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Abstract
The paper presents an approach to multi-stream question answering (QA) using deep

semantic parsing and logical validation for filtering answer candidates. A robust entailment
check is accomplished by embedding the prover in a relaxation loop. Fallback strategies
ensure a graceful degradation of performance in the case of parsing problems. The logical
validity score is complemented by false-positive tests and heuristic quality indicators which
also affect the selection of the most trusted answers. Separate criteria are used for choosing
a suitable ‘witness’, i.e. a text passage which substantiates the answer. We present two ex-
periments in which the method is applied for merging the results of various state-of-the-art
QA systems. The evaluation demonstrates that the approach is applicable to heterogeneous
QA streams – in particular it improves results for a combination of precision-oriented and
recall-oriented answer streams. The method automatically adapts to these characteristics of
a QA system by learning parameters from a training sample.

1 Introduction
Question answering (QA) systems like COGEX (Moldovan et al., 2003), Javelin (Nyberg et al.,
2003), InSicht (Hartrumpf, 2005), and QUETAL (Frank et al., 2005) have achieved substantial
progress in answering factual questions over large corpora of unrestricted text. Though some of
these systems use limited forms of inference, the integration of powerful reasoning capabilities
into QA systems is still a challenging task: the systems must balance the number of potential
answer candidates that will be explored, and the effort that can be invested into each individual
candidate. A solution to this problem is offered by a two-stage design which separates the gen-
eration of answer candidates, usually based on shallow linguistic methods, from a subsequent
validation stage (possibly) involving more sophisticated techniques like deep semantic analysis
and logical entailment testing. This generation/validation paradigm is very popular in QA, and a
variety of validation methods have been proposed which include web-based validation (Magnini
et al., 2002), fuzzy constraint-based validation (Schockaert et al., 2005), and finally logical an-
swer validation (Raina et al., 2005; Tatu et al., 2006; Glöckner, 2006). The Answer Validation
Exercise (AVE) of the CLEF 2006 system evaluation campaign has introduced annotated test
collections and an evaluation methodology for answer validation systems. The results of AVE
2006 clearly demonstrate the superiority of logical answer validation compared to alternative
methods (Peñas et al., 2006). This suggests that logical validation will also provide the most
suitable basis for filtering and merging QA streams in a multi-stream setting.



As pointed out by Magnini et al. (2006), QA@CLEF has seen a consistent increase in the
potential benefit to be gained from answer merging. In fact, the relative improvement of an
(optimal) combined system compared to the best individual system has grown from 28.4% in
2004 through 34.5% in 2005 to 51.2% in 2006 – probably due to diversification and increasing
numbers of participating systems. Thus, there is an apparent promise of multi-stream QA. But
there are also methodical arguments in favor of the multi-stream approach: 1) simplified devel-
opment of additional answer producers due to the availability of an external validation service;
2) better recall (coverage) since heterogeneous systems based on very different techniques for
answer finding can be integrated; 3) improved precision because highly specialized, precision-
oriented solutions can now be easily combined or added to an existing recall-oriented baseline
system. Results are now filtered by the logical validation component, and precision may further
benefit from the larger comparison base which permits an aggregation of evidence if an answer
was found several times; 4) (potentially) improved processing times because the individual QA
systems which contribute answers are independent of each other and can execute in parallel on
different machines.

Existing multi-stream QA systems like that of Ahn et al. (2005) are applied to rather ho-
mogeneous systems based on shallow processing techniques (like named entity recognition,
matching of expected answer types). By contrast, our prime interest is that of combining a
precision-oriented system (InSicht) with a recall-oriented baseline system, or specialized solu-
tions for certain question types.

In the paper, we address the central problems which must be solved in order to successfully
filter and merge QA streams based on logical answer validation. Specifically, we explain 1)
how to increase the robustness of the deep parsing approach by using fallback strategies; 2) how
to avoid the construction of a textual hypothesis by directly synthesizing a logical hypothesis
representation; 3) how to ensure robustness of the logical entailment test by embedding the
prover into a relaxation loop; 4) how to aggregate evidence provided that an answer is supported
by several text passages; 5) how to utilize extra-logical quality indicators for breaking ties in
answer selection; 6) how to cope with heterogeneous multi-stream setups which include high-
precision and high-recall systems; 7) how to adjust the filtering criteria to the QA streams based
on an annotated training set; and 8) how to determine the text passage which best supports an
answer of interest. Moreover, we consider the question whether separate parameter settings are
needed for each QA system or whether it is possible to use a joint model for all QA streams.

2 Merging question-answer streams with MAVE
MAVE1 (Glöckner, 2006), a system for validating results of QA systems, was developed as
a testbed for robust knowledge processing in the MultiNet framework (Helbig, 2006). It was
evaluated in the answer verification exercise of QA@CLEF 2006, where it produced the best
two runs of the five submitted by all participants for German. Encouraged by these results, we
now consider the necessary extensions of MAVE which will turn it into a practical system for
merging heterogeneous QA streams.

2.1 System overview
The basic setting comprises a set of QA streams generated by given producers of answers. An
item in such a stream, i.e. a QA result for the question of interest, consists of the answer string
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and a supporting witness – a text passage which substantiates the answer. These answer-witness
pairs can be associated with a confidence score and occurrence count specified by the producer.
The answer merging task to be solved by MAVE involves reranking the answer candidates based
on the joint evidence of all witness-answer pairs. Robust logical answer validation will be the
key method for defining a ranking criterion. Notice that we will assess the quality of reranking
by inspecting the single best answer determined by MAVE. Apart from answer integration, the
merging process also includes the selection of the supporting text passage for each answer in
the combined stream, i.e. MAVE also addresses the problem of witness selection.

More specifically, combining QA streams in MAVE involves: a) Preprocessing, i.e. appli-
cation of correction rules to the extracted text passage. These rules will expand collapsed terms
like ‘Gianni Versace’ which result from named entity recognition, for example. b) The prepro-
cessed inputs are subjected to a deep linguistic analysis by the WOCADI parser (Hartrumpf,
2003) which results in a MultiNet representation (Helbig, 2006). This process includes disam-
biguation of word meanings, semantic role labeling, a facticity labeling, and coreference reso-
lution. c) The post-processing involves a normalization of the generated semantic networks. A
list of 1,889 synonym classes for 4,778 lexical concepts is used for replacing lexical concepts
with a canonical synset representative.2 Not only the question and the witness, but also the
background knowledge is automatically normalized in this way. d) Next is query construction,
i.e. the semantic representation of question and answer is translated into a conjunction of query
literals which represents the hypothesis expressed by the answer. Notice that different queries
will be constructed depending on the parse quality of the involved natural language (NL) expres-
sions (for details see Sect. 2.2.1 and Sect. 2.2.2). e) Robust entailment proving is then applied to
the constructed list of query literals in order to ascertain that the answer is logically justified by
the witness (see Sect. 2.2.2). Inferences are supported by the background knowledge of MAVE:
2,484 basic facts, most of which describe lexico-semantic relationships, and 103 implicative
rules which express key properties of the MultiNet relations and knowledge on biographic top-
ics like birth of a person (Glöckner, 2007). f) Additional non-logical indicators are extracted,
which help detect trivial answers, wrong analyses of the NLP components and other sources
of error. g) Every answer-witness pair is assigned an error level by combining the results of
robust theorem proving and several error indicators. h) Based on an error model derived from
a training corpus, the error level is translated into a correctness probability which captures the
justification strength of an answer given a witness. i) Justification aggregation is used to deter-
mine a total justification score for an answer based on the combined evidence of all supporting
witnesses. j) Answer selection is based on this total justification score combined with heuristic
indicators of answer quality. k) A heuristic witness score is defined which incorporates logical
justification strength and additional aspects of witness quality. It is used by MAVE for witness
selection, i.e. selection of a single text passage which best supports the considered answer.

In the following, these processing steps of MAVE are explained in more detail.

2.2 Logical answer validation
2.2.1 Preliminaries

The most important criterion for filtering and merging of answer candidates in MAVE is the log-
ical validation of the answer judging from the given witness (i.e. snippet or combination of snip-
pets). MAVE was originally developed for the answer validation exercise of QA@CLEF 2006,

2Apart from its own set of 525 synonym relationships, MAVE incorporates high-quality synonym relation-
ships from HaGenLex (Hartrumpf et al., 2003) and unambiguous cases from OpenThesaurus (http://www.
openthesaurus.de/).



where answer validation was formulated as a problem of recognizing textual entailments. Thus,
the question, e.g. ‘Woran starb River Phoenix?’ (“What caused the death of River Phoenix?”),
and the answer, e.g. ‘eine Drogenüberdosis.’ (“a drug overdose”), were composed into a hy-
pothesis in affirmative form like ‘River Phoenix starb an eine(r) Drogenüberdosis.’ (“The death
of River Phoenix was caused by a drug overdose.”) The task of validating an answer then re-
duces to proving the hypothesis representation from the logical representation of the suggested
witness, e.g. ‘‘Dark Blood’ wurde einfach aufgegeben, als River Phoenix im letzten November
vor einem Nachtclub an einer Drogen-Überdosis starb.’ (“‘Dark Blood’ was simply given up
when River Phoenix died from a drug overdose in front of a night club last November.”)

For the strongly inflecting German language, the construction of hypotheses by simple tem-
plate filling often results in syntactically defective expressions (in the above example, ‘eine’ of
the original answer must be changed into ‘einer’). These defects result in bad or failed parses.
In order to avoid this problem, we decided to parse the question and the answer separately. The
semantic representation of the hypothesis is then synthesized from the representations of ques-
tion and answer, i.e. we will short-cut the construction and parsing of a textual hypothesis and
directly work on the logical level.

Example. The MultiNet representation of the question ‘Woran starb River Phoenix?’ (“What
caused the death of River Phoenix?”) is translated into a literal list

((sub X1 "nachname.1.1") (val X1 "phoenix.0") (sub X2 "vorname.1.1")
(val X2 "river.0") (attr X3 X1) (attr X3 X2) (aff X4 X3) (cstr X4 !FOCUS)
(subs X4 "sterben.1.1"))

The analysis of the answer ‘eine Drogenüberdosis’ (“a drug overdose”) is also turned into a
literal list, which contains only the literal (subs !FOCUS "drogenüberdosis.1.1") in this
case. The representation of the logical hypothesis is constructed by renaming variables in the
representation of question and witness in such a way that only the !FOCUS variable (which
refers to the queried entity) is shared by both literal lists, and by subsequently forming the
conjunction. In the example, no renaming of variables is necessary, and the literal lists can
simply be appended to form the combined query.

Another problem to be solved is the demand for precision of the logical approach which
makes logical answer validation potentially very brittle. A single error of the NL analysis mod-
ule which constructs the semantic representations might result in a failed proof of the hypothe-
sis. To achieve robust logical inference, the MAVE prover is therefore embedded in a relaxation
loop. The prover keeps track of the longest prefix L1, . . . ,Lk of the ordered list of query literals
for which a proof was found. Literals are sorted according to a least-effort criterion (Glöckner,
2006). When a full proof fails, the literal Lk+1 will be skipped, the remaining literals are re-
ordered, and a new proof of the smaller fragment begins. By subsequently removing ‘critical’
literals, this process always finds a (possibly empty) query fragment provable from the given
knowledge. Consequently it no longer makes sense to describe the result of logical validation
by a Boolean decision (true or false). By contrast, the number of skipped literals will serve
as an indicator for logical justification strength. The skipped literal count is complemented by
indicators which signal other kinds of errors or ‘imperfections’. Based on an annotated training
set, the system finally switches from computed error counts to the correctness probability of an
answer given the witness.

2.2.2 Methods for determining error levels

In order to gain robustness against parsing failures, MAVE offers several methods for deter-
mining error levels, the choice of which depends on the quality of the data. If the witness, the



question, and the answer all parse well, then the following s-just method is used for valida-
tion, in which the representations of question and answer are synthesized to a logical query (as
sketched in Sect. 2.2.1) which is then passed to the theorem prover. The s-just indicators of
MAVE comprise:

• synth-failed-literals: The number of literals that had to be dropped in the relax-
ation loop in order to be able to prove the remaining literals from the logical representation
of the witness and the background knowledge.

• synth-missing-constraints: The number of numerical expressions in the question
or in the answer for which no corresponding numerical constraint is present in the con-
structed logical query. (This situation happens if the parser has failed to build a complete
semantic representation of question and answer.)

• synth-dropped-names and synth-name-conflicts serve to achieve a robust treat-
ment of person names. After analyzing the person names (first names and surnames)
found in the constructed query and the witness, MAVE will drop all first names from the
query which are not present in the witness, assuming that the person can be identified by
its last name. This dropping of a first name in the query in order to make a proof possible
is reported by the indicator synth-dropped-names. The constructed query and the text
might mention persons with the same surname but different first names. In this case, the
text passage is likely not relevant to the person of interest. This case is reported by the
indicator synth-name-conflicts which count the number of such first name conflicts.

• The MultiNet formalism employed for knowledge representation offers a facticity at-
tribute which marks every object and state of affairs as either real, non-real/non-existing
or hypothetical/unknown. The indicator synth-proof-facticity equals 0 if all entities
involved in the proof of the query are real; it equals 1 if at least one involved individual is
marked hypothetical; and it equals 2 if at least one involved individual is marked nonreal.

These indicators are combined in the following error count determined by the s-just method:

synth-err-count = synth-failed-literals+synth-missing-constraints

+synth-dropped-names+synth-name-conflicts+synth-proof-facticity.

An alternative method was introduced to increase robustness against parsing failure. The
method will work when the answer cannot be parsed. This case is significant due to simplistic
answer extraction methods used by QA systems. The method still requires that the question
parses well (which is typically guaranteed since the question is entered by a person and not
automatically generated), and also that the witness parses sufficiently well on average (here it
will only be demanded that at least one sentence with a full parse or possibly a chunk parse
exists in the text passage). The basic idea of the q-just method is that of gathering evidence
from a proof of the original question. The results of this logical proof are then related to the
original answer in the answer-witness pair by a simple matching technique which only requires
a lexical analysis but no parse of the answer.

• question-failed-literals reports the number of literals which had to be skipped in
the relaxation loop in order to find a proof of the remaining literals.

• question-missing-constraints counts the number of numerical expressions in the
original question which have no counterpart in the constructed logical query. This situa-
tion happens when the parser does not find a complete analysis of the question.



• The indicators question-dropped-names and question-name-conflicts are deter-
mined in analogy to the indicators in the s-just case.

• question-proof-facticity evaluates the proof of the original question that was found
by the prover from a facticity perspective (see synth-proof-facticity).

• In order to connect the result to the answer suggested by the QA system, MAVE ex-
tracts the content words from the answer and computes the corresponding lexical concept
IDs (i.e. disambiguated word meanings in HaGenLex) for them. The system then tries
to match these concepts with the concept constants found in the ‘central sentence’ of
the witness (see below). Ideally, all concepts can be matched. Thus, the number of mis-
matches is answer-total-concepts−answer-matched-concepts in this case, where
answer-total-concepts is the number of all lexical concepts associated with the an-
swer plus all numeric expressions, while answer-matched-concepts is the number of
those concepts and numerical expressions that the system was able to match with the
central sentence.

The central sentence of the witness is determined as follows. The system collects all dis-
course entities involved in the proof of the original question (these occur as constants in the
instantiated literals). Each such discourse entity gets a vote of 1. If the entity occurs in j sen-
tences of the witness, then it will equally distribute its vote over these sentences, i.e. it will add
1/ j to the accumulated vote of each of these sentences. The sentence with the highest accumu-
lated vote for all discourse entities involved in the proof of the question will be chosen as the
central sentence which forms the basis for the matching of concept constants and numbers as de-
scribed above. The method deliberately restricts matching to a single sentence in the witness in
order to ensure a certain coherence of the matches. Notice that the voting model for determining
the most relevant sentence will also be used to calculate an indicator wn-question-focusing,
which is defined as the accumulated vote of the central sentence divided by the number of voters
(i.e. of discourse entities on which the voting was based). This indicator, which measures the
agglomeration of the relevant information in the witness, will be used later as one dimension of
witness quality (see Sect. 2.4).

Summing up indicator values, we obtain the following error count for the q-just validation
method, to be used if a parse of the answer fails while question and witness parse well.

question-err-count = question-failed-literals+question-missing-constraints

+question-dropped-names+question-name-conflicts

+question-proof-facticity+answer-total-concepts−answer-matched-concepts.

In the remaining case that the witness and/or the question cannot be parsed, a fixed default
justification will be used (see fallback case in Sect. 2.2.3).

2.2.3 From error levels to probability of justification

The justification strength of the witness, i.e. the degree to which the witness supports the an-
swer, is determined in the following way. For each validation method m∈{s-just, q-just, fallback}
and potentially also depending on the QA stream (producer) p, we determine the empirical prob-
ability that an answer is correct given that method m is used for evaluation and resulted in error
level `. If the s-just mode is possible, i.e. question, answer, and witness parse well, then the em-
pirical correctness probability P(answer correct|method = s-just,err-level = `,producer =



p) is used for wn-justification. If parsing of the answer fails, but the question and wit-
ness parse well, then P(answer correct|method = q-just,err-level = `,producer = p) is
used, based on the validation method q-just which does not require a parse of the answer.
Finally if neither of these methods is applicable since parsing of witness or question failed,
then the default correctness probability P(answer correct|producer = p,method = fallback)
will be used as the fallback justification strength, which is at least sufficient to differentiate
between precision-oriented and high-recall systems. These empirical probabilities must be de-
termined from relative frequencies in a training set annotated for correctness of answers. In
order to better support small training sets, we also considered using the empirical probability
P(answer correct|producer= p) (determined from all training items) in the fallback case rather
than P(answer correct|producer = p,method = fallback) (determined only from the smaller
set of method = fallback items which cannot be parsed). Results do not change much then, as
shown by the evaluation in Sect. 4 and Sect. 5; the corresponding runs are marked by an asterisk
(*). Notice that the constraint producer = p will be omitted when a joint error model is used
for all QA streams.

2.2.4 Estimation of justification probabilities

Let us now consider the problem estimating these correctness probabilities. Direct calculation
of the empirical probabilities P(answer correct|method = m,err-level = `,producer = p)
from relative frequencies in the annotated training set is not very useful due to a sparse data
problem: There might be very few items for a given error level so that using the observed
relative frequencies directly would not be reliable. In order to avoid overfitting, we took a dif-
ferent route. The functional dependence of the correctness probability on the error level can
roughly be described by an exponential function with negative exponent. We thus fitted an ex-
ponential of the general form f(x) = αe−βx (where α ∈ [0,1] and β ∈ R+

0 ) to the given data.
Here we describe the chosen method for fitting the curve which is weighted by the number
of supporting items for each error level. The method considers pairs of error levels, deter-
mines optimal choices of α and β for each pair, and then selects a weighted median of the
choices of α and β determined in this way. More specifically, let L ⊂ N be the finite subset
of error levels ` ∈ N for which at least one answer-witness pair with synth-err-count = `
(or question-err-count = `, depending on the considered method m) exists in the training
set. Let n` denote the number of items in the training set for the considered producer with
synth-err-count = ` (or question-err-count = ` for the q-just method). Further let k`

be the number of all such items which are classified as correct (i.e. supporting a correct an-
swer). We utilize these numbers for a weighted approximation in the following way. Consider
all i, j ∈ L with i < j. For the given choice of i, j, we define

β =
ln(max( ki

ni
,ρ))− ln(max( k j

n j
,ρ))

( j− i)
α = ki

ni
eβ i

where ρ > 0 is a small constant which prevents the logarithm from being undefined when the
argument equals zero.3 The resulting α is inserted ni + n j times in a bag of all α’s and β is
inserted ni + n j times in a bag of all β ’s (in practice, two binary trees are used to implement
this; the first associates occurrence counts to each α while the other binary tree associates oc-
currence counts to each β ). Having processed all i, j ∈ L with i < l, we fetch the median α ′ and

3In the experiments, ρ = 0.001 was used for smoothing. It should be remarked that the choice of ρ will rarely
affect results because the median selects a ‘middle’ value of β while ρ is concerned with the extreme cases.



the median β ′ from the respective bags (i.e. that middle choice of α ′ such that half of the entries
are smaller than or equal to α ′ and half of the entries are larger than or equal to α ′, and anal-
ogously for β ′). We then use α ′ and β ′ to compute synth-just-strengh = α ′e−β ′`, where
` = synth-err-count for the considered item, and analogously question-just-strengh =
α ′′e−β ′′` for the q-just method, where α ′′ and β ′′ are determined in a similar way based on
` = question-err-count. Though results can be suboptimal, this method computes the pa-
rameters quickly in a single sweep through the data. Moreover, the use of the median promises
a certain stability of the method against variation in the data and outliers. Obviously, other
methods for computing the parameters (e.g. a least-square fit to k`/n`) are also conceivable.

2.2.5 Justification aggregation

So far we only considered the justification strength wn-justification, which is fitted to the
empirical probability that the answer is correct, given the error level, the method used for com-
puting the level, and the producer of interest. However, wn-justification only judges the
evidence for the answer which stems from a single witness. In order to obtain a global validity
score for the answer from the perspective of every supporting witness, we will now explain the
aggregation of this evidence across answer-witness pairs for a given question. Let us define
a simplification function σ which maps strings into strings. We define σ such that it drops a
list of (non-concept) stopwords; eliminates accents; expands German umlaut characters (e.g.
σ(ä) = ae); translates all characters into lower-case; and finally deletes all characters which are
not alphanumeric. We use σ for defining an equivalence relation ∼ on answer strings where
awi ∼ aw2 iff σ(aw1) = σ(aw2). For a given answer aw, we consider all answer-witness pairs
(awi,wni) such that aw∼ awi for all i = 1, . . . ,n. The aggregated justification strength of answer
aw, which accumulates the evidence for the answer across compatible answer-witness pairs with
respect to∼, is then given by aw-total-justification= 1−∏

n
i (1−wn-justificationi),

where wn-justificationi is the justification strength of awi judging from witness wni. Thus,
an answer is unsupported if none of the compatible answer-witness pairs (modulo σ ) justifies
the answer.

2.3 Heuristic answer scoring and answer selection
Apart from lack of logical justification, there are other reasons why an answer can be wrong.
These aspects are captured by false-positive tests. Moreover, additional quality criteria ex-
ist which are less important than logical validity or a false-positive criterion but potentially
useful for breaking ties when selecting the best answer. Notice that these criteria, unlike
wn-justification, might differ for answers equivalent under ∼. For example, it is possi-
ble that one version of the answer can be parsed while another version has a syntactic defect. In
this case, answer selection should prefer the well-formed variant.

• An answer should not be incomplete. For the time being, we capture this by a length
check and simply set aw-incompleteness = min(answer-num-chars/40,1).

• Overlong answers tend to be false. This is captured by a second criterion for answer
length, aw-overlength = max(0,1−max(answer-num-chars−40,0)/80).

• Good answers often show high parsing scores, as captured by the aw-parse-quality

indicator provided by the parser. It ranges from 0 (no parse at all) to 1 (optimal parse).



• Though the justification of the answer might be increased by aggregating many weak
justifications, the result must eventually be presented and explained to the user. For that
purpose, one needs a single convincing witness, i.e. a supporting text passage which
strongly motivates the answer. This concern is captured by aw-best-wn-quality, the
maximum wn-quality of all witnesses supporting the considered answer (see Sect. 2.4
for details).

Moreover, two logical tests for false positives are conducted.

• aw-not-trivial asserts that the answer is non-trivial. We call an answer trivial if the
logical representation of the answer can be inferred from the logical representation of the
question. For example, the logical content of ‘Gianni Versace’ (i.e. a person with the
name exists) can be inferred from the logical representation of ‘Who is Gianni Versace?’.
The criterion will be checked by a precise proof (i.e. without the relaxation loop) because
a trivial answer should be ‘obviously trivial’ and not ‘approximately trivial’.

• aw-not-circular asserts that the answer is non-circular. An answer in non-affirmative
form, especially to a definition question, is circular if the question can be proved from the
answer (which should be in non-affirmative form). For example, the question ‘What is
the Eiffel tower?’ should not be answered by ‘The Eiffel tower in Paris’.

The above criteria are supposed to indicate errors in an answer; this is why they are combined
in a conjunctive way (by a multiplication). We use a weighting function c(w,x) = 1−w + wx
for adjusting the relative impact of each criterion on the final quality score. Weights were
determined experimentally.

aw-quality-score = c(0.1,aw-incompleteness) · c(0.1,aw-overlength)
· c(0.2,aw-parse-quality) · c(0.6,aw-not-trivial) · c(0.6,aw-not-circular)
·aw-best-wn-quality ·aw-total-justification.

This quality score is useful for ranking answers of one or more QA streams. However, in
the experiments to follow, the quality score will not be used for ranking results but rather for
selecting a single best answer from the answer candidates. A threshold can be used to cut off
answers which fall below a given quality level. This might be useful for sensing that a question
cannot be answered given the data. In the later experiments, though, we will focus on the case
that a positive answer exists.

2.4 Heuristic witness scoring and witness selection
Merging QA streams (of the assumed kind) not only involves a scoring and selection of answers.
If several answer-witness pairs are available for a given answer, then merging also involves the
selection of a best witness (relevant text passage) which optimally supports the considered an-
swer candidate. Logical support (as expressed by wn-justification) is most important here,
but there are further criteria of interest. Some of these criteria, like parsing quality, capture in-
herent characteristics of the witness passage. Other cases, like the producer’s own confidence in
a suggested answer, are concerned with the relationship between question, answer, and witness.

• The producers of the answer streams may assign a confidence between 0 (worst) and 1
(best) to each answer candidate in the stream (similar to the QA@CLEF task). The score
is assigned to the indicator producer-score.



• Producers can assign a number of occurrences to each item; it is assumed that repeated
occurrences in the same document will not be inserted as separate items in the answer
stream but rather grouped together in a single item. We define a criterion which rewards
a high number of occurrences, wn-occurrences = 1− 2/(occurrences+ 1), where
occurrences is the number of occurrences reported by the answer producer.

• The average parse quality of the witness text should be high. An average is used because
the parser assigns parse qualities on a per sentence basis, and the witness is allowed to
span several sentences. Thus, wn-parse-quality is the average of the parse qualities of
the sentences, which ranges between 0 (no parse) and 1 (perfect parse).

• An overlong text passage makes a poor witness. Not only is a longer passage less concise.
There is also a higher likelihood that the information checked by the QA system is spread
over the text but not coherent. We capture this by the criterion wn-num-sentences =
max(0,1− (witness-num-sentences−1)/5), where witness-num-sentences is the
number of sentences in the witness.

• The length of the witness is also evaluated in terms of the number of characters. We set
wn-num-chars = max(0,1− witness-num-chars/800), where witness-num-chars

is the character count of the witness.

• The ratio of special characters in the witness should be low, since texts with a very high
number of special characters tend to be presented in a schematic way which is hard to
parse and interpret automatically. In order to avoid this source of error, we use the cri-
terion wn-special-chars = max(0,1− 6 · witness-special-chars-ratio), where
witness-special-chars-ratio is the number of all characters in the witness divided
by the number of special characters (i.e. non-alphabetic, non-digit, non-whitespace print-
able characters).

• The indicator wn-relativizing-words = 1/(1 + witness-relativizing-words) is
used to punish occurrences of relativizing words like non-increasing quantifiers (‘few’) or
modal expressions, which are hard to interpret on the logical level and a possible source of
incorrect results. Here, witness-relativizing-words is the relativizing word count
of the witness divided by the number of sentences in the witness text. A low value of
wn-relativizing-words indicates a severe decrease in reliability.

• The MAVE system is equipped with a coreference resolution module (e.g. for interpret-
ing anaphoric pronouns). However, coreference resolution is still prone to errors and a
witness which allows the question to be answered from a single sentence is likely more
reliable than a passage in which the relevant information is scattered over several sen-
tences. The criterion wn-question-focusing already explained in Sect. 2.2.2 measures
this agglomeration of the relevant information in a single sentence.

Since the effect of the criteria should be moderated, we used a weighted combination with the
above weighting function c(w,x) = 1−w+wx for defining witness quality:

wn-quality = c(0.2,wn-occurrences) · c(0.2,wn-parse-quality) · c(0.2,producer-score)
· c(0.1,wn-num-sentences) · c(0.1,wn-num-chars) · c(0.3,wn-special-chars)
· c(0.2,wn-relativizing-words) · c(0.2,wn-question-focusing) ·wn-justification.

The wn-quality score is applied by MAVE to select a single best witness for each answer
of interest. The relevant text passage can be presented to the user as an explanation of the
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Figure 1: Schema of the IRSAW system.

answer which helps the user understand if the answer is correct and sometimes also clarifies the
meaning of the answer.

3 Application in the IRSAW question answering framework

3.1 Description of the IRSAW framework
IRSAW (Intelligent Information Retrieval on the Basis of a Semantically Annotated Web) is a
research project in which a modular framework (with the same name) integrating different QA
approaches is being developed. Figure 1 shows the general system architecture.

We employed three different methods to create streams of answer candidates: The first
answer stream is produced by InSicht, a precision-oriented QA system using a semantic network
representation of questions and documents (see Sect. 3.2). The second answer stream originates
from a recall-oriented QA system using pattern matching (QAP, see Sect. 3.3), and the third
stream results from a modified IR approach (MIRA, see Sect. 3.4). The latter two approaches
rely on a preprocessed version of the document corpus (described below), to which sentence
boundary detection has been applied on each document to form text segments. These text
segments are transformed into XML and indexed in a database management system supporting
the tf-idf IR model. Together with the answer validation module MAVE, these modules are part
of the IRSAW QA system.

Evaluation is based on the QA@CLEF corpus, which (after duplicate removal) contains
277,000 newspaper and newswire articles from Der Spiegel, Frankfurter Rundschau, and SDA
(Schweizer Depeschenagentur, Swiss news agency) from the years 1994 and 1995. The corpus
of questions consists of the official German questions employed for the QA task at CLEF in
2004, 2005, and 2006. For each year, a set of 200 questions was released.

3.2 The deep IRSAW producer: InSicht
The deep QA system used for the answer merging experiments is InSicht (Hartrumpf, 2005,
2006), which employs complete sentence parsing, inferences, and semantic representation match-
ing. It comprises six main steps.



In the document processing step, all documents from a given collection are transformed
into a standard XML format (CES, corpus encoding standard4) with word, sentence, and para-
graph boundaries marked up by XML elements. All preprocessed documents are parsed by the
WOCADI parser (Hartrumpf, 2003) yielding a syntactic dependency structure and a semantic
network representation of the MultiNet formalism for each sentence.

In the second step (query processing), WOCADI parses the input sentence. Determining
the sentence type (here, often a subtype of question) is especially important because it controls
some parts of two later steps: query expansion and answer generation.

Next comes query expansion: Equivalent and similar semantic networks are derived by
means of lexico-semantic relations from the computer lexicon HaGenLex (Hartrumpf et al.,
2003) and a lexical database (GermaNet), equivalence rules, and inference rules like axioms for
MultiNet relations and entailments for situations. The results are disjunctively connected se-
mantic networks that try to cover the representations of many different sentences that (explicitly
or implicitly) contain an answer to the question.

In the fourth step (semantic network matching), all document sentences matching a seman-
tic network from query expansion are collected. A two-level approach is chosen for efficiency.
First, an index of concepts (disambiguated word meanings from HaGenLex) is consulted with
the concepts from the question networks. Second, the semantic networks of the retrieved doc-
uments are compared sentence network by sentence network to find a match with a question
network.

Answer generation is next: NL generation rules are applied to semantic networks matching
the query and an NL answer is generated. Therefore answers from InSicht can differ from
the exact form found in the documents. The rules also act as a filter for uninformative or bad
answers. The results are tuples of generated answer string, one ore more supporting snippets
(sentences forming a witness), answer score (a number between 0 and 1), supporting document
ID, and supporting sentence ID.

To deal with candidate answers from answer generation (which can be numerous), an an-
swer selection step is required at the end. It employs answer clustering and is driven by a
preference for more frequent answers and a preference for more elaborate answers. The best
answer(s) and the supporting sentences (and the IDs of supporting sentences and documents)
are presented.

Due to the relatively strict matching approach, InSicht is precision-oriented: in QA@CLEF
2004, 2005, and 2006 almost no wrong positive answers occurred. But on the other hand,
InSicht misses many answers because the parses of relevant sentences contain small errors or a
central inference step cannot be made due to lack of background knowledge

The average runtime per question was reduced to around 20 seconds by setting InSicht’s
time-out per question to 180 seconds. In addition, the maximum of documents investigated
during semantic network matching was reduced to 10,000.

The unmodified InSicht system was taken as one answer stream for combining with the
recall-oriented shallow approaches described in Sect. 3.3 and Sect. 3.4. In addition, InSicht was
modified by introducing and adjusting parameters to provide an alternative answer stream. The
corresponding InSicht run is labeled InSicht (relaxed) in Sect. 4. The main modifications in the
relaxed run are the following:

1. Ignoring semantic layer features. The layer features of the MultiNet formalism describe
aspects like the quantification, cardinality, facticity, and genericity of concepts. In the
relaxed run, InSicht ignored layer feature differences between question networks and

4http://www.cs.vassar.edu/CES/



Table 1: Examples for relational triples. Question patterns are translated from German.
Relation name Question pattern
born in(<key>, <answer>) Where was <key> born?
died at age(<key>, <answer>) How old was <key> when he/she died?
died in(<key>, <answer>) Where did <key> die? / At what age did <key> die?
located in(<key>, <answer>) Where is <key>?

document networks. This allows to find additional correct answers, for example when the
difference in cardinality does not matter: ‘Wahl’ vs. ‘Wahlen’ (singular vs. plural of the
noun ‘Wahl’, “election”). On the downside, this can lead to wrong answers, e.g. CLEF
question qa05 059 asks about the number of victims of the massacres in Rwanda, while
many documents talk about just a single massacre.

2. No answer clustering. InSicht clusters similar answer candidates into one answer candi-
date representation. This step can make errors or move a better answer candidate into a
cluster with a worse answer candidate as the chosen cluster representative. Therefore the
relaxed InSicht run employed no answer clustering.

3.3 QA by pattern matching – QAP
QAP (Question Answering by Pattern matching) employs pattern matching on a per-sentence
basis, in which answers are found as instantiations of the answer variable. For this approach,
about 30 classes of questions were defined. These classes were derived for factoid questions
in the CLEF question corpus, forming a relational triple. A relational triple has the form
<relname>(<key>, <answer>). <relname> is one of born in, died at age, etc. <key> is
a set of keywords extracted from the question, and <answer> is the answer string to a question
corresponding to the relation <relname>. Table 1 shows some typical examples for relational
triples. Both QAP and MIRA (described in Sect. 3.4) operate with a time-out of 180 seconds
per question.

QAP returns the answer exactly as it occurs in the document text. Several large resources
were utilized to create question-answer pairs for training the answer identification method. Most
important are VERA (Virtual Entity of Relevant Acronyms), an acronym database, and the PND
data as used in the German Wikipedia (PND – Personennamendatei, see Hengel and Pfeifer
(2005)). An entry in the PND data contains information about a famous person such as his/her
place of birth, date of birth, place of death, date of death, aliases, and profession. This data
can be transformed to represent question-answer pairs. In addition to explicit information, ad-
ditional question-answer pairs such as the age at death or meronymy information for locations
(typically comma separated values, e.g. ‘Seattle, Washington’) can be derived. These question-
answer pairs are employed for extracting surface patterns from the CLEF newspaper corpus.
For each pair, an IR query containing both question keywords and answer is sent to the sen-
tence database and the first 1000 document sentences are retrieved. (For QAP, no morphologic
variants were used.)

Document sentences are tokenized and the token sequences corresponding to question key-
words and answer are substituted with keyword and answer variables. For each sentence, the
context of the answer variable consisting of two tokens or variables to its left and its right is
extracted. Variables are added to the left and right of this context pattern to form a pattern of
tokens and variables representing a full tokenized sentence. These patterns are sorted by fre-



quency and the top 1000 patterns are kept for matching. QA in QAP consists of extracting the
main keywords for an NL question as well as determining the question type (relname). The
patterns corresponding to the relation identified are applied to the set of document sentences
retrieved. The pattern matching approach returns instantiations of the answer variables, which
form strings for answer candidates. Answer candidates contain frequency, score, snippet, an-
swer string, document ID and sentence ID. Scoring consists of a weighted sum of the success
rate of pattern matching (precision) with the database score. The top 50 candidates are retrieved
for validation by MAVE.5

3.4 A modified IR approach for QA – MIRA
MIRA (Modified Information Retrieval Approach for QA) is a recall-oriented approach to QA
based on information retrieval combined with the selection of the most frequent word sequence
of the expected answer type. Question processing in MIRA consists of the following steps:
The NL question is tokenized and stopwords are eliminated to identify the keywords. A naı̈ve
Bayesian classifier is applied on features of the question such as the first N word forms. The
classifier returns a ranking of expected answer types, of which the top ranked type is selected.
The classes for expected answer type are: LOC (location), ORG (organization), PER (person),
TIM (time), MEA (measurement and quantity), and OTH (other). All keywords in the NL ques-
tion are looked up in the CELEX morphology database (Baayen et al., 1995) to find all possible
morphologic variants. An IR query is created utilizing all morphologic variants of keywords
and submitted to the database system. The top N documents (sentences) are retrieved for further
processing (N = 1000). The document sentences are then tokenized and their tokens catego-
rized into classes, following the classification scheme mentioned above, i.e. named entities are
tagged with LOC, ORG, or PER; temporal expressions (dates) are annotated with TIM, and
numeric expressions followed by a unit are associated with MEA. Answer candidates are then
preselected by choosing the most frequent word sequences tagged with the expected answer
type.

For example, the question ‘Who was the first man on the moon?’ is transformed into the
IR query ‘first man men moon moons’. Its expected answer type is PER (person). Among
the answer candidates for this question are ‘Am 21. Juli um 3.56 Uhr mitteleuropäischer Zeit
tritt Armstrong als erster Mensch in den Staub des Mondes’ (“On July 21st at 3.56 o’clock
CET Armstrong steps as the first man into the dust of the moon”) and ‘Vor 25 Jahren betrat
Neil Armstrong als erster Mensch den Mond, doch heute stagniert die bemannte Raumfahrt’
(“Twenty-five years ago Neil Armstrong was the first man to step onto the moon, but today
manned space flight stagnates”). Both sentences contain a correct candidate answer tagged as
a person name (‘Armstrong’ and ‘Neil Armstrong’, respectively).

4 Experimental results of answer merging for IRSAW
Let us now describe the experimental results obtained by bundling the three QA streams and
merging answers by the MAVE system. As mentioned in Sect. 3.1, evaluation was based on
the 600 QA@CLEF questions for the years 2004 through 2006, and the goal of the system
was selecting a single best answer for each of the questions. Notice that the InSicht, QAP
and MIRA systems offer their own means for aggregating scores of answers for which more

5Most numeric restrictions have been chosen after empiric observations in testing as well as considering prag-
matic factors such as memory requirements and processing time for a more efficient QA system.



Run #y #x
InSicht (relaxed) 199.4 10.9
InSicht (relaxed∗) 199.2 11
InSicht (optimal) 213 6
InSicht (random) 172.1 14.5
InSicht (standalone) 204 10

Table 2: Results of answer selection for InSicht based on 600 QA@CLEF questions.

than one occurrence in (or justification from) the text is found. However these mechanisms
were switched off for the answer merging test. For practical reasons, each system was allowed
to suggest no more than 50 answer-witness pairs per question. The three IRSAW producers
InSicht (relaxed settings), QAP, and MIRA generated a total of 18,720 answer-witness pairs
which covered 571 of the 600 examined questions. All of these answer-witness pairs were
annotated for the experiment and 3,553 of these answers (19.0%) were judged correct.

The heterogeneity of the QA streams is witnessed by the following annotation statistics.
The InSicht (relaxed) producer contributed 1,212 answer-witness pairs which cover 226 of the
600 questions. The low number of questions for which answer candidates were found shows
that deep linguistic processing and semantic network matching in InSicht are relatively brittle,
which suggests a combination with more recall-oriented approaches. 625 of the answer-witness
pairs produced by InSicht contained a valid answer candidate, which means a precision (before
answer selection) of 51.6%. The QAP stream is also rather specialized with respect to the
questions that can be answered. QAP generated 2,562 answer-witness pairs which cover only
114 of the 600 questions, however. 1,190 of the answer-witness pairs were judged correct,
which means a precision of 46.4%. The other extreme of a recall-oriented system is represented
by MIRA which contributed a total of 14,946 answer-witness pairs. MIRA produced 1,738
correct answer-witness pairs which means a precision of 11.6%. Since MIRA produces answer
candidates for 520 of the 600 questions, it qualifies as a high-recall method.

In the following, we describe the contents of the individual QA streams with more detail.
Since every producer was allowed to submit several answer candidates for each question, we
also consider the suitability of MAVE for merging the result of each system in isolation. Notice
that in the following, #y denotes the number of correct positive answers and #x the number of
inexact answers. For evaluating answer selection quality of MAVE, we are mainly interested in
relative recall, i.e. #y achieved by MAVE divided by #y obtained for optimal answer selection.
Therefore the remaining cases where the system cannot select a correct answer are not listed
since they are irrelevant for determining relative recall. We further computed a random baseline
(labeled ‘random’ in the tables), which corresponds to the expected number of correct answers
provided a random choice of the preferred answer from the answer candidates available for each
question. Generally speaking, the difficulty of answer selection (but also its possible benefit)
depends on the difference between the random baseline and the results for optimal answer
selection.

The results for the InSicht stream are shown in Table 2. InSicht was run in ‘relaxed’ mode
to obtain better recall. In this case, optimal selection of answer candidates will correctly answer
213 of the 600 questions, which marks the upper bound on the number of correct selections that
can be achieved. For InSicht, the random baseline achieves as much as 80.8% of relative recall
compared to the optimal selection, which once again illustrates the precision-orientedness of
the system. All listed MAVE results were averaged over ten runs of ten-fold cross-validation



Run #y #x
QAP 48 8
QAP∗ 47.6 8.2
QAP (optimal) 67 12
QAP (random) 36.2 9.7

Run #y #x
MIRA 87 11.8
MIRA∗ 87.3 11.7
MIRA (optimal) 137 17
MIRA (random) 38.8 6

Table 3: Results of answer selection for QAP (left) and the MIRA stream (right).

(this explains the floating-point numbers in the tables). Here and in the following, the results
for two methods of estimating fallback error probabilities are listed. The result labeled ‘InSicht
(relaxed)’ corresponds to the estimation of the default error probability from all items in the
training partition with method = fallback. i.e. either question or witness cannot be parsed.
By contrast, the result ‘InSicht (relaxed)*’ marked with the asterisk was obtained when the
fallback error probability was calculated from all items regardless of the assigned method (see
Sect. 2.4). Compared to the optimal selection, MAVE achieves a relative recall of 93.6% when
estimating fallback error probability from items in the training set which cannot be parsed. This
means a relative improvement of 15.9% compared to the baseline. When estimating the fallback
error probability from the total annotated training set, we get a similar 93.5% of relative recall.
The results of the standalone InSicht system using its builtin answer selection are also shown.
The 204 correct answers (as compared to 199 found by MAVE) demonstrate that the general-
purpose selection method of MAVE comes close in quality to a custom solution for a specific
QA system.

The results for the QAP stream are shown in Table 3 (left-hand side). Here, MAVE achieves
71.6% of relative recall in the QAP run, compared to an optimal selection result of 67 questions
that can be answered. The result for global fallback errors probabilities in the QAP* run is again
very similar (71.0% of relative recall). The random baseline has only 54.0% relative recall. This
means a relative improvement of 32.6% for the QAP run compared to the baseline.

The right-hand side of Table 3 lists the results of MAVE for the MIRA stream. Estimation
of fallback error probabilities based on the total training set (in MIRA*) achieved slightly better
results in this case compared to a computation from only those items which cannot be parsed
(MIRA). The best result with #y=87.3 correctly answered questions reaches 63.7% of relative
recall, which means a relative improvement of 125% compared to the baseline. The benefit of
answer validation is especially high in this case since MIRA is a recall-oriented system which
produces a large number of answer candidates but only with low precision.

Having discussed the coverage and quality of the individual streams, we now turn to multi-
stream combinations. The results of combining InSicht (relaxed mode) and QAP are shown
on the left-hand side of Table 4. Compared to the results obtained for the InSicht stream, we
get a stable but small improvement of 9 more questions that can be answered. Since InSicht
contributes the majority of answers and since QAP is relatively precision-oriented as well, the
results ‘I+Q (joint)’ and ‘I+Q (joint*)’ using a joint error model for both streams are not very
different from the results using separate error models for each stream (i.e. ‘I+Q’ and ‘I+Q*’).
As witnessed by the theoretical optimum of 229 questions with at least one correct answer (com-
pared to 213 for InSicht alone), the possible benefit of merging the InSicht and QAP streams is
small even for an optimal combination. This suggests that a high-recall stream should be added.

The MIRA stream was designed to fulfill this requirement – it covers a large number of
questions due to the use of simple IR-style search and subsequent matching of expected answer
types. The results for the combined run of InSicht (relaxed), QAP, and MIRA are shown in



Run #y #x
I+Q 208.6 12.1
I+Q∗ 208.3 12.2
I+Q (joint) 206.9 11.1
I+Q (joint∗) 206.5 11.4
I+Q (optimal) 229 8
I+Q (random) 157.1 16.8

Run #y #x
I+M+Q 247.4 15.8
I+M+Q∗ 247.3 15.7
I+M+Q (joint) 209.1 15.6
I+M+Q (joint∗) 210.4 15.2
I+M+Q (optimal) 305 17
I+M+Q (random) 94.1 14.4

Table 4: Results of answer selection for the InSicht+QAP streams (left) and for all three IR-
SAW streams (right) based on the 600 test questions.

Table 4 on the right. The I+M+Q run which combines all three systems with a separate error
model for each system achieved the best result in this test, which corresponds to 81.1% of rela-
tive recall compared to optimal selection. The runs which use a joint model for all QA streams
are significantly worse than the runs with parameters fitted to each individual QA system. For
example, I+M+Q (joint) only determined a correct preferred answer for 209 questions, while
I+M+Q (with parameters individually adjusted for each QA stream) answered 247 questions
correctly. Since MIRA has contributed a large number of answer candidates, it tends to dom-
inate parameter estimation of the joint model. But most correct solutions were produced by
InSicht which requires a different choice of parameters suitable for a precision-oriented system.

5 Application to the QA@CLEF AVE 2006 test set
The AVE 2006 test set for German was developed for the evaluation of answer validation sys-
tems in the QA@CLEF answer verification exercise (Peñas et al., 2006). It consists of 1,443
answer validation items specified by the following data: a) the original question; b) the affir-
mative hypothesis; and c) the snippet supporting the answer (i.e. ‘witness’ in our terminology).
The templates used for hypothesis construction by slot-filling are publicly available.6 In order
to fit the AVE test set into the framework assumed here (which avoids the construction of a
textual hypothesis in order to improve results for the inflecting language of German), we used
the hypothesis templates for a reverse operation of reconstructing the original answer strings
from the hypotheses in the AVE test set. The benefits of this approach are apparent from the
statistics of parsing qualities: First of all, 93.3% of the questions in the AVE test set can be
parsed with optimal quality, compared to only 64.7% of the hypotheses which have a perfect
parse. Moreover parsing fails completely for 9.4% of the hypotheses, but only for 1.1% of the
questions. This demonstrates the drawbacks of hypothesis construction by template filling for a
strongly inflecting language. By contrast, the q-just method described above only assumes that
a parse of the question exists, which is the case for 98.9% of the questions. The s-just method,
which synthesizes question and answer representation, is more precise than q-just. It requires
an additional parse of the answer to exist. Since the answers are syntactically simpler than hy-
potheses, and typically extracted from a well-formed text rather than constructed by slot filling,
parsing quality of the answers tends to be better than that of hypotheses. Thus, we obtain a
perfect parse for 83.4% of all non-numeric answers, while parsing fails completely for 7.8% of
non-numeric answers. These results are better than those for hypotheses. However, the parser
is currently unable to decide on a semantic representation for pure numbers (for example, 1984

6http://nlp.uned.es/QA/AVE/



Run #y #x
First 73.3 3
First∗ 73.6 2.9
First (optimal) 93 4
First (random) 58.5 3

Run #y #x
AVE 89.5 3
AVE∗ 90 2.6
AVE (joint) 87.8 1
AVE (joint∗) 88.3 1
AVE (optimal) 122 1
AVE (random) 49.3 1.7

Table 5: Results of MAVE for the best individual system (left) and for all QA streams of AVE
2006 (right) based on the 200 questions of QA@CLEF 2006 for German.

might refer to a year or simply to a positive integer). Therefore MAVE falls back on the q-just
method for numbers, which comprise 9.8% of all answer strings. We intend to add a special
treatment of this important case.

The AVE test set for German consists of the eight QA streams produced by the QA@CLEF
participants for the language pairs DE-DE (three systems with two runs each) and EN-DE (one
system with two runs), see (Magnini et al., 2006). The official annotation of the AVE test set
classifies each validation item as either YES (344 correct answers supported by the witness), NO
(1,064 invalid answers judging from witness), or UNKNOWN (35 borderline cases). In order
to fit this annotation into our framework, an answer classified YES for at least one validation
item was considered correct (‘y’); an answer classified NO in all validation items was judged
wrong (‘n’); the remaining cases were inspected manually and usually classified inexact (‘x’).

Let us again start by describing the results of individual systems. We shall focus on the
results of the best individual QA system which contributed results to the test set, shown in
Table 5 (left). Notice that systems were allowed to specify more than one answer candidate per
question, and we are again interested in selecting a single best answer for each question. The
table lists the baseline (expected result for random choice from candidate answers), the optimal
result (for a virtual selection system which always chooses a correct answer if available), and
the results of MAVE (estimating default error probabilities from the fallback method cases in
the training partition, or from all items in the First* case, again averaging over ten runs of ten-
fold cross-validation). For the best individual system, results of MAVE are half-way between
the baseline and optimal answer selection.

Finally, the right-hand side of Table 5 shows the results when MAVE is applied for selecting
a best answer from all available candidates in the AVE test set. In this case, an optimal com-
bined system might answer 122 questions by selecting from the answer candidates. Compared
to the results for the best individual system shown in Table 5 (left), there is a lot to be gained
by merging QA streams in this case. However, random choice from the candidate answers for
a given question would correctly answer only 40.4% of questions on average (see baseline re-
sult). This is due to the fact that the AVE test set contains only 23.8% of correct answer-witness
pairs, i.e. the QA producers tend to be recall-oriented. MAVE successfully filters and merges
these QA streams. The results (obtained by 10-fold cross-validation) show a relative improve-
ment compared to the baseline of up to 82.6%. Moreover, results are better than those of any
individual participating system. The best results (90 questions correctly answered, i.e. 73.8%
of relative recall compared to the optimal selection) were obtained when determining fallback
error probabilities from all training items and when using a separate error model for each QA
system. Interestingly, using a joint error model for all QA streams had only a minor effect on
the quality of results in this case. We attribute this to the fact that the AVE test set is dominated



by a few QA systems with similar characteristics. The best systems were also those which con-
tributed most answer candidates, so that fitting parameters to the training set as a whole also
resulted in a good choice of parameters for the relevant QA systems. Notice that by manually
adjusting the α and β parameters introduced in Sect. 2.2.4, we were able to correctly select
answers for 93 questions (76.2% of relative recall compared to optimal selection). This demon-
strates that the method for parameter fitting works pretty well since the results for estimating
parameters in cross-validation come close to the results of manual optimization.

6 Conclusion
We have described the MAVE architecture for answer merging and witness selection which is
particularly suited for combining heterogeneous QA sources. The system adapts to the quality
of the inputs. Thus, if the input is grammatical, then deep methods and deep indicators will
be used. The system automatically switches to robust pattern-matching when an answer cannot
be analyzed on the logical level. Based on an annotated training set, the validation method can
automatically adapt to high-precision and high-recall QA systems. The proposed method for
parameter selection adjusts the parameters in a single sweep through the training set. Though
the determined parameters are not necessarily optimal, the method is confirmed by the good
performance of MAVE and by the stability of results under cross-validation. The approach was
evaluated for two multi-stream QA setups. The IRSAW experiment included the precision-
oriented InSicht stream, the specialized QAP stream for limited question classes (e.g. questions
for acronyms), and the recall-oriented MIRA stream. Due to the lack of balance in the test
set (most answer candidates were produced by MIRA while most correct answers originated
from InSicht), the use of a joint model resulted in poor performance. However, we obtained
good results for the combined IRSAW run when using custom parameters for each producer.
The second experiment based on the AVE 2006 test set for German was also successful: A joint
model for the eight QA streams was sufficient to achieve an improvement of 82.6% compared to
the baseline and outperform any individual QA system represented in the test set. In the future,
we will conduct ablation experiments in order to determine the factors in the MAVE architecture
which show the strongest impact on performance scores. Moreover, we will replace the heuristic
methods of the current design with a more uniform probabilistic model.
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