qa)(∅) = ξ(>Qa,∅,⊥Qa,∅) by Def. 45

= ξ(ca, ca) by (78)

6= a by (76)

= Qa(∅) . by (77)

HenceFξ violates (Z-1) becauseU(Fξ(Qa)) 6= Qa.

Lemma 29 If ξ : T −→ I does not satisfy(X-5), thenFξ does not satisfy(Z-5).

Proof Supposeξ : T −→ I fails on (X-5). Then there exist(>,⊥), (>′,⊥′) ∈ T
such that> ≤ >′,⊥ ≤ ⊥′ and

ξ(>,⊥) > ξ(>′,⊥′) . (79)

By Th-21, there exist semi-fuzzy quantifiersQ1, Q2 : P(2× I) −→ I and a fuzzy
subsetX ∈ P̃(E) such that

>Q1,X = >
⊥Q1,X = ⊥
>Q2,X = >′

⊥Q2,X = ⊥′

We shall assume thatQ1 andQ2 are defined according to equation (20) and thatX is
defined according to (23). It is then apparent from> ≤ >′ and⊥ ≤ ⊥′ thatQ1 ≤ Q2.
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In addition,Q1 andQ2 are nondecreasing in their argument by L-5. Based onQ1

andQ2, we define semi-fuzzy quantifiersQ′1, Q
′
2 : P(2× I) −→ I by Q′1 = Q1¬,

Q′2 = Q2¬, i.e.Q′1 andQ′2 are the antonyms ofQ1 andQ2 with respect to standard
fuzzy complementation. HenceQ′1 andQ′2 are nonincreasing in their argument, which
is apparent from the fact thatQ1 andQ2 are nondecreasing and from the definition of
antonyms, see Def. 10. We shall further defineX ′ ∈ P̃(2× I) byX ′ = ¬X, i.e.X ′

is the standard complement of the fuzzy subsetX ∈ P̃(2× I) defined by (23). Then
by L-12 and Th-21,

>Q′1,X′ = >Q1¬,¬X,=>Q1,¬¬X = >Q1,X = >
⊥Q′1,X′ = ⊥Q1¬,¬X,=⊥Q1,¬¬X = ⊥Q1,X = >
>Q′2,X′ = >Q2¬,¬X,=>Q2,¬¬X = >Q2,X = >′

⊥Q′2,X′ = ⊥Q2¬,¬X,=⊥Q2,¬¬X = ⊥Q2,X = >′

We shall define a semi-fuzzy quantifierC : P(2× 2× I) −→ I by

C(Y ) =
{
Q′2({(c, z) : (1, c, z) ∈ Y }) : Y ∩ ({0} × 2× I) = ∅

Q′1({(c, z) : (0, c, z) ∈ Y }) : Y ∩ ({0} × 2× I) 6= ∅

for all Y ∈ P(2× 2× I). It is apparent from the fact thatQ′1 andQ′2 are nonincreasing
andQ′1 ≤ Q′2 thatC is nonincreasing as well.
Now we defineZ,Z ′ ∈ P̃(2× 2× I), Z ⊆ Z ′ by

µZ(a, c, z) =
{
µX′(c, z) : a = 1
0 : else

µZ′(a, c, z) =
{

1 : a = 1
µX′(c, z) : a = 0

It is then apparent from the above equations and by L-3 from the nonincreasing mono-
tonicity ofC andQ′2 that

>C,Z(γ) = C(Zmin
γ ) = Q′2(X ′min

γ ) = >Q′2,X′(γ) = >′(γ)

for all γ ∈ I, i.e.>C,Z = >′. By similar reasoning,

⊥C,Z(γ) = C(Zmax
γ ) = Q′2(X ′max

γ ) = ⊥Q′2,X′(γ) = ⊥′(γ)

and forZ ′,

>C,Z′(γ) = C(Z ′min
γ ) = Q′1(X ′min

γ ) = >Q′1,X′(γ) = >(γ) ,

⊥C,Z′(γ) = C(Z ′max
γ ) = Q′1(X ′max

γ ) = ⊥Q′1,X′(γ) = ⊥(γ) .

Hence⊥C,Z = ⊥′,>C,Z′ = > and⊥C,Z′ = ⊥. Consequently

Fξ(C)(Z) = ξ(>C,Z ,⊥C,Z) by Def. 45

= ξ(>′,⊥′) because>C,Z = >′,⊥C,Z = ⊥′

< ξ(>,⊥)by (79)

= ξ(>C,Z′ ,⊥C,Z′) because>C,Z′ = >′,⊥C,Z′ = ⊥′

= Fξ(C)(Z ′) . by Def. 45
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Hence there exists a nonincreasing quantifierC and fuzzy argumentsZ ⊆ Z ′ such that
F(C)(Z) < F(C)(Z ′), i.e.Fξ does not preserve the nonincreasing monotonicity of
C in its arguments and hence violates (Z-5).

Lemma 30 Supposeξ : T −→ I satisfies(X-5). If ξ does not fulfill(X-3), thenFξ
violates(Z-2).

Proof Supposeξ : T −→ I satisfies (X-5) but fails on (X-3). Then there exists
(c1,⊥) ∈ T such that̂⊥(I) ⊆ 2 and

ξ(c1,⊥) 6= 1
2 + 1

2⊥
0↓
∗ . (80)

We shall discern two cases.

a. ξ(c1,⊥) > 1
2

+ 1
2
⊥0↓
∗ , i.e.⊥0↓

∗ < 2ξ(c1,⊥)− 1. We may hence choosez ∈ I such
that

⊥0↓
∗ < z < 2ξ(c1,⊥)− 1 . (81)

We shall further define⊥′ : I −→ I by

⊥′(γ) =
{

1 : γ ≤ z
0 : γ > z

(82)

for all γ ∈ I. Hence by (10),

⊥′0↓∗ = z

and by (81),

1
2 + 1

2⊥
′0↓
∗ = 1

2 + 1
2z < ξ(c1,⊥) . (83)

In addition, it apparently holds that(c1,⊥′) ∈ T and⊥′ ≥ ⊥.
Now letE = {∗} and consider the projection quantifierπ∗ : P({∗}) −→ 2. Further
let X ∈ P̃({∗}) be the fuzzy subset defined byµX(∗) = 1

2 + 1
2z. Becauseπ∗ is

nondecreasing in its argument, we conclude from L-3 and Def. 30 that>π∗,X(γ) =
1 = c1(γ) and⊥π∗,X(γ) = ⊥′(γ) for all γ ∈ I, i.e.

>π∗,X = c1 , (84)

⊥π∗,X = ⊥′ . (85)

Therefore

Fxi(π∗)(X) = ξ(c1,⊥′) by Def. 45, (84), (85)

≥ ξ(c1,⊥) by (X-5) because⊥′ ≥ ⊥
> 1

2 + 1
2z by (83)

= µX(∗) by definition ofX

= π̃∗(X) . by Def. 7

HenceFξ(π∗)(X) 6= π̃∗(X), i.e.Fξ does not satisfy (Z-2).
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b. ξ(c1,⊥) < 1
2

+ 1
2
⊥0↓
∗ , i.e.⊥0↓

∗ > 2ξ(c1,⊥)− 1. In this case, we choosez ∈ I such
that

2ξ(c1,⊥)− 1 < z < ⊥0↓
∗ .

The proof based on this choice ofz is analogous to that ofa., reversing inequations.

Lemma 31 Let ξ : T −→ I be given. IfFξ is a DFS, thenFξ induces the standard
negationF̃ξ(¬) = ¬.

Proof Supposeξ : T −→ I is a mapping such thatFξ is a DFS. Thenξ satisfies
(X-3) by L-30. In the following, we shall abbreviatẽ¬ = F̃(¬). In addition, let us
recall that Def. 8,̃¬(x) = Q′(X) for all x ∈ I, whereQ′ : P({1}) −→ 2 is defined
by

Q′(Y ) = ¬η−1(Y ) (86)

for all Y ∈ P({1}), andX ∈ P̃({1}) is defined byX = η̃(x), i.e.

µX(1) = x . (87)

Now let x ∈ [0, 1
2 ). We can apply L-3 because¬, and henceQ′, is nonincreasing.

Therefore

>Q′,X = Q′(Xmin
γ ) = 1

and

⊥Q′,X = Q′(Xmax
γ ) =

{
1 : γ ≤ 1− 2x
0 : γ > 1− 2x

for all γ ∈ I, i.e.>Q′,X = c1, ⊥̂Q′,X(I) ⊆ 2 and(⊥Q′,X)0↓
∗ = 1− 2x. Therefore

¬̃x = Fξ(Q′)(X) by Def. 8, (87)

= ξ(>Q′,X ,⊥Q′,X) by Def. 45

= 1
2 + 1

2 (1− 2x) by (X-3)

= 1− x .

This proves that

¬̃x = 1− x , (88)

for all x ∈ [0, 1
2 ). Now let x ∈ ( 1

2 , 1]. By assumption,Fξ is a DFS, i.e.¬̃ is a
strong negation operator by Th-1. In particular,¬̃ is an involutive bijection by Def. 16.
Becausẽ¬ is involutive, it holds thatx = ¬̃ ¬̃x. On the other hand,x ∈ ( 1

2 , 1] implies
that1 − x ∈ [0, 1

2 ). Hence by (88),x = 1 − (1 − x) = ¬̃(1 − x). Combining both
equations, we havẽ¬ ¬̃x = ¬̃(1 − x). But ¬̃ is an injection, i.e. we can cancel the
leftmost¬̃ to obtain the desired̃¬x = 1 − x. This proves that̃¬x = 1 − x for all
x ∈ I\{ 1

2}. It is then apparent from the fact that¬̃ is a bijection that it fulfills¬̃ 1
2 = 1

2 ,
which finishes the proof that̃¬ = ¬.

Lemma 32 Supposeξ : T −→ I is a mapping such thatFξ induces the standard
negation. Ifξ does not satisfy(X-2), thenFξ does not satisfy(Z-3).
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Proof Let ξ : T −→ I be a given mapping such thatFξ induces the standard negation
F̃ξ(¬) = ¬, ¬x = 1x. Further suppose thatξ violates (X-2), i.e. there exist(>,⊥) ∈
T such that

ξ(1−⊥, 1−>) 6= 1− ξ(>,⊥) . (89)

By Th-21 there existsQ : P(2× I) −→ I,X ∈ P̃(2× I) with

>Q,X = > (90)

⊥Q,X = ⊥ . (91)

Hence

>Q�,¬X = >¬Q¬,¬X by Def. 11

= 1−⊥Q,¬¬X by L-11 and L-12

= 1−⊥Q,X because¬¬X = X ,

i.e. by (90),

>Q�,¬X = 1−⊥ . (92)

For the same reasons,⊥Q�,¬X = 1−>Q,X and by (91),

⊥Q�,¬X = 1−> . (93)

Hence

Fξ(Q�)(¬X) = ξ(>Q�,¬X ,⊥Q�,¬X) by Def. 45

= ξ(1−⊥, 1−>) by (92), (93)

6= 1− ξ(>,⊥) by (89)

= 1− ξ(>Q,X ,⊥Q,X) by (90), (91)

= ¬Fξ(Q)(X) by Def. 45

= ¬Fξ(Q)(¬¬X) because¬¬X = X

= Fξ(Q)�(¬X) , by Def. 11

i.e.Fξ violates (Z-3).

Lemma 33 Suppose(>,⊥) ∈ T are given. We define>1 : I −→ I by

>1(γ) =
{
>](γ) : γ > 0
>(0) : γ = 0 (94)

for all γ ∈ I.

a. There existQ : P(2× I) −→ I, g : 2× I× I −→ 2× I andX ∈ P̃(2× I× I)
such that

>Q◦ĝ,X = >1

>
Q,

ˆ
ĝ(X)

= >[

⊥Q◦ĝ,X = ⊥
Q,

ˆ
ĝ(X)

= ⊥ .
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b. There existQ : P(2× I) −→ I, g : 2× I× I −→ 2× I andX ∈ P̃(2× I× I)
such that

>Q◦ĝ,X = >1

>
Q,

ˆ
ĝ(X)

= >]

⊥Q◦ĝ,X = ⊥
Q,

ˆ
ĝ(X)

= ⊥ .

Proof We shall defineg : 2× I× I −→ 2× I by

g(c, z1, z2) = (c, z1) (95)

for all c ∈ 2 andz1, z2 ∈ I. We shall further defineX ∈ P̃(2× I× I) by

µX(c, z1, z2) =


1
2 + 1

2z2 : c = 0, z2 < z1

1
2z2 : c = 0, z1 = 0, z2 < 1
1
2 −

1
2z1 : c = 1

0 : else

(96)

for all c ∈ 2, z1, z2 ∈ I.
Now we shall investigate the cut ranges ofX at different choices of the cutting param-
eterγ ∈ I. Firstly if γ = 0, we conclude from (96) and Def. 30 that

Xmin
0 = X

>
1
2

= {0} × {(z1, z2) : z2 < z1}

and

Xmax
0 = X

≥ 1
2

= ({0} × {(z1, z2) : z2 < z1}) ∪ ({1} × {0} × I) .

If γ > 0, then

Xmin
γ = X

≥ 1
2 +

1
2γ

= {0} × {(z1, z2) : γ ≤ z2 < z1}

and

Xmax
γ = X

>
1
2−

1
2γ

= ({0} × {(z1, z2) : z2 < z1}) ∪ ({0} × {0} × (1− γ, 1)) ∪ ({1} × [0, γ)× I) .

In turn, we obtain for̂g(Xmin
γ ) andĝ(Xmax

γ ) that

ĝ(Xmin
0 ) = {0} × (0, 1] (97)

ĝ(Xmax
0 ) = ({0} × (0, 1]) ∪ {(1, 0)} (98)

and ifγ > 0,

ĝ(Xmin
γ ) = {0} × (γ, 1] (99)

ĝ(Xmax
γ ) = ({0} × I) ∪ ({1} × [0, γ)) . (100)
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which is obvious from (95) and the above results onXmin
γ ,Xmax

γ .

In the following, we shall abbreviateV = ˆ̂g(X). It is apparent from (1) that

µV (c, z1) =
{

1
2 + 1

2z1 : c = 0
1
2 −

1
2z1 : c = 1 (101)

for all c ∈ 2 andz1 ∈ I. Hence by Def. 30,

V min
0 = V

>
1
2

= {0} × (0, 1] (102)

V max
0 = V

≥ 1
2

= ({0} × I) ∪ {(1, 0)} (103)

and ifγ > 0,

V min
γ = V

≥ 1
2 +

1
2γ

= {0} × [γ, 1] (104)

V max
γ = V

>
1
2−

1
2γ

= ({0} × I) ∪ ({1} × [0, γ)) . (105)

a. Let (>,⊥) ∈ T be given. We defineQ,Q′, Q′′ : P(2× I) −→ I as follows.

Q′(Y ) =


>](y`) : y` 6= 0, y` /∈ Y ′
>[(y`) : y` 6= 0, y` ∈ Y ′
>(0) : y` = 0

(106)

Q′′(Y ) = ⊥(yu) (107)

Q(Y ) =
{
Q′(Y ) : Y ′′ = ∅

Q′′(Y ) : Y ′′ 6= ∅
(108)

where

Y ′ = {z ∈ I : (0, z) ∈ Y } (109)

Y ′′ = {z ∈ I : (1, z) ∈ Y } (110)

yu = supY ′′ (111)

y` = inf Y ′ , (112)

for all Y ∈ P(2× I).
It is obvious from L-19 and the fact that>] and>[ are nondecreasing thatQ′ is non-
increasing. Similarly,Q′′ is clearly nonincreasing. Observing that>](γ) ≥ >(0),
>[(γ) ≥ >(0) and>(0) > ⊥(γ′) for all γ, γ′ ∈ I, we conclude thatQ′ ≥ Q′′. We
then obtain from (108) thatQ is nonincreasing. Therefore

>
Q,

ˆ
ĝ(X)

(0) = Q(V min
0 ) by L-3 andV = ˆ̂g(X)

= Q({0} × (0, 1]) by (102)

= Q′({0} × (0, 1]) by (108)

= >(0) by (106)

= >[(0) . by Def. 34
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Similarly

⊥
Q,

ˆ
ĝ(X)

(0) = Q(V max
0 ) by L-3 andV = ˆ̂g(X)

= Q(({0} × I) ∪ {(1, 0)}) by (103)

= Q′′(({0} × I) ∪ {(1, 0)}) by (108)

= ⊥(0) by (107)

In the case thatγ > 0,

>
Q,

ˆ
ĝ(X)

(γ) = Q(V min
γ ) by L-3 andV = ˆ̂g(X)

= Q({0} × [γ, 1]) by (104)

= Q′({0} × [γ, 1]) by (108)

= >[(γ) by (106)

and

⊥
Q,

ˆ
ĝ(X)

(γ) = Q(V max
γ ) by L-3 andV = ˆ̂g(X)

= Q(({0} × I) ∪ ({1} × [0, γ))) by (105)

= Q′′(({0} × I) ∪ ({1} × [0, γ))) by (108)

= ⊥(γ) . by (107)

Hence

>
Q,

ˆ
ĝ(X)

= >[ (113)

and

⊥
Q,

ˆ
ĝ(X)

= ⊥ . (114)

Turning to>Q◦ĝ,X and⊥Q◦ĝ,X , we utilize thatQ ◦ ĝ is nonincreasing becauseQ is
nonincreasing. Therefore

>Q◦ĝ,X(0) = (Q ◦ ĝ)(Xmin
0 ) by L-3

= Q(ĝ(Xmin
0 )) by (2)

= Q({0} × (0, 1]) by (97)

= Q′({0} × (0, 1]) by (108)

= >(0) by (106)

= >1(0) by (94)

and

⊥Q◦ĝ,X(0) = (Q ◦ ĝ)(Xmax
0 ) by L-3

= Q(ĝ(Xmax
0 )) by (2)

= Q(({0} × (0, 1]) ∪ {(1, 0)}) by (98)

= Q′′(({0} × (0, 1]) ∪ {(1, 0)}) by (108)

= ⊥(0) . by (107)
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Forγ > 0, then,

>Q◦ĝ,(X)(γ) = (Q ◦ ĝ)(Xmin
γ ) by L-3

= Q(ĝ(Xmin
γ )) by (2)

= Q({0} × (γ, 1]) by (99)

= Q′({0} × (γ, 1]) by (108)

= >](γ) by (106)

= >1(γ) by (94)

and

⊥Q◦ĝ,(X)(γ) = (Q ◦ ĝ)(Xmax
γ ) by L-3

= Q(ĝ(Xmax
γ )) by (2)

= Q(({0} × I) ∪ ({1} × [0, γ))) by (100)

= Q′′(({0} × I) ∪ ({1} × [0, γ))) by (108)

= ⊥(γ) . by (107)

Hence

>Q◦ĝ,X = >1 (115)

and

⊥Q◦ĝ,X = ⊥ . (116)

As shown by (113), (114), (115) and (116), the presented choices forQ, g andX are
suitable for proving parta. of the lemma.

b. For the proof ofb., let again(>,⊥) ∈ T be given. We will assume the same
choice ofg : 2 × I × I −→ 2 × I andX ∈ P̃(2× I× I). In this case, however, we
defineQ,Q′, Q′′ : P(2× I) −→ I as follows. For allY ∈ P(2× I× I),

Q′(Y ) =
{
>(0) : y` = 0, y` /∈ Y ′
>](y`) : else

(117)

Q′′(Y ) = ⊥(yu) (118)

Q(Y ) =
{
Q′(Y ) : Y ′′ = ∅

Q′′(Y ) : Y ′′ 6= ∅
(119)

whereY ′, Y ′′, y` andyu are defined as ina. Unlike the quantifiers used in the proof
of the first part of the lemma, the above choice ofQ′, and henceQ, is not necessarily
monotonic. We can hence not apply L-3. Nevertheless it is easy to figure out which
choices of argument setsY ∈ Tγ(X) attain the maximum>Q,Z(γ) and the minimum
⊥Q,Z(γ) for a given choice ofZ ∈ P̃(2× I). This is becauseQ′′ is nonincreasing
andQ′ ≥ Q′′. In addition,Q′ is ‘almost’ nonincreasing (we just have to take care if
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y` = 0).
Let us first consider the case thatγ = 0. Then

>
Q,

ˆ
ĝ(X)

(0) = sup{Q(Y ) : Y ∈ T0(V )} by Def. 43 andV = ˆ̂g(X)

= Q({0} × I) see (102), (103)

Q′({0} × I) by (119)

>](0) by (117)

and

⊥
Q,

ˆ
ĝ(X)

(0) = inf{Q(Y ) : Y ∈ T0(V )} by Def. 43 andV = ˆ̂g(X)

= Q(({0} × I) ∪ {(1, 0)}) see (102), (103)

Q′′(({0} × I) ∪ {(1, 0)}) by (119)

⊥(0) . by (118)

Similarly

>Q◦ĝ,X(0) = sup{Q(ĝ(Y )) : Y ∈ T0(X)} by Def. 43, (2)

= sup{Q(Z) : Z ∈ ĝ(T0(X))} by [6, L-26, p.133]

= Q({0} × (0, 1]) see (97)

= Q′({0} × (0, 1]) by (119)

= >(0) by (117)

= >1(0) by (94)

and

⊥Q◦ĝ,X(0) = inf{Q(ĝ(Y )) : Y ∈ T0(X)} by Def. 43, (2)

= sup{Q(Z) : Z ∈ ĝ(T0(X))} by [6, L-26, p.133]

= Q(({0} × (0, 1]) ∪ {(1, 0)}) see (98)

= Q′(({0} × (0, 1]) ∪ {(1, 0)}) by (119)

= ⊥(0) . by (118)

Now let us assume thatγ > 0. Then

>
Q,

ˆ
ĝ(X)

(γ) = sup{Q(Y ) : Y ∈ Tγ(V )} by Def. 43 andV = ˆ̂g(X)

= Q({0} × [γ, 1]) see (104), (105)

Q′({0} × [γ, 1]) by (119)

>](γ) by (117)

and

⊥
Q,

ˆ
ĝ(X)

(γ) = inf{Q(Y ) : Y ∈ Tγ(V )} by Def. 43 andV = ˆ̂g(X)

= Q(({0} × I) ∪ ({1} × [0, γ))) see (104), (105)

Q′′(({0} × I) ∪ ({1} × [0, γ))) by (119)

⊥(γ) . by (118)
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Finally

>Q◦ĝ,X(γ) = sup{Q(ĝ(Y )) : Y ∈ Tγ(X)} by Def. 43, (2)

= sup{Q(Z) : Z ∈ ĝ(Tγ(X))} by [6, L-26, p.133]

= Q({0} × (γ, 1]) see (99)

= Q′({0} × (γ, 1]) by (119)

= >](γ) by (117)

= >1(0) by (94)

and

⊥Q◦ĝ,X(γ) = inf{Q(ĝ(Y )) : Y ∈ Tγ(X)} by Def. 43, (2)

= sup{Q(Z) : Z ∈ ĝ(Tγ(X))} by [6, L-26, p.133]

= Q(({0} × I) ∪ ({1} × [0, γ))) see (100)

= Q′(({0} × I) ∪ ({1} × [0, γ))) by (119)

= ⊥(γ) by (118)

as desired.

Lemma 34 Supposeξ : T −→ I is a given aggregation mapping andFξ is the QFM
defined in terms ofξ. Further assume thatξ satisfies(X-2) and (X-3). If Fξ satisfies
(Z-6), thenξ satisfies(X-4).

Proof Supposeξ : T −→ I satisfies conditions (X-2) and (X-3). Further assume that
Fξ satisfies (Z-6).
Let a choice of(>,⊥) ∈ T be given. We have to show thatξ(>],⊥) = ξ(>[,⊥).
To this end, we first observe that by L-9 and Th-11,Fξ induces the standard extension
principle. By L-33, there existsQ : P(2× I) −→ I, g : 2× I× I −→ 2× I andX ∈
P̃(2× I× I) such that>Q◦ĝ,X = >1, >

Q,
ˆ
ĝ(X)

= >[ and⊥Q◦ĝ,X = ⊥
Q,

ˆ
ĝ(X)

= ⊥.

We may hence conclude from the fact thatFξ satisfies (Z-6) and induces the standard
extension principle that

ξ(>[,⊥) = ξ(>
Q,

ˆ
ĝ(X)

,⊥
Q,

ˆ
ĝ(X)

) by L-33.a

= Fξ(Q)(ˆ̂g(X)) by Def. 45

= Fξ(Q ◦ ĝ)(X) by (Z-6)

= ξ(>Q◦ĝ,X ,⊥Q◦ĝ,X) by Def. 45

= ξ(>1,⊥) , by L-33.a
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where>1 is defined by (94). In a similar way, we can use quantifierQ, fuzzy subset
X and mappingg of L-33.b to prove that

ξ(>],⊥) = ξ(>
Q,

ˆ
ĝ(X)

,⊥
Q,

ˆ
ĝ(X)

) by L-33.b

= Fξ(Q)(ˆ̂g(X)) by Def. 45

= Fξ(Q ◦ ĝ)(X) by (Z-6)

= ξ(>Q◦ĝ,X ,⊥Q◦ĝ,X) by Def. 45

= ξ(>1,⊥) , by L-33.b

Henceξ(>[,⊥) = ξ(>1,⊥) = ξ(>],⊥), i.e. (X-4) holds, as desired.

Proof of Theorem 23

Supposeξ : T −→ I is given. We have to show thatFξ is not a DFS if one of the
conditions (X-1) to (X-5) is violated.

a. If ξ violates (X-1), thenFξ does not satisfy (Z-1) by L-28.

b. If ξ violates (X-5), thenFξ violates (Z-5) by L-29.

In the following, we can hence assume thatξ satisfies (X-1) and (X-5) (otherwise,Fξ
fails to be a DFS by a. or b.). Under these circumstances,

c. if ξ fails on (X-3), thenFξ violates (Z-2) by L-30.

In the following, we may hence assume thatξ satisfies (X-3) because otherwise,Fξ is
not a DFS anyway.

d. if Fξ does not induce the standard negation¬x = 1 − x, thenFξ is not a DFS
by L-31.

In the following, we can hence assume thatFξ induces the standard negation. Then by
L-32,

e. if ξ does not satisfy (X-2), thenFξ does not satisfy (Z-3).

Hence (X-2) is also a necessary condition forFξ to be a DFS and we may assume that
all ‘x-conditions’ except (possibly) for (X-4) hold. Then by L-34,

f. if ξ does not satisfy (X-4), thenFξ does not satisfy (Z-6).

This finishes the proof that all conditions (X-1) to (X-5) are necessary forFξ to be a
DFS.
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B.5 Proof of Theorem 24

LetB : B −→ I be a given aggregation mapping. Further suppose thatQ : P(E)n −→
I andX1, . . . , Xn ∈ P̃(E) are given. Then

Qγ(X1, . . . , Xn)
= med 1

2
(sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)},

inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)}) by (17)

= med 1
2

(>Q,(X1,...,Xn)(γ),⊥Q,(X1,...,Xn)(γ)) by Def. 43,

for all γ ∈ I, i.e.

(Qγ(X1, . . . , Xn))γ∈I = med 1
2

(>Q,(X1,...,Xn),⊥Q,(X1,...,Xn)) . (120)

Therefore

MB(Q)(X1, . . . , Xn) = B((Qγ(X1, . . . , Xn))γ∈I) by Def. 33

= B(med 1
2

(>Q,(X1,...,Xn),⊥Q,(X1,...,Xn))) by (120)

= ξ(>Q,(X1,...,Xn),⊥Q,(X1,...,Xn)) , by (25)

as desired.

B.6 Proof of Theorem 25

Lemma 35 SupposeB : B −→ I is given andξ : T −→ I is the mapping defined by
(25). B satisfies(B-1) if and only ifξ satisfies(X-1)

Proof LetB : B −→ I be given and letξ be the corresponding mappingξ : T −→ I.
To see that (X-1) entails (B-1), let us assume thatξ satisfies (X-1). Further suppose
thatf ∈ B is a given constant, i.e.f = ca for somea ∈ I. It is apparent from Def. 22
that

med 1
2

(ca, ca) = ca . (121)

Therefore

B(ca) = B(med 1
2

(ca, ca)) by (121)

= ξ(ca, ca) by (25)

= a . by (X-1)

Now we prove the converse claim that (B-1) entails (X-1). Hence let(>,⊥) ∈ T
such that> = ⊥. It then follows from the fact that> is nondecreasing while⊥ is

74



nonincreasing that> = ⊥ is indeed constant, i.e.> = ⊥ = ca for a = >(0). Hence

ξ(>,⊥) = ξ(ca, ca) because> = ⊥ = ca
= B(med 1

2
(ca, ca)) by (25)

= B(ca) by idempotence ofmed 1
2

= a by (B-1)

= >(0) . because> = ca

Lemma 36 For all f ∈ B there exist(>,⊥) ∈ T such thatf = med 1
2

(>,⊥). More

specifically,

a. If f ∈ B+ ∪ B
1
2 , thenf = med 1

2
(c1, f).

b. If f ∈ B− ∪ B
1
2 , thenf = med 1

2
(f, c0).

Proof Let f ∈ B be given.

a.: f ∈ B+ ∪ B
1
2 . Thenf is nonincreasing by Def. 32 and hence(c1, f) ∈ T. Again

from Def. 32, we know thatf(γ) ≥ 1
2 for all γ ∈ I; hence

med 1
2

(c1(γ), f(γ)) = med 1
2

(1, f(γ)) by (7)

= f(γ) . by Def. 22 andf(γ) ≥ 1
2

b.: f ∈ B− ∪ B
1
2 . In this case,f is nondecreasing by Def. 32 andf ≥ c0, hence

(f, c0) ∈ T. We conclude from Def. 32 thatf(γ) ≤ 1
2 for all γ ∈ I. Therefore

med 1
2

(f(γ), c0(γ)) = med 1
2

(f(γ), 1) by (7)

= f(γ) . by Def. 22 andf(γ) ≤ 1
2

Lemma 37 SupposeB : B −→ I is given andξ is the corresponding mappingξ :
T −→ I. ThenB satisfies(B-2) if and only ifξ satisfies(X-2).
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Proof LetB : B −→ I be given and supposeξ : T −→ I is defined by (25).
We shall first assume thatB satisfies (B-2) and consider a choice of(>,⊥) ∈ T. Then

ξ(1−⊥, 1−>)
= B(med 1

2
(1−⊥, 1−>)) by (25)

= B(1−med 1
2

(⊥,>)) becausemed 1
2

symmetrical w.r.t.¬

= B(1−med 1
2

(>,⊥)) becausemed 1
2

commutative

= 1− B(med 1
2

(>,⊥)) by (B-2)

= 1− ξ(>,⊥) , by (25)

i.e. ξ satisfies (X-2).
Conversely, suppose thatξ satisfies (X-2) and letf ∈ B be given. By L-36, there exists
a choice of(>,⊥) ∈ T such that

f = med 1
2

(>,⊥) . (122)

We compute

B(1− f)
= B(1−med 1

2
(>,⊥)) by (122)

= B(med 1
2

(1−>, 1−⊥)) becausemed 1
2

symmetric w.r.t.¬

= ξ(1−⊥, 1−>) by (25) andmed 1
2

commutative

= 1− ξ(>,⊥) by (X-2)

= 1− B(med 1
2

(>,⊥)) by (25)

= 1− B(f) . by (122)

Lemma 38 LetB : B −→ I be a given aggregation mapping and letξ : T −→ I be
defined by(25).

a. if B satisfies(B-3), thenξ satisfies(X-3).

b. if ξ satisfies(X-2) and (X-3), thenB satisfies(B-3).
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Proof

a. SupposeB satisfies (B-3), and let a choice of(c1,⊥) ∈ T be given such that
⊥̂(I) ⊆ 2. We shall abbreviate

f = med 1
2

(c1,⊥) (123)

Then

f(γ) = med 1
2

(c1(γ),⊥(γ)) by (123)

= med 1
2

(1,⊥(γ)) by (7)

=
{

1 : ⊥(γ) = 1
1
2 : ⊥(γ) = 0

for all γ ∈ I, where the last step is apparent from Def. 22 and the fact that⊥ is two-
valued. Because⊥ is nonincreasing andmed 1

2
is nondecreasing in its arguments, it

follows that f is nonincreasing as well. Thereforef ∈ B+, andf has one of the
following forms:

f(γ) =

{
1 : γ ≤ ⊥0↓

∗
1
2 : γ > ⊥0↓

∗

or

f(γ) =

{
1 : γ < ⊥0↓

∗
1
2 : γ ≥ ⊥0↓

∗

In any case,̂f(I) ⊆ { 1
2 , 1} andf

1
2↓
∗ = ⊥0↓

∗ . Therefore

ξ(c1,⊥) = B(med 1
2

(c1,⊥)) by (25)

= B(f) by (123)

= 1
2 + 1

2f
1
2↓
∗ by (B-3)

= 1
2 + 1

2⊥
0↓
∗ , becausef

1
2
∗ = ⊥0↓

∗

i.e. ξ satisfies (X-3).

b. Supposeξ satisfies (X-2) and (X-3). Further let a choice off ∈ B be given that
satisfiesf̂(I) ⊆ {0, 1

2 , 1}.

If f ∈ B+ ∪ B
1
2 , then actuallyf̂(I) ⊆ { 1

2 , 1}, which is apparent from Def. 32. In
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addition, we know from this definition thatf is nonincreasing. Hencef has one of the
following forms:

f(γ) =

 1 : γ ≤ f
1
2↓
∗

1
2 : γ > f

1
2↓
∗

or

f(γ) =

 1 : γ < f
1
2↓
∗

1
2 : γ ≥ f

1
2↓
∗

In any case,

f = med 1
2

(c1, g) , (124)

provided we define

g(γ) =

{
1 : f(γ) = 1
0 : f(γ) = 1

2

(This is apparent from Def. 22). In addition,ĝ(I) ⊆ 2 and by (10), (11),

g0↓
∗ = f

1
2↓
∗ . (125)

Therefore

B(f) = B(med 1
2

(c1, g)) by (124)

= 1
2 + 1

2g
0↓
∗ by (X-3)

= 1
2 + 1

2f
1
2↓
∗ , by (125)

i.e. (B-3) holds. Note that this properly covers the casef = c 1
2

because in this case,

f
1
2↓
∗ = 0, i.e.B(f) = 1

2 , as desired.
In the remaining case thatf ∈ B−, we may proceed as follows:

B(f) = B(1− (1− f))
= 1− B(1− f) by (X-2), L-37

= 1− ( 1
2 + 1

2 (1− f)
1
2↓
∗ ) already proven:1− f ∈ B+

= 1− ( 1
2 + 1

2f
1
2↓
∗ ) apparent from (11)

= 1
2 −

1
2f

1
2↓
∗ ,

i.e. (B-3) also holds iff ∈ B−.
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Lemma 39 SupposeB : B −→ I is given andξ is the corresponding mappingξ :
T −→ I.

a. If B satisfies(B-4), thenξ satisfies(X-4).

b. If ξ satisfies(X-2) and (X-4), thenB satisfies(B-4).

Proof

a. SupposeB satisfies (B-4) and let a choice of(>,⊥) ∈ T be given.

a.1: >(0) < 1
2
. Because> is nondecreasing,⊥ ≤ >, and because⊥ is nonincreasing,

this means that⊥(γ) < 1
2 ; to see this, consider⊥(γ) ≤ ⊥(0) ≤ >(0) < 1

2 . Hence by
Def. 22,

f(γ) = med 1
2

(>(γ),⊥(γ)) =

{
>(γ) : >(γ) < 1

2
1
2 : >(γ) ≥ 1

2

(126)

Let us now abbreviate

γ∗ = inf{γ ∈ I : >(γ) ≥ 1
2} . (127)

Clearly

f(γ) = >(γ) (128)

for all γ ∈ [0, γ∗); this is apparent from (126) and (127). Hence

f ](γ) = lim
γ′→γ+

f(γ′) by Def. 34

= lim
γ′→γ+

>(γ′) by (128)

= >](γ) by Def. 34

i.e.

f ](γ) = med 1
2

(>](γ),⊥(γ)) , (129)

where the last equation is valid because>](γ) < 1
2 for γ ∈ [0, γ∗).

If γ ∈ (γ∗, 1], then>(γ) ≥ 1
2 andf(γ) = 1

2 by (126) and Def. 22. Therefore

f ](γ) = lim
γ′→γ+

f(γ) = lim
γ′→γ+

1
2 = 1

2 (130)

for all γ ∈ [γ∗, 1), see Def. 34. Turning to>], it follows from>(γ) ≥ 1
2 for all γ > γ∗

that

>](γ) = lim
γ′→γ+

>(γ′) ≥ 1
2 (131)
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for all γ ∈ [γ∗, 1). Therefore

f ](γ) = 1
2 by (130)

= med 1
2

(>](γ),⊥(γ)) , by (131),⊥(γ) < 1
2 , Def. 22

for all γ ∈ [γ + ∗, 1). Finally for γ = 1,

med 1
2

(>](1),⊥(1)) = med 1
2

(>(1),⊥(1)) by Def. 34

= f(1) by (126)

= f ](1) . by Def. 34

Hence

f ] = med 1
2

(>],⊥) . (132)

Similarly, it can be shown thatf [ = med 1
2

(>[,⊥): if γ = 0, then

f [(0) = f(0) = med 1
2

(>(0),⊥(0)) = med 1
2

(>[(0),⊥(0)) .

This is immediate from Def. 34 and (126). If0 < γ ≤ γ∗, then

f [(γ) = lim
γ′→γ−

f(γ′) = lim
γ′→γ−

>(γ′) = >[(γ) = med 1
2

(>[(γ),⊥(γ)) ,

which is clear from (128) and>[(γ) ≤ 1
2 . Finally in the case thatγ > γ∗, we have

f [(γ) = lim
γ′→γ−

f(γ′) = lim
γ′→γ−

1
2 = 1

2 = med 1
2

(>[(γ),⊥(γ)) .

This is obvious from Def. 22 if we recall that

>[(γ) = lim
γ′→γ−

>(γ′) ≥ 1
2

for all γ > γ∗; see (127). Summarising, we have shown that

f [ = med 1
2

(>[,⊥) . (133)

Therefore

ξ(>],⊥) = B(med 1
2

(>],⊥)) by (25)

= B(f ]) by (132)

= B(f [) by (B-4)

= B(med 1
2

(>[,⊥)) by (133)

= ξ(>[,⊥) , by (25)

i.e. (X-4) holds, as desired.
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a.2: ⊥(0) > 1
2
. In this case,>(γ) ≥ >(0) ≥ ⊥(0) > 1

2 for all γ. Hence by the
definition of fuzzy median Def. 22,

f(γ) = med 1
2

(>(γ),⊥(γ)) =

{
⊥(γ) : ⊥(γ) > 1

2
1
2 : ⊥(γ) ≤ 1

2

For the same reasons,

med 1
2

(>](γ),⊥(γ)) =

{
⊥(γ) : ⊥(γ) > 1

2
1
2 : ⊥(γ) ≤ 1

2

= f(γ) ,

and also

med 1
2

(>[(γ),⊥(γ)) =

{
⊥(γ) : ⊥(γ) > 1

2
1
2 : ⊥(γ) ≤ 1

2

= f(γ) ,

i.e.

med 1
2

(>],⊥) = med 1
2

(>[,⊥) . (134)

Therefore

ξ(>],⊥) = B(med 1
2

(>],⊥)) by (25)

= B(med 1
2

(>[,⊥)) by (134)

= ξ(>[,⊥) . by (25)

a.3: >(0) ≥ 1
2

and ⊥(0) ≤ 1
2
. In this case, we conclude from the fact that> is

nondecreasing and that⊥ is nonincreasing that>(γ) ≥ 1
2 and⊥(γ) ≤ 1

2 for all γ ∈ I.
It is then straighforward from Def. 34 that>](γ) ≥ 1

2 and>[(γ) ≥ 1
2 for all γ ∈ I.

Hence by Def. 22,

med 1
2

(>](γ),⊥(γ)) = 1
2 = med 1

2
(>[(γ),⊥(γ)) (135)

for all γ ∈ I. Therefore

ξ(>],⊥) = B(med 1
2

(>],⊥)) by (25)

= B(med 1
2

(>[,⊥)) by (135)

= ξ(>[,⊥) . by (25)

This finishes the proof of parta. of the lemma.

b. Supposeξ : T −→ I is defined in terms ofB : B −→ I according to equation (25)
and satisfies (X-2) and (X-4). In order to show thatB satisfies (B-4), let us consider a
choice off ∈ B. We shall discern two cases.
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b.1: f ∈ B− ∪ B
1
2 . Then alsof ] ∈ B− ∪ B

1
2 andf [ ∈ B− ∪ B

1
2 , see Def. 34 and

Def. 32. Therefore

B(f ]) = B(med 1
2

(f ], c0)) by L-36

= ξ(f ], c0) by (25)

= ξ(f [, c0) by (X-4)

= B(med 1
2

(f [, c0)) by (25)

= B(f [) , by L-36

as desired.

b.2: f ∈ B+. In this case, clearlyf ] ∈ B+ ∪ B
1
2 andf [ ∈ B+. Hence

B(f ]) = B(1− (1− f ]))
= 1− B(1− f ]) by (X-2), L-37

= 1− B((1− f)]) apparent from Def. 34

= 1− B((1− f)[) by partb.1 of this lemma

= B(1− (1− f [)) by (X-2), L-37, Def. 34

= B(f [) .

Hence (B-4) is valid forB, which we intended to show.

Lemma 40 LetB : B −→ I be a mapping and letξ : T −→ I be defined by(25). Then
B satisfies(B-5) if and only ifξ satisfies(X-5).

Proof SupposeB satisfies (B-5) and let a choice of(>,⊥), (>′,⊥′) ∈ T be given
such that> ≤ >′ and⊥ ≤ ⊥′. Then

ξ(>,⊥) = B(med 1
2

(>,⊥)) by (25)

≤ B(med 1
2

(>′,⊥′))

= ξ(>′,⊥′) , by (25)

where the middle inequation holds becausemed 1
2

(>,⊥) ≤ med 1
2

(>′,⊥′) (by the

monotonicity ofmed 1
2

) and becauseB satisfies (B-5).

Considering the converse implication, supposeξ satisfies (X-5) and let a choice of
f, g ∈ B be given such thatf ≤ g. We shall discern three cases.
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a.: f, g ∈ B+ ∪ B
1
2 . We can then apply L-36 to conclude that

f = med 1
2

(c1, f) (136)

g = med 1
2

(c1, g) . (137)

Hence

B(f) = B(med 1
2

(c1, f)) by (136)

= ξ(c1, f) by (25)

≤ ξ(c1, g) by (X-5) andf ≤ g
= B(med 1

2
(c1, g)) by (25)

= B(g) . by (137)

b.: f ∈ B−, g ∈ B+. In this case,

B(f) = B(med 1
2

(f, c0)) by L-36

= ξ(f, c0) by (25)

≤ ξ(c1, g) by (X-5)

= B(med 1
2

(c1, g)) by (25)

= B(g) . by L-36

c.: f, g ∈ B− ∪ B
1
2 . Then

B(f) = B(med 1
2

(f, c0)) by L-36

= ξ(f, c0) by (25)

≤ ξ(g, c0) by (X-5) andf ≤ g
= B(med 1

2
(g, c0)) by (25)

= B(g) . by L-36

Proof of Theorem 25

Let B : B −→ I be given and letξ : T −→ I be defined by (25). All claims of the
theorem are immediate from the above lemmata; viz

1. The equivalence of (B-1) and (X-1) has been shown in L-35;

2. The equivalence of (B-2) and (X-2) has been shown in L-37;
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3. the claimed relationship between (B-3) and (X-2)/(X-3) has been established in
L-38;

4. the claimed relationship between (B-4) and (X-2)/(X-4) has been established in
L-39;

5. the equivalence of (B-5) and (X-5) has been established in L-40.

B.7 Proof of Theorem 26

We already know from Th-8 that the conditions (B-1) to (B-5) are independent, i.e. for
all i ∈ {1, . . . , 5}, there exists a choice ofBi : B −→ I which satisfies all (B-j),
i 6= j, but fails on (B-i). Now let us show the independence of the conditions (X-i),
i = 1, . . . , 5, based on the above choices of theBi’s.

Independence of (X-1). To see that (X-1) is independent of the remaining (X-j),
considerB1. We shall defineξ1 : T −→ I in terms ofB1 according to equation (25).
Thenξ1 fails on (X-1) by Th-25.1 andξ1 satisfies (X-2), (X-3), (X-4) and (X-5) by
Th-25.2, Th-25.3(a), Th-25.4(a) and Th-25.5, resp.

Independence of (X-2). In this case, we defineξ2 : T −→ I in terms ofB2. Clearly
ξ2 fails on (X-2) by Th-25.2 andξ2 satisfies (X-1), (X-3), (X-4) and (X-5) by Th-25.1,
Th-25.3(a), Th-25.4(a) and Th-25.5, resp.

Independence of (X-3). Now we defineξ3 in terms ofB3. Thenξ3 satisfies (X-1),
(X-2), (X-4) and (X-5) by Th-25.1, Th-25.2, Th-25.4(a) and Th-25.5, resp. Becauseξ3
satisfies (X-2) andB3 fails on (B-3), we obtain from Th-25.3(b) by contraposition that
ξ3 fails on (X-3).

Independence of (X-4). In this case we defineξ4 in terms ofB4. Thenξ4 satis-
fies (X-1), (X-2), (X-3) and (X-5) by Th-25.1, Th-25.2, Th-25.3(a) and Th-25.5, resp.
Becauseξ4 satisfies (X-2) andB4 fails on (B-4), we obtain from Th-25.4(b) by contra-
position thatξ4 fails on (X-4).

Independence of (X-5). Finally we useB5 to defineξ5. Thenξ5 violates (X-5) by
Th-25.5, but it satisfies all other conditions by Th-25.1, Th-25.2, Th-25.3(a) and Th-
25.4(a).
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B.8 Proof of Theorem 27

Lemma 41 For all monotonic mappingsf : I −→ I (i.e. either nondecreasing or
nonincreasing), ∫ 1

0

f [(γ) dγ =
∫ 1

0

f ](γ) dγ .

Proof We will reuse earlier proofs for that. We already know that the QFMM with
B∫ (f) =

∫ 1

0
f(γ) dγ for all γ ∈ B is a DFS, see Def. 39 and Th-11. HenceB∫ satisfies

(B-4) by Th-8, i.e.∫ 1

0

f ](γ) dγ = B∫ (f ]) = B∫ (f [) =
∫ 1

0

f [(γ) dγ (138)

for all f ∈ B. In the following, we discern the case of nondecreasing and nonincreasing
mappings.

a.: nondecreasing mappings. Suppose> : I −→ I is nondecreasing. Then it is
apparent from Def. 32 that12> ∈ B. In addition, we have

( 1
2>)[(γ) = lim

γ′→γ−
1
2>(γ′) by Def. 34

= 1
2 lim
γ′→γ−

>(γ′)

= 1
2 (>[) by Def. 34

for γ > 0; the caseγ = 0 is trivial. Similarly

( 1
2>)](γ) = lim

γ′→γ+

1
2>(γ′) by Def. 34

= 1
2 lim
γ′→γ+

>(γ′)

= 1
2 (>]) by Def. 34

for γ < 1; the caseγ = 1 is trivial. Hence

( 1
2>)[ = 1

2 (>[) (139)

and

(>])] = 1
2 (>]) . (140)
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In turn, ∫ 1

0

>](γ) dγ =
∫ 1

0

2 · 1
2>

](γ) dγ

= 2
∫ 1

0

( 1
2>)](γ) dγ by (140)

= 2
∫ 1

0

( 1
2>)[(γ) dγ by (138)

=
∫ 1

0

2 · 1
2>

[(γ) dγ by (139)

=
∫ 1

0

>[(γ) dγ .

b.: nonincreasing mappings. Suppose⊥ : I −→ I is nonincreasing. Then1−⊥ is
nondecreasing. In addition,

(1−⊥)[(γ) = lim
γ′→γ−

1−⊥(γ′) by Def. 34

= 1− lim
γ′→γ−

⊥(γ′)

= 1−⊥[(γ) by Def. 34

for γ > 0, and

(1−⊥)](γ) = lim
γ′→γ+

1−⊥(γ′) by Def. 34

= 1− lim
γ′→γ+

⊥(γ′)

= 1−⊥](γ) by Def. 34

for γ < 1, the remaining cases are again trivial. Hence

(1−⊥)[ = 1−⊥[ (1−⊥)] = 1−⊥] . (141)

We can now proceed as follows.∫ 1

0

⊥](γ) dγ = 1−
∫ 1

0

1−⊥](γ) dγ

= 1−
∫ 1

0

(1−⊥)](γ) dγ by (141)

= 1−
∫ 1

0

(1−⊥)[(γ) dγ by parta. of the proof

= 1−
∫ 1

0

1−⊥[(γ) dγ by (141)

=
∫ 1

0

⊥[(γ) dγ ,

as desired.
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Proof of Theorem 27

By Th-22, we can prove thatFCh is a standard DFS by showing that the mapping
ξCh : T −→ I defined in Def. 47 satisfies the conditions (X-1) to (X-5). We will
consider these conditions in turn.

ξCh satisfies (X-1). To see this, consider(ca, ca) ∈ T, wherea ∈ I is a given con-
stant. Apparently

ξCh(ca, ca) = 1
2

∫ 1

0

ca(γ) dγ + 1
2

∫ 1

0

ca(γ) dγ by Def. 47

=
∫ 1

0

a dγ by (7)

= a ,

i.e. (X-1) holds, as desired.

ξCh satisfies (X-2). Let (>,⊥) ∈ T be given. Then

ξCh(1−⊥, 1−>)

= 1
2

∫ 1

0

(1−⊥(γ)) dγ + 1
2

∫ 1

0

(1−>(γ)) dγ by Def. 47

= 1
2 (
∫ 1

0

1 dγ −
∫ 1

0

⊥(γ) dγ +
∫ 1

0

1 dγ −
∫ 1

0

>(γ) dγ) by additivity of
∫

= 1
2 (2−

∫ 1

0

⊥(γ) dγ −
∫ 1

0

>(γ) dγ

= 1− ( 1
2

∫ 1

0

⊥(γ) dγ + 1
2

∫ 1

0

>(γ) dγ

= 1− ξCh(>,⊥) . by Def. 47

ξCh satisfies (X-3) To this end, let(c1,⊥) ∈ T such that̂⊥(I) ⊆ {0, 1}. Because⊥
is nonincreasing, this means that⊥ has one of the following two forms:

⊥(γ) =
{

1 : γ ≤ ⊥0↓
∗

0 : γ > ⊥0↓
∗

or

⊥(γ) =
{

1 : γ < ⊥0↓
∗

0 : γ ≥ ⊥0↓
∗
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for all γ ∈ I, see (10). In any case,∫ 1

0

⊥(γ) dγ =
∫ ⊥0↓

∗

0

⊥(γ) dγ +
∫ 1

⊥0↓
∗

⊥(γ) dγ

=
∫ ⊥0↓

∗

0

1 dγ +
∫ 1

⊥0↓
∗

0 dγ see above

= ⊥0↓
∗ ,

i.e.

1

inf
0
⊥(γ) dγ = ⊥0↓

∗ . (142)

Therefore

ξCh(c1,⊥) = 1
2

∫ 1

0

c1 dγ + 1
2

∫ 1

0

⊥(γ) dγ by Def. 47

= 1
2

∫ 1

0

1 dγ + 1
2⊥

0↓
∗ by (7), (142)

= 1
2 + 1

2⊥
0↓
∗ ,

i.e. ξCh satisfies (X-3).

ξCh satisfies (X-4). Let (>,⊥) ∈ T be given. Then

ξCh(>],⊥) = 1
2

∫ 1

0

>](γ) dγ + 1
2

∫ 1

0

⊥(γ) dγ by Def. 47

= 1
2

∫
+01>[(γ) dγ + 1

2

∫ 1

0

⊥(γ) dγ by L-41

= ξCh(>[,⊥) , by Def. 47

i.e. ξCh fulfills (X-4).

ξCh satisfies (X-5). To see this, let(>,⊥), (>′,⊥′) ∈ T with > ≤ >′ and⊥ ≤ ⊥′.
Then

ξCh(>,⊥) = 1
2

∫ 1

0

>(γ) dγ + 1
2

∫ 1

0

⊥(γ) dγ by Def. 47

≤ 1
2

∫ 1

0

>′(γ) dγ + 1
2

∫ 1

0

⊥′(γ) dγ by monotonicity of
∫

= ξCh(>′,⊥′) ,

i.e. (X-5) holds. This finishes the proof thatFCh is a DFS.
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B.9 Proof of Theorem 28

Lemma 42 Letf, g : I −→ I be nondecreasing mappings such that for allx ∈ I,

f(x) ≤ g(x)
f(y) ≥ g(x) for all y > x.

Then for alla ≤ b, a, b ∈ I, ∫ b

a

f(x)dx =
∫ b

a

g(x)dx .

Proof ∫ b

a

f(x) dx = (b− a)
∫ 1

0

f((b− a)x+ a) dx

= (b− a)
∫ 1

0

g((b− a)x+ a) dx by [6, L-34, p. 140]

=
∫ b

a

g(x) dx .

Lemma 43 SupposeQ : P(E) −→ I is a nondecreasing semi-fuzzy quantifier. Then
for all a, b ∈ I with a ≤ b,∫ b

a

Q(X≥α)dα =
∫ b

a

Q(X>α)dα .

Proof Considerα ∈ I. It is apparent from Def. 28 and Def. 29 that

X>α ⊆ X≥α
X>α′ ⊇ X≥α for all α′ > α.

In turn becauseQ is nondecreasing, we obtain from Def. 13 that

Q(X>α) ≤ Q(X≥α)
Q(X>α′) ≥ Q(X≥α) for all α′ > α.

HenceQ(X>•), Q(X≥•) : I −→ I satisfy the requirements of L-42, from which we
obtain the desired ∫ b

a

Q(X>α)dα =
∫ b

a

Q(X≥α)dα .
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Proof of Theorem 28

Let Q : P(E) −→ I be a given nondecreasing quantifier. Now consider a choice of
fuzzy argument setX ∈ P̃(E). We compute

FCh(Q)(X)

= 1
2

∫ 1

0

>Q,X(γ) dγ + 1
2

∫ 1

0

⊥Q,X(γ) dγ by Def. 47

= 1
2

∫ 1

0

Q(Xmax
γ ) dγ + 1

2

∫ 1

0

Q(Xmin
γ ) dγ by L-3

= 1
2

∫ 1

0

Q(X
>

1
2−

1
2γ

) dγ + 1
2

∫ 1

0

Q(X
≥ 1

2 +
1
2γ

) dγ by Def. 30 and L-23

= 1
2 · 2 ·

∫ 1
2

0

Q(X>α)dα+ 1
2 · 2 ·

∫ 1

1
2

Q(X≥α)dα by appropriate substitutions

=
∫ 1

2

0

Q(X≥α) +
∫ 1

1
2

Q(X≥α) by L-43

=
∫ 1

0

Q(X≥α)

= (Ch)
∫
X dQ . by Def. 48

B.10 Proof of Theorem 29

The claim made in the theorem has already been established in [5]. Nevertheless, we
prove it again here to gain better insight into the relationship of the Choquet integral
and OWA operators.

Lemma 44 Let E 6= ∅ be a finite base set with cardinalitym = |E|. Further let
q : {0, . . . ,m} −→ I be a nondecreasing mapping such that

q(0) = 0

and

q(m) = 1 ,

and letQ : P(E) −→ I be the semi-fuzzy quantifier defined by

Q(Y ) = q(|Y |) (143)

for all Y ∈ P(E). The for allX ∈ P̃(E) andj ∈ {1, . . . ,m},∫ µ[j](X)

µ[j+1](X)

Q(X≥α) dα = (µ[j](X)− µ[j+1](X)) · q(j) .
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Proof We first consider the case thatµ[j](X) = µ[j+1](X). Then∫ µ[j](X)

µ[j+1](X)

Q(X≥α) dα

=
∫ µ[j](X)

µ[j](X)

Q(X≥α) dα

= 0
= (µ[j](X)− µ[j](X)) · q(j)
= (µ[j](X)− µ[j+1](X)) · q(j) .

In the remaining case thatµ[j](X) > µ[j+1](X), we choose an arbitrary ordering of
the elements ofE such thatE = {e1, . . . , em} andµX(e1) ≥ · · · ≥ µX(em), i.e.

µX(ek) = µ[k](X) (144)

by Def. 49. HenceµX(ek) ≥ µ[j](X) for 1 ≤ k ≤ j andµX(ek) < µ[j](X) for k > j,
which is apparent from our assumption thatµ[j+1](X) < µ[j](X). We therefore obtain
for all α ∈ (µ[j+1](X), µ[j](X)] that

X≥α = {e ∈ E : µX(e) ≥ α}
= {ek ∈ E : µ[k](X) ≥ α}
= {ek : k = 1, . . . , j} .

In turn

|X≥α| = |{ek : k = 1, . . . , j}| = j , (145)

which holds because allei are distinct (this is apparent from|E| = m andE =
{e1, . . . , em}). We hence obtain∫ µ[j](X)

µ[j+1](X)

Q(X≥α) dα

=
∫ µ[j](X)

µ[j+1](X)

q(|X≥α|) dα by (143)

=
∫ µ[j](X)

µ[j+1](X)

q(j) dα by (145)

= (µ[j](X)− µ[j+1](X)) · q(j) ,

as desired.

Proof of Theorem 29

In order to prove thatFCh generalizes the OWA approach, we proceed as follows.
SupposeE 6= ∅ is a finite base set of cardinality|E| = m andq : {0, . . . ,m} −→ I
is a nondecreasing mapping with

q(0) = 0 (146)
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and

q(m) = 1 . (147)

Further assume thatQ : P(E) −→ I is defined by

Q(Y ) = q(|Y |) , (148)

for all Y ∈ P(E). Now considerX ∈ P̃(E). Then

FCh(Q)(X)

= (Ch)
∫
X dQ by Th-28

=
∫ 1

0

Q(X≥α) dα by Def. 48

=
m∑
k=0

∫ µ[m−k](X)

µ[m+1−k](X)

Q(X≥α) dα

=
m∑
k=0

(µ[m−k](X)− µ[m−k+1](X)) · q(m− k) by L-44

=
m∑
k=0

µ[m−k](X)q(m− k)

−
m∑
k=0

µ[m−k+1](X)q(m− k)

=
m−1∑
k=0

µ[m−k](X)q(m− k) + µ[0](X)q(0)

−
m−1∑
k=0

µ[m−k](X)q(m− k − 1)− µ[m+1](X)q(m) by substitution

=
m−1∑
k=0

µ[m−k](X)q(m− k)

−
m−1∑
k=0

µ[m−k](q)(m− k − 1) by (146) andµ[m+1](X) = 0

=
m−1∑
k=0

µ[m−k](X) · (q(m− k)− q(m− k − 1))

=
m∑
j=1

µ[j](X)(q(j)− q(j − 1)) , by substitutionj = m− k

i.e.FCh(Q)(X) coincides with the result of the OWA approach, as desired.
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B.11 Proof of Theorem 30

Lemma 45 Supposef : I −→ I is a monotonic mapping (i.e. nondecreasing or non-
increasing). Then(1− f)∗1 = 1− f∗1 .

Proof Trivial:

(1− f)∗1 = lim
γ→1−

(1− f)(γ) by (12)

= lim
γ→1−

1− f(γ)

= 1− lim
γ→1−

f(γ)

= 1− f∗1 . by (12)

where the limites are guaranteed to exist becausef is monotonic.

Lemma 46 For all (>,⊥) ∈ T,

a. (1−⊥)
≥ 1

2↓
∗ = ⊥

≤ 1
2↓
∗ ;

b. (1−>)
≤ 1

2↓
∗ = >

≥ 1
2↓
∗ .

Proof We first show thata. holds.

(1−⊥)
≥ 1

2↓
∗ = inf{γ ∈ I : (1−⊥)(γ) ≥ 1

2} by (27)

= inf{γ ∈ I : 1−⊥(γ) ≥ 1
2}

= inf{γ ∈ I : ⊥(γ) ≤ 1
2}

= ⊥
≤ 1

2↓
∗ . by (26)

Similarly for b.,

(1−>)
≤ 1

2↓
∗ = (1− (1−>))

≥ 1
2↓
∗ by a.

= >
≥ 1

2↓
∗ .

Lemma 47 For all monotonic mappingsf : I −→ I,

1. (1− f)] = 1− f ];

2. (1− f)[ = 1− f [.
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Proof Let f : I −→ I be a monotonic mapping and letγ < 1. Then

(1− f)](γ) = lim
γ′→γ+

1− f(γ′) by Def. 34

= 1− lim
γ′→γ+

f(γ′)

= 1− f ](γ) . by Def. 34

The case thatγ = 1 is trivial.
As to the second claim, we obtain forγ > 0 that

(1− f)[(γ) = lim
γ′→γ−

1− f(γ′) by Def. 34

= 1− lim
γ′→γ−

f(γ′)

= 1− f [(γ) . by Def. 34

The remaining case thatγ = 0 is again trivial.

Lemma 48 Let (>,⊥) ∈ T be given. Then

a. (⊥])∗1 = (⊥[)∗1;

b. (>])∗1 = (>[)∗1.

Proof Suppose(>,⊥) ∈ T is given.

a. We discern two cases in the proof of parta. of the lemma.

• If ⊥̂((0, 1]) = {0}, then⊥] = c0 and⊥[ = ⊥ by Def. 34. Hence

⊥]∗1 = (c0)∗1
= lim
γ→1−

0 by (12)

= 0
= lim
γ→1−

⊥

= lim
γ→1−

⊥[

= (⊥[)
∗
1 . by (12)

• If ⊥̂((0, 1]) 6= {0}, then(⊥])∗1 = (⊥[)∗1 by [7, L-73.b, p. 186].
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b. The proof of the second part of the lemma can be reduced to that of the first part
as follows.

(>])∗1 = (1− (1−>]))∗1
= (1− (1−>)])

∗
1 by L-47

= 1− ((1−>)])
∗
1 by L-45

= 1− ((1−>)[)
∗
1 by parta.

= (1− (1−>)[)
∗
1 by L-45

= (1− (1−>[))
∗
1 by L-47

= (>[)
∗
1 .

Lemma 49 Let> : I −→ I be a nondecreasing mapping. Then

(>])≥
1
2↓
∗ = (>[)

≥ 1
2↓
∗ .

Proof Let us abbreviate⊥ = max(1− 2>, 0). It is apparent from Def. 34 and from
the continuity of the involved operations that

⊥] = max(1− 2 · >], 0)

and

⊥[ = max(1− 2 · >[, 0) .

We hence obtain from (10) and (27) that

(⊥])0↓
∗ = (>])≥

1
2↓
∗ (149)

(⊥[)
0↓
∗ = (>[)

≥ 1
2↓
∗ (150)

Now if ⊥̂((0, 1]) = {0}, then⊥] = c0 and⊥[ = ⊥ with ⊥0↓
∗ = 0. Hence in this case

(>])≥
1
2↓
∗ = (⊥])0↓

∗ = (c0)0↓
∗ = 0 = ⊥0↓

∗ = (⊥[)
0↓
∗ = (>[)

≥ 1
2↓
∗ .

In the remaining case that̂>((0, 1]) 6= {0}, we obtain the desired

(>])≥
1
2↓
∗ = (⊥])0↓

∗ = (⊥[)
0↓
∗ = (>[)

≥ 1
2↓
∗

from [7, L-54.b, p. 140] and (149), (150).

Lemma 50 Let (>,⊥) ∈ T be given. Then

a. if⊥(0) ≤ >(0) < 1
2 , thenξS(>,⊥) ≤ 1

2 ;

b. if⊥(0) ≤ 1
2 ≤ >(0), thenξS(>,⊥) = 1

2 ;

c. if 1
2 < ⊥(0) ≤ >(0), thenξS(>,⊥) ≥ 1

2 .
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Proof Immediate from the definition ofξS : T −→ I in Def. 50.

Proof of Theorem 30

We will utilize Th-22 and prove thatFS is a standard DFS by showing that the cor-
responding mappingξS : T −→ I defined in Def. 50 fulfills the conditions (X-1) to
(X-5). In order to shorten the proof, we will first show that (X-2) is satisfied.

ξS satisfies (X-2). To see this, consider(>,⊥) ∈ T. We discern three cases as
follows.

1. 1−>(0) > 1
2 , i.e.>(0) < 1

2 . Then

ξ(1−⊥, 1−>) = min((1−⊥)∗1,
1
2 + 1

2 (1−>)
≤ 1

2↓
∗ ) by Def. 50

= min(1−⊥∗1, 1− ( 1
2 −

1
2>
≥ 1

2↓
∗ )) by L-45, L-46

= 1−max(⊥∗1, 1
2 −

1
2>
≥ 1

2↓
∗ ) by De Morgan’s law

= 1− ξS(>,⊥) . by Def. 50

2. 1−⊥(0) < 1
2 , i.e.⊥(0) > 1

2 . Then similarly

ξ(1−⊥, 1−>) = max((1−>)∗1,
1
2 + 1

2 (1−⊥)
≥ 1

2↓
∗ ) by Def. 50

= max(1−>∗1, 1− ( 1
2 −

1
2⊥
≤ 1

2↓
∗ )) by L-45, L-46

= 1−min(>∗1, 1
2 −

1
2⊥
≤ 1

2↓
∗ ) by De Morgan’s law

= 1− ξS(>,⊥) . by Def. 50

3. 1−>(0) ≤ 1
2 ≤ 1−⊥(0). Then by Def. 50,

ξS(1−⊥, 1−>) = 1
2 = 1− 1

2 = 1− ξS(>,⊥) ,

because⊥(0) ≤ 1
2 ≤ >(0).

ξS satisfies (X-1). Because (X-2) is valid forξS , we only need to considerca : I −→
I wherea ∈ [ 1

2 , 1]. It is apparent from (12) that for every such constant,(ca)∗1 = a. In
the following, we discern two cases.

1. if a > 1
2 , then

(ca)
≤ 1

2↓
∗ = inf{γ ∈ I : ca(γ) ≤ 1

2} by (26)

= inf{γ ∈ I : a ≤ 1
2} by (7)

= inf ∅ becausea > 1
2

= 1 . (by the usual convention)
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Hence

ξS(ca, ca) = min((ca)∗1,
1
2 + 1

2 (ca)
≤ 1

2↓
∗ ) by Def. 50

= min(a, 1)
= a .

2. In the case thata = 1
2 , it is immediate from Def. 50 that

ξS(c 1
2
, c 1

2
) = 1

2

becausec 1
2

(0) = 1
2 .

ξS satisfies (X-3). Let (c1,⊥) ∈ T be given with⊥̂(I) ⊆ {0, 1}. Then

(c1)∗1 = lim
γ→1−

1 = 1 (151)

and

⊥
≤ 1

2↓
∗ = inf{γ ∈ I : ⊥(γ) ≤ 1

2} by (26)

= inf{γ ∈ I : ⊥(γ) = 0}

because⊥(γ) ∈ {0, 1} by assumption, i.e.

⊥
≤ 1

2↓
∗ = ⊥0↓

∗ . (152)

Now we treat separately the two possible cases that⊥(0) = 1 or⊥(0) = 0.
If ⊥(0) = 1, then in particular⊥(0) > 1

2 . Therefore

ξS(c1,⊥) = min((c1)∗1,
1
2 + 1

2⊥
≤ 1

2↓
∗ ) by Def. 50 and⊥(0) > 1

2

= min(1, 1
2 + 1

2⊥
0↓
∗ ) by (151), (152)

= 1
2 + 1

2⊥
0↓
∗ .

In the remaining case that⊥(0) = 0, we conclude from the fact that⊥ is nonincreasing
that⊥ = c0 and

⊥0↓
∗ = inf{γ ∈ I : 0 = 0} = inf I = 0 . (153)

Therefore

ξS(c1,⊥) = ξS(c1, c0) because⊥ = c0

= 1
2 by Def. 50

= 1
2 + 1

2⊥
0↓
∗ . by (153)

97



ξS satisfies (X-4). Let (>,⊥) ∈ T be given. Then by L-48 and L-49,

min((>])∗1,
1
2 + 1

2⊥
≤ 1

2↓
∗ ) = min((>[)

∗
1,

1
2 + 1

2⊥
≤ 1

2↓
∗ )

max(⊥∗1, 1
2 −

1
2 (>])≥

1
2↓
∗ ) = max(⊥∗1, 1

2 −
1
2 (>[)

≥ 1
2↓
∗ ) .

It is apparent from these two equations and Def. 50 that

ξS(>],⊥) = ξS(>[,⊥)

holds in all cases except for one case, which must be checked separately: the case
that>[(0) < 1

2 and>](0) ≥ 1
2 . We then have⊥(0) ≤ >[(0) < 1

2 and hence
ξS(>],⊥) = 1

2 by Def. 50. In addition, we conclude from>](0) ≥ 1
2 that>(γ) ≥ 1

2

for all γ > 0. In turn, we conclude from Def. 34 that>[(γ) ≥ 1
2 for all γ > 0. Hence

(>[)≥
1
2↓
∗ = 0, and

ξS(>[,⊥) = max(⊥∗1, 1
2 −

1
2 (>[)

≥ 1
2↓
∗ )

= max(⊥∗1, 1
2 )

= 1
2 .

ξS satisfies (X-5). It is apparent from L-50 and the fact that (X-2) is valid that only
one critical case must be checked, viz the case that(>,⊥), (>′,⊥′) ∈ T with> ≤ >′,
⊥ ≤ ⊥′ and>(0) > 1

2 . To see that (X-5) holds in this case, we first observe that

>∗1 = lim
γ→1−

>(γ) by (12)

≤ lim
γ→1−

>′(γ) by monotonicity oflim

= >′∗1 . by (12)

We further notice that

⊥
≤ 1

2↓
∗ = inf{γ ∈ I : ⊥(γ) ≤ 1

2} by (26)

≤ inf{γ ∈ I : ⊥′(γ) ≤ 1
2}

= ⊥′
≤ 1

2↓
∗ by (26)

because⊥ ≤ ⊥′ and hence

{γ ∈ I : ⊥(γ) ≤ 1
2} ⊇ {γ ∈ I : ⊥′(γ) ≤ 1

2} .

Finally, we notice that⊥′(0) ≥ ⊥(0) > 1
2 . Therefore

ξS(>,⊥) = min(>∗1, 1
2 + 1

2⊥
≤ 1

2↓
∗ ) by Def. 50

≤ min(>′∗1, 1
2 + 1

2⊥
′≤

1
2↓
∗ ) by above inequations

= ξS(>′,⊥′) , by Def. 50

i.e. ξS satisfies (X-5).
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B.12 Proof of Theorem 31

Lemma 51 For all monotonic mappingsf : I −→ I,

(1− f)∗0 = 1− (f∗0 ) .

Proof Supposef : I −→ I is a monotonic mapping (i.e. either nondecreasing or
nonincreasing). Then

(1− f)∗0 = lim
γ→0+

(1− f)(γ) by (9)

= lim
γ→0+

(1− f(γ))

= 1− lim
γ→0+

f(γ)

= 1− (f∗0 ) . by (9)

Lemma 52 Letf : I −→ I be a given mapping. Then

(1− f)0↓
∗ = f1↓

∗

(1− f)1↓
∗ = f0↓

∗

Proof As to the first equation, we compute

(1− f)0↓
∗ = inf{γ : 1− f(γ) = 0} by (10)

= inf{γ : f(γ) = 1}
= f1↓
∗ . by (14)

The second equation is apparent from the first one because(1− f)1↓
∗ = (1− (1− f))0↓

∗ =
f0↓
∗ .

Lemma 53 For all monotonic mappingsf : I −→ I,

(f ])
∗
0 = (f [)

∗
0 .

Proof Let f : I −→ I be a monotonic mapping (i.e. either nondecreasing or nonin-
creasing). We shall discern the following cases.

a.: f = c0. Thenf ] = f [ = c0 by Def. 34 and hence trivially(f ])∗0 = (f [)
∗
0.
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b.: f is nonincreasing, f(0) > 0 and f̂((0, 1]) = {0}. Thenf ] = c0 andf [ = f by
Def. 34. Hence

(f ])
∗
0 = lim

γ→0+
f ](γ) by (9)

= lim
γ→0+

0 becausef ] = c0

= 0
= f∗0 by [7, L-59.a, p.148]

= f [
∗
0 . becausef = f [

c.: f is nonincreasing, f(0) > 0 and f̂((0, 1]) 6= {0}. In this case, the desired
(f ])∗0 = (f [)

∗
0 has already been proven in [7, L-59.b, p.148].

d.: f is nondecreasing. This case can be reduced toa–c. by applying L-51 and
L-47.

Lemma 54 Letf : I −→ I be some mapping.

a. If f is nonincreasing, then

(f ])
0↓
∗ = (f [)

0↓
∗

b. If f is nondecreasing, then

(f ])
1↓
∗ = (f [)

1↓
∗

Proof Let f : I −→ I be the given mapping.

Proof of part a. In order to show that the equation in parta. of the lemma holds, let
us assume thatf is nonincreasing. We discern the following casesa.1–a.3.

a.1: f = c0. Thenf ] = f [ = c0 by Def. 34 and hence trivially(f ])0↓
∗ = (f [)

0↓
∗ .

a.2: f(0) > 0 and f̂((0, 1]) = {0}. Thenf ] = c0 andf [ = f by Def. 34. Hence

(f ])
0↓
∗ = inf{γ : f ](γ) = 0} by (10)

= inf{γ : 0 = 0} becausef ] = c0

= inf[0, 1]
= 0

= f0↓
∗ by [7, L-54.a, p.140]

= f [
0↓
∗ . becausef = f [
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a.3: f(0) > 0 and f̂((0, 1]) 6= {0}. In this case, the desired equation(f ])0↓
∗ = (f [)

0↓
∗

has already been proven in [7, L-54.b, p.140].

Proof of part b.: This case can be reduced to parta. of the lemma by applying L-52
and L-47.

Lemma 55 Let (>,⊥) ∈ T be given. Then

a. if⊥∗0 ≤ >∗0 < 1
2 , thenξA(>,⊥) ≤ 1

2 ;

b. if⊥∗0 ≤ 1
2 ≤ >

∗
0, thenξA(>,⊥) = 1

2 ;

c. if 1
2 < ⊥

∗
0 ≤ >∗0, thenξA(>,⊥) ≥ 1

2 .

Proof Immediate from the definition ofξA : T −→ I in Def. 51.

Proof of Theorem 31

FA satisfies (X-1). Suppose(>,⊥) ∈ T satisfies> = ⊥, i.e.> = ⊥ = cx for some
x ∈ I. Then

[cx]∗0 = lim
γ→0+

cx(γ) = lim
γ→0+

x = x (154)

[cx]0↓∗ =
{

0 : x = 0
1 : x > 0 (155)

[cx]1↓∗ =
{

0 : x = 1
1 : x < 1 (156)

by (9), (10) and (14). In the following, I discern the following cases.
If x > 1

2 , then

ξA(cx, cx) = min([cx]∗0,
1
2 + 1

2 [cx]0↓∗ ) by Def. 51

= min(x, 1) by (154), (155)

= x .

Forx = 1
2 , we obtain

ξA(c 1
2
, c 1

2
) = 1

2 by Def. 51

= x .

Finally for x < 1
2 , we have

ξA(cx, cx) = max([cx]∗0,
1
2 −

1
2 [cx]1↓∗ ) by Def. 51

= max(x, 1
2 −

1
2 · 1) by (154), (156)

= x .

Hence (X-1) holds, as desired.
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FA satisfies (X-2). Let (>,⊥) ∈ T be given. We notice that

(1−>)∗0 >
1
2 ⇔ >

∗
0 <

1
2 (157)

and

(1−⊥)∗0 <
1
2 ⇔ ⊥

∗
0 >

1
2 . (158)

In the following, I discern three cases.

1. (1−>)∗0 >
1
2 . Then

ξA(1−⊥, 1−>) = min((1−>)∗0,
1
2 + 1

2 (1−>)0↓
∗ ) by Def. 51

= min(1−>∗0, 1
2 + 1

2>
1↓
∗ ) by L-51 and L-52

= min(1−>∗0, 1− ( 1
2 −

1
2>

1↓
∗ ))

= 1−max(>∗0, 1
2 −

1
2>

1↓
∗ ) by De Morgan’s law

= 1− ξA(>,⊥) . by Def. 51 and (157)

2. (1−⊥)∗0 <
1
2 . Then

ξA(1−⊥, 1−>) = max((1−⊥)∗0,
1
2 −

1
2 (1−⊥)1↓

∗ ) by Def. 51

= max(1−⊥∗0, 1
2 −

1
2⊥

0↓
∗ ) by L-51 and L-52

= max(1−⊥∗0, 1− ( 1
2 + 1

2⊥
0↓
∗ ))

= 1−min(⊥∗0, 1
2 + 1

2⊥
0↓
∗ ) by De Morgan’s law

= 1− ξA(>,⊥) . by Def. 51 and (158)

3. If (1−>)∗0 ≤
1
2 and (1−⊥)∗0 ≥

1
2 , then⊥∗0 ≤ 1

2 and>∗0 ≥ 1
2 . Therefore

ξA(1−⊥, 1−>) = 1
2 = 1− 1

2 = 1− ξA(>,⊥) by Def. 51.

FA satisfies (X-3). To see that (X-3) holds, consider a choice of(c1,⊥) ∈ T with
⊥̂(I) ⊆ {0, 1}. Then

[c1]∗0 = 1 (159)

⊥∗0 ∈ {0, 1} . (160)

It is hence sufficient to discern the following two cases.

a. ⊥∗0 = 0, i.e. limγ→0+⊥(γ) = 0. Because⊥ is nonincreasing, this entails that
⊥(γ) = 0 for all γ ∈ (0, 1]. Hence

⊥0↓
∗ = inf{γ : ⊥(γ) = 0} = inf(0, 1] = 0 . (161)

by (10).

ξA(c1,⊥) = 1
2 by Def. 51

= 1
2 + 1

2 · 0
= 1

2 + 1
2⊥

0↓
∗ by (161)
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b. ⊥∗0 = 1. In this case,

ξA(c1,⊥) = min(⊥∗0, 1
2 + 1

2⊥
0↓
∗ ) by Def. 51

= min(1, 1
2 + 1

2⊥
0↓
∗ ) because⊥∗0 = 1

= 1
2 + 1

2⊥
0↓
∗ .

This finishes the proof thatξA satisfies (X-3).

FA satisfies (X-4). Let us definefA : I4 −→ I by

fA(a, b, c, d) =


min(a, 1

2 + 1
2b) : c ≥ a > 1

2

max(c, 1
2 −

1
2d) : a ≤ c < 1

2
1
2 : else

for all a, b, c, d ∈ I. It is then apparent from Def. 51 that

ξA(>,⊥) = fA(⊥∗0,⊥0↓
∗ ,>∗0,>1↓

∗ ) , (162)

for all (>,⊥) ∈ T.
Now consider a choice of(>,⊥) ∈ T. Then

ξA(>],⊥) = fA(⊥∗0,⊥0↓
∗ , (>])

∗
0, (>

])
1↓
∗ ) by (162)

= fA(⊥∗0,⊥0↓
∗ , (>[)

∗
0, (>

[)
1↓
∗ ) by L-53 and L-54

= ξA(>[,⊥) . by (162)

FA satisfies (X-5). It is apparent from L-55 and the fact that (X-2) is valid that only
one critical case must be checked, viz the case that(>,⊥), (>′,⊥′) ∈ T with

> ≤ >′ (163)

⊥ ≤ ⊥′ (164)

and

⊥∗0 > 1
2 . (165)

To see that (X-5) holds in this case, we first observe that

⊥′∗0 = lim
γ→0+

⊥′(γ) ≥ lim
γ→0+

⊥(γ) = ⊥∗0 > 1
2 (166)

by (9) and the monotonicity oflim. In addition, we observe that

{γ : ⊥(γ) = 0} ⊇ {γ : ⊥′(γ) = 0}

because⊥ ≤ ⊥′. Therefore

⊥0↓
∗ = inf{γ : ⊥(γ) = 0} ≤ inf{γ : ⊥′(γ) = 0} = ⊥′0↓∗ . (167)
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We hence can proceed as follows.

ξA(>,⊥) = min(⊥∗0, 1
2 + 1

2⊥
0↓
∗ ) by Def. 51 and (165)

≤ min(⊥′∗0, 1
2 + 1

2⊥
′0↓
∗ ) by (166) and (167)

= ξA(>′,⊥′) , by Def. 51 and (166)

i.e. ξA satisfies (X-5), as desired.

B.13 Proof of Theorem 32

Lemma 56 WheneverQ,Q′ : P(E)n −→ I are semi-fuzzy quantifiers withQ �c Q′
andX1, . . . , Xn ∈ P̃(E) is a choice of fuzzy arguments, then

>Q,X1,...,Xn �c >Q′,X1,...,Xn

and

⊥Q,X1,...,Xn �c ⊥Q′,X1,...,Xn .

Proof LetQ,Q′ : P(E)n −→ I be given semi-fuzzy quantifiers such thatQ �c Q′
and letX1, . . . , Xn ∈ P̃(E) be a choice of fuzzy argument sets.

a.: >Q,X1,...,Xn �c >Q′,X1,...,Xn . Let γ ∈ I is given. We shall discern three cases.

a.1: >Q,X1,...,Xn(γ) < 1
2
. Recalling that

>Q,X1,...,Xn(γ) = sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)}

by Def. 43,>Q,X1,...,Xn(γ) < 1
2 entails that

Q(Y1, . . . , Yn) < 1
2

for all Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn). We may then conclude fromQ�c Q′ that

Q′(Y1, . . . , Yn) ≤ Q(Y1, . . . , Yn) (168)

for all Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn). Hence

>Q′,X1,...,Xn(γ) = sup{Q′(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 43

≤ sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by (168)

= >Q,X1,...,Xn(γ) . by Def. 43

In turn, we conclude from>Q′,X1,...,Xn(γ) ≤ >Q,X1,...,Xn(γ) < 1
2 that>Q,X1,...,Xn(γ)�c

>Q′,X1,...,Xn(γ).
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a.2: >Q,X1,...,Xn(γ) > 1
2
. Then

sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} > 1
2 (169)

by Def. 43. Now letε > 0, ε < >Q,X1,...,Xn(γ) − 1
2 . By (169), there existY ′1 ∈

Tγ(X1), . . . , Y ′n ∈ Tγ(Xn) such that

Q(Y ′1 , . . . , Y
′
n) > >Q,X1,...,Xn(γ)− ε > 1

2 .

FromQ�c Q′ and Def. 43, we conclude that

>Q′,X1,...,Xn(γ) ≥ Q′(Y ′1 , . . . , Y ′n) ≥ Q(Y ′1 , . . . , Y
′
n) > >Q,X1,...,Xn(γ)− ε .

ε → 0 yields>Q′,X1,...,Xn(γ) ≥ >Q,X1,...,Xn(γ) > 1
2 . Hence>Q,X1,...,Xn(γ) �c

>Q′,X1,...,Xn(γ), as desired.

a.3: >Q,X1,...,Xn(γ) = 1
2
. This case is trivial since>Q′,X1,...,Xn(γ)�c 1

2 = >Q,X1,...,Xn .

b.: ⊥Q,X1,...,Xn �c ⊥Q′,X1,...,Xn . The proof of this case can be reduced to that ofa.,
noticing thatx�c y is equivalent to1− x�c 1− y. Hence

⊥Q,X1,...,Xn = 1−>¬Q,X1,...,Xn by L-11 and¬x = 1− x involution

�c 1−>¬Q′,X1,...,Xn by parta. of the lemma

= ⊥Q′,X1,...,Xn . by L-11 and¬x = 1− x involution

Proof of Theorem 32

Let anFξ-QFM be given.

a. We first prove that it is sufficient forFξ to propagate fuzziness in quantifiers if
ξ : T −→ I propagates fuzziness. Hence supposeξ propagates fuzziness. Further let
Q,Q′ : P(E)n −→ I with Q�c Q′ andX1, . . . , Xn ∈ P̃(E) be given. Then

Fξ(Q)(X1, . . . , Xn) = ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) by Def. 45

�c ξ(>Q′,X1,...,Xn ,⊥Q′,X1,...,Xn) by L-56, Def. 52

= Fξ(Q′)(X1, . . . , Xn) , by Def. 45

i.e.Fξ propagates fuzziness in quantifiers, as desired.

b. Next we prove thatξ’s propagating fuzziness is a necessary condition forFξ to
propagate fuzziness in quantifiers. Hence letξ : T −→ I be given and assume thatξ
does not propagate fuzziness, i.e. there exist(>,⊥), (>′,⊥′) ∈ T such that> �c >′
and⊥�c ⊥′, but

ξ(>,⊥)�
c
ξ(>′,⊥′) . (170)
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We define semi-fuzzy quantifiersQ1, Q2 : P(2× I) −→ I by

Q1(Y ) =
{
⊥(inf Y ′′) : Y ′ = ∅

>(supY ′) : Y ′ 6= ∅

Q2(Y ) =
{
⊥′(inf Y ′′) : Y ′ = ∅

>′(supY ′) : Y ′′ 6= ∅

for all Y ∈ P(2× I), where

Y ′ = {z ∈ I : (0, z) ∈ Y }
Y ′′ = {z ∈ I : (1, z) ∈ Y } .

ClearlyQ1 �c Q2 because>�c >′ and⊥�c ⊥′. Now defineX ∈ P̃(2× I) by (23).
Then>Q1,X = >,⊥Q1,X = ⊥,>Q2,X = >′ and⊥Q2,X = ⊥′ by Th-21. Therefore

Fξ(Q1)(X) = ξ(>Q1,X ,⊥Q1,X) by Def. 45

= ξ(>,⊥) by Th-21

�
c
ξ(>′,⊥′) by (170)

= ξ(>Q2,X ,⊥Q2,X) by Th-21

= Fξ(Q2)(X) . by Def. 45

HenceFξ(Q1)(X)�
c
Fξ(Q2)(X) althoughQ1�cQ2, i.e.Fξ fails to propagate fuzzi-

ness in quantifiers. This proves that the condition onξ is indeed necessary forFξ to
propagate fuzziness in quantifiers.

B.14 Proof of Theorem 33

Lemma 57 Supposeξ : T −→ I satisfies(X-2), and it holds that

ξ(>,⊥) = ξ(>,max(⊥, 1
2 ))

for all (>,⊥) ∈ T with⊥(0) > 1
2 . Then

ξ(>,⊥) = ξ(min(>, 1
2 ),⊥)

for all (>,⊥) ∈ T with>(0) < 1
2 .

Proof Trivial.

ξ(>,⊥) = ξ(1− (1−>), 1− (1−⊥))
= 1− ξ(1−⊥, 1−>) by (X-2)

= 1− ξ(1−⊥,max( 1
2 , 1−>)) by assumption of the lemma

= ξ(1−max( 1
2 , 1−>), 1− (1−⊥)) by (X-2)

= ξ(min(1− 1
2 , 1− (1−>)),⊥)

= ξ(min(1
2 ,>),⊥) .
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Lemma 58 Supposeξ : T −→ I satisfies(X-1) to (X-5) and

ξ(>,⊥) = ξ(>,max(⊥, 1
2 ))

whenever⊥(0) > 1
2 . Then

ξ(>,⊥) = 1
2

whenever>(0) ≥ 1
2 ≥ ⊥(0).

Proof Again trivial. Let (>,⊥) ∈ T be given with>(0) ≥ 1
2 ≥ ⊥(0). Then

>(γ) ≥ >(0) ≥ 1
2 for all γ ∈ I because> is nondecreasing, i.e.> ≥ 1

2 . Therefore

ξ(>,⊥) ≥ ξ(>, c0) by (X-5)

≥ ξ(c 1
2
, c0) by (X-5)

= ξ(min(c1,
1
2 ), c0)

= ξ(c1, c0) by L-57

= 1
2 by (X-3) .

By similar reasoning, we obtain from⊥ ≤ c 1
2

that

ξ(>,⊥) ≤ ξ(c1,⊥) by (X-5)

≤ ξ(c1, c 1
2

) by (X-5)

= ξ(c1,max(c0,
1
2 ))

= ξ(c1, c0) by assumption of the lemma

= 1
2 . by (X-3)

Henceξ(>,⊥) = 1
2 , as desired.

Lemma 59 Supposeξ : T −→ I satisfies(X-1) to (X-5). If

ξ(>,⊥) = ξ(>,max(⊥, 1
2 ))

whenever⊥(0) > 1
2 , then

ξ(>,⊥)�c ξ(>′,⊥)

whenever(>,⊥), (>′,⊥) ∈ T such that>�c >′.

Proof Let ξ : T −→ I satisfy (X-1) to (X-5) and further possess the desired property,
viz

ξ(>,⊥) = ξ(>,max(⊥, 1
2 ))

whenever⊥(0) > 1
2 . Now let(>,⊥), (>,⊥′) ∈ T be given with>�c>′. We discern

three cases.
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a.: >′(0) > 1
2
. Then 1

2 ≤ >(0) ≤ >′(0) because> �c >′. Taking into account that
both> and>′ are nondecreasing by Def. 44, we conclude that1

2 ≤ > ≤ >
′ Hence

ξ(>,⊥) ≤ ξ(>′,⊥) . by (X-5)

In addition,

ξ(>,⊥) ≥ ξ(c 1
2
,⊥) by (X-5)

≥ ξ(c 1
2
, c0) by (X-5)

= 1
2 . by L-58

Hence1
2 ≤ ξ(>,⊥) ≤ ξ(>′,⊥), i.e.ξ(>,⊥)�c ξ(>′,⊥).

b.: >′(0) < 1
2
. In this case,>′(0) ≤ >(0) ≤ 1

2 because>�c >′. Hence

>′(γ) ≤ >(γ) ≤ 1
2

whenever>′(γ) ≤ 1
2 , and

>′(γ) ≥ >(γ) ≥ 1
2

if >′(γ) > 1
2 . Hence

min(>′, 1
2 ) ≤ > . (171)

We therefore obtain that

ξ(>′,⊥) = ξ(min(>′, 1
2 ),⊥) by L-57

≤ ξ(>,⊥) . by (171), (X-5)

On the other hand,⊥(0) ≤ >′(0) < 1
2 and

ξ(>,⊥) ≤ ξ(max(>, 1
2 ),⊥) by (X-5)

= 1
2 . by L-58

Henceξ(>′,⊥) ≤ ξ(>,⊥) ≤ 1
2 , i.e.ξ(>,⊥)�c ξ(>′,⊥), as desired.

c.: >′(0) = 1
2
. In this case,> �c >′ entails that>(0) = 1

2 as well. Furthermore
⊥(0) ≤ >′(0) = 1

2 , i.e. ξ(>′,⊥) = 1
2 andξ(>,⊥) = 1

2 by L-58. Hence trivially
ξ(>,⊥)�c ξ(>′,⊥).

Lemma 60 If ξ : T −→ I satisfies(X-1) to (X-5) and in addition

ξ(>,⊥) = ξ(>,max(⊥, 1
2 ))

whenever⊥(0) > 1
2 , thenξ propagates fuzziness, i.e.

ξ(>,⊥)�c ξ(>′,⊥′)

whenever(>,⊥), (>′,⊥′) ∈ T such that>�c >′ and⊥�c ⊥′.
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Proof Supposeξ : T −→ I is a mapping which satisfies (X-1) to (X-5). We shall
further assume that

ξ(>,⊥) = ξ(>,max(⊥, 1
2 ))

for all (>,⊥) ∈ T with ⊥(0) > 1
2 .

Now let a choice of(>,⊥), (>′,⊥′) ∈ T be given such that>�c>′ and⊥�c⊥′. We
shall treat separately two cases.

a.: >′(0) ≥ 1
2
. Then 1

2 ≤ > ≤ >
′ because>(0) �c >′(0) and>′(0) ≥ 1

2 entail
that 1

2 ≤ >(0) ≤ >′(0), and because>,>′ are nondecreasing. In addition,⊥(0) ≤
>(0) ≤ >′(0), i.e.(>′,⊥) ∈ T. We can hence proceed as follows.

ξ(>′,⊥′) = 1− ξ(1−⊥′, 1−>′) by (X-2)

�c 1− ξ(1−⊥, 1−>′) by L-59

= ξ(>′,⊥) by (X-2)

�c ξ(>,⊥) . by L-59

b.: >′(0) < 1
2
. Then>′(0) ≤ >(0) ≤ 1

2 and hence⊥′(0) ≤ >′(0) ≤ >(0),
i.e. (>,⊥′) ∈ T. Therefore

ξ(>′,⊥′)�c ξ(>,⊥′) by L-59

= 1− ξ(1−⊥′, 1−>) by (X-2)

�c 1− ξ(1−⊥, 1−>) by L-59

= ξ(>,⊥) . by (X-2)

Lemma 61 Supposeξ : T −→ I satisfies(X-3). If ξ propagates fuzziness, then

ξ(c 1
2
, c0) = ξ(c1, c 1

2
) = 1

2 .

Proof Trivial: from (X-3), we know thatξ(c1, c0) = 1
2 . But c 1

2
�c c0 and hence

ξ(c1, c 1
2

) �c ξ(c1, c0) = 1
2 , i.e. ξ(c1, c 1

2
= 1

2 . Similarly, we conclude fromc 1
2
�c c1

thatξ(c 1
2
, c0)�c ξ(c1, c0) = 1

2 , i.e.ξ(c 1
2
, c0) = 1

2 .

Lemma 62 Supposeξ : T −→ I satisfies(X-1) to (X-5) but violates the condition of
Th-33, i.e. a choice of(>,⊥) ∈ T exists with⊥(0) > 1

2 and

ξ(>,⊥) 6= ξ(>,max(⊥, 1
2 )) .

Thenξ does not propagate fuzziness.
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Proof Let ξ : T −→ I be a mapping which satisfies (X-1) to (X-5). Further assume
that

ξ(>,⊥) 6= ξ(>,max(⊥, 1
2 )) . (172)

for some choice of(>,⊥) ∈ T with ⊥(0) < 1
2 . We will discern the following two

cases.

a.: ξ(>,⊥) ≥ 1
2
. Then 1

2 ≤ ξ(>,⊥) ≤ ξ(>,max(⊥, 1
2 )) by (X-5), i.e.ξ(>,⊥) �c

ξ(>,max(⊥, 1
2 )). Because�c is a partial order, we could only have the desired

ξ(>,⊥) �c ξ(>,max(⊥, 1
2 )) if ξ(>,⊥) = ξ(>,max(⊥, 1

2 )). However, this is not
the case by (172). We hence obtainξ(>,max(⊥, 1

2 ))�
c
ξ(>,⊥) by contraposition.

b.: ξ(>,⊥) < 1
2
. We shall prove this case by contradiction and assume to the contrary

thatξ propagates fuzziness. Noticing that>(γ) ≥ ⊥(0) > 1
2 for all γ ∈ I by Th-20.3.

Hence

ξ(>,⊥) ≥ ξ(c 1
2
,⊥) by (X-5)

≥ ξ(c 1
2
, c0) by (X-5)

= 1
2 . by L-61

Henceξ(>,⊥) < 1
2 andξ(>,⊥) ≥ 1

2 , a contradition. This proves that the assumption
is false, i.e.ξ does not propagate fuzziness.

Proof of Theorem 33

It has been shown in L-60 that the simplified condition is sufficient forξ to propagate
fuzziness. Conversely, L-62 states that the condition is necessary forξ to propagate
fuzziness. Hence the original and the simplified condition are equivalent provided that
ξ satisfies (X-1) to (X-5).

B.15 Proof of Theorem 34

The claim of the theorem is immediate from L-58 and Th-33, which show that the
condition stated in the theorem is necessary forξ to propagate fuzziness.

B.16 Proof of Theorem 35

Lemma 63 There exist(>,⊥) ∈ T such that>(0) ≥ 1
2 ≥ ⊥(0) andξCh(>,⊥) 6= 1

2 .
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Proof Consider(c1, c 1
2

) ∈ T. From Def. 47, we obtain

ξCh(c1, c 1
2

) = 1
2

∫ 1

0

c1(γ) dγ + 1
2

∫ 1

0

c 1
2

(γ) dγ

= 1
2

∫ 1

0

1 dγ + 1
2

∫ 1

0

1
2 dγ by (7)

= 1
2 + 1

4

= 3
4 .

HenceξCh(c1, c 1
2

) = 3
4 6=

1
2 , althoughc1(0) = 1 ≥ 1

2 = c 1
2

(0), which finishes the

proof of the lemma.

Proof of Theorem 35

As shown in Th-27,FCh is a DFS. HenceξCh : T −→ I satisfies (X-1) to (X-5). We
can hence apply Th-34 to conclude from L-63 thatξCh does not propagate fuzziness,
which in turn means by Th-32 thatFCh does not propagate fuzziness in quantifiers.

B.17 Proof of Theorem 36

We already know from Th-30 thatFS is a DFS, i.e.ξS : T −→ I as defined in Def. 50
satisfies (X-1) to (X-5) by Th-23. It is therefore sufficient to show that the condition
stated in Th-33 holds. To see this, let(>,⊥) ∈ T with ⊥(0) > 1

2 . We observe that

[max(⊥, 1
2 )]≤

1
2↓
∗ = inf{γ : max(⊥(γ), 1

2 ) ≤ 1
2} = inf{γ : ⊥(γ) ≤ 1

2} = ⊥
≤ 1

2↓
∗
(173)

by (26). Therefore

ξS(>,max(⊥, 1
2 ))

= min(>∗1, 1
2 + 1

2 [max(⊥, 1
2 )]≤

1
2↓
∗ ) by Def. 50

= min(>∗1, 1
2 + 1

2⊥
≤ 1

2↓
∗ ) by (173)

= ξS(>,⊥) . by Def. 50

HenceFS propagates fuzziness in quantifiers by Th-33 and Th-32.

B.18 Proof of Theorem 37

FA is already known to be a DFS by Th-31, i.e.ξA satisfies (X-1) to (X-5) by Th-23.
We can hence utilize Th-33 to show thatξA does not propagate fuzziness. which in
turn means by Th-32 thatFA does not propagate fuzziness in quantifiers.

111



To give an example which violates the condition of Th-33, consider(c1,⊥) ∈ T with

⊥(γ) =

{
1 : γ < 1

2

0 : γ ≥ 1
2

(174)

for all γ ∈ I. It is then apparent from (9) that

⊥∗0 = lim
γ→0+

⊥(γ) = 1 (175)

[max(⊥, 1
2 )]∗

0
= lim
γ→0+

max(⊥(γ), 1
2 ) = 1 . (176)

Similarly, we obtain from (10) that

⊥0↓
∗ = inf{γ : ⊥(γ) = 0} = inf[ 1

2 , 1] = 1
2 (177)

[max(⊥, 1
2 )]0↓∗ = inf{γ : max(⊥(γ), 1

2 ) = 0} = inf ∅ = 1 . (178)

Therefore

ξA(c1,⊥) = min(⊥∗0, 1
2 + 1

2⊥
0↓
∗ ) by Def. 51

= min(1, 1
2 + 1

2 ·
1
2 ) by (175), (177)

= 3
4

6= 1

= min(1, 1
2 + 1

2 · 1)

= min([max(⊥, 1
2 )]∗

0
, 1

2 + 1
2 [max(⊥, 1

2 )]0↓∗ ) by (176), (178)

= ξA(c1,max(⊥, 1
2 )) . by Def. 51

Hence there exists(c1,⊥) ∈ T with ⊥(0) > 1
2 andξA(c1,⊥) 6= ξA(c1,max(⊥, 1

2 )),
i.e. ξA does not propagate fuzziness by Th-33, which in turn means by Th-32 thatFA
does not propagate fuzziness in quantifiers.

B.19 Proof of Theorem 38

Lemma 64 SupposeE 6= ∅ is some set andX,X ′ ∈ P̃(E) are fuzzy subsets with
X �c X ′. Then

Tγ(X ′) ⊆ Tγ(X) ,

for all γ ∈ I.

Proof See [7, L-125, p.286].

Proof of Theorem 38

Let ξ : T −→ I be given.
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a. To show thatξ’s propagating of unspecificity is sufficient forFξ to propagate
fuzziness in arguments, suppose thatξ fullfils this condition, i.e.

ξ(>,⊥)�c ξ(>′,⊥′) (179)

whenever> ≥ >′ and⊥ ≤ ⊥′, see Def. 53.
Now let a semi-fuzzy quantifierQ : P(E)n −→ I andX1, . . . , Xn, X

′
1, . . . , X

′
n ∈

P̃(E) be given such thatXi �c X ′i for all i = 1, . . . , n. Then

>Q,X1,...,Xn(γ)
= sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 43

≥ sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X ′1), . . . , Yn ∈ Tγ(X ′n)} by L-64

= >Q,X′1,...,X′n(γ)

and

⊥Q,X1,...,Xn(γ)
= inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 43

≤ inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X ′1), . . . , Yn ∈ Tγ(X ′n)} by L-64

= ⊥Q,X′1,...,X′n(γ)

for all γ ∈ I. Therefore

Fξ(Q)(X1, . . . , Xn) = ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) by Def. 45

�c ξ(>Q,X′1,...,X′n ,⊥Q,X′1,...,X′n) by (179)

= Fξ(Q)(X ′1, . . . , X
′
n) , by Def. 45

i.e.Fξ propagates fuzziness in arguments, as desired.

b. Let us now show thatξ’s propagating unspecificity is also necessary forFξ to
propagate fuzziness in arguments. Hence suppose that there exist(>,⊥), (>′,⊥′) ∈ T
such that> ≥ >′,⊥ ≤ ⊥′, but

ξ(>,⊥)�
c
ξ(>′,⊥′) . (180)

We shall define a semi-fuzzy quantifierQ : P({∗} ∪ 2× I) −→ I as follows (where
{∗} is an arbitrary singleton with∗ /∈ 2× I):

Q(Y ) =


>′(supY ′) : ∗ /∈ Y, Y ′ 6= ∅

>(supY ′) : ∗ ∈ Y, Y ′ 6= ∅

⊥′(inf Y ′′) : ∗ /∈ Y, Y ′ = ∅

⊥(inf Y ′′) : ∗ ∈ Y, Y ′ = ∅

for all Y ∈ P({∗} ∪ 2× I), where

Y ′ = {z ∈ I : (0, z) ∈ Y }
Y ′′ = {z ∈ I : (1, z) ∈ Y } .
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Further we defineX,X ′ ∈ P̃({∗} ∪ 2× I) by

µX(e) =


1
2 : e = ∗
1
2 −

1
2z : e = (0, z)

1
2 + 1

2z : e = (1, z)

and

µX′(e) =


0 : e = ∗
1
2 −

1
2z : e = (0, z)

1
2 + 1

2z : e = (1, z)

for all e ∈ {∗} ∪ 2× I. ClearlyX �c X ′. Let us now investigate the cut ranges ofX
andX ′. In the case thatγ = 0, we have

Xmin
0 = X

>
1
2

= {1} × (0, 1]

Xmax
0 = X

≥ 1
2

= {∗} ∪ {(0, 0)} ∪ ({1} × I)

X ′
min
0 = X ′

>
1
2

= {1} × (0, 1]

X ′
max
0 = X ′

≥ 1
2

= {(0, 0)} ∪ ({1} × I) .

It is then apparent from Def. 43, Def. 30 and the above definition ofQ that

>Q,X(0) = sup{Q(Y ) : Y ∈ T0(X)} = Q({∗} ∪ {(0, 0)} ∪ ({1} × I)) = >(0)
⊥Q,X(0) = inf{Q(Y ) : Y ∈ T0(X)} = Q({∗} ∪ ({1} × (0, 1])) = ⊥(0)
>Q,X′(0) = sup{Q(Y ) : Y ∈ T0(X ′)} = Q({(0, 0)} ∪ ({1} × I)) = >′(0)
⊥Q,X′(0) = inf{Q(Y ) : Y ∈ T0(X ′)} = Q({1} × (0, 1]) = ⊥′(0) .

In the case thatγ > 0, the cut ranges are bounded by

Xmin
γ = X

≥ 1
2 +

1
2γ

= {1} × [γ, 1]

Xmax
γ = X

>
1
2−

1
2γ

= {∗} ∪ ({0} × [0, γ)) ∪ ({1} × I)

X ′
min
γ = X ′

≥ 1
2 +

1
2γ

= {1} × [γ, 1]

X ′
max
γ = X ′

>
1
2−

1
2γ

= ({0} × [0, γ)) ∪ ({1} × I) .

Therefore

>Q,X(γ) = sup{Q(Y ) : Y ∈ Tγ(X)} = Q({∗} ∪ ({0} × [0, γ)) ∪ ({1} × I)) = >(γ)
⊥Q,X(γ) = inf{Q(Y ) : Y ∈ Tγ(X)} = Q({∗} ∪ ({1} × [γ, 1])) = ⊥(γ)
>Q,X′(γ) = sup{Q(Y ) : Y ∈ Tγ(X ′)} = Q(({0} × [0, γ)) ∪ ({1} × I)) = >′(γ)
⊥Q,X′(γ) = inf{Q(Y ) : Y ∈ Tγ(X ′)} = Q({1} × [γ, 1]) = ⊥′(γ) .
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Hence

>Q,X = > ⊥Q,X = ⊥ (181)

>Q,X′ = >′ ⊥Q,X′ = ⊥′ (182)

We conclude that

Fξ(Q)(X) = ξ(>Q,X ,⊥Q,X) by Def. 45

= ξ(>,⊥) by (181)

�
c
ξ(>′,⊥′) by (180)

= ξ(>Q,X′ ,⊥Q,X′) by (182)

= Fξ(Q)(X ′) . by Def. 45

HenceFξ(Q)(X)�
c
Fξ(Q)(X ′) althoughX�cX ′, i.e.Fξ fails to propagate fuzziness

in arguments.

B.20 Proof of Theorem 39

Lemma 65 Supposeξ : T −→ I satisfies(X-2). Then the following are equivalent:

a. ξ propagates unspecificity;

b. for all (>,⊥), (>,⊥′) ∈ T with⊥′ ≤ ⊥, it holds thatξ(>,⊥′)�c ξ(>,⊥).

Proof It is apparent from Def. 53 thatb. is a weakening ofa.
It remains to be shown thata. is entailed byb.
Hence let a mappingξ : T −→ I which satisfies (X-2) be given and suppose thatb.
holds. To prove thata. also holds, we consider a choice of(>,⊥), (>′,⊥′) ∈ T with
⊥′ ≤ ⊥ and> ≤ >′. It is apparent from (3) that

x�c y ⇔ 1− x�c 1− y (183)

for all x, y ∈ I. Therefore

ξ(>′,⊥′)�c ξ(>′,⊥) by assumption ofb.

= 1− ξ(1−⊥, 1−>′) by (X-2)

= �c1− ξ(1−⊥, 1−>) by (183) and assumption ofb.

= ξ(>,⊥) , by (X-2)

as desired.

Lemma 66 Supposeξ satisfies(X-2) and for all(>,⊥) ∈ Twith⊥(0) ≥ 1
2 , ξ(>,⊥) =

ξ(c1,⊥). Then for all(>,⊥) ∈ T with>(0) ≤ 1
2 , ξ(>,⊥) = ξ(>, c0).
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Proof Let (>,⊥) ∈ T be given and suppose>(0) ≤ 1
2 . Then(1 − ⊥, 1 − >) ∈ T

satisfies(1−>)(0) = 1−>(0) ≥ 1
2 . Therefore

ξ(>,⊥) = 1− ξ(1−⊥, 1−>) by (X-2)

= 1− ξ(c1, 1−>) by assumption onξ

= 1− ξ(1− c0, 1−>) by (3)

= ξ(>, c0) , by (X-2)

which proves the claim of the lemma.

Lemma 67 Supposeξ : T −→ I satisfies(X-2). Thenξ(c1, c0) = 1
2 .

Proof Apparent.

ξ(c1, c0) = 1− ξ(1− c0, 1− c1) by (X-2)

= 1− ξ(c1, c0) . by (7)

Therefore2ξ(c1, c0) = 1, i.e.ξ(c1, c0) = 1
2 .

Lemma 68 Supposeξ satisfies(X-2), (X-4) and (X-5), and for all (>,⊥) ∈ T with
⊥(0) ≥ 1

2 , it holds thatξ(>,⊥) = ξ(c1,⊥). Then for all(>,⊥) ∈ T with >(0) ≥
1
2 ≥ ⊥(0), ξ(>,⊥) = 1

2 .

Proof Supposeξ : T −→ I has the desired properties and consider(>,⊥) ∈ T with
>(0) ≥ 1

2 ≥ ⊥(0).
We define>′,⊥′ : I −→ I by

>′(γ) =

{
1
2 : γ = 0
>(γ) : γ > 0

(184)

⊥′(γ) =

{
1
2 : γ = 0
0 : γ > 0

(185)

for all γ ∈ I. Then

ξ(>,⊥) = ξ(>′,⊥) by (184) and L-23

= ξ(>′, c0) by L-66

= ξ(>′,⊥′) by (185) and L-23

= ξ(c1,⊥′) by assumption onξ

= ξ(c1, c0) by (185) and L-23

= 1
2 . by L-67

Lemma 69 Supposeξ : T −→ I satisfies(X-2). Thenξ(c 1
2
, c 1

2
) = 1

2 .
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Proof By (7), c 1
2

= 1 − c 1
2

. Hence by (X-2),ξ(c 1
2
, c 1

2
) = ξ(1 − c 1

2
, 1 − c 1

2
) =

1− ξ(c 1
2
, c 1

2
). Therefore2ξ(c 1

2
, c 1

2
) = 1, i.e.ξ(c 1

2
, c 1

2
) = 1

2 .

Proof of Theorem 39

Let us first show that conditionb. of the theorem is entailed by conditiona.
Hence supposeξ : T −→ I satisfies (X-2), (X-4) and (X-5). Further assume thatξ
fulfills conditiona. of the theorem, i.e.ξ propagates unspecificity. Now let(>,⊥) ∈ T
with ⊥(0) ≥ 1

2 . Firstly we notice that>(γ) ≥ >(0) ≥ ⊥(0) ≥ 1
2 , and hence

(>,max(⊥, 1
2 )) ∈ T. Apparently

ξ(>,max(⊥, 1
2 )) ≥ ξ(c 1

2
, c 1

2
) = 1

2 (186)

by (X-5) and L-69. Furthermore⊥ ≤ max(⊥, 1
2 ) and hence

ξ(>,⊥)�c ξ(>,max(⊥, 1
2 )) (187)

becauseξ is assumed to propagate unspecificity. By (3), we conclude from (186) and
(187) that

ξ(>,⊥) ≥ 1
2 . (188)

Next we notice that> ≤ c1 and therefore

ξ(c1,⊥)�c ξ(>,⊥) (189)

becauseξ propagates unspecificity. It is then apparent from (3), (188) and (189) that

ξ(c1,⊥) ≤ ξ(>,⊥) . (190)

On the other hand,> ≤ c1 entails that

ξ(>,⊥) ≤ ξ(c1,⊥) (191)

by (X-5). Combining (190) and (191), we obtain the desiredξ(>,⊥) = ξ(c1,⊥),
i.e. conditionb. of the theorem is indeed necessary forξ to propagate unspecificity.

It remains to be shown thata. is entailed byb., i.e. that the latter condition is
sufficient forξ to propagate unspecificity. This can be proven by showing that condition
b. of the theorem entails conditionb. of lemma L-65, which is already known to be
sufficient forξ to propagate unspecificity.
Hence let a mappingξ : T −→ I be given which satisfies (X-2), (X-4) and (X-5).
Further suppose that for all(>,⊥) ∈ T with ⊥(0) ≥ 1

2 , it holds that

ξ(>,⊥) = ξ(c1,⊥) , (192)

i.e. conditionb. of the theorem holds.
Now let (>,⊥), (>,⊥′) ∈ T be given with⊥′ ≤ ⊥.
In the case that⊥′(0) ≥ 1

2 we firstly conclude from⊥′ ≤ ⊥ that

ξ(>,⊥′) ≤ ξ(>,⊥) (193)
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by (X-5). We further notice that

ξ(>,⊥′) ≥ ξ(>,min(⊥′, 1
2 )) by (X-5)

= 1
2 , by L-68

i.e.

ξ(>,⊥′) ≥ 1
2 . (194)

By (3), inequations (193) and (194) entail thatξ(>,⊥′)�c ξ(>,⊥), as desired.
In the case that⊥′(0) < 1

2 and⊥(0) ≥ 1
2 , we notice that(>,⊥) ∈ T entails that

>(0) ≥ ⊥(0) ≥ 1
2 , i.e.ξ(>,⊥′) = 1

2 by L-68. In particularξ(>,⊥′)�c ξ(>,⊥).
In the case that⊥′(0) < 1

2 , ⊥(0) < 1
2 and>(0) ≥ 1

2 , we can again apply L-68 and
conclude thatξ(>,⊥′) = 1

2 = ξ(>,⊥).
Finally in the case that⊥′(0) < 1

2 ,⊥(0) < 1
2 and>(0) < 1

2 , we observe that

ξ(>,⊥′) = ξ(>, c0) by (192) and L-66

= ξ(>,⊥) . by (192) and L-66

In particularξ(>,⊥′)�c ξ(>,⊥), as desired.

B.21 Proof of Theorem 40

Lemma 70 Supposeξ : T −→ I satisfies(X-1) andξ propagates unspecificity. Then

ξ(>,⊥) = 1
2

whenever(>,⊥) ∈ T satisfies>(0) ≥ 1
2 ≥ ⊥(0).

Proof Let (>,⊥) ∈ T be given such that>(0) ≥ 1
2 ≥ ⊥(0). Then> ≥ c 1

2
≥ ⊥

because> is nondecreasing and⊥ is nonincreasing by Def. 44. Hence by Def. 53,

ξ(>,⊥)�c ξ(c 1
2
, c 1

2
)

= 1
2 , by (X-1)

as desired.

Proof of Theorem 40

Supposeξ : T −→ I is a mapping such thatFξ is a DFS which propagates fuzziness
in arguments. Thenξ satisfies (X-1) by Th-23 andξ is also known to propagate un-
specificity by Th-38. We can hence apply lemma L-70 which states thatξ fulfills the
property claimed by the theorem.
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B.22 Proof of Theorem 41

We know from Th-27 thatFCh is a DFS. HenceξCh : T −→ I satisfies (X-1) to (X-5).
We can now apply Th-40 to conclude from lemma L-63 thatFCh does not propagate
fuzziness in arguments.

B.23 Proof of Theorem 42

By Th-38,FS propagates fuzziness in arguments if and only ifξS : T −→ I defined
in Def. 50 propagates unspecificity. Hence let us consider(c 3

4
, c 3

4
), (c1, c 3

4
) ∈ T. We

compute:

ξS(c 3
4
, c 3

4
) = 3

4

by (X-1) and

ξS(c1, c 3
4

) = min((c1)∗1,
1
2 + 1

2 (c 3
4

)≤
1
2↓

∗
by Def. 50

= min(1, 1
2 + 1

2 · 1) by (12), (26)

= 1 .

HenceξS(c 3
4
, c 3

4
) = 3

4 �c 1 = ξS(c1, c 3
4

), which contradicts propagation of unspeci-

ficity, see Def. 53.

B.24 Proof of Theorem 43

We already know from Th-31 thatFA is a DFS. HenceξA satisfies (X-1) to (X-5), see
Th-23. Therefore theorem Th-39 is applicable, and we can prove thatξ propagates
unspecificity by showing thatξA(>,⊥) = ξA(c1,⊥) whenever⊥(0) ≥ 1

2 .
Hence let(>,⊥) ∈ T be given and suppose that⊥(0) ≥ 1

2 . Because⊥(0) ≥ 1
2 , we

clearly have>(γ) ≥ >(0) ≥ ⊥(0) ≥ 1
2 for all γ ∈ I and hence

>∗0 = lim
γ→0+

>(γ) ≥ 1
2 (195)

by (9). In addition, we notice that

⊥∗0 = lim
γ→0+

⊥(γ) ≤ ⊥(0) (196)

because⊥ is nonincreasing. It is hence sufficient to discern the following cases.

a.: ⊥∗0 > 1
2
. Then

ξA(>,⊥) = min(⊥∗0, 1
2 + 1

2⊥
0↓
∗ ) by Def. 51

= ξA(c1,⊥) . by Def. 51
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b.: ⊥∗0 ≤ 1
2
. In this case, we recall that>∗0 ≥ 1

2 by (195). In addition,[c1]∗0 = 1 ≥ 1
2 .

Therefore

ξA(>,⊥) = 1
2 by Def. 51

= ξA(c1,⊥) , by Def. 51

as desired.

Hence indeedξA(>,⊥) = ξA(c1,⊥) whenever⊥(0) ≥ 1
2 . We conclude from Th-

39 thatξA propagates unspecificity. In turn, we obtain from Th-38 thatFA propagates
fuzziness in arguments.

B.25 Proof of Theorem 44

In order to prove the independence of propagation of fuzziness in quantifiers and in
arguments forFξ-DFSes, we must show that there existFξ-DFSesFξ1 andFξ2 such
thatFξ1 propagates fuzziness in quantifiers, but not in arguments, andFξ2 propagates
fuzziness in arguments, but not in quantifiers. By Th-30, Th-36 and Th-42,FS is a
suitable choice forFξ1 . Finally by Th-31, Th-37 and Th-43,FA is a suitable choice
for Fξ2 , thus finishing the independence proof.

B.26 Proof of Theorem 45

Lemma 71 Supposeξ : T −→ I satisfies(X-1) to (X-5). If ξ propagates both fuzziness
and unspecificity, then

ξ(>,⊥) = B(med 1
2

(>,⊥)) ,

for all (>,⊥) ∈ T, whereB : B −→ I is defined by

B(f) =


ξ(c1, f) : f ∈ B+

1
2 : f ∈ B

1
2

ξ(f, c0) : f ∈ B−
(197)

for all f ∈ B.
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Proof Let (>,⊥) ∈ T be given. We abbreviatef = med 1
2

(>,⊥).

a.: f(0) > 1
2
. It is then apparent from Def. 22 that>(0) ≥ ⊥(0) > 1

2 . Again from
Def. 22, we conclude that

f(γ) =

{
⊥(γ) : ⊥(γ) > 1

2
1
2 : ⊥(γ) ≤ 1

2

= max(⊥(γ), 1
2 )

for all γ ∈ I because>(γ) ≥ >(0) > 1
2 for all γ ∈ I by Def. 44. Therefore

ξ(>,⊥) = ξ(>,max(⊥, 1
2 )) = ξ(>, f) (198)

by Th-33 becauseξ is assumed to propagate fuzziness. Apparently> ≤ c1 and hence

ξ(>, f) ≤ ξ(c1, f) (199)

by (X-5). On the other hand,> ≤ c1 entails thatξ(c1, f) �c ξ(>, f), becauseξ is
assumed to propagate unspecificity. Apparentlyξ(>, f) ≥ ξ(c 1

2
, c0) = 1

2 by (X-5) and

L-61, recalling thatξ propagates fuzziness. Butξ(>, f) ≥ 1
2 andξ(c1, f) �c ξ(>, f)

entail thatξ(c1, f) ≤ ξ(>, f). Combining this with (199), we see thatξ(c1, f) =
ξ(>, f). Hence by (198) and (197),ξ(>,⊥) = ξ(c1, f) = B(f), as desired.

b.: f(0) = 1
2
. Then>(0) ≥ 1

2 and⊥(0) ≤ 1
2 by Def. 22. Hence

ξ(>,⊥) = 1
2 by L-70

= B(f) , by (197)

because clearlyf(γ) = 1
2 for all γ ∈ I in this case, i.e.f = c 1

2
∈ B

1
2 .

c.: f(0) < 1
2
. This can be reduced to the proof ofa. because

ξ(>,⊥) = 1− ξ(1−⊥, 1−>) by (X-2)

= 1− B(med 1
2

(1−⊥, 1−>)) by a.

= 1− B(1−med 1
2

(⊥,>)) becausemed 1
2

symmetric w.r.t.¬

= 1− B(1−med 1
2

(>,⊥)) becausemed 1
2

commutative

= 1− (1− B(med 1
2

(>,⊥))) apparent from (197)

= B(med 1
2

(>,⊥)) ,

as desired.
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Proof of Theorem 45

Let anFξ-DFS be given. We further assume thatFξ propagates fuzziness both in
quantifiers and arguments. BecauseFξ propagates fuzziness in quantifiers, we can
conclude from Th-32 thatξ propagates fuzziness. Similarly becauseFξ propagates
fuzziness in arguments, we know from Th-38 thatξ propagates unspecificity. We can
therefore apply lemma L-71 which ensures that there existsB : B −→ I such that

ξ(>,⊥) = B(med 1
2

(>,⊥))

for all (>,⊥) ∈ T. HenceFξ is anMB-DFS because by Th-24,MB = Fξ.

B.27 Proof of Theorem 46

Lemma 72 SupposeQ,Q′ : P(E)n −→ I are semi-fuzzy quantifiers andX1, . . . , Xn ∈
P̃(E). Then

d(>Q,X1,...,Xn ,>Q′,X1,...,Xn) ≤ d(Q,Q′)
d(⊥Q,X1,...,Xn ,⊥Q′,X1,...,Xn) ≤ d(Q,Q′)
d((>Q,X1,...,Xn ,⊥Q,X1,...,Xn), (>Q′,X1,...,Xn ,⊥Q′,X1,...,Xn)) ≤ d(Q,Q′)

for all γ ∈ I

Proof The first two inequations have been proven in [7, L-104, p.252]. The third
inequation is apparent from the first two because

d((>Q,X1,...,Xn ,⊥Q,X1,...,Xn), (>Q′,X1,...,Xn ,⊥Q′,X1,...,Xn))
= max(d(>Q,X1,...,Xn ,>Q′,X1,...,Xn), d(⊥Q,X1,...,Xn ,⊥Q′,X1,...,Xn))
≤ d(Q,Q′) .

Lemma 73 For every mappingξ : T −→ I, condition a. of Th-46 is entailed by
condition b.

Note. We do not need to impose the condition thatξ satisfies (X-5) in this case.

Proof Supposeξ : T −→ I has the following property. For allε > 0, there exists
δ > 0 such that

|ξ(>,⊥)− ξ(>′,⊥′)| < ε

whenever(>,⊥), (>′,⊥′) ∈ T satisfyd((>,⊥), (>′,⊥′)) < δ. We have to show that
Fξ is Q-continuous. Hence let someQ : P(E)n −→ I be given and letε > 0. We
have to show that there existsδ > 0 such that

d(Fξ(Q),Fξ(Q′)) < ε
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wheneverd(Q,Q′) < δ. By the assumed property ofξ, there existsδ > 0 such that

|ξ(>,⊥)− ξ(>′,⊥′)| < ε
2 (200)

wheneverd((>,⊥), (>′,⊥′)) < δ. Now let Q′ : P(E)n −→ I be a semi-fuzzy
quantifier withd(Q,Q′) < δ. Then for each choice ofX1, . . . , Xn ∈ P̃(E), Then

|Fξ(Q)(X1, . . . , Xn)−Fξ(Q′)(X1, . . . , Xn)|
= |ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn)− ξ(>Q′,X1,...,Xn ,⊥Q′,X1,...,Xn)| by Def. 45

≤ ε
2 by (200), L-72,

i.e.

|Fξ(Q)(X1, . . . , Xn)−Fξ(Q′)(X1, . . . , Xn)| ≤ ε
2 . (201)

Hence

d(Fξ(Q),Fξ(Q′))
= sup{|Fξ(Q)(X1, . . . , Xn)−Fξ(Q′)(X1, . . . , Xn)| :

X1, . . . , Xn ∈ P̃(E)} by (6)

≤ ε
2 by (201)

< ε ,

i.e.Fξ is Q-continuous, as desired.

Lemma 74 Let us define semi-fuzzy quantifiersQ′, Q′′, Q : P((2× I) ∪ ({2} × T)) −→
I as follows. For allY ∈ P((2× I) ∪ ({2} × T)),

Q′(Y ) = >Y (supY ′) (202)

Q′′(Y ) = ⊥Y (inf Y ′′) (203)

Q(Y ) =
{
Q′′(Y ) : Y ′ = ∅

Q′(Y ) : Y ′ 6= ∅
(204)

where

Y ′ = {z ∈ I : (0, z) ∈ Y } (205)

Y ′′ = {z ∈ I : (1, z) ∈ Y } (206)

>Y = sup{> : (2, (>,⊥)) ∈ Y } (207)

⊥Y = sup{⊥ : (2, (>,⊥)) ∈ Y } (208)

Then for all(>,⊥) ∈ T,

>Q,X = >

and

⊥Q,X = ⊥
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provided we defineX ∈ P̃((2× I) ∪ ({2} × T)) by

µX(c, z) =


1
2 −

1
2z : c = 0

1
2 + 1

2z : c = 1
1 : c = 2, z = (>,⊥)
0 : else

(209)

for all (c, z) ∈ (2× I) ∪ ({2} × T).

Proof We first consider some monotonicity properties. It is apparent from (207)
and (208) that>Y ≤ >Y ′ and⊥Y ≤ ⊥Y ′ wheneverY ⊆ Y ′. BecausesupY ′

is nondecreasing inY and>Y (z) ≤ >Y (z′) for z ≤ z′, we conclude thatQ′ is
nondecreasing inY . Similarly, inf Y is nonincreasing inY and⊥Y (z) ≥ ⊥Y (z′) for
z ≤ z′, henceQ′′ is nondecreasing inY as well. Finally, we conclude from (207),
(208) and the fact that⊥ ≤ > for all (>,⊥) with (2, (>,⊥)) ∈ Y that⊥Y ≤ >Y and
henceQ′′ ≤ Q′. ThereforeQ is nondecreasing inY as well, and we can utilize L-3 to
simplify the computation of>Q,X and⊥Q,X .
In the following, we will assume that a choice of(>,⊥) ∈ T is given and that the
fuzzy setX is defined in terms of> and⊥ according to equation (209). Let us now
consider the cut ranges. Ifγ = 0, then

Xmin
0 = X

>
1
2

by Def. 30

= ({1} × (0, 1]) ∪ {(2, (>,⊥))} by Def. 29, (209)

and

Xmax
0 = X

≥ 1
2

by Def. 30

= {(0, 0)} ∪ ({1} × [0, 1]) ∪ {(2, (>,⊥))} . by Def. 28, (209)

If γ > 0, then

Xmin
γ = X

≥ 1
2 +

1
2γ

by Def. 30

= ({1} × [γ, 1]) ∪ {(2, (>,⊥))} by Def. 28, (209)

and

Xmax
γ = X

>
1
2−

1
2γ

by Def. 30

= ({0} × [0, γ)) ∪ ({1} × I) ∪ {(2, (>,⊥))} .

Hence forγ = 0,

>Q,X(0)
= Q(Xmax

0 ) by L-3

= Q({(0, 0)} ∪ ({1} × [0, 1]) ∪ {(2, (>,⊥))})
= >(sup{0}) by (204), (202), (205) and (207)

= >(0) .
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and

⊥Q,X(0)

= Q(Xmin
0 ) by L-3

= Q(({1} × (0, 1]) ∪ {(2, (>,⊥))})
= ⊥(inf(0, 1]) by (204), (203), (206) and (208)

= ⊥(0) .

Finally for γ > 0,

>Q,X(γ)
= Q(Xmax

γ ) by L-3

= Q(({0} × [0, γ)) ∪ ({1} × I) ∪ {(2, (>,⊥))})
= >(sup[0, γ)) by (204), (202), (205) and (207)

= >(γ) .

and

⊥Q,X(γ)

= Q(Xmin
γ ) by L-3

= Q(({1} × [γ, 1]) ∪ {(2, (>,⊥))})
= ⊥(inf[γ, 1]) by (204), (203), (206) and (208)

= ⊥(γ) ,

as desired.

Lemma 75 Let Q : P(E)n −→ I be given and letα ∈ I. Further suppose that
Q′ : P(E)n −→ I is defined by

Q′(Y1, . . . , Yn) = min(1, α+Q(Y1, . . . , Yn)) , (210)

for all Y1, . . . , Yn ∈ P̃(E). Then for allX1, . . . , Xn ∈ P̃(E),

>Q′,X1,...,Xn = min(1, α+>Q,X1,...,Xn)

and

⊥Q′,X1,...,Xn = min(1, α+⊥Q,X1,...,Xn) .

Proof Trivial. Let γ ∈ I. Then

>Q′,X1,...,Xn

= sup{Q′(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 43

= sup{min(1, α+Q(Y1, . . . , Yn)) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by (210)

= min(1, α+ sup{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)})
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(becausemin and+ are nondecreasing and continuous)

= min(1, α+>Q,X1,...,Xn(γ)) , by Def. 43

and similarly

⊥Q′,X1,...,Xn

= inf{Q′(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by Def. 43

= inf{min(1, α+Q(Y1, . . . , Yn)) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)} by (210)

= min(1, α+ inf{Q(Y1, . . . , Yn) : Y1 ∈ Tγ(X1), . . . , Yn ∈ Tγ(Xn)})

(becausemin and+ are nondecreasing and continuous)

= min(1, α+⊥Q,X1,...,Xn(γ)) . by Def. 43

Proof of Theorem 46

The claim that condition b. entails condition a., i.e. that b. is sufficient forFξ to be
Q-continuous, has been proven in L-73. It remains to be shown that condition b. of the
theorem is also necessary forFξ to be Q-continuous. We prove this by showing that
that the failure of condition b. entails the failure of condition a.
Hence letξ : T −→ I be a given mapping which satisfies (X-5) but violates condition
b. In order to prove thatFξ is not Q-continuous, we have to show that there exists a
semi-fuzzy quantifierQ : P(E)n −→ I andε > 0 such that for allδ > 0, there exists
Q′ : P(E)n −→ I with d(Q,Q′) < δ andd(Fξ(Q),Fξ(Q′)) ≥ ε.
Becauseξ violates condition b., there existsε > 0 such that for allδ > 0 there exist
(>,⊥), (>′,⊥′) ∈ T with

d((>,⊥), (>′,⊥′)) < δ (211)

and

|ξ(>,⊥)− ξ(>′,⊥′) ≥ ε . (212)

We shall keep this choice ofε and focus onQ : P((2× I) ∪ ({2} × T)) −→ I as
defined by (204). Now letδ > 0. By assumption, there exist(>,⊥), (>′,⊥′) ∈ T
such that (211) and (212) hold. We define

>∗ = min(>,>′)
⊥∗ = min(⊥,⊥′)
>∗ = max(>,>′)
⊥∗ = max(⊥,⊥′) .
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Apparently(>∗,⊥∗) ∈ T and(>∗,⊥∗) ∈ T. In addition,

d(>∗,>∗)
= sup{max(>(γ),>′(γ))−min(>(γ),>′(γ)) : γ ∈ I} by (28) and>∗ ≤ >∗

= sup{|>(γ)−>′(γ)| : γ ∈ I}
= d(>,>′) by (28)

and similarly

d(⊥∗,⊥∗)
= sup{max(>(γ),>′(γ))−min(⊥(γ),⊥′(γ)) : γ ∈ I} by (29) and⊥∗ ≤ ⊥∗

= sup{|⊥(γ)−⊥′(γ)| : γ ∈ I}
= d(⊥,⊥′) , by (29)

i.e.

d((>∗,⊥∗), (>∗,>∗)) = d((>,⊥), (>′,⊥′)) < δ (213)

by (211). Furthermore,

>∗ ≤ > ≤ >∗

>∗ ≤ >′ ≤ >∗

⊥∗ ≤ ⊥ ≤ ⊥∗

⊥∗ ≤ ⊥′ ≤ ⊥∗

and hence

|ξ(>∗,⊥∗)− ξ(>∗,⊥∗)|
= ξ(>∗,⊥∗)− ξ(>∗,⊥∗) by (X-5)

≥ max(ξ(>,⊥), ξ(>′,⊥′))− ξ(>∗,⊥∗) by (X-5)

≥ max(ξ(>,⊥), ξ(>′,⊥′))−min(ξ(>,⊥), ξ(>′,⊥′)) by (X-5)

= |ξ(>,⊥)− ξ(>′,⊥′)|
≥ ε ,

i.e.

|ξ(>∗,⊥∗)− ξ(>∗,⊥∗)| ≥ ε . (214)

Now we define a fuzzy subsetX ∈ P̃((2× I) ∪ ({2} × T)) by

µX(c, z) =


1
2 −

1
2z : c = 0

1
2 + 1

2z : c = 1
1 : c = 2, z = (>∗,⊥∗)
0 : else
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for all (c, z) ∈ (2× I) ∪ ({2} × T). Then by L-74,

>Q,X = >∗ (215)

⊥Q,X = ⊥∗ . (216)

We further defineQ′ : P((2× I) ∪ ({2} × T)) −→ I by

Q′(Y ) = min(1, d((>,⊥), (>′,⊥′)) +Q(Y )) ,

for all Y ∈ P((2× I) ∪ ({2} × T)). It is obvious from this definition ofQ′ and (5)
thatd(Q,Q′) ≤ d((>,⊥), (>′,⊥′)), i.e.

d(Q,Q′) < δ (217)

by (211). By L-75 and (215)/(216),

>Q′,X = min(1, d((>,⊥), (>′,⊥′)) +>∗)
⊥Q′,X = min(1, d((>,⊥), (>′,⊥′)) +⊥∗)

In turn, we conclude from>∗ ≤ >∗,⊥∗ ≤ ⊥∗ and (213) that

>∗ ≤ >Q′,X (218)

⊥∗ ≤ ⊥Q′,X . (219)

Hence

|Fξ(Q)(X)−Fξ(Q′)(X)|
= |ξ(>Q,X ,⊥Q,X)− ξ(>Q′,X ,⊥Q′,X)| by Def. 45

= |ξ(>∗,⊥∗)− ξ(>Q′,X ,⊥Q′,X)| by (215), (216)

= ξ(>Q′,X ,⊥Q′,X)− ξ(>∗,⊥∗) because>Q′,X ≥ >∗,⊥Q′,X ≥ ⊥∗
≥ ξ(>∗,⊥∗)− ξ(>∗,⊥∗) by (X-5), (218), (219)

≥ ε . by (214)

This proves thatd(Fξ(Q),Fξ(Q′)) ≥ ε althoughd(Q,Q′) < δ by (217). Therefore
Fξ is not Q-continuous.

B.28 Proof of Theorem 47

Lemma 76 Supposeξ : T −→ I satisfies(X-2) and (X-5). Then the following condi-
tions are equivalent:

a. Fξ is Q-continuous;

b. for all ε > 0, there existsδ > 0 such that|ξ(>,⊥) − ξ(>′,⊥)| < ε whenever
(>,⊥), (>′,⊥) ∈ T satisfyd(>,>′) < δ.
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Proof Let ξ : T −→ I be a given mapping such that (X-2) and (X-5) hold.

a.⇒b.: The above conditionb. is apparently a weakening of the following condi-
tion: for all ε > 0, there existsδ > 0 such that|ξ(>,⊥) − ξ(>′,⊥′)| < ε when-
ever(>,⊥), (>′,⊥′) ∈ T satisfyd((>,⊥), (>′,⊥′)) < δ. The latter condition has
been shown to be necessary forFξ to be Q-continuous in Th-46. Being a weaken-
ing of a necessary condition, the present conditionb. is also necessary forFξ to be
Q-continuous.

b.⇒a.: To see this, let us assume thatξ : T −→ I satisfies conditionb. Further let
ε > 0. By assumption, there existsδ′ > 0 such that

|ξ(>,⊥)− ξ(>′,⊥)| < ε
2 (220)

whenever(>,⊥), (>′,⊥) ∈ T such that (.>,>
′) < δ′.

We now consider(>,⊥), (>′,⊥′) ∈ T with

d((>,⊥), (>′,⊥′)) < δ′ . (221)

We also note that by (221) and (30),

d((>,⊥), (>′,⊥)) ≤ d((>,⊥), (>′,⊥)) < δ′ (222)

d((1−⊥, 1−>′), (1−⊥′, 1−>′)) = d((>′,⊥), (>′,⊥′))
≤ d((>,⊥), (>′,⊥′)) < δ′

(223)

Therefore

|ξ(>′,⊥)− ξ(>′,⊥′)|
= |(1− ξ(1−⊥, 1−>′))− (1− ξ(1−⊥′, 1−>′))| by (X-2)

= |ξ(1−⊥, 1−>′)− ξ(1−⊥′, 1−>′)| ,

i.e.

|ξ(>′,⊥)− ξ(>′,⊥′)| < ε
2 (224)

by (220) and (223). Finally

|ξ(>,⊥)− ξ(>′,⊥′)|
≤ |ξ(>,⊥)− ξ(>′,⊥)|+ |ξ(>′,⊥)− ξ(>′,⊥′)| by triangle inequation

< ε
2 + ε

2 by (220), (222) and (224)

= ε .

Hence for all(>,⊥) ∈ T an all ε > 0, there existsδ > 0 such that|ξ(>,⊥) −
ξ(>′,⊥′)| < ε whenever(>′,⊥′) ∈ T satisfiesd((>,⊥), (>′,⊥′)) < δ. Application
of L-73 yields thatFξ is Q-continuous.
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Proof of Theorem 47

Let ξ : T −→ I be a given mapping such that (X-2) and (X-5) hold.

a.⇒b.: The above conditionb. is apparently a weakening of this condition: for all
ε > 0, there existsδ > 0 such that|ξ(>,⊥)−ξ(>′,⊥)| < εwhenever(>,⊥), (>′,⊥) ∈
T satisfyd(>,>′) < δ. The latter condition has been shown to be necessary forFξ
to be Q-continuous in L-76. Being a weakening of a necessary condition, we again
conclude that the present conditionb. is necessary forFξ to be Q-continuous.

b.⇒a.: We assume thatξ : T −→ I satisfies (X-2) and (X-5) and also fulfills condi-
tion b. We proceed by showing thatξ fulfills the conditionb. of lemma L-76. Hence
let ε > 0 be given. By assumption, there existsδ > 0 such that

ξ(>∗,⊥)− ξ(>∗,⊥) < ε (225)

whenever(>∗,⊥), (>∗,⊥) ∈ T satisfy d(>∗,>∗) < δ and>∗ ≤ >∗. Now let
(>,⊥), (>′,⊥) ∈ T with d(>,>′) < δ. We abbreviate

>∗ = min(>,>′)
>∗ = max(>,>′) .

Clearly(>∗,⊥), (>∗,⊥) ∈ T. In addition, it is obvious from (28) that

d(>∗,>∗) = d(>,>′) < δ . (226)

We further conclude from (X-5) that

ξ(>∗,⊥) ≥ max(ξ(>,⊥), ξ(>′,⊥)) (227)

ξ(>∗,⊥) ≤ min(ξ(>,⊥), ξ(>′,⊥)) . (228)

Hence

|ξ(>,⊥)− ξ(>′,⊥)|
= max(ξ(>,⊥), ξ(>′,⊥))−min(ξ(>,⊥), ξ(>′,⊥))
≤ ξ(>∗,⊥)− ξ(>∗,⊥) by (227), (228)

= |ξ(>∗,⊥)− ξ(>∗,⊥)| by (X-5) and>∗ ≤ >∗

< ε . by (225)

Hence conditionb. of L-76 is satisfied, i.e.Fξ is arg-continuous.

B.29 Proof of Theorem 48

In order to show thatFCh is Q-continuous, I will prove the equivalent conditionb. of
Th-47. Hence letε > 0 be given. I will show thatδ = ε is a suitable choice ofδ.
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Hence let(>,⊥), (>′,⊥) ∈ T with d(>,>′) < ε and> ≤ >′. Because> ≤ >′,
d(>,>′) < ε can be rewritten as

sup{>′(γ)−>(γ) : γ ∈ I} < ε

by (28). In particular

>′(γ) ≤ >(γ) + ε . (229)

Then

|ξCh(>′,⊥)− ξCh(>,⊥)|

= | 12
∫ 1

0

>′(γ) dγ + 1
2

∫ 1

0

⊥(γ) dγ

− 1
2

∫ 1

0

>(γ) dγ − 1
2

∫ 1

0

⊥(γ) dγ| by Def. 47

= 1
2 |
∫ 1

0

>′(γ) dγ −
∫ 1

0

>(γ) dγ|

= 1
2 (
∫ 1

0

>′(γ) dγ −
∫ 1

0

>(γ) dγ) because>′ ≥ >

≤ 1
2 (
∫ 1

0

>(γ) + ε dγ −
∫ 1

0

>(γ) dγ) by (229)

= ε
2

< ε .

Henceδ = ε is indeed a choice ofδ with the desired properties, i.e. conditionb. of
Th-47 is fulfilled, which is equivalent toFCh being Q-continuous.

B.30 Proof of Theorem 49

We already know from Th-30 thatFS is a DFS and hence satisfies (X-2) and (X-5)
by Th-23. Hence Th-47 is applicable, which allows the reduction ofFS being Q-
continuous to an equivalent condition onξS . Hence let us show that conditionb. of
Th-47 violated.
Let ε ∈ (0, 1

2 ] be given and letδ > 0. Consider(c 1
2
, c0), (c 1

2−
δ
2

, c0) ∈ T. Apparently

c 1
2−

δ
2

≤ c 1
2

andd(c 1
2−

δ
2

, c 1
2

) = δ
2 < δ. By Def. 50, we have

ξS(c 1
2
, c0) = 1

2
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and

ξS(c 1
2−

δ
2

, c0)

= max((c0)∗1,
1
2 −

1
2 (c 1

2−
δ
2

)≥
1
2↓

∗
) by Def. 50

= max(0, 1
2 −

1
2 · 1) by (12), (27)

= 0 .

HenceξS(c 1
2
, c0) − ξS(c 1

2−
δ
2

, c0) = 1
2 − 0 = 1

2 ≥ ε. This proves that conditionb.

of Th-47 fails, which is necessary forFS to be Q-continuous. We conclude thatFS is
not Q-continuous.

B.31 Proof of Theorem 50

We know from Th-31 and Th-23 thatξA satisfies (X-2) and (X-5). Hence Th-47 is
applicable, and we can show thatFA fails to be Q-continuous by proving that there
existsε > 0 such that for allδ > 0, there exist(>,⊥), (>′,⊥) ∈ Twith d(>,>′) < δ,
> ≤ >′ andξA(>′,⊥)− ξA(>,⊥) ≥ ε.
Hence considerε = 1

4 and letδ > 0. We define>,>′ by

>(γ) =

{
0 : γ ≤ 1

2

1− δ
2 : γ > 1

2

>′(γ) =

{
0 : γ ≤ 1

2

1 : γ > 1
2

for all γ ∈ I. Then by (9),

>∗0 = lim
γ→0+

>(γ) = 0 (230)

>′∗0 = lim
γ→0+

>′(γ) = 0 (231)

and by (14),

>1↓
∗ = inf{γ : >(γ) = 1} = inf ∅ = 1 (232)

>′1↓∗ = inf{γ : >′(γ) = 1} = inf( 1
2 , 1] = 1

2 . (233)

Clearly> ≤ >′ andd(>,>′) = δ
2 < δ. We compute

ξA(>, c0) = max(>∗0, 1
2 −

1
2>

1↓
∗ ) by Def. 51

= max(0, 1
2 −

1
2 · 1) by (230), (232)

= 0
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and

ξA(>′, c0) = max(>′∗0, 1
2 −

1
2>
′1↓
∗ ) by Def. 51

= max(0, 1
2 −

1
2 ·

1
2 ) by (231), (233)

= 1
4 .

ThereforeξA(>′, c0) − ξA(>, c0) = 1
4 − 0 = 1

4 = ε. We conclude from Th-47 that
FA is not Q-continuous.

B.32 Proof of Theorem 51

Lemma 77 LetQ : P(E)n −→ I be a given semi-fuzzy quantifier. Further letδ > 0
andX1, . . . , Xn, X

′
1, . . . , X

′
n ∈ P̃(E) such thatd((X1, . . . , Xn), (X ′1, . . . , X

′
n)) <

δ. Then for allγ, γ′ ∈ I with γ′ ≥ γ + 2δ,

a. min(>Q,X1,...,Xn(γ′),>Q,X′1,...,X′n(γ′)) ≥ max(>Q,X1,...,Xn(γ),>Q,X′1,...,X′n(γ));

b. max(⊥Q,X1,...,Xn(γ′),⊥Q,X′1,...,X′n(γ′)) ≤ min(⊥Q,X1,...,Xn(γ),⊥Q,X′1,...,X′n(γ)).

Proof See [7, L-112, p.262].

Lemma 78 Condition a. of Th-51 is entailed by condition b.

Proof Let ξ : T −→ I be a given mapping such that for all(>,⊥) ∈ T andε > 0,
there existsδ > 0 such that

|ξ(>,⊥)− ξ(>′,⊥′)| < ε

wheneverd′((>,⊥), (>′,⊥′)) < δ. We have to prove thatFξ is arg-continuous.
Hence letQ : P(E)n −→ I, X1, . . . , Xn ∈ P̃(E) andε > 0 be given. We have
to show that there existsδ > 0 such that

|Fξ(Q)(X1, . . . , Xn)−Fξ(Q)(X ′1, . . . , X
′
n)| < ε

wheneverd((X1, . . . , Xn), (X ′1, . . . , X
′
n)) < δ. By the assumption onξ, there exists

δ′ > 0 such that

|ξ(>,⊥)− ξ(>′,⊥′)| < ε (234)

wheneverd′((>,⊥), (>′,⊥′)) < δ′. We chooseδ = δ′

3 . Now letX ′1, . . . , X
′
n ∈ P̃(E)

be a choice of fuzzy subsets withd((X1, . . . , Xn), (X ′1, . . . , X
′
n)) < δ. Then

d′(>Q,X1,...,Xn ,>Q,X′1,...,X′n) ≤ 2δ by L-77 and (31)

d′(⊥Q,X1,...,Xn ,⊥Q,X′1,...,X′n) ≤ 2δ , by L-77 and (33)
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i.e.

d′((>Q,X1,...,Xn ,⊥Q,X1,...,Xn), (>Q,X′1,...,X′n ,⊥Q,X′1,...,X′n)) ≤ 2δ = 2
3δ
′ < δ′

(235)

by (33). Therefore

|Fξ(Q)(X1, . . . , Xn)−Fξ(Q)(X ′1, . . . , X
′
n)|

= |ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn)− ξ(>Q,X′1,...,X′n ,⊥Q,X′1,...,X′n)| by Def. 45

< ε , by (234), (235)

i.e.Fξ is arg-continuous, which we intended to show.

Let us now prove that the condition onξ is also necessary forFξ to be arg-continuous.
To this end, we need to construct a semi-fuzzy quantifier with special properties.

Lemma 79 Let (>,⊥), (>′,⊥′) ∈ T be given. We abbreviated = d′(>,>′), d′ =
d′(⊥,⊥′). Then

a. for all β > d andγ ≥ β,>(γ) ≥ >′(γ − β).

b. for all β′ > d′ andγ ≤ 1− β′,⊥(γ) ≥ ⊥′(γ + β′).

Proof

a. We first recall (31), viz

d = d′(>,>′) = sup{inf{γ′ : min(>(γ′),>′(γ′)) ≥ max(>(γ),>′(γ))} − γ : γ ∈ I}

This reveals that for the givenγ − β ≥ 0,

inf{γ′ : min(>(γ′),>′(γ′)) ≥ max(>(γ − β),>′(γ − β))} − (γ − β) ≤ d .

Because>,>′ are nondecreasing, this entails that

min(>(γ′),>′(γ′)) ≥ max(>(γ − ηd),>′(γ − ηd)) (236)

for all γ′ > γ − β + d. We now recall thatβ > d, i.e.γ = γ − β + β > γ − β + d.
Henceγ is an admissable choice forγ′ in (236), and

>(γ) ≥ min(>(γ),>′(γ))
≥ max(>(γ − β),>′(γ − β)) by (236)

≥ >′(γ − β) ,

as desired.
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b. Analogous. This time we recall (32):

d′ = d′(⊥,⊥′) = sup{inf{γ′ : max(⊥(γ′),⊥′(γ′)) ≤ min(⊥(γ),⊥′(γ))} − γ : γ ∈ I}

Hence forγ ≤ 1− β′,

inf{γ′ : max(⊥(γ′),⊥′(γ′)) ≤ min(⊥(γ),⊥′(γ))} − γ ≤ d′ .

Because⊥,⊥′ are nonincreasing, this entails that

max(⊥(γ′),⊥′(γ′)) ≤ min(⊥(γ),⊥′(γ))} (237)

for all γ′ > γ + d′. We now recall thatβ′ > d′, i.e.γ + β′ > γ + d′. We also have
γ + β′ ≤ 1. Henceγ + β′ is an admissable choice forγ′ in (237), and

⊥(γ) ≥ min(⊥(γ),⊥′(γ))
≥ max(⊥(γ + β′),⊥′(γ + β′)) by (237)

≥ ⊥′(γ + β′) .

Lemma 80 Let (>,⊥), (>′,⊥′) ∈ T be given.

a. for all β ≥ d′(>,>′) andγ ∈ (0, 1] with γ ≥ β,>[(γ) ≥ >′[(γ − β).

b. for all β′ ≥ d′(⊥,⊥′) andγ ∈ [0, 1) with γ ≤ 1− β′,⊥](γ) ≥ ⊥′](γ + β′).

Proof Let (>,⊥), (>′,⊥′) ∈ T be given. We abbreviated = d′(>,>′), d′ =
d′(⊥,⊥′).

a. Supposeβ ≥ d andγ > 0 with γ ≥ β. Then

>′[(γ − β) = lim
γ′→(γ−β)−

>′(γ′) , by Def. 34

i.e.

>′[(γ − β) = sup{>′(γ′) : γ′ < γ − β} (238)

because>′ is nondecreasing, see [7, Th-43.a, p. 44].
Now considerε > 0. By (238), there existsγ′ < γ − β with

>′(γ′) > >′[(γ − β)− ε . (239)

Becauseγ′ < γ − β, we can chooseγ′′ ∈ I with

γ′ < γ′′ < γ − β (240)
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Thenγ′′ + d < γ and

>(γ′′ + d) ≥ >′(γ′) by L-79 becauseγ′ < (γ′′ + d)− d

> >′[(γ − β)− ε by (239).

Becauseγ′′ + d < γ, we hence obtain that

>[(γ) = lim
γ′→γ−

>(γ′) by Def. 34

= sup{>(γ′) : γ′ < γ} because> nondecreasing, see [7, Th-43.a, p. 44]

≥ >(γ′′ + d) becauseγ′′ + d < γ

> >′[(γ − β)− ε .

Becauseε > 0 was arbitrarily chosen, this proves that>[(γ) > >′[(γ−β), as desired.

b. Analogous to that ofa. Supposeβ′ ≥ d′ andγ < 1 with γ ≤ 1 − β′ are given.
Becauseγ + β′ < 1, we obtain from Def. 34 that

⊥′](γ + β′) = lim
γ′→(γ+β′)+

⊥′(γ′) .

Hence

⊥′](γ + β′) = sup{⊥′(γ′) : γ′ > γ} (241)

because⊥′ is nonincreasing; see [7, Th-43.d, p. 45].
Now considerε > 0. By (241), there existsγ′ > γ + β′ such that

⊥′(γ′) > ⊥′](γ + β′)− ε . (242)

Becauseγ′ > γ + β′, we can chooseγ′′ ∈ I with γ + β′ < γ′′ < γ′. In particular,

γ′′ − β′ > γ + β′ − β′ = γ (243)

and

γ′ > γ′′ = (γ′′ − β′) + β′ ≥ (γ′′ − β′) + d′ . (244)

Therefore

⊥](γ) = lim
γ′→γ+

⊥(γ′) by Def. 34

= sup{⊥(γ′) : γ′ > γ} by [7, Th-43.d, p. 45]

≥ ⊥(γ′′ − β′) by (243)

≥ ⊥(γ′) by (244), L-79.b

> ⊥′](γ + β)− ε . by (242)

Becauseε > 0 was arbitrary, this proves the desired⊥](γ) ≥ ⊥′](γ + ε).
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Lemma 81 For all (>,⊥) ∈ T, we defineQ(>,⊥) : P(T× 2× I) −→ I by

Q(>,⊥)(Y ) =

 >
[(u(>,⊥)) : u(>,⊥) > 0
⊥](`(>,⊥)) : u(>,⊥) = 0, `(>,⊥) < 1
0 : u(>,⊥) = 0, `(>,⊥) = 1

(245)

where

u(>,⊥) = supY ′(>,⊥) (246)

`(>,⊥) = inf Y ′′(>,⊥) (247)

Y ′(>,⊥) = {z ∈ I : ((>,⊥), 0, z) ∈ Y } (248)

Y ′′(>,⊥) = {z ∈ I : ((>,⊥), 1, z) ∈ Y } , (249)

for all Y ∈ P(T× 2× I).
Further suppose that the semi-fuzzy quantifierQ : P(T× 2× I) −→ I is defined by

Q(Y ) = sup{Q(>,⊥)(Y ) : (>,⊥) ∈ T} (250)

for all Y ∈ P(T× 2× I). Then for every choice of(>1,⊥1), (>2,⊥2) ∈ T with

>2(0) ≥ ⊥1(0) , (251)

it holds that

>Q,X(γ) = >2
[(γ)

and

⊥Q,X(γ) = ⊥2
](γ) ,

for all γ ∈ (0, 1), provided we defineX ∈ P̃(T× 2× I) by

µX((>,⊥), c, z)

=


1
2 −

1
2 min(z + d2, 1) : c = 0

1
2 −

1
2d1 : c = 1 ∧ z < d1 ∧ (>,⊥) 6= (>2,⊥2)

1
2 + 1

2z −
1
2d2 : c = 1 ∧ (z ≥ d1 ∨ (>,⊥) = (>2,⊥2))

(252)

for all (>,⊥) ∈ T, c ∈ 2 and z ∈ I, whered1 = d′((>,⊥), (>1,⊥1)) and d2 =
d′((>,⊥), (>2,⊥2)).

Proof We first consider some monotonicity properties. Let(>,⊥) ∈ T be given.
If Y increases, thenY ′(>,⊥) increases. Henceu(>,⊥) = supY ′(>,⊥) increases as well.

Finally because> and hence>[ are nondecreasing,>[(u(>,⊥)) will also increase.
HenceQ′(Y ) = >[(u(>,⊥)) is nondecreasing.
Similarly Y ′′(>,⊥) increases ifY increases. Hencè(>,⊥) = inf Y ′′(>,⊥) decreases and
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⊥](`(>,⊥)) increases, because⊥, and hence⊥], is nonincreasing. ThereforeQ′′(Y ) =
⊥](`(>,⊥)) is nondecreasing. From Th-20 we know that0 ≤ ⊥](γ) ≤ >[(γ′) for all
γ, γ′ ∈ I. It is hence apparent from (245) and the fact thatQ′(Y ) = >[(u(>,⊥)) and
Q′′(Y ) = ⊥](`(>,⊥)) are nondecreasing thatQ(>,⊥)(Y ) is also nondecreasing inY .
We can hence utilize L-3 in order to simplify the expressions for>Q,X and⊥Q,X .
Now suppose that(>1,⊥1), (>2,⊥2) ∈ T satisfy (251) and assumeX ∈ P̃(T× 2× I)
is defined by (252). Then by Def. 30, Def. 28 and (252),

Xmin
γ

= X
≥ 1

2 +
1
2γ

= {((>,⊥), 1, z) : 1
2 + 1

2z −
1
2d2 ≥ 1

2 + 1
2γ ∧ (z ≥ d1 ∨ (>,⊥) = (>2,⊥2))}

= {((>,⊥), 1, z) : z − d2 ≥ γ ∧ (z ≥ d1 ∨ (>,⊥) = (>2,⊥2))}
= {((>,⊥), 1, z) : z ≥ max(γ + d2, d1)} ∪ {((>2,⊥2), 1, z) : z ≥ γ + d2} .

for all γ ∈ (0, 1). Hence in the case ofXmin
γ ,

u(>,⊥) = supY ′(>,⊥) = sup∅ = 0 (253)

and for(>,⊥) 6= (>2,⊥2),

`(>,⊥) = inf Y ′′(>,⊥) by (247)

= inf{z ∈ I : z ≥ max(γ + d2, d1)} by (249)

= min(max(γ + d2, d1), 1) ,

while for (>,⊥) = (>2,⊥2), d2 = d′((>2,⊥2), (>2,⊥2)) = 0 and hence

`(>2,⊥2)

= inf Y ′′(>2,⊥2) by (247)

= inf({z ∈ I : z ≥ max(γ + d2, d1)}
∪ {z ∈ I : z ≥ γ + d2}) by (249)

= min(inf{{z ∈ I : z ≥ max(γ, d1)},
inf{z ∈ I : z ≥ γ}) becaused2 = 0

= min(max(γ, d1), γ)
= γ . by absorption

Therefore

`(>,⊥) =
{

min(max(γ + d2, d1), 1) : (>,⊥) 6= (>2,⊥2)
γ : (>,⊥) = (>2,⊥2) (254)
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for all (>,⊥) ∈ T. ConcerningXmax
γ , we obtain from Def. 30, Def. 29 and (252) that

Xmax
γ

= X
>

1
2−

1
2γ

= {((>,⊥), 0, z) : 1
2 −

1
2z −

1
2d2 >

1
2 −

1
2γ}

∪ {((>,⊥), 1, z) : 1
2 −

1
2d1 >

1
2 −

1
2γ ∧ z < d1 ∧ (>,⊥) 6= (>2,⊥2)}

∪ {((>,⊥), 1, z) : z ≥ d1 ∧ z > d2 − γ}
∪ {((>2,⊥2), 1, z) : z ∈ I}

= {((>,⊥), 0, z) : z < γ − d2}
∪ {((>,⊥), 1, z) : z < d1 < γ ∧ (>,⊥) 6= (>2,⊥2)}
∪ {((>,⊥), 1, z) : z ≥ d1 ∧ z > d2 − γ}
∪ {((>2,⊥2), 1, z) : z ∈ I} ,

for all γ ∈ (0, 1]. Hence in the case ofXmax
γ ,

u(>,⊥) = supY ′(>,⊥) = sup{z ∈ I : z < γ − d2} = max(γ − d2, 0) (255)

for all (>,⊥) ∈ T. As concerns̀(>,⊥), we first observe that for(>,⊥) 6= (>2,⊥2),

`(>,⊥) = inf Y ′′(>,⊥) by (249)

= inf({z ∈ I : z < d1 < γ}
∪ {z ∈ I : z ≥ d1 ∧ z > d2 − γ}) .

Hence in the case thatγ ≤ d1,

`(>,⊥) = inf{z ∈ I : z ≥ d1 ∧ z > d2 − γ}
= max(d1, d2 − γ)

and ifγ > d1, then

`(>,⊥) = inf({z ∈ I : z < d1}
∪ {z ∈ I : z ≥ d1 ∧ z > d2 − γ})

=
{

0 : d1 > 0
max(0, d2 − γ) : d1 = 0

In the remaining case that(>,⊥) = (>2,⊥2), we again haved2 = 0 and hence

`(>2,⊥2) = inf Y ′′(>2,⊥2)

= inf({z ∈ I : z ≥ d1} ∪ I)
= inf I

= 0 .

Summarizing, we have shown that forXmax
γ ,

`(>,⊥) =
{

max(d1, d2 − γ) : (γ ≤ d1 ∨ d1 = 0) ∧ (>,⊥) 6= (>2,⊥2)
0 : else

(256)
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for all (>,⊥) ∈ T.
Now we consider the quantification results that are obtained forγ ∈ (0, 1). As regards
Q(Xmin

γ ), we first recall thatu(>,⊥) = 0 by (253). In order to determine the result of
Q(Xmin

γ ), we discern three cases.

1. (>,⊥) 6= (>2,⊥2) andmax(γ+d2, d1) < 1. Then by (254),̀ (>,⊥) = max(γ+
d2, d1) < 1. Hence by (252),

Q(>,⊥)(Xmin
γ ) = ⊥](max(γ + d2, d1)) by (245)

≤ ⊥](γ + d2) because⊥ nonincreasing

≤ ⊥]2(γ) , by L-80.b

i.e.

Q(>,⊥)(Xmin
γ ) ≤ ⊥]2(γ) . (257)

2. (>,⊥) 6= (>2,⊥2) andmax(γ + d2, d1) = 1. Then`(>,⊥) = 1 by (254). We
hence obtain from (245) that

Q(>,⊥)(Xmin
γ ) = 0 ≤ ⊥]2(γ) . (258)

3. (>,⊥) = (>2,⊥2). In this case,̀ (>,⊥) = γ by (254). In addition,γ < 1 by
assumption. We then obtain from (245) that

Q(>2,⊥2)(Xmin
γ ) = ⊥]2(γ) . (259)

ThereforeQ(>,⊥)(Xmin
γ ) ≤ ⊥]2(γ) for all (>,⊥) ∈ T and for(>2,⊥2) ∈ T,

Q(>2,⊥2)(Xmin
γ ) = ⊥]2(γ) .

Hence

Q(Xmin
γ ) = sup{Q(>,⊥)(Xmin

γ ) : (>,⊥) ∈ T} = ⊥]2(γ) (260)

by (250) and (257)–(259).
Next we considerQ(γmax

) .

1. (>,⊥) = (>2,⊥2). Thend2 = d′((>2,⊥2), (>2,⊥2)) = 0 and henceγ−d2 >
0, because we have assumed thatγ > 0. By (255),u(>2,⊥2) = γ > 0. Therefore

Q(>2,⊥2)(Xmax
γ ) = >[2(γ) (261)

by (245).

2. (>,⊥) 6= (>2,⊥2) andγ − d2 > 0. Thenu(>,⊥) = γ − d2 > 0 and

Q(>,⊥)(Xmax
γ ) = >[(γ − d2) by (245)

≤ >[2(γ) , by L-80.a

i.e.

Q(>,⊥)(Xmax
γ ) ≤ >[2(γ) . (262)
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3. (>,⊥) 6= (>2,⊥2), γ − d2 = 0 andγ ≤ d1. Thenu(>,⊥) = 0 by (255)
and`(>,⊥) = max(d1, d2 − γ) by (256). If `(>,⊥) < 1, then we obtain from
`(>,⊥) ≥ d1 that

Q(>,⊥)(Xmax
γ ) = ⊥](`(>,⊥)) by (245)

≤ ⊥](d1) because⊥ nonincreasing

≤ ⊥]1(0) by L-80.b

≤ >[2(0) by (251) L-19 and>2(0) = >[2(0) by Def. 34

≤ >[2(γ) , because>2 nondecreasing

i.e.

Q(Xmax
γ ) ≤ >[2(γ) . (263)

If `(>,⊥) = 1, then

Q(Xmax
γ ) = 0 ≤ >[2(γ) (264)

by (245).

4. (>,⊥) 6= (>2,⊥2), γ − d2 = 0 andd1 = 0. Thenu(>,⊥) = 0 by (255) and
`(>,⊥) = max(d1, d2 − γ) = max(0, 0) = 0 by (256). Hence

Q(>,⊥)(Xmax
γ ) = ⊥](0)

≤ ⊥]1(0) by L-80.b becaused1 = 0

≤ >[2(0) by (251) L-19 and>2(0) = >[2(0) by Def. 34

≤ >[2(γ) , because>[2 nondecreasing

i.e.

Q(>,⊥)(Xmax
γ ) ≤ >[2(0) . (265)

5. (>,⊥) 6= (>2,⊥2), γ− d2 = 0, γ > d1 andd1 > 0. Thenu(>,⊥) = 0 by (255)
and`(>,⊥) = 0 by (256). Because againd1 = 0 andu(>,⊥) = `(>,⊥) = 0, we
obtain by the same reasoning as in the previous case that

Q(>,⊥)(Xmax
γ ) ≤ >[2(γ) . (266)

HenceQ(>,⊥)(Xmax
γ ) ≤ >[2(γ) for all (>,⊥) ∈ T and for(>2,⊥2) ∈ T,

Q(>2,⊥2)(Xmax
γ ) = >[2(γ) .

Consequently

Q(Xmax
γ ) = sup{Q(>,⊥)(Xmax

γ ) : (>,⊥) ∈ T} = >[2(γ) (267)
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by (250) and (261)–(266). This proves that

>Q,X(γ) = Q(Xmax
γ ) by L-3

= >[2(γ)

and

⊥Q,X(γ) = Q(Xmin
γ ) by L-3

= ⊥]2(γ)

for all γ ∈ (0, 1), as desired.

Lemma 82 Supposeξ : T −→ I satisfies(X-2), (X-4) and (X-1). If Fξ is arg-
continuous, thenξ has the following property: for all(>1,⊥1) ∈ T and all ε > 0,
there existsδ > 0 such that|ξ(>1,⊥1) − ξ(>2,⊥2)| < ε whenever(>2,⊥2) ∈ T
satisfiesd′((>1,⊥1), (>2,⊥2)) < δ and>2(0) ≥ ⊥1(0).

Proof The following proof is by contraposition. Hence assume that the condition
stated in the lemma fails, i.e. there exists(>1,⊥1) ∈ T andε > 0 such that for all
δ > 0, there exists(>2,⊥2) ∈ T with d′((>1,⊥1), (>2,⊥2)) < δ, >2(0) ≥ ⊥1(0)
and

|ξ(>1,⊥1)− ξ(>2,⊥2)| ≥ ε (268)

We have to show thatFξ is not arg-continuous. To see this, consider the quantifierQ :
P(T× 2× I) −→ I defined by (250) and the fuzzy argument setX ∈ P̃(T× 2× I)
defined by

µX((>,⊥), c, z)

=


1
2 −

1
2 min(z + d1, 1) : c = 0

1
2 −

1
2d1 : c = 1 ∧ z < d1∧

1
2 + 1

2z −
1
2d1 : c = 1 ∧ z ≥ d1

(269)

for all (>,⊥) ∈ T, c ∈ 2 andz ∈ I, where I have abbreviatedd1 = d′((>,⊥), (>1,⊥1)).
Then by L-81,

>Q,X(γ) = >[1(γ) (270)

⊥Q,X(γ) = ⊥]1(γ) (271)

for all γ ∈ (0, 1).
Now considerδ > 0. By the assumed property ofξ, there exists(>2,⊥2) ∈ T with
>2(0) ≥ ⊥1(0),

d′((>1,⊥1), (>2,⊥2)) < δ
2 (272)

and

|ξ(>1,⊥1)− ξ(>2,⊥2)| ≥ ε . (273)
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We now define the fuzzy setX ′ ∈ P̃(T× 2× I) by

µX′((>,⊥), c, z)

=


1
2 −

1
2 min(z + d2, 1) : c = 0

1
2 −

1
2d1 : c = 1 ∧ z < d1 ∧ (>,⊥) 6= (>2,⊥2)

1
2 + 1

2z −
1
2d2 : c = 1 ∧ (z ≥ d1 ∨ (>,⊥) = (>2,⊥2))

(274)

for all (>,⊥) ∈ T, c ∈ 2 andz ∈ I, whered1 = d′((>,⊥), (>1,⊥1)) andd2 =
d′((>,⊥), (>2,⊥2)). Again from L-81, we obtain

>Q,X′(γ) = >[2(γ) (275)

⊥Q,X′(γ) = ⊥]2(γ) (276)

for all γ ∈ (0, 1). Hence

|Fξ(Q)(X)−Fξ(Q)(X ′)|
= |ξ(>Q,X ,⊥Q,X)− ξ(>Q,X′ ,⊥Q,X′)| by Def. 45

= |ξ(>[1,⊥
]
1)− ξ(>[2,⊥

]
2)| by L-23

= |ξ(>1,⊥1)− ξ(>2,⊥2)| by (270), (271), (275), (276)

i.e. by (273),

|Fξ(Q)(X)−Fξ(Q)(X ′)| ≥ ε , (277)

by the assumed choice of(>2,⊥2) ∈ T. Let us now consider the distanced(X,X ′)
of the fuzzy argument sets. Hence let(>,⊥) ∈ T, c ∈ {0, 1} andz ∈ I. In order
to shorten the proof, I abbreviatedu = max(d1, d2), d` = min(d1, d2) and d =
d′((>1,⊥1), (>2,⊥2)). It is apparent from the triangle inequation that

du ≤ d` + d . (278)

For example ifdu = d1 andd` = d2, then

du = d′((>,⊥), (>1,⊥1)) ≤ d′((>,⊥), (>2,⊥2)) + d′((>2,⊥2), (>1,⊥1)) = d` + d .

In the following, we discern four cases.

1. c = 0. Then

|µX′((>,⊥), c, z)− µX((>,⊥), c, z)|
= | 12 −

1
2 min(z + d2, 1)− ( 1

2 −
1
2 min(z + d1, 1))| by (269), (274)

= 1
2 |min(z + d1, 1)−min(z + d2, 1)|

= 1
2 (min(z + du, 1)−min(z + d`, 1)) .

If d` + z ≥ 1, thendu + z ≥ 1 as well and

|µX′((>,⊥), c, z)− µX((>,⊥), c, z)|
= 1

2 (min(z + du, 1)−min(z + d`, 1))

= 1
2 (1− 1)

= 0 .
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If d` + z < 1, thenmin(d` + z, 1) = d` + z and hence

|µX′((>,⊥), c, z)− µX((>,⊥), c, z)|
= 1

2 (min(z + du, 1)−min(z + d`, 1))

= 1
2 (min(z + du, 1)− z − d`)

≤ 1
2 (z + du − z − d`)

≤ 1
2 (z + d` + d− z − d`) by (278)

= 1
2d .

2. c = 1 ∧ z < d1 ∧ (>,⊥) 6= (>2,⊥2). Then

|µX′((>,⊥), c, z)− µX((>,⊥), c, z)|
= | 12 −

1
2d1 − ( 1

2 −
1
2d1)| by (269), (274)

= 0 .

3. c = 1 ∧ z < d1 ∧ (>,⊥) = (>2,⊥2). Thend1 = d′((>2,⊥2), (>1,⊥1)) = d
andd2 = d′((>2,⊥2), (>2,⊥2)) = 0. In particular,z < d. Hence

|µX′((>,⊥), c, z)− µX((>,⊥), c, z)|
= | 12 −

1
2d1 − ( 1

2 + 1
2z)| by (269), (274)

= 1
2 | − d1 − z|

= 1
2 (d1 + z)

< 1
2 (d+ d) becaused1 = d andz < d, see above

= d

4. c = 1 ∧ z ≥ d1. Then

|µX′((>,⊥), c, z)− µX((>,⊥), c, z)|
= | 12 + 1

2z −
1
2d1 − ( 1

2 + 1
2z −

1
2d2)| by (269), (274)

= 1
2 |d2 − d1|

= 1
2 (du − d`)

≤ 1
2 (d` + d− d`) by (278)

= 1
2d .

Summarising, we obtained in any of the above cases that

|µX′((>,⊥), c, z)− µX((>,⊥), c, z)| < d ,

i.e.

|µX′((>,⊥), c, z)− µX((>,⊥), c, z)| < d = d′((>1,⊥1), (>2,⊥2)) < δ
2 (279)
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by (272). Therefore

d(X,X ′)
= sup{|µX′((>,⊥), c, z)− µX((>,⊥), c, z)| : (>,⊥) ∈ T, c ∈ 2, z ∈ I} by (4)

≤ δ
2 by (279)

< δ .

Combining this with (277), this proves that for the givenδ, there existsX ′ with
d(X,X ′) < δ and |Fξ(Q)(X) − Fξ(Q)(X ′)| ≥ ε. Becauseδ > 0 was arbitrary,
we conclude that there existsε > 0,Q : P(T× 2× I) −→ I andX ∈ P̃(T× 2× I)
(viz, our above choices) such that for allδ > 0, there existsX ′ ∈ P̃(T× 2× I) with
d(X,X ′) < δ and|Fξ(Q)(X)−Fξ(Q)(X ′) ≥ ε. HenceFξ is not arg-continuous by
Def. 26.

Proof of Theorem 51

Supposeξ : T −→ I satisfies (X-2), (X-4) and (X-5). In order to prove that the
conditionsa. and b. are equivalent, we split the equivalence in two implications,
which we prove separately.

b.⇒a.: This case is already covered by L-78, i.e. conditionb. is sufficient forFξ to
be arg-continous.

a.⇒b.: In order to prove that conditionb. is also necessary forFξ to be arg-continuous,
let us assume thatFξ is arg-continuous. We have to show thatb. holds. To this end,
we first recall that by L-82, the following condition holds forξ: for all (>1,⊥1) ∈ T
and allε > 0, there existsδ1 > 0 such that

|ξ(>1,⊥1)− ξ(>2,⊥2)| < ε (280)

whenever(>2,⊥2) ∈ T satisfies

d′((>1,⊥1), (>2,⊥2)) < δ1 (281)

and>2(0) ≥ ⊥1(0). Becauseξ satisfies (X-2), this entails that for all(>1,⊥1) ∈ T,
there existsδ2 > 0 such that

|ξ(>1,⊥1)− ξ(>2,⊥2)| < ε (282)

whenever(>2,⊥2) ∈ T satisfies

d′((>1,⊥1), (>2,⊥2)) < δ2 (283)

and⊥2(0) ≤ >1(0). We insert the proof of this simple claim here. We already know
from L-82 that there existsδ2 > 0 such that

|ξ(1−⊥1, 1−>1)− ξ(>′2,⊥′2)| < ε (284)
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whenever(>′2,⊥′2) ∈ T satisfies

d′((1−⊥1, 1−>1), (>′2,⊥′2)) < δ2 (285)

and>′2(0) ≥ 1−⊥1(0). Now consider(>2,⊥2) ∈ T with

d′((>1,⊥1), (>2,⊥2)) < δ2 (286)

and⊥2(0) ≤ >1(0). Substituting>′2 = 1−⊥2 and⊥′2 = 1−>2, we have

d′((1−⊥1, 1−>1), (>′2,⊥′2))
= d′((1−⊥1, 1−>1), (1−⊥2, 1−>2))
= d′((>1,⊥1), (>2,⊥2)) apparent from (33)

< δ2 . by (286)

Hence condition (285) is fulfilled. In addition, we clearly have>′2(0) = 1−⊥2(0) ≥
1 − >1(0) because by assumption,⊥2(0) ≤ >1(0). Hence we conclude from (284)
that

|ξ(>1,⊥1)− ξ(>2,⊥2)|
= |1− ξ(1−⊥1, 1−>1)− (1− ξ(1−⊥2, 1−>2))| by (X-2)

= |ξ(1−⊥1, 1−>1)− ξ(>′2,⊥′2)|
< ε . by (284)

Hence (282) holds, i.e. the the second condition onξ is also satisfied.
We can combine these conditions as follows. Let(>1,⊥1) ∈ (>,⊥) andε > 0 be
given. Further letδ1 > 0 be chosen such that (280) holds, and letδ2 > 0 be chosen
such that (282) holds. Now letδ = min(δ1, δ2) and consider(>2,⊥2) ∈ T with
d′((>1,⊥1), (>2,⊥2)) < δ. If >2(0) ≥ ⊥1(0), then|ξ(>1,⊥1)− ξ(>2,⊥2)| < ε by
(280). In the remaining case that>2(0) < ⊥1(0), we have⊥2(0) ≤ >2(0) < ⊥1(0).
Hence the second condition is applicable and by (282),|ξ(>1,⊥1) − ξ(>2,⊥2)| <
ε. This finishes the proof that conditionb. of the theorem holds whenever condition
a. holds, as desired.

B.33 Proof of Theorem 52

Lemma 83 Supposeξ : T −→ I is a mapping such that(X-2) and the following
condition are valid. For allε > 0, there existsδ > 0 such that

|ξ(>,⊥)− ξ(>′,⊥)| < ε

whenever(>,⊥), (>′,⊥) ∈ T such thatd′(>,>′) < δ. ThenFξ is arg-continuous.

Proof Let ξ : T −→ I be a given mapping with the above properties. Now letε > 0.
By assumption, there existsδ′ > 0 such that

|ξ(>,⊥)− ξ(>′,⊥)| < ε
2 (287)
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whenever(>,⊥), (>′,⊥) ∈ T such thatd′(>,>′) < δ′.
We now consider(>,⊥), (>′,⊥′) ∈ T with

d′((>,⊥), (>′,⊥′)) < δ′ . (288)

We also note that by (288) and (33),

d′((>,⊥), (>′,⊥)) ≤ d′((>,⊥), (>′,⊥)) < δ′ (289)

d′((1−⊥, 1−>′), (1−⊥′, 1−>′)) = d′((>′,⊥), (>′,⊥′))
≤ d′((>,⊥), (>′,⊥′)) < δ′

(290)

Therefore

|ξ(>′,⊥)− ξ(>′,⊥′)|
= |(1− ξ(1−⊥, 1−>′))− (1− ξ(1−⊥′, 1−>′))| by (X-2)

= |ξ(1−⊥, 1−>′)− ξ(1−⊥′, 1−>′)| ,

i.e.

|ξ(>′,⊥)− ξ(>′,⊥′)| < ε
2 (291)

by (287) and (290). Finally

|ξ(>,⊥)− ξ(>′,⊥′)|
≤ |ξ(>,⊥)− ξ(>′,⊥)|+ |ξ(>′,⊥)− ξ(>′,⊥′)| by triangle inequation

< ε
2 + ε

2 by (287), (289) and (291)

= ε .

Hence for all(>,⊥) ∈ T an all ε > 0, there existsδ > 0 such that|ξ(>,⊥) −
ξ(>′,⊥′)| < ε whenever(>′,⊥′) ∈ T satisfiesd′((>,⊥), (>′,⊥′)) < δ. Application
of L-78 yields thatFξ is arg-continuous.

Proof of Theorem 52

Let ξ : T −→ I be a given mapping which satisfies (X-2) and (X-5) and also fulfills
the condition imposed by the theorem. We will show thatξ fulfills the preconditions
of lemma L-83. Hence letε > 0 be given. By assumption, there existsδ > 0 such that

ξ(>∗,⊥)− ξ(>∗,⊥) < ε (292)

whenever(>∗,⊥), (>∗,⊥) ∈ T satisfyd′(>∗,>∗) < δ and>∗ ≤ >∗.
Now let (>,⊥), (>′,⊥) ∈ T with d′(>,>′) < δ. We abbreviate

>∗ = min(>,>′)
>∗ = max(>,>′) .

Clearly(>∗,⊥), (>∗,⊥) ∈ T. In addition, it is obvious from (31) that

d′(>∗,>∗) = d′(>,>′) < δ . (293)
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In addition, we may conclude from (X-5) that

ξ(>∗,⊥) ≥ max(ξ(>,⊥), ξ(>′,⊥)) (294)

ξ(>∗,⊥) ≤ min(ξ(>,⊥), ξ(>′,⊥)) . (295)

Hence

|ξ(>,⊥)− ξ(>′,⊥)|
= max(ξ(>,⊥), ξ(>′,⊥))−min(ξ(>,⊥), ξ(>′,⊥))
≤ ξ(>∗,⊥)− ξ(>∗,⊥) by (294), (295)

= |ξ(>∗,⊥)− ξ(>∗,⊥)| by (X-5) and>∗ ≤ >∗

< ε . by (292)

Hence the condition of L-83 is satisfied, from which we conclude thatFξ is arg-
continuous.

B.34 Proof of Theorem 53

FCh is known to satisfy (X-2) and (X-5) by Th-27 and Th-23. In order to prove that
FCh is arg-continuous, it is hence sufficient to show thatξCh satisfies the condition
stated in Th-52: we have to show that for allε > 0 there existsδ > 0 such that
ξ(>′,⊥) − ξ(>,⊥) < ε whenever(>,⊥), (>′,⊥) ∈ T satisfyd′(>,>′) < δ and
> ≤ >′.
Hence letε > 0 be given. I will show thatδ = ε is a proper choice ofδ for ξCh.
Consider(>,⊥), (>′,⊥) ∈ T with d′(>,>′) < ε and> ≤ >′. Because> ≤ >′, this
means that

sup{inf{γ′ : >(γ′) ≥ >′(γ)} − γ : γ ∈ I} < ε

by (31). Hence

>(γ + ε) ≥ >′(γ) (296)

for all γ ∈ [0, 1− ε]. We define>′′ : I −→ I by

>′′(γ) =
{
>(γ + ε) : γ ≤ 1− ε
1 : γ > 1− ε (297)

Then by (296),

>′′ ≥ >′ . (298)
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Now let us put things together:

|ξCh(>,⊥)− ξCh(>′,⊥)|
= ξCh(>′,⊥)− ξCh(>,⊥) by (X-5)

≤ ξCh(>′′,⊥)− ξCh(>,⊥) by (298), (X-5)

= 1
2 (
∫ 1

0

>′′(γ) dγ +
∫ 1

0

⊥(γ) dγ

−
∫ 1

0

>(γ) dγ −
∫ 1

0

⊥(γ) dγ) by Def. 47

= 1
2 (
∫ 1

0

>′′(γ) dγ −
∫ 1

0

>(γ) dγ)

= 1
2 (
∫ 1−ε

0

>′′(γ) dγ +
∫ 1

1−ε
>′′(γ) dγ

−
∫ ε

0

>(γ) dγ −
∫ 1

ε

>(γ) dγ)

= 1
2 (
∫ 1−ε

0

>(γ + ε) dγ +
∫ 1

1−ε
1 dγ

−
∫ ε

0

>(γ) dγ −
∫ 1

ε

>(γ) dγ) by (297)

= 1
2 (
∫ 1

ε

>(γ) dγ + ε−
∫ ε

0

>(γ) dγ −
∫ 1

ε

>(γ) dγ)

= 1
2 (ε−

∫ ε

0

>(γ) dγ)

≤ ε
2

< ε .

HenceFCh is arg-continuous by Th-52.

B.35 Proof of Theorem 54

We already know from Th-30 thatFS is a DFS. In particular, we can deduce from
Th-23 thatξS : T −→ I as defined in Def. 50 satisfies (X-1) to (X-5). Hence Th-51
applies, and we can prove thatFS fails to be arg-continuous by showing that there
exist(>1,⊥1) ∈ T andε > 0 such that for allδ > 0, there exists(>2,⊥2) ∈ T with
d′((>1,⊥1), (>2,⊥2)) < δ and|ξS(>1,⊥1)− ξS(>2,⊥2)| ≥ ε.
Hence let(>1,⊥1) = (c 3

4
, c 3

4
) and letε = 1

4 . From (X-1), we immediately obtain

ξS(c 3
4
, c 3

4
) = 3

4 . (299)
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Now considerδ > 0. We choose(>2,⊥2) = (>2, c 3
4

) and define>2 : I −→ I by

>2(γ) =

{
3
4 : γ ≤ 1− δ

2

1 : γ > 1− δ
2

(300)

for all γ ∈ I. In this case, we obtain from Def. 50 that

ξS(>2, c 3
4

) = min((>2)∗1,
1
2 + 1

2 (c 3
4

)≤
1
2↓

∗
) by Def. 50 andc 3

4
(0) = 3

4 >
1
2 .

= min(1, 1
2 + 1

2 · 1) by (12), (26)

= 1 ,

i.e.

ξS(>2, c 3
4

) = 1 (301)

Hence

|ξ(c 3
4
, c 3

4
)− ξ(>2, c 3

4
)| = | 34 − 1| by (299), (301)

= 3
4

≥ ε ,

although

d′((c 3
4
, c 3

4
), (>2, c 3

4
)) = δ

2 < δ .

(This is apparent from (33) and (300)). Hence conditionb. of Th-51 fails, which is
necessary forFS to be arg-continuous. We conclude thatFS is not arg-continuous.

B.36 Proof of Theorem 55

We first recall thatξA satisfies (X-2), (X-4) and (X-5), see Th-31 and Th-23. Hence
Th-51 is applicable, and we can show thatFA fails to be arg-continuous by proving
that there exists(>,⊥) ∈ T andε > 0 such that for allδ > 0, there exist(>′,⊥′) ∈ T
with d′((>,⊥), (>′,⊥′)) < δ and|ξA(>,⊥)− ξA(>′,⊥′)| ≥ ε.
Hence let> = c1,⊥ = c 1

2
andε = 1

2 . Now considerδ > 0. Define⊥′ by

⊥′(γ) =

{
1 : γ ≤ δ

2
1
2 : γ > δ

2

Thend′((>,⊥), (>,⊥′)) = δ
2 < δ. In addition,

⊥∗0 = lim
γ→0+

c 1
2

(γ) = 1
2 (302)

⊥′∗0 = lim
γ→0+

⊥′(γ) = 1 (303)

⊥0↓
∗ = inf{γ : c 1

2
(γ) = 0} = inf ∅ = 1 (304)

⊥′0↓∗ = inf{γ : ⊥′(γ) = 0} = inf ∅ = 1 (305)
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by (9) and (10), respectively. Hence

ξA(>,⊥) = min(⊥∗0, 1
2 + 1

2⊥
0↓
∗ ) by Def. 51

= min(1
2 ,

1
2 + 1

2 · 1) by (302), (304)

= 1
2

and

ξA(>,⊥′) = min(⊥′∗0, 1
2 + 1

2⊥
′0↓
∗ ) by Def. 51

= min(1, 1
2 + 1

2 · 1) by (303), (305)

= 1 .

Therefore|ξA(>,⊥) − ξA(>,⊥′)| = 1
2 = ε. We conclude from Th-51 thatFA is not

continuous in arguments.

B.37 Proof of Theorem 56

Supposeξ, ξ′ : T −→ I are given andFξ,Fξ′ are the corresponding QFMs.

b.⇒a.: Let Q : P(E)n −→ I be a semi-fuzzy quantifier and letX1, . . . , Xn ∈
P̃(E). Then

Fξ(Q)(X1, . . . , Xn) = ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) by Def. 45

�c ξ′(>Q,X1,...,Xn ,⊥Q,X1,...,Xn) by assumed conditionb.

= Fξ′(Q)(X1, . . . , Xn) . by Def. 45

HenceFξ �c Fξ′ .

a.⇒b.: Let (>,⊥) ∈ T be given. By Th-21, there existsQ : P(2× I) −→ I and
X ∈ P̃(2× I) such that

> = >Q,X ⊥ = ⊥Q,X . (306)

Therefore

ξ(>,⊥) = ξ(>Q,X ,⊥Q,X) by (306)

= Fξ(Q)(X) by Def. 45

�c Fξ′(Q)(X) by assumed conditiona.

= ξ′(>Q,X ,⊥Q,X) by Def. 45

= ξ′(>,⊥) . by (306)

B.38 Proof of Theorem 57

Lemma 84 Let ξ, ξ′ : T −→ I be given. Ifξ, ξ′ satisfy(X-2), then the following
conditions are equivalent.
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a. Fξ �c Fξ′ ;

b. for all (>,⊥) ∈ T with>(0) ≥ 1
2 , ξ(>,⊥)�c ξ′(>,⊥).

Proof

a.⇒b.: This is apparent, becauseb. is a weakening of the conditionb. of Th-56,
which has already been shown to be necessary forFξ �c Fξ′ .

b.⇒a.: To see this, let(>,⊥) ∈ T. If >(0) ≥ 1
2 , thenξ(>,⊥)�c ξ′(>,⊥) by b. In

the remaining case that>(0) < 1
2 ,

ξ(>,⊥) = 1− ξ(1−⊥, 1−>) by (X-2)

�c 1− ξ′(1−⊥, 1−>) by assumed conditionb.

= ξ′(>,⊥) , by (X-2)

recalling that1− x�c 1− y if and only if x�c y. Henceξ(>,⊥)�c ξ′(>,⊥) for all
(>,⊥) ∈ T, i.e.Fξ �c Fξ′ by Th-56.

Lemma 85 Let ξ : T −→ I be a given mapping which satisfies(X-5) and has the
additional property thatξ(>,⊥) = 1

2 whenever>(0) ≥ 1
2 ≥ ⊥(0). Then for all

(>,⊥) ∈ T,

a. If⊥(0) > 1
2 , thenξ(>,⊥) ≥ 1

2 ;

b. If>(0) < 1
2 , thenξ(>,⊥) ≤ 1

2 .

Proof Supposeξ : T −→ I satisfies (X-1) to (X-5). We shall assume thatξ propa-
gates fuzziness. Further let(>,⊥) ∈ T be given.

a.: ⊥(0) > 1
2
. Then>(0) ≥ ⊥(0) > 1

2 . Therefore

ξ(>,⊥) ≥ ξ(>,min(⊥, 1
2 )) by (X-5)

= 1
2

by the assumed property ofξ.

b.: >(0) < 1
2
. In this case⊥(0) ≤ >(0) < 1

2 . Hence

ξ(>,⊥) ≤ ξ(max(>, 1
2 ),⊥) by (X-5)

= 1
2 ,

again by the assumed property ofξ.
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Proof of Theorem 57

Let ξ, ξ′ : T −→ I be given mappings which satisfy (X-1) to (X-5) and have the
additional property that

ξ(>,⊥) = ξ′(>,⊥) = 1
2 (307)

whenever(>,⊥) ∈ T is such that>(0) ≥ 1
2 ≥ ⊥(0).

a.⇒b.: Let (>,⊥) ∈ T. If ⊥(0) > 1
2 , thenξ(>,⊥) ≥ 1

2 andξ′(>,⊥) ≥ 1
2 by L-85

Hence in this case, the conditionsξ(>,⊥) ≤ ξ′(>,⊥) andξ(>,⊥) �c ξ′(>,⊥) are
equivalent by (3). The imposed conditionb. is hence a weakening of conditionb. of
L-84, which has already been shown to be necessary forFξ �c Fξ′ .

b.⇒a.: To see this, let(>,⊥) ∈ T with >(0) ≥ 1
2 . If >(0) ≥ ⊥(0) > 1

2 , then
ξ(>,⊥) ≤ ξ′(>,⊥) by assumption. It is further apparent from L-85 thatξ(>,⊥) ≥ 1

2 .
Hence1

2 ≤ ξ(>,⊥) ≤ ξ′(>,⊥), i.e. ξ(>,⊥) �c ξ′(>,⊥) by (3). In the remaining
case that⊥(0) ≤ 1

2 , i.e.⊥(0) ≤ 1
2 ≤ >(0), we conclude from (307) thatξ(>,⊥) =

1
2 = ξ′(>,⊥). In particular,ξ(>,⊥) �c ξ′(>,⊥). This proves that conditionb. of
L-84 is satisfied, which is sufficient forFξ �c Fξ′ .

B.39 Proof of Theorem 58

Lemma 86 Let (>,⊥) ∈ T be given such that⊥(0) > 1
2 . Then⊥1↑

∗ = ⊥1↑
∗ , where

f = med 1
2

(>,⊥).

Proof We simply need to notice that

f(γ) = med 1
2

(>(γ),⊥(γ))

= med 1
2

(1,⊥(γ)) because> = c1, see above

= max(⊥(γ), 1
2 ) . by Def. 22

Hence

f1↑
∗ = sup{γ ∈ I : f(γ) = 1} by (13)

= sup{γ ∈ I : max(⊥(γ), 1
2 ) = 1}

= sup{γ ∈ I : ⊥(γ) = 1}
= ⊥1↑

∗ . by (13)

Lemma 87 Supposeξ : T −→ I is a given mapping such thatFξ is a DFS. Further
let (>,⊥) ∈ T such that⊥1↑

∗ > 0. Then

ξ(>,⊥) ≥ 1
2 + 1

2f
1↑
∗ ,
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wheref = med 1
2

(>,⊥).

Proof Suppose⊥1↑
∗ > 0. By (13), there existsγ′ > 0 such that⊥(γ′) = 1. Hence

for all γ ∈ I,>(γ) ≥ ⊥(γ′) = 1 by Th-20.c, i.e.> = c1. We now define⊥′ : I −→ I
by

⊥′(γ) =
{

1 : γ < f1↑
∗

0 : γ ≥ f1↑
∗

(308)

for all γ ∈ I. It is apparent from (13) that⊥ ≥ ⊥′. Hence

ξ(>,⊥) ≥ ξ(>,⊥′) by (X-5)

= ξ(c1,⊥′) because> = c1, see above

= 1
2 + 1

2⊥
′0↓
∗ by (X-3)

= 1
2 + 1

2⊥
0↓
∗ , by (10), (308)

i.e.

ξ(>,⊥) ≥ 1
2 + 1

2⊥
0↓
∗ .

This finishes the proof because of lemma L-86.

Proof of Theorem 58

Let us recall thatMU is defined in terms ofB′U : H −→ I, where

B′U (f) = max(f1↑
∗ , f

∗
1 )

for all f ∈ H, see Def. 40. Hence by (15),BU : B −→ I is defined by

BU (f) =


1
2 + 1

2B
′
U (2f − 1) : f ∈ B+

1
2 : f ∈ B

1
2

1
2 −

1
2B
′
U (1− 2f) : f ∈ B−

for all f ∈ B. This can be simplified as follows. Firstly iff ∈ B+, then

(2f − 1)1↑
∗ = sup{γ ∈ I : (2f − 1)(γ) = 1} by (13)

= sup{γ ∈ I : 2f(γ)− 1 = 1}
= sup{γ ∈ I : f(γ) = 1}
= f1↑
∗ . by (13)

Similarly

(2f − 1)∗1 = lim
γ→1−

(2f − 1)(γ) by (12)

= lim
γ→1−

2f(γ)− 1

= 2( lim
γ→1−

f(γ))− 1

= 2f∗1 − 1 .
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Hence

BU (f) = 1
2 + 1

2 max(f1↑
∗ , 2f

∗
1 − 1) = max( 1

2f
1↑
∗ + 1

2 , f
∗
1 ) (309)

for all f ∈ B−. By similar reasoning,

BU (f) = 1
2 −

1
2 min(f0

∗∗, f
∗
1 ) , (310)

where we have abbreviated

f0
∗∗ = sup{γ ∈ I : f(γ) = 0} . (311)

In order to prove thatMU is the least specificFξ-DFS, supposeξ : T −→ I is a given
mapping such thatFξ is a DFS. We show thatMU �c Fξ by proving the equivalent
condition of Th-56, i.e.ξU �c ξ, where

ξU (>,⊥) = BU (med 1
2

(>,⊥)) = BU (f) (312)

by (25), andf abbreviates

f = med 1
2

(>,⊥) . (313)

We will discern three cases.

a.: ⊥(0) > 1
2
. Let us define⊥′′ : I −→ I by

⊥′′(γ) =
{
⊥∗1 : γ < 1
0 : γ = 1 (314)

for all γ ∈ I. It is apparent from (12) and the fact that⊥ is nonincreasing by Def. 44
that⊥ ≥ ⊥′′. Therefore

ξ(>,⊥) ≥ ξ(>,⊥′′) by (X-5)

= ξ(>, c⊥∗1 ) by (7), (314) and L-23

≥ ξ(c⊥∗1 , c⊥∗1 ) by (X-5), Th-20.c

= ⊥∗1 , by (X-1)

i.e.

ξ(>,⊥) ≥ ⊥∗1 . (315)

We also observe that

f∗1 = lim
γ→1−

f(γ) by (12)

= lim
γ→1−

med 1
2

(>(γ),⊥(γ)) by (313)

= lim
γ→1−

max( 1
2 ,⊥(γ)) by Def. 22 because⊥ ≤ >, 1

2 ≤ >

= max(1
2 , lim
γ→1−

⊥(γ)) becausemax continuous,12 constant

= max(1
2 ,⊥

∗
1) , by (12)
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i.e.

f∗1 =

{
⊥∗1 : ⊥∗1 > 1

2
1
2 : ⊥∗1 ≤ 1

2

(316)

In the following, we treat separately the following subcases.

1. ⊥1↑
∗ > 0 and⊥∗1 > 1

2 .

Thenξ>⊥ ≥ 1
2 + 1

2f
1↑
∗ by L-87. In addition,ξ(>,⊥) ≥ ⊥∗1 = f∗1 by (315) and

(316). Henceξ(>,⊥) ≥ max( 1
2 + 1

2f
1↑
∗ , f

∗
1 ) ≥ 1

2 , i.e.ξ(>,⊥)�c ξU (>,⊥) by
(3), (309) and (312).

2. ⊥1↑
∗ > 0 and⊥∗1 ≤ 1

2 .

Then againξ(>,⊥) ≥ 1
2 + 1

2f
1↑
∗ ≥ 1

2 by L-87. In addition,f∗1 = 1
2 by (316).

Henceξ(>,⊥) ≥ 1
2 + 1

2f
1↑
∗ = max( 1

2 + 1
2f

1↑
∗ , f

∗
1 ) ≥ 1

2 , i.e. ξ(>,⊥) �c
ξU (>,⊥) by (3), (309) and (312).

3. ⊥1↑
∗ = 0 and⊥∗1 > 1

2 .

In this case,ξ(>,⊥) ≥ ⊥∗1 = f∗1 >
1
2 by (315) and (316). In addition,f1↑

∗ = 0
by L-86. Henceξ(>,⊥) ≥ f∗1 = max(1

2+ 1
2f

1↑
∗ , f

∗
1 ) ≥ 1

2 , and againξ(>,⊥)�c
ξU (>,⊥) by (3), (309) and (312).

4. ⊥1↑
∗ = 0 and⊥∗1 ≤ 1

2 .

Thenf1↑
∗ = 0 by L-86 andf∗1 = 1

2 by (316). HenceξU (>,⊥) = 1
2 by (309)

and (312). In particular,ξ(>,⊥)�c 1
2 = ξU (>,⊥) by (3).

b.: >(0) < 1
2
. This can be reduced to casea. because

ξ(>,⊥) = 1− ξ(1−⊥, 1−>) by (X-2)

�c 1− ξU (1−⊥, 1−>) by parta. of theorem

= ξU (>,⊥) . by (X-2)

c.: ⊥(0) ≤ 1
2
≤ >(0). ThenξU (>,⊥) = 1

2 by Th-19 and Th-34. Hence trivially
ξ(>,⊥)�c 1

2 = ξU (>,⊥) by (3).

B.40 Proof of Theorem 59

SupposeFξ andFξ′ are specificity consistent and let(>,⊥) ∈ T. By Th-21, there
exists a semi-fuzzy quantifierQ : P(2× I) −→ I and a fuzzy subsetX ∈ P̃(2× I)
such that>Q,X = > and⊥Q,X = ⊥. Hence by Def. 45,

{ξ(>,⊥), ξ′(>,⊥)} = {Fξ(Q)(X),Fξ′(Q)(X)} .

Hence either

{ξ(>,⊥), ξ′(>,⊥)} = {Fξ(Q)(X),Fξ′(Q)(X)} ⊆ [0, 1
2 ]
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or

{ξ(>,⊥), ξ′(>,⊥)} = {Fξ(Q)(X),Fξ′(Q)(X)} ⊆ [ 1
2 , 1]

by Def. 24. This proves that the condition onξ is entailed by specificity consistence of
Fξ andFξ′ .
To see that the converse implication also holds, supposeξ andξ′ are specificity consis-
tent as stated in the theorem. Further letQ : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E)
be given. It is then apparent from Def. 45 that

{Fξ(Q)(X1, . . . , Xn),Fξ′(Q)(X1, . . . , Xn)}
= {ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn), ξ′(>Q,X1,...,Xn ,⊥Q,X1,...,Xn)}

Hence either

{Fξ(Q)(X1, . . . , Xn),Fξ′(Q)(X1, . . . , Xn)}
= {ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn), ξ′(>Q,X1,...,Xn ,⊥Q,X1,...,Xn)} ⊆ [0, 1

2 ]

or

{Fξ(Q)(X1, . . . , Xn),Fξ′(Q)(X1, . . . , Xn)}
= {ξ(>Q,X1,...,Xn ,⊥Q,X1,...,Xn), ξ′(>Q,X1,...,Xn ,⊥Q,X1,...,Xn)} ⊆ [ 1

2 , 1] ,

i.e.Fξ,Fξ′ are specificity consistent according to Def. 24.

B.41 Proof of Theorem 60

We will simply show that the DFSesMS andFCh are not specificity consistent. To
this end, we define(>,⊥) ∈ T as follows.

>(γ) = 3
4 (317)

⊥(γ) =

{
3
4 : γ < 1

10

0 : γ ≥ 1
10

(318)

Then ∫ 1

0

>(γ) dγ = 3
4

and ∫ 1

0

⊥(γ) dγ = 3
4 ·

1
10 = 3

40

by (317) and (318), i.e.

ξCh(>,⊥) = 1
2

∫ 1

0

>(γ) dγ + 1
2

∫ 1

0

⊥(γ) dγ = 1
2 ·

3
4 + 1

2 ·
3
40 = 33

80 (319)
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by Def. 47. In the case ofMS , we abbreviatef = med 1
2

(>,⊥). Then by Def. 22

(317) and (318),

f(γ) =

{
3
4 : γ < 1

10
1
2 : γ ≥ 1

10

and

(2f − 1)(γ) =

{
1
2 : γ < 1

10

0 : γ ≥ 1
10

Hence(2f − 1)0↓
∗ = 1

10 and(2f − 1)∗0 = 1
2 by (10) and (9). In turn,

BS(f) = 1
2 + 1

2B
′
S(2f − 1) by (16)

= 1
2 + 1

2 min((2f − 1)0↓
∗ , (2f − 1)∗0) by Def. 41

= 1
2 + 1

2 min( 1
10 ,

1
2 ) see above

= 1
2 + 1

2 ·
1
10 ,

i.e.

BS(f) = 11
20 . (320)

By Th-21, there exists a semi-fuzzy quantifierQ : P(2× I) −→ I and a fuzzy subset
X ∈ P̃(2× I) such that

> = >Q,X ⊥ = ⊥Q,X . (321)

Hence

FCh(Q)(X) = ξCh(>Q,X ,⊥Q,X) by Def. 45, Def. 47

= ξCh(>,⊥) by (321)

= 33
80 by (319)

< 1
2

and

MS(Q)(X) = BS(med 1
2

(>Q,X ,⊥Q,X)) by Def. 41, Def. 45 and (25)

= BS(med 1
2

(>,⊥)) by (321)

= BS(f) see above definition off

= 11
20 by (320)

> 1
2 ,

i.e. according to Def. 24FCh andMS are not specificity consistent.
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B.42 Proof of Theorem 61

Let F be a collection ofFξ-DFSesFξ ∈ F with the property that

Fξ(>,⊥) = 1
2 (322)

whenever(>,⊥) ∈ T is such that>(0) ≥ 1
2 ≥ ⊥(0). In the following we define

X = {ξ : T −→ I : Fξ ∈ F} . (323)

Then apparently

F = {Fξ : ξ ∈ X} . (324)

For a given semi-fuzzy quantifierQ : P(E)n −→ I and fuzzy argumentsX1, . . . , Xn ∈
P̃(E), we abbreviate

RQ,X1,...,Xn = {Fξ(Q)(X1, . . . , Xn) : Fξ ∈ F} .

Abbreviating> = >Q,X1,...,Xn and⊥ = ⊥Q,X1,...,Xn , we clearly have

RQ,X1,...,Xn = {ξ(>,⊥) : ξ ∈ X} (325)

by (324), (323) and Def. 45. In the following, we discern three cases.

a.: ⊥(0) > 1
2
. Then for allξ ∈ X,

ξ(>,⊥) ≥ 1
2 (326)

by L-85.a. Hence

RQ,X1,...,Xn = {ξ(>,⊥) : ξ ∈ X} by (325)

⊆ [ 1
2 , 1] . by (326)

b.: >(0) < 1
2
. In this case, we obtain from L-85.b that for allξ ∈ X,

ξ(>,⊥) ≤ 1
2 (327)

and hence

RQ,X1,...,Xn = {ξ(>,⊥) : ξ ∈ X} by (325)

⊆ [0, 1
2 ] . by (327)

c.: ⊥(0) ≤ 1
2
≤ >(0). Then for allξ ∈ X,

ξ(>,⊥) = 1
2 (328)
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by (322). Therefore

RQ,X1,...,Xn = {ξ(>,⊥) : ξ ∈ X} by (325)

= { 1
2} by (328)

⊆ [ 1
2 , 1] .

Summarizing these results, the given class of DFSesF has the property that for all
Q : P(E)n −→ I andX1, . . . , Xn ∈ P̃(E), it always holds that eitherRQ,X1,...,Xn ⊆
[0, 1

2 ] orRQ,X1,...,Xn ⊆ [ 1
2 , 1]. HenceF is specificity consistent by Def. 24.

B.43 Proof of Theorem 62

The claim of the theorem is apparent from Th-34, Th-32 and Th-61.

B.44 Proof of Theorem 63

The claim of the theorem is apparent from Th-40 and and Th-61.

B.45 Proof of Theorem 64

Let us denote the class ofFξ-DFSes that propagate fuzziness in quantifiers asF. We
conclude from Th-62 and Th-6 thatF has a least upper specificity boundFlub.
We already know from Th-30 thatFS is a DFS. We also know from Th-36 thatFS
propagates fuzziness in quantifiers. ThereforeFS �cFlub. It remains to be shown that
Fξ �c FS for all Fξ ∈ F.
Hence let(>,⊥) ∈ T with ⊥(0) > 1

2 . We define>′ : I −→ I by

>′(γ) =
{
>∗1 : γ < 1
1 : γ = 1 (329)

Because> is nondecreasing, we apparently have> ≤ >′, recalling that

>∗1 = lim
γ→1−

>(γ) .

In addition, we conclude from Th-20.c and>(0) ≤ >∗1 that⊥(γ) ≤ >∗1 for all γ ∈ I,
i.e.⊥ ≤ c>∗1 . Therefore

ξ(>,⊥) ≤ ξ(>′,⊥) by (X-5)

≤ ξ(>′, c>∗1 ) by (X-5)

= ξ(c>∗1 , c>∗1 ) by (329), (7) and L-22

= >∗1 , by (X-1)

i.e.

ξ(>,⊥) ≤ >∗1 . (330)
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Let us further define

⊥′(γ) =

 1 : γ ≤ ⊥
≤ 1

2↓
∗

1
2 : γ > ⊥

≤ 1
2↓
∗

(331)

and

⊥′′(γ) =

 1 : γ ≤ ⊥
≤ 1

2↓
∗

0 : γ > ⊥
≤ 1

2↓
∗

(332)

for all γ ∈ I. It is apparent from (26) that⊥ ≤ ⊥′. We further notice that⊥′ =

max(⊥′′, 1
2 ) and⊥′′0↓∗ = ⊥

≤ 1
2↓
∗ . Therefore

ξ(>,⊥) ≤ ξ(>,⊥′) by (X-5)

≤ ξ(c1,⊥′) by (X-5)

= ξ(c1,max(⊥′′, 1
2 )) by Th-33

= 1
2 + 1

2⊥
′′0↓
∗ by (X-3)

= 1
2 + 1

2⊥
≤ 1

2↓
∗ , because⊥

≤ 1
2
∗ = ⊥′′0↓∗

i.e.

ξ(>,⊥) ≤ 1
2 + 1

2⊥
≤ 1

2↓
∗ . (333)

Therefore

ξ(>,⊥) ≤ min(>∗1, 1
2 + 1

2⊥
≤ 1

2↓
∗ ) by (330), (333)

= ξS(>,⊥) . by Def. 50

We conclude from Th-57, Th-32 and Th-34 thatFξ �cFS . This finishes the proof that
FS is the most specificFξ-DFS which propagates fuzziness in quantifiers, i.e.Fξ =
Flub.

B.46 Proof of Theorem 65

Let us denote the class ofFξ-DFSes that propagate fuzziness in arguments asF. We
conclude from Th-63 and Th-6 thatF has a least upper specificity boundFlub.
We already know from Th-31 thatFA is a DFS. We also know from Th-43 thatFA
propagates fuzziness in arguments. ThereforeFA�c Flub. It remains to be shown that
Fξ �c FA for all Fξ ∈ F. To this end, we can utilize the property stated in Th-40,
i.e. Th-57 is applicable. According to the latter theorem, we can show thatFξ �c FA
by proving thatξ(>,⊥) ≤ ξA(>,⊥) for all (>,⊥) ∈ T with ⊥(0) > 1

2 .
Hence let(>,⊥) ∈ T with ⊥(0) > 1

2 be given. We discern two cases.
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a.: ⊥∗0 ≤ 1
2
. In this case, we define⊥′ : I −→ I by

⊥′(γ) =
{
⊥∗0 : γ = 0
⊥(γ) : γ > 0

for all γ ∈ I. ⊥ is nonincreasing because⊥ is nonincreasing and⊥′(0) = ⊥∗0 =
limγ→0+⊥(γ). In addition,⊥′(0) ≤ ⊥(0) ≤ >(0). We conclude that(>,⊥′) ∈ T.
Next we notice that>(0) ≥ ⊥(0) > 1

2 and⊥′(0) = ⊥∗0 ≤ 1
2 , by assumption of case

a.. Therefore

ξA(>,⊥) = ξA(>,⊥′) by L-23

= 1
2 by Th-40

= ξ(>,⊥′) by Th-40

= ξ(>,⊥) , by L-23

in particular we obtain the desiredξ(>,⊥) ≤ ξA(>,⊥).

b.: ⊥∗0 > 1
2
. In this case,

ξA(>,⊥) = min(⊥∗0, 1
2 + 1

2⊥
0↓
∗ ) (334)

by Def. 51. We define⊥′ : I −→ I by

⊥′(γ) =
{
⊥(γ) : γ < ⊥0↓

∗
0 : γ ≥ ⊥0↓

∗
(335)

for all γ ∈ I. Clearly⊥] ≤ ⊥′ ≤ ⊥[, hence

ξ(>,⊥′) = ξ(>,⊥) (336)

by (X-4) and (X-5). We further define⊥′′ : I −→ I by

⊥′′(γ) =
{

1 : γ ≤ ⊥0↓
∗

0 : γ > ⊥0↓
∗

(337)

for all γ ∈ I. It is immediate from the definition of⊥′′ and from equation (10) that

⊥′′0↓∗ = ⊥0↓
∗ . (338)

Now we observe that⊥′ ≤ ⊥′′ and> ≤ c1. Therefore

ξ(>,⊥) = ξ(>,⊥′) by (336)

≤ ξ(c1,⊥′′) by (X-5)

= 1
2 + 1

2⊥
′′0↓
∗ by (X-3)

= 1
2 + 1

2⊥
0↓
∗ , by (338)
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i.e.

ξ(>,⊥) ≤ 1
2 + 1

2⊥
0↓
∗ . (339)

Finally we define⊥′′′ : I −→ I by

⊥′′′(γ) =
{
⊥∗0 : γ = 0
⊥(γ) : γ > 0

for all γ ∈ I. Obviously

ξ(>,⊥) = ξ(>,⊥′′′) by L-23

= ξ(c1,⊥′′′) by Th-38 and Th-39

≤ ξ(c1, c⊥∗0 ) by (X-5)

= ξ(c⊥∗0 , c⊥∗0 ) by Th-38 and Th-39

= ⊥∗0 , by (X-1)

i.e.

ξ(>,⊥) ≤ ⊥∗0 . (340)

Hence we get the desired

ξ(>,⊥) =≤ min(⊥∗0, 1
2 + 1

2⊥
0↓
∗ ) by (339), (340)

= ξA(>,⊥) . by (334)

We conclude from Th-57 and Th-40 thatFξ �c FA. This completes the proof thatFA
is the most specificFξ-DFS which propagates fuzziness in arguments, i.e.Fξ = Flub.
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Stand: 15. December 1999

94–01 Modular Properties of Composable Term Rewriting Systems
(Enno Ohlebusch)

94–02 Analysis and Applications of the Direct Cascade Architecture
(Enno Littmann und Helge Ritter)

94–03 From Ukkonen to McCreight and Weiner: A Unifying View
of Linear-Time Suffix Tree Construction
(Robert Giegerich und Stefan Kurtz)

94–04 Die Verwendung unscharfer Maße zur Korrespondenzanalyse
in Stereo Farbbildern
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