
Problem solving in an interactive
Internet-based learning environment

Rainer Lütticke, Hermann Helbig

FernUniversität Hagen

Key words: Web-based learning, Interactive learning, Virtual laboratories

Abstract:

The virtual electronic laboratory (VILAB) was developed for Internet-based teaching
in computer science at the FernUniversität Hagen, the biggest open and distance uni-
versity in Germany. There VILAB is used for regular teaching since summer 2002. The
learning environment is realised as client-server system in which the clients are con-
nected via Internet (remote-login and browser) with the server of the university. In this
way the students get fast access to complex software-tools for their work on exercises
in VILAB divided by their topics. At the same time the server indirectly controls the
content of a browser opened on a client. Additionally, an interactive tutoring compo-
nent, based on the newest theories for intelligent and adaptive feedback, supports and
motivates the students during their problem solving processes.

1 Introduction

The opportunities which distance learning provides of tailoring studies to suit the individual
time budget gives people, who cannot study on a conventional university due to their personal
situation (work, family, disability, etc.), a chance of a real university education. Distance
learning is the ideal form of lifelong learning, continuing education, and advanced training.
However, disadvantages are sometimes difficulties at self-studies and time-consuming and
expensive travels to courses which need the presence of the student on the campus of the uni-
versity (e.g. practical courses). By its fundamental decision in favour of the blanket use of the
New Media and the development of the Education and Knowledge Space: Virtual University1

[11], the FernUniversität has phrased its response to society‘s demands for more flexible edu-
cation and new models of lifelong learning. In this context the FernUniversität was also
searching for new concepts of practical courses using the virtual mobility, new ways of com-
munication, and modern technologies for teaching.
To reach this aim for the field of applied computer science we developed a conception for a
learning environment originating from the laboratories used for the education in natural sci-
ences. In these labs the students are guided by a curriculum to several different experimental
stations. There they can work on exercises and additionally, can test and deepen their theo-
retical and methodical knowledge getting support by an assistant. This paradigm is used for
the realisation of our Internet-based learning environment for the education in applied com-
puter science at our university. Therefore we have called it "virtual electronic laboratory"
(VILAB). Its functionality is described in chapter 2. Analogue to traditional practical courses

1 http://vu.fernuni-hagen.de

the learning content in VILAB is divided in several stations inside of the lab. There the stu-
dents have access to several software tools, on which they work on their experiments and
problems (chapter 3). To integrate functions of a personal human assistant of a real lab into
our learning environment and not to leave an user with a problem during a session in the vir-
tual lab alone an interactive tutoring component described in chapter 4 is implemented in VI-
LAB. We are closing with evaluation results and a conclusion in chapter 6.

2 Functionality of VILAB

2.1 Architecture

VILAB is realised in a client-server architecture in which the Linux-based server is operated
at the FernUniversität. The server saves and manages the content of the lab via a navigation
tool for the students. The server also harbours the tutoring component (Java) and the software-
tools and provides the communication infrastructure to databases and WebAssign, which is an
established online system for standard exercises (e.g. multiple choice) with modules for
automatical correction of such standard exercises and allows the integration of further mod-
ules for the analysis of more complicated problems [2], [7]. This system is in VILAB inte-
grated in such a way that users of the lab do not notice when they work with functions of
Web-Assign.
The access to the server is managed by decentral user clients (Windows- or Unix-based com-
puters) which must be connected with the Internet. Via remote-login to the server the students
are directly routed to a navigation tool which is written in the Lisp dialect Scheme and is one
of the two user interfaces (Fig. 1). After a login the server starts a new instance of the lab and
the send/receive system of the tutoring component. Thereby the students cannot get access
(intended or not) to the Linux-system of the server. For the display of the content of the lab
the student has to open a browser on his client with an individual URL as second user inter-
face (Fig. 1). Via navigation tool local hypertext or PDF documents as well as documents out
of the WWW can be selected by buttons. An action which shall lead to a display of a hyper-
text document result in an automatic reload in the browser of the user. This is realised by
loading local documents in the individual directory of the user inside of VILAB and copying
them to the URL of the user. PHP scripts inside of the hypertext document notice the change
of the content in the user’s URL and start the reload. In this way it is possible that actions on
the server indirectly control the browser of the client. Documents of the WWW are embedded
in a frame so that higher-level PHP-scripts can manage also the display of this kind of docu-
ments in the browser of the user.
Via navigation tool the software-tools installed on the server can be activated. These tools can
communicate via sockets with the tutoring component leading to the fact that every user have
individual ports for this socket communication.
Since every user possesses individual URLs, directories and ports inside of VILAB it is pos-
sible for the system to manage handling, saving, and display of data of many users at the same
time.

2.2 User access

Realising the access to the learning environment to the main fraction of the students it is im-
portant to support the client operating systems Windows and Linux since we know by surveys
that ~75 % of our students use Windows, ~20 % Linux, and only ~5 % other systems. There-
fore we support access for these two operating systems and other Unix-like systems, of

course. Additionally, we demand for the client only a x86 processor and any standard browser
(e.g. Netscape or Explorer).
The remote-login to the server of VILAB (via ssh) is for students using Linux trivial. Win-
dows user have to install the open source packages cygwin and xfree86.4.x to get the analo-
gous Unix functions needed for the access. The students can either download these packages
from our web pages or ask for a CD produced at our institute and containing all needed soft-
ware packages.
This kind of access has the advantages that all existing tools for Unix can easily be integrated
in our learning environment, we do not need any commercial software, the students (only
Windows user) need only free software which can be easily and in a short time installed, and
we have large technical freedom for the realisation of our didactical concept. On the other
side the exclusive use of a browser environment seems to be simpler at the first glance, espe-
cially for the Windows user, but there are some large disadvantages. Since one of our main
purposes is the integration of software tools, in this alternative variant we had to rewrite the
tools as Java-Applet (in fact this is not possible due to the complexity of tools) or had to run
the tools within other systems (e.g. “Tarantella” of the company SCO) on a special server
redirecting in- and output interfaces of the tools to a Java-Applet. The disadvantage of this
solution is the dependency for a key component of VILAB on the availability of future prod-
uct support and on license fees for the commercial systems. Additionally, and this is even
more important, tests have shown that the reaction time of the software tools using the re-
mote-login is much smaller than in the redirection-Java-Applet variant.
Offline working with a CD-ROM have even larger disadvantages and the both advantages,
saving money and faster reactions of a system, are today weaker arguments than in former
times. Like in the remote-login variant Windows user had also to install the open source
packages for the Unix-based tools. However, offline working is not suitable for the aims of
our practical learning environment because some tools need the Internet access (communica-
tion with other systems), collaborative work would be excluded and access to databases for
generation of adaptive feedback would not be possible. If students like to work offline they
have also in the realised remote-login variant the possibility to download all text documents
of VILAB.

Figure 1: Screenshot of two user interfaces of VILAB. The browser window is supposed by
the navigation tool. (Of course in practise the user places the windows side by side.)

3 Presentation of the exercises and problems

Conception and platform are nearly independently developed from the teaching content. In
this way new laboratory stations, which contain the content, can be added and further Unix-
based software tools can easily be integrated. Currently there are five stations in the labora-
tory: Programming with the languages Java, C, Prolog, and Scheme (procedural, object ori-
entated, functional, and logical), neuronal networks, relative databases, as rule based systems
(semantic networks and natural language transformation in SQL), and computer linguistics.

Every station has a main page giving information about purpose of the station, background,
reference to other stations, and an overview about the exercises and software tools in the sta-
tion. Via navigation tool the students can select the different exercises (Fig. 1, right) presented
on hypertext documents which are divided in learning targets, description of the task, rele-
vance of the exercise for the field of knowledge, knowledge background for solving the exer-
cise, helpful literature, description of the required software tools, characteristics of the solu-
tion, and kind of control/help by the tutoring component (Fig. 1, left).
The students can either work on the given exercises and problems with tutoring help or get
practical experience by free work with the software tools (e.g. request on databases, con-
structing neuronal networks with the SNNS2 [12], or transform natural language information
in semantic networks using the graphic knowledge engineering tool MWR3 [4]).
For the creation of a new laboratory station and new problems we have developed a hyper-
text-based tool for the authors. However, the tutoring module for each problem has to be de-
veloped by the authors themselves. As help they get a commented list of interfaces and some
examples.

4 Tutoring component

While a student is working on an exercise or in a software tool, the send-receive system of the
tutoring component has two functions: "error diagnosis" and "error correction". Additionally,
the tutor saves the student’s result of an exercise, which was requested for correction, via the
WebAssign system or the software tools. In this way the student starts every new editing of an
exercise with his last result and a teacher has the possibility to examine results of the students.
Depending on the learning target a possibly existing model result can be presented to the stu-
dent. However, in most cases an analysis of the student’s solution is didactically better.

4.1 Error Diagnosis

Diagnosis means in this context the decision whether a solution is correct or not and to find
out what and why (explaining module) something is wrong or incomplete. The tutoring com-
ponent has an passive and an active error modus for two different kinds of problem solving
support which are discussed in analyses of ITSs (Intelligent Tutoring Systems) [3]. In the
passive modus ("intelligent analysis of student solutions") the send-receive system of the tu-
toring component has to identify errors from the student's final result after he has requested
for a correction. This modus is needed for the non interactive (therefore the term “passive”)
programs (e.g. SQL, Java) in which errors are only detectable by a complete analysis of the
student's input. This analysis is realised by correction modules and possibly following proc-
esses. The output of such an analysis integrating also an student model is an error code with
accompanying parameters. The student model is based on data collected during the student’s
work in the laboratory and saved in a MySQL database. In the active modus ("interactive
problem solving support") the send-receive system of the tutoring component does not wait
for the student's final solution. If an interactive software tool detects an error, it sends at once
the specific error code with accompanying parameters to the send-receive system of the tu-
toring component. Thereby the student is provided with intelligent help on each step of prob-
lem solving.

2 SNNS: Stuttgart Neuronal Network Simulator
3 MWR (MultiNet-Wissensrepräsentation) is a software tool for the graphic representation of MultiNet terms. In
this graphic environment the terms can be produced, displayed, and manipulated. MultiNet (multilayered ex-
tended semantic networks) is a paradigm of knowledge representation created for knowledge processing and
specially for the semantic representation of natural language information [6].

4.2 Error Correction

The error correction has the goal to show the student how to remove the errors asserted in the
diagnosis by identification of missing or incorrect knowledge which is responsible for errors.
The overriding goal of the tutor is the finding of the logical errors and not the complete listing
of syntax errors as in standard program diagnosis systems. The error diagnosis and the pro-
posals for the problem solving are derived from the error codes and the accompanied pa-
rameters. These codes are processed by the send-receive system of the tutoring component
with an error table. Every error code leads to the display of hypertext documents which are
individually modified by Javascript variables extracted out of the parameters. The content of
the documents includes a statement about the correctness of the solution, the description of
possible errors, hints to the avoidance of these errors, possibly a listing of useful literature to
derive lacking knowledge, an assessment of the student’s performance, and a motivation [10].
In this way the students get adaptive feedback to their individual solution.

5 Conclusion

The first use and the didactical testing took place in summer 2002 with concrete content of the
field applied computer science. Since this summer term VILAB is used for teaching at the
FernUniversität Hagen. Results of evaluations show that the system works stabile, the access
to VILAB (also for Windows user) is easy, the reaction times of the systems are very small,
the students like the kind of learning with VILAB, its design, and the support and motivation
of the interactive tutoring component. From the view of the teacher the most imortant point is
that the students have learned more effective compared to former courses without VILAB [8].
Therefore we conclude that we reached our aims with our learning environment:

VILAB is training practical skills in computer science by working with complex software
tools rendering unnecessary and unreasonable software installation for the work with them.
The students get practical experience by the problem solving of different exercises and the
fast automatic feedback motivates them to search for the right solution of a given problem.
The advantages for the students are obvious:
• Instructional aspect: Coached learning by doing on practical exercises leads to a longer

saving of the knowledge than pure reading of texts, the transfer of theoretical knowledge
into practice and into strategies for solving of concrete problems is trained, and the moni-
toring of learning success can be managed [9], [5], [1].

• Mobility: The students can work independently of space and time. In this way especially
students of a distance university save costs and time of a long and expensive travel to the
university (traditionally necessary for practical courses).

• Software-tools: The students get access to tools which otherwise they could not use from
home (installation to complicated, no rights of use, tools need too much disk space, wrong
operating system, etc.).

• Motivation: The interactive tutoring component motivates and helps the students so that
learning processes are supported.

An integration of collaborative software tools, corresponding exercises, and tutoring feedback
in the future will be the next step to train also the social skills during problem solving in
groups.

References:
[1] Ballstaedt, S.-P. et al.: Planung, Entwicklung, Durchführung von Fernstudienangeboten.

Deutsches Institut für Fernstudienforschung an der Universität Tübingen, 2000.
[2] Brunsmann, J.; Homrighausen, A.; Six, H.-W.; Voss, J.: Assignments in a Virtual University – The

WebAssign-System. In Proc. 19th World Conference on Open Learning and Distance Education,
Vienna, Austria, 1999.

[3] Brusilovsky, P.: Adaptive and Intelligent Technologies for Web-based Education. In: Künstliche
Intelligenz, 13(4), pp. 19-25, 1999.

[4] Gnörlich, C.: MultiNet/WR: A Knowledge Engineering Toolkit for Natural Language Information. In
Technical-Report 278, FernUniversität Hagen, Germany, 2002.

[5] Haynie, W.J.: Effects of Anticipation of Tests on Delayed Retention Learning. Journal of Technol-
ogy Education, 9, 1997.

[6] Helbig, H.: Die semantische Struktur natürlicher Sprache: Wissensrepräsentation mit MultiNet.
Springer, Berlin, 2001.

[7] Lütticke, R.; Gnörlich, C.; Helbig, H.: Internet-basierte Lehre im Rahmen von VILAB. In Schubert,
S., Reusch, B.; Jesse, N. (ed.), GI-Lectures Notes in Informatics (LNI), P-19, “Informatik bewegt”,
Bonner Köllen Verlag, 2002, pp.293-296.

[8] Lütticke, R., Helbig, H.: Das Virtuelle Informatik Labor als Teil des Lernraums Virtuelle Universität
der FU Hagen. In von Knop, J.; Haverkamp, W. (ed.), GI-Lectures Notes in Informatics (LNI),
“Moving Expertise”, 17. DFN-Arbeitstagung über Kommunikationsnetze, Bonner Köllen Verlag,
2003, in press

[9] Morrison, G.R.; Ross, S.M.; Gopalakrishnan, M.; Casey, J.: The Effects of Feedback and Incen-
tives on Achievement in Computer-Based Instruction. Contemporary Educational Psychology,
20:32-50, 1995.

[10] Musch, J.: Die Gestaltung von Feedback in computerunterstützten Lernumgebungen: Modelle und
Befunde. Zeitschrift für Pädagogische Psychologie, 13:148-160, 2000.

[11] Schlageter, G., Mittrach, S.: Virtuelle Universität. In Informatik Forschung und Entwicklung, Vol-
ume 13, 1998, pp. 159-162.

[12] Zell, A.: Simulation neuronaler Netze. Oldenbourg, München, 1997.

Authors:

Rainer Lütticke, Dr.
Hermann Helbig, Prof. Dr.
FernUniversität Hagen, Department of Computer Science,
Intelligent Information and Communication Systems
Universitätsstr. 1, 58084 Hagen, Germany
rainer.luetticke@fernuni-hagen.de

