
VILAB - A Virtual Electronic Laboratory for Applied Computer Science

Rainer Lütticke, Carsten Gnörlich, Hermann Helbig
University of Hagen, Department of Computer Science,

Chair of Applied Computer Science VII, Intelligent Information and Communication Systems,
Universiẗatsstr. 1, D-58084 Hagen, Germany; rainer.luetticke@fernuni-hagen.de

Abstract
The virtual electronic laboratory for applied computer
science (VILAB) is created for Internet-based distance
education at the FernUniversität Hagen, since the transfer
of theoretical knowledge of students into practical prob-
lem solving without physical presence at an university
is an important teaching target as well as an important
administrative facilitation. In addition, students having a
basic knowledge in a specific field of applied computer
science shall get a deeper insight into this field within
a motivating learning environment. For this purpose an
intelligent tutoring system (ITS) is implemented in VI-
LAB realized as a client-server system. The interactive
tutoring system supports the process of problem solving
by an analysis of results from exercises, by hints, if it
detects deficiencies in the knowledge of a student, and by
verification of the student’s performance. The reactions
of the tutoring system are based on error diagnosis and
correction using a lookup table in which the student’s
errors are anticipated. Therefore no individual student
models are needed in VILAB. The knowledge domains
of the tutoring system are separated in laboratory sta-
tions: different programming languages and rule based
systems including databases and information retrieval.

1 Introduction
The conception of the VIrtual electronic LABoratory for
applied computer science (VILAB) originates from the
laboratories used for the education in natural sciences.
In these labs the students are guided by a curriculum to
several different experimental stations. There they can
work on exercises and additionally, can test their theoreti-
cal and methodical knowledge. This paradigm is used for
the realization of the virtual laboratory for the education
in applied computer science at universities. Therefore the
users of VILAB will also be called “students”. Different
to traditional practical courses in VILAB the students get
access to several software tools, with which the students
work on their experiments.
VILAB has three different aims. The instructional as-
pect is that simple learning by reading of texts or hear-
ing of lectures do typically not lead to the expected suc-

cess. Three main reasons explain this fact: The knowl-
edge is saved by students only for a short time. The trans-
fer of theoretical knowledge into practice and into strate-
gies for the solving of concrete problems is not possible,
and the monitoring of learning success fails (Universität
Tübingen 2000). Such effects can often be prevented
by the coached work on practical exercises. Therefore
VILAB assigns such exercises out of the field of ap-
plied computer science and includes an interactive tutor-
ing component (later also called “tutor”). This compo-
nent helps the students at their work in the laboratory, if
they have problems to find the correct solutions.
From the administrative perspective the aim is the cre-
ation of a virtual laboratory which relieves the staff of
universities for applied computer science. Such a support
is necessary since in Germany the growing number of stu-
dents in computer science is not coupled with a growing
number of staff personal.
Thirdly students using VILAB have large personal
advantages. They save the time and costs of a long and
expensive travel to a real laboratory. This point has to
be taken especially into account at distance universities.
Furthermore, the students can decide themselves at what
time they want to work in the laboratory. This freedom
has also instructional advantages we will discuss later.

2 Layers of VILAB
VILAB can be divided in three layers reflecting the
typical aspects of an e-learning tool. The technical layer
includes all information about software, interfaces, and
architecture. The functional layer describes the content
of the technical components and the instructional system
design reveals the learning method VILAB is based on.

2.1 Technical Layer
The virtual laboratory is realized in a client-server-
architecture. The teaching components (the tutor and the
systems for the laboratory stations) are installed on an
Unix server. This system is open to user clients via the In-
ternet and thereby accessible for the students. To have an
uniform communication between server and client only
the tutoring component is directly connected with the



clients. After an user has started an instance of the labo-
ratory on his computer a graphical user interface (written
in the Lisp dialect Scheme) and a browser (e.g.Netscape)
are displayed on the screen and the send-receive system
of the tutoring component (Java) is started. During a ses-
sion these and further processes are controlled by the VI-
LAB system. Inside this system every user gets individ-
ual ports and directories so that the display of data and
the saving of files can be managed. In this way VILAB
can be used by many students at the same time.
Depending on the actions of the user VILAB starts the
WebAssign system1 (Brunsmann et al. 1999), software
tools, or HTML/PDF-documents. These documents be-
long either to the VILAB system itself, to the “Vir-
tual University”2, or are parts of the WWW. Out of the
HTML-documents inside the WebAssign system requests
can be sent via CORBA to servers (so called correction-
servers written in Java). In such a case these servers initi-
ate reactions in the VILAB system. After possible subse-
quent processes (e.g. compilation of programs) are man-
aged, the send-receive system of the tutoring component,
which communicates via sockets with the rest of the VI-
LAB system, creates the final answer. For this purpose
a HTML-document including Javascript files is loaded
into the individual directory of a VILAB user and is dis-
played.
The software tools communicate directly via sockets
or indirectly via the WebAssign system with the send-
receive system of the tutoring component. Depending
on the content of the software tools and the functions
of the correction-servers both, tools and servers, can be
joined with compilers for the respective programming
language, a relational SQL database, or other software
components.
The software implemented in VILAB can be divided
in five categories. Newly developed software includes
the components of the platform of VILAB (control
of the processes inside VILAB, functionality of the
user interface, interfaces to the different systems in-
and outside of VILAB, and send-receive system of the
tutoring component), the correction-servers, and the
software for the creation of the answers of the tutor on
requests. Corresponding to the needs of VILAB the
tool for knowledge representation (MWR3, Gnörlich

1WebAssign is a system for the realization of exercises of lectures
in universities via the Internet developed by the FernUniversität Hagen.

2“Virtual University” means here the transfer of teaching, re-
search, and administration of the FernUniversität Hagen into virtual
space via the information technology and infrastructure of the Internet
(Schlageter and Mittrach 1998).

3MWR(MULTI NET-Wissensrepr̈asentation) is a software tool for
the graphical representation of MULTI NET terms. In this graphical
environment the terms can be produced, displayed, and manipulated.
MULTI NET (multilayered extended semantic networks) is a paradigm
of knowledge representation created for knowledge processing and spe-
cially for the semantic representation of natural language information.

2000) was modified and is fully developed. Additionally,
VILAB uses administrative functions of WebAssign
(e.g. access of data of the students and saving of re-
sults of exercises) and standard correction-servers for
automatical correction of exercises without the use of
the send-receive system of the tutoring component of
VILAB. WebAssign is an open source project inside of
“CampusSource”4 and is specially adapted for VILAB.
Furthermore, commercial software components, compil-
ers and Oracle databases, are implemented in VILAB.
The last category is formed by gateways. They are used
by the tools of VILAB, but are not part of it (e.g. the
natural language interface, Helbig and Hartrumpf 1997).

2.2 Functional Layer
Via the user interface the students navigate inside of VI-
LAB. Using this navigation menu the different laboratory
stations of VILAB can be selected.
The implementation of different programming languages
in VILAB is indispensable since programming is a sub-
stantial content of practical courses in applied computer
sciences. In VILAB the students can experiment with
the four most important programming paradigms: proce-
dural, object oriented, functional, and logical program-
ming. This aim is reached by the implementation of the
languages C, Java, the Lisp dialect Scheme, and Prolog
as laboratory stations. The students can either work on
exercises with tutoring help or write own programs with
display of their results (only text, no graphics) as help for
the exercises or to get experience with a computer lan-
guage.
The knowledge engineering tool MWR is used in the
station “rule based systems” for the fields of knowledge
acquisition and rule based inferences and transformation
into requests on databases. The students need this tool
for the creation of solutions (e.g. graphics, rules, answers
to questions) of exercises. Additionally, they can experi-
ment with MWR. In this way this station also touches the
forthcoming stations “technology of databases” (teaching
the concepts and functionality of database systems, the
basic principles of the architecture, and the implemen-
tation of data) and “information retrieval” (including the
search for information in databases, MULTI NET knowl-
edge bases, and in networked digital libraries or at similar
data provider via the Internet, Helbig et al. 2000).
Depending on the laboratory station and the software
tool VILAB offers different kinds of activities for
the students: navigation in VILAB via user interface,
reading of literature in a browser or in an Acrobat Reader
window, graphical real time actions in the editor window
of MWR by mouse control, actions in the menu of
MWR, file upload via WebAssign, writing into textareas
or marking of buttons in HTML-documents of exercises,

4http://www.campussource.de



or starting a request for the correction of an exercise to
the send-receive system of the tutoring component.

2.3 Instructional System Design
Real labs are only useful for students having some back-
ground in a specific field of science. In the same way our
virtual laboratory is not a learning tool for basic knowl-
edge. Before an user of VILAB starts to work in the labo-
ratory this knowledge should previously be acquired else-
where (e.g. lectures or literature). However, the student’s
knowledge has not to be wide. The difficult transfer pro-
cess of theoretical into practical knowledge is supported
in VILAB by instructional transaction. This particular
interaction with a student in an e-learning system is char-
acterized by a mutual, dynamic, real-time give-and-take
between an instructional system and a student with an ex-
change of information (Merril et al. 1992).
The user of VILAB gets practice by working on exercises
assigned to a laboratory station out of a pool (which will
grow with the time). The important concept of VILAB
is that the problem solving happens with the assistance
of an interactive tutoring component. The differentiated
reactions of the tutor directly point to the error of the stu-
dent. The tutor supports him, if it finds missing knowl-
edge, and evaluates his solutions. Furthermore, the possi-
bility of own experiments with the software tools will ad-
ditionally promote the student’s practical knowledge. In
this way VILAB applies the last four out of nine learning
steps (utilization of knowledge, feedback of controlled
results, evaluation of learning success, and ascertaining
of knowledge saving and knowledge transfer) of the in-
structional design theory by Gagné et al. (1988). VILAB
can also be used as a constructivistical learning environ-
ment, in which learning is problem based and takes place
in the practical use of knowledge, if the exercises of a
laboratory station are the starting point (with some basic
knowledge) for the learning of a domain.
The differentiated feedback on the actions of the user by
the tutoring system will motivate the students because
together with the assistance of the tutor they have a
larger chance or it is easier to solve the problems of
exercises. The immediate feedback of the tutor about
their learning success will give additional motivation.
Thereby the necessity of the students for their extension
of competence and for autonomy (Creß 1999) can be sat-
isfied. Additionally, the variegated reaction of the tutor
will keep the attention of the students alive. Illustrating
at first the learning target and the knowledge background
of an exercise shows the students the relevance of their
doing. Thus VILAB includes all main categories of the
ARCS model (Attention, Relevance, Confidence, and
Satisfaction) for the promotion of learning motivation by
Keller et al. (in Reigeluth 1983).

3 Tutoring Component
The tutoring component is the central part of VILAB
transferring the instructional system design. Via user in-
terface introductory texts as instruction manual, guided
tour, and lists of FAQs and of the responsible contact per-
sons in case of problems are presented. Furthermore, the
laboratory stations can be selected in the user interface.
Every laboratory station welcomes the user with back-
ground information (HTML) about its content, learning
target, and units of lectures. The dedicated software tools
and exercises are introduced and requirements on the stu-
dent’s knowledge for a successful problem solving of the
exercises are illustrated.
The exercises of a specific laboratory station are listed in
the user interface. To guide the student for his selection
they are divided in different levels by our experience with
real practical courses in applied computer science

• very easy: transfer of knowledge to problems which
are comparable to model problems in the accompa-
nying instructional texts in VILAB or problems are
trivial; ideal for beginners

• easy: new (resp. the accompanying texts in VILAB)
and easy problems; ideal for advanced beginners

• moderately difficult: finding of solution need some
experience; ideal for advanced students

• difficult: the student need a lot of experience in this
field of science to solve the problem; ideal for stu-
dents in their last phase of study

and in different degrees of complexity.

• separate: the exercise is not connected to others

• moderately complex: the exercise is connected with
others mainly situated in the same laboratory station

• complex: the problem has a large extent including
exercises out of different laboratory stations

A selection of an exercise leads to a display of a HTML-
document. This document presents the learning target,
the task, the relevance of the exercise for the field of
knowledge, and helpful literature and explains what soft-
ware tools have to be used, how the exercise is embedded
in VILAB, how the solution has to look like, and how
it is controlled by the tutoring component. Links to the
literature and the software-tools can only be activated in
the user interface to retain control about the processes in
VILAB. All texts are graphically optimized integrating
theories of screen design (Universität Tübingen 2000).
While a student is working on an exercise or in a
software tool, the send-receive system of the tutoring
component has two functions: “error diagnosis” and
“error correction”. Additionally, the tutor saves the
student’s result of an exercise, which was requested for
correction, via the WebAssign system. In this way the
student starts every new editing of an exercise with his



last result and a teacher has the possibility to examine
results of the students. Depending on the learning target
a possibly existing model result can be presented via user
interface.

3.1 Error Diagnosis
Diagnosis means in this context the decision whether a
solution is correct or not and to find out what and why
(explaining module) something is wrong or incomplete.
The tutoring component has an active and a passive error
modus for two different kinds of problem solving sup-
port which are discussed at large in analyses of ITSs (In-
telligent Tutoring Systems) (Brusilovsky 1999). In the
active modus (“intelligent analysis of student solutions”)
the send-receive system of the tutoring component has
to identify errors from the student’s final result after he
has requested for a correction. This modus is needed for
the non interactive programs (e.g. SQL, Java) in which er-
rors are only detectable by a complete analysis of the stu-
dent’s input. This analysis is realized by the correction-
servers and possibly following processes (s. section 2.1).
The output of such an analysis is an error code with ac-
companying parameters.
In the passive modus (“interactive problem solving sup-
port”) the send-receive system of the tutoring component
does not wait for the student’s final solution. If an
interactive software tool detects an error, it sends at once
the specific error code with accompanying parameters to
the send-receive system of the tutoring component. In
this way this tutoring component has not to be activated
for the error finding. Thereby the student is provided
with intelligent help on each step of problem solving.

3.2 Error Correction
The error correction has the goal to show the student
how to remove the errors asserted in the diagnosis by
identification of missing or incorrect knowledge which is
responsible for errors. The overriding goal of the tutor
is the finding of the logical errors and not the complete
listing of syntax errors as in standard program diagnosis
systems. The error diagnosis and the proposals for the
problem solving are derived from the error codes and the
accompanied parameters. These codes are processed by
the send-receive system of the tutoring component with
an error table sketched in Tab. 1. Every error code leads
to the display of PDF- or HTML-documents which are
individually modified by Javascript variables extracted
out of the parameters. The content of the documents
includes a statement about the correctness of the solution,
the description of possible errors, hints to the avoidance
of these errors, and possibly a listing of useful literature
to derive lacking knowledge. Additionally, the student
can get concrete instructions, if technical actions are nec-
essary to improve his solution of an exercise (s. Tab. 1).

In the literature (Lelouche 1999) such a tutoring system
is called “frame-oriented” because to every anticipated
wrong student solution or action inside this interactive
system there exists a frame encompassing predefined
tutoring actions.

Table 1: Table of errors

Error Correction Action of
proposal the correction

code of textual technical
the error: references: actions:
e.g. display of e.g.
wrong result, HTML- or PDF- press button xy,
incomplete documents give a specific
result, or answer, or
syntax error kill process

3.3 Comparison with other tutoring systems
Following the study about distance education of the Uni-
versiẗat Tübingen (2000) a CBT/CAI system is consid-
ered to be “intelligent” if it has functions which are based
on the analysis of user requests and which influence the
feedback of the system over several teaching/learning cy-
cles. Using this definition the solution analysis of the tu-
toring system of VILAB can also be called “intelligent”
with regard to our method of error diagnosis/correction
(Brusilovsky 1999). Therefore we count the tutoring sys-
tem of VILAB among the ITSs.
The traditional “frame oriented” ITS concept is selected
for VILAB because students in a practical course should
have a basic knowledge in the respective field in which
they work. Therefore the typical main drawback of such
systems, the dependence of course progression on the au-
thor’s expectations and not on the learner’s deep under-
standing and learning preferences (Lelouche 1999), is not
relevant. Since the source of student’s errors in a practi-
cal course is mostly not missing knowledge, but miss-
ing understanding of the connection between theoretical
knowledge and concrete problems, the experience from
real courses has shown that students make typical errors
during the knowledge transfer. Thus, the solutions for
these errors can be generalized. Therefore the ITS of VI-
LAB concentrates on the complete recognition of errors
and not on individual student models as in many mod-
ern ITS, since such models are not effective for all ITSs
(Gugerty 1997). In this way the tutoring of VILAB is
adaptive to the user by the specific reaction on the user’s
individual errors.
Different to the most ITSs (e.g. VC-Prolog-Tutor with
a the similar concept as VILAB, Peylo et al. 1999) the
tutoring inside of VILAB is not limited to one single



domain, but includes several domains represented by
the laboratory stations. Thereby the students get the
advantage that they have to be familiar and to work
with only one system covering many fields of applied
computer science. Such a system is adequate for the
education on universities, since the goal of practical
courses for students is not the training of experts in one
single domain, but the overall education.

4 User Access
The users of VILAB have to work with tools for Unix,
but they start VILAB from different operating systems.
A typical problem is that a student has a Windows based
computer as client but he has to use a tool for Unix in
the virtual laboratory. To solve this problem we have
analysed two different approaches and have picked out
the better one after a test phase of VILAB. Both solu-
tions imply that the user of VILAB works online in the
virtual laboratory, since we have gained the experience
that offline working via CD-ROM is not accepted by
the students. The fear for damage resulting from the
installation of software packages on their computer often
used for their professional job is larger than the cost of
online working.

4.1 Exclusive use of a browser environment
In this variant the commercial system “Tarantella” of
the company SCO is used. The tools of VILAB run
within this system on a special server. In- and output
interfaces of the tools are redirected to a Java-Applet
running inside of the Internet browser of the client. The
advantage of this approach is that the student only needs
a Java-compatible browser. However, we have rejected
this variant because a key component of VILAB would
depend on the availability of future product support and
license fees for the Tarantella-platform have to be paid
in respect of the number of clients. Since the number of
students in computer science in Germany is growing and
the first practical use of VILAB for teaching has shown
that the community of the students seems to accept the
concept of a virtual laboratory, we would expect too
large costs.

4.2 Remote-login to the VILAB server
The alternative and realized approach is a remote-login
of the students viasshto a server, on which all tools of
VILAB are installed. After the login the VILAB system
starts directly and the students can navigate inside the
laboratory using the graphic user interface (s. section
2.1). Students with an Unix client need no additional
software. Only users of Windows have to install the free
softwareCygwinandXFree. Tests have shown that these
small software packages are quickly and easily to install

for students. This variant has the advantages that we do
not need commercial software, have to pay only for CDs
containing the software for Windows users, and have
more technical freedom for design in VILAB.

5 Conclusion
We have presented a virtual laboratory with an Internet-
based ITS as central part. Such systems still are rather
rare inside the ITS area (Brusilovsky 1999), although the
benefits of Internet-based education are clear: platform,
time, and place independence.
The function of the tutoring system of VILAB is the sup-
port of students working on exercises or practical courses
in applied computer science. For this purpose the sys-
tem uses frame oriented intelligent analyses of student’s
solutions and interactive methods.
The conception and the platform of VILAB are almost
independent on the content of the individual stations of
the laboratory. In this way a continual addition of further
stations in the future is possible to cover the whole field
of applied computer science.
Currently a prototype of VILAB is being realized. It will
be used in a seminar about intelligent information and
communication systems in SS2002 by a larger number
(∼20) of students. After an evaluation of the system its
future use will be in the context of a practical course at
the FernUniversiẗat Hagen.

Acknowledgments
This work is part of the project “medin” (Multimediales
Fernstudium in der Medizinischen Informatik), which
is supported by the BMBF inside the program “Neue
Medien in der Bildung”.

References
Brunsmann J., Homrighausen A., Six H.-W., Voss J.,
Assignments in a Virtual University - The WebAssign-
System, in: Proc. 19th World Conference on Open Learn-
ing and Distance Education, Vienna, Austria, 1999

Brusilovsky P., Adaptive and Intelligent Technologies for
Web-based Education, in K̈unstliche Intelligenz, 13(4),
1999, pp. 19-25

Creß U., Personale und situative Einflussfaktoren auf
das selbstgesteuerte Lernen Erwachsener, Regensburg, S.
Roderer Verlag, 1999

Gagńe R.M., Briggs L.J., Wagner W.W., Principles of in-
structional design, New York, Holt, Rinehart, and Win-
ston, 1988

Gnörlich C., MULTI NET/WR: A Knowledge Engineer-
ing Toolkit for Natural Language Information, in:



Technical-Report 278, FernUniversität Hagen, Hagen,
Germany, 2000

Gugerty L., Non-diagnostic intelligent tutoring systems:
Teaching without student models, Instructional Science
25, 1997, pp. 409-432

Helbig H., Gn̈orlich C., Leveling J., Naẗurlichsprachlich-
er Zugang zu Informationsanbietern im Internet und zu
lokalen Datenbanken, in: Sprachtechnologie für eine dy-
namische Wirtschaft im Medienzeitalter, Schmitz K.-D.
(ed.), Wien, TermNet, 2000, pp. 79-94

Helbig H., Hartrumpf S., Word Class Functions for
Syntactic-Semantic Analysis, in: Proceedings of the 2nd
International Conference on Recent Advances in Natural
Language Processing (RANLP-97), Tzigov Chark, Bul-
garia, 1997, pp. 312-317

Lelouche R., Intelligent tutoring systems from birth to
now, in Künstliche Intelligenz, 13(4), 1999, pp. 5-11

Merrill M.D., Jones M.K., Li Z., Instructional Transac-
tion Theory: classes of transaction, in: Educational Tech-
nology, 32 (6), pp. 12-26

Peylo C., Teiken W., Rollinger C., Gust H., Der VC-
Prolog-Tutor: Eine Internet-basierte Lernumgebung, in
Künstliche Intelligenz, 13(4), 1999, pp. 32-35

Reigeluth C.M. (ed.), Instructional design theories and
models: An overview of their current status, Hillsdale,
NJ, Erlbaum, 1983

Schlageter G., Mittrach S., Virtuelle Universität, in: In-
formatik Forschung und Entwicklung, Volume 13, 1998,
pp. 159-162

Universiẗat Tübingen; Planung, Entwicklung, Durchfüh-
rung von Fernstudienangeboten, Deutsches Institut für
Fernstudienforschung an der Universität Tübingen, 2000


